WO2012111726A1 - Method for producing condensate of resorcin and acetone, and rubber composition including condensate - Google Patents

Method for producing condensate of resorcin and acetone, and rubber composition including condensate Download PDF

Info

Publication number
WO2012111726A1
WO2012111726A1 PCT/JP2012/053590 JP2012053590W WO2012111726A1 WO 2012111726 A1 WO2012111726 A1 WO 2012111726A1 JP 2012053590 W JP2012053590 W JP 2012053590W WO 2012111726 A1 WO2012111726 A1 WO 2012111726A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
acetone
condensate
resorcin
reaction
Prior art date
Application number
PCT/JP2012/053590
Other languages
French (fr)
Japanese (ja)
Inventor
板橋 太門
竹内 謙一
一祐 松井
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012111726A1 publication Critical patent/WO2012111726A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/60Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1545Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives

Definitions

  • the present invention relates to a method for producing a condensate of resorcin and acetone, a rubber composition containing the condensate, and the like.
  • a condensate of resorcin and acetone is useful as a reinforcing agent for various rubber compositions.
  • the acid is neutralized with an aqueous sodium hydroxide solution, and the neutralized mixture is dried under reduced pressure.
  • the present invention ⁇ 1> a step of reacting resorcin and acetone in the presence of an acid; Removing water by-produced by the reaction in the presence of an acid;
  • the production method according to ⁇ 1> comprising: ⁇ 3> a step of reacting resorcin and acetone in the presence of an acid; Removing water by-produced by the reaction in the presence of an acid; Mixing the mixture after removing water and acetone; Mixing the mixture after mixing with acetone and a base;
  • the production method according to any one of the above; ⁇ 5> The step of removing water by-produced by the reaction in the presence of an acid and an organic solvent causes the water by-produced by the reaction to azeotrope with the organic solvent in the presence of an acid and an organic solvent.
  • the production method according to ⁇ 4> which is a step of removing; ⁇ 6> The production method according to ⁇ 4> or ⁇ 5>, wherein the organic solvent is an aromatic hydrocarbon; ⁇ 7> The production method according to ⁇ 6>, wherein the aromatic hydrocarbon is toluene or xylene; ⁇ 8> The production method according to any one of ⁇ 1> to ⁇ 7>, wherein the acid is at least one selected from the group consisting of p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, hydrochloric acid, and sulfuric acid.
  • a rubber composition comprising a condensate obtained by the production method according to any one of ⁇ 1> to ⁇ 8>, a rubber component, a filler, and a sulfur component; ⁇ 10> A tire belt including a steel cord coated with the rubber composition according to ⁇ 9>.
  • ⁇ 11> A tire carcass including a carcass fiber cord coated with the rubber composition according to ⁇ 9>; ⁇ 12> A tire tread or a tire undertread comprising the rubber composition according to ⁇ 9>; ⁇ 13> A pneumatic tire manufactured by processing the rubber composition according to ⁇ 9>; ⁇ 14> A condensate of resorcin and acetone satisfying the following (1), (2) and (3); (1) When the condensate was analyzed by gel permeation chromatography (differential refractive index detection), it was derived from 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan relative to the total area of all peaks. The peak area ratio is in the range of 30 to 55%.
  • the area ratio of the first eluting peak to the total area of all peaks is in the range of 20 to 50%.
  • the weight average molecular weight of the first elution peak is in the range of 1500 to 1700; ⁇ 15> The condensate according to ⁇ 14>, wherein the softening point is 160 ° C. or lower; ⁇ 16> The condensate according to ⁇ 14> or ⁇ 15>, wherein the increase rate of resorcin when stored at 120 ° C. for 24 hours is 2% or less.
  • the production method of the present invention comprises a step of reacting resorcin and acetone in the presence of an acid; Removing water by-produced by the reaction in the presence of an acid; Is a method for producing a condensate of resorcin and acetone.
  • first step ⁇ Step of reacting resorcin and acetone in the presence of an acid (hereinafter sometimes referred to as “first step”)>
  • a commercially available resorcin can be used.
  • Commercially available acetone can also be used.
  • the amount of acetone used is preferably in the range of 1 to 6 mol and more preferably in the range of 1.5 to 4 mol with respect to 1 mol of resorcin.
  • the acid acts as a catalyst in the reaction between resorcin and acetone, and may be hereinafter referred to as “acid catalyst”.
  • the acid include benzenesulfonic acid, p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, oxalic acid, phosphoric acid, polyphosphoric acid, borofluoric acid, hydrochloric acid and sulfuric acid.
  • At least one acid selected from the group consisting of p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, hydrochloric acid and sulfuric acid is preferable.
  • These acids can be used as they are or in the form of an aqueous solution having an appropriate concentration.
  • the amount of acid used is not limited, but is preferably in the range of 0.1 to 10 mol, more preferably in the range of 0.5 to 5 mol, per 100 mol of resorcin.
  • the reaction between resorcin and acetone is preferably performed in the presence of an organic solvent.
  • the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, and halogen-substituted aromatic hydrocarbons.
  • aliphatic hydrocarbons include hexane, heptane, octane, and decane.
  • aromatic hydrocarbons include toluene, xylene, and ethylbenzene.
  • halogen-substituted aromatic hydrocarbons Includes chlorobenzene and dichlorobenzene.
  • Aromatic hydrocarbons are preferred, and toluene or xylene is more preferred.
  • the amount of the organic solvent used is preferably in the range of 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin.
  • the reaction temperature of the reaction between resorcin and acetone is preferably in the range of 30 ° C. or higher and 65 ° C.
  • GC gas chromatography
  • HPLC high performance liquid chromatography
  • GPC gel permeation chromatography
  • the end point can be determined.
  • the order of mixing resorcin, acetone and acid is not limited. For example, resorcin and acetone are mixed in the presence of an organic solvent as necessary, and the resulting mixture and acid are mixed under reaction temperature conditions. The reaction can be carried out. As the reaction proceeds, acetone may be added continuously or intermittently to the mixture.
  • 2,4,4-trimethyl-2′4′7-trihydroxyflavan which is one of the compounds contained in the condensate of resorcin and acetone, may precipitate.
  • 2,4,4-trimethyl-2'4'7-trihydroxyflavan is used. It may be used as a seed crystal.
  • 2,4,4-trimethyl-2′4′7-trihydroxyflavan is a compound represented by the following formula.
  • Step of removing water by-produced by the reaction in the presence of an acid (hereinafter sometimes referred to as “second step”)
  • the step of removing water by-produced by the reaction of resorcin and acetone in the presence of an acid may be performed simultaneously with the step of reacting resorcin and acetone in the presence of an acid.
  • the mixture obtained by removing water in this step contains a condensate of resorcin and acetone and an acid.
  • the removal of water may be carried out using a substance capable of adsorbing water or a substance capable of decomposing water, but is preferably carried out by distillation, by azeotropy of the organic solvent and water in the presence of the organic solvent. More preferably.
  • the fraction obtained by distillation or azeotrope usually contains water, and water can be removed by removing the fraction, but the fraction is separated into an organic layer and an aqueous layer. When it is, it is preferable that only the aqueous layer is separated and removed, and the organic layer is returned to the mixture.
  • the removal of water is preferably carried out until the water content of the mixture obtained by removing water becomes 0.01 to 2% by weight, more preferably until the water content becomes 0.01 to 1% by weight. preferable.
  • the organic solvent used for the reaction of resorcin and acetone is usually used, but an organic solvent different from this can also be used.
  • the organic solvent include aliphatic hydrocarbons such as pentane, hexane, and heptane, alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane, aromatic hydrocarbons such as benzene, toluene, and xylene, methylene chloride, chloroform, Examples thereof include chlorinated hydrocarbons such as carbon chloride, trichrene, barkrene, ethylene dichloride, and benzene chloride, esters such as methyl acetate, ethyl acetate, and propyl acetate, and nitriles such as acetonitrile.
  • the mixture obtained in the first step and the second step may be subjected to a post-treatment step which will be described later, or, if necessary, further subjected to a third step, which will be described later, followed by a post-treatment step. Also good.
  • a step of mixing the mixture after removing water and acetone (hereinafter sometimes referred to as “third step”)> More preferably, acetone is mixed with the mixture after removing water by-produced by the reaction between resorcin and acetone in the presence of an acid.
  • the third step is a step of reacting acetone with resorcin remaining in a mixture containing a condensate of resorcin and acetone and an acid.
  • the amount of acetone used in the third step is such that the sum of the amount of acetone used in the first step is in the range of 1 to 6 moles per mole of resorcin used in the first step. Good.
  • An acid or an organic solvent may be used in the third step as necessary.
  • the reaction temperature in the third step is preferably in the range of 30 ° C. or higher and 65 ° C. or lower. Moreover, you may perform a 3rd process, removing water. About removal of water, it can carry out similarly to a 2nd process.
  • the third step while confirming the content ratio of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan and the content ratio of resorcin, by ordinary analysis means such as GC, HPLC, GPC and the like. Then, it may be carried out while adding acetone as appropriate until they reach the desired range.
  • a condensate of resorcin and acetone can be taken out by subjecting the mixture obtained in the second step or the third step to a post-treatment step including filtration and concentration and removing the organic solvent.
  • the process of mixing the mixture after removing water and a base After neutralizing the mixture obtained in the second step or the third step with a base, it is separated by solid-liquid separation by washing with water or filtering, and generated by acid catalyst or neutralization attached to the obtained solid as necessary. After the washed salt is washed with water, the organic solvent may be removed.
  • the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred. Sodium hydroxide is more preferable.
  • the base is preferably used in the form of an aqueous solution having an appropriate concentration.
  • the residual ratio of resorcin is preferably 5.0% by weight or less, and more preferably 1.0% by weight or less.
  • the “first elution peak” is a peak having the shortest retention time among all peaks in a chromatogram obtained when a condensate is analyzed by gel permeation chromatography (differential refractive index detection).
  • the “second eluting peak” means that the retention time is the second of all peaks in the chromatogram obtained when the condensate is analyzed by gel permeation chromatography (differential refractive index detection).
  • a short peak means “third elution peak”, and among all peaks in the chromatogram obtained when the condensate is analyzed by gel permeation chromatography (differential refractive index detection), the retention time is three. Means the second shortest peak.
  • gel permeation chromatography differential refractive index detection
  • the compound group consisting of the compound represented by formula (IV) and its isomer is taken as the first elution peak from the compound represented by formula (III) and its isomer.
  • the compound group consisting of the compound represented by formula (I) and its isomer, and the compound group consisting of the compound represented by formula (II) and its isomer as the third elution peak, Each is detected.
  • the obtained condensate is preferably a condensate satisfying the following (1), (2) and (3).
  • (1) When the condensate was analyzed by gel permeation chromatography (differential refractive index detection), it was derived from 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan relative to the total area of all peaks. The peak area ratio is in the range of 30 to 55%.
  • (2) When the condensate is analyzed by gel permeation chromatography (differential refractive index detection), the area ratio of the first eluting peak to the total area of all peaks is in the range of 20 to 50%.
  • (3) The weight average molecular weight of the first elution peak is in the range of 1500 to 1700.
  • the obtained condensate preferably has a softening point of 160 ° C. or lower.
  • the obtained condensate preferably has a resorcin increase rate of 2% or less when stored at 120 ° C. for 24 hours.
  • the content of 2,4,4-trimethyl-2′4′7-trihydroxyflavan contained in the obtained condensate is preferably in the range of 30 to 55% by weight, and 35 to 50% by weight. A range is more preferable.
  • the total content of the compound represented by formula (IV) and the isomers contained in the obtained condensate is preferably in the range of 20 to 50% by weight, and in the range of 25 to 35% by weight. More preferably.
  • the resulting condensate of resorcin and acetone can be used as a rubber reinforcing agent. It is particularly useful as a reinforcing agent for rubber for tires.
  • a rubber composition containing a condensate of resorcin and acetone, a rubber component, a filler, and a sulfur component will be described.
  • the rubber component examples include natural rubber, styrene butadiene copolymer rubber, butadiene rubber, isoprene rubber, and rubber components containing them as a main component.
  • the amount of the condensate of resorcin and acetone used is preferably in the range of 0.5 to 3 parts by weight, more preferably in the range of 1 to 2 parts by weight with respect to 100 parts by weight of these rubber components.
  • the filler include carbon black, silica, talc and clay which are usually used in the rubber field, and carbon black is more preferably used.
  • carbon black carbon black such as HAF (High Ablation Furnace), SAF (Super Ablation Furnace), ISAF (Intermediate SAF) is preferable.
  • the amount of the filler used is preferably in the range of 10 to 100 parts by weight, more preferably in the range of 30 to 70 parts by weight per 100 parts by weight of the rubber component.
  • the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur and highly dispersible sulfur, with powdered sulfur and insoluble sulfur being preferred.
  • the amount of the sulfur component used is preferably in the range of 1 to 10 parts by weight, more preferably in the range of 2 to 6 parts by weight per 100 parts by weight of the rubber component.
  • a rubber composition can be produced using a vulcanization accelerator, a methoxylated methylol melamine resin, an organic cobalt compound and zinc oxide.
  • vulcanization accelerators include thiazole-based vulcanization accelerators described in pages 412 to 413 of Rubber Industry Handbook ⁇ Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994), Examples thereof include phenamide vulcanization accelerators and guanidine vulcanization accelerators.
  • the amount of vulcanization accelerator used is preferably in the range of 0.5 to 1 part by weight, more preferably in the range of 0.6 to 0.8 part by weight per 100 parts by weight of the rubber component.
  • methoxylated methylol melamine resin examples include those commonly used in the rubber industry such as hexakis (methoxymethyl) melamine, pentakis (methoxymethyl) methylol melamine, tetrakis (methoxymethyl) dimethylol melamine, and hexakis (methoxymethyl). ) Melamine alone or a mixture based on it is preferred. These methoxylated methylol melamine resins can be used alone or in combination of two or more, and the blending amount thereof is 0.5 to 6.0 parts by weight with respect to 100 parts by weight of the rubber component. The range is preferable, and the range of 1.0 to 3.0 parts by weight is more preferable.
  • organic cobalt compound examples include acid cobalt salts such as cobalt naphthenate and cobalt stearate, and fatty acid cobalt / boron complex compounds (for example, trade name “Manobond C (registered trademark)” manufactured by Manchem).
  • the amount of the organic cobalt compound used is preferably in the range of 0.1 to 0.4 parts by weight and in the range of 0.1 to 0.3 parts by weight in terms of cobalt content with respect to 100 parts by weight of the rubber component. More preferred.
  • Various rubber chemicals commonly used in the rubber industry such as anti-aging agents such as antioxidants and ozone degradation inhibitors, peptizers, processing aids, waxes, oils, stearic acid, tackifiers, etc.
  • the compounding amount of these chemicals varies depending on the use of the rubber composition, but an amount in a range usually used in the rubber industry can be used.
  • the rubber composition can be derived into a rubber product through a process such as molding and vulcanization, for example, in accordance with a method commonly practiced in the rubber industry. In particular, it can be used for various members of tires such as cap treads, under treads, belts, carcass, beads, sidewalls, rubber chafers and the like. Further, it can also be used for anti-vibration rubbers for automobiles such as engine mounts, strut mounts, bushes and exhaust hangers, hoses, rubber belts and the like.
  • a tire belt can be manufactured by coating a steel cord with a rubber composition.
  • Steel cords are usually used in an aligned state.
  • the steel cord is preferably plated with brass, zinc, or an alloy containing nickel or cobalt, and is preferably subjected to brass plating. is there.
  • a steel cord subjected to a brass plating process in which the Cu content in the brass plating is 75% by weight or less, preferably 55 to 70% by weight is suitable.
  • the twist structure of the steel cord is not limited.
  • a plurality of belts may be laminated and used.
  • the belt is mainly used as a carcass reinforcing material.
  • a carcass can be manufactured by extruding a rubber composition in accordance with a carcass shape of a tire and attaching the rubber composition on the upper and lower sides of a carcass fiber cord.
  • the carcass fiber cord is usually used in a state of being aligned in parallel.
  • an inexpensive polyester that has good elastic modulus and fatigue resistance and excellent creep resistance. These are used as a tire reinforcing material by laminating one sheet or a plurality of sheets.
  • a pneumatic tire can be manufactured by a normal manufacturing method using a rubber composition.
  • a rubber composition is extruded to obtain a tire member, which is pasted and molded on another tire member by a normal method on a tire molding machine to form a raw tire.
  • the green tire is heated and pressed in a vulcanizer to obtain a tire.
  • the obtained mixture was heated to 40 ° C., and then charged with 0.88 g of 98% sulfuric acid.
  • the obtained mixture was heated to an internal temperature of 50 ° C. and kept warm for 4 hours. Thereafter, the temperature was raised to an internal temperature of 60 ° C., and the inside of the flask was decompressed to remove water from the reaction system. After returning to normal pressure and cooling to 45 ° C., 69.7 g (1.2 mol) of acetone was charged, and the resulting mixture was kept at the same temperature for 3.5 hours. Thereafter, neutralization was performed with a 10% aqueous sodium hydroxide solution, followed by drying at 80 ° C.
  • the temperature of the obtained mixture was raised to 40 ° C., and then 0.44 g of 98% sulfuric acid was charged.
  • the obtained mixture was heated to an internal temperature of 80 ° C. and kept warm for 3 hours.
  • 23.2 g (0.40 mol) of acetone was charged, and the resulting mixture was kept warm for 4 hours.
  • 23.2 g (0.40 mol) of acetone was charged, and the resulting mixture was kept warm for 3 hours. Thereafter, the mixture was neutralized with a 10% aqueous sodium hydroxide solution and further dried at 80 ° C. for 12 hours under reduced pressure of 1 KPa or less to obtain 120 g of a condensate of resorcin and acetone.
  • the discharged rubber was transferred to an open roll, the initial product temperature was set to 60 ° C., sulfur, vulcanization accelerator (N, N-dicyclohexyl-2-benzothiazylsulfenamide), methoxylation shown in the following formulation
  • a rubber composition was obtained by adding a methylol melamine resin (Sumikanol 507AP (manufactured by Sumitomo Chemical Co., Ltd.)) and cobalt naphthenate while kneading while controlling the temperature of the rubber to 80 ° C. or less.
  • Example 6 [Production of tire belt and tire using the same] A belt is obtained by covering the steel cord subjected to the brass plating treatment with the rubber composition obtained in Example 4. A tire is obtained by forming a green tire using the obtained belt according to a normal production method and heating and pressing the obtained green tire in a vulcanizer.
  • Example 7 [Production of tire carcass and tire using the same] By extruding the rubber composition obtained in Example 4, a rubber composition having a shape corresponding to the carcass shape is prepared, and carcass is obtained by applying the rubber composition on top and bottom of a polyester carcass fiber cord. Using the obtained carcass, a tire is obtained by molding a green tire according to a normal manufacturing method and heating and pressing the obtained green tire in a vulcanizer.
  • Example 8 [Production of tire tread and tire using the same] The rubber composition obtained in Example 4 is extruded to obtain a cap tread. Using the obtained cap tread, a tire is obtained by molding a green tire according to a normal production method and heating and pressing the obtained green tire in a vulcanizer.
  • Example 9 [Production of tire undertread and tire using the same] The rubber composition obtained in Example 4 is extruded to obtain an undertread. Using the obtained undertread, a tire is obtained by molding a green tire according to a normal manufacturing method and heating and pressing the obtained green tire in a vulcanizer.
  • the residual amount of unreacted resorcin can be reduced.
  • the condensate of resorcin and acetone obtained by the production method of the present invention is excellent in performance as a reinforcing agent for various rubber compositions, and can also prevent deterioration of the working environment due to transpiration of residual resorcin during processing of the rubber composition. Therefore, it is industrially advantageous.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Tires In General (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

