WO2013111895A1 - Method for producing condensation product of resorcin and acetone - Google Patents

Method for producing condensation product of resorcin and acetone Download PDF

Info

Publication number
WO2013111895A1
WO2013111895A1 PCT/JP2013/051687 JP2013051687W WO2013111895A1 WO 2013111895 A1 WO2013111895 A1 WO 2013111895A1 JP 2013051687 W JP2013051687 W JP 2013051687W WO 2013111895 A1 WO2013111895 A1 WO 2013111895A1
Authority
WO
WIPO (PCT)
Prior art keywords
resorcin
acetone
mixture obtained
acid
condensate
Prior art date
Application number
PCT/JP2013/051687
Other languages
French (fr)
Japanese (ja)
Inventor
一祐 松井
板橋 太門
竹内 謙一
豊望 玉登
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2012012812A external-priority patent/JP2013151603A/en
Priority claimed from JP2012012814A external-priority patent/JP2013151605A/en
Priority claimed from JP2012012811A external-priority patent/JP2013151602A/en
Priority claimed from JP2012012813A external-priority patent/JP2013151604A/en
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2013111895A1 publication Critical patent/WO2013111895A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/02Condensation polymers of aldehydes or ketones with phenols only of ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0041Compositions of the carcass layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/16Condensation polymers of aldehydes or ketones with phenols only of ketones with phenols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/0066Compositions of the belt layers

Definitions

  • the present invention relates to a method for producing a condensate of resorcin and acetone.
  • a condensate of resorcin and acetone is useful as a reinforcing agent for rubber compositions.
  • resorcin and acetone are reacted in the presence of an acid and an organic solvent, and then the acid is neutralized with an aqueous sodium hydroxide solution.
  • a method for obtaining a condensate of resorcin and acetone by drying under reduced pressure is described.
  • Step 1A in which resorcin and acetone are reacted in the presence of an acid
  • a second A step of mixing the mixture obtained in the first A step and a base A 3A step of removing water from the mixture obtained by the 2A step
  • 4A process which mixes the mixture and acid which were obtained by 3A process,
  • (1a) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as measured by gel permeation chromatography (differential refractive index detection) is 25 to 55.
  • Step 1A in which resorcin and acetone are reacted in the presence of an acid
  • a second A step of mixing the mixture obtained in the first A step and a base A 3A step of removing water from the mixture obtained by the 2A step
  • 4A process which mixes the mixture and acid which were obtained by 3A process, Step 5A for mixing the mixture obtained in Step 4A with a base
  • step 3A is a step of removing water by-produced by the reaction of the resorcin and acetone in the presence of an organic solvent.
  • step 3A is a step of removing water by-produced by the reaction between the resorcin and acetone by azeotropic distillation in the presence of an organic solvent.
  • Step 1B is a step in which resorcin and acetone are reacted at ⁇ 5 to 45 ° C. in the presence of an acid and in the absence of a solvent [5] Manufacturing method. [7] Step 1B in which resorcin and acetone are reacted at ⁇ 5 to 45 ° C.
  • Step 1B in which resorcin and acetone are reacted at ⁇ 5 to 45 ° C.
  • Step 4B for mixing the mixture obtained in Step 1B and the base; A 5B step of washing the mixture obtained in the 4B step with water;
  • Step 1C in which resorcin and acetone are reacted in the presence of hydrochloric acid; A second C step of mixing the mixture obtained in the first C step with a base; Step 3C for washing the mixture obtained in Step 2C with water; The production method according to [10] or [11].
  • p-toluenesulfone for resorcin comprising a first step of reacting resorcin and acetone in the presence of at least one selected from the group consisting of p-toluenesulfonic acid and p-toluenesulfonic acid hydrate
  • the amount of at least one selected from the group consisting of acid and p-toluenesulfonic acid hydrate is 0.1 to 10 mol%
  • resorcin and acetone are selected from the group consisting of p-toluenesulfonic acid and p-toluenesulfonic acid hydrate, and an organic solvent.
  • the production method according to [13] which is a step of reacting in the presence.
  • a rubber composition comprising a condensate obtained by the production method according to any one of [1] to [15], a rubber component, a filler, and a sulfur component.
  • a tire belt comprising a steel cord coated with the rubber composition according to [17].
  • a tire carcass comprising a carcass fiber cord coated with the rubber composition according to [17].
  • a tire cap tread or a tire undertread comprising the rubber composition according to [17].
  • a pneumatic tire produced by processing the rubber composition according to [17].
  • Step 1A of reacting resorcin and acetone in the presence of an acid ⁇ Step 1A of reacting resorcin and acetone in the presence of an acid>
  • resorcinol and acetone can be used.
  • the amount of acetone used is preferably 1 to 6 moles, more preferably 1.5 to 4 moles per mole of resorcin. If the usage-amount of acetone is 1 mol or more, the content rate of resorcin in the condensate obtained can be reduced.
  • the acid acts as a catalyst in the reaction between resorcin and acetone.
  • the acid examples include benzenesulfonic acid, p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, oxalic acid, phosphoric acid, polyphosphoric acid, borofluoric acid, hydrochloric acid, sulfuric acid, and the like.
  • P-toluenesulfonic acid At least one acid selected from the group consisting of p-toluenesulfonic acid hydrate, hydrochloric acid and sulfuric acid is preferred.
  • the acid can be used as it is or as an aqueous solution having an appropriate concentration.
  • the amount of the acid used is preferably from 0.1 to 10 mol, more preferably from 0.5 to 5 mol, per 100 mol of resorcin.
  • the reaction between resorcin and acetone is preferably performed in the presence of an organic solvent.
  • the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogen-substituted aromatic hydrocarbons, and the like.
  • Examples of aliphatic hydrocarbons are hexane, heptane, octane, decane, etc.
  • examples of aromatic hydrocarbons are toluene, xylene, ethylbenzene, etc.
  • examples of halogen-substituted aromatic hydrocarbons are chlorobenzene, dichlorobenzene, etc. Etc.
  • the organic solvent is preferably an aromatic hydrocarbon, more preferably toluene or xylene.
  • the amount of the organic solvent used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin.
  • the reaction temperature of the reaction between resorcin and acetone is preferably 30 ° C or higher and 65 ° C or lower.
  • the progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
  • the mixing of resorcin, acetone and acid can be carried out, for example, by mixing resorcin and acetone in the presence of an organic solvent as necessary, and mixing the resulting mixture and acid under reaction temperature conditions. .
  • acetone may be added to the mixture continuously or intermittently.
  • 2,4,4-trimethyl-2′4′7-trihydroxyflavan which is one of the compounds contained in the condensate of resorcin and acetone, may precipitate.
  • 2,4,4-trimethyl-2′4′7-trihydroxyflavan may be used as a seed crystal.
  • 2,4,4-trimethyl-2′4′7-trihydroxyflavan compound represented by the formula (A)
  • 7,7′-dihydroxy-4,4,4 ′, 4′-tetramethyl-2,2′-spirobichroman compound represented by formula (B)
  • 4,6-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol compound represented by formula (I) and isomers thereof
  • 2,4-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol compound represented by formula (II)
  • the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred.
  • Sodium hydroxide is more preferable.
  • the base is preferably used as an aqueous solution having an appropriate concentration.
  • the pH of the mixture obtained by mixing with the base is preferably 5 to 9, and more preferably 6 to 8.
  • Step 3A for removing water from the mixture obtained in Step 2A As a method for removing water, for example, a method of adding a substance capable of adsorbing water or a substance capable of decomposing water to the mixture obtained in Step 2A, and distilling the mixture obtained in Step 2A Distillation is preferred, and azeotropic distillation of an organic solvent and water in the presence of an organic solvent is more preferred.
  • the water can be removed by removing the fraction containing water. When the fraction is separated into an organic layer and an aqueous layer, it is preferable that only the aqueous layer is separated and removed, and the organic layer is returned to the mixture.
  • the removal of water is preferably carried out until the water content of the mixture obtained by removing water becomes 0.01 to 2% by weight, more preferably until the water content becomes 0.01 to 1% by weight.
  • the organic solvent the organic solvent used for the reaction between resorcin and acetone is usually used, but other organic solvents can also be used.
  • organic solvents examples include aliphatic hydrocarbons such as pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; methylene chloride, chloroform, and four Chlorinated hydrocarbons such as carbon chloride, trichrene, barkrene, ethylene dichloride, and benzene chloride; esters such as methyl acetate, ethyl acetate, and propyl acetate; nitriles such as acetonitrile; aromatic hydrocarbons are preferred, and toluene Xylene is more preferable.
  • aliphatic hydrocarbons such as pentane, hexane, and heptane
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane,
  • Step 4A is a step in which an acid is mixed with a mixture containing a condensate of resorcin and acetone, and the remaining resorcin is reacted with acetone.
  • the acid used in Step 4A is preferably the same acid used in Step 1A.
  • the amount of the acid used is preferably 0.1 to 10 mol, more preferably 0.5 to 5 mol, per 100 mol of resorcin used in Step 1A.
  • acetone may be additionally mixed in the mixture obtained in the third A step or the mixture after the acid is mixed in the fourth A step.
  • the amount of acetone added in Step 4A is preferably such that the total amount of acetone used in Step 1A is 1 to 6 moles per mole of resorcin used in Step 1A.
  • Step 4A is carried out while confirming the content of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan and the content of resorcin by ordinary analytical means such as GC, HPLC, and GPC. It is preferable.
  • the organic solvent used in Step 4A is preferably the same organic solvent used in Step 1A.
  • organic solvents examples include aliphatic hydrocarbons such as pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; methylene chloride, chloroform, and four Chlorinated hydrocarbons such as carbon chloride, trichrene, barkrene, ethylene dichloride, and benzene chloride; esters such as methyl acetate, ethyl acetate, and propyl acetate; nitriles such as acetonitrile; aromatic hydrocarbons are preferred, and toluene Xylene is more preferable.
  • aliphatic hydrocarbons such as pentane, hexane, and heptane
  • alicyclic hydrocarbons such as cyclopentane, cyclohexane,
  • the reaction temperature of the reaction between resorcin and acetone is preferably 30 ° C or higher and 65 ° C or lower.
  • the progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
  • GC gas chromatography
  • HPLC high performance liquid chromatography
  • GPC gel permeation chromatography
  • the base is preferably used as an aqueous solution having an appropriate concentration.
  • the pH of the mixture obtained by mixing with the base is preferably 5 to 9, and more preferably 6 to 8.
  • the mixture obtained in the 5A step may be directly subjected to a post-treatment step which will be described later, or may be further subjected to a post-treatment step after being subjected to a 6A step which will be described later.
  • Step 6A is a step of removing unreacted resorcin by mixing the mixture obtained in Step 5A with water and washing with water.
  • the precipitate may be dissolved by mixing an organic solvent.
  • the organic solvent is not particularly limited as long as it is an organic solvent that can dissolve precipitates among those that can be used in Step 1A, but acetone is preferred from the viewpoint of liquid separation.
  • the amount of the organic solvent used is preferably 2 parts by weight or less with respect to 1 part by weight of resorcin used in Step 1A.
  • the amount of water used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin used in Step 1A.
  • the pH of the mixture obtained by mixing with the base is preferably 7 to 11, and more preferably 8 to 10.
  • the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred.
  • Sodium hydroxide is more preferable.
  • the base is preferably used as an aqueous solution having an appropriate concentration.
  • the temperature at which washing and liquid separation are performed is preferably 45 ° C or higher and 80 ° C or lower.
  • the residual resorcin content can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like. It is preferable to determine the number of washings while confirming the content of resorcin.
  • GC gas chromatography
  • HPLC high performance liquid chromatography
  • GPC gel permeation chromatography
  • a condensate of resorcin and acetone can be obtained by subjecting the mixture obtained in Step 5A or Step 6A to a post-treatment step such as filtration or concentration.
  • the “first elution peak” means a peak having the shortest retention time among all peaks in a chromatogram obtained by gel permeation chromatography (differential refractive index detection) measurement.
  • Peak means a peak having the second shortest retention time among all peaks in a chromatogram obtained by gel permeation chromatography (differential refractive index detection), and “third elution peak” It means the peak with the third shortest retention time among all the peaks in the chromatogram obtained by gel permeation chromatography (differential refractive index detection) measurement.
  • gel permeation chromatography (differential refractive index detection) measurement the compound represented by formula (IV) and its isomer are the first elution peak, and the compound represented by formula (III) and its isomer are the second elution.
  • the compound represented by formula (I) and its isomer, and the compound represented by formula (II) and its isomer are detected as a third eluting peak.
  • the obtained condensate satisfies (1a), (2a) and (3a).
  • the area ratio of the first elution peak to the total area of all peaks is 10 to 30% as measured by gel permeation chromatography (differential refractive index detection).
  • the weight average molecular weight of the first elution peak is 800 or more.
  • the weight average molecular weight of the first elution peak as measured by gel permeation chromatography (differential refractive index detection) is preferably 800 to 1400, more preferably 800 to 1200.
  • the content of 2,4,4-trimethyl-2′4′7-trihydroxyflavan contained in the obtained condensate is preferably 25 to 55% by weight, more preferably 30 to 50% by weight.
  • the total content of the compound represented by formula (IV) and the isomer thereof contained in the obtained condensate is preferably 10 to 30% by weight, and more preferably 10 to 20% by weight.
  • the softening point of the obtained condensate is preferably 160 ° C. or lower, and more preferably 140 ° C. or lower.
  • the content of resorcin contained in the obtained condensate is preferably 2.0% by weight or less, and more preferably 1.0% by weight or less.
  • the obtained condensate is useful as a rubber reinforcing agent, and particularly useful as a tire rubber reinforcing agent. 2.
  • Step 1B in which resorcin and acetone are reacted in the presence of an acid and in the absence of a solvent Commercially available resorcinol and acetone can be used.
  • the amount of acetone used is preferably 1 to 6 moles, more preferably 1.5 to 4 moles per mole of resorcin. If the usage-amount of acetone is 1 mol or more, the content rate of resorcin in the condensate obtained can be reduced.
  • the acid acts as a catalyst in the reaction between resorcin and acetone.
  • Examples of the acid include benzenesulfonic acid, p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, oxalic acid, phosphoric acid, polyphosphoric acid, borofluoric acid, hydrochloric acid, sulfuric acid, and the like.
  • P-toluenesulfonic acid At least one acid selected from the group consisting of p-toluenesulfonic acid hydrate, hydrochloric acid and sulfuric acid is preferred. These acids can be used as they are or as an aqueous solution having an appropriate concentration.
  • the amount of the acid used is preferably from 0.1 to 10 mol, more preferably from 0.5 to 5 mol, per 100 mol of resorcin.
  • the reaction temperature of the reaction between resorcin and acetone is preferably ⁇ 5 ° C. or higher and 45 ° C. or lower.
  • the progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
  • the mixing of resorcin, acetone and acid can be carried out, for example, by mixing resorcin and acetone and mixing the resulting mixture and acid under reaction temperature conditions.
  • the compounds contained in the condensate of resorcin and acetone include 2,4,4-trimethyl-2′4′7-trihydroxyflavan (compound represented by the above formula (A)), 7,7′-dihydroxy. -4,4,4 ', 4'-tetramethyl-2,2'-spirobichroman (compound represented by the above formula (B)), 4,6-bis (7-hydroxy-2,4,4) -Trimethylchroman-2-yl) -1,3-benzenediol (compound represented by the above formula (I)) and its isomer, 2,4-bis (7-hydroxy-2,4,4-trimethyl) Chroman-2-yl) -1,3-benzenediol (compound represented by the above formula (II)) and isomers thereof, compound represented by the above formula (III) and isomers thereof, and the above formula And compounds represented by (IV) and isomers thereof It is.
  • the mixture obtained in the 1B step may be directly applied to the 4B step which will be described later, or may be applied to the 4B step after being applied to the 2B and 3B steps which will be described later if necessary.
  • Good. ⁇ Second B step of mixing the mixture obtained in the first B step and the organic solvent>
  • the 2B step is a 3B step, which will be described later.
  • the mixture obtained in the 1B step and the organic solvent Is a step of crystallizing 2,4,4-trimethyl-2′4′7-trihydroxyflavan by mixing.
  • Examples of the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogen-substituted aromatic hydrocarbons, and the like.
  • Examples of aliphatic hydrocarbons are hexane, heptane, octane, decane, etc.
  • examples of aromatic hydrocarbons are toluene, xylene, ethylbenzene, etc.
  • examples of halogen-substituted aromatic hydrocarbons are chlorobenzene, dichlorobenzene, etc. Etc.
  • the organic solvent is preferably an aromatic hydrocarbon, more preferably toluene or xylene.
  • the amount of the organic solvent used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin.
  • the temperature at which the organic solvent is mixed may be the same as the reaction temperature in Step 1B, but in order to promote crystallization of 2,4,4-trimethyl-2′4′7-trihydroxyflavane, The reaction temperature may be lower than the reaction temperature.
  • the temperature for mixing the organic solvent is preferably -5 to 20 ° C. ⁇ 3B process of heating the mixture obtained in the 2B process to 50 to 70 ° C.> Step 3B is a step of reacting by heating to 50 to 70 ° C. in the presence of an organic solvent to further react unreacted resorcin with acetone.
  • the progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
  • GC gas chromatography
  • HPLC high performance liquid chromatography
  • GPC gel permeation chromatography
  • the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred.
  • Sodium hydroxide is more preferable.
  • the base is preferably used as an aqueous solution having an appropriate concentration.
  • Step 5B is a step of removing unreacted resorcin by mixing the mixture obtained in Step 4B and water and washing with water.
  • the precipitate may be dissolved by mixing an organic solvent.
  • it will not specifically limit if it is an organic solvent which can melt
  • the amount of the organic solvent used is preferably 2 parts by weight or less with respect to 1 part by weight of resorcin used in Step 1B.
  • the amount of water used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin used in Step 1B.
  • a mixture obtained by mixing water in the step 5B and a base may be mixed and washed under alkaline conditions.
  • the pH of the mixture obtained by mixing with the base is preferably 7 to 11, and more preferably 8 to 10.
  • the base examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred.
  • Sodium hydroxide is more preferable.
  • the base is preferably used as an aqueous solution having an appropriate concentration.
  • the temperature at which washing and liquid separation are performed is preferably 45 ° C or higher and 80 ° C or lower.
  • the residual resorcin content can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like.
  • a condensate of resorcin and acetone can be obtained by subjecting the mixture obtained in step 5B to a post-treatment step such as filtration or concentration.
  • a post-treatment step such as filtration or concentration.
  • first elution peak”, “second elution peak”, and “third elution peak” have the same meaning as described above.
  • gel permeation chromatography (differential refractive index detection) measurement the compound represented by formula (IV) and its isomer are the first elution peak, and the compound represented by formula (III) and its isomer are the second elution.
  • the compound represented by formula (I) and its isomer, and the compound represented by formula (II) and its isomer are detected as a third eluting peak.
  • the obtained condensate satisfies (1b), (2b) and (3b).
  • (1b) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as determined by gel permeation chromatography (differential refractive index detection) is 25 to 55.
  • the area ratio of the first elution peak to the total area of all peaks is 10 to 25% by gel permeation chromatography (differential refractive index detection) measurement.
  • the weight average molecular weight of the first elution peak is 800 or more.
  • the weight average molecular weight of the first elution peak measured by gel permeation chromatography (differential refractive index detection) is preferably 800 to 1200.
  • the content of 2,4,4-trimethyl-2′4′7-trihydroxyflavan contained in the obtained condensate is preferably 25 to 55% by weight, more preferably 30 to 50% by weight.
  • the total content of the compound represented by formula (IV) and the isomer thereof contained in the obtained condensate is preferably 10 to 25% by weight, and more preferably 10 to 20% by weight.
  • the softening point of the obtained condensate is preferably 160 ° C. or lower, and more preferably 140 ° C. or lower.
  • the content of resorcin contained in the obtained condensate is preferably 2.0% by weight or less, and more preferably 1.0% by weight or less.
  • the obtained condensate is useful as a rubber reinforcing agent, and particularly useful as a tire rubber reinforcing agent. 3.
  • Step 1C of reacting resorcin and acetone in the presence of hydrochloric acid Commercially available resorcinol and acetone can be used.
  • the amount of acetone used is preferably 1 to 6 moles, more preferably 1.5 to 4 moles per mole of resorcin. If the usage-amount of acetone is 1 mol or more, the content rate of resorcin in the condensate obtained can be reduced.
  • hydrochloric acid for example, commercially available 35% hydrochloric acid can be used as it is or diluted to an appropriate concentration with water.
  • the amount of hydrochloric acid used is preferably from 0.1 to 10 mol, more preferably from 0.5 to 8 mol, per 100 mol of resorcin.
  • the reaction between resorcin and acetone is preferably performed in the presence of an organic solvent.
  • the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogen-substituted aromatic hydrocarbons, and the like.
  • Examples of aliphatic hydrocarbons are hexane, heptane, octane, decane, etc.
  • examples of aromatic hydrocarbons are toluene, xylene, ethylbenzene, etc.
  • examples of halogen-substituted aromatic hydrocarbons are chlorobenzene, dichlorobenzene, etc. Etc.
  • the organic solvent is preferably an aromatic hydrocarbon, more preferably toluene or xylene.
  • the amount of the organic solvent used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin.
  • the reaction temperature of the reaction between resorcin and acetone is preferably 30 ° C or higher and 70 ° C or lower.
  • the progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
  • the mixing of resorcin, acetone and hydrochloric acid can be carried out, for example, by mixing resorcin and acetone in the presence of an organic solvent as necessary, and mixing the resulting mixture and hydrochloric acid under reaction temperature conditions. .
  • the method for adding hydrochloric acid is not particularly limited, and it may be charged all at once, or may be added dropwise to reduce heat generation during mixing. As the reaction proceeds, acetone may be added to the mixture continuously or intermittently.
  • the compounds contained in the condensate of resorcin and acetone include 2,4,4-trimethyl-2′4′7-trihydroxyflavan (compound represented by the above formula (A)), 7,7′-dihydroxy. -4,4,4 ', 4'-tetramethyl-2,2'-spirobichroman (compound represented by the above formula (B)), 4,6-bis (7-hydroxy-2,4,4) -Trimethylchroman-2-yl) -1,3-benzenediol (compound represented by the above formula (I)) and its isomer, 2,4-bis (7-hydroxy-2,4,4-trimethyl) Chroman-2-yl) -1,3-benzenediol (compound represented by the above formula (II)) and isomers thereof, compound represented by the above formula (III) and isomers thereof, and the above formula And compounds represented by (IV) and isomers thereof It is.
  • the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred.
  • Sodium hydroxide is more preferable.
  • the base is preferably used as an aqueous solution having an appropriate concentration.
  • the pH of the mixture obtained by mixing with the base is preferably 5 to 9, and more preferably 6 to 8.
  • Step 3C is a step of removing unreacted resorcin by mixing the mixture obtained in Step 2C with water and washing with water.
  • the precipitate may be dissolved by mixing an organic solvent.
  • the amount of the organic solvent used is preferably 2 parts by weight or less with respect to 1 part by weight of resorcin used in Step 1C.
  • the amount of water used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin used in Step 1C.
  • the mixture obtained by mixing water in the step 3C and a base may be mixed and washed under alkaline conditions.
  • the pH of the mixture obtained by mixing with the base is preferably 7 to 11, and more preferably 8 to 10.
  • the base examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred.
  • Sodium hydroxide is more preferable.
  • the base is preferably used as an aqueous solution having an appropriate concentration.
  • the temperature at which washing and liquid separation are performed is preferably 45 ° C. or higher and 80 ° C. or lower.
  • the residual resorcin content can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like.
  • a condensate of resorcin and acetone can be obtained by subjecting the mixture obtained in Step 2C or Step 3C to a post-treatment step such as filtration or concentration.
  • a post-treatment step such as filtration or concentration.
  • first elution peak”, “second elution peak”, and “third elution peak” have the same meaning as described above.
  • gel permeation chromatography (differential refractive index detection) measurement the compound represented by formula (IV) and its isomer are the first elution peak, and the compound represented by formula (III) and its isomer are the second elution.
  • the compound represented by formula (I) and its isomer, and the compound represented by formula (II) and its isomer are detected as a third eluting peak.
  • the obtained condensate satisfies (1c), (2c) and (3c).
  • (1c) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks determined by gel permeation chromatography (differential refractive index detection) is 25 to 55.
  • the ratio of the area of the first elution peak to the total area of all peaks by gel permeation chromatography (differential refractive index detection) measurement is 10 to 25%.
  • the weight average molecular weight of the first elution peak is 800 or more.
  • the weight average molecular weight of the first elution peak measured by gel permeation chromatography (differential refractive index detection) is preferably 800 to 1200.
  • the content of 2,4,4-trimethyl-2′4′7-trihydroxyflavan contained in the obtained condensate is preferably 25 to 55% by weight, more preferably 30 to 50% by weight.
  • the total content of the compound represented by formula (IV) and the isomer thereof contained in the obtained condensate is preferably 10 to 25% by weight, and more preferably 10 to 20% by weight.
  • the softening point of the obtained condensate is preferably 160 ° C. or lower, and more preferably 140 ° C. or lower.
  • the content of resorcin contained in the obtained condensate is preferably 2.0% by weight or less, and more preferably 1.0% by weight or less.
  • the obtained condensate is useful as a rubber reinforcing agent, and particularly useful as a tire rubber reinforcing agent. 4).
  • Second embodiment of the present invention ⁇ First Step D in which resorcin and acetone are reacted in the presence of at least one selected from the group consisting of p-toluenesulfonic acid and p-toluenesulfonic acid hydrate>
  • resorcinol and acetone can be used.
  • the amount of acetone used is preferably 1 to 6 moles, more preferably 1.5 to 4 moles per mole of resorcin. If the usage-amount of acetone is 1 mol or more, the content rate of resorcin in the condensate obtained can be reduced.
  • p-toluenesulfonic acid and p-toluenesulfonic acid hydrate for example, commercially available products can be used as they are or after being dissolved in an organic solvent or the like and diluted to an appropriate concentration.
  • the amount of the acid used is preferably from 0.1 to 10 mol, more preferably from 0.5 to 8 mol, per 100 mol of resorcin.
  • the reaction between resorcin and acetone is preferably performed in the presence of an organic solvent.
  • the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogen-substituted aromatic hydrocarbons, and the like.
  • Examples of aliphatic hydrocarbons are hexane, heptane, octane, decane, etc.
  • examples of aromatic hydrocarbons are toluene, xylene, ethylbenzene, etc.
  • examples of halogen-substituted aromatic hydrocarbons are chlorobenzene, dichlorobenzene, etc. Etc.
  • the organic solvent is preferably an aromatic hydrocarbon, more preferably toluene or xylene.
  • the amount of the organic solvent used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin.
  • the reaction temperature of the reaction between resorcin and acetone is preferably 30 ° C or higher and 70 ° C or lower.
  • the progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
  • the mixing of resorcin, acetone and acid can be carried out, for example, by mixing resorcin and acetone in the presence of an organic solvent as necessary, and mixing the resulting mixture and acid under reaction temperature conditions. .
  • the method for charging the acid is not particularly limited, and the acid solid may be charged all at once, or the acid may be dissolved in an organic solvent or the like and added dropwise in order to reduce the heat generated during mixing. As the reaction proceeds, acetone may be added to the mixture continuously or intermittently.
  • the compounds contained in the condensate of resorcin and acetone include 2,4,4-trimethyl-2′4′7-trihydroxyflavan (compound represented by the above formula (A)), 7,7′-dihydroxy. -4,4,4 ', 4'-tetramethyl-2,2'-spirobichroman (compound represented by the above formula (B)), 4,6-bis (7-hydroxy-2,4,4) -Trimethylchroman-2-yl) -1,3-benzenediol (compound represented by the above formula (I)) and its isomer, 2,4-bis (7-hydroxy-2,4,4-trimethyl) Chroman-2-yl) -1,3-benzenediol (compound represented by the above formula (II)) and isomers thereof, compound represented by the above formula (III) and isomers thereof, and the above formula And compounds represented by (IV) and isomers thereof It is.
  • the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred.
  • Sodium hydroxide is more preferable.
  • the base is preferably used as an aqueous solution having an appropriate concentration.
  • the pH of the mixture obtained by mixing with the base is preferably 5 to 9, and more preferably 6 to 8.
  • the mixture obtained in the second D step may be directly subjected to a post-treatment step to be described later, or may be further subjected to a post-treatment step after being subjected to a third D step to be described later if necessary.
  • the 3D step is a step of removing unreacted resorcin by mixing the mixture obtained in the 2D step with water and washing with water.
  • the mixture obtained in the second step D is a slurry in which a condensate of resorcin and acetone is deposited, the precipitate may be dissolved by mixing an organic solvent.
  • the amount of the organic solvent used is preferably 2 parts by weight or less with respect to 1 part by weight of resorcin used in Step 1D.
  • the amount of water used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin used in Step 1D.
  • a mixture obtained by mixing water in the third step D and a base may be mixed and washed under alkaline conditions.
  • the pH of the mixture obtained by mixing with the base is preferably 7 to 11, and more preferably 8 to 10.
  • the base examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred.
  • Sodium hydroxide is more preferable.
  • the base is preferably used as an aqueous solution having an appropriate concentration.
  • the temperature at which washing and liquid separation are performed is preferably 45 ° C or higher and 80 ° C or lower.
  • the residual resorcin content can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like.
  • a condensate of resorcin and acetone can be obtained by subjecting the mixture obtained in the second or third step to a post-treatment step such as filtration or concentration.
  • a post-treatment step such as filtration or concentration.
  • first elution peak”, “second elution peak”, and “third elution peak” have the same meaning as described above.
  • gel permeation chromatography (differential refractive index detection) measurement the compound represented by formula (IV) and its isomer are the first elution peak, and the compound represented by formula (III) and its isomer are the second elution.
  • the compound represented by formula (I) and its isomer, and the compound represented by formula (II) and its isomer are detected as a third eluting peak.
  • the obtained condensate satisfies (1d), (2d) and (3d).
  • (1d) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as measured by gel permeation chromatography (differential refractive index detection) is 25 to 55. %
  • the area ratio of the first elution peak to the total area of all peaks is 10 to 25% by gel permeation chromatography (differential refractive index detection) measurement.
  • the weight average molecular weight of the first elution peak is 800 or more.
  • the weight average molecular weight of the first elution peak measured by gel permeation chromatography (differential refractive index detection) is preferably 800 to 1200.
  • the content of 2,4,4-trimethyl-2′4′7-trihydroxyflavan contained in the obtained condensate is preferably 25 to 55% by weight, more preferably 30 to 50% by weight.
  • the total content of the compound represented by formula (IV) and the isomer thereof contained in the obtained condensate is preferably 10 to 25% by weight, and more preferably 10 to 20% by weight.
  • the softening point of the obtained condensate is preferably 160 ° C. or lower, and more preferably 140 ° C. or lower.
  • the content of resorcin contained in the obtained condensate is preferably 2.0% by weight or less, and more preferably 1.0% by weight or less.
  • the obtained condensate is useful as a rubber reinforcing agent, and particularly useful as a tire rubber reinforcing agent. 5.
  • a rubber composition comprising a condensate of resorcin and acetone, a rubber component, a filler, and a sulfur component
  • the rubber composition of the present invention contains the above condensate of resorcin and acetone, a rubber component, a filler, and a sulfur component.
  • the rubber component include natural rubber, styrene butadiene copolymer rubber, butadiene rubber, isoprene rubber, and the like, and rubber components containing these as main components.
  • the amount of the condensate of resorcin and acetone used is preferably 0.5 to 3 parts by weight and more preferably 1 to 2 parts by weight with respect to 100 parts by weight of the rubber component.
  • Examples of the filler include carbon black, silica, talc, and clay that are usually used in the rubber field, and carbon black is preferable.
  • carbon black HAF (High Ablation Furnace), SAF (Super Ablation Furnace), ISAF (Intermediate SAF) and the like are preferable.
  • the amount of the filler used is preferably 10 to 100 parts by weight per 100 parts by weight of the rubber component. More preferably, it is 30 to 70 parts by weight.
  • Examples of the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Powdered sulfur and insoluble sulfur are preferred.
  • the amount of the sulfur component used is preferably 1 to 10 parts by weight, more preferably 2 to 6 parts by weight per 100 parts by weight of the rubber component.
  • the rubber composition may further contain a vulcanization accelerator, a methoxylated methylol melamine resin, an organic cobalt compound and / or zinc oxide.
  • vulcanization accelerators include thiazole vulcanization accelerators and sulfenamides described on pages 412 to 413 of Rubber Industry Handbook ⁇ Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994). And guanidine vulcanization accelerators.
  • the amount of the vulcanization accelerator used is preferably 0.5 to 1 part by weight, more preferably 0.6 to 0.8 part by weight per 100 parts by weight of the rubber component.
  • methoxylated methylol melamine resin examples include hexakis (methoxymethyl) melamine, pentakis (methoxymethyl) methylol melamine, tetrakis (methoxymethyl) dimethylol melamine and the like which are usually used in the rubber industry. Methoxymethyl) melamine alone or a mixture based on it is preferred.
  • the methoxylated methylol melamine resin can be used alone or in combination, and the amount used is preferably 0.5 to 6.0 parts by weight, and 1.0 to 3.0 parts by weight with respect to 100 parts by weight of the rubber component. Part is more preferred.
  • organic cobalt compound examples include acid cobalt salts such as cobalt naphthenate and cobalt stearate, and a fatty acid cobalt / boron complex compound (for example, trade name “Manobond C (registered trademark)” manufactured by Manchem).
  • the amount of the organic cobalt compound used is preferably 0.1 to 0.4 parts by weight, more preferably 0.1 to 0.3 parts by weight, based on 100 parts by weight of the rubber component.
  • the rubber composition includes various rubber chemicals commonly used in the rubber industry, for example, anti-aging agents such as antioxidants and ozone degradation inhibitors, peptizers, processing aids, waxes, oils, stearic acid, 1 type, or 2 or more types, such as a tackifier, may be included.
  • anti-aging agents such as antioxidants and ozone degradation inhibitors
  • peptizers such as peptizers
  • processing aids waxes, oils, stearic acid, 1 type, or 2 or more types, such as a tackifier
  • a tackifier such as stearic acid, 1 type, or 2 or more types, such as a tackifier.
  • a rubber product is obtained by molding and vulcanizing the rubber composition. Molding and vulcanization can be carried out in accordance with ordinary methods in the rubber industry.
  • Rubber products include various parts of tires such as cap treads, under treads, belts, carcass, beads, sidewalls, rubber chafers; anti-vibration rubbers for automobiles such as engine mounts, strut mounts, bushes and exhaust hangers; hoses Rubber belt; and the like.
  • a tire belt can be produced by coating a steel cord with a rubber composition. Steel cords are usually used in an aligned state. From the viewpoint of adhesion to rubber, the steel cord is preferably plated with brass, zinc, or an alloy containing nickel or cobalt, and is preferably subjected to brass plating. is there.
  • a steel cord subjected to a brass plating process in which the Cu content of the brass plating is 75% by weight or less, preferably 55 to 70% by weight is suitable.
  • the twist structure of the steel cord is not limited.
  • a plurality of belts may be laminated and used.
  • the belt is mainly used as a carcass reinforcing material.
  • a carcass can also be manufactured by extruding a rubber composition in accordance with the carcass shape of a tire and attaching the rubber composition to the top and bottom of a carcass fiber cord.
  • the carcass fiber cord is usually used in a state of being aligned in parallel.
  • the carcass fiber cord preferred is an inexpensive polyester that has good elastic modulus and fatigue resistance and excellent creep resistance.
  • a pneumatic tire can be produced from the rubber composition by a usual production method. For example, a rubber composition is extruded to obtain a tire member, and the obtained tire member is attached and molded to another tire member by a normal method on a tire molding machine, and heated and pressurized in a vulcanizer. Thus, a tire is obtained.
  • the mixture was neutralized with a 10% aqueous sodium hydroxide solution, heated to an internal temperature of 80 ° C., and then charged with 55.8 g (1.20 mol) of acetone to completely dissolve the reaction product. Furthermore, 220 g of hot water was charged at an internal temperature of 80 ° C., and unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. under reduced pressure of 1 KPa or less for 12 hours to obtain 110 g of a condensate of resorcin and acetone.
  • the obtained composition was transferred to an open roll, the initial product temperature was 60 ° C., sulfur, vulcanization accelerator (N, N-dicyclohexyl-2-benzothiazylsulfenamide), methoxylated methylol melamine resin (Sumicanol 507AP). (Manufactured by Sumitomo Chemical Co., Ltd.)) and cobalt naphthenate were added, and a rubber composition was obtained by kneading while controlling the temperature of the rubber to 80 ° C. or lower.
  • the amount of each component used is as follows.
  • Example 6 (Production of rubber composition)
  • Example 4 a rubber composition was obtained in the same manner as in Example 4 except that the condensate obtained in Example 3D was used instead of the condensate obtained in Example 1D.
  • Example 7 (Production of tire belt and tire using the same) A belt is obtained by covering the steel cord subjected to the brass plating treatment with the rubber composition obtained in Example 4. Using the resulting belt, a green tire is formed according to a normal production method, and the resulting green tire is heated and pressurized in a vulcanizer to obtain a tire.
  • Example 8 (Production of tire carcass and tire using the same) By extruding the rubber composition obtained in Example 4, a rubber composition having a shape corresponding to the carcass shape is prepared, and carcass is obtained by applying the rubber composition on top and bottom of a polyester carcass fiber cord. Using the obtained carcass, a tire is obtained by molding a green tire according to a normal production method and heating and pressing the resulting green tire in a vulcanizer.
  • Example 9 (Tire Cap Tread and Manufacturing of Tire Using This) The rubber composition obtained in Example 4 is extruded to obtain a cap tread. Using the obtained cap tread, a tire is obtained by molding a green tire according to a normal production method and heating and pressing the resulting green tire in a vulcanizer.
  • Example 10 (Production of tire undertread and tire using the same) The rubber composition obtained in Example 4 is extruded to obtain an undertread. Using the obtained undertread, a tire is obtained by molding a green tire according to a normal production method and heating and pressing the resulting green tire in a vulcanizer.
  • the content of unreacted resorcin contained in the condensate of resorcin and acetone can be reduced.
  • the condensate of resorcin and acetone obtained by the production method of the present invention is excellent in performance as a reinforcing agent of the rubber composition, and can prevent deterioration of the working environment due to transpiration of resorcin during processing of the rubber composition, Industrially advantageous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

