WO2018119793A1 - 一种分路塔放及天馈系统 - Google Patents

一种分路塔放及天馈系统 Download PDF

Info

Publication number
WO2018119793A1
WO2018119793A1 PCT/CN2016/112763 CN2016112763W WO2018119793A1 WO 2018119793 A1 WO2018119793 A1 WO 2018119793A1 CN 2016112763 W CN2016112763 W CN 2016112763W WO 2018119793 A1 WO2018119793 A1 WO 2018119793A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
rru
tower
port
shunt
Prior art date
Application number
PCT/CN2016/112763
Other languages
English (en)
French (fr)
Inventor
古江春
梁莹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2016/112763 priority Critical patent/WO2018119793A1/zh
Priority to KR1020197020847A priority patent/KR20190095413A/ko
Priority to CN201680090159.4A priority patent/CN109845117A/zh
Priority to EP16924908.3A priority patent/EP3553956B1/en
Priority to JP2019534927A priority patent/JP2020503770A/ja
Publication of WO2018119793A1 publication Critical patent/WO2018119793A1/zh
Priority to US16/454,239 priority patent/US10790863B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1242Rigid masts specially adapted for supporting an aerial
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/247Supports; Mounting means by structural association with other equipment or articles with receiving set with frequency mixer, e.g. for direct satellite reception or Doppler radar
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/40Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B2001/0408Circuits with power amplifiers
    • H04B2001/045Circuits with power amplifiers with means for improving efficiency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • the embodiments of the present invention relate to the field of communications, and in particular, to a split tower discharge and an antenna feed system.
  • the communication network has passed the Global System of Mobile communication (GSM) network, Code Division Multiple Access (CDMA) network, and Wideband Code Division Multiple Access (Wideband Code Division Multiple).
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • UMTS Universal Mobile Telecommunications System
  • radio frequency module of the CDMA network does not support the LTE network
  • it is necessary to separately deploy radio frequency modules for the CDMA network and the LTE network during network deployment for example, radio remote unit (Radio Remote) Unit, RRU)
  • FIG. 1 shows a schematic diagram of an antenna feeder system for CDMA network and LTE network deployment.
  • the CDMA network and the LTE network share a 4-port antenna unit
  • the CDMA network adopts an RRU having two ports (for example, 2 rounds 2 (2T2R) or 1 round 2 (1T2R)) (represented by RRU1 in FIG. 1)
  • the LTE network employs an RRU (represented by RRU 2 in Figure 1) with four ports (e.g., 2 rounds and 4 rounds (2T4R)).
  • RRU represented by RRU 2 in Figure 1 with four ports (e.g., 2 rounds and 4 rounds (2T4R)).
  • two ports in the RRU 1 are connected to two of the 4-port antenna units
  • two of the RRUs 2 are connected to the other two of the 4-port antenna units.
  • Figure 2 shows a schematic diagram of another antenna feeder system for CDMA network and LTE network deployment. Among them, by adding two combiners on the antenna unit side, it is possible to realize the role of the RRU 2 of the LTE network 2T4R by way of combining.
  • the combiner is usually a 3 dB (dB) bridge or a bandwidth coupler, so adding two combiners on the antenna unit side will bring at least 3 dB of insertion loss to the CDMA network and the LTE network, affecting the CDMA network and LTE. Network coverage.
  • dB 3 dB
  • the embodiment of the invention provides a shunt tower and an antenna feeder system, which can increase the coverage of the network and improve the network coverage by adding a shunt tower on the antenna unit side to realize the role of the RRU of the four ports. performance.
  • an embodiment of the present invention provides a shunt tower, where the shunt tower includes a first filtering module, a second filtering module, a first amplifying module, a second amplifying module, a control module, and a first shunt module.
  • a second branching module wherein the first filtering module is connected to the first amplifying module, the first amplifying module is connected to the control module, the control module is connected to the second amplifying module, and the second amplifying module is connected to the second filtering module, and the second a first branching module connected to both the filtering module and the first amplifying module; a second branching module connected to the second filtering module and the second amplifying module; wherein the first branching module and the second branching module are both Used to transmit signals.
  • the shunt tower provided by the embodiment of the present invention adds the first shunt module and the second shunt module for transmitting and receiving signals on the basis of the existing tower, so the tower is applied to the CDMA network and the LTE.
  • the first branch module and the second branch module of the split tower can be connected to the two ports that are originally idle in the RRUs of the four ports used in the LTE network, so that the LTE network is adopted. All ports in the four ports of the RRU can receive and/or transmit.
  • the shunt tower provided by the embodiment of the present invention splits the received signal first, and then does not introduce additional insertion loss to the antenna feeder system, thereby ensuring network coverage and improving network performance.
  • the first filtering module includes: a first transmit filter, a first receive front end filter, and a first receive back end filter, One end of the first transmit filter is connected to one end of the first receive front end filter, and one end of the first receive back end filter is connected to the other end of the first transmit filter;
  • the first amplification module includes: the first low noise An amplifier, wherein a first end of the first low noise amplifier is connected to the other end of the first receiving front end filter, and a second end of the first low noise amplifier is connected to the other end of the first receiving back end filter;
  • the second filtering The module comprises: a second transmit filter, a second receive front end filter, and a second receive back end filter, wherein one end of the second transmit filter is connected to one end of the second receive front end filter, and the second receive back end filter One end of the device is connected to the other end of the second transmitting filter;
  • the second amplifying module comprises: a second low noise amplifier, wherein the first end of the second low noise amplifier is
  • the first shunt module is a path for transmitting signals; and the second shunt module is another path for transmitting signals.
  • the first end of the first low noise amplifier is coupled to the second end of the first low noise amplifier; the first end of the second low noise amplifier and the second low noise The second end of the amplifier is connected.
  • an embodiment of the present invention further provides an antenna feeder system, the antenna feeder system includes an antenna unit having four ports, a first radio remote unit RRU, a second RRU connected to the antenna unit, and an antenna A splitter tower having any of the features of the first aspect, wherein the first RRU and the second RRU are connected, wherein the first RRU has two ports and the second RRU has four ports.
  • the first port of the first RRU is connected to the first filtering module of the shunt tower, and the second port of the first RRU is connected to the second filtering of the shunt tower.
  • the modules are connected, the first port of the second RRU is connected to the first port of the antenna unit, the second port of the second RRU is connected to the second port of the antenna unit, and the first port of the antenna unit and the first filter of the shunt tower are placed.
  • the first shunt module of the shunt tower is connected to the third port of the second RRU, and the second shunt module of the shunt tower and the fourth port of the second RRU are connected. Connected.
  • the second RRU is further coupled to the control module of the shunt tower for powering the shunt tower.
  • the antenna feeder system further includes: a smart electric feeder SBT;
  • the first port of the first RRU is connected to the first filtering module of the shunt tower, the second port of the first RRU is connected to the second filtering module of the shunt tower, and the first port and the antenna unit of the second RRU are connected.
  • the first port of the second RRU is connected to one end of the SBT, the other end of the SBT is connected to the second port of the antenna unit, and the third port of the antenna unit is connected to the first filtering module of the shunt tower.
  • the fourth port of the antenna unit is connected to the second filter module of the shunt tower, the first shunt module of the shunt tower is connected to the third port of the second RRU, and the second shunt module of the shunt tower is connected with the The fourth port of the second RRU is connected.
  • the SBT is further coupled to the control module of the shunt tower for powering the shunt tower.