This method for producing a condensate of resorcin and acetone includes: a step for reacting resorcin and acetone in the presence of an acid; and a step for removing, in the presence of an acid, water produced as a byproduct of the reaction.

Description

レゾルシンとアセトンとの縮合物の製造方法および該縮合物を含むゴム組成物Process for producing condensate of resorcin and acetone and rubber composition containing the condensate
 本発明は、レゾルシンとアセトンとの縮合物の製造方法および該縮合物を含むゴム組成物等に関する。 The present invention relates to a method for producing a condensate of resorcin and acetone, a rubber composition containing the condensate, and the like.
 レゾルシンとアセトンとの縮合物は、各種ゴム組成物の補強剤として有用である。
 特開2004−2431号公報には、レゾルシンとアセトンとを、酸および有機溶媒の存在下で反応させた後、前記酸を水酸化ナトリウム水溶液で中和し、さらに中和後の混合物を減圧乾燥させることにより、レゾルシンとアセトンとの縮合物を得る製造方法が記載されている。
A condensate of resorcin and acetone is useful as a reinforcing agent for various rubber compositions.
In Japanese Patent Application Laid-Open No. 2004-2431, after resorcin and acetone are reacted in the presence of an acid and an organic solvent, the acid is neutralized with an aqueous sodium hydroxide solution, and the neutralized mixture is dried under reduced pressure. To produce a condensate of resorcin and acetone.
 本発明は、
<1> レゾルシンとアセトンとを酸の存在下で反応させる工程と、
前記反応により副生した水を酸の存在下で除去する工程と、
を含むレゾルシンとアセトンとの縮合物の製造方法;
<2> レゾルシンとアセトンとを酸の存在下で反応させる工程と、
前記反応により副生した水を酸の存在下で除去する工程と、
水を除去した後の混合物と塩基とを混合する工程と、
を含む<1>に記載の製造方法;
<3> レゾルシンとアセトンとを酸の存在下で反応させる工程と、
前記反応により副生した水を酸の存在下で除去する工程と、
水を除去した後の混合物とアセトンとを混合する工程と、
アセトンと混合した後の混合物と塩基とを混合する工程と、
を含む<1>または<2>に記載の製造方法;
<4> 前記反応により副生した水を酸の存在下で除去する工程が、前記反応により副生した水を酸および有機溶媒の存在下で除去する工程である<1>~<3>のいずれかに記載の製造方法;
<5> 前記反応により副生した水を酸および有機溶媒の存在下で除去する工程が、前記反応により副生した水を、酸および有機溶媒の存在下で、有機溶媒と共沸させることにより除去する工程である<4>に記載の製造方法;
<6> 有機溶媒が、芳香族炭化水素である<4>または<5>に記載の製造方法;
<7> 芳香族炭化水素が、トルエンまたはキシレンである<6>に記載の製造方法;
<8> 酸が、p−トルエンスルホン酸、p−トルエンスルホン酸水和物、塩酸および硫酸からなる群から選ばれる少なくとも1種である<1>~<7>のいずれかに記載の製造方法;
<9> <1>~<8>のいずれかに記載の製造方法により得られる縮合物とゴム成分と充填剤と硫黄成分とを含むゴム組成物;
<10>    <9>に記載のゴム組成物で被覆されたスチールコードを含むタイヤ用ベルト。
<11>    <9>に記載のゴム組成物で被覆されたカーカス繊維コードを含むタイヤ用カーカス;
<12>    <9>に記載のゴム組成物を含むタイヤ用キャップトレッドまたはタイヤ用アンダートレッド;
<13>    <9>に記載のゴム組成物を加工することにより製造される空気入りタイヤ;
<14>    下記(1)、(2)および(3)を満たすレゾルシンとアセトンとの縮合物;
(1)ゲル浸透クロマトグラフィー(示差屈折率検出)により、縮合物を分析したときに、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバン由来のピークの面積比が30~55%の範囲であること。
(2)ゲル浸透クロマトグラフィー(示差屈折率検出)により、縮合物を分析したときに、全ピークの合計面積に対する第一溶出ピークの面積比が20~50%の範囲であること。
(3)前記第一溶出ピークの重量平均分子量が1500~1700の範囲であること;
<15>    軟化点が160℃以下である<14>に記載の縮合物;
<16>    120℃で24時間保管したときのレゾルシンの増加率が2%以下である<14>または<15>に記載の縮合物;を提供するものである。
The present invention
<1> a step of reacting resorcin and acetone in the presence of an acid;
Removing water by-produced by the reaction in the presence of an acid;
A method for producing a condensate of resorcin and acetone containing
<2> a step of reacting resorcin and acetone in the presence of an acid;
Removing water by-produced by the reaction in the presence of an acid;
Mixing the mixture after removing water and the base;
The production method according to <1>, comprising:
<3> a step of reacting resorcin and acetone in the presence of an acid;
Removing water by-produced by the reaction in the presence of an acid;
Mixing the mixture after removing water and acetone;
Mixing the mixture after mixing with acetone and a base;
The production method according to <1> or <2>, comprising:
<4> The step of removing water by-produced by the reaction in the presence of an acid is a step of removing water by-produced by the reaction in the presence of an acid and an organic solvent. The production method according to any one of the above;
<5> The step of removing water by-produced by the reaction in the presence of an acid and an organic solvent causes the water by-produced by the reaction to azeotrope with the organic solvent in the presence of an acid and an organic solvent. The production method according to <4>, which is a step of removing;
<6> The production method according to <4> or <5>, wherein the organic solvent is an aromatic hydrocarbon;
<7> The production method according to <6>, wherein the aromatic hydrocarbon is toluene or xylene;
<8> The production method according to any one of <1> to <7>, wherein the acid is at least one selected from the group consisting of p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, hydrochloric acid, and sulfuric acid. ;
<9> A rubber composition comprising a condensate obtained by the production method according to any one of <1> to <8>, a rubber component, a filler, and a sulfur component;
<10> A tire belt including a steel cord coated with the rubber composition according to <9>.
<11> A tire carcass including a carcass fiber cord coated with the rubber composition according to <9>;
<12> A tire tread or a tire undertread comprising the rubber composition according to <9>;
<13> A pneumatic tire manufactured by processing the rubber composition according to <9>;
<14> A condensate of resorcin and acetone satisfying the following (1), (2) and (3);
(1) When the condensate was analyzed by gel permeation chromatography (differential refractive index detection), it was derived from 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan relative to the total area of all peaks. The peak area ratio is in the range of 30 to 55%.
(2) When the condensate is analyzed by gel permeation chromatography (differential refractive index detection), the area ratio of the first eluting peak to the total area of all peaks is in the range of 20 to 50%.
(3) The weight average molecular weight of the first elution peak is in the range of 1500 to 1700;
<15> The condensate according to <14>, wherein the softening point is 160 ° C. or lower;
<16> The condensate according to <14> or <15>, wherein the increase rate of resorcin when stored at 120 ° C. for 24 hours is 2% or less.
 本発明の製造方法は、レゾルシンとアセトンとを酸の存在下で反応させる工程と、
前記反応により副生した水を酸の存在下で除去する工程と、
を含むレゾルシンとアセトンとの縮合物の製造方法である。
<レゾルシンとアセトンとを酸の存在下で反応させる工程(以下、”第1工程”という場合がある。)>
 レゾルシンは市販のものを用いることができる。アセトンも市販のものを用いることができる。アセトンの使用量は、レゾルシン1モルに対して、1~6モルの範囲が好ましく、1.5~4モルの範囲がより好ましい。アセトンの使用量が1モル以上であれば、未反応のレゾルシンの残存率を減らすことができる傾向にある。
 酸は、レゾルシンとアセトンとの反応において触媒として働くものであり、以下、”酸触媒”と記載することがある。酸の具体例としては、ベンゼンスルホン酸、p−トルエンスルホン酸、p−トルエンスルホン酸水和物、シュウ酸、リン酸、ポリリン酸、ホウ化フッ素酸、塩酸および硫酸が挙げられる。中でも、p−トルエンスルホン酸、p−トルエンスルホン酸水和物、塩酸および硫酸からなる群から選ばれる少なくとも1種の酸が好ましい。これら酸は、そのまま、または、適当な濃度の水溶液の形態で用いることができる。酸の使用量は制限されないが、レゾルシン100モルに対して、0.1~10モルの範囲が好ましく、0.5~5モルの範囲がより好ましい。
 レゾルシンとアセトンとの反応は、有機溶媒の存在下で行うことが好ましい。有機溶媒としては、脂肪族炭化水素、芳香族炭化水素およびハロゲン置換芳香族炭化水素が挙げられる。脂肪族炭化水素の具体例としては、ヘキサン、ヘプタン、オクタンおよびデカンが挙げられ、芳香族炭化水素の具体例としては、トルエン、キシレンおよびエチルベンゼンが挙げられ、ハロゲン置換芳香族炭化水素の具体例としては、クロロベンゼンおよびジクロロベンゼンが挙げられる。芳香族炭化水素が好ましく、トルエンまたはキシレンがより好ましい。有機溶媒の使用量は、レゾルシン1重量部に対して、0.5~3重量部の範囲が好ましい。
 レゾルシンとアセトンとの反応の反応温度は、30℃以上、65℃以下の範囲が好ましい。反応の進行は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができ、反応の進行を確認しながら、反応終点を決めることができる。
 レゾルシンとアセトンと酸との混合順序は限定されず、例えば、レゾルシンとアセトンとを、必要により有機溶媒の存在下で混合し、得られた混合物と酸とを反応温度条件下で混合することにより、反応を実施することができる。また、反応の進行に伴い、混合物中にアセトンを連続的または間欠的に加えてもよい。反応が進行するにつれて、レゾルシンとアセトンとの縮合物に含まれる化合物の一つである2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンが析出する場合があり、析出した2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンが反応容器の壁に固着すること(いわゆるスケーリング)を防ぐために、2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンを種晶として用いてもよい。なお、2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンは下記の式で示される化合物である。
Figure JPOXMLDOC01-appb-I000001
 レゾルシンとアセトンとの縮合物に含まれる化合物としては、2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン(下記の式で示される化合物)の他に、
Figure JPOXMLDOC01-appb-I000002
 7,7’−ジヒドロキシ−4,4,4’,4’−テトラメチル−2,2’−スピロビクロマン(下記の式で示される化合物)、
Figure JPOXMLDOC01-appb-I000003
4,6−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(I)で表される化合物)およびその異性体、
Figure JPOXMLDOC01-appb-I000004
2,4−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(II)で表される化合物)およびその異性体、
Figure JPOXMLDOC01-appb-I000005
式(III)で表される化合物およびその異性体、
Figure JPOXMLDOC01-appb-I000006
および、式(IV)で表される化合物およびその異性体、
Figure JPOXMLDOC01-appb-I000007
[式(IV)中、nは2以上の整数を表す。]
が挙げられる。
<前記反応により副生した水を酸の存在下で除去する工程(以下、”第2工程”という場合がある。)>
 レゾルシンとアセトンとの反応により副生した水を酸の存在下で除去する工程は、レゾルシンとアセトンとを酸の存在下で反応させる工程と同時に行なわれてもよいが、水の除去を効率的に行う目的において、レゾルシンとアセトンとを酸の存在下で反応させた後、前記反応により副生した水を酸の存在下で除去することが好ましい。この工程で水を除去して得られた混合物は、レゾルシンとアセトンとの縮合物と酸とを含む。
 水の除去は、水を吸着し得る物質や水を分解し得る物質を用いて行なわれてもよいが、蒸留により行うことが好ましく、有機溶媒の存在下で有機溶媒と水との共沸により行なうことがより好ましい。蒸留や共沸により得られる留分には、通常水が含まれており、留分を除去することにより水の除去を行うことができるが、留分が有機層と水層とに分離している場合は、水層のみを分離して除去し、有機層は混合物中に戻すことが好ましい。水の除去は、水を除去して得られた混合物の含水率が0.01~2重量%になるまで行なうことが好ましく、含水率が0.01~1重量%になるまで行うことがより好ましい。
 有機溶媒としては、通常、レゾルシンとアセトンとの反応に用いた有機溶媒が用いられるが、これとは異なる有機溶媒を使用することもできる。有機溶媒としては、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素、ベンゼン、トルエン、キシレン等の芳香族炭化水素、塩化メチレン、クロロホルム、四塩化炭素、トリクレン、バークレン、二塩化エチレン、塩化ベンゼン等の塩素化炭化水素、酢酸メチル、酢酸エチル、酢酸プロピル等のエステル、および、アセトニトリル等のニトリルが挙げられる。なかでも、芳香族炭化水素が好ましく、トルエンまたはキシレンがより好ましい。
 第1工程および第2工程により得られた混合物を、そのまま後述する後処理工程に付してもよいし、必要に応じて、さらに後述する第3工程に付した後に後処理工程に付してもよい。
<水を除去した後の混合物とアセトンとを混合する工程(以下、”第3工程”という場合がある。)>
 レゾルシンとアセトンとの反応により副生した水を酸の存在下で除去した後の混合物と、アセトンとを混合することがより好ましい。第3工程は、レゾルシンとアセトンとの縮合物と酸とを含む混合物中に残存するレゾルシンと、アセトンとを反応させる工程である。