A method for producing a condensation product of resorcin and acetone, said condensation product satisfying the conditions (1a), (2a) and (3a) described below. The method for producing a condensation product of resorcin and acetone comprises: a step (1A) wherein resorcin and acetone are reacted in the presence of an acid; a step (2A) wherein the mixture obtained by the step (1A) is mixed with a base; a step (3A) wherein water is removed from the mixture obtained by the step (2A); and a step (4A) wherein the mixture obtained by the step (3A) is mixed with an acid. (1a) The area ratio of the peak of 2,4,4-trimethyl-2'-4'-7-trihydroxyflavan to the total area of all the peaks as determined by gel permeation chromatography (differential refractive index detection) is 25-55%. (2a) The area ratio of the first elution peak to the total area of all the peaks as determined by gel permeation chromatography (differential refractive index detection) is 10-30%. (3a) The weight average molecular weight of the first elution peak is 800 or more.

Description

レゾルシンとアセトンとの縮合物の製造方法Method for producing condensate of resorcin and acetone
 本発明は、レゾルシンとアセトンとの縮合物の製造方法に関する。 The present invention relates to a method for producing a condensate of resorcin and acetone.
 レゾルシンとアセトンとの縮合物は、ゴム組成物の補強剤として有用である。
 米国特許第5,665,799号明細書には、レゾルシンとアセトンとを、酸及び有機溶媒の存在下で反応させた後、前記酸を水酸化ナトリウム水溶液で中和し、得られた混合物を減圧乾燥させることによりレゾルシンとアセトンとの縮合物を得る方法が記載されている。
A condensate of resorcin and acetone is useful as a reinforcing agent for rubber compositions.
In US Pat. No. 5,665,799, resorcin and acetone are reacted in the presence of an acid and an organic solvent, and then the acid is neutralized with an aqueous sodium hydroxide solution. A method for obtaining a condensate of resorcin and acetone by drying under reduced pressure is described.
 本発明は、以下の発明を含む。
[1]レゾルシンとアセトンとを、酸の存在下で反応させる第1A工程と、
第1A工程により得られた混合物と塩基とを混合する第2A工程と、
第2A工程により得られた混合物から水を除去する第3A工程と、
第3A工程により得られた混合物と酸とを混合する第4A工程と、
を含む、下記(1a)、(2a)及び(3a)を満たすレゾルシンとアセトンとの縮合物の製造方法。
(1a)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
(2a)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~30%であること
(3a)前記第一溶出ピークの重量平均分子量が800以上であること
[2]レゾルシンとアセトンとを、酸の存在下で反応させる第1A工程と、
第1A工程により得られた混合物と塩基とを混合する第2A工程と、
第2A工程により得られた混合物から水を除去する第3A工程と、
第3A工程により得られた混合物と酸とを混合する第4A工程と、
第4A工程により得られた混合物と塩基とを混合する第5A工程と、
第5A工程により得られた混合物を水洗する第6A工程と、
を含む[1]記載の製造方法。
[3]第3A工程が、前記レゾルシンとアセトンとの反応により副生した水を、有機溶媒の存在下で除去する工程である[1]又は[2]のいずれか記載の製造方法。
[4]第3A工程が、前記レゾルシンとアセトンとの反応により副生した水を、有機溶媒の存在下で、共沸蒸留によって除去する工程である[1]~[3]のいずれかの項記載の製造方法。
[5]レゾルシンとアセトンとを、酸の存在下且つ溶媒の非存在下で反応させる第1B工程を含む、下記(1b)、(2b)及び(3b)を満たすレゾルシンとアセトンとの縮合物の製造方法。
(1b)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
(2b)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~25%であること
(3b)前記第一溶出ピークの重量平均分子量が800以上であること
[6]第1B工程が、レゾルシンとアセトンとを、酸の存在下且つ溶媒の非存在下で、−5~45℃で反応させる工程である[5]記載の製造方法。
[7]レゾルシンとアセトンとを、酸の存在下且つ溶媒の非存在下で、−5~45℃で反応させる第1B工程と、
第1B工程で得られた混合物と有機溶媒とを混合する第2B工程と、
第2B工程で得られた混合物を50~70℃に加熱する第3B工程と、
を含む[5]又は[6]記載の製造方法。
[8]レゾルシンとアセトンとを、酸の存在下且つ溶媒の非存在下で、−5~45℃で反応させる第1B工程と、
第1B工程で得られた混合物と塩基とを混合する第4B工程と、
第4B工程で得られた混合物を水洗する第5B工程と、
を含む[5]~[7]のいずれかの項記載の製造方法。
[9]レゾルシンとアセトンとを、酸の存在下且つ溶媒の非存在下で、−5~45℃で反応させる第1B工程と、
第1B工程で得られた混合物と有機溶媒とを混合する第2B工程と、
第2B工程で得られた混合物を50~70℃に加熱する第3B工程と、
第3B工程で得られた混合物と塩基とを混合する第4B工程と、
第4B工程で得られた混合物を水洗する第5B工程と、
を含む[5]~[8]のいずれかの項記載の製造方法。
[10]レゾルシンとアセトンとを塩酸の存在下で反応させる第1C工程を含む、
下記(1c)、(2c)及び(3c)を満たすレゾルシンとアセトンとの縮合物の製造方法。
(1c)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
(2c)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~25%であること
(3c)前記第一溶出ピークの重量平均分子量が800以上であること
[11]第1C工程が、レゾルシンとアセトンとを塩酸及び有機溶媒の存在下で反応させる工程である[10]記載の製造方法。
[12]レゾルシンとアセトンとを塩酸の存在下で反応させる第1C工程と、
第1C工程により得られた混合物と塩基とを混合する第2C工程と、
第2C工程により得られた混合物を水洗する第3C工程と、
を含む[10]又は[11]記載の製造方法。
[13]レゾルシンとアセトンとを、p−トルエンスルホン酸及びp−トルエンスルホン酸水和物からなる群から選ばれる少なくとも1種の存在下で反応させる第1D工程を含み、レゾルシンに対するp−トルエンスルホン酸及びp−トルエンスルホン酸水和物からなる群から選ばれる少なくとも1種の使用量が0.1~10モル%である、
下記(1d)、(2d)及び(3d)を満たすレゾルシンとアセトンとの縮合物の製造方法。
(1d)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
(2d)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~25%であること
(3d)前記第一溶出ピークの重量平均分子量が800以上であること
[14]第1D工程が、レゾルシンとアセトンとを、p−トルエンスルホン酸及びp−トルエンスルホン酸水和物からなる群から選ばれる少なくとも1種並びに有機溶媒の存在下で反応させる工程である[13]記載の製造方法。
[15]レゾルシンとアセトンとを、p−トルエンスルホン酸及びp−トルエンスルホン酸水和物からなる群から選ばれる少なくとも1種の存在下で反応させる第1D工程と、
第1D工程により得られた混合物と塩基とを混合する第2D工程と、
第2D工程により得られた混合物を水洗する第3D工程と、
を含む[13]又は[14]記載の製造方法。
[16][1]~[15]のいずれかの項記載の製造方法により得られる縮合物。
[17][1]~[15]のいずれかの項記載の製造方法により得られる縮合物とゴム成分と充填剤と硫黄成分とを含むゴム組成物。
[18][17]記載のゴム組成物で被覆されたスチールコードを含むタイヤ用ベルト。
[19][17]記載のゴム組成物で被覆されたカーカス繊維コードを含むタイヤ用カーカス。
[20][17]記載のゴム組成物を含むタイヤ用キャップトレッド又はタイヤ用アンダートレッド。
[21][17]記載のゴム組成物を加工して製造される空気入りタイヤ。
The present invention includes the following inventions.
[1] Step 1A in which resorcin and acetone are reacted in the presence of an acid;
A second A step of mixing the mixture obtained in the first A step and a base;
A 3A step of removing water from the mixture obtained by the 2A step;
4A process which mixes the mixture and acid which were obtained by 3A process,
A method for producing a condensate of resorcin and acetone satisfying the following (1a), (2a) and (3a):
(1a) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as measured by gel permeation chromatography (differential refractive index detection) is 25 to 55. (2a) The area ratio of the first elution peak to the total area of all peaks by gel permeation chromatography (differential refractive index detection) measurement is 10 to 30% (3a) of the first elution peak The weight average molecular weight is 800 or more [2] Step 1A in which resorcin and acetone are reacted in the presence of an acid;
A second A step of mixing the mixture obtained in the first A step and a base;
A 3A step of removing water from the mixture obtained by the 2A step;
4A process which mixes the mixture and acid which were obtained by 3A process,
Step 5A for mixing the mixture obtained in Step 4A with a base;
A 6A step of washing the mixture obtained in the 5A step with water;
The manufacturing method of [1] description containing.
[3] The production method according to any one of [1] or [2], wherein the step 3A is a step of removing water by-produced by the reaction of the resorcin and acetone in the presence of an organic solvent.
[4] The process according to any one of [1] to [3], wherein the step 3A is a step of removing water by-produced by the reaction between the resorcin and acetone by azeotropic distillation in the presence of an organic solvent. The manufacturing method as described.
[5] A condensate of resorcin and acetone satisfying the following (1b), (2b) and (3b), which comprises the first step B in which resorcin and acetone are reacted in the presence of an acid and in the absence of a solvent Production method.
(1b) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as determined by gel permeation chromatography (differential refractive index detection) is 25 to 55. (2b) The area ratio of the first elution peak to the total area of all peaks by gel permeation chromatography (differential refractive index detection) measurement is 10 to 25% (3b) of the first elution peak The weight average molecular weight is 800 or more [6] Step 1B is a step in which resorcin and acetone are reacted at −5 to 45 ° C. in the presence of an acid and in the absence of a solvent [5] Manufacturing method.
[7] Step 1B in which resorcin and acetone are reacted at −5 to 45 ° C. in the presence of an acid and in the absence of a solvent;
A second B step of mixing the mixture obtained in the first B step and the organic solvent;
A third B step of heating the mixture obtained in the second B step to 50-70 ° C;
The production method according to [5] or [6].
[8] Step 1B in which resorcin and acetone are reacted at −5 to 45 ° C. in the presence of an acid and in the absence of a solvent;
Step 4B for mixing the mixture obtained in Step 1B and the base;
A 5B step of washing the mixture obtained in the 4B step with water;
The production method according to any one of [5] to [7], comprising:
[9] Step 1B in which resorcin and acetone are reacted at −5 to 45 ° C. in the presence of an acid and in the absence of a solvent;
A second B step of mixing the mixture obtained in the first B step and the organic solvent;
A third B step of heating the mixture obtained in the second B step to 50-70 ° C;
Step 4B for mixing the mixture obtained in Step 3B and the base;
A 5B step of washing the mixture obtained in the 4B step with water;
The production method according to any one of [5] to [8], comprising:
[10] including a first C step of reacting resorcin and acetone in the presence of hydrochloric acid,
A method for producing a condensate of resorcin and acetone satisfying the following (1c), (2c) and (3c).
(1c) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks determined by gel permeation chromatography (differential refractive index detection) is 25 to 55. (2c) The area ratio of the first elution peak to the total area of all peaks by gel permeation chromatography (differential refractive index detection) measurement is 10 to 25% (3c) of the first elution peak [11] The production method according to [10], wherein the step 1C is a step of reacting resorcin and acetone in the presence of hydrochloric acid and an organic solvent.
[12] Step 1C in which resorcin and acetone are reacted in the presence of hydrochloric acid;
A second C step of mixing the mixture obtained in the first C step with a base;
Step 3C for washing the mixture obtained in Step 2C with water;
The production method according to [10] or [11].
[13] p-toluenesulfone for resorcin, comprising a first step of reacting resorcin and acetone in the presence of at least one selected from the group consisting of p-toluenesulfonic acid and p-toluenesulfonic acid hydrate The amount of at least one selected from the group consisting of acid and p-toluenesulfonic acid hydrate is 0.1 to 10 mol%,
A method for producing a condensate of resorcin and acetone satisfying the following (1d), (2d) and (3d).
(1d) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as measured by gel permeation chromatography (differential refractive index detection) is 25 to 55. (2d) The area ratio of the first elution peak to the total area of all peaks by gel permeation chromatography (differential refractive index detection) measurement is 10 to 25% (3d) of the first elution peak The weight average molecular weight is 800 or more. [14] In the first step D, resorcin and acetone are selected from the group consisting of p-toluenesulfonic acid and p-toluenesulfonic acid hydrate, and an organic solvent. [13] The production method according to [13], which is a step of reacting in the presence.
[15] A first step of reacting resorcin and acetone in the presence of at least one selected from the group consisting of p-toluenesulfonic acid and p-toluenesulfonic acid hydrate;
A second D step of mixing the mixture obtained in the first D step with a base;
A 3D step of washing the mixture obtained in the 2D step with water;
The production method according to [13] or [14].
[16] A condensate obtained by the production method according to any one of [1] to [15].
[17] A rubber composition comprising a condensate obtained by the production method according to any one of [1] to [15], a rubber component, a filler, and a sulfur component.
[18] A tire belt comprising a steel cord coated with the rubber composition according to [17].
[19] A tire carcass comprising a carcass fiber cord coated with the rubber composition according to [17].
[20] A tire cap tread or a tire undertread comprising the rubber composition according to [17].
[21] A pneumatic tire produced by processing the rubber composition according to [17].
1.本発明の第1の形態
<レゾルシンとアセトンとを、酸の存在下で反応させる第1A工程>
 レゾルシン及びアセトンは、いずれも市販のものを用いることができる。アセトンの使用量は、レゾルシン1モルに対し、1~6モルが好ましく、1.5~4モルがより好ましい。アセトンの使用量が1モル以上であれば、得られる縮合物中のレゾルシンの含有率を減らすことができる。
 酸は、レゾルシンとアセトンとの反応において触媒として働く。酸としては、ベンゼンスルホン酸、p−トルエンスルホン酸、p−トルエンスルホン酸水和物、シュウ酸、リン酸、ポリリン酸、ホウ化フッ素酸、塩酸、硫酸等が挙げられ、p−トルエンスルホン酸、p−トルエンスルホン酸水和物、塩酸及び硫酸からなる群から選ばれる少なくとも1種の酸が好ましい。酸はそのまま、又は適当な濃度の水溶液として用いることができる。酸の使用量は、レゾルシン100モルに対し、0.1~10モルが好ましく、0.5~5モルがより好ましい。
 レゾルシンとアセトンとの反応は、有機溶媒の存在下で行うことが好ましい。有機溶媒としては、脂肪族炭化水素、芳香族炭化水素、ハロゲン置換芳香族炭化水素等が挙げられる。脂肪族炭化水素の例は、ヘキサン、ヘプタン、オクタン、デカン等であり、芳香族炭化水素の例は、トルエン、キシレン、エチルベンゼン等であり、ハロゲン置換芳香族炭化水素の例は、クロロベンゼン、ジクロロベンゼン等である。有機溶媒は芳香族炭化水素が好ましく、トルエン又はキシレンがより好ましい。有機溶媒の使用量は、レゾルシン1重量部に対し、0.5~3重量部が好ましい。
 レゾルシンとアセトンとの反応の反応温度は、30℃以上、65℃以下が好ましい。反応の進行は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができる。反応の進行を確認しながら、反応終点を決めることが好ましい。
 レゾルシンとアセトンと酸との混合は、例えば、レゾルシンとアセトンとを必要により有機溶媒の存在下で混合し、得られた混合物と酸とを反応温度条件下で混合することにより実施することができる。また、反応の進行に伴い、混合物にアセトンを連続的又は間欠的に加えてもよい。反応が進行するにつれ、レゾルシンとアセトンとの縮合物に含まれる化合物の一つである2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンが析出する場合がある。析出物が反応容器の壁に固着することを防ぐために、種晶として2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンを用いてもよい。
 レゾルシンとアセトンとの縮合物に含まれる化合物としては、2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン(式(A)で示される化合物)、
Figure JPOXMLDOC01-appb-I000001
 7,7’−ジヒドロキシ−4,4,4’,4’−テトラメチル−2,2’−スピロビクロマン(式(B)で示される化合物)、
Figure JPOXMLDOC01-appb-I000002
4,6−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(I)で表される化合物)及びその異性体、
Figure JPOXMLDOC01-appb-I000003
2,4−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(II)で表される化合物)及びその異性体、
Figure JPOXMLDOC01-appb-I000004
式(III)で表される化合物及びその異性体、
Figure JPOXMLDOC01-appb-I000005
式(IV)で表される化合物及びその異性体、
Figure JPOXMLDOC01-appb-I000006
[式(IV)中、nは2以上の整数を表す。]
等が挙げられる。
<第1A工程により得られた混合物と塩基とを混合する第2A工程>
 塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム等のアルカリ金属炭酸塩等が挙げられ、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。塩基は、適当な濃度の水溶液として用いることが好ましい。
 塩基との混合により得られた混合物のpHは、5~9が好ましく、6~8がさらに好ましい。
<第2A工程により得られた混合物から水を除去する第3A工程>
 水を除去する方法としては、例えば、水を吸着し得る物質や水を分解し得る物質を、第2A工程により得られた混合物に添加する方法、及び、第2A工程により得られた混合物を蒸留する方法が挙げられ、蒸留が好ましく、有機溶媒の存在下で有機溶媒と水との共沸蒸留がより好ましい。水を含む留分を除去することにより、水を除去することができる。留分が有機層と水層とに分離している場合は、水層のみを分離して除去し、有機層は混合物に戻すことが好ましい。水の除去は、水を除去して得られた混合物の含水率が0.01~2重量%になるまで行なうことが好ましく、含水率が0.01~1重量%になるまで行うことがより好ましい。
 有機溶媒としては、通常、レゾルシンとアセトンとの反応に用いた有機溶媒が用いられるが、その他の有機溶媒を使用することもできる。有機溶媒としては、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;塩化メチレン、クロロホルム、四塩化炭素、トリクレン、バークレン、二塩化エチレン、塩化ベンゼン等の塩素化炭化水素;酢酸メチル、酢酸エチル、酢酸プロピル等のエステル;アセトニトリル等のニトリル;等が挙げられ、芳香族炭化水素が好ましく、トルエン、キシレンがより好ましい。
<第3A工程により得られた混合物と酸とを混合する第4A工程>
 第4A工程は、レゾルシンとアセトンとの縮合物を含む混合物に酸を混合し、残存するレゾルシンと、アセトンとを反応させる工程である。
 第4A工程で用いる酸は、第1A工程で用いた酸と同じ酸が好ましい。酸の使用量は、第1A工程で用いたレゾルシン100モルに対し、0.1~10モルが好ましく、0.5~5モルがさらに好ましい。
 レゾルシンの反応速度を向上させる目的で、第3A工程により得られた混合物あるいは第4A工程で酸を混合した後の混合物にアセトンを追加で混合してもよい。第4A工程で追加するアセトンの使用量は、第1A工程で用いたアセトンの使用量との合計が、第1A工程で用いたレゾルシン1モルに対し、1~6モルとなる量が好ましい。第4A工程は、GC、HPLC、GPC等の通常の分析手段により2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンの含有率とレゾルシンの含有率とを確認しながら行なうことが好ましい。
 第4A工程で用いる有機溶媒は、第1A工程で用いた有機溶媒と同じ有機溶媒が好ましい。有機溶媒としては、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素;シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素;塩化メチレン、クロロホルム、四塩化炭素、トリクレン、バークレン、二塩化エチレン、塩化ベンゼン等の塩素化炭化水素;酢酸メチル、酢酸エチル、酢酸プロピル等のエステル;アセトニトリル等のニトリル;等が挙げられ、芳香族炭化水素が好ましく、トルエン、キシレンがより好ましい。
 レゾルシンとアセトンとの反応の反応温度は、30℃以上、65℃以下が好ましい。反応の進行は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができる。反応の進行を確認しながら、反応終点を決めることが好ましい。
<第4A工程により得られた混合物と塩基とを混合する第5A工程>
 塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム等のアルカリ金属炭酸塩等が挙げられ、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。塩基は、適当な濃度の水溶液として用いることが好ましい。
 塩基との混合により得られた混合物のpHは、5~9が好ましく、6~8がさらに好ましい。
 第5A工程により得られた混合物を、そのまま後述する後処理工程に付してもよいし、必要に応じて、さらに後述する第6A工程に付した後に後処理工程に付してもよい。
<第5A工程により得られた混合物を水洗する第6A工程>
 第6A工程は、第5A工程で得られた混合物と水とを混合し、水洗することにより未反応のレゾルシンを除去する工程である。第5A工程で得られた混合物が、レゾルシンとアセトンとの縮合物が析出したスラリーである場合、有機溶媒を混合することにより、析出物を溶解してもよい。有機溶媒としては、第1A工程で使用可能なものの中で析出物を溶解できる有機溶媒であれば特に限定しないが、分液性の点からアセトンが好ましい。有機溶媒の使用量は、第1A工程で使用したレゾルシン1重量部に対し、2重量部以下が好ましい。水の使用量は、第1A工程で使用したレゾルシン1重量部に対し、0.5~3重量部が好ましい。
 レゾルシンの除去効率を高める目的で、さらに塩基と混合して、アルカリ性条件下で水洗を行ってもよい。塩基との混合により得られた混合物のpHは、7~11が好ましく、8~10がさらに好ましい。
 塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム等のアルカリ金属炭酸塩等が挙げられ、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。 塩基は、適当な濃度の水溶液として用いることが好ましい。
 水洗および分液を行う温度は、45℃以上、80℃以下が好ましい。残存するレゾルシンの含有率は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができる。レゾルシンの含有率を確認しながら、水洗の回数を決めることが好ましい。
<後処理工程>
 第5A工程又は第6A工程で得られた混合物を、濾過や濃縮等の後処理工程に付すことにより、レゾルシンとアセトンとの縮合物を得ることができる。
<得られた縮合物>
 本発明において「第一溶出ピーク」とは、ゲル浸透クロマトグラフィー(示差屈折率検出)測定により得られるクロマトグラム中の全てのピーク中で、保持時間が最も短いピークを意味し、「第二溶出ピーク」とは、ゲル浸透クロマトグラフィー(示差屈折率検出)測定により得られるクロマトグラム中の全てのピーク中で、保持時間が二番目に短いピークを意味し、「第三溶出ピーク」とは、ゲル浸透クロマトグラフィー(示差屈折率検出)測定により得られるクロマトグラム中の全てのピーク中で、保持時間が三番目に短いピークを意味する。
 ゲル浸透クロマトグラフィー(示差屈折率検出)測定において、式(IV)で表される化合物及びその異性体は第一溶出ピークとして、式(III)で表される化合物及びその異性体は第二溶出ピークとして、式(I)で表される化合物及びその異性体、並びに、式(II)で表される化合物及びその異性体は第三溶出ピークとして、検出される。
 得られた縮合物は、(1a)、(2a)及び(3a)を満たす。
(1a)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
(2a)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~30%であること
(3a)前記第一溶出ピークの重量平均分子量が800以上であること
 ゲル浸透クロマトグラフィー(示差屈折率検出)測定による第一溶出ピークの重量平均分子量は、800~1400が好ましく、800~1200がより好ましい。
 得られた縮合物に含まれる2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンの含有率は、25~55重量%が好ましく、30~50重量%がより好ましい。
 得られた縮合物に含まれる4,6−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(I)で表される化合物)及びその異性体、並びに、2,4−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(II)で表される化合物)及びその異性体の合計の含有率は、10~30重量%が好ましい。
 得られた縮合物に含まれる式(III)で表される化合物及びその異性体の合計の含有率は、10~20重量%が好ましい。
 得られた縮合物に含まれる式(IV)で表される化合物及びその異性体の合計の含有率は、10~30重量%が好ましく、10~20重量%がより好ましい。
 得られた縮合物の軟化点は、160℃以下が好ましく、140℃以下がより好ましい。
 得られた縮合物に含まれるレゾルシンの含有率は、2.0重量%以下が好ましく、1.0重量%以下がより好ましい。
 得られた縮合物は、ゴムの補強剤として有用であり、特にタイヤ用ゴムの補強剤として有用である。
2.本発明の第2の形態
<レゾルシンとアセトンとを、酸の存在下且つ溶媒の非存在下で反応させる第1B工程>
 レゾルシン及びアセトンは、いずれも市販のものを用いることができる。アセトンの使用量は、レゾルシン1モルに対し、1~6モルが好ましく、1.5~4モルがより好ましい。アセトンの使用量が1モル以上であれば、得られる縮合物中のレゾルシンの含有率を減らすことができる。
 酸は、レゾルシンとアセトンとの反応において触媒として働く。酸としては、ベンゼンスルホン酸、p−トルエンスルホン酸、p−トルエンスルホン酸水和物、シュウ酸、リン酸、ポリリン酸、ホウ化フッ素酸、塩酸、硫酸等が挙げられ、p−トルエンスルホン酸、p−トルエンスルホン酸水和物、塩酸及び硫酸からなる群から選ばれる少なくとも1種の酸が好ましい。これら酸はそのまま、又は適当な濃度の水溶液として用いることができる。酸の使用量は、レゾルシン100モルに対し、0.1~10モルが好ましく、0.5~5モルがより好ましい。
 レゾルシンとアセトンとの反応の反応温度は、−5℃以上、45℃以下が好ましい。反応の進行は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができる。反応の進行を確認しながら、反応終点を決めることが好ましい。
 レゾルシンとアセトンと酸との混合は、例えば、レゾルシンとアセトンとを混合し、得られた混合物と酸とを反応温度条件下で混合することにより実施することができる。
 レゾルシンとアセトンとの縮合物に含まれる化合物としては、2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン(上記の式(A)で示される化合物)、7,7’−ジヒドロキシ−4,4,4’,4’−テトラメチル−2,2’−スピロビクロマン(上記の式(B)で示される化合物)、4,6−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(上記の式(I)で表される化合物)及びその異性体、2,4−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(上記の式(II)で表される化合物)及びその異性体、上記の式(III)で表される化合物及びその異性体、上記の式(IV)で表される化合物及びその異性体、等が挙げられる。
 第1B工程により得られた混合物を、そのまま後述する第4B工程に付してもよいし、必要に応じて、さらに後述する第2B工程,3B工程に付した後に第4B工程に付してもよい。
<第1B工程で得られた混合物と有機溶媒とを混合する第2B工程>
 第2B工程は、後述する第3B工程において、2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンの含有率を維持する目的で、第1B工程で得られた混合物と有機溶媒とを混合することにより、2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンを晶析させる工程である。
 有機溶媒としては、脂肪族炭化水素、芳香族炭化水素、ハロゲン置換芳香族炭化水素等が挙げられる。脂肪族炭化水素の例は、ヘキサン、ヘプタン、オクタン、デカン等であり、芳香族炭化水素の例は、トルエン、キシレン、エチルベンゼン等であり、ハロゲン置換芳香族炭化水素の例は、クロロベンゼン、ジクロロベンゼン等である。有機溶媒は芳香族炭化水素が好ましく、トルエン又はキシレンがより好ましい。有機溶媒の使用量は、レゾルシン1重量部に対し、0.5~3重量部が好ましい。
 有機溶媒を混合する温度は、第1B工程での反応温度と同じでよいが、2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンの晶析を促進するため、第1B工程での反応温度よりも低い温度でもよい。有機溶媒を混合する温度は、−5~20℃が好ましい。
 <第2B工程で得られた混合物を50~70℃に加熱する第3B工程>
 第3B工程は、有機溶媒の存在下、50~70℃に加熱して反応を行って、未反応のレゾルシンと、アセトンとをさらに反応させる工程である。
 反応の進行は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができる。反応の進行を確認しながら、反応終点を決めることが好ましい。
<第1B工程又は第3B工程で得られた混合物と塩基とを混合する第4B工程>
 塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム等のアルカリ金属炭酸塩等が挙げられ、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。塩基は、適当な濃度の水溶液として用いることが好ましい。
 塩基との混合により得られた混合物のpHは、5~9が好ましく、6~8がさらに好ましい。
<第4B工程により得られた混合物を水洗する第5B工程>
 第5B工程は、第4B工程で得られた混合物と水とを混合し、水洗することにより未反応のレゾルシンを除去する工程である。第4B工程で得られた混合物が、レゾルシンとアセトンとの縮合物が析出したスラリーである場合、有機溶媒を混合することにより、析出物を溶解してもよい。有機溶媒としては、第1B工程で使用可能なものの中で析出物を溶解できる有機溶媒であれば特に限定しないが、分液性の点からアセトンが好ましい。有機溶媒の使用量は、第1B工程で使用したレゾルシン1重量部に対し、2重量部以下が好ましい。水の使用量は、第1B工程で使用したレゾルシン1重量部に対し、0.5~3重量部が好ましい。
 レゾルシンの除去効率を高める目的で、第5B工程にて水を混合して得られた混合物と塩基とを混合し、アルカリ性条件下で水洗を行ってもよい。塩基との混合により得られた混合物のpHは、7~11が好ましく、8~10がさらに好ましい。
 塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム等のアルカリ金属炭酸塩等が挙げられ、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。塩基は、適当な濃度の水溶液として用いることが好ましい。
 水洗および分液を行う温度は、45℃以上、80℃以下が好ましい。残存するレゾルシンの含有率は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができる。レゾルシンの含有率を確認しながら、水洗の回数を決めることが好ましい。
<後処理工程>
 第5B工程で得られた混合物を、濾過や濃縮等の後処理工程に付すことにより、レゾルシンとアセトンとの縮合物を得ることができる。
<得られた縮合物>
 本発明において「第一溶出ピーク」、「第二溶出ピーク」、「第三溶出ピーク」は、上記と同じ意味である。
 ゲル浸透クロマトグラフィー(示差屈折率検出)測定において、式(IV)で表される化合物及びその異性体は第一溶出ピークとして、式(III)で表される化合物及びその異性体は第二溶出ピークとして、式(I)で表される化合物及びその異性体、並びに、式(II)で表される化合物及びその異性体は第三溶出ピークとして、検出される。
 得られた縮合物は、(1b)、(2b)及び(3b)を満たす。
(1b)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
(2b)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~25%であること