  • the names of the above-mentioned shunt tower and antenna feeder system are not limited to the device or the function module itself. In actual implementation, these devices or function modules may appear under other names. As long as the functions of the respective devices or functional modules are similar to the embodiments of the present invention, they are within the scope of the claims and equivalents thereof.
  • FIG. 1 is a schematic diagram of a CDMA network and an LTE network deployed according to an embodiment of the present invention; Schematic diagram of the antenna feeder system;
  • FIG. 2 is a schematic diagram of another antenna feeder system for CDMA network and LTE network deployment according to an embodiment of the present invention
  • FIG. 3 is a schematic structural view 1 of a shunt tower according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural view 2 of a shunt tower according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram 3 of a shunt tower according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram 1 of an antenna feeder system according to an embodiment of the present invention.
  • FIG. 7 is a partial connection diagram of a shunt tower and an RRU and an antenna unit according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram 2 of an antenna feeder system according to an embodiment of the present invention.
  • association relationship describing an association object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and A exists at the same time. And B, there are three cases of B alone.
  • character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • the technical solution provided by the embodiment of the present invention can be applied to network deployment in various communication systems, and is particularly applicable to a scenario in which a previous generation network and a next generation network can coexist in a network transformation process.
  • the RRU of the two ports mentioned in the embodiment of the present invention means that the RRU has two ports, for example, an RRU of 2T2R, or an RRU of 1T2R.
  • the RRU of the four ports mentioned in the embodiment of the present invention means that the RRU has four ports.
  • the RRU of 2T4R The following embodiments of the present invention are described by taking an RRU with two ports whose RRU is 2T2R and an RRU with four ports whose RRU is 2T4R.
  • the first RRU and the second RRU ie, the RRU having two ports and the RRU having four ports mentioned in the embodiments of the present invention may be RRUs deployed in the same communication network, or may be deployed in different communication networks.
  • the RRU is not specifically limited in this embodiment of the present invention.
  • the RRU of 1T2R refers to an RRU having one receiving port and two transmitting ports, and the RRU of 1T2R includes two ports, wherein one of the two ports has the function of receiving data and transmitting data, and the other port only It has the function of receiving data without the function of transmitting data.
  • the RRU of 2T2R refers to an RRU having two receiving ports and two transmitting ports. Referring to RRU1 on the left side of FIG. 1, the RRU of 2T2R includes two ports, which have the functions of receiving data and transmitting data, respectively.
  • the RRU of 2T4R refers to an RRU with 4 receiving ports and 2 sending ports.
  • the RRU of 2T4R includes four ports, of which the leftmost and rightmost two of RRU2 The ports respectively have the function of receiving data and transmitting data, and the two ports in the middle of the RRU 2 only have the function of receiving data, and have no function of transmitting data.
  • the embodiment of the invention provides an antenna feeder system, which can ensure the coverage of the network while realizing the role of the RRU of the four ports by adding a shunt tower on the side of the antenna unit. Cover, improving network performance.
  • the antenna feeder system refers to a system in which an antenna radiates electromagnetic waves to a surrounding space.
  • a tower amplifier also known as a tower-top amplifier, is a low-noise amplifier mounted at the top of the tower immediately after the receiving antenna.
  • the port of the antenna unit and the port of the RRU are respectively numbered when describing the port of the antenna unit and the port of the RRU. This number is only for the purpose of facilitating understanding of the connection relationship between the port of the antenna unit, the port of the RRU, and the shunt tower in the embodiment of the present invention, and has no limiting effect.
  • the manufacturer of the antenna unit, the RRU, and the shunt tower can also be numbered, which is not specifically limited in the embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a shunt tower according to an embodiment of the present invention.
  • the shunt tower includes a first filtering module 10, a second filtering module 11, a first amplifying module 12, a second amplifying module 13, a control module 14, a first shunting module 15, and a second shunting module 16, wherein
  • the first filtering module 10 is connected to the first amplifying module 12, the first amplifying module 12 is connected to the control module 14, the control module 14 is connected to the second amplifying module 13, and the second amplifying module 13 is connected to the second filtering module 11, and
  • a first branching module 15 connected to both the filtering module 10 and the first amplifying module 12; and a second branching module 16 connected to both the second filtering module 11 and the second amplifying module 13.
  • the first branching module 15 and the second branching module 16 are both used for transmitting signals.
  • FIG. 4 is a schematic structural diagram of another shunt tower according to an embodiment of the present invention.
  • the first filtering module 10 includes: a first transmitting filter TX1, a first receiving front end filter RX1, and a first receiving back end filter RX2, wherein one end of the first transmitting filter TX1 and the first receiving front end filter RX1 One end is connected, and one end of the first receiving backend filter RX2 is connected to the other end of the first transmitting filter.
  • the first amplification module 12 includes: a first low noise amplifier LNA1, wherein the first end of the first low noise amplifier LNA1 is connected to the other end of the first receiving front end filter RX1, and the second end of the first low noise amplifier LNA1 is The other end of the first receiving backend filter RX2 is connected.
  • the second filtering module 11 includes: a second transmitting filter TX2, a second receiving front end filter RX3, and a second receiving back end filter RX4, wherein one end of the second transmitting filter TX2 and the second receiving front end filter RX3 One end is connected, and one end of the second receiving backend filter RX4 is connected to the other end of the second transmitting filter.
  • the second amplification module 13 includes: a second low noise amplifier LNA2, wherein the first end of the second low noise amplifier LNA2 is connected to the other end of the second receiving front end filter RX3, and the second end of the second low noise amplifier LNA2 is The other end of the second receiving backend filter RX4 is connected.
  • the control module 14 is connected to both the third end of the first low noise amplifier LNA1 and the third end of the second low noise amplifier LNA2.
  • control module 14 may also be referred to as a Control Circuit/Communication module.
  • control module 14 may include a Micro Control Unit (MCU), a lightning protection unit, and an Electrical Conduction Antenna (RET) port.
  • MCU Micro Control Unit
  • RET Electrical Conduction Antenna
  • the first branching module 15 is a path for transmitting signals.
  • the second shunt module 16 is another path for transmitting signals.
  • first filtering module 10 and the second filtering module 11 are configured to perform combining/demultiplexing processing on the transmission signal and the reception signal, and provide a transmission signal for the first low noise amplifier LNA1 and the second low noise amplifier LNA2.
  • the frequency band suppression prevents the positive feedback of the received signal in the shunt tower.
  • the first amplification module 12 and the second amplification module 13 are for amplifying the received signal.
  • the control module 14 is configured to communicate with the base station, and receive an external device (ie, other devices than the shunt tower) to provide a DC power supply for the shunt tower through the RET port (as shown in the curve from the control module 14 in FIG. 4).
  • the detection and alarm of the first low noise amplifier LNA1 and the second low noise amplifier LNA2 are implemented, and when the lightning protection unit is included in the control module 14, the control module 14 can also provide a lightning protection function for the shunt tower.
  • the first branch module and the second branch module of the split tower can be combined with the RRUs of the four ports used by the LTE network.