 第3工程で用いるアセトンの使用量は、第1工程で用いるアセトンの使用量との合計が、第1工程で用いたレゾルシン1モルに対して、1~6モルの範囲となる量であればよい。酸や有機溶媒を必要に応じて第3工程で用いてもよい。第3工程の反応温度は、30℃以上、65℃以下の範囲が好ましい。また、第3工程は、水を除去しながら行ってもよい。水の除去については、第2工程と同様に行うことができる。第3工程は、GC、HPLC、GPC等の通常の分析手段により、2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバンの含有率とレゾルシンの含有率とを確認しながら、それらが所望の範囲となるまで、適宜アセトンを追加しながら実施すればよい。
<後処理工程>
 第2工程または第3工程で得られた混合物を、濾過や濃縮等を含む後処理工程に付し、、有機溶媒を除去することにより、レゾルシンとアセトンとの縮合物を取り出すことができる。
<水を除去した後の混合物と塩基とを混合する工程>
 第2工程または第3工程で得られた混合物を塩基で中和した後、水洗または濾過することにより固液分離し、必要に応じて得られた固形物に付着した酸触媒や中和により生成した塩を水洗した後に、有機溶媒を除去してもよい。塩基としては、水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、炭酸水素ナトリウム等のアルカリ金属炭酸水素塩、炭酸ナトリウム等のアルカリ金属炭酸塩等が挙げられ、アルカリ金属水酸化物が好ましく、水酸化ナトリウムがより好ましい。塩基は、適当な濃度の水溶液の形態で用いることが好ましい。
 レゾルシンの残留率は、5.0重量%以下であることが好ましく、1.0重量%以下であることがより好ましい。
<得られた縮合物>
 本発明において、”第一溶出ピーク”とは、ゲル浸透クロマトグラフィー(示差屈折率検出)により縮合物を分析したときに得られるクロマトグラム中の全てのピークの中で、保持時間が最も短いピークを意味し、”第二溶出ピーク”とは、ゲル浸透クロマトグラフィー(示差屈折率検出)により縮合物を分析したときに得られるクロマトグラム中の全てのピークの中で、保持時間が二番目に短いピークを意味し、”第三溶出ピーク”とは、ゲル浸透クロマトグラフィー(示差屈折率検出)により縮合物を分析したときに得られるクロマトグラム中の全てのピークの中で、保持時間が三番目に短いピークを意味する。
 ゲル浸透クロマトグラフィー(示差屈折率検出)において、式(IV)で表される化合物およびその異性体からなる化合物群は第一溶出ピークとして、式(III)で表される化合物およびその異性体からなる化合物群は第二溶出ピークとして、式(I)で表される化合物およびその異性体、ならびに、式(II)で表される化合物およびその異性体からなる化合物群は第三溶出ピークとして、それぞれ検出される。
 得られた縮合物は、下記(1)、(2)および(3)を満たす縮合物であることが好ましい。
(1)ゲル浸透クロマトグラフィー(示差屈折率検出)により、縮合物を分析したときに、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバン由来のピークの面積比が30~55%の範囲であること。
(2)ゲル浸透クロマトグラフィー(示差屈折率検出)により、縮合物を分析したときに、全ピークの合計面積に対する第一溶出ピークの面積比が20~50%の範囲であること。
(3)前記第一溶出ピークの重量平均分子量が1500~1700の範囲であること。
 得られた縮合物は、軟化点が160℃以下であることが好ましい。
 得られた縮合物は、120℃で24時間保管したときのレゾルシンの増加率が2%以下であることが好ましい。
 得られた縮合物中に含まれる2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンの含有率は、30~55重量%の範囲であることが好ましく、35~50重量%の範囲であることがより好ましい。
 得られた縮合物中に含まれる4,6−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(I)で表される化合物)およびその異性体、ならびに、2,4−ビス(7−ヒドロキシ−2,4,4−トリメチルクロマン−2−イル)−1,3−ベンゼンジオール(式(II)で表される化合物)およびその異性体の合計の含有率は、5~10重量%の範囲であることが好ましい。
 得られた縮合物中に含まれる式(III)で表される化合物およびその異性体の合計の含有率は、5~15重量%の範囲であることが好ましい。
 得られた縮合物中に含まれる式(IV)で表される化合物およびその異性体の合計の含有率は、20~50重量%の範囲であることが好ましく、25~35重量%の範囲であることがより好ましい。
 得られたレゾルシンとアセトンとの縮合物は、ゴムの補強剤として用いることができる。特にタイヤ用ゴムの補強剤として有用である。
 次に、レゾルシンとアセトンとの縮合物とゴム成分と充填剤と硫黄成分とを含むゴム組成物について説明する。
 ゴム成分としては、天然ゴム、スチレンブタジエン共重合ゴム、ブタジエンゴム、イソプレンゴム、および、それらを主成分とするゴム成分が挙げられる。これらゴム成分100重量部に対して、レゾルシンとアセトンとの縮合物の使用量は0.5~3重量部の範囲が好ましく、1~2重量部の範囲がより好ましい。
 充填剤としては、ゴム分野で通常使用されているカーボンブラック、シリカ、タルクおよびクレイが挙げられ、カーボンブラックがより好ましく使用される。カーボンブラックとしては、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)等のカーボンブラックが好ましい。また、カーボンブラックとシリカの併用等の数種の充填剤を組み合わせることも好ましい。充填剤の使用量は、ゴム成分100重量部あたり、10~100重量部の範囲が好ましく、より好ましくは30~70重量部の範囲である。
 硫黄成分としては、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄および高分散性硫黄が挙げられ、粉末硫黄および不溶性硫黄が好ましい。硫黄成分の使用量は、ゴム成分100重量部あたり1~10重量部の範囲であることが好ましく、より好ましくは2~6重量部の範囲である。
 更に、加硫促進剤、メトキシ化メチロールメラミン樹脂、有機コバルト化合物および酸化亜鉛を使用して、ゴム組成物を製造することができる。
 加硫促進剤の例としては、ゴム工業便覧<第四版>(平成6年1月20日社団法人 日本ゴム協会発行)の412~413ページに記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤およびグアニジン系加硫促進剤が挙げられる。加硫促進剤の使用量は、ゴム成分100重量部あたり0.5~1重量部の範囲が好ましく、より好ましくは0.6~0.8重量部の範囲である。
 メトキシ化メチロールメラミン樹脂としては、ヘキサキス(メトキシメチル)メラミン、ペンタキス(メトキシメチル)メチロールメラミン、テトラキス(メトキシメチル)ジメチロールメラミン等のゴム工業において通常使用されているものが挙げられ、ヘキサキス(メトキシメチル)メラミン単独またはそれを主成分とする混合物が好ましい。これらのメトキシ化メチロールメラミン樹脂は、それぞれ単独で、または、二種以上を組み合わせて用いることができ、その配合量は、ゴム成分100重量部に対して、0.5~6.0重量部の範囲が好ましく、1.0~3.0重量部の範囲がより好ましい。
 有機コバルト化合物としては、ナフテン酸コバルト、ステアリン酸コバルト等の酸コバルト塩や、脂肪酸コバルト・ホウ素錯体化合物(例えば、商品名「マノボンドC(登録商標)」:マンケム社製)が挙げられる。有機コバルト化合物の使用量は、ゴム成分100重量部に対して、コバルト含量に換算して、0.1~0.4重量部の範囲が好ましく、0.1~0.3重量部の範囲がより好ましい。
 ゴム工業で通常使用されている各種のゴム薬品、例えば、酸化防止剤やオゾン劣化防止剤のような老化防止剤、しゃく解剤、加工助剤、ワックス、オイル、ステアリン酸、粘着付与剤等の1種または2種以上を、必要に応じて用いてもよい。これら薬品の配合量は、ゴム組成物の用途により異なるが、それぞれがゴム工業において通常使用されている範囲の量を用いることができる。
 ゴム組成物は、例えば、ゴム業界で通常実施されている方法に準拠し、成形、加硫等の工程を経ることにより、ゴム製品に誘導し得る。特にタイヤの各種部材、例えば、キャップトレッド、アンダートレッド、ベルト、カーカス、ビード、サイドウォール、ゴムチェーファー等に用いることができる。またエンジンマウント、ストラットマウント、ブッシュ、エグゾーストハンガー等の自動車用防振ゴム、ホース類、ゴムベルト等に用いることもできる。
 例えば、ゴム組成物でスチールコードを被覆することにより、タイヤ用ベルトを製造することができる。スチールコードは、通常、引き揃えた状態で用いられる。
 スチールコードは、ゴムとの接着性の観点から、黄銅,亜鉛、あるいはこれにニッケルやコバルトを含有する合金でメッキ処理されていることが好ましく、特に黄銅メッキ処理が施されているものが好適である。特に、黄銅メッキ中のCu含有率が75重量%以下、好ましくは55~70重量%である黄銅メッキ処理が施されたスチールコードが好適である。スチールコードの撚り構造は制限されない。
 ベルトは、複数枚積層して用いてもよい。ベルトは、主にカーカスの補強材料として使用される。
 また、例えば、ゴム組成物を、タイヤのカーカス形状に合わせて押し出し加工し、カーカス繊維コードの上下に貼り付けることにより、カーカスを製造することもできる。カーカス繊維コードは、通常、平行に引き揃えた状態で使用される。カーカス繊維コードとしては、弾性率および耐疲労性が良好で、耐クリープ性も優秀で、安価なポリエステルが好ましい。これらは、1枚または複数枚積層することで、タイヤ補強材料として使用される。
 ゴム組成物を用いて、通常の製造方法によって空気入りタイヤを製造することができる。例えば、ゴム組成物を押し出し加工し、タイヤ用部材を得、タイヤ成形機上で通常の方法により、他のタイヤ部材に貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。
The production method of the present invention comprises a step of reacting resorcin and acetone in the presence of an acid;
Removing water by-produced by the reaction in the presence of an acid;
Is a method for producing a condensate of resorcin and acetone.
<Step of reacting resorcin and acetone in the presence of an acid (hereinafter sometimes referred to as “first step”)>
A commercially available resorcin can be used. Commercially available acetone can also be used. The amount of acetone used is preferably in the range of 1 to 6 mol and more preferably in the range of 1.5 to 4 mol with respect to 1 mol of resorcin. If the amount of acetone used is 1 mol or more, the residual rate of unreacted resorcin tends to be reduced.
The acid acts as a catalyst in the reaction between resorcin and acetone, and may be hereinafter referred to as “acid catalyst”. Specific examples of the acid include benzenesulfonic acid, p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, oxalic acid, phosphoric acid, polyphosphoric acid, borofluoric acid, hydrochloric acid and sulfuric acid. Among these, at least one acid selected from the group consisting of p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, hydrochloric acid and sulfuric acid is preferable. These acids can be used as they are or in the form of an aqueous solution having an appropriate concentration. The amount of acid used is not limited, but is preferably in the range of 0.1 to 10 mol, more preferably in the range of 0.5 to 5 mol, per 100 mol of resorcin.
The reaction between resorcin and acetone is preferably performed in the presence of an organic solvent. Examples of the organic solvent include aliphatic hydrocarbons, aromatic hydrocarbons, and halogen-substituted aromatic hydrocarbons. Specific examples of aliphatic hydrocarbons include hexane, heptane, octane, and decane. Specific examples of aromatic hydrocarbons include toluene, xylene, and ethylbenzene. Specific examples of halogen-substituted aromatic hydrocarbons. Includes chlorobenzene and dichlorobenzene. Aromatic hydrocarbons are preferred, and toluene or xylene is more preferred. The amount of the organic solvent used is preferably in the range of 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin.
The reaction temperature of the reaction between resorcin and acetone is preferably in the range of 30 ° C. or higher and 65 ° C. or lower. The progress of the reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC), etc., while confirming the progress of the reaction, The end point can be determined.
The order of mixing resorcin, acetone and acid is not limited. For example, resorcin and acetone are mixed in the presence of an organic solvent as necessary, and the resulting mixture and acid are mixed under reaction temperature conditions. The reaction can be carried out. As the reaction proceeds, acetone may be added continuously or intermittently to the mixture. As the reaction proceeds, 2,4,4-trimethyl-2′4′7-trihydroxyflavan, which is one of the compounds contained in the condensate of resorcin and acetone, may precipitate, In order to prevent 4,4-trimethyl-2'4'7-trihydroxyflavan from sticking to the reaction vessel wall (so-called scaling), 2,4,4-trimethyl-2'4'7-trihydroxyflavan is used. It may be used as a seed crystal. In addition, 2,4,4-trimethyl-2′4′7-trihydroxyflavan is a compound represented by the following formula.
Figure JPOXMLDOC01-appb-I000001
As a compound contained in the condensate of resorcin and acetone, in addition to 2,4,4-trimethyl-2′4′7-trihydroxyflavan (compound represented by the following formula),
Figure JPOXMLDOC01-appb-I000002
7,7′-dihydroxy-4,4,4 ′, 4′-tetramethyl-2,2′-spirobichroman (compound represented by the following formula),
Figure JPOXMLDOC01-appb-I000003
4,6-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (I)) and isomers thereof,
Figure JPOXMLDOC01-appb-I000004
2,4-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (II)) and isomers thereof,
Figure JPOXMLDOC01-appb-I000005
Compounds represented by formula (III) and isomers thereof,
Figure JPOXMLDOC01-appb-I000006
And a compound represented by formula (IV) and an isomer thereof,
Figure JPOXMLDOC01-appb-I000007
[In the formula (IV), n represents an integer of 2 or more. ]
Is mentioned.
<Step of removing water by-produced by the reaction in the presence of an acid (hereinafter sometimes referred to as “second step”)>
The step of removing water by-produced by the reaction of resorcin and acetone in the presence of an acid may be performed simultaneously with the step of reacting resorcin and acetone in the presence of an acid. For the purpose of the above, it is preferable to react resorcin and acetone in the presence of an acid, and then remove water by-produced by the reaction in the presence of an acid. The mixture obtained by removing water in this step contains a condensate of resorcin and acetone and an acid.