(3b)前記第一溶出ピークの重量平均分子量が800以上であること
 ゲル浸透クロマトグラフィー(示差屈折率検出)測定による第一溶出ピークの重量平均分子量は、800~1200が好ましい。
 得られた縮合物に含まれる2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンの含有率は、25~55重量%が好ましく、30~50重量%がより好ましい。
 得られた縮合物に含まれる4,6−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(I)で表される化合物)及びその異性体、並びに、2,4−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(II)で表される化合物)及びその異性体の合計の含有率は、20~30重量%が好ましい。
 得られた縮合物に含まれる式(III)で表される化合物及びその異性体の合計の含有率は、10~20重量%が好ましい。
 得られた縮合物に含まれる式(IV)で表される化合物及びその異性体の合計の含有率は、10~25重量%が好ましく、10~20重量%がより好ましい。
 得られた縮合物の軟化点は、160℃以下が好ましく、140℃以下がより好ましい。
 得られた縮合物に含まれるレゾルシンの含有率は、2.0重量%以下が好ましく、1.0重量%以下がより好ましい。
 得られた縮合物は、ゴムの補強剤として有用であり、特にタイヤ用ゴムの補強剤として有用である。
3.本発明の第3の形態
<レゾルシンとアセトンとを塩酸の存在下で反応させる第1C工程>
 レゾルシン及びアセトンは、いずれも市販のものを用いることができる。アセトンの使用量は、レゾルシン1モルに対し、1~6モルが好ましく、1.5~4モルがより好ましい。アセトンの使用量が1モル以上であれば、得られる縮合物中のレゾルシンの含有率を減らすことができる。
 塩酸としては、例えば、市販の35%塩酸を、そのまま、又は水により適当な濃度に希釈して用いることができる。塩酸の使用量は、レゾルシン100モルに対し、0.1~10モルが好ましく、0.5~8モルがより好ましい。
 レゾルシンとアセトンとの反応は、有機溶媒の存在下で行うことが好ましい。有機溶媒としては、脂肪族炭化水素、芳香族炭化水素、ハロゲン置換芳香族炭化水素等が挙げられる。脂肪族炭化水素の例は、ヘキサン、ヘプタン、オクタン、デカン等であり、芳香族炭化水素の例は、トルエン、キシレン、エチルベンゼン等であり、ハロゲン置換芳香族炭化水素の例は、クロロベンゼン、ジクロロベンゼン等である。有機溶媒としては芳香族炭化水素が好ましく、トルエン又はキシレンがより好ましい。有機溶媒の使用量は、レゾルシン1重量部に対し、0.5~3重量部が好ましい。
 レゾルシンとアセトンとの反応の反応温度は、30℃以上、70℃以下が好ましい。反応の進行は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができる。反応の進行を確認しながら、反応終点を決めることが好ましい。
 レゾルシンとアセトンと塩酸との混合は、例えば、レゾルシンとアセトンとを必要により有機溶媒の存在下で混合し、得られた混合物と塩酸とを反応温度条件下で混合することにより実施することができる。塩酸の仕込み方法は特に限定されず、一括で仕込んでもよいし、混合時の発熱を小さくするため、滴下により仕込んでもよい。また、反応の進行に伴い、混合物にアセトンを連続的又は間欠的に加えてもよい。
 レゾルシンとアセトンとの縮合物に含まれる化合物としては、2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン(上記の式(A)で示される化合物)、7,7’−ジヒドロキシ−4,4,4’,4’−テトラメチル−2,2’−スピロビクロマン(上記の式(B)で示される化合物)、4,6−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(上記の式(I)で表される化合物)及びその異性体、2,4−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(上記の式(II)で表される化合物)及びその異性体、上記の式(III)で表される化合物及びその異性体、上記の式(IV)で表される化合物及びその異性体、等が挙げられる。
<第1C工程により得られた混合物と塩基とを混合する第2C工程>
 塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム等のアルカリ金属炭酸塩等が挙げられ、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。塩基は、適当な濃度の水溶液として用いることが好ましい。
 塩基との混合により得られた混合物のpHは、5~9が好ましく、6~8がさらに好ましい。
<第2C工程により得られた混合物を水洗する第3C工程>
 第2C工程により得られた混合物を、そのまま後述する後処理工程に付してもよいし、必要に応じて、さらに後述する第3C工程に付した後に後処理工程に付してもよい。
 第3C工程は、第2C工程で得られた混合物と水とを混合し、水洗することにより未反応のレゾルシンを除去する工程である。第2C工程で得られた混合物が、レゾルシンとアセトンとの縮合物が析出したスラリーである場合、有機溶媒を混合することにより、析出物を溶解してもよい。有機溶媒としては、第1C工程で使用可能なものの中で析出物を溶解できる有機溶媒であれば特に限定しないが、分液性の点からアセトンが好ましい。有機溶媒の使用量は、第1C工程で使用したレゾルシン1重量部に対し、2重量部以下が好ましい。水の使用量は、第1C工程で使用したレゾルシン1重量部に対し、0.5~3重量部が好ましい。
 レゾルシンの除去効率を高める目的で、第3C工程にて水を混合して得られた混合物と塩基とを混合し、アルカリ性条件下で水洗を行ってもよい。塩基との混合により得られた混合物のpHは、7~11が好ましく、8~10がさらに好ましい。
 塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム等のアルカリ金属炭酸塩等が挙げられ、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。塩基は、適当な濃度の水溶液として用いることが好ましい。
 水洗および分液を行う温度は、45℃以上、80℃以下が好ましい。残存するレゾルシンの含有率は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができる。レゾルシンの含有率を確認しながら、水洗の回数を決めることが好ましい。
<後処理工程>
 第2C工程又は第3C工程で得られた混合物を、濾過や濃縮等の後処理工程に付すことにより、レゾルシンとアセトンとの縮合物を得ることができる。
<得られた縮合物>
 本発明において「第一溶出ピーク」、「第二溶出ピーク」、「第三溶出ピーク」は、上記と同じ意味である。
 ゲル浸透クロマトグラフィー(示差屈折率検出)測定において、式(IV)で表される化合物及びその異性体は第一溶出ピークとして、式(III)で表される化合物及びその異性体は第二溶出ピークとして、式(I)で表される化合物及びその異性体、並びに、式(II)で表される化合物及びその異性体は第三溶出ピークとして、検出される。
 得られた縮合物は、(1c)、(2c)及び(3c)を満たす。
(1c)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
(2c)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~25%であること
(3c)前記第一溶出ピークの重量平均分子量が800以上であること
 ゲル浸透クロマトグラフィー(示差屈折率検出)測定による第一溶出ピークの重量平均分子量は、800~1200が好ましい。
 得られた縮合物に含まれる2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンの含有率は、25~55重量%が好ましく、30~50重量%がより好ましい。
 得られた縮合物に含まれる4,6−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(I)で表される化合物)及びその異性体、並びに、2,4−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(II)で表される化合物)及びその異性体の合計の含有率は、25~35重量%が好ましい。
 得られた縮合物に含まれる式(III)で表される化合物及びその異性体の合計の含有率は、10~20重量%が好ましい。
 得られた縮合物に含まれる式(IV)で表される化合物及びその異性体の合計の含有率は、10~25重量%が好ましく、10~20重量%がより好ましい。
 得られた縮合物の軟化点は、160℃以下が好ましく、140℃以下がより好ましい。
 得られた縮合物に含まれるレゾルシンの含有率は、2.0重量%以下が好ましく、1.0重量%以下がより好ましい。
 得られた縮合物は、ゴムの補強剤として有用であり、特にタイヤ用ゴムの補強剤として有用である。
4.本発明の第4の形態
<レゾルシンとアセトンとを、p−トルエンスルホン酸及びp−トルエンスルホン酸水和物からなる群から選ばれる少なくとも1種の存在下で反応させる第1D工程>
 レゾルシン及びアセトンは、いずれも市販のものを用いることができる。アセトンの使用量は、レゾルシン1モルに対し、1~6モルが好ましく、1.5~4モルがより好ましい。アセトンの使用量が1モル以上であれば、得られる縮合物中のレゾルシンの含有率を減らすことができる。
 p−トルエンスルホン酸及びp−トルエンスルホン酸水和物としては、例えば、市販のものを、そのまま、又は有機溶媒等に溶解させて適当な濃度に希釈して用いることができる。酸の使用量は、レゾルシン100モルに対し、0.1~10モルが好ましく、0.5~8モルがより好ましい。
 レゾルシンとアセトンとの反応は、有機溶媒の存在下で行うことが好ましい。有機溶媒としては、脂肪族炭化水素、芳香族炭化水素、ハロゲン置換芳香族炭化水素等が挙げられる。脂肪族炭化水素の例は、ヘキサン、ヘプタン、オクタン、デカン等であり、芳香族炭化水素の例は、トルエン、キシレン、エチルベンゼン等であり、ハロゲン置換芳香族炭化水素の例は、クロロベンゼン、ジクロロベンゼン等である。有機溶媒としては芳香族炭化水素が好ましく、トルエン又はキシレンがより好ましい。有機溶媒の使用量は、レゾルシン1重量部に対し、0.5~3重量部が好ましい。
 レゾルシンとアセトンとの反応の反応温度は、30℃以上、70℃以下が好ましい。反応の進行は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができる。反応の進行を確認しながら、反応終点を決めることが好ましい。
 レゾルシンとアセトンと酸との混合は、例えば、レゾルシンとアセトンとを必要により有機溶媒の存在下で混合し、得られた混合物と酸とを反応温度条件下で混合することにより実施することができる。酸の仕込み方法は特に限定されず、酸の固体を一括で仕込んでもよいし、混合時の発熱を小さくするため、酸を有機溶媒等に溶解させて、滴下により仕込んでもよい。また、反応の進行に伴い、混合物にアセトンを連続的又は間欠的に加えてもよい。
 レゾルシンとアセトンとの縮合物に含まれる化合物としては、2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン(上記の式(A)で示される化合物)、7,7’−ジヒドロキシ−4,4,4’,4’−テトラメチル−2,2’−スピロビクロマン(上記の式(B)で示される化合物)、4,6−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(上記の式(I)で表される化合物)及びその異性体、2,4−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(上記の式(II)で表される化合物)及びその異性体、上記の式(III)で表される化合物及びその異性体、上記の式(IV)で表される化合物及びその異性体、等が挙げられる。
<第1D工程により得られた混合物と塩基とを混合する第2D工程>
 塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム等のアルカリ金属炭酸塩等が挙げられ、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。塩基は、適当な濃度の水溶液として用いることが好ましい。
 塩基との混合により得られた混合物のpHは、5~9が好ましく、6~8がさらに好ましい。
<第2D工程により得られた混合物を水洗する第3D工程>
 第2D工程により得られた混合物を、そのまま後述する後処理工程に付してもよいし、必要に応じて、さらに後述する第3D工程に付した後に後処理工程に付してもよい。
 第3D工程は、第2D工程で得られた混合物と水とを混合し、水洗することにより未反応のレゾルシンを除去する工程である。第2D工程で得られた混合物が、レゾルシンとアセトンとの縮合物が析出したスラリーである場合、有機溶媒を混合することにより、析出物を溶解してもよい。有機溶媒としては、第1D工程で使用可能なものの中で析出物を溶解できる有機溶媒であれば特に限定しないが、分液性の点からアセトンが好ましい。有機溶媒の使用量は、第1D工程で使用したレゾルシン1重量部に対し、2重量部以下が好ましい。水の使用量は、第1D工程で使用したレゾルシン1重量部に対し、0.5~3重量部が好ましい。
 レゾルシンの除去効率を高める目的で、第3D工程にて水を混合して得られた混合物と塩基とを混合し、アルカリ性条件下で水洗を行ってもよい。塩基との混合により得られた混合物のpHは、7~11が好ましく、8~10がさらに好ましい。
 塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム等のアルカリ金属炭酸塩等が挙げられ、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。塩基は、適当な濃度の水溶液として用いることが好ましい。
 水洗および分液を行う温度は、45℃以上、80℃以下が好ましい。残存するレゾルシンの含有率は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができる。レゾルシンの含有率を確認しながら、水洗の回数を決めることが好ましい。
<後処理工程>
 第2D工程又は第3D工程で得られた混合物を、濾過や濃縮等の後処理工程に付すことにより、レゾルシンとアセトンとの縮合物を得ることができる。
<得られた縮合物>
 本発明において「第一溶出ピーク」、「第二溶出ピーク」、「第三溶出ピーク」は、上記と同じ意味である。
 ゲル浸透クロマトグラフィー(示差屈折率検出)測定において、式(IV)で表される化合物及びその異性体は第一溶出ピークとして、式(III)で表される化合物及びその異性体は第二溶出ピークとして、式(I)で表される化合物及びその異性体、並びに、式(II)で表される化合物及びその異性体は第三溶出ピークとして、検出される。
 得られた縮合物は、(1d)、(2d)及び(3d)を満たす。
(1d)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
(2d)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~25%であること
(3d)前記第一溶出ピークの重量平均分子量が800以上であること
 ゲル浸透クロマトグラフィー(示差屈折率検出)測定による第一溶出ピークの重量平均分子量は、800~1200が好ましい。
 得られた縮合物に含まれる2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンの含有率は、25~55重量%が好ましく、30~50重量%がより好ましい。
 得られた縮合物に含まれる4,6−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(I)で表される化合物)及びその異性体、並びに、2,4−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(II)で表される化合物)及びその異性体の合計の含有率は、25~35重量%が好ましい。
 得られた縮合物に含まれる式(III)で表される化合物及びその異性体の合計の含有率は、10~20重量%が好ましい。
 得られた縮合物に含まれる式(IV)で表される化合物及びその異性体の合計の含有率は、10~25重量%が好ましく、10~20重量%がより好ましい。
 得られた縮合物の軟化点は、160℃以下が好ましく、140℃以下がより好ましい。
 得られた縮合物に含まれるレゾルシンの含有率は、2.0重量%以下が好ましく、1.0重量%以下がより好ましい。
 得られた縮合物は、ゴムの補強剤として有用であり、特にタイヤ用ゴムの補強剤として有用である。
5.レゾルシンとアセトンとの縮合物とゴム成分と充填剤と硫黄成分とを含むゴム組成物
 本発明のゴム組成物は、上記のレゾルシンとアセトンとの縮合物とゴム成分と充填剤と硫黄成分とを含む。
 ゴム成分としては、天然ゴム、スチレンブタジエン共重合ゴム、ブタジエンゴム、イソプレンゴム等、及び、それらを主成分とするゴム成分が挙げられる。ゴム成分100重量部に対して、レゾルシンとアセトンとの縮合物の使用量は0.5~3重量部が好ましく、1~2重量部がより好ましい。
 充填剤としては、ゴム分野で通常使用されているカーボンブラック、シリカ、タルク、クレイ等が例示され、カーボンブラックが好ましい。カーボンブラックとしては、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)等が好ましい。また、カーボンブラックとシリカとの併用等、数種の充填剤を組み合わせることも好ましい。充填剤の使用量は、ゴム成分100重量部あたり10~100重量部が好ましい。より好ましくは30~70重量部である。
 硫黄成分としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、及び高分散性硫黄等が挙げられる。粉末硫黄および不溶性硫黄が好ましい。硫黄成分の使用量は、ゴム成分100重量部あたり、好ましくは1~10重量部であり、より好ましくは2~6重量部である。
 ゴム組成物は、更に、加硫促進剤、メトキシ化メチロールメラミン樹脂、有機コバルト化合物及び/又は酸化亜鉛等を含んでいてもよい。
 加硫促進剤としては、ゴム工業便覧<第四版>(平成6年1月20日社団法人 日本ゴム協会発行)の412~413ページに記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が挙げられる。加硫促進剤の使用量は、ゴム成分100重量部あたり、好ましくは0.5~1重量部であり、より好ましくは0.6~0.8重量部である。
 メトキシ化メチロールメラミン樹脂としては、ヘキサキス(メトキシメチル)メラミン、ペンタキス(メトキシメチル)メチロールメラミン、テトラキス(メトキシメチル)ジメチロールメラミン等のゴム工業において通常使用されているものを挙げることができ、ヘキサキス(メトキシメチル)メラミン単独又はそれを主成分とする混合物が好ましい。メトキシ化メチロールメラミン樹脂は、単独で、又は組み合わせて用いることができ、その使用量はゴム成分100重量部に対し、0.5~6.0重量部が好ましく、1.0~3.0重量部がより好ましい。
 有機コバルト化合物としては、ナフテン酸コバルト、ステアリン酸コバルト等の酸コバルト塩や、脂肪酸コバルト・ホウ素錯体化合物(例えば、商品名「マノボンドC(登録商標)」:マンケム社製)等が挙げられる。有機コバルト化合物の使用量は、ゴム成分100重量部に対し、コバルト含量で0.1~0.4重量部が好ましく、0.1~0.3重量部がより好ましい。
 ゴム組成物は、ゴム工業で通常使用されている各種のゴム薬品、例えば、酸化防止剤やオゾン劣化防止剤のような老化防止剤、しゃく解剤、加工助剤、ワックス、オイル、ステアリン酸、粘着付与剤等の1種又は2種以上を、含んでいてもよい。これら薬品の使用量は、ゴム組成物の用途により異なるが、ゴム工業において通常使用されている量である。
 ゴム組成物を成形、加硫することにより、ゴム製品が得られる。成形、加硫は、ゴム業界の通常の方法に準拠し実施することができる。ゴム製品としては、キャップトレッド、アンダートレッド、ベルト、カーカス、ビード、サイドウォール、ゴムチェーファー等のタイヤの各種部材;エンジンマウント、ストラットマウント、ブッシュ、エグゾーストハンガー等の自動車用防振ゴム;ホース類;ゴムベルト;等が挙げられる。
 ゴム組成物でスチールコードを被覆することにより、タイヤ用ベルトを製造することができる。スチールコードは、通常、引き揃えた状態で用いられる。
 スチールコードは、ゴムとの接着性の観点から、黄銅,亜鉛、あるいはこれにニッケルやコバルトを含有する合金でメッキ処理されていることが好ましく、特に黄銅メッキ処理が施されているものが好適である。特に、黄銅メッキのCu含有率が75重量%以下、好ましくは55~70重量%である黄銅メッキ処理が施されたスチールコードが好適である。スチールコードの撚り構造は制限されない。
 ベルトは、複数枚積層して用いてもよい。ベルトは、主にカーカスの補強材料として使用される。
 ゴム組成物を、タイヤのカーカス形状に合わせて押し出し加工し、カーカス繊維コードの上下に貼り付けることにより、カーカスを製造することもできる。カーカス繊維コードは、通常、平行に引き揃えた状態で使用される。カーカス繊維コードとしては、弾性率および耐疲労性が良好で、耐クリープ性も優秀で、安価なポリエステルが好ましい。これらは、1枚または複数枚積層して、タイヤ補強材料として使用される。
 ゴム組成物をから、通常の製造方法によって空気入りタイヤを製造することができる。例えば、ゴム組成物を押し出し加工し、タイヤ用部材を得、得られたタイヤ用部材をタイヤ成形機上で通常の方法により、他のタイヤ部材に貼り付け成形し、加硫機内で加熱加圧して、タイヤが得られる。
1. First embodiment of the present invention
<Step 1A of reacting resorcin and acetone in the presence of an acid>
Commercially available resorcinol and acetone can be used. The amount of acetone used is preferably 1 to 6 moles, more preferably 1.5 to 4 moles per mole of resorcin. If the usage-amount of acetone is 1 mol or more, the content rate of resorcin in the condensate obtained can be reduced.
The acid acts as a catalyst in the reaction between resorcin and acetone. Examples of the acid include benzenesulfonic acid, p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, oxalic acid, phosphoric acid, polyphosphoric acid, borofluoric acid, hydrochloric acid, sulfuric acid, and the like. P-toluenesulfonic acid , At least one acid selected from the group consisting of p-toluenesulfonic acid hydrate, hydrochloric acid and sulfuric acid is preferred. The acid can be used as it is or as an aqueous solution having an appropriate concentration. The amount of the acid used is preferably from 0.1 to 10 mol, more preferably from 0.5 to 5 mol, per 100 mol of resorcin.
The reaction between resorcin and acetone is preferably performed in the presence of an organic solvent. Examples of the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogen-substituted aromatic hydrocarbons, and the like. Examples of aliphatic hydrocarbons are hexane, heptane, octane, decane, etc., examples of aromatic hydrocarbons are toluene, xylene, ethylbenzene, etc., examples of halogen-substituted aromatic hydrocarbons are chlorobenzene, dichlorobenzene, etc. Etc. The organic solvent is preferably an aromatic hydrocarbon, more preferably toluene or xylene. The amount of the organic solvent used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin.
The reaction temperature of the reaction between resorcin and acetone is preferably 30 ° C or higher and 65 ° C or lower. The progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
The mixing of resorcin, acetone and acid can be carried out, for example, by mixing resorcin and acetone in the presence of an organic solvent as necessary, and mixing the resulting mixture and acid under reaction temperature conditions. . As the reaction proceeds, acetone may be added to the mixture continuously or intermittently. As the reaction proceeds, 2,4,4-trimethyl-2′4′7-trihydroxyflavan, which is one of the compounds contained in the condensate of resorcin and acetone, may precipitate. In order to prevent the deposit from sticking to the wall of the reaction vessel, 2,4,4-trimethyl-2′4′7-trihydroxyflavan may be used as a seed crystal.
As a compound contained in the condensate of resorcin and acetone, 2,4,4-trimethyl-2′4′7-trihydroxyflavan (compound represented by the formula (A)),
Figure JPOXMLDOC01-appb-I000001
7,7′-dihydroxy-4,4,4 ′, 4′-tetramethyl-2,2′-spirobichroman (compound represented by formula (B)),
Figure JPOXMLDOC01-appb-I000002
4,6-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (I)) and isomers thereof,
Figure JPOXMLDOC01-appb-I000003
2,4-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (II)) and isomers thereof,
Figure JPOXMLDOC01-appb-I000004
Compounds represented by formula (III) and isomers thereof,
Figure JPOXMLDOC01-appb-I000005
Compounds represented by formula (IV) and isomers thereof,
Figure JPOXMLDOC01-appb-I000006
[In the formula (IV), n represents an integer of 2 or more. ]
Etc.
<2A process which mixes the mixture and base which were obtained by 1A process>
Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred. Sodium hydroxide is more preferable. The base is preferably used as an aqueous solution having an appropriate concentration.
The pH of the mixture obtained by mixing with the base is preferably 5 to 9, and more preferably 6 to 8.
<Step 3A for removing water from the mixture obtained in Step 2A>
As a method for removing water, for example, a method of adding a substance capable of adsorbing water or a substance capable of decomposing water to the mixture obtained in Step 2A, and distilling the mixture obtained in Step 2A Distillation is preferred, and azeotropic distillation of an organic solvent and water in the presence of an organic solvent is more preferred. The water can be removed by removing the fraction containing water. When the fraction is separated into an organic layer and an aqueous layer, it is preferable that only the aqueous layer is separated and removed, and the organic layer is returned to the mixture. The removal of water is preferably carried out until the water content of the mixture obtained by removing water becomes 0.01 to 2% by weight, more preferably until the water content becomes 0.01 to 1% by weight. preferable.
As the organic solvent, the organic solvent used for the reaction between resorcin and acetone is usually used, but other organic solvents can also be used. Examples of organic solvents include aliphatic hydrocarbons such as pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; methylene chloride, chloroform, and four Chlorinated hydrocarbons such as carbon chloride, trichrene, barkrene, ethylene dichloride, and benzene chloride; esters such as methyl acetate, ethyl acetate, and propyl acetate; nitriles such as acetonitrile; aromatic hydrocarbons are preferred, and toluene Xylene is more preferable.
<4A process which mixes the mixture and acid obtained by 3A process>
Step 4A is a step in which an acid is mixed with a mixture containing a condensate of resorcin and acetone, and the remaining resorcin is reacted with acetone.
The acid used in Step 4A is preferably the same acid used in Step 1A. The amount of the acid used is preferably 0.1 to 10 mol, more preferably 0.5 to 5 mol, per 100 mol of resorcin used in Step 1A.
For the purpose of improving the reaction rate of resorcin, acetone may be additionally mixed in the mixture obtained in the third A step or the mixture after the acid is mixed in the fourth A step. The amount of acetone added in Step 4A is preferably such that the total amount of acetone used in Step 1A is 1 to 6 moles per mole of resorcin used in Step 1A. Step 4A is carried out while confirming the content of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan and the content of resorcin by ordinary analytical means such as GC, HPLC, and GPC. It is preferable.
The organic solvent used in Step 4A is preferably the same organic solvent used in Step 1A. Examples of organic solvents include aliphatic hydrocarbons such as pentane, hexane, and heptane; alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane; aromatic hydrocarbons such as benzene, toluene, and xylene; methylene chloride, chloroform, and four Chlorinated hydrocarbons such as carbon chloride, trichrene, barkrene, ethylene dichloride, and benzene chloride; esters such as methyl acetate, ethyl acetate, and propyl acetate; nitriles such as acetonitrile; aromatic hydrocarbons are preferred, and toluene Xylene is more preferable.
The reaction temperature of the reaction between resorcin and acetone is preferably 30 ° C or higher and 65 ° C or lower. The progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
<5A process which mixes the mixture and base which were obtained by the 4th process>
Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred. Sodium hydroxide is more preferable. The base is preferably used as an aqueous solution having an appropriate concentration.
The pH of the mixture obtained by mixing with the base is preferably 5 to 9, and more preferably 6 to 8.
The mixture obtained in the 5A step may be directly subjected to a post-treatment step which will be described later, or may be further subjected to a post-treatment step after being subjected to a 6A step which will be described later.
<Step 6A of washing the mixture obtained in Step 5A>
Step 6A is a step of removing unreacted resorcin by mixing the mixture obtained in Step 5A with water and washing with water. When the mixture obtained in Step 5A is a slurry in which a condensate of resorcin and acetone is deposited, the precipitate may be dissolved by mixing an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that can dissolve precipitates among those that can be used in Step 1A, but acetone is preferred from the viewpoint of liquid separation. The amount of the organic solvent used is preferably 2 parts by weight or less with respect to 1 part by weight of resorcin used in Step 1A. The amount of water used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin used in Step 1A.
For the purpose of increasing resorcin removal efficiency, it may be further mixed with a base and washed with water under alkaline conditions. The pH of the mixture obtained by mixing with the base is preferably 7 to 11, and more preferably 8 to 10.
Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred. Sodium hydroxide is more preferable. The base is preferably used as an aqueous solution having an appropriate concentration.
The temperature at which washing and liquid separation are performed is preferably 45 ° C or higher and 80 ° C or lower. The residual resorcin content can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like. It is preferable to determine the number of washings while confirming the content of resorcin.
<Post-processing process>
A condensate of resorcin and acetone can be obtained by subjecting the mixture obtained in Step 5A or Step 6A to a post-treatment step such as filtration or concentration.
<Condensate obtained>
In the present invention, the “first elution peak” means a peak having the shortest retention time among all peaks in a chromatogram obtained by gel permeation chromatography (differential refractive index detection) measurement. “Peak” means a peak having the second shortest retention time among all peaks in a chromatogram obtained by gel permeation chromatography (differential refractive index detection), and “third elution peak” It means the peak with the third shortest retention time among all the peaks in the chromatogram obtained by gel permeation chromatography (differential refractive index detection) measurement.
In gel permeation chromatography (differential refractive index detection) measurement, the compound represented by formula (IV) and its isomer are the first elution peak, and the compound represented by formula (III) and its isomer are the second elution. As a peak, the compound represented by formula (I) and its isomer, and the compound represented by formula (II) and its isomer are detected as a third eluting peak.
The obtained condensate satisfies (1a), (2a) and (3a).
(1a) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as determined by gel permeation chromatography (differential refractive index detection) is 25 to 55 %
(2a) The area ratio of the first elution peak to the total area of all peaks is 10 to 30% as measured by gel permeation chromatography (differential refractive index detection).
(3a) The weight average molecular weight of the first elution peak is 800 or more.