  • the two unused ports are connected, making LTE All ports in the four port RRUs used by the network can receive and/or transmit.
  • the structure in which the first branching module and the second branching module of the shunt tower are connected to the two ports of the four ports of the LTE network will be described in detail in the following embodiments, for the sake of brevity. I won't go into details here.
  • the first end of the first low noise amplifier LNA1 may be connected to the second end of the first low noise amplifier LNA1; the first end of the second low noise amplifier LNA2 may be The second end of the second low noise amplifier LNA2 is connected.
  • the shunt tower provided by the embodiment of the present invention can still work normally, and the stability of the network system is ensured.
  • the embodiment of the invention provides a shunt tower, and the shunt tower includes a first filtering module, a second filtering module, a first amplifying module, a second amplifying module and a control module, wherein the first filtering module and the first amplification The module is connected, the first amplification module is connected to the control module, the control module is connected to the second amplification module, the second amplification module is connected to the second filter module, and the first branch module is connected to the first filter module and the first amplification module. a second branching module connected to both the second filtering module and the second amplification module.
  • the shunt tower provided by the embodiment of the present invention adds a first shunt module and a second shunt module for transmitting and receiving signals on the basis of the existing tower, so the tower is placed
  • the first branch module and the second branch module of the split tower can be used with two ports of the RRU of the four ports adopted by the LTE network. Connected, all ports in the four ports of the RRU adopted by the LTE network can receive and/or transmit.
  • the shunt tower provided by the embodiment of the present invention splits the received signal first, and then does not introduce additional insertion loss to the antenna feeder system, thereby ensuring network coverage and improving network performance.
  • An embodiment of the present invention further provides an antenna feeder system, the antenna feeder system comprising an antenna unit having four ports, a first RRU, a second RRU, and a split tower with any of the above features, wherein One RRU has two ports and the second RRU has four ports.
  • the 2R2R RRU deployed by the first RRU for the CDMA network The antenna system of the embodiment of the present invention is described by using the RRU of the 2T4R deployed in the LTE network as an example.
  • Example 1 When the shunt tower is installed at the port of the CDMA network, and the RRU of the 2T4R and the RRU of the 2T2R are close to the antenna unit, the RRU of the 2T4R is also connected with the ESC of the control module of the shunt tower. The ports are connected to supply power to the shunt tower. Specifically, the structure diagram of the antenna feeder system is shown in FIG. 6.
  • the first port A of the RRU of the 2T2R is connected to the first filtering module (not shown in FIG. 6) of the shunt tower, and the second port B and the shunt tower of the RRU of the 2T2R are connected.
  • the second filtering module (not shown in FIG. 6) is connected, the first port A of the RRU of the 2T4R is connected to the first port A of the antenna unit, the second port B of the RRU of the 2T4R is connected to the second port B of the antenna unit.
  • the third port C of the antenna unit is connected to the first filtering module (not shown in FIG.
  • the first shunt module of the shunt tower (not shown in Figure 6) is connected to the third port C of the RRU of the 2T4R, and the second shunt module of the shunt tower (not shown in Figure 6 Draw) connected to the fourth port D of the RTU of the 2T4R.
  • FIG. 5 a partial connection diagram of the shunt tower and the RRU and the antenna unit is shown in FIG.
  • the first port A of the RRU of the 2T2R is connected to one end of the first transmission filter TX1 of the shunt tower, the second port B of the RRU of the 2T2R, and the second transmission filter TX2 of the shunt tower.
  • One end of the antenna unit is connected, the third port C of the antenna unit is connected to the other end of the first transmission filter TX1 of the shunt tower and one end of the first receiving front end filter RX1, and the fourth port D of the antenna unit and the shunt tower are placed.
  • the other end of the second transmission filter TX2 is connected to one end of the second receiving front end filter RX3, the first branching module of the shunt tower is connected to the third port C of the RRU of the 2T4R, and the second branch of the shunt tower is placed.
  • the shunt module is connected to the fourth port D of the RRU of the 2T4R.
  • the third port C of the RRU of the 2T4R is connected to the second end of the first low noise amplifier LNA1.
  • the fourth port D of the RRU of the 2T4R is connected to the second end of the second low noise amplifier LNA2.
  • Example 2 When the shunt tower is installed at the port of the CDMA network, and the RRU of the 2T4R and the RRU of the 2T2R are far away from the antenna unit, the antenna feed system further includes a smart electric feeder SBT, and the smart electric feeder SBT It is also connected to the ESC RET port of the control module of the shunt tower to discharge power to the shunt tower.
  • the structure diagram of the antenna feeder system is shown in FIG. 8.
  • the first port A of the RRU of the 2T2R is connected to the first filtering module (not shown in FIG. 8) of the shunt tower, and the second port B and the shunt tower of the RRU of the 2T2R are connected.
  • the second filtering module (not shown in FIG. 8) is connected, the first port A of the RRU of the 2T4R is connected to the first port A of the antenna unit, and the second port B of the RRU of the 2T4R is connected to one end of the SBT, and the SBT is connected.
  • the other end is connected to the second port B of the antenna unit, and the third port C of the antenna unit is connected to the first filtering module (not shown in FIG.
  • the second filtering module (not shown in FIG. 8) is connected, and the first branching module (not shown in FIG. 8) of the shunt tower is connected to the third port C of the RRU of the 2T4R, and the shunt tower is placed.
  • the second branching module (not shown in FIG. 8) is connected to the fourth port D of the RRU of the 2T4R.
  • the local connection relationship between the shunt tower and the RRU and the antenna unit is similar to the local connection relationship between the shunt tower and the RRU and the antenna unit described in the example 1. For brevity, no further details are provided herein.
  • the antenna unit when the antenna unit sends a received signal to the RRU deployed by the LTE network and the RRU deployed by the CDMA network, the received signal is respectively received from the third port C of the antenna unit and the fourth unit of the antenna unit.
  • Port D is transmitted to the shunt tower, and the received signal is filtered by the first receiving front end filter RX1 and the second receiving front end filter RX3, respectively, and then amplified by the first low noise amplifier LNA1 and the second low noise amplifier LNA2.
  • the received signal amplified by the first low noise amplifier LNA1 is shunted, respectively, from the first port A of the 2T2R RRU and the third port C of the RRU of the 2T4R; amplified by the second low noise amplifier LNA2
  • the received signals are split and transmitted from the second port B of the RRU of the 2T2R and the fourth port D of the RRU of the 2T4R, respectively. Therefore, the four receiving ports of the RTU of the 2T4R can receive the received signal, and the role of the RRU of the 2T4R is realized.
  • the received signal is first amplified Splitting again will not introduce additional insertion loss into the antenna feeder system.
  • An embodiment of the present invention provides an antenna feeder system, where the antenna feeder system includes an antenna unit having four ports, a first RRU, a second RRU, and a split tower with any of the above features, wherein One RRU has two ports and the second RRU has four ports.
  • the shunt tower provided by the embodiment of the present invention adds a first shunt module and a second shunt module for transmitting and receiving signals on the basis of the existing tower, so the tower is applied.
  • the first branching module and the second branching module of the splitting tower can be connected to two ports that are originally idle in the RRUs of the four ports used in the LTE network.
  • All ports in the four ports of the RRU adopted by the LTE network can be used for receiving and/or transmitting.
  • the shunt tower provided by the embodiment of the present invention splits the received signal first, and then does not introduce additional insertion loss to the antenna feeder system, thereby ensuring network coverage and improving network performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)
  • Amplifiers (AREA)