The removal of water may be carried out using a substance capable of adsorbing water or a substance capable of decomposing water, but is preferably carried out by distillation, by azeotropy of the organic solvent and water in the presence of the organic solvent. More preferably. The fraction obtained by distillation or azeotrope usually contains water, and water can be removed by removing the fraction, but the fraction is separated into an organic layer and an aqueous layer. When it is, it is preferable that only the aqueous layer is separated and removed, and the organic layer is returned to the mixture. The removal of water is preferably carried out until the water content of the mixture obtained by removing water becomes 0.01 to 2% by weight, more preferably until the water content becomes 0.01 to 1% by weight. preferable.
As the organic solvent, the organic solvent used for the reaction of resorcin and acetone is usually used, but an organic solvent different from this can also be used. Examples of the organic solvent include aliphatic hydrocarbons such as pentane, hexane, and heptane, alicyclic hydrocarbons such as cyclopentane, cyclohexane, and methylcyclohexane, aromatic hydrocarbons such as benzene, toluene, and xylene, methylene chloride, chloroform, Examples thereof include chlorinated hydrocarbons such as carbon chloride, trichrene, barkrene, ethylene dichloride, and benzene chloride, esters such as methyl acetate, ethyl acetate, and propyl acetate, and nitriles such as acetonitrile. Of these, aromatic hydrocarbons are preferable, and toluene or xylene is more preferable.
The mixture obtained in the first step and the second step may be subjected to a post-treatment step which will be described later, or, if necessary, further subjected to a third step, which will be described later, followed by a post-treatment step. Also good.
<A step of mixing the mixture after removing water and acetone (hereinafter sometimes referred to as “third step”)>
More preferably, acetone is mixed with the mixture after removing water by-produced by the reaction between resorcin and acetone in the presence of an acid. The third step is a step of reacting acetone with resorcin remaining in a mixture containing a condensate of resorcin and acetone and an acid.
The amount of acetone used in the third step is such that the sum of the amount of acetone used in the first step is in the range of 1 to 6 moles per mole of resorcin used in the first step. Good. An acid or an organic solvent may be used in the third step as necessary. The reaction temperature in the third step is preferably in the range of 30 ° C. or higher and 65 ° C. or lower. Moreover, you may perform a 3rd process, removing water. About removal of water, it can carry out similarly to a 2nd process. In the third step, while confirming the content ratio of 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan and the content ratio of resorcin, by ordinary analysis means such as GC, HPLC, GPC and the like. Then, it may be carried out while adding acetone as appropriate until they reach the desired range.
<Post-processing process>
A condensate of resorcin and acetone can be taken out by subjecting the mixture obtained in the second step or the third step to a post-treatment step including filtration and concentration and removing the organic solvent.
<The process of mixing the mixture after removing water and a base>
After neutralizing the mixture obtained in the second step or the third step with a base, it is separated by solid-liquid separation by washing with water or filtering, and generated by acid catalyst or neutralization attached to the obtained solid as necessary. After the washed salt is washed with water, the organic solvent may be removed. Examples of the base include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkali metal hydrogen carbonates such as sodium hydrogen carbonate, alkali metal carbonates such as sodium carbonate, etc., and alkali metal hydroxides are preferred. Sodium hydroxide is more preferable. The base is preferably used in the form of an aqueous solution having an appropriate concentration.
The residual ratio of resorcin is preferably 5.0% by weight or less, and more preferably 1.0% by weight or less.
<Condensate obtained>
In the present invention, the “first elution peak” is a peak having the shortest retention time among all peaks in a chromatogram obtained when a condensate is analyzed by gel permeation chromatography (differential refractive index detection). The “second eluting peak” means that the retention time is the second of all peaks in the chromatogram obtained when the condensate is analyzed by gel permeation chromatography (differential refractive index detection). A short peak means “third elution peak”, and among all peaks in the chromatogram obtained when the condensate is analyzed by gel permeation chromatography (differential refractive index detection), the retention time is three. Means the second shortest peak.
In gel permeation chromatography (differential refractive index detection), the compound group consisting of the compound represented by formula (IV) and its isomer is taken as the first elution peak from the compound represented by formula (III) and its isomer. The compound group consisting of the compound represented by formula (I) and its isomer, and the compound group consisting of the compound represented by formula (II) and its isomer as the third elution peak, Each is detected.
The obtained condensate is preferably a condensate satisfying the following (1), (2) and (3).
(1) When the condensate was analyzed by gel permeation chromatography (differential refractive index detection), it was derived from 2,4,4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan relative to the total area of all peaks. The peak area ratio is in the range of 30 to 55%.
(2) When the condensate is analyzed by gel permeation chromatography (differential refractive index detection), the area ratio of the first eluting peak to the total area of all peaks is in the range of 20 to 50%.
(3) The weight average molecular weight of the first elution peak is in the range of 1500 to 1700.
The obtained condensate preferably has a softening point of 160 ° C. or lower.
The obtained condensate preferably has a resorcin increase rate of 2% or less when stored at 120 ° C. for 24 hours.
The content of 2,4,4-trimethyl-2′4′7-trihydroxyflavan contained in the obtained condensate is preferably in the range of 30 to 55% by weight, and 35 to 50% by weight. A range is more preferable.
4,6-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (I)) contained in the obtained condensate And its isomers, and 2,4-bis (7-hydroxy-2,4,4-trimethylchroman-2-yl) -1,3-benzenediol (compound represented by formula (II)) and its The total content of isomers is preferably in the range of 5 to 10% by weight.
The total content of the compound represented by the formula (III) and its isomer contained in the obtained condensate is preferably in the range of 5 to 15% by weight.
The total content of the compound represented by formula (IV) and the isomers contained in the obtained condensate is preferably in the range of 20 to 50% by weight, and in the range of 25 to 35% by weight. More preferably.
The resulting condensate of resorcin and acetone can be used as a rubber reinforcing agent. It is particularly useful as a reinforcing agent for rubber for tires.
Next, a rubber composition containing a condensate of resorcin and acetone, a rubber component, a filler, and a sulfur component will be described.
Examples of the rubber component include natural rubber, styrene butadiene copolymer rubber, butadiene rubber, isoprene rubber, and rubber components containing them as a main component. The amount of the condensate of resorcin and acetone used is preferably in the range of 0.5 to 3 parts by weight, more preferably in the range of 1 to 2 parts by weight with respect to 100 parts by weight of these rubber components.
Examples of the filler include carbon black, silica, talc and clay which are usually used in the rubber field, and carbon black is more preferably used. As the carbon black, carbon black such as HAF (High Ablation Furnace), SAF (Super Ablation Furnace), ISAF (Intermediate SAF) is preferable. It is also preferable to combine several kinds of fillers such as a combination of carbon black and silica. The amount of the filler used is preferably in the range of 10 to 100 parts by weight, more preferably in the range of 30 to 70 parts by weight per 100 parts by weight of the rubber component.
Examples of the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur and highly dispersible sulfur, with powdered sulfur and insoluble sulfur being preferred. The amount of the sulfur component used is preferably in the range of 1 to 10 parts by weight, more preferably in the range of 2 to 6 parts by weight per 100 parts by weight of the rubber component.