The weight average molecular weight of the first elution peak as measured by gel permeation chromatography (differential refractive index detection) is preferably 800 to 1400, more preferably 800 to 1200.
The content of 2,4,4-trimethyl-2′4′7-trihydroxyflavan contained in the obtained condensate is preferably 25 to 55% by weight, more preferably 30 to 50% by weight.
4,6-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (I)) contained in the resulting condensate and And its isomers, 2,4-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (II)) and isomers thereof The total content of the body is preferably 10 to 30% by weight.
The total content of the compound represented by the formula (III) and the isomer thereof contained in the obtained condensate is preferably 10 to 20% by weight.
The total content of the compound represented by formula (IV) and the isomer thereof contained in the obtained condensate is preferably 10 to 30% by weight, and more preferably 10 to 20% by weight.
The softening point of the obtained condensate is preferably 160 ° C. or lower, and more preferably 140 ° C. or lower.
The content of resorcin contained in the obtained condensate is preferably 2.0% by weight or less, and more preferably 1.0% by weight or less.
The obtained condensate is useful as a rubber reinforcing agent, and particularly useful as a tire rubber reinforcing agent.
2. Second embodiment of the present invention
<Step 1B in which resorcin and acetone are reacted in the presence of an acid and in the absence of a solvent>
Commercially available resorcinol and acetone can be used. The amount of acetone used is preferably 1 to 6 moles, more preferably 1.5 to 4 moles per mole of resorcin. If the usage-amount of acetone is 1 mol or more, the content rate of resorcin in the condensate obtained can be reduced.
The acid acts as a catalyst in the reaction between resorcin and acetone. Examples of the acid include benzenesulfonic acid, p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, oxalic acid, phosphoric acid, polyphosphoric acid, borofluoric acid, hydrochloric acid, sulfuric acid, and the like. P-toluenesulfonic acid , At least one acid selected from the group consisting of p-toluenesulfonic acid hydrate, hydrochloric acid and sulfuric acid is preferred. These acids can be used as they are or as an aqueous solution having an appropriate concentration. The amount of the acid used is preferably from 0.1 to 10 mol, more preferably from 0.5 to 5 mol, per 100 mol of resorcin.
The reaction temperature of the reaction between resorcin and acetone is preferably −5 ° C. or higher and 45 ° C. or lower. The progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
The mixing of resorcin, acetone and acid can be carried out, for example, by mixing resorcin and acetone and mixing the resulting mixture and acid under reaction temperature conditions.
The compounds contained in the condensate of resorcin and acetone include 2,4,4-trimethyl-2′4′7-trihydroxyflavan (compound represented by the above formula (A)), 7,7′-dihydroxy. -4,4,4 ', 4'-tetramethyl-2,2'-spirobichroman (compound represented by the above formula (B)), 4,6-bis (7-hydroxy-2,4,4) -Trimethylchroman-2-yl) -1,3-benzenediol (compound represented by the above formula (I)) and its isomer, 2,4-bis (7-hydroxy-2,4,4-trimethyl) Chroman-2-yl) -1,3-benzenediol (compound represented by the above formula (II)) and isomers thereof, compound represented by the above formula (III) and isomers thereof, and the above formula And compounds represented by (IV) and isomers thereof It is.
The mixture obtained in the 1B step may be directly applied to the 4B step which will be described later, or may be applied to the 4B step after being applied to the 2B and 3B steps which will be described later if necessary. Good.
<Second B step of mixing the mixture obtained in the first B step and the organic solvent>
The 2B step is a 3B step, which will be described later. In order to maintain the content of 2,4,4-trimethyl-2′4′7-trihydroxyflavan, the mixture obtained in the 1B step and the organic solvent Is a step of crystallizing 2,4,4-trimethyl-2′4′7-trihydroxyflavan by mixing.
Examples of the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogen-substituted aromatic hydrocarbons, and the like. Examples of aliphatic hydrocarbons are hexane, heptane, octane, decane, etc., examples of aromatic hydrocarbons are toluene, xylene, ethylbenzene, etc., examples of halogen-substituted aromatic hydrocarbons are chlorobenzene, dichlorobenzene, etc. Etc. The organic solvent is preferably an aromatic hydrocarbon, more preferably toluene or xylene. The amount of the organic solvent used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin.
The temperature at which the organic solvent is mixed may be the same as the reaction temperature in Step 1B, but in order to promote crystallization of 2,4,4-trimethyl-2′4′7-trihydroxyflavane, The reaction temperature may be lower than the reaction temperature. The temperature for mixing the organic solvent is preferably -5 to 20 ° C.
<3B process of heating the mixture obtained in the 2B process to 50 to 70 ° C.>
Step 3B is a step of reacting by heating to 50 to 70 ° C. in the presence of an organic solvent to further react unreacted resorcin with acetone.
The progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
<The 4th B process which mixes the mixture and base which were obtained at the 1st B process or the 3rd B process>
Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred. Sodium hydroxide is more preferable. The base is preferably used as an aqueous solution having an appropriate concentration.
The pH of the mixture obtained by mixing with the base is preferably 5 to 9, and more preferably 6 to 8.
<5B process of washing the mixture obtained in 4B process with water>
Step 5B is a step of removing unreacted resorcin by mixing the mixture obtained in Step 4B and water and washing with water. When the mixture obtained in Step 4B is a slurry in which a condensate of resorcin and acetone is deposited, the precipitate may be dissolved by mixing an organic solvent. Although it will not specifically limit if it is an organic solvent which can melt | dissolve a precipitate among what can be used by 1B process as an organic solvent, Acetone is preferable from the point of a liquid separation property. The amount of the organic solvent used is preferably 2 parts by weight or less with respect to 1 part by weight of resorcin used in Step 1B. The amount of water used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin used in Step 1B.
For the purpose of increasing resorcin removal efficiency, a mixture obtained by mixing water in the step 5B and a base may be mixed and washed under alkaline conditions. The pH of the mixture obtained by mixing with the base is preferably 7 to 11, and more preferably 8 to 10.
Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred. Sodium hydroxide is more preferable. The base is preferably used as an aqueous solution having an appropriate concentration.
The temperature at which washing and liquid separation are performed is preferably 45 ° C or higher and 80 ° C or lower. The residual resorcin content can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like. It is preferable to determine the number of washings while confirming the content of resorcin.
<Post-processing process>
A condensate of resorcin and acetone can be obtained by subjecting the mixture obtained in step 5B to a post-treatment step such as filtration or concentration.
<Condensate obtained>
In the present invention, “first elution peak”, “second elution peak”, and “third elution peak” have the same meaning as described above.
In gel permeation chromatography (differential refractive index detection) measurement, the compound represented by formula (IV) and its isomer are the first elution peak, and the compound represented by formula (III) and its isomer are the second elution. As a peak, the compound represented by formula (I) and its isomer, and the compound represented by formula (II) and its isomer are detected as a third eluting peak.
The obtained condensate satisfies (1b), (2b) and (3b).
(1b) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as determined by gel permeation chromatography (differential refractive index detection) is 25 to 55. %
(2b) The area ratio of the first elution peak to the total area of all peaks is 10 to 25% by gel permeation chromatography (differential refractive index detection) measurement.
(3b) The weight average molecular weight of the first elution peak is 800 or more.
The weight average molecular weight of the first elution peak measured by gel permeation chromatography (differential refractive index detection) is preferably 800 to 1200.
The content of 2,4,4-trimethyl-2′4′7-trihydroxyflavan contained in the obtained condensate is preferably 25 to 55% by weight, more preferably 30 to 50% by weight.
4,6-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (I)) contained in the resulting condensate and And its isomers, 2,4-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (II)) and isomers thereof The total content of the body is preferably 20 to 30% by weight.
The total content of the compound represented by the formula (III) and the isomer thereof contained in the obtained condensate is preferably 10 to 20% by weight.
The total content of the compound represented by formula (IV) and the isomer thereof contained in the obtained condensate is preferably 10 to 25% by weight, and more preferably 10 to 20% by weight.
The softening point of the obtained condensate is preferably 160 ° C. or lower, and more preferably 140 ° C. or lower.
The content of resorcin contained in the obtained condensate is preferably 2.0% by weight or less, and more preferably 1.0% by weight or less.
The obtained condensate is useful as a rubber reinforcing agent, and particularly useful as a tire rubber reinforcing agent.
3. Third embodiment of the present invention
<Step 1C of reacting resorcin and acetone in the presence of hydrochloric acid>
Commercially available resorcinol and acetone can be used. The amount of acetone used is preferably 1 to 6 moles, more preferably 1.5 to 4 moles per mole of resorcin. If the usage-amount of acetone is 1 mol or more, the content rate of resorcin in the condensate obtained can be reduced.
As hydrochloric acid, for example, commercially available 35% hydrochloric acid can be used as it is or diluted to an appropriate concentration with water. The amount of hydrochloric acid used is preferably from 0.1 to 10 mol, more preferably from 0.5 to 8 mol, per 100 mol of resorcin.
The reaction between resorcin and acetone is preferably performed in the presence of an organic solvent. Examples of the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogen-substituted aromatic hydrocarbons, and the like. Examples of aliphatic hydrocarbons are hexane, heptane, octane, decane, etc., examples of aromatic hydrocarbons are toluene, xylene, ethylbenzene, etc., examples of halogen-substituted aromatic hydrocarbons are chlorobenzene, dichlorobenzene, etc. Etc. The organic solvent is preferably an aromatic hydrocarbon, more preferably toluene or xylene. The amount of the organic solvent used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin.
The reaction temperature of the reaction between resorcin and acetone is preferably 30 ° C or higher and 70 ° C or lower. The progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
The mixing of resorcin, acetone and hydrochloric acid can be carried out, for example, by mixing resorcin and acetone in the presence of an organic solvent as necessary, and mixing the resulting mixture and hydrochloric acid under reaction temperature conditions. . The method for adding hydrochloric acid is not particularly limited, and it may be charged all at once, or may be added dropwise to reduce heat generation during mixing. As the reaction proceeds, acetone may be added to the mixture continuously or intermittently.
The compounds contained in the condensate of resorcin and acetone include 2,4,4-trimethyl-2′4′7-trihydroxyflavan (compound represented by the above formula (A)), 7,7′-dihydroxy. -4,4,4 ', 4'-tetramethyl-2,2'-spirobichroman (compound represented by the above formula (B)), 4,6-bis (7-hydroxy-2,4,4) -Trimethylchroman-2-yl) -1,3-benzenediol (compound represented by the above formula (I)) and its isomer, 2,4-bis (7-hydroxy-2,4,4-trimethyl) Chroman-2-yl) -1,3-benzenediol (compound represented by the above formula (II)) and isomers thereof, compound represented by the above formula (III) and isomers thereof, and the above formula And compounds represented by (IV) and isomers thereof It is.
<Second C step of mixing the mixture obtained in the first C step and the base>
Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred. Sodium hydroxide is more preferable. The base is preferably used as an aqueous solution having an appropriate concentration.
The pH of the mixture obtained by mixing with the base is preferably 5 to 9, and more preferably 6 to 8.
<3C process of washing the mixture obtained in 2C process with water>
The mixture obtained in the second C step may be directly subjected to a post-treatment step to be described later, or may be further subjected to a post-treatment step after being subjected to a third C step to be described later if necessary.
Step 3C is a step of removing unreacted resorcin by mixing the mixture obtained in Step 2C with water and washing with water. When the mixture obtained in Step 2C is a slurry in which a condensate of resorcin and acetone is deposited, the precipitate may be dissolved by mixing an organic solvent. Although it will not specifically limit if it is an organic solvent which can melt | dissolve a precipitate among what can be used at 1C process as an organic solvent, Acetone is preferable from the point of a liquid separation property. The amount of the organic solvent used is preferably 2 parts by weight or less with respect to 1 part by weight of resorcin used in Step 1C. The amount of water used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin used in Step 1C.
For the purpose of increasing resorcin removal efficiency, the mixture obtained by mixing water in the step 3C and a base may be mixed and washed under alkaline conditions. The pH of the mixture obtained by mixing with the base is preferably 7 to 11, and more preferably 8 to 10.
Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred. Sodium hydroxide is more preferable. The base is preferably used as an aqueous solution having an appropriate concentration.
The temperature at which washing and liquid separation are performed is preferably 45 ° C. or higher and 80 ° C. or lower. The residual resorcin content can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like. It is preferable to determine the number of washings while confirming the content of resorcin.
<Post-processing process>
A condensate of resorcin and acetone can be obtained by subjecting the mixture obtained in Step 2C or Step 3C to a post-treatment step such as filtration or concentration.
<Condensate obtained>
In the present invention, “first elution peak”, “second elution peak”, and “third elution peak” have the same meaning as described above.
In gel permeation chromatography (differential refractive index detection) measurement, the compound represented by formula (IV) and its isomer are the first elution peak, and the compound represented by formula (III) and its isomer are the second elution. As a peak, the compound represented by formula (I) and its isomer, and the compound represented by formula (II) and its isomer are detected as a third eluting peak.
The obtained condensate satisfies (1c), (2c) and (3c).
(1c) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks determined by gel permeation chromatography (differential refractive index detection) is 25 to 55. %
(2c) The ratio of the area of the first elution peak to the total area of all peaks by gel permeation chromatography (differential refractive index detection) measurement is 10 to 25%.
(3c) The weight average molecular weight of the first elution peak is 800 or more.
The weight average molecular weight of the first elution peak measured by gel permeation chromatography (differential refractive index detection) is preferably 800 to 1200.
The content of 2,4,4-trimethyl-2′4′7-trihydroxyflavan contained in the obtained condensate is preferably 25 to 55% by weight, more preferably 30 to 50% by weight.
4,6-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (I)) contained in the resulting condensate and And its isomers, 2,4-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (II)) and isomers thereof The total content of the body is preferably 25 to 35% by weight.
The total content of the compound represented by the formula (III) and the isomer thereof contained in the obtained condensate is preferably 10 to 20% by weight.
The total content of the compound represented by formula (IV) and the isomer thereof contained in the obtained condensate is preferably 10 to 25% by weight, and more preferably 10 to 20% by weight.
The softening point of the obtained condensate is preferably 160 ° C. or lower, and more preferably 140 ° C. or lower.
The content of resorcin contained in the obtained condensate is preferably 2.0% by weight or less, and more preferably 1.0% by weight or less.
The obtained condensate is useful as a rubber reinforcing agent, and particularly useful as a tire rubber reinforcing agent.
4). Fourth embodiment of the present invention
<First Step D in which resorcin and acetone are reacted in the presence of at least one selected from the group consisting of p-toluenesulfonic acid and p-toluenesulfonic acid hydrate>
Commercially available resorcinol and acetone can be used. The amount of acetone used is preferably 1 to 6 moles, more preferably 1.5 to 4 moles per mole of resorcin. If the usage-amount of acetone is 1 mol or more, the content rate of resorcin in the condensate obtained can be reduced.
As p-toluenesulfonic acid and p-toluenesulfonic acid hydrate, for example, commercially available products can be used as they are or after being dissolved in an organic solvent or the like and diluted to an appropriate concentration. The amount of the acid used is preferably from 0.1 to 10 mol, more preferably from 0.5 to 8 mol, per 100 mol of resorcin.
The reaction between resorcin and acetone is preferably performed in the presence of an organic solvent. Examples of the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, halogen-substituted aromatic hydrocarbons, and the like. Examples of aliphatic hydrocarbons are hexane, heptane, octane, decane, etc., examples of aromatic hydrocarbons are toluene, xylene, ethylbenzene, etc., examples of halogen-substituted aromatic hydrocarbons are chlorobenzene, dichlorobenzene, etc. Etc. The organic solvent is preferably an aromatic hydrocarbon, more preferably toluene or xylene. The amount of the organic solvent used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin.
The reaction temperature of the reaction between resorcin and acetone is preferably 30 ° C or higher and 70 ° C or lower. The progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC). It is preferable to determine the reaction end point while confirming the progress of the reaction.
The mixing of resorcin, acetone and acid can be carried out, for example, by mixing resorcin and acetone in the presence of an organic solvent as necessary, and mixing the resulting mixture and acid under reaction temperature conditions. . The method for charging the acid is not particularly limited, and the acid solid may be charged all at once, or the acid may be dissolved in an organic solvent or the like and added dropwise in order to reduce the heat generated during mixing. As the reaction proceeds, acetone may be added to the mixture continuously or intermittently.
The compounds contained in the condensate of resorcin and acetone include 2,4,4-trimethyl-2′4′7-trihydroxyflavan (compound represented by the above formula (A)), 7,7′-dihydroxy. -4,4,4 ', 4'-tetramethyl-2,2'-spirobichroman (compound represented by the above formula (B)), 4,6-bis (7-hydroxy-2,4,4) -Trimethylchroman-2-yl) -1,3-benzenediol (compound represented by the above formula (I)) and its isomer, 2,4-bis (7-hydroxy-2,4,4-trimethyl) Chroman-2-yl) -1,3-benzenediol (compound represented by the above formula (II)) and isomers thereof, compound represented by the above formula (III) and isomers thereof, and the above formula And compounds represented by (IV) and isomers thereof It is.
<Second D step of mixing the mixture obtained in the first D step and the base>
Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred. Sodium hydroxide is more preferable. The base is preferably used as an aqueous solution having an appropriate concentration.
The pH of the mixture obtained by mixing with the base is preferably 5 to 9, and more preferably 6 to 8.
<3D process of washing the mixture obtained in the 2D process with water>
The mixture obtained in the second D step may be directly subjected to a post-treatment step to be described later, or may be further subjected to a post-treatment step after being subjected to a third D step to be described later if necessary.
The 3D step is a step of removing unreacted resorcin by mixing the mixture obtained in the 2D step with water and washing with water. When the mixture obtained in the second step D is a slurry in which a condensate of resorcin and acetone is deposited, the precipitate may be dissolved by mixing an organic solvent. Although it will not specifically limit if it is an organic solvent which can melt | dissolve a precipitate in what can be used at 1D process as an organic solvent, Acetone is preferable from the point of a liquid separation property. The amount of the organic solvent used is preferably 2 parts by weight or less with respect to 1 part by weight of resorcin used in Step 1D. The amount of water used is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin used in Step 1D.
For the purpose of increasing resorcin removal efficiency, a mixture obtained by mixing water in the third step D and a base may be mixed and washed under alkaline conditions. The pH of the mixture obtained by mixing with the base is preferably 7 to 11, and more preferably 8 to 10.
Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred. Sodium hydroxide is more preferable. The base is preferably used as an aqueous solution having an appropriate concentration.
The temperature at which washing and liquid separation are performed is preferably 45 ° C or higher and 80 ° C or lower. The residual resorcin content can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like. It is preferable to determine the number of washings while confirming the content of resorcin.
<Post-processing process>
A condensate of resorcin and acetone can be obtained by subjecting the mixture obtained in the second or third step to a post-treatment step such as filtration or concentration.
<Condensate obtained>
In the present invention, “first elution peak”, “second elution peak”, and “third elution peak” have the same meaning as described above.
In gel permeation chromatography (differential refractive index detection) measurement, the compound represented by formula (IV) and its isomer are the first elution peak, and the compound represented by formula (III) and its isomer are the second elution. As a peak, the compound represented by formula (I) and its isomer, and the compound represented by formula (II) and its isomer are detected as a third eluting peak.
The obtained condensate satisfies (1d), (2d) and (3d).
(1d) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as measured by gel permeation chromatography (differential refractive index detection) is 25 to 55. %
(2d) The area ratio of the first elution peak to the total area of all peaks is 10 to 25% by gel permeation chromatography (differential refractive index detection) measurement.
(3d) The weight average molecular weight of the first elution peak is 800 or more.
The weight average molecular weight of the first elution peak measured by gel permeation chromatography (differential refractive index detection) is preferably 800 to 1200.
The content of 2,4,4-trimethyl-2′4′7-trihydroxyflavan contained in the obtained condensate is preferably 25 to 55% by weight, more preferably 30 to 50% by weight.
4,6-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (I)) contained in the resulting condensate and And its isomers, 2,4-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (II)) and isomers thereof The total content of the body is preferably 25 to 35% by weight.
The total content of the compound represented by the formula (III) and the isomer thereof contained in the obtained condensate is preferably 10 to 20% by weight.
The total content of the compound represented by formula (IV) and the isomer thereof contained in the obtained condensate is preferably 10 to 25% by weight, and more preferably 10 to 20% by weight.
The softening point of the obtained condensate is preferably 160 ° C. or lower, and more preferably 140 ° C. or lower.
The content of resorcin contained in the obtained condensate is preferably 2.0% by weight or less, and more preferably 1.0% by weight or less.
The obtained condensate is useful as a rubber reinforcing agent, and particularly useful as a tire rubber reinforcing agent.
5. A rubber composition comprising a condensate of resorcin and acetone, a rubber component, a filler, and a sulfur component
The rubber composition of the present invention contains the above condensate of resorcin and acetone, a rubber component, a filler, and a sulfur component.
Examples of the rubber component include natural rubber, styrene butadiene copolymer rubber, butadiene rubber, isoprene rubber, and the like, and rubber components containing these as main components. The amount of the condensate of resorcin and acetone used is preferably 0.5 to 3 parts by weight and more preferably 1 to 2 parts by weight with respect to 100 parts by weight of the rubber component.
Examples of the filler include carbon black, silica, talc, and clay that are usually used in the rubber field, and carbon black is preferable. As carbon black, HAF (High Ablation Furnace), SAF (Super Ablation Furnace), ISAF (Intermediate SAF) and the like are preferable. It is also preferable to combine several kinds of fillers such as a combination of carbon black and silica. The amount of the filler used is preferably 10 to 100 parts by weight per 100 parts by weight of the rubber component. More preferably, it is 30 to 70 parts by weight.
Examples of the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Powdered sulfur and insoluble sulfur are preferred. The amount of the sulfur component used is preferably 1 to 10 parts by weight, more preferably 2 to 6 parts by weight per 100 parts by weight of the rubber component.
The rubber composition may further contain a vulcanization accelerator, a methoxylated methylol melamine resin, an organic cobalt compound and / or zinc oxide.
Examples of vulcanization accelerators include thiazole vulcanization accelerators and sulfenamides described on pages 412 to 413 of Rubber Industry Handbook <Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994). And guanidine vulcanization accelerators. The amount of the vulcanization accelerator used is preferably 0.5 to 1 part by weight, more preferably 0.6 to 0.8 part by weight per 100 parts by weight of the rubber component.
Examples of the methoxylated methylol melamine resin include hexakis (methoxymethyl) melamine, pentakis (methoxymethyl) methylol melamine, tetrakis (methoxymethyl) dimethylol melamine and the like which are usually used in the rubber industry. Methoxymethyl) melamine alone or a mixture based on it is preferred. The methoxylated methylol melamine resin can be used alone or in combination, and the amount used is preferably 0.5 to 6.0 parts by weight, and 1.0 to 3.0 parts by weight with respect to 100 parts by weight of the rubber component. Part is more preferred.
Examples of the organic cobalt compound include acid cobalt salts such as cobalt naphthenate and cobalt stearate, and a fatty acid cobalt / boron complex compound (for example, trade name “Manobond C (registered trademark)” manufactured by Manchem). The amount of the organic cobalt compound used is preferably 0.1 to 0.4 parts by weight, more preferably 0.1 to 0.3 parts by weight, based on 100 parts by weight of the rubber component.
The rubber composition includes various rubber chemicals commonly used in the rubber industry, for example, anti-aging agents such as antioxidants and ozone degradation inhibitors, peptizers, processing aids, waxes, oils, stearic acid, 1 type, or 2 or more types, such as a tackifier, may be included. The amount of these chemicals used varies depending on the use of the rubber composition, but is an amount usually used in the rubber industry.
A rubber product is obtained by molding and vulcanizing the rubber composition. Molding and vulcanization can be carried out in accordance with ordinary methods in the rubber industry. Rubber products include various parts of tires such as cap treads, under treads, belts, carcass, beads, sidewalls, rubber chafers; anti-vibration rubbers for automobiles such as engine mounts, strut mounts, bushes and exhaust hangers; hoses Rubber belt; and the like.
A tire belt can be produced by coating a steel cord with a rubber composition. Steel cords are usually used in an aligned state.
From the viewpoint of adhesion to rubber, the steel cord is preferably plated with brass, zinc, or an alloy containing nickel or cobalt, and is preferably subjected to brass plating. is there. In particular, a steel cord subjected to a brass plating process in which the Cu content of the brass plating is 75% by weight or less, preferably 55 to 70% by weight is suitable. The twist structure of the steel cord is not limited.
A plurality of belts may be laminated and used. The belt is mainly used as a carcass reinforcing material.
A carcass can also be manufactured by extruding a rubber composition in accordance with the carcass shape of a tire and attaching the rubber composition to the top and bottom of a carcass fiber cord. The carcass fiber cord is usually used in a state of being aligned in parallel. As the carcass fiber cord, preferred is an inexpensive polyester that has good elastic modulus and fatigue resistance and excellent creep resistance. One or more of these are laminated and used as a tire reinforcing material.
A pneumatic tire can be produced from the rubber composition by a usual production method. For example, a rubber composition is extruded to obtain a tire member, and the obtained tire member is attached and molded to another tire member by a normal method on a tire molding machine, and heated and pressurized in a vulcanizer. Thus, a tire is obtained.
 実施例を挙げて本発明を具体的に説明する。実施例の部及び%は、特に断らないかぎり重量基準を意味する。
 2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシン等の含有率は、GPC面積百分率法により求めた。
 GPC分析において、式(IV)で表される化合物及びその異性体は第一溶出ピークとして、式(III)で表される化合物及びその異性体は第二溶出ピークとして、式(I)で表される化合物及びその異性体、並びに、式(II)で表される化合物及びその異性体は第三溶出ピークとして、検出された。
 軟化点はJIS K 6220−1に従い測定した。
<GPC分析条件>
カラム:TOSOH TSGel Super HZ2000(4.6mmφx150cm)とTOSOH TSGel Super HZ1000(4.6mmφx150cm)2本とを接続
温度 :40℃
移動相:テトラヒドロフラン
検出器:RI
実施例1A
 温度計、攪拌機及びコンデンサーを備えた1000mlセパラブルフラスコに、レゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン65.0g(1.12モル)及びトルエン44.0gを仕込み、40℃まで加熱した。そこに98%硫酸0.40gを仕込み、得られた混合物を内温60℃まで加熱し、3時間保温した。
 その後、内温60℃でトルエン132gを仕込み、10%水酸化ナトリウム水溶液で中和した後、フラスコ内部を減圧して内温80℃まで加熱し、反応系内から水を除去した。内温60℃まで冷却した後、98%硫酸0.88gを仕込み、内温60℃にて2時間保温した。その後、10%水酸化ナトリウム水溶液で中和し、内温80℃まで加熱した後にアセトン55.8g(1.20モル)を仕込み、反応物を完全に溶解させた。さらに、内温80℃にて熱水220gを仕込み、分液洗浄により未反応のレゾルシンを除去した。レゾルシンの含有率が1%以下になるまで分液洗浄を繰り返した後、1KPa以下の減圧下で、80℃で12時間乾燥させて、110gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:43.6%
レゾルシン:0.8%
第一溶出ピーク:16.6%
第一溶出ピークの重量平均分子量:1164
第二溶出ピーク:16.2%
第三溶出ピーク:22.3%
軟化点 124℃
実施例2A
 温度計、攪拌機及びコンデンサーを備えた1000mlセパラブルフラスコに、レゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン55.1g(0.88モル)及びトルエン223gを仕込み、40℃まで加熱した。そこに98%硫酸0.60gを仕込み、得られた混合物を内温60℃まで加熱し、3時間保温した。
 その後、内温60℃で10%水酸化ナトリウム水溶液にて中和した後、フラスコ内部を減圧して内温80℃まで加熱し、反応系内から水を除去した。内温60℃まで冷却した後、アセトン79.0g(1.36モル)及び98%硫酸0.80gを仕込み、内温60℃で3時間保温した。その後、10%水酸化ナトリウム水溶液で中和し、内温80℃まで加熱した後にアセトン23.2g(0.50モル)を仕込み、反応物を完全に溶解させた。さらに、内温80℃にて熱水220gを仕込み、分液洗浄により未反応のレゾルシンを除去した。レゾルシンの含有率が1%以下になるまで分液洗浄を繰り返した後、1KPa以下の減圧下で、80℃で12時間乾燥させて、121gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:45.3%
レゾルシン:0.9%
第一溶出ピーク:15.1%
第一溶出ピークの重量平均分子量:1161
第二溶出ピーク:14.4%
第三溶出ピーク:23.2%
実施例3A
 温度計、攪拌機及びコンデンサーを備えた1000mlセパラブルフラスコに、レゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン69.7g(1.20モル)及びトルエン26.4gを仕込み、40℃まで加熱した。そこに98%硫酸0.60gを仕込み、得られた混合物を内温60℃まで加熱し、4時間保温した。
 その後、内温60℃でトルエン106gを仕込み、10%水酸化ナトリウム水溶液で中和した後、フラスコ内部を減圧して内温80℃まで加熱し、反応系内から水を除去した。内温60℃まで冷却した後、アセトン18.6g(0.40モル)及び98%硫酸0.80gを仕込み、内温60℃で1時間保温した。さらに、内温60℃でアセトン18.6g(0.40モル)を追加で仕込み、1時間保温した。その後、10%水酸化ナトリウム水溶液で中和し、内温80℃まで加熱した後にアセトン46.5g(1.00モル)を仕込み、反応物を完全に溶解させた。さらに、内温80℃にて熱水132gを仕込み、10%水酸化ナトリウム水溶液にてpHをアルカリ性(9.0)に調整した後、分液洗浄により未反応のレゾルシンを除去した。その後、1KPa以下の減圧下で、80℃で12時間乾燥させて、131gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:42.6%
レゾルシン:0.9%
第一溶出ピーク:29.3%
第一溶出ピークの重量平均分子量:1340
第二溶出ピーク:13.1%
第三溶出ピーク:13.5%
軟化点 139℃
実施例1B
 温度計、攪拌機及びコンデンサーを備えた500ml四つ口フラスコに、レゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン69.7g(1.20モル)を仕込み、35℃に加熱した。そこに98%硫酸1.20gを仕込み、得られた混合物を内温35℃で5時間保温した。その後、内温35℃でトルエン132gを仕込み、10%水酸化ナトリウム水溶液で中和した。
 反応液を温度計、撹拌機及びコンデンサーを備えた1000mlセパラブルフラスコに移し替えた後、アセトン69.7g(1.20モル)を仕込み、内温60℃まで加熱して反応物を完全に溶解させた。さらに、内温60℃にて熱水220gを仕込み、10%水酸化ナトリウム水溶液にてpHをアルカリ性(9.0)に調整した後、分液洗浄により未反応のレゾルシンを除去した。レゾルシンの含有率が1%以下になるまで分液洗浄を繰り返した後、1KPa以下の減圧下で、80℃で12時間乾燥させて、88gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:38.6%
レゾルシン:0.3%
第一溶出ピーク:13.4%
第一溶出ピークの重量平均分子量:995
第二溶出ピーク:17.9%
第三溶出ピーク:29.7%
軟化点 114℃
実施例2B
 温度計、攪拌機及びコンデンサーを備えた500ml四つ口フラスコに、レゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン69.7g(1.20モル)を仕込み、35℃に加熱した。そこに98%硫酸4.00gを仕込み、得られた混合物を内温35℃で3時間保温した。その後、内温35℃でトルエン132gを仕込み、15分間撹拌した後、内温60℃まで加熱しさらに6時間保温した。
その後、10%水酸化ナトリウム水溶液で反応液を中和した。
 反応液を温度計、撹拌機及びコンデンサーを備えた1000mlセパラブルフラスコに移し替えた後、アセトン83.6g(1.44モル)を仕込み、内温60℃まで加熱して反応物を完全に溶解させた。さらに、内温60℃にて熱水220gを仕込み、10%水酸化ナトリウム水溶液にてpHをアルカリ性(9.0)に調整した後、分液洗浄により未反応のレゾルシンを除去した。レゾルシンの含有率が1%以下になるまで分液洗浄を繰り返した後、1KPa以下の減圧下で、80℃で12時間乾燥させて、110gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:42.6%
レゾルシン:0.3%
第一溶出ピーク:16.4%
第一溶出ピークの重量平均分子量:1054
第二溶出ピーク:17.6%
第三溶出ピーク:22.8%
軟化点 115℃
実施例3B
 温度計、攪拌機及びコンデンサーを備えた500ml四つ口フラスコに、氷浴で冷却しながらレゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン69.7g(1.20モル)を仕込み、0℃に保温した。そこに98%硫酸4.00gを仕込み、得られた混合物を内温0℃で4時間保温した。続いて、内温0℃でトルエン132gを仕込み、15分間撹拌した後、内温60℃まで加熱しさらに4時間保温した。その後、10%水酸化ナトリウム水溶液で反応液を中和した。
 反応液を温度計、撹拌機及びコンデンサーを備えた1000mlセパラブルフラスコに移し替えた後、アセトン83.6g(1.44モル)を仕込み、内温60℃まで加熱して反応物を完全に溶解させた。さらに、内温60℃にて熱水220gを仕込み、10%水酸化ナトリウム水溶液にてpHをアルカリ性(9.0)に調整した後、分液洗浄により未反応のレゾルシンを除去した。レゾルシンの含有率が1%以下になるまで分液洗浄を繰り返した後、1KPa以下の減圧下で、80℃で12時間乾燥させて、101gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:40.2%
レゾルシン:0.4%
第一溶出ピーク:12.3%
第一溶出ピークの重量平均分子量:984
第二溶出ピーク:17.3%
第三溶出ピーク:29.6%
軟化点 117℃
実施例1C
 温度計、攪拌機及びコンデンサーを備えた1000mlセパラブルフラスコに、レゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン79.0g(1.36モル)及びトルエン264gを仕込み、40℃に加熱した。そこに35%塩酸3.34gを仕込み、得られた混合物を内温60℃まで加熱し、8時間保温した。その後、内温60℃で10%水酸化ナトリウム水溶液で中和し、アセトン74.3g(1.28モル)を仕込み、反応物を完全に溶解させた。さらに、内温60℃にて熱水220gを仕込み、10%水酸化ナトリウム水溶液にてpHをアルカリ性(9.0)に調整した後、分液洗浄により未反応のレゾルシンを除去した。レゾルシンの含有率が1%以下になるまで分液洗浄を繰り返した後、1KPa以下の減圧下で、80℃で12時間乾燥させて、118gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:40.4%
レゾルシン:0.4%
第一溶出ピーク:17.6%
第一溶出ピークの重量平均分子量:1006
第二溶出ピーク:16.9%
第三溶出ピーク:23.6%
軟化点 119℃
実施例2C
 温度計、攪拌機及びコンデンサーを備えた1000mlセパラブルフラスコに、レゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン74.3g(1.28モル)及びトルエン264gを仕込み、40℃に加熱した。そこに35%塩酸6.67gを仕込み、得られた混合物を内温50℃まで加熱し、7時間保温した。
 その後、10%水酸化ナトリウム水溶液で中和し、内温60℃まで加熱した後にアセトン74.3g(1.28モル)を仕込み、反応物を完全に溶解させた。さらに、内温60℃にて熱水220gを仕込み、10%水酸化ナトリウム水溶液にてpHをアルカリ性(9.0)に調整した後、分液洗浄により未反応のレゾルシンを除去した。レゾルシンの含有率が1%以下になるまで分液洗浄を繰り返した後、1KPa以下の減圧下で、80℃で12時間乾燥させて、122gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:43.8%
レゾルシン:0.2%
第一溶出ピーク:18.6%
第一溶出ピークの重量平均分子量:1034
第二溶出ピーク:15.6%
第三溶出ピーク:21.2%
軟化点 118℃
実施例3C
 温度計、攪拌機及びコンデンサーを備えた1000mlセパラブルフラスコに、レゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン74.3g(1.28モル)及びトルエン264gを仕込み、40℃に加熱した。そこに35%塩酸2.92gを仕込み、得られた混合物を内温60℃まで加熱し、8時間保温した。
 その後、内温60℃で10%水酸化ナトリウム水溶液で中和し、アセトン74.3g(1.28モル)を仕込み、反応物を完全に溶解させた。さらに、10%水酸化ナトリウム水溶液にてpHをアルカリ性(9.0)に調整した後、分液洗浄により未反応のレゾルシンを除去した。レゾルシンの含有率が1%以下になるまで分液洗浄を繰り返した後、1KPa以下の減圧下で、80℃で12時間乾燥させて、120gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:49.3%
レゾルシン:0.6%
第一溶出ピーク:13.1%
第一溶出ピークの重量平均分子量:996
第二溶出ピーク:14.4%
第三溶出ピーク:22.1%
軟化点 116℃
実施例1D
 温度計、攪拌機及びコンデンサーを備えた1000mlセパラブルフラスコに、レゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン81.3g(1.40モル)及びトルエン264gを仕込み、40℃に加熱した。そこにp−トルエンスルホン酸水和物2.31gを仕込み、得られた混合物を内温65℃まで加熱し、7時間保温した。
 その後、内温60℃まで冷却した後、10%水酸化ナトリウム水溶液で中和し、アセトン58.1g(1.00モル)を仕込み、反応物を完全に溶解させた。さらに、内温60℃にて熱水220gを仕込み、10%水酸化ナトリウム水溶液にてpHをアルカリ性(9.0)に調整した後、分液洗浄により未反応のレゾルシンを除去した。レゾルシンの含有率が1%以下になるまで分液洗浄を繰り返した後、1KPa以下の減圧下で、80℃で12時間乾燥させて、113gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:31.1%
レゾルシン:0.5%
第一溶出ピーク:16.3%
第一溶出ピークの重量平均分子量:1030
第二溶出ピーク:19.7%
第三溶出ピーク:30.2%
軟化点 116℃
実施例2D
 温度計、攪拌機及びコンデンサーを備えた1000mlセパラブルフラスコに、レゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン81.3g(1.40モル)及びトルエン264gを仕込み、40℃に加熱した。そこにp−トルエンスルホン酸水和物2.31gを仕込み、得られた混合物を内温60℃まで加熱し、7時間保温した。その後、内温60℃にてアセトン55.8g(0.96モル)を仕込み、内温60℃でさらに6時間保温した。
その後、10%水酸化ナトリウム水溶液で中和し、内温60℃でアセトン13.9g(0.24モル)を仕込み、反応物を完全に溶解させた。さらに、内温60℃にて熱水220gを仕込み、10%水酸化ナトリウム水溶液にてpHをアルカリ性(9.0)に調整した後、分液洗浄により未反応のレゾルシンを除去した。レゾルシンの含有率が1%以下になるまで分液洗浄を繰り返した後、1KPa以下の減圧下で、80℃で12時間乾燥させて、112gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:33.9%
レゾルシン:0.3%
第一溶出ピーク:19.2%
第一溶出ピークの重量平均分子量:1059
第二溶出ピーク:19.5%
第三溶出ピーク:25.8%
軟化点 119℃
実施例3D
 温度計、攪拌機及びコンデンサーを備えた1000mlセパラブルフラスコに、レゾルシン88.1g(0.80モル)を仕込み、フラスコ内部を窒素置換した後、アセトン81.3g(1.40モル)及びトルエン264gを仕込み、40℃に加熱した。そこにp−トルエンスルホン酸水和物2.31gを仕込み、得られた混合物を内温60℃まで加熱し、7時間保温した。その後、内温60℃にてアセトン46.5g(0.80モル)を仕込み、内温60℃でさらに2時間半保温した。
 その後、10%水酸化ナトリウム水溶液で中和し、内温60℃でアセトン20.9g(0.36モル)を仕込み、反応物を完全に溶解させた。さらに、内温60℃にて熱水220gを仕込み、10%水酸化ナトリウム水溶液にてpHをアルカリ性(9.0)に調整した後、分液洗浄により未反応のレゾルシンを除去した。レゾルシンの含有率が1%以下になるまで分液洗浄を繰り返した後、1KPa以下の減圧下で、80℃で12時間乾燥させて、112gのレゾルシンとアセトンの縮合物を得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン及びレゾルシンの含有率は、以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:39.4%
レゾルシン:0.7%
第一溶出ピーク:16.0%
第一溶出ピークの重量平均分子量:1051
第二溶出ピーク:17.1%
第三溶出ピーク:24.6%
軟化点 124℃
実施例4(ゴム組成物の製造)
 0.6リットルのラボプラストミルを用い、初期の系内温度を110℃として、天然ゴム(RSS#1)を投入して3分間素練りを行い、続いてカーボンブラック(N330)、含水シリカ、ステアリン酸、亜鉛華、老化防止剤(2,2,4−トリメチル−1,2−ジヒドロキノリン縮合物)および実施例1Dで得た縮合物を投入し、5分間混練して排出した。得られた組成物をオープンロールに移し、初期品温を60℃として、イオウ、加硫促進剤(N,N−ジシクロヘキシル−2−ベンゾチアジルスルフェンアミド)、メトキシ化メチロールメラミン樹脂(スミカノール507AP(住友化学社製))及びナフテン酸コバルトを添加し、ゴムの温度が80℃以下になるよう温度制御しつつ、混練することによりゴム組成物を得た。
 各成分の使用量は下記のとおりである。
<使用量>
・天然ゴム(RSS#1)  100部
・カーボンブラック(N330)  45部
・含水シリカ(東ソー・シリカ(株)製 Nipsil AQ)  10部
・ステアリン酸  3部
・亜鉛華  5部
・老化防止剤(2,2,4−トリメチル−1,2−ジヒドロキノリン縮合物)  2部
・実施例1Dで得た縮合物  2部
・イオウ  5部
・加硫促進剤(N,N−ジシクロヘキシル−2−ベンゾチアジルスルフェンアミド)  0.7部
・メトキシ化メチロールメラミン樹脂(スミカノール507AP(住友化学社製))  4部(有効成分2.6部)
・ナフテン酸コバルト  2部(コバルト含量0.2部)
実施例5(ゴム組成物の製造)
 実施例4において、実施例1Dで得た縮合物に替えて、実施例2Dで得た縮合物を用いる以外は、実施例4と同様にしてゴム組成物を得た。
実施例6(ゴム組成物の製造)
 実施例4において、実施例1Dで得た縮合物に替えて、実施例3Dで得た縮合物を用いる以外は、実施例4と同様にしてゴム組成物を得た。
実施例7 (タイヤ用ベルト、及びこれを用いたタイヤの製造)
実施例4で得たゴム組成物で、黄銅メッキ処理が施されたスチールコードを被覆することにより、ベルトが得られる。得られるベルトを用いて、通常の製造方法に従い、生タイヤを成形し、得られる生タイヤを加硫機内で加熱加圧することにより、タイヤが得られる。
実施例8 (タイヤ用カーカス、及びこれを用いたタイヤの製造)
 実施例4で得たゴム組成物を押し出し加工して、カーカス形状に応じた形状のゴム組成物を調製し、ポリエステル製のカーカス繊維コードの上下に貼り付けることにより、カーカスが得られる。得られるカーカスを用いて、通常の製造方法に従い、生タイヤを成形し、得られる生タイヤを加硫機内で加熱加圧することにより、タイヤが得られる。
実施例9 (タイヤ用キャップトレッド、及びこれを用いたタイヤの製造)
 実施例4で得たゴム組成物を押し出し加工して、キャップトレッドが得られる。得られるキャップトレッドを用いて、通常の製造方法に従い、生タイヤを成形し、得られる生タイヤを加硫機内で加熱加圧することにより、タイヤが得られる。
実施例10 (タイヤ用アンダートレッド、及びこれを用いたタイヤの製造)
 実施例4で得たゴム組成物を押し出し加工して、アンダートレッドが得られる。得られるアンダートレッドを用いて、通常の製造方法に従い、生タイヤを成形し、得られる生タイヤを加硫機内で加熱加圧することにより、タイヤが得られる。
The present invention will be specifically described with reference to examples. Unless otherwise indicated, the part and% of an Example mean a basis of weight.
The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin were determined by the GPC area percentage method.
In GPC analysis, the compound represented by formula (IV) and its isomer are represented by the first elution peak, and the compound represented by formula (III) and its isomer are represented by the second elution peak by formula (I). And the compound represented by the formula (II) and the isomer thereof were detected as the third elution peak.
The softening point was measured according to JIS K 6220-1.
<GPC analysis conditions>
Column: TOSOH TSGel Super HZ2000 (4.6 mmφ × 150 cm) and two TOSOH TSGel Super HZ1000 (4.6 mmφx150 cm) connection temperature: 40 ° C.
Mobile phase: Tetrahydrofuran Detector: RI
Example 1A
A 1000 ml separable flask equipped with a thermometer, a stirrer, and a condenser was charged with 88.1 g (0.80 mol) of resorcin, and the inside of the flask was purged with nitrogen. Then, 65.0 g (1.12 mol) of acetone and 44. 0 g was charged and heated to 40 ° C. Thereto was charged 0.40 g of 98% sulfuric acid, and the resulting mixture was heated to an internal temperature of 60 ° C. and kept warm for 3 hours.