Abstract

本发明实施例提供一种分路塔放及天馈系统,涉及通信领域,能够通过在天线单元侧增加分路塔放,在实现四个端口的RRU的作用的同时,保证了网络的覆盖,提升了网络性能。该分路塔放包括第一滤波模块、第二滤波模块、第一放大模块、第二放大模块、控制模块、第一分路模块和第二分路模块,其中,第一滤波模块与第一放大模块相连,第一放大模块与控制模块相连,控制模块与第二放大模块相连,第二放大模块与第二滤波模块相连,与第一滤波模块和第一放大模块均相连的第一分路模块;与第二滤波模块和第二放大模块均相连的第二分路模块;其中,第一分路模块和第二分路模块均用于传输信号。

Description

一种分路塔放及天馈系统 技术领域
本发明实施例涉及通信领域,尤其涉及一种分路塔放及天馈系统。
背景技术
随着通信技术的不断发展,通信网络已经经过全球移动通讯(Global System of Mobile communication,GSM)网络、码分多址(Code Division Multiple Access,CDMA)网络,宽带码分多址(Wideband Code Division Multiple Access Wireless,WCDMA)网络,通用分组无线业务(General Packet Radio Service,GPRS)网络,长期演进(Long Term Evolution,LTE)网络,通用移动通信系统(Universal Mobile Telecommunications System,UMTS)网络等几代网络变换。在网络变换的过程中,前一代网络和后一代网络能够共同存在。例如,在CDMA网络向LTE网络过渡的过程中,由于CDMA网络的射频模块不支持LTE网络,因此,在网络部署时需要分别为CDMA网络和LTE网络部署射频模块(例如射频拉远单元(Radio Remote Unit,RRU))。
以天馈系统的上行覆盖为例,图1示出了一种CDMA网络和LTE网络部署的天馈系统的示意图。其中,CDMA网络和LTE网络共用一个4端口的天线单元,CDMA网络采用一个具有两个端口(例如2发2收(2T2R)或者1发2收(1T2R))的RRU(图1中用RRU1表示),LTE网络采用一个具有四个端口(例如2发4收(2T4R))的RRU(图1中用RRU2表示)。从图1中可以看出,RRU1中的两个端口与4端口的天线单元中的两个端口相连,RRU2中的两个端口与4端口的天线单元中的另外两个端口相连。因此,LTE网络采用的2T4R的RRU2实际上只起到2T2R的RRU的作用,大大削弱了RRU2的价值,造成了资源的浪费。为解决上述问题,结合图1,图 2示出了另一种CDMA网络和LTE网络部署的天馈系统的示意图。其中,通过在天线单元侧增加两个合路器,从而能够采用合路的方式实现LTE网络2T4R的RRU2的作用。
然而,合路器通常为3分贝(dB)电桥或者带宽耦合器,因此在天线单元侧增加两个合路器会给CDMA网络和LTE网络带来至少3dB的插损,影响CDMA网络和LTE网络的覆盖。
发明内容
本发明的实施例提供一种分路塔放及天馈系统,能够通过在天线单元侧增加分路塔放,在实现四个端口的RRU的作用的同时,保证了网络的覆盖,提升了网络性能。
为达到上述目的,本发明的实施例采用如下技术方案:
第一方面,本发明实施例提供一种分路塔放,分路塔放包括第一滤波模块、第二滤波模块、第一放大模块、第二放大模块、控制模块、第一分路模块和第二分路模块,其中,第一滤波模块与第一放大模块相连,第一放大模块与控制模块相连,控制模块与第二放大模块相连,第二放大模块与第二滤波模块相连,与第一滤波模块和第一放大模块均相连的第一分路模块;与第二滤波模块和第二放大模块均相连的第二分路模块;其中,第一分路模块和第二分路模块均用于传输信号。可见,本发明实施例提供的分路塔放在现有塔放的基础上增加了用于传输接收信号第一分路模块和第二分路模块,因此将该塔放应用在CDMA网络和LTE网络共同部署的天馈系统中时,分路塔放的第一分路模块和第二分路模块可以和LTE网络采用的四个端口的RRU中原本闲置的两个端口相连,使得LTE网络采用的四个端口的RRU中的所有端口均可实现接收和/或发送的作用。同时,本发明实施例提供的分路塔放由于接收信号先经过放大再进行分路,不会给天馈系统引入额外的插损,保证了网络的覆盖,提升了网络性能。
在第一方面的第一种可选的实现方式中,第一滤波模块包括:第一发送滤波器,第一接收前端滤波器,第一接收后端滤波器,其 中,第一发送滤波器的一端与第一接收前端滤波器的一端相连,第一接收后端滤波器的一端与第一发送滤波器的另一端相连;第一放大模块包括:第一低噪放大器,其中,第一低噪放大器的第一端与第一接收前端滤波器的另一端相连,第一低噪放大器的第二端与第一接收后端滤波器的另一端相连;第二滤波模块包括:第二发送滤波器,第二接收前端滤波器,第二接收后端滤波器,其中,第二发送滤波器的一端与第二接收前端滤波器的一端相连,第二接收后端滤波器的一端与第二发送滤波器的另一端相连;第二放大模块包括:第二低噪放大器,其中,第二低噪放大器的第一端与第二接收前端滤波器的另一端相连,第二低噪放大器的第二端与第二接收后端滤波器的另一端相连;控制模块与第一低噪放大器的第三端和第二低噪放大器的第三端均相连。
在第一方面的第二种可选的实现方式中,第一分路模块为一条传输信号的通路;第二分路模块为另一条传输信号的通路。
在第一方面的第三种可选的实现方式中,第一低噪放大器的第一端和第一低噪放大器的第二端相连;第二低噪放大器的第一端和第二低噪放大器的第二端相连。如此,在第一低噪放大器和/或第二低噪放大器发生故障时,本发明实施例提供的分路塔放仍旧能够正常工作,保证了网络系统的稳定性。
第二方面,本发明实施例还提供一种天馈系统,天馈系统包括一个具有四个端口的天线单元、第一射频拉远单元RRU、与天线单元连接的第二RRU,以及一个与天线单元、第一RRU和第二RRU均连接的具有第一方面任一特征的分路塔放,其中,第一RRU具有两个端口,第二RRU具有四个端口。
在第二方面的第一种可选的实现方式中,第一RRU的第一端口与分路塔放的第一滤波模块相连,第一RRU的第二端口与分路塔放的第二滤波模块相连,第二RRU的第一端口与天线单元的第一端口相连,第二RRU的第二端口与天线单元的第二端口相连,天线单元的第三端口与分路塔放的第一滤波模块相连,天线单元的第四端口 与分路塔放的第二滤波模块相连,分路塔放的第一分路模块与第二RRU的第三端口相连,分路塔放的第二分路模块与第二RRU的第四端口相连。
在第二方面的第二种可选的实现方式中,第二RRU还与分路塔放的控制模块连接,用于向分路塔放供电。
在第二方面的第三种可选的实现方式中,天馈系统还包括:智能电馈器SBT;
其中,第一RRU的第一端口与分路塔放的第一滤波模块相连,第一RRU的第二端口与分路塔放的第二滤波模块相连,第二RRU的第一端口与天线单元的第一端口相连,第二RRU的第二端口与SBT的一端相连,SBT的另一端与天线单元的第二端口相连,天线单元的第三端口与分路塔放的第一滤波模块相连,天线单元的第四端口与分路塔放的第二滤波模块相连,分路塔放的第一分路模块与第二RRU的第三端口相连,分路塔放的第二分路模块与第二RRU的第四端口相连。
在第二方面的第四种可选的实现方式中,SBT还与分路塔放的控制模块连接,用于向分路塔放供电。