Furthermore, a rubber composition can be produced using a vulcanization accelerator, a methoxylated methylol melamine resin, an organic cobalt compound and zinc oxide.
Examples of vulcanization accelerators include thiazole-based vulcanization accelerators described in pages 412 to 413 of Rubber Industry Handbook <Fourth Edition> (issued by the Japan Rubber Association on January 20, 1994), Examples thereof include phenamide vulcanization accelerators and guanidine vulcanization accelerators. The amount of vulcanization accelerator used is preferably in the range of 0.5 to 1 part by weight, more preferably in the range of 0.6 to 0.8 part by weight per 100 parts by weight of the rubber component.
Examples of the methoxylated methylol melamine resin include those commonly used in the rubber industry such as hexakis (methoxymethyl) melamine, pentakis (methoxymethyl) methylol melamine, tetrakis (methoxymethyl) dimethylol melamine, and hexakis (methoxymethyl). ) Melamine alone or a mixture based on it is preferred. These methoxylated methylol melamine resins can be used alone or in combination of two or more, and the blending amount thereof is 0.5 to 6.0 parts by weight with respect to 100 parts by weight of the rubber component. The range is preferable, and the range of 1.0 to 3.0 parts by weight is more preferable.
Examples of the organic cobalt compound include acid cobalt salts such as cobalt naphthenate and cobalt stearate, and fatty acid cobalt / boron complex compounds (for example, trade name “Manobond C (registered trademark)” manufactured by Manchem). The amount of the organic cobalt compound used is preferably in the range of 0.1 to 0.4 parts by weight and in the range of 0.1 to 0.3 parts by weight in terms of cobalt content with respect to 100 parts by weight of the rubber component. More preferred.
Various rubber chemicals commonly used in the rubber industry, such as anti-aging agents such as antioxidants and ozone degradation inhibitors, peptizers, processing aids, waxes, oils, stearic acid, tackifiers, etc. You may use 1 type (s) or 2 or more types as needed. The compounding amount of these chemicals varies depending on the use of the rubber composition, but an amount in a range usually used in the rubber industry can be used.
The rubber composition can be derived into a rubber product through a process such as molding and vulcanization, for example, in accordance with a method commonly practiced in the rubber industry. In particular, it can be used for various members of tires such as cap treads, under treads, belts, carcass, beads, sidewalls, rubber chafers and the like. Further, it can also be used for anti-vibration rubbers for automobiles such as engine mounts, strut mounts, bushes and exhaust hangers, hoses, rubber belts and the like.
For example, a tire belt can be manufactured by coating a steel cord with a rubber composition. Steel cords are usually used in an aligned state.
From the viewpoint of adhesion to rubber, the steel cord is preferably plated with brass, zinc, or an alloy containing nickel or cobalt, and is preferably subjected to brass plating. is there. In particular, a steel cord subjected to a brass plating process in which the Cu content in the brass plating is 75% by weight or less, preferably 55 to 70% by weight is suitable. The twist structure of the steel cord is not limited.
A plurality of belts may be laminated and used. The belt is mainly used as a carcass reinforcing material.
In addition, for example, a carcass can be manufactured by extruding a rubber composition in accordance with a carcass shape of a tire and attaching the rubber composition on the upper and lower sides of a carcass fiber cord. The carcass fiber cord is usually used in a state of being aligned in parallel. As the carcass fiber cord, preferred is an inexpensive polyester that has good elastic modulus and fatigue resistance and excellent creep resistance. These are used as a tire reinforcing material by laminating one sheet or a plurality of sheets.
A pneumatic tire can be manufactured by a normal manufacturing method using a rubber composition. For example, a rubber composition is extruded to obtain a tire member, which is pasted and molded on another tire member by a normal method on a tire molding machine to form a raw tire. The green tire is heated and pressed in a vulcanizer to obtain a tire.
 以下、実施例および試験例により、本発明を具体的に説明する。なお、以下の実施例において、2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンおよびレゾルシンの含有率は、GPC面積百分率法により求めた。軟化点の測定はJIS K6220−1に従って実施した。また、実施例において、”部”は”重量部”を表す。
 GPC分析において、式(IV)で表される化合物およびその異性体からなる化合物群は第一溶出ピークとして、式(III)で表される化合物およびその異性体からなる化合物群は第二溶出ピークとして、式(I)で表される化合物およびその異性体、ならびに、式(II)で表される化合物およびその異性体からなる化合物群は第三溶出ピークとして、検出された。
<GPC分析条件>
カラム:TOSOH TSGel Super HZ2000(4.6mmφx150cm)とTOSOH TSGel Super HZ1000(4.6mmφx150cm)2本とを接続
温度 :40℃
移動相:テトラヒドロフラン
検出器:RI
実施例1
 温度計、攪拌機およびコンデンサーを備えた1000ml四つ口フラスコに、レゾルシン198.2g(1.8モル)を仕込み、フラスコ内部を窒素置換した後、アセトン167.3g(2.88モル)およびトルエン501gを仕込んだ。得られた混合物を40℃に昇温した後、98%硫酸1.98gを仕込んだ。得られた混合物を内温60℃まで昇温し、4時間保温した。
その後、内温60℃のままでフラスコ内部を減圧して反応系内から水を除去した。同温度でアセトン52.3g(0.9モル)を仕込み、得られた混合物を、フラスコ内部を減圧して反応系内から水を除去しながら、60℃で2時間保温した。その後、10%水酸化ナトリウム水溶液で中和を行い、さらに1KPa以下の減圧下、80℃で12時間乾燥を行い、レゾルシンとアセトンの縮合物313gを得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンおよびレゾルシンの含有率は、それぞれ以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:44.4%
レゾルシン:0.7%
第一溶出ピーク:34.1%
第一溶出ピークの重量平均分子量:1441
軟化点 144℃
実施例2
 温度計、攪拌機およびコンデンサーを備えた500ml四つ口フラスコに、レゾルシン88.1g(0.8モル)を仕込み、フラスコ内部を窒素置換した後、アセトン65.0g(1.12モル)およびトルエン132gを仕込んだ。得られた混合物を40℃に昇温した後、98%硫酸0.88gを仕込んだ。得られた混合物を内温50℃まで昇温し、4時間保温した。その後、内温60℃まで昇温し、フラスコ内部を減圧して反応系内から水を除去した。常圧に戻し、45℃まで冷却した後、アセトン69.7g(1.2モル)を仕込み、得られた混合物を同温度で3.5時間保温した。その後、10%水酸化ナトリウム水溶液で中和を行い、さらに1KPa以下の減圧下、80℃で12時間乾燥を行い、レゾルシンとアセトンの縮合物136gを得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンおよびレゾルシンの含有率は、それぞれ以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:50.4重量%
レゾルシン:0.9重量%
実施例3
 温度計、攪拌機およびコンデンサーを備えた500ml四つ口フラスコに、レゾルシン88.1g(0.8モル)を仕込み、フラスコ内部を窒素置換した後、アセトン65.0g(1.12モル)およびトルエン223gを仕込んだ。得られた混合物を40℃に昇温した後、98%硫酸0.40gを仕込んだ。得られた混合物を内温50℃まで昇温し、3.5時間保温した。内温60℃のまま、フラスコ内部を減圧して反応系内から水を除去した。常圧に戻し、アセトン69.7g(1.2モル)を仕込み、得られた混合物を同温度で5時間保温した。その後、10%水酸化ナトリウム水溶液で中和を行い、1KPa以下の減圧下、80℃で12時間乾燥を行い、レゾルシンとアセトンの縮合物136gを得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンおよびレゾルシンの含有率は、それぞれ以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:45.8重量%
レゾルシン:0.97重量%
第一溶出ピーク:28.1%
第一溶出ピークの重量平均分子量:1211
軟化点 112℃
比較参考例1
 温度計、攪拌機およびコンデンサーを備えた500ml四つ口フラスコに、レゾルシン44.0g(0.4モル)を仕込み、フラスコ内部を窒素置換した後、アセトン25.6g(0.44モル)およびトルエン111gを仕込んだ。得られた混合物を40℃に昇温した後、98%硫酸0.44gを仕込んだ。得られた混合物を内温80℃まで昇温し、3時間保温した。次に、アセトン23.2g(0.40モル)を仕込み、得られた混合物を4時間保温した。次に、アセトン23.2g(0.40モル)を仕込み、得られた混合物を3時間保温した。その後、10%水酸化ナトリウム水溶液で中和を行い、さらに1KPa以下の減圧下、80℃で12時間乾燥を行い、レゾルシンとアセトンの縮合物120gを得た。得られた縮合物中の2,4,4−トリメチル−2’4’7−トリヒドロキシフラバンおよびレゾルシンの含有率は、それぞれ以下のとおりであった。
2,4,4−トリメチル−2’4’7−トリヒドロキシフラバン:42.9重量%
レゾルシン:15.8重量%
実施例4[ゴム組成物の製造]
 0.6リットルのラボプラストミルを用い、初期の系内温度を150℃として、下記配合処方に基づき、最初に天然ゴム(RSS#1)を投入して3分間素練り(mastication)を行い、続いてカーボンブラック(N330)、含水シリカ、ステアリン酸、亜鉛華、老化防止剤(2,2,4−トリメチル−1,2−ジヒドロキノリン縮合物)および実施例1で得た縮合物を投入し、5分間混練して排出した。次いで、この排出ゴムをオープンロールに移し、初期品温を60℃として、下記配合処方に示したイオウ、加硫促進剤(N,N−ジシクロヘキシル−2−ベンゾチアジルスルフェンアミド)、メトキシ化メチロールメラミン樹脂(スミカノール507AP(住友化学社製))およびナフテン酸コバルトを添加し、ゴムの温度が80℃以下になるよう温度制御しつつ、混練することによりゴム組成物を得た。
<配合処方>
・天然ゴム(RSS#1)  100部
・N330カーボンブラック  45部
・含水シリカ(東ソー・シリカ(株)製 Nipsil AQ)  10部
・ステアリン酸  3部
・亜鉛華  5重量部
・老化防止剤(2,2,4−トリメチル−1,2−ジヒドロキノリン縮合物)  2部
・成分A(実施例1で得たレゾルシンとアセトンの縮合物)  2部
・イオウ  4部
・加硫促進剤(N,N−ジシクロヘキシル−2−ベンゾチアジルスルフェンアミド)  0.7部
・メトキシ化メチロールメラミン樹脂(スミカノール507AP(住友化学社製))  3部(有効成分2部)
・ナフテン酸コバルト  2部(コバルト含量0.2部)
実施例5[ゴム組成物の製造]
 実施例4において、実施例1で得た縮合物に代えて、実施例2で得た縮合物を用いた以外は、実施例4と同様に実施してゴム組成物を得た。
実施例6[タイヤ用ベルト、および、これを用いたタイヤの製造]
 実施例4で得たゴム組成物で、黄銅メッキ処理が施されたスチールコードを被覆することにより、ベルトが得られる。得られるベルトを用いて、通常の製造方法に従い、生タイヤを成形し、得られた生タイヤを加硫機中で加熱加圧することにより、タイヤが得られる。
実施例7[タイヤ用カーカス、および、これを用いたタイヤの製造]
 実施例4で得たゴム組成物を押し出し加工して、カーカス形状に応じた形状のゴム組成物を調製し、ポリエステル製のカーカス繊維コードの上下に貼り付けることにより、カーカスが得られる。得られたカーカスを用いて、通常の製造方法に従い、生タイヤを成形し、得られた生タイヤを加硫機中で加熱加圧することにより、タイヤが得られる。
実施例8[タイヤ用キャップトレッド、および、これを用いたタイヤの製造]
 実施例4で得たゴム組成物を押し出し加工して、キャップトレッドが得られる。得られたキャップトレッドを用いて、通常の製造方法に従い、生タイヤを成形し、得られた生タイヤを加硫機中で加熱加圧することにより、タイヤが得られる。
実施例9[タイヤ用アンダートレッド、および、これを用いたタイヤの製造]
 実施例4で得たゴム組成物を押し出し加工して、アンダートレッドが得られる。得られたアンダートレッドを用いて、通常の製造方法に従い、生タイヤを成形し、得られた生タイヤを加硫機中で加熱加圧することにより、タイヤが得られる。
Hereinafter, the present invention will be specifically described with reference to Examples and Test Examples. In the following examples, the contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin were determined by the GPC area percentage method. The softening point was measured according to JIS K6220-1. In the examples, “part” represents “part by weight”.
In GPC analysis, the compound group consisting of the compound represented by formula (IV) and its isomer is the first eluting peak, and the compound group consisting of the compound represented by formula (III) and its isomer is the second eluting peak. As a third elution peak, the compound represented by the formula (I) and its isomer, and the compound group consisting of the compound represented by the formula (II) and its isomer were detected.
<GPC analysis conditions>