Thereafter, 132 g of toluene was charged at an internal temperature of 60 ° C. and neutralized with a 10% aqueous sodium hydroxide solution, and then the inside of the flask was depressurized and heated to an internal temperature of 80 ° C. to remove water from the reaction system. After cooling to an internal temperature of 60 ° C., 0.88 g of 98% sulfuric acid was charged and kept at an internal temperature of 60 ° C. for 2 hours. Thereafter, the mixture was neutralized with a 10% aqueous sodium hydroxide solution, heated to an internal temperature of 80 ° C., and then charged with 55.8 g (1.20 mol) of acetone to completely dissolve the reaction product. Furthermore, 220 g of hot water was charged at an internal temperature of 80 ° C., and unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. under reduced pressure of 1 KPa or less for 12 hours to obtain 110 g of a condensate of resorcin and acetone. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 43.6%
Resorcin: 0.8%
First eluting peak: 16.6%
Weight average molecular weight of first elution peak: 1164
Second eluting peak: 16.2%
Third elution peak: 22.3%
Softening point 124 ° C
Example 2A
A 1000 ml separable flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.80 mol) of resorcin, and the inside of the flask was purged with nitrogen. Then, 55.1 g (0.88 mol) of acetone and 223 g of toluene were added. Charge and heat to 40 ° C. Thereto was charged 0.60 g of 98% sulfuric acid, and the resulting mixture was heated to an internal temperature of 60 ° C. and kept warm for 3 hours.
Then, after neutralizing with a 10% aqueous sodium hydroxide solution at an internal temperature of 60 ° C., the inside of the flask was depressurized and heated to an internal temperature of 80 ° C. to remove water from the reaction system. After cooling to an internal temperature of 60 ° C., 79.0 g (1.36 mol) of acetone and 0.80 g of 98% sulfuric acid were charged and kept at an internal temperature of 60 ° C. for 3 hours. Thereafter, the mixture was neutralized with a 10% aqueous sodium hydroxide solution, heated to an internal temperature of 80 ° C., and charged with 23.2 g (0.50 mol) of acetone to completely dissolve the reaction product. Furthermore, 220 g of hot water was charged at an internal temperature of 80 ° C., and unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. under reduced pressure of 1 KPa or less for 12 hours to obtain 121 g of a resorcin-acetone condensate. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 45.3%
Resorcin: 0.9%
First eluting peak: 15.1%
Weight average molecular weight of first elution peak: 1161
Second eluting peak: 14.4%
Third elution peak: 23.2%
Example 3A
A 1000 ml separable flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.80 mol) of resorcin, and the inside of the flask was purged with nitrogen, and then 69.7 g (1.20 mol) of acetone and 26.26 mol of toluene. 4 g was charged and heated to 40 ° C. Thereto was charged 0.60 g of 98% sulfuric acid, and the resulting mixture was heated to an internal temperature of 60 ° C. and kept warm for 4 hours.
Thereafter, 106 g of toluene was charged at an internal temperature of 60 ° C. and neutralized with a 10% aqueous sodium hydroxide solution, and then the interior of the flask was depressurized and heated to an internal temperature of 80 ° C. to remove water from the reaction system. After cooling to an internal temperature of 60 ° C., 18.6 g (0.40 mol) of acetone and 0.80 g of 98% sulfuric acid were charged and kept at an internal temperature of 60 ° C. for 1 hour. Furthermore, 18.6 g (0.40 mol) of acetone was additionally charged at an internal temperature of 60 ° C., and the temperature was kept for 1 hour. Thereafter, the mixture was neutralized with a 10% aqueous sodium hydroxide solution, heated to an internal temperature of 80 ° C., and then charged with 46.5 g (1.00 mol) of acetone to completely dissolve the reaction product. Furthermore, 132 g of hot water was added at an internal temperature of 80 ° C., and the pH was adjusted to alkaline (9.0) with a 10% aqueous sodium hydroxide solution, and then unreacted resorcin was removed by liquid separation washing. Thereafter, it was dried at 80 ° C. for 12 hours under reduced pressure of 1 KPa or less to obtain 131 g of a condensate of resorcin and acetone. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 42.6%
Resorcin: 0.9%
First eluting peak: 29.3%
Weight average molecular weight of first elution peak: 1340
Second eluting peak: 13.1%
Third elution peak: 13.5%
Softening point 139 ° C
Example 1B
A 500 ml four-necked flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.80 mol) of resorcin, and after the inside of the flask was purged with nitrogen, 69.7 g (1.20 mol) of acetone was charged. Heated to 35 ° C. Thereto was charged 1.20 g of 98% sulfuric acid, and the resulting mixture was kept at an internal temperature of 35 ° C. for 5 hours. Thereafter, 132 g of toluene was charged at an internal temperature of 35 ° C., and neutralized with a 10% aqueous sodium hydroxide solution.
After the reaction solution was transferred to a 1000 ml separable flask equipped with a thermometer, a stirrer and a condenser, 69.7 g (1.20 mol) of acetone was charged and heated to an internal temperature of 60 ° C. to completely dissolve the reaction product. I let you. Furthermore, 220 g of hot water was charged at an internal temperature of 60 ° C., the pH was adjusted to alkaline (9.0) with a 10% aqueous sodium hydroxide solution, and unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. for 12 hours under reduced pressure of 1 KPa or less to obtain 88 g of a condensate of resorcin and acetone. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 38.6%
Resorcin: 0.3%
First eluting peak: 13.4%
Weight average molecular weight of first eluting peak: 995
Second eluting peak: 17.9%
Third elution peak: 29.7%
Softening point 114 ° C
Example 2B
A 500 ml four-necked flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.80 mol) of resorcin, and after the inside of the flask was purged with nitrogen, 69.7 g (1.20 mol) of acetone was charged. Heated to 35 ° C. Thereto was charged 4.00 g of 98% sulfuric acid, and the resulting mixture was kept at an internal temperature of 35 ° C. for 3 hours. Thereafter, 132 g of toluene was charged at an internal temperature of 35 ° C. and stirred for 15 minutes, and then heated to an internal temperature of 60 ° C. and further kept warm for 6 hours.
Thereafter, the reaction solution was neutralized with a 10% aqueous sodium hydroxide solution.
After the reaction solution was transferred to a 1000 ml separable flask equipped with a thermometer, stirrer and condenser, 83.6 g (1.44 mol) of acetone was charged and heated to an internal temperature of 60 ° C. to completely dissolve the reaction product. I let you. Furthermore, 220 g of hot water was charged at an internal temperature of 60 ° C., the pH was adjusted to alkaline (9.0) with a 10% aqueous sodium hydroxide solution, and unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. under reduced pressure of 1 KPa or less for 12 hours to obtain 110 g of a condensate of resorcin and acetone. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 42.6%
Resorcin: 0.3%
First eluting peak: 16.4%
Weight average molecular weight of first elution peak: 1054
Second eluting peak: 17.6%
Third elution peak: 22.8%
Softening point 115 ° C
Example 3B
A 500 ml four-necked flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.80 mol) of resorcin while cooling in an ice bath, and the inside of the flask was purged with nitrogen, followed by 69.7 g of acetone (1. 20 mol) was charged and kept at 0 ° C. Thereto was charged 4.00 g of 98% sulfuric acid, and the resulting mixture was kept at 0 ° C. for 4 hours. Subsequently, 132 g of toluene was charged at an internal temperature of 0 ° C., stirred for 15 minutes, heated to an internal temperature of 60 ° C., and further kept warm for 4 hours. Thereafter, the reaction solution was neutralized with a 10% aqueous sodium hydroxide solution.
After the reaction solution was transferred to a 1000 ml separable flask equipped with a thermometer, stirrer and condenser, 83.6 g (1.44 mol) of acetone was charged and heated to an internal temperature of 60 ° C. to completely dissolve the reaction product. I let you. Furthermore, 220 g of hot water was charged at an internal temperature of 60 ° C., the pH was adjusted to alkaline (9.0) with a 10% aqueous sodium hydroxide solution, and unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. for 12 hours under reduced pressure of 1 KPa or less to obtain 101 g of a resorcin-acetone condensate. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 40.2%
Resorcin: 0.4%
First eluting peak: 12.3%
Weight average molecular weight of first elution peak: 984
Second eluting peak: 17.3%
Third elution peak: 29.6%
Softening point 117 ° C
Example 1C
A 1000 ml separable flask equipped with a thermometer, a stirrer, and a condenser was charged with 88.1 g (0.80 mol) of resorcin, and the inside of the flask was purged with nitrogen, and then 79.0 g (1.36 mol) of acetone and 264 g of toluene were added. Charged and heated to 40 ° C. Thereto was charged 3.34 g of 35% hydrochloric acid, and the resulting mixture was heated to an internal temperature of 60 ° C. and kept warm for 8 hours. Thereafter, the mixture was neutralized with a 10% aqueous sodium hydroxide solution at an internal temperature of 60 ° C., and 74.3 g (1.28 mol) of acetone was added to completely dissolve the reaction product. Furthermore, 220 g of hot water was charged at an internal temperature of 60 ° C., the pH was adjusted to alkaline (9.0) with a 10% aqueous sodium hydroxide solution, and unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. under reduced pressure of 1 KPa or less for 12 hours to obtain 118 g of a condensate of resorcin and acetone. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 40.4%
Resorcin: 0.4%
First eluting peak: 17.6%
Weight average molecular weight of first elution peak: 1006
Second eluting peak: 16.9%
Third elution peak: 23.6%
Softening point 119 ℃
Example 2C
A 1000 ml separable flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.80 mol) of resorcin, and the inside of the flask was purged with nitrogen, and then 74.3 g (1.28 mol) of acetone and 264 g of toluene were added. Charged and heated to 40 ° C. Thereto was charged 6.67 g of 35% hydrochloric acid, and the resulting mixture was heated to an internal temperature of 50 ° C. and kept warm for 7 hours.
Thereafter, the mixture was neutralized with a 10% aqueous sodium hydroxide solution, heated to an internal temperature of 60 ° C., and then charged with 74.3 g (1.28 mol) of acetone to completely dissolve the reaction product. Furthermore, 220 g of hot water was charged at an internal temperature of 60 ° C., the pH was adjusted to alkaline (9.0) with a 10% aqueous sodium hydroxide solution, and unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. for 12 hours under reduced pressure of 1 KPa or less to obtain 122 g of a condensate of resorcin and acetone. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 43.8%
Resorcin: 0.2%
First eluting peak: 18.6%
Weight average molecular weight of first elution peak: 1034
Second eluting peak: 15.6%
Third elution peak: 21.2%
Softening point 118 ° C
Example 3C
A 1000 ml separable flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.80 mol) of resorcin, and the inside of the flask was purged with nitrogen, and then 74.3 g (1.28 mol) of acetone and 264 g of toluene were added. Charged and heated to 40 ° C. Thereto was charged 2.92 g of 35% hydrochloric acid, and the resulting mixture was heated to an internal temperature of 60 ° C. and kept warm for 8 hours.
Thereafter, the mixture was neutralized with a 10% aqueous sodium hydroxide solution at an internal temperature of 60 ° C., and 74.3 g (1.28 mol) of acetone was added to completely dissolve the reaction product. Furthermore, after adjusting the pH to alkaline (9.0) with a 10% aqueous sodium hydroxide solution, unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. for 12 hours under reduced pressure of 1 KPa or less to obtain 120 g of a condensate of resorcin and acetone. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2′4′7-trihydroxyflavan: 49.3%
Resorcin: 0.6%
First eluting peak: 13.1%
Weight average molecular weight of first eluting peak: 996
Second eluting peak: 14.4%
Third elution peak: 22.1%
Softening point 116 ° C
Example 1D
A 1000 ml separable flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.80 mol) of resorcin, and the inside of the flask was purged with nitrogen. Then, 81.3 g (1.40 mol) of acetone and 264 g of toluene were added. Charged and heated to 40 ° C. Thereto was charged 2.31 g of p-toluenesulfonic acid hydrate, and the resulting mixture was heated to an internal temperature of 65 ° C. and kept for 7 hours.
Then, after cooling to an internal temperature of 60 ° C., the mixture was neutralized with a 10% aqueous sodium hydroxide solution and charged with 58.1 g (1.00 mol) of acetone to completely dissolve the reaction product. Furthermore, 220 g of hot water was charged at an internal temperature of 60 ° C., the pH was adjusted to alkaline (9.0) with a 10% aqueous sodium hydroxide solution, and unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. under reduced pressure of 1 KPa or less for 12 hours to obtain 113 g of a condensate of resorcin and acetone. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 31.1%
Resorcin: 0.5%
First eluting peak: 16.3%
Weight average molecular weight of first elution peak: 1030
Second eluting peak: 19.7%
Third elution peak: 30.2%
Softening point 116 ° C
Example 2D
A 1000 ml separable flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.80 mol) of resorcin, and the inside of the flask was purged with nitrogen. Then, 81.3 g (1.40 mol) of acetone and 264 g of toluene were added. Charged and heated to 40 ° C. Thereto was charged 2.31 g of p-toluenesulfonic acid hydrate, and the resulting mixture was heated to an internal temperature of 60 ° C. and kept warm for 7 hours. Thereafter, 55.8 g (0.96 mol) of acetone was charged at an internal temperature of 60 ° C., and the temperature was further maintained at 60 ° C. for 6 hours.
Thereafter, the mixture was neutralized with a 10% aqueous sodium hydroxide solution, and 13.9 g (0.24 mol) of acetone was charged at an internal temperature of 60 ° C. to completely dissolve the reaction product. Furthermore, 220 g of hot water was charged at an internal temperature of 60 ° C., the pH was adjusted to alkaline (9.0) with a 10% aqueous sodium hydroxide solution, and unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. under reduced pressure of 1 KPa or less for 12 hours to obtain 112 g of a resorcin-acetone condensate. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 33.9%
Resorcin: 0.3%
First eluting peak: 19.2%
Weight average molecular weight of first elution peak: 1059
Second eluting peak: 19.5%
Third elution peak: 25.8%
Softening point 119 ℃
Example 3D
A 1000 ml separable flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.80 mol) of resorcin, and the inside of the flask was purged with nitrogen. Then, 81.3 g (1.40 mol) of acetone and 264 g of toluene were added. Charged and heated to 40 ° C. Thereto was charged 2.31 g of p-toluenesulfonic acid hydrate, and the resulting mixture was heated to an internal temperature of 60 ° C. and kept warm for 7 hours. Thereafter, 46.5 g (0.80 mol) of acetone was charged at an internal temperature of 60 ° C., and the mixture was further incubated at the internal temperature of 60 ° C. for two and a half hours.
Thereafter, the mixture was neutralized with a 10% aqueous sodium hydroxide solution and charged with 20.9 g (0.36 mol) of acetone at an internal temperature of 60 ° C. to completely dissolve the reaction product. Furthermore, 220 g of hot water was charged at an internal temperature of 60 ° C., the pH was adjusted to alkaline (9.0) with a 10% aqueous sodium hydroxide solution, and unreacted resorcin was removed by liquid separation washing. Separation and washing were repeated until the content of resorcin was 1% or less, followed by drying at 80 ° C. under reduced pressure of 1 KPa or less for 12 hours to obtain 112 g of a resorcin-acetone condensate. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the resulting condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 39.4%
Resorcin: 0.7%
First eluting peak: 16.0%
Weight average molecular weight of first elution peak: 1051
Second eluting peak: 17.1%
Third elution peak: 24.6%
Softening point 124 ° C
Example 4 (Production of rubber composition)
Using a 0.6 liter lab plast mill, the initial system temperature was 110 ° C., and natural rubber (RSS # 1) was added and masticated for 3 minutes, followed by carbon black (N330), hydrous silica, Stearic acid, zinc white, anti-aging agent (2,2,4-trimethyl-1,2-dihydroquinoline condensate) and the condensate obtained in Example 1D were added, kneaded for 5 minutes and discharged. The obtained composition was transferred to an open roll, the initial product temperature was 60 ° C., sulfur, vulcanization accelerator (N, N-dicyclohexyl-2-benzothiazylsulfenamide), methoxylated methylol melamine resin (Sumicanol 507AP). (Manufactured by Sumitomo Chemical Co., Ltd.)) and cobalt naphthenate were added, and a rubber composition was obtained by kneading while controlling the temperature of the rubber to 80 ° C. or lower.
The amount of each component used is as follows.
<Amount used>
・ Natural rubber (RSS # 1) 100 parts ・ Carbon black (N330) 45 parts ・ Water-containing silica (Nippil AQ manufactured by Tosoh Silica Co., Ltd.) 10 parts ・ Stearic acid 3 parts ・ Zinc flower 5 parts ・ Anti-aging agent (2 , 2,4-trimethyl-1,2-dihydroquinoline condensate) 2 parts • condensate obtained in Example 1D 2 parts • sulfur 5 parts • vulcanization accelerator (N, N-dicyclohexyl-2-benzothiazyl) Sulfenamide) 0.7 parts / Methoxylated methylol melamine resin (Sumikanol 507AP (manufactured by Sumitomo Chemical Co.)) 4 parts (2.6 parts active ingredient)
・ Cobalt naphthenate 2 parts (cobalt content 0.2 parts)
Example 5 (Production of rubber composition)
In Example 4, a rubber composition was obtained in the same manner as in Example 4 except that the condensate obtained in Example 2D was used instead of the condensate obtained in Example 1D.
Example 6 (Production of rubber composition)
In Example 4, a rubber composition was obtained in the same manner as in Example 4 except that the condensate obtained in Example 3D was used instead of the condensate obtained in Example 1D.
Example 7 (Production of tire belt and tire using the same)
A belt is obtained by covering the steel cord subjected to the brass plating treatment with the rubber composition obtained in Example 4. Using the resulting belt, a green tire is formed according to a normal production method, and the resulting green tire is heated and pressurized in a vulcanizer to obtain a tire.
Example 8 (Production of tire carcass and tire using the same)
By extruding the rubber composition obtained in Example 4, a rubber composition having a shape corresponding to the carcass shape is prepared, and carcass is obtained by applying the rubber composition on top and bottom of a polyester carcass fiber cord. Using the obtained carcass, a tire is obtained by molding a green tire according to a normal production method and heating and pressing the resulting green tire in a vulcanizer.
Example 9 (Tire Cap Tread and Manufacturing of Tire Using This)
The rubber composition obtained in Example 4 is extruded to obtain a cap tread. Using the obtained cap tread, a tire is obtained by molding a green tire according to a normal production method and heating and pressing the resulting green tire in a vulcanizer.
Example 10 (Production of tire undertread and tire using the same)
The rubber composition obtained in Example 4 is extruded to obtain an undertread. Using the obtained undertread, a tire is obtained by molding a green tire according to a normal production method and heating and pressing the resulting green tire in a vulcanizer.
 本発明の製造方法によれば、レゾルシンとアセトンとの縮合物に含まれる未反応のレゾルシンの含有率を少なくすることができる。
 本発明の製造方法により得られるレゾルシンとアセトンとの縮合物は、ゴム組成物の補強剤としての性能に優れ、かつ、ゴム組成物加工時のレゾルシンの蒸散による作業環境の悪化も防止できるため、工業的に有利である。
According to the production method of the present invention, the content of unreacted resorcin contained in the condensate of resorcin and acetone can be reduced.
The condensate of resorcin and acetone obtained by the production method of the present invention is excellent in performance as a reinforcing agent of the rubber composition, and can prevent deterioration of the working environment due to transpiration of resorcin during processing of the rubber composition, Industrially advantageous.