本发明实施例第二方面及其各种实现方式的具体描述,可以参考第一方面及其各种实现方式中的详细描述;并且,第二方面及其各种实现方式的有益效果,可以参考第一方面及其各种实现方式中的有益效果分析,此处不再赘述。
在本发明实施例中,上述分路塔放、天馈系统的名字对设备或功能模块本身不构成限定,在实际实现中,这些设备或功能模块可以以其他名称出现。只要各个设备或功能模块的功能和本发明实施例类似,属于本发明权利要求及其等同技术的范围之内。
本发明实施例的这些方面或其他方面在以下的描述中会更加简明易懂。
附图说明
图1为本发明实施例提供的一种CDMA网络和LTE网络部署的 天馈系统的示意图;
图2为本发明实施例提供的另一种CDMA网络和LTE网络部署的天馈系统的示意图;
图3为本发明实施例提供的一种分路塔放的结构示意图一;
图4为本发明实施例提供的一种分路塔放的结构示意图二;
图5为本发明实施例提供的一种分路塔放的结构示意图三;
图6为本发明实施例提供的一种天馈系统的结构示意图一;
图7为本发明实施例提供的一种分路塔放与RRU和天线单元的局部连接图;
图8为本发明实施例提供的一种天馈系统的结构示意图二。
具体实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构之类的具体细节,以便透切理解本申请。然而,本领域的技术人员应当清楚,在没有这些具体细节的其它实施例中也可以实现本申请。在其它情况中,省略对众所周知的结构以及方法的详细说明,以免不必要的细节妨碍本申请的描述。
此外,本申请的说明书和权利要求书及附图中的术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。例如包含了一系列步骤或单元的过程、方法、系统、产品或设备没有限定于已列出的步骤或单元,而是可选地还包括没有列出的步骤或单元,或可选地还包括对于这些过程、方法、产品或设备固有的其它步骤或单元。
另外,本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
此外,本发明的说明书和权利要求书及附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于限定特定顺序。本发明实施例中所描述的“上”、“下”、“左”、“右” 也只是参考附图对本发明实施例进行说明,不作为限定用语。
本发明实施例提供的技术方案可以应用于各种通信系统中的网络部署中,尤其适用于在网络变换的过程中,前一代网络和后一代网络能够共同存在的场景中。
为了方便理解本发明实施例,首先在此介绍一下本发明实施例中提到的相关要素。
本发明实施例中提到的两个端口的RRU,是指RRU具有两个端口,例如2T2R的RRU,或者1T2R的RRU。同理,本发明实施例中提到的四个端口的RRU,是指RRU具有四个端口。例如2T4R的RRU。本发明下述实施例均是以两个端口的RRU为2T2R的RRU、四个端口的RRU为2T4R的RRU为例进行说明的。
同时,本发明实施例中提到的第一RRU和第二RRU(即具有两个端口的RRU和具有四个端口的RRU)可以是同一个通信网络部署的RRU,也可以是不同通信网络部署的RRU,本发明实施例对此不作具体限制。
1T2R的RRU,是指具有1个接收端口和2个发送端口的RRU,1T2R的RRU包括两个端口,其中,这两个端口中的一个端口具有接收数据和发送数据的作用,另一个端口只具有接收数据的作用,而不具有发送数据的作用。
2T2R的RRU,是指具有2个接收端口和2个发送端口的RRU,参照图1左侧的RRU1可知,2T2R的RRU包括两个端口,这两个端口分别具有接收数据和发送数据的作用。
2T4R的RRU,是指具有4个接收端口和2个发送端口的RRU,参照图1右侧的RRU2可知,2T4R的RRU包括四个端口,其中,RRU2上最左侧和最右侧的两个端口分别具有接收数据和发送数据的作用,RRU2上中间的两个端口只具有接收数据的作用,而不具有发送数据的作用。
本发明实施例提供一种天馈系统,能够通过在天线单元侧增加分路塔放,在实现四个端口的RRU的作用的同时,保证了网络的覆 盖,提升了网络性能。
需要说明的是,天馈系统是指天线向周围空间辐射电磁波的系统。塔放也可以称为塔顶放大器,是安装在塔顶部紧靠在接收天线之后的一个低噪声放大器。
还需要说明的是,本发明实施例在描述天线单元的端口和RRU的端口时对天线单元的端口和RRU的端口分别进行了编号。这种编号只是为了便于理解本发明实施例中天线单元的端口、RRU的端口和分路塔放之间的连接关系,并没有限定的作用。天线单元、RRU和分路塔放的生产厂商也可以对其进行编号,本发明实施例对此并不作具体限制。
下面将详细介绍本发明实施例提供的技术方案。
图3为本发明实施例提供的一种分路塔放的结构示意图。该分路塔放包括第一滤波模块10、第二滤波模块11、第一放大模块12、第二放大模块13、控制模块14、第一分路模块15和第二分路模块16,其中,第一滤波模块10与第一放大模块12相连,第一放大模块12与控制模块14相连,控制模块14与第二放大模块13相连,第二放大模块13与第二滤波模块11相连,与第一滤波模块10和第一放大模块12均相连的第一分路模块15;以及与第二滤波模块11和第二放大模块13均相连的第二分路模块16。其中,第一分路模块15和第二分路模块16均用于传输信号。
具体的,图4为本发明实施例提供的另一种分路塔放的结构示意图。第一滤波模块10包括:第一发送滤波器TX1,第一接收前端滤波器RX1,第一接收后端滤波器RX2,其中,第一发送滤波器TX1的一端与第一接收前端滤波器RX1的一端相连,第一接收后端滤波器RX2的一端与第一发送滤波器的另一端相连。
第一放大模块12包括:第一低噪放大器LNA1,其中,第一低噪放大器LNA1的第一端与第一接收前端滤波器RX1的另一端相连,第一低噪放大器LNA1的第二端与第一接收后端滤波器RX2的另一端相连。
第二滤波模块11包括:第二发送滤波器TX2,第二接收前端滤波器RX3,第二接收后端滤波器RX4,其中,第二发送滤波器TX2的一端与第二接收前端滤波器RX3的一端相连,第二接收后端滤波器RX4的一端与第二发送滤波器的另一端相连。
第二放大模块13包括:第二低噪放大器LNA2,其中,第二低噪放大器LNA2的第一端与第二接收前端滤波器RX3的另一端相连,第二低噪放大器LNA2的第二端与第二接收后端滤波器RX4的另一端相连。
控制模块14与第一低噪放大器LNA1的第三端和第二低噪放大器LNA2的第三端均相连。
需要说明的是,控制模块14又可以称为控制电路/通信(Control Circuit/Communication)模块。具体的,控制模块14可以包括微控制单元(Microcontroller Unit;MCU),防雷单元,以及电调天线(RET)端口。
第一分路模块15为一条传输信号的通路。
第二分路模块16为另一条传输信号的通路。
需要说明的是,第一滤波模块10和第二滤波模块11用于对发送信号和接收信号进行合路/分路处理,并为第一低噪放大器LNA1和第二低噪放大器LNA2提供发送信号的频段抑制度,防止接收信号在分路塔放中出现环路正反馈。
第一放大模块12和第二放大模块13用于对接收信号进行放大。
控制模块14用于与基站通信,接收外部设备(即除该分路塔放外的其他设备)通过RET端口为分路塔放提供的直流电源(如图4中从控制模块14引出的曲线所示),实现第一低噪放大器LNA1和第二低噪放大器LNA2的检测与告警,并且当控制模块14中包括防雷单元时,控制模块14还可以为分路塔放提供防雷功能。