Column: TOSOH TSGel Super HZ2000 (4.6 mmφ × 150 cm) and two TOSOH TSGel Super HZ1000 (4.6 mmφx150 cm) connection temperature: 40 ° C.
Mobile phase: Tetrahydrofuran Detector: RI
Example 1
A 1000 ml four-necked flask equipped with a thermometer, a stirrer and a condenser was charged with 198.2 g (1.8 mol) of resorcin, and the inside of the flask was purged with nitrogen, and then 167.3 g (2.88 mol) of acetone and 501 g of toluene. Was charged. The temperature of the resulting mixture was raised to 40 ° C., and then 1.98 g of 98% sulfuric acid was charged. The obtained mixture was heated to an internal temperature of 60 ° C. and kept warm for 4 hours.
Thereafter, water was removed from the reaction system by reducing the pressure inside the flask while maintaining the internal temperature at 60 ° C. At the same temperature, 52.3 g (0.9 mol) of acetone was charged, and the resulting mixture was kept at 60 ° C. for 2 hours while removing the water from the reaction system by reducing the pressure inside the flask. Thereafter, the mixture was neutralized with a 10% aqueous sodium hydroxide solution and further dried at 80 ° C. for 12 hours under a reduced pressure of 1 KPa or less to obtain 313 g of a condensate of resorcin and acetone. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the obtained condensate were as follows.
2,4,4-trimethyl-2'4'7-trihydroxyflavan: 44.4%
Resorcin: 0.7%
First eluting peak: 34.1%
Weight average molecular weight of first elution peak: 1441
Softening point 144 ° C
Example 2
A 500 ml four-necked flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.8 mol) of resorcin, and the inside of the flask was purged with nitrogen, and then 65.0 g (1.12 mol) of acetone and 132 g of toluene. Was charged. The obtained mixture was heated to 40 ° C., and then charged with 0.88 g of 98% sulfuric acid. The obtained mixture was heated to an internal temperature of 50 ° C. and kept warm for 4 hours. Thereafter, the temperature was raised to an internal temperature of 60 ° C., and the inside of the flask was decompressed to remove water from the reaction system. After returning to normal pressure and cooling to 45 ° C., 69.7 g (1.2 mol) of acetone was charged, and the resulting mixture was kept at the same temperature for 3.5 hours. Thereafter, neutralization was performed with a 10% aqueous sodium hydroxide solution, followed by drying at 80 ° C. for 12 hours under reduced pressure of 1 KPa or less to obtain 136 g of a condensate of resorcin and acetone. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the obtained condensate were as follows.
2,4,4-trimethyl-2′4′7-trihydroxyflavan: 50.4% by weight
Resorcin: 0.9% by weight
Example 3
A 500 ml four-necked flask equipped with a thermometer, a stirrer and a condenser was charged with 88.1 g (0.8 mol) of resorcin, and the inside of the flask was purged with nitrogen, and then 65.0 g (1.12 mol) of acetone and 223 g of toluene. Was charged. The temperature of the obtained mixture was raised to 40 ° C., and then 0.40 g of 98% sulfuric acid was charged. The obtained mixture was heated to an internal temperature of 50 ° C. and kept warm for 3.5 hours. With the internal temperature kept at 60 ° C., the inside of the flask was decompressed to remove water from the reaction system. The pressure was returned to normal pressure, 69.7 g (1.2 mol) of acetone was charged, and the resulting mixture was kept at the same temperature for 5 hours. Thereafter, the solution was neutralized with a 10% aqueous sodium hydroxide solution and dried at 80 ° C. under a reduced pressure of 1 KPa or less for 12 hours to obtain 136 g of a resorcin-acetone condensate. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the obtained condensate were as follows.
2,4,4-trimethyl-2′4′7-trihydroxyflavan: 45.8% by weight
Resorcin: 0.97% by weight
First eluting peak: 28.1%
Weight average molecular weight of the first eluting peak: 1211
Softening point 112 ° C
Comparative Reference Example 1
A 500 ml four-necked flask equipped with a thermometer, a stirrer and a condenser was charged with 44.0 g (0.4 mol) of resorcin, and the inside of the flask was purged with nitrogen. Then, 25.6 g (0.44 mol) of acetone and 111 g of toluene were added. Was charged. The temperature of the obtained mixture was raised to 40 ° C., and then 0.44 g of 98% sulfuric acid was charged. The obtained mixture was heated to an internal temperature of 80 ° C. and kept warm for 3 hours. Next, 23.2 g (0.40 mol) of acetone was charged, and the resulting mixture was kept warm for 4 hours. Next, 23.2 g (0.40 mol) of acetone was charged, and the resulting mixture was kept warm for 3 hours. Thereafter, the mixture was neutralized with a 10% aqueous sodium hydroxide solution and further dried at 80 ° C. for 12 hours under reduced pressure of 1 KPa or less to obtain 120 g of a condensate of resorcin and acetone. The contents of 2,4,4-trimethyl-2′4′7-trihydroxyflavan and resorcin in the obtained condensate were as follows.
2,4,4-trimethyl-2′4′7-trihydroxyflavan: 42.9% by weight
Resorcin: 15.8% by weight
Example 4 [Production of rubber composition]
Using a 0.6 liter lab plast mill, the initial system temperature is set to 150 ° C., and based on the following formulation, first, natural rubber (RSS # 1) is added and mastication is performed for 3 minutes. Subsequently, carbon black (N330), hydrous silica, stearic acid, zinc white, anti-aging agent (2,2,4-trimethyl-1,2-dihydroquinoline condensate) and the condensate obtained in Example 1 were added. Kneaded for 5 minutes and discharged. Next, the discharged rubber was transferred to an open roll, the initial product temperature was set to 60 ° C., sulfur, vulcanization accelerator (N, N-dicyclohexyl-2-benzothiazylsulfenamide), methoxylation shown in the following formulation A rubber composition was obtained by adding a methylol melamine resin (Sumikanol 507AP (manufactured by Sumitomo Chemical Co., Ltd.)) and cobalt naphthenate while kneading while controlling the temperature of the rubber to 80 ° C. or less.
<Combination prescription>
・ Natural rubber (RSS # 1) 100 parts ・ N330 carbon black 45 parts ・ Hydrosilicate silica (Nipsil AQ manufactured by Tosoh Silica Co., Ltd.) 10 parts ・ Stearic acid 3 parts ・ Zinc flower 5 parts by weight ・ Anti-aging agent (2, 2,4-trimethyl-1,2-dihydroquinoline condensate) 2 parts, component A (condensate of resorcin and acetone obtained in Example 1) 2 parts, sulfur 4 parts, vulcanization accelerator (N, N- Dicyclohexyl-2-benzothiazylsulfenamide) 0.7 parts ・ Methoxylated methylol melamine resin (Sumikanol 507AP (manufactured by Sumitomo Chemical Co.)) 3 parts (2 parts active ingredient)
・ Cobalt naphthenate 2 parts (cobalt content 0.2 parts)
Example 5 [Production of rubber composition]
In Example 4, it replaced with the condensate obtained in Example 1, and carried out similarly to Example 4 except having used the condensate obtained in Example 2, and obtained the rubber composition.
Example 6 [Production of tire belt and tire using the same]
A belt is obtained by covering the steel cord subjected to the brass plating treatment with the rubber composition obtained in Example 4. A tire is obtained by forming a green tire using the obtained belt according to a normal production method and heating and pressing the obtained green tire in a vulcanizer.
Example 7 [Production of tire carcass and tire using the same]
By extruding the rubber composition obtained in Example 4, a rubber composition having a shape corresponding to the carcass shape is prepared, and carcass is obtained by applying the rubber composition on top and bottom of a polyester carcass fiber cord. Using the obtained carcass, a tire is obtained by molding a green tire according to a normal manufacturing method and heating and pressing the obtained green tire in a vulcanizer.
Example 8 [Production of tire tread and tire using the same]
The rubber composition obtained in Example 4 is extruded to obtain a cap tread. Using the obtained cap tread, a tire is obtained by molding a green tire according to a normal production method and heating and pressing the obtained green tire in a vulcanizer.
Example 9 [Production of tire undertread and tire using the same]
The rubber composition obtained in Example 4 is extruded to obtain an undertread. Using the obtained undertread, a tire is obtained by molding a green tire according to a normal manufacturing method and heating and pressing the obtained green tire in a vulcanizer.
 本発明の製造方法によれば、未反応のレゾルシンの残留量を少なくすることができる。本発明の製造方法により得られるレゾルシンとアセトンとの縮合物は、各種ゴム組成物の補強剤としての性能に優れ、かつ、ゴム組成物加工時の残存レゾルシンの蒸散による作業環境の悪化も防止できるため、工業的に有利である。 According to the production method of the present invention, the residual amount of unreacted resorcin can be reduced. The condensate of resorcin and acetone obtained by the production method of the present invention is excellent in performance as a reinforcing agent for various rubber compositions, and can also prevent deterioration of the working environment due to transpiration of residual resorcin during processing of the rubber composition. Therefore, it is industrially advantageous.