Claims (21)

  1. レゾルシンとアセトンとを、酸の存在下で反応させる第1A工程と、
    第1A工程により得られた混合物と塩基とを混合する第2A工程と、
    第2A工程により得られた混合物から水を除去する第3A工程と、
    第3A工程により得られた混合物と酸とを混合する第4A工程と、
    を含む、下記(1a)、(2a)及び(3a)を満たすレゾルシンとアセトンとの縮合物の製造方法。
    (1a)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
    (2a)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~30%であること
    (3a)前記第一溶出ピークの重量平均分子量が800以上であること
    Step 1A of reacting resorcin and acetone in the presence of an acid;
    A second A step of mixing the mixture obtained in the first A step and a base;
    A 3A step of removing water from the mixture obtained by the 2A step;
    4A process which mixes the mixture and acid which were obtained by 3A process,
    A method for producing a condensate of resorcin and acetone satisfying the following (1a), (2a) and (3a):
    (1a) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as measured by gel permeation chromatography (differential refractive index detection) is 25 to 55. (2a) The area ratio of the first elution peak to the total area of all peaks by gel permeation chromatography (differential refractive index detection) measurement is 10 to 30% (3a) of the first elution peak The weight average molecular weight is 800 or more
  2. レゾルシンとアセトンとを、酸の存在下で反応させる第1A工程と、
    第1A工程により得られた混合物と塩基とを混合する第2A工程と、
    第2A工程により得られた混合物から水を除去する第3A工程と、
    第3A工程により得られた混合物と酸とを混合する第4A工程と、
    第4A工程により得られた混合物と塩基とを混合する第5A工程と、
    第5A工程により得られた混合物を水洗する第6A工程と、
    を含む請求項1記載の製造方法。
    Step 1A of reacting resorcin and acetone in the presence of an acid;
    A second A step of mixing the mixture obtained in the first A step and a base;
    A 3A step of removing water from the mixture obtained by the 2A step;
    4A process which mixes the mixture and acid which were obtained by 3A process,
    Step 5A for mixing the mixture obtained in Step 4A with a base;
    A 6A step of washing the mixture obtained in the 5A step with water;
    The manufacturing method of Claim 1 containing this.
  3. 第3A工程が、前記レゾルシンとアセトンとの反応により副生した水を、有機溶媒の存在下で除去する工程である請求項1又は2のいずれか記載の製造方法。 3. The production method according to claim 1, wherein the step 3A is a step of removing water by-produced by the reaction between the resorcin and acetone in the presence of an organic solvent.
  4. 第3A工程が、前記レゾルシンとアセトンとの反応により副生した水を、有機溶媒の存在下で、共沸蒸留によって除去する工程である請求項1~3のいずれかの請求項記載の製造方法。 The method according to any one of claims 1 to 3, wherein the step 3A is a step of removing water by-produced by the reaction of resorcin and acetone by azeotropic distillation in the presence of an organic solvent. .
  5. レゾルシンとアセトンとを、酸の存在下且つ溶媒の非存在下で反応させる第1B工程を含む、下記(1b)、(2b)及び(3b)を満たすレゾルシンとアセトンとの縮合物の製造方法。
    (1b)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
    (2b)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~25%であること
    (3b)前記第一溶出ピークの重量平均分子量が800以上であること
    A method for producing a condensate of resorcin and acetone satisfying the following (1b), (2b) and (3b), comprising a first step B in which resorcin and acetone are reacted in the presence of an acid and in the absence of a solvent.
    (1b) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as determined by gel permeation chromatography (differential refractive index detection) is 25 to 55. (2b) The area ratio of the first elution peak to the total area of all peaks by gel permeation chromatography (differential refractive index detection) measurement is 10 to 25% (3b) of the first elution peak The weight average molecular weight is 800 or more
  6. 第1B工程が、レゾルシンとアセトンとを、酸の存在下且つ溶媒の非存在下で、−5~45℃で反応させる工程である請求項5記載の製造方法。 6. The process according to claim 5, wherein step 1B is a step of reacting resorcin and acetone at −5 to 45 ° C. in the presence of an acid and in the absence of a solvent.
  7. レゾルシンとアセトンとを、酸の存在下且つ溶媒の非存在下で、−5~45℃で反応させる第1B工程と、
    第1B工程で得られた混合物と有機溶媒とを混合する第2B工程と、
    第2B工程で得られた混合物を50~70℃に加熱する第3B工程と、
    を含む請求項5又は6記載の製造方法。
    Step 1B, in which resorcin and acetone are reacted at −5 to 45 ° C. in the presence of an acid and in the absence of a solvent;
    A second B step of mixing the mixture obtained in the first B step and the organic solvent;
    A third B step of heating the mixture obtained in the second B step to 50-70 ° C;
    The manufacturing method of Claim 5 or 6 containing.
  8. レゾルシンとアセトンとを、酸の存在下且つ溶媒の非存在下で、−5~45℃で反応させる第1B工程と、
    第1B工程で得られた混合物と塩基とを混合する第4B工程と、
    第4B工程で得られた混合物を水洗する第5B工程と、
    を含む請求項5~7のいずれかの請求項記載の製造方法。
    Step 1B, in which resorcin and acetone are reacted at −5 to 45 ° C. in the presence of an acid and in the absence of a solvent;
    Step 4B for mixing the mixture obtained in Step 1B and the base;
    A 5B step of washing the mixture obtained in the 4B step with water;
    The production method according to any one of claims 5 to 7, comprising:
  9. レゾルシンとアセトンとを、酸の存在下且つ溶媒の非存在下で、−5~45℃で反応させる第1B工程と、
    第1B工程で得られた混合物と有機溶媒とを混合する第2B工程と、
    第2B工程で得られた混合物を50~70℃に加熱する第3B工程と、
    第3B工程で得られた混合物と塩基とを混合する第4B工程と、
    第4B工程で得られた混合物を水洗する第5B工程と、
    を含む請求項5~8のいずれかの請求項記載の製造方法。
    Step 1B, in which resorcin and acetone are reacted at −5 to 45 ° C. in the presence of an acid and in the absence of a solvent;
    A second B step of mixing the mixture obtained in the first B step and the organic solvent;
    A third B step of heating the mixture obtained in the second B step to 50-70 ° C;
    Step 4B for mixing the mixture obtained in Step 3B and the base;
    A 5B step of washing the mixture obtained in the 4B step with water;
    The production method according to any one of claims 5 to 8, comprising:
  10. レゾルシンとアセトンとを塩酸の存在下で反応させる第1C工程を含む、
    下記(1c)、(2c)及び(3c)を満たすレゾルシンとアセトンとの縮合物の製造方法。
    (1c)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
    (2c)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~25%であること
    (3c)前記第一溶出ピークの重量平均分子量が800以上であること
    Including the step 1C of reacting resorcin and acetone in the presence of hydrochloric acid,
    A method for producing a condensate of resorcin and acetone satisfying the following (1c), (2c) and (3c).
    (1c) The ratio of the peak area of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks determined by gel permeation chromatography (differential refractive index detection) is 25 to 55. (2c) The area ratio of the first elution peak to the total area of all peaks by gel permeation chromatography (differential refractive index detection) measurement is 10 to 25% (3c) of the first elution peak The weight average molecular weight is 800 or more
  11. 第1C工程が、レゾルシンとアセトンとを塩酸及び有機溶媒の存在下で反応させる工程である請求項10記載の製造方法。 The manufacturing method according to claim 10, wherein step 1C is a step of reacting resorcin and acetone in the presence of hydrochloric acid and an organic solvent.
  12. レゾルシンとアセトンとを塩酸の存在下で反応させる第1C工程と、
    第1C工程により得られた混合物と塩基とを混合する第2C工程と、
    第2C工程により得られた混合物を水洗する第3C工程と、
    を含む請求項10又は11記載の製造方法。
    Step 1C of reacting resorcin and acetone in the presence of hydrochloric acid;
    A second C step of mixing the mixture obtained in the first C step with a base;
    Step 3C for washing the mixture obtained in Step 2C with water;
    The manufacturing method of Claim 10 or 11 containing.
  13. レゾルシンとアセトンとを、p−トルエンスルホン酸及びp−トルエンスルホン酸水和物からなる群から選ばれる少なくとも1種の存在下で反応させる第1D工程を含み、
    レゾルシンに対するp−トルエンスルホン酸及びp−トルエンスルホン酸水和物からなる群から選ばれる少なくとも1種の使用量が0.1~10モル%である、
    下記(1d)、(2d)及び(3d)を満たすレゾルシンとアセトンとの縮合物の製造方法。
    (1d)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンのピークの面積比が25~55%であること
    (2d)ゲル浸透クロマトグラフィー(示差屈折率検出)測定による、全ピークの合計面積に対する第一溶出ピークの面積比が10~25%であること
    (3d)前記第一溶出ピークの重量平均分子量が800以上であること
    Including a first step of reacting resorcin and acetone in the presence of at least one selected from the group consisting of p-toluenesulfonic acid and p-toluenesulfonic acid hydrate,
    The amount of at least one selected from the group consisting of p-toluenesulfonic acid and p-toluenesulfonic acid hydrate with respect to resorcin is 0.1 to 10 mol%,
    A method for producing a condensate of resorcin and acetone satisfying the following (1d), (2d) and (3d).
    (1d) The area ratio of the peak of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan to the total area of all peaks as measured by gel permeation chromatography (differential refractive index detection) is 25 to 55. (2d) The ratio of the first elution peak to the total area of all peaks by gel permeation chromatography (differential refractive index detection) measurement is 10 to 25% (3d) of the first elution peak The weight average molecular weight is 800 or more
  14. 第1D工程が、レゾルシンとアセトンとを、p−トルエンスルホン酸及びp−トルエンスルホン酸水和物からなる群から選ばれる少なくとも1種並びに有機溶媒の存在下で反応させる工程である請求項13記載の製造方法。 14. The first step D is a step of reacting resorcin and acetone in the presence of at least one selected from the group consisting of p-toluenesulfonic acid and p-toluenesulfonic acid hydrate and an organic solvent. Manufacturing method.
  15. レゾルシンとアセトンとを、p−トルエンスルホン酸及びp−トルエンスルホン酸水和物からなる群から選ばれる少なくとも1種の存在下で反応させる第1D工程と、
    第1D工程により得られた混合物と塩基とを混合する第2D工程と、
    第2D工程により得られた混合物を水洗する第3D工程と、
    を含む請求項13又は14記載の製造方法。
    A first D step in which resorcin and acetone are reacted in the presence of at least one selected from the group consisting of p-toluenesulfonic acid and p-toluenesulfonic acid hydrate;
    A second D step of mixing the mixture obtained in the first D step with a base;
    A 3D step of washing the mixture obtained in the 2D step with water;
    The manufacturing method of Claim 13 or 14 containing.
  16. 請求項1~15のいずれかの請求項記載の製造方法により得られる縮合物。 A condensate obtained by the production method according to any one of claims 1 to 15.
  17. 請求項1~15のいずれかの請求項記載の製造方法により得られる縮合物とゴム成分と充填剤と硫黄成分とを含むゴム組成物。 A rubber composition comprising a condensate obtained by the production method according to any one of claims 1 to 15, a rubber component, a filler, and a sulfur component.
  18. 請求項17記載のゴム組成物で被覆されたスチールコードを含むタイヤ用ベルト。 A tire belt comprising a steel cord coated with the rubber composition according to claim 17.
  19. 請求項17記載のゴム組成物で被覆されたカーカス繊維コードを含むタイヤ用カーカス。 A carcass for a tire comprising a carcass fiber cord coated with the rubber composition according to claim 17.
  20. 請求項17記載のゴム組成物を含むタイヤ用キャップトレッド又はタイヤ用アンダートレッド。 A tire tread or a tire undertread comprising the rubber composition according to claim 17.
  21. 請求項17記載のゴム組成物を加工して製造される空気入りタイヤ。 A pneumatic tire produced by processing the rubber composition according to claim 17.
PCT/JP2013/051687 2012-01-25 2013-01-22 Method for producing condensation product of resorcin and acetone WO2013111895A1 (en)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2012012812A JP2013151603A (en) 2012-01-25 2012-01-25 Method for producing condensate of resorcin and acetone
JP2012012814A JP2013151605A (en) 2012-01-25 2012-01-25 Method for producing condensate of resorcin and acetone
JP2012-012812 2012-01-25
JP2012012811A JP2013151602A (en) 2012-01-25 2012-01-25 Method for producing condensate of resorcin and acetone
JP2012-012814 2012-01-25
JP2012-012813 2012-01-25
JP2012-012811 2012-01-25
JP2012012813A JP2013151604A (en) 2012-01-25 2012-01-25 Method for producing condensate of resorcin and acetone