可见,将该塔放应用在CDMA网络和LTE网络共同部署的天馈系统中时,分路塔放的第一分路模块和第二分路模块可以和LTE网络采用的四个端口的RRU中原本闲置的两个端口相连,使得LTE 网络采用的四个端口的RRU中的所有端口均可实现接收和/或发送的作用。具体的,分路塔放的第一分路模块和第二分路模块和LTE网络采用的四个端口的RRU中的两个端口相连的结构将在下述实施例中详细描述,为了简洁,此处不再赘述。
进一步的,结合图4,如图5所示,第一低噪放大器LNA1的第一端可以和第一低噪放大器LNA1的第二端相连;第二低噪放大器LNA2的第一端可以和第二低噪放大器LNA2的第二端相连。如此,在第一低噪放大器LNA1和/或第二低噪放大器LNA2发生故障时,本发明实施例提供的分路塔放仍旧能够正常工作,保证了网络系统的稳定性。
本发明实施例提供一种分路塔放,分路塔放包括第一滤波模块、第二滤波模块、第一放大模块、第二放大模块和控制模块,其中,第一滤波模块与第一放大模块相连,第一放大模块与控制模块相连,控制模块与第二放大模块相连,第二放大模块与第二滤波模块相连,与第一滤波模块与第一放大模块均相连的第一分路模块;与第二滤波模块与第二放大模块均相连的第二分路模块。基于上述实施例的描述,本发明实施例提供的分路塔放在现有塔放的基础上增加了用于传输接收信号的第一分路模块和第二分路模块,因此将该塔放应用在CDMA网络和LTE网络共同部署的天馈系统中时,分路塔放的第一分路模块和第二分路模块可以和LTE网络采用的四个端口的RRU中原本闲置的两个端口相连,使得LTE网络采用的四个端口的RRU中的所有端口均可实现接收和/或发送的作用。同时,本发明实施例提供的分路塔放由于接收信号先经过放大再进行分路,不会给天馈系统引入额外的插损,保证了网络的覆盖,提升了网络性能。
本发明实施例还提供一种天馈系统,该天馈系统包括一个具有四个端口的天线单元、第一RRU、第二RRU,以及具有上述任意一项特征的分路塔放,其中,第一RRU具有两个端口,第二RRU具有四个端口。下面,以第一RRU为CDMA网络部署的2T2R的RRU、 第二RRU为LTE网络部署的2T4R的RRU为例对本发明实施例提供的天馈系统进行说明。
示例一:当分路塔放安装在CDMA网络的端口处,且2T4R的RRU和2T2R的RRU与天线单元的距离较近,那么,2T4R的RRU还与分路塔放的控制模块的电调天线RET端口连接,以向分路塔放供电。具体的,天馈系统的结构示意图如图6所示。
其中,从图6中可以看出,2T2R的RRU的第一端口A与分路塔放的第一滤波模块(图6中未画出)相连,2T2R的RRU的第二端口B与分路塔放的第二滤波模块(图6中未画出)相连,2T4R的RRU的第一端口A与天线单元的第一端口A相连,2T4R的RRU的第二端口B与天线单元的第二端口B相连,天线单元的第三端口C与分路塔放的第一滤波模块(图6中未画出)相连,天线单元的第四端口D与分路塔放的第二滤波模块(图6中未画出)相连,分路塔放的第一分路模块(图6中未画出)与2T4R的RRU的第三端口C相连,分路塔放的第二分路模块(图6中未画出)与2T4R的RRU的第四端口D相连。
参见图5,分路塔放与RRU和天线单元的局部连接图如图7所示。从图7中可知,2T2R的RRU的第一端口A与分路塔放的第一发送滤波器TX1的一端相连,2T2R的RRU的第二端口B与分路塔放的第二发送滤波器TX2的一端相连,天线单元的第三端口C与分路塔放的第一发送滤波器TX1的另一端和第一接收前端滤波器RX1的一端相连,天线单元的第四端口D与分路塔放的第二发送滤波器TX2的另一端和第二接收前端滤波器RX3的一端相连,分路塔放的第一分路模块与2T4R的RRU的第三端口C相连,分路塔放的第二分路模块与2T4R的RRU的第四端口D相连。
由于分路塔放的第一分路模块和第二分路模块为一条传输信号的通路,因此在实际应用中,2T4R的RRU的第三端口C与第一低噪放大器LNA1的第二端相连,2T4R的RRU的第四端口D与第二低噪放大器LNA2的第二端相连。
示例二:当分路塔放安装在CDMA网络的端口处,且2T4R的RRU和2T2R的RRU与天线单元的距离较远,那么,该天馈系统还包括智能电馈器SBT,智能电馈器SBT还与分路塔放的控制模块的电调天线RET端口连接,以向分路塔放供电。具体的,天馈系统的结构示意图如图8所示。
其中,从图8中可以看出,2T2R的RRU的第一端口A与分路塔放的第一滤波模块(图8中未画出)相连,2T2R的RRU的第二端口B与分路塔放的第二滤波模块(图8中未画出)相连,2T4R的RRU的第一端口A与天线单元的第一端口A相连,2T4R的RRU的第二端口B与SBT的一端相连,SBT的另一端与天线单元的第二端口B相连,天线单元的第三端口C与分路塔放的第一滤波模块(图8中未画出)相连,天线单元的第四端口D与分路塔放的第二滤波模块(图8中未画出)相连,分路塔放的第一分路模块(图8中未画出)与2T4R的RRU的第三端口C相连,分路塔放的第二分路模块(图8中未画出)与2T4R的RRU的第四端口D相连。
具体的,分路塔放与RRU和天线单元的局部连接关系与示例一描述的分路塔放与RRU和天线单元的局部连接关系类似,为了简洁,此处不再赘述。
可见,本发明实施例提供的天馈系统中,当天线单元向LTE网络部署的RRU和CDMA网络部署的RRU发送接收信号时,接收信号分别从天线单元的第三端口C和天线单元的第四端口D传入分路塔放,接收信号分别经过第一接收前端滤波器RX1和第二接收前端滤波器RX3滤波后,再经由第一低噪放大器LNA1和第二低噪放大器LNA2放大。随后,经由第一低噪放大器LNA1放大后的接收信号被分路,分别从2T2R的RRU的第一端口A和2T4R的RRU的第三端口C传出;经由第二低噪放大器LNA2放大后的接收信号被分路,分别从2T2R的RRU的第二端口B和2T4R的RRU的第四端口D传出。从而使得2T4R的RRU的四个接收端口均能接收到接收信号,实现了2T4R的RRU的作用。同时,由于接收信号先经过放大 再进行分路,不会给天馈系统引入额外的插损。
本发明实施例提供一种天馈系统,所述天馈系统包括一个具有四个端口的天线单元、第一RRU、第二RRU,以及具有上述任意一项特征的分路塔放,其中,第一RRU具有两个端口,第二RRU具有四个端口。基于上述实施例的描述,本发明实施例提供的分路塔放在现有塔放的基础上增加了用于传输接收信号第一分路模块和第二分路模块,因此将该塔放应用在CDMA网络和LTE网络共同部署的天馈系统中时,分路塔放的第一分路模块和第二分路模块可以和LTE网络采用的四个端口的RRU中原本闲置的两个端口相连,使得LTE网络采用的四个端口的RRU中的所有端口均可实现接收和/或发送的作用。同时,本发明实施例提供的分路塔放由于接收信号先经过放大再进行分路,不会给天馈系统引入额外的插损,保证了网络的覆盖,提升了网络性能。
以上所述,仅为本发明实施例的具体实施方式,但本发明实施例的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明实施例揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明实施例的保护范围之内。因此,本发明实施例的保护范围应所述以权利要求的保护范围为准。