Claims (16)

  1.  レゾルシンとアセトンとを酸の存在下で反応させる工程と、
    前記反応により副生した水を酸の存在下で除去する工程と、
    を含むレゾルシンとアセトンとの縮合物の製造方法。
    Reacting resorcin and acetone in the presence of an acid;
    Removing water by-produced by the reaction in the presence of an acid;
    A method for producing a condensate of resorcin and acetone containing
  2.  レゾルシンとアセトンとを酸の存在下で反応させる工程と、
    前記反応により副生した水を酸の存在下で除去する工程と、
    水を除去した後の混合物と塩基とを混合する工程と、
    を含む請求項1に記載の製造方法。
    Reacting resorcin and acetone in the presence of an acid;
    Removing water by-produced by the reaction in the presence of an acid;
    Mixing the mixture after removing water and the base;
    The manufacturing method of Claim 1 containing this.
  3.  レゾルシンとアセトンとを酸の存在下で反応させる工程と、
    前記反応により副生した水を酸の存在下で除去する工程と、
    水を除去した後の混合物とアセトンとを混合する工程と、
    アセトンと混合した後の混合物と塩基とを混合する工程と、
    を含む請求項1または2に記載の製造方法。
    Reacting resorcin and acetone in the presence of an acid;
    Removing water by-produced by the reaction in the presence of an acid;
    Mixing the mixture after removing water and acetone;
    Mixing the mixture after mixing with acetone and a base;
    The manufacturing method of Claim 1 or 2 containing.
  4.  前記反応により副生した水を酸の存在下で除去する工程が、前記反応により副生した水を酸および有機溶媒の存在下で除去する工程である請求項1~3のいずれかに記載の製造方法。 4. The step of removing water by-produced by the reaction in the presence of an acid is a step of removing water by-produced by the reaction in the presence of an acid and an organic solvent. Production method.
  5.  前記反応により副生した水を酸および有機溶媒の存在下で除去する工程が、前記反応により副生した水を、酸および有機溶媒の存在下で、有機溶媒と共沸させることにより除去する工程である請求項4に記載の製造方法。 The step of removing water by-produced by the reaction in the presence of an acid and an organic solvent is a step of removing water by-produced by the reaction by azeotroping with the organic solvent in the presence of an acid and an organic solvent. The manufacturing method according to claim 4.
  6.  有機溶媒が、芳香族炭化水素である請求項4または5に記載の製造方法。 The production method according to claim 4 or 5, wherein the organic solvent is an aromatic hydrocarbon.
  7.  芳香族炭化水素が、トルエンまたはキシレンである請求項6に記載の製造方法。 The production method according to claim 6, wherein the aromatic hydrocarbon is toluene or xylene.
  8.  酸が、p−トルエンスルホン酸、p−トルエンスルホン酸水和物、塩酸および硫酸からなる群から選ばれる少なくとも1種である請求項1~7のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 7, wherein the acid is at least one selected from the group consisting of p-toluenesulfonic acid, p-toluenesulfonic acid hydrate, hydrochloric acid, and sulfuric acid.
  9.  請求項1~8のいずれかに記載の製造方法により得られる縮合物とゴム成分と充填剤と硫黄成分とを含むゴム組成物。 A rubber composition comprising a condensate obtained by the production method according to any one of claims 1 to 8, a rubber component, a filler, and a sulfur component.
  10.  請求項9に記載のゴム組成物で被覆されたスチールコードを含むタイヤ用ベルト。 A tire belt comprising a steel cord coated with the rubber composition according to claim 9.
  11.  請求項9に記載のゴム組成物で被覆されたカーカス繊維コードを含むタイヤ用カーカス。 A tire carcass comprising a carcass fiber cord coated with the rubber composition according to claim 9.
  12.  請求項9に記載のゴム組成物を含むタイヤ用キャップトレッドまたはタイヤ用アンダートレッド。 A tire tread or a tire undertread comprising the rubber composition according to claim 9.
  13.  請求項9に記載のゴム組成物を加工することにより製造される空気入りタイヤ。 A pneumatic tire manufactured by processing the rubber composition according to claim 9.
  14.  下記(1)、(2)および(3)を満たすレゾルシンとアセトンとの縮合物。
    (1)ゲル浸透クロマトグラフィー(示差屈折率検出)により、縮合物を分析したときに、全ピークの合計面積に対する2,4,4−トリメチル−2’,4’,7−トリヒドロキシフラバン由来のピークの面積比が30~55%の範囲であること。
    (2)ゲル浸透クロマトグラフィー(示差屈折率検出)により、縮合物を分析したときに、全ピークの合計面積に対する第一溶出ピークの面積比が20~50%の範囲であること。
    (3)前記第一溶出ピークの重量平均分子量が1500~1700の範囲であること。
    A condensate of resorcin and acetone satisfying the following (1), (2) and (3).
    (1) When the condensate was analyzed by gel permeation chromatography (differential refractive index detection), it was derived from 2,4,4-trimethyl-2 ', 4', 7-trihydroxyflavan relative to the total area of all peaks. The peak area ratio is in the range of 30 to 55%.
    (2) When the condensate is analyzed by gel permeation chromatography (differential refractive index detection), the area ratio of the first elution peak to the total area of all peaks is in the range of 20 to 50%.
    (3) The weight average molecular weight of the first elution peak is in the range of 1500 to 1700.
  15.  軟化点が160℃以下である請求項14に記載の縮合物。 The condensate according to claim 14, which has a softening point of 160 ° C or lower.
  16.  120℃で24時間保管したときのレゾルシンの増加率が2%以下である請求項14または15に記載の縮合物。 The condensate according to claim 14 or 15, wherein the increase rate of resorcin when stored at 120 ° C for 24 hours is 2% or less.
PCT/JP2012/053590 2011-02-18 2012-02-09 Method for producing condensate of resorcin and acetone, and rubber composition including condensate WO2012111726A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011033045 2011-02-18
JP2011-033045 2011-02-18

