WO2018051999A1 - Condensate between resorcin and acetone - Google Patents

Condensate between resorcin and acetone Download PDF

Info

Publication number
WO2018051999A1
WO2018051999A1 PCT/JP2017/032964 JP2017032964W WO2018051999A1 WO 2018051999 A1 WO2018051999 A1 WO 2018051999A1 JP 2017032964 W JP2017032964 W JP 2017032964W WO 2018051999 A1 WO2018051999 A1 WO 2018051999A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetone
resorcin
condensate
weight
peak
Prior art date
Application number
PCT/JP2017/032964
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 宮武
竹内 謙一
佳祐 橋詰
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2018051999A1 publication Critical patent/WO2018051999A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/04Condensation polymers of aldehydes or ketones with phenols only of aldehydes
    • C08G8/08Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ
    • C08G8/20Condensation polymers of aldehydes or ketones with phenols only of aldehydes of formaldehyde, e.g. of formaldehyde formed in situ with polyhydric phenols
    • C08G8/22Resorcinol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G8/00Condensation polymers of aldehydes or ketones with phenols only
    • C08G8/02Condensation polymers of aldehydes or ketones with phenols only of ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/12Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols with polyhydric phenols

Definitions

  • the present invention relates to a condensate of resorcin and acetone.
  • Patent Document 3 describes the formula (I):
  • Patent Document 2 specifies the amount of a compound having a high melting point in the condensate of resorcin and acetone (that is, a compound (I ′) and a high molecular weight compound having a weight average molecular weight of 800 or more).
  • the present invention has been made in view of the above situation, and an object thereof is to provide a condensate of resorcin and acetone having a low softening point.
  • the present invention capable of achieving this object is as follows.
  • the area ratio of the peak (1) having a weight average molecular weight of 160 or more and less than 480 (hereinafter sometimes abbreviated as “peak (1)”) is 70% or less
  • the area ratio of the peak (2) having a weight average molecular weight of 480 or more and less than 600 (hereinafter sometimes abbreviated as “peak (2)”) is 25 to 50%
  • the weight average molecular weight is 600 or more and less than 800
  • a peak (4) (hereinafter referred to as “peak (4)”) having an area ratio of a certain peak (3) (hereinafter sometimes abbreviated as “peak (3)”) and a weight average molecular weight of 800 or more. )
  • Area ratio is 26% or less, It is characterized by that.
  • the area ratio of the peaks (1) to (4) is a value based on the total area of the peaks having a weight average molecular weight of 160 or more.
  • the concentration of acidic groups in the acidic cation exchange resin (that is, the amount of acidic groups contained in 1 ml of acidic cation exchange resin) is preferably 0.5 to 2.5 meq / ml.
  • the acidic cation exchange resin is not particularly limited, and a commercially available product can be used. Specific examples include Ambalist series manufactured by Organo Corporation (for example, SC200 and SC300), Diaion Series manufactured by Mitsubishi Chemical Corporation (PK212, PK228), DOWEX Series manufactured by Dow Chemical Co., Ltd. (for example, 50W ⁇ 2), Rohm & Haas Co. Duolite series (for example, C26CH), LANXESS Co., Ltd. Lebatit series (for example, S2328, K2629, etc.) and the like.
  • Ambalist series manufactured by Organo Corporation for example, SC200 and SC300
  • Diaion Series manufactured by Mitsubishi Chemical Corporation PK212, PK228)
  • DOWEX Series manufactured by Dow Chemical Co., Ltd. for example, 50W ⁇ 2
  • Duolite series for example, C26CH
  • Lebatit series for example, S2328, K2629, etc.
  • organic solvent other than acetone When using an organic solvent other than acetone, only one type may be used, or two or more types may be used in combination.
  • organic solvents other than acetone include aliphatic hydrocarbons, aromatic hydrocarbons, and halogen-substituted aromatic hydrocarbons.
  • Specific examples of the aliphatic hydrocarbon include hexane, heptane, octane, decane and the like.
  • aromatic hydrocarbon include toluene, xylene, ethylbenzene and the like.
  • halogen-substituted aromatic hydrocarbon include chlorobenzene and dichlorobenzene.
  • the pressure in the reaction tube when the reaction solution is circulated through the reaction tube is preferably 0.001 to 10 MPa (gauge pressure).
  • Examples thereof include a silane compound having an alkoxy group (for example, a trialkoxysilane compound), an aminosilane compound, a tin compound and a silane compound having an alkoxy group, and a combined modifier having an alkylacrylamide compound and an silane compound having an alkoxy group.
  • Examples of the modified solution polymerization BR include tin-modified BR such as “Nipol (registered trademark) BR1250H” manufactured by Nippon Zeon.
  • methylene donor Only one type of methylene donor may be used, or two or more types may be used in combination.
  • the methylene donor include those usually used in the rubber industry such as hexamethylenetetramine and methoxylated methylolmelamine resin.
  • the methylene donor is preferably a methoxylated methylol melamine resin.
  • the methoxylated methylol melamine resin include hexakis (methoxymethyl) melamine, pentakis (methoxymethyl) methylol melamine, tetrakis (methoxymethyl) dimethylol melamine, and mixtures thereof.
  • the amount is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the rubber component.
  • silica for example, silica having a CTAB specific surface area of 50 to 180 m 2 / g and / or silica having a nitrogen adsorption specific surface area of 50 to 300 m 2 / g is preferably used.
  • Examples of these include “Nipsil (registered trademark) AQ” and “Nippil (registered trademark) AQ-N” manufactured by Tosoh Silica, Inc., “Ultrasil (registered trademark) VN3” manufactured by Degussa, Trademark) VN3-G “,” Ultrasil (registered trademark) 360 “,” Ultrasil (registered trademark) 7000 “,” Zeosil (registered trademark) 115GR “,” Zeosil (registered trademark) 1115MP “,” Zeosil “manufactured by Rhodia (Registered trademark) 1205MP “,” Zeosil (registered trademark) Z85MP "and other commercial products.
  • the amount thereof is preferably 1 to 15 parts by weight and more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the rubber component.
  • the rubber composition can be produced by kneading the condensate of the present invention, a rubber component, and, if necessary, other components (for example, a filler).
  • a vulcanized rubber composition can be produced by vulcanizing a rubber composition containing the above-described sulfur component. You may manufacture a vulcanized rubber composition by processing the rubber composition containing the above-mentioned sulfur component into a specific shape and then vulcanizing it.
  • the solution was pumped at this temperature for 10 to 12 hours, and the condensation reaction was carried out (acetone use amount relative to 1 mol of resorcin: 3.7 mol, ion exchange water use amount relative to 1 mol of resorcin: 0.24 mol, relative to 1 part by weight of resorcin Use amount of strongly acidic cation exchange resin: 1.92 parts by weight).
  • the pumping is stopped, and nitrogen is introduced from the top of the reaction tube to discharge the reaction solution inside the reaction tube to a separable flask, so that an acetone solution of a condensate of resorcin and acetone ( Solution G) was obtained.
  • Comparative Example 2 (Production of condensate 6) 882.7 kg of an acetone solution of a condensate of resorcin and acetone synthesized in the same manner as in Example 1 was weighed and charged into a 2000 L reaction kettle equipped with a thermometer, a stirrer, and a condenser. After 421.2 kg of solvent was distilled off by simple distillation, 440.3 kg of acetone was charged, and 441.1 kg of solvent was again distilled off by simple distillation. Subsequently, 440.0 kg of acetone was added, and 437.5 kg of the solvent was distilled off by simple distillation. Furthermore, after adding 440.2 kg of acetone, 441.5 kg of the solvent was distilled off by simple distillation.
  • Test example 1 Area ratios of peaks (1) to (4) of the condensates obtained in the above examples and comparative examples, residual amounts of impurities (that is, resorcin, acetone, mesityl oxide, diacetone alcohol and water), and condensates The softening point of was measured as follows. These results are shown in Table 1 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Phenolic Resins Or Amino Resins (AREA)

Abstract

The present invention provides a condensate between resorcin and acetone, wherein, as analyzed by gel permeation chromatography, the proportion of the area of a peak (1) representing a weight-average molecular weight of not less than 160 but less than 480 is 70% or less, the proportion of the area of a peak (2) representing a weight-average molecular weight of not less than 480 but less than 600 is 25-50%, and the sum of the proportion of the area of a peak (3) representing a weight-average molecular weight of not less than 600 but less than 800 and the proportion of the area of a peak (4) representing a weight-average molecular weight of not less than 800 is 26% or less, with respect to the total area of the peaks representing a weight-average molecular weight of 160 or more.

Description

レゾルシンとアセトンとの縮合物Condensate of resorcin and acetone
 本発明は、レゾルシンとアセトンとの縮合物に関する。 The present invention relates to a condensate of resorcin and acetone.
 レゾルシンは、ゴム組成物の補強剤として有用である。しかし、レゾルシンを含むゴム組成物は、その加工中にレゾルシンが蒸散し、作業環境が悪化するという問題がある。そのため、ゴム組成物中のレゾルシン量を低減させるために、レゾルシンとアセトンとの縮合物を用いることが提案されている(例えば、特許文献1および2)。 Resorcin is useful as a reinforcing agent for rubber compositions. However, the rubber composition containing resorcin has a problem that the resorcin is evaporated during processing and the working environment is deteriorated. Therefore, in order to reduce the amount of resorcin in the rubber composition, it has been proposed to use a condensate of resorcin and acetone (for example, Patent Documents 1 and 2).
 特許文献1には、レゾルシンとアセトンとを酸の存在下で反応させる工程(即ち、縮合工程)と、前記反応により生成した水を酸の存在下で除去する工程(即ち、脱水工程)とを含むレゾルシンとアセトンとの縮合物の製造方法が記載されている(請求項1等)。このような反応では、式(I’): Patent Document 1 includes a step of reacting resorcin and acetone in the presence of an acid (ie, a condensation step) and a step of removing water produced by the reaction in the presence of an acid (ie, a dehydration step). A method for producing a condensate of resorcin and acetone is described (claim 1 etc.). In such a reaction, the formula (I '):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
で表される2,4,4-トリメチル-2’,4’,7-トリヒドロキシフラバン(以下、「化合物(I’)」と略称することがある。)が得られる。また、このような反応では、化合物(I’)、レゾルシンおよびアセトンがさらに縮合して、さらなる高分子量体が形成される。 2,4,4-trimethyl-2 ', 4', 7-trihydroxyflavan (hereinafter sometimes abbreviated as "compound (I ')") is obtained. In such a reaction, the compound (I ′), resorcin and acetone are further condensed to form a further high molecular weight body.
 特許文献2には、ゲル浸透クロマトグラフィーで分析したときに、全ピークの総面積に対して、化合物(I’)由来のピークの面積割合が25~55%であり、且つ重量平均分子量が800以上である第一溶出ピークの面積割合が10~25%である縮合物が記載されている(請求項4等)。 In Patent Document 2, when analyzed by gel permeation chromatography, the ratio of the area of the peak derived from compound (I ′) to the total area of all peaks is 25 to 55%, and the weight average molecular weight is 800. A condensate in which the area ratio of the first elution peak is 10 to 25% is described (claim 4 etc.).
 特許文献3には、式(I): Patent Document 3 describes the formula (I):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中の基の定義は特許文献3に記載された通りである。)
で表されるポリアルキル-2-(2,4-ジヒドロキシフェニル)-7-ヒドロキシクロマン(以下、「化合物(I)」と略称する。)およびその製造方法が記載されている(請求項1等)。また、特許文献3の実施例1および2では、2,4,4-トリメチル-2-(2,4-ジヒドロキシフェニル)-7-ヒドロキシクロマン(即ち、化合物(I’)である2,4,4-トリメチル-2’,4’,7-トリヒドロキシフラバン)が製造されている。
(The definition of the group in the formula is as described in Patent Document 3.)
And a method for producing the polyalkyl-2- (2,4-dihydroxyphenyl) -7-hydroxychroman (hereinafter abbreviated as “compound (I)”). ). In Examples 1 and 2 of Patent Document 3, 2,4,4-trimethyl-2- (2,4-dihydroxyphenyl) -7-hydroxychroman (ie, 2,4 which is compound (I ′)) is used. 4-trimethyl-2 ′, 4 ′, 7-trihydroxyflavan) has been produced.
特開2012-184401号公報JP 2012-184401 A 特開2013-151604号公報JP 2013-151604 A 特開昭56-5476号公報JP-A-56-5476
 特許文献1に記載の製造方法では、縮合工程後の脱水工程のために、融点が高い高分子量体の量が増加し、得られるレゾルシンとアセトンとの縮合物の軟化点が上昇する。また、特許文献3の実施例1および2で製造されている化合物(I’)の融点は225℃と高く、この化合物(I’)の量が多いレゾルシンとアセトンとの縮合物は、軟化点が高い。また、特許文献2は、レゾルシンとアセトンとの縮合物中における融点が高い化合物(即ち、化合物(I’)および重量平均分子量が800以上である高分子量体)の量を特定している。 In the production method described in Patent Document 1, due to the dehydration step after the condensation step, the amount of the high molecular weight polymer having a high melting point increases, and the softening point of the resulting condensate of resorcin and acetone increases. Further, the melting point of the compound (I ′) produced in Examples 1 and 2 of Patent Document 3 is as high as 225 ° C., and the condensate of