Claims (9)

  1. 一种分路塔放,所述分路塔放包括第一滤波模块、第二滤波模块、第一放大模块、第二放大模块和控制模块,其中,所述第一滤波模块与所述第一放大模块相连,所述第一放大模块与所述控制模块相连,所述控制模块与所述第二放大模块相连,所述第二放大模块与所述第二滤波模块相连,其特征在于,所述分路塔放还包括:
    与所述第一滤波模块和所述第一放大模块均相连的第一分路模块;与所述第二滤波模块和所述第二放大模块均相连的第二分路模块;
    其中,所述第一分路模块和所述第二分路模块均用于传输信号。
  2. 根据权利要求1所述的分路塔放,其特征在于,
    所述第一滤波模块包括:第一发送滤波器,第一接收前端滤波器,第一接收后端滤波器,其中,所述第一发送滤波器的一端与所述第一接收前端滤波器的一端相连,所述第一接收后端滤波器的一端与所述第一发送滤波器的另一端相连;
    所述第一放大模块包括:第一低噪放大器,其中,所述第一低噪放大器的第一端与所述第一接收前端滤波器的另一端相连,所述第一低噪放大器的第二端与所述第一接收后端滤波器的另一端相连;
    所述第二滤波模块包括:第二发送滤波器,第二接收前端滤波器,第二接收后端滤波器,其中,所述第二发送滤波器的一端与所述第二接收前端滤波器的一端相连,所述第二接收后端滤波器的一端与所述第二发送滤波器的另一端相连;
    所述第二放大模块包括:第二低噪放大器,其中,所述第二低噪放大器的第一端与所述第二接收前端滤波器的另一端相连,所述第二低噪放大器的第二端与所述第二接收后端滤波器的另一端相连;
    所述控制模块与所述第一低噪放大器的第三端和所述第二低噪放大器的第三端均相连。
  3. 根据根据权利要求1或2所述的分路塔放,其特征在于,所述第一分路模块为一条传输信号的通路;所述第二分路模块为另一条传输信号的通路。
  4. 根据权利要求2或3所述的分路塔放,其特征在于,所述第一低噪放大器的第一端和所述第一低噪放大器的第二端相连;所述第二低噪放大器的第一端和所述第二低噪放大器的第二端相连。
  5. 一种天馈系统,其特征在于,所述天馈系统包括一个具有四个端口的天线单元、第一射频拉远单元RRU、与所述天线单元连接的第二RRU,以及一个与所述天线单元、所述第一RRU和所述第二RRU均连接的如权利要求1-4中任意一项所述的分路塔放,其中,所述第一RRU具有两个端口,所述第二RRU具有四个端口。
  6. 根据权利要求5所述的天馈系统,其特征在于,
    所述第一RRU的第一端口与所述分路塔放的第一滤波模块相连,所述第一RRU的第二端口与所述分路塔放的第二滤波模块相连,所述第二RRU的第一端口与所述天线单元的第一端口相连,所述第二RRU的第二端口与所述天线单元的第二端口相连,所述天线单元的第三端口与所述分路塔放的第一滤波模块相连,所述天线单元的第四端口与所述分路塔放的第二滤波模块相连,所述分路塔放的第一分路模块与所述第二RRU的第三端口相连,所述分路塔放的第二分路模块与所述第二RRU的第四端口相连。
  7. 根据权利要求6所述的天馈系统,其特征在于,所述第二RRU还与所述分路塔放的控制模块连接,用于向所述分路塔放供电。
  8. 根据权利要求5所述的天馈系统,其特征在于,所述天馈系统还包括:智能电馈器SBT;
    其中,所述第一RRU的第一端口与所述分路塔放的第一滤波模块相连,所述第一RRU的第二端口与所述分路塔放的第二滤波模块相连,所述第二RRU的第一端口与所述天线单元的第一端口相连,所述第二RRU的第二端口与所述SBT的一端相连,所述SBT的另一端与所述天线单元的第二端口相连,所述天线单元的第三端口与所述分路塔放的第一滤波模块相连,所述天线单元的第四端口与所述分路塔放的第二滤波模块相连,所述分路塔放的第一分路模块与所述第二RRU的第三端口相连,所述分路塔放的第二分路模块与所述第二RRU 的第四端口相连。
  9. 根据权利要求8所述的天馈系统,其特征在于,所述SBT还与所述分路塔放的控制模块连接,用于向所述分路塔放供电。
PCT/CN2016/112763 2016-12-28 2016-12-28 一种分路塔放及天馈系统 WO2018119793A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2016/112763 WO2018119793A1 (zh) 2016-12-28 2016-12-28 一种分路塔放及天馈系统
KR1020197020847A KR20190095413A (ko) 2016-12-28 2016-12-28 브랜칭 타워-탑재 증폭기 및 안테나 급전 시스템
CN201680090159.4A CN109845117A (zh) 2016-12-28 2016-12-28 一种分路塔放及天馈系统
EP16924908.3A EP3553956B1 (en) 2016-12-28 2016-12-28 Branching tower amplifier and antenna feed system
JP2019534927A JP2020503770A (ja) 2016-12-28 2016-12-28 分岐タワーマウントアンプおよびアンテナ給電システム
US16/454,239 US10790863B2 (en) 2016-12-28 2019-06-27 Branching tower-mounted amplifier and antenna feed systemcross-reference to related applications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/112763 WO2018119793A1 (zh) 2016-12-28 2016-12-28 一种分路塔放及天馈系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/454,239 Continuation US10790863B2 (en) 2016-12-28 2019-06-27 Branching tower-mounted amplifier and antenna feed systemcross-reference to related applications