Publications (1)

Publication Number Publication Date
WO2012111726A1 true WO2012111726A1 (en) 2012-08-23

Family

ID=46672639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/053590 WO2012111726A1 (en) 2011-02-18 2012-02-09 Method for producing condensate of resorcin and acetone, and rubber composition including condensate

Country Status (3)

Country Link
JP (1) JP2012184401A (en)
TW (1) TW201238958A (en)
WO (1) WO2012111726A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087973A1 (en) * 2013-12-12 2015-06-18 日本化薬株式会社 Phenolic resin, epoxy resin, epoxy resin composition and cured product thereof
WO2018051999A1 (en) * 2016-09-16 2018-03-22 住友化学株式会社 Condensate between resorcin and acetone

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013111895A1 (en) * 2012-01-25 2013-08-01 住友化学株式会社 Method for producing condensation product of resorcin and acetone
JP2016196592A (en) * 2015-04-06 2016-11-24 アイカSdkフェノール株式会社 Epoxy resin and thermosetting resin composition comprising the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127980A (en) * 1984-07-18 1986-02-07 Mitsui Petrochem Ind Ltd Preparation of hydroxyflavan compound
JPH0892422A (en) * 1994-09-20 1996-04-09 Sumitomo Chem Co Ltd Rubber composition, additive desirable for its production, and coumarone compound
JP2011006375A (en) * 2009-05-28 2011-01-13 Sumitomo Chemical Co Ltd Condensate of resorcin and acetone

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6127980A (en) * 1984-07-18 1986-02-07 Mitsui Petrochem Ind Ltd Preparation of hydroxyflavan compound
JPH0892422A (en) * 1994-09-20 1996-04-09 Sumitomo Chem Co Ltd Rubber composition, additive desirable for its production, and coumarone compound
JP2011006375A (en) * 2009-05-28 2011-01-13 Sumitomo Chemical Co Ltd Condensate of resorcin and acetone

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FILIMONOV S.I. ET AL.: "Reactions of resorcinols with ketones", MENDELEEV COMMUNICATIONS, no. 4, 2003, pages 194 - 197 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087973A1 (en) * 2013-12-12 2015-06-18 日本化薬株式会社 Phenolic resin, epoxy resin, epoxy resin composition and cured product thereof
JPWO2015087973A1 (en) * 2013-12-12 2017-03-16 日本化薬株式会社 Phenolic resins, epoxy resins, epoxy resin compositions and cured products thereof
WO2018051999A1 (en) * 2016-09-16 2018-03-22 住友化学株式会社 Condensate between resorcin and acetone

Also Published As

Publication number Publication date
TW201238958A (en) 2012-10-01
JP2012184401A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP5971916B2 (en) Modified conjugated diene polymer, production method thereof, modified conjugated diene polymer composition, and tire
WO2018110413A1 (en) Rubber composition for tires, and pneumatic tire using same
WO2012111726A1 (en) Method for producing condensate of resorcin and acetone, and rubber composition including condensate
US20160340446A1 (en) Modified polymer, rubber composition and pneumatic tire
US9873749B2 (en) Under tread rubber composition and pneumatic tire
US20110132512A1 (en) Rubber composition for coating steel cord
US20110144234A1 (en) Rubber composition
EP3187531B1 (en) Tire rubber composition and pneumatic tire
WO2013111895A1 (en) Method for producing condensation product of resorcin and acetone
JP6074160B2 (en) Rubber composition and tire manufacturing method
JP2011032459A (en) Condensation product of resorcin and acetone
JP2011006651A (en) Resin composition including condensation product of resorcinol, acetone and formaldehyde, and method for producing the same
JP2013151605A (en) Method for producing condensate of resorcin and acetone
JP2013241550A (en) Butadiene polymer, method of manufacturing butadiene polymer, rubber composition, and tire
WO2017164292A1 (en) Method for producing condensate of resorcin and acetone
JP5761443B1 (en) Rubber composition and pneumatic tire
JP2013151602A (en) Method for producing condensate of resorcin and acetone
JP2011006375A (en) Condensate of resorcin and acetone
WO2018051999A1 (en) Condensate between resorcin and acetone
JP2013151603A (en) Method for producing condensate of resorcin and acetone
JP2013151604A (en) Method for producing condensate of resorcin and acetone
WO2017164295A1 (en) Resorcin condensate
JP2007084712A (en) Pneumatic tire
WO2017164293A1 (en) Anti-aging agent composition
JP2012214437A (en) Method for producing composition containing oligomer of 2,2,4-trimethyl-1,2-dihydroquinoline

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12747806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12747806

Country of ref document: EP

Kind code of ref document: A1