Publications (1)

Publication Number Publication Date
WO2013111895A1 true WO2013111895A1 (en) 2013-08-01

Family

ID=48873606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/051687 WO2013111895A1 (en) 2012-01-25 2013-01-22 Method for producing condensation product of resorcin and acetone

Country Status (2)

Country Link
TW (1) TW201335144A (en)
WO (1) WO2013111895A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087973A1 (en) * 2013-12-12 2015-06-18 日本化薬株式会社 Phenolic resin, epoxy resin, epoxy resin composition and cured product thereof
WO2018051999A1 (en) * 2016-09-16 2018-03-22 住友化学株式会社 Condensate between resorcin and acetone

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230064028A1 (en) * 2020-01-09 2023-03-02 Sumitomo Chemical Advanced Technologies, Llc, D.B.A. Sumika Electronic Materials Phloroglucinolic resins, methods of making, and uses in rubber compositions

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873662A (en) * 1994-09-07 1996-03-19 Sumitomo Chem Co Ltd Rubber composition and method for vulcanization bonding to reinforcing material using the same
JP2010013631A (en) * 2008-06-04 2010-01-21 Sumitomo Chemical Co Ltd Rubber composition
JP2010275221A (en) * 2009-05-28 2010-12-09 Sumitomo Chemical Co Ltd Method for producing 2,4,4-trimethyl-2',4',7-trihydroxyflavan
JP2011006651A (en) * 2009-05-28 2011-01-13 Sumitomo Chemical Co Ltd Resin composition including condensation product of resorcinol, acetone and formaldehyde, and method for producing the same
JP2011032459A (en) * 2009-05-28 2011-02-17 Sumitomo Chemical Co Ltd Condensation product of resorcin and acetone
JP2012184401A (en) * 2011-02-18 2012-09-27 Sumitomo Chemical Co Ltd Method for producing condensate of resorcin and acetone, and rubber composition including the condensate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0873662A (en) * 1994-09-07 1996-03-19 Sumitomo Chem Co Ltd Rubber composition and method for vulcanization bonding to reinforcing material using the same
JP2010013631A (en) * 2008-06-04 2010-01-21 Sumitomo Chemical Co Ltd Rubber composition
JP2010275221A (en) * 2009-05-28 2010-12-09 Sumitomo Chemical Co Ltd Method for producing 2,4,4-trimethyl-2',4',7-trihydroxyflavan
JP2011006651A (en) * 2009-05-28 2011-01-13 Sumitomo Chemical Co Ltd Resin composition including condensation product of resorcinol, acetone and formaldehyde, and method for producing the same
JP2011032459A (en) * 2009-05-28 2011-02-17 Sumitomo Chemical Co Ltd Condensation product of resorcin and acetone
JP2012184401A (en) * 2011-02-18 2012-09-27 Sumitomo Chemical Co Ltd Method for producing condensate of resorcin and acetone, and rubber composition including the condensate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087973A1 (en) * 2013-12-12 2015-06-18 日本化薬株式会社 Phenolic resin, epoxy resin, epoxy resin composition and cured product thereof
JPWO2015087973A1 (en) * 2013-12-12 2017-03-16 日本化薬株式会社 Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
WO2018051999A1 (en) * 2016-09-16 2018-03-22 住友化学株式会社 Condensate between resorcin and acetone

Also Published As

Publication number Publication date
TW201335144A (en) 2013-09-01

Similar Documents

Publication Publication Date Title
EP0700959A1 (en) A rubber composition and a vulcanizing adhesion method using the same
JP2015163668A (en) Resin composition and production method thereof, and rubber composition including co-condensed object
WO2014156870A1 (en) Cocondensate and method for producing same, and rubber composition containing cocondensate
CN102056978B (en) Rubber composition for coating steel cord
JP6016297B2 (en) Cocondensate and rubber composition containing the same
JP6929722B2 (en) Functionalized elastomer by allylboration
JP2011046858A (en) Vulcanized rubber and method of manufacturing the same
US9873749B2 (en) Under tread rubber composition and pneumatic tire
WO2013111895A1 (en) Method for producing condensation product of resorcin and acetone
WO2018179919A1 (en) Novolak-type cocondesate, method for producing same, resin composition, and rubber composition
WO2012111726A1 (en) Method for producing condensate of resorcin and acetone, and rubber composition including condensate
JP2010013631A (en) Rubber composition
JP2011006651A (en) Resin composition including condensation product of resorcinol, acetone and formaldehyde, and method for producing the same
JP6675137B2 (en) Resin composition, method for producing the same, and rubber composition containing resin composition
WO2010137720A1 (en) Condensation product of resorcin and acetone
JP2011012096A (en) Vulcanized rubber and production method of the same
JP2013151605A (en) Method for producing condensate of resorcin and acetone
WO2017164292A1 (en) Method for producing condensate of resorcin and acetone
JP6292715B2 (en) Cocondensate, method for producing the same, and rubber composition containing cocondensate
JP2013151602A (en) Method for producing condensate of resorcin and acetone
JP2015163681A (en) rubber composition and pneumatic tire
JP2013151603A (en) Method for producing condensate of resorcin and acetone
JP2011006375A (en) Condensate of resorcin and acetone
JP2013151604A (en) Method for producing condensate of resorcin and acetone
WO2018051999A1 (en) Condensate between resorcin and acetone

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741279

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13741279

Country of ref document: EP

Kind code of ref document: A1