Publications (1)

Publication Number Publication Date
WO2018119793A1 true WO2018119793A1 (zh) 2018-07-05

Family

ID=62710869

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/112763 WO2018119793A1 (zh) 2016-12-28 2016-12-28 一种分路塔放及天馈系统

Country Status (6)

Country Link
US (1) US10790863B2 (zh)
EP (1) EP3553956B1 (zh)
JP (1) JP2020503770A (zh)
KR (1) KR20190095413A (zh)
CN (1) CN109845117A (zh)
WO (1) WO2018119793A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898878A (zh) * 2003-12-20 2007-01-17 艾利森电话股份有限公司 包括共用天线的多个无线电基站的收发信机系统
CN2927564Y (zh) * 2006-07-18 2007-07-25 华为技术有限公司 一种基站接收前端分路系统
CN103457622A (zh) * 2013-08-14 2013-12-18 京信通信系统(广州)有限公司 共用天馈的通信设备及系统

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI305979B (en) * 2006-03-24 2009-02-01 Hon Hai Prec Ind Co Ltd Wireless transceiving system
JP2007282036A (ja) * 2006-04-10 2007-10-25 Mitsubishi Electric Corp 受信装置
GB0616449D0 (en) * 2006-08-18 2006-09-27 Quintel Technology Ltd Diversity antenna system with electrical tilt
CN102548051A (zh) * 2008-10-27 2012-07-04 华为技术有限公司 通信系统、设备和方法
CN102122975B (zh) * 2010-01-07 2014-04-09 中国移动通信集团公司 一种信号处理装置和信号处理方法
CN201789052U (zh) * 2010-09-09 2011-04-06 上海烈龙电子科技发展有限公司 400MHz有源上行信号反向分路器
GB201207856D0 (en) * 2012-05-04 2012-06-20 Radio Design Ltd Tower mounted amplifier and method of use thereof
US20150111504A1 (en) * 2012-06-12 2015-04-23 Optis Cellular Technology, Llc Calibration coupleing unit, ccu, and a method therein for enabling calibration of base station
CN105357755A (zh) * 2013-01-25 2016-02-24 华为技术有限公司 基站天馈口与天线端口连接关系的定位方法和装置
CN203225754U (zh) * 2013-04-10 2013-10-02 京信通信系统(中国)有限公司 多载波基站功率放大系统及通信系统
US9800397B2 (en) * 2013-12-13 2017-10-24 Telefonaktiebolaget Lm Ericsson (Publ) Tower mounted amplifier and filter thereof
KR101909169B1 (ko) * 2014-03-26 2018-10-17 후아웨이 테크놀러지 컴퍼니 리미티드 기지국
US11146312B2 (en) * 2014-12-24 2021-10-12 Nokia Of America Corporation High reliability remote radio head communication device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1898878A (zh) * 2003-12-20 2007-01-17 艾利森电话股份有限公司 包括共用天线的多个无线电基站的收发信机系统
CN2927564Y (zh) * 2006-07-18 2007-07-25 华为技术有限公司 一种基站接收前端分路系统
CN103457622A (zh) * 2013-08-14 2013-12-18 京信通信系统(广州)有限公司 共用天馈的通信设备及系统

Also Published As

Publication number Publication date
EP3553956A4 (en) 2019-11-27
US10790863B2 (en) 2020-09-29
EP3553956A1 (en) 2019-10-16
JP2020503770A (ja) 2020-01-30
US20190319650A1 (en) 2019-10-17
EP3553956B1 (en) 2023-10-04
CN109845117A (zh) 2019-06-04
KR20190095413A (ko) 2019-08-14

Similar Documents

Publication Publication Date Title
EP2953283B1 (en) Method, apparatus, and radio remote unit for transmitting wireless base band data
WO2018157871A1 (zh) 一种信号传输装置、信号传输系统及方法
US9960749B2 (en) Intra-band combiner-divider and multisystem combining platform
JP6325687B2 (ja) 基地局
WO2022028303A1 (zh) 射频电路和电子设备
WO2013150171A1 (en) Radio frequency circuitry for multi-modem radio device
EP3131214B1 (en) Combiner, base station, signal combiner system and signal transmission method
WO2022143453A1 (zh) 射频电路及电子设备
US20190199299A1 (en) Tower Mounted Amplifier
KR20170061087A (ko) 자기간섭제거 회로 및 이를 포함하는 동일대역 전이중 송수신기
CN103347264B (zh) Tdd移动通信系统大功率覆盖方法及装置
KR100876937B1 (ko) 시분할 듀플렉싱 방식 통신 시스템의 타워탑 저잡음 증폭기
WO2018119793A1 (zh) 一种分路塔放及天馈系统
JP2013110741A5 (zh)
CN217010858U (zh) 一种射频电路和电子设备
CN103762997B (zh) 抗干扰电路及射频处理电路
US10164689B2 (en) Distributed antenna system to transport first cellular RF band concurrently with Ethernet or second cellular RF band
WO2017114159A1 (zh) 双工滤波装置、rru系统及无线射频系统
US10165623B2 (en) Splitter device connecting multiple remote radio heads
WO2022110993A1 (zh) 时钟信号同步电路和网络通信设备
CN103457622A (zh) 共用天馈的通信设备及系统
US9312890B2 (en) Wireless communication
CN102318434B (zh) 在不同无线通信系统之间共享天线的方法和设备
CN116388793A (zh) 射频前端电路和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16924908

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019534927

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197020847

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016924908

Country of ref document: EP

Effective date: 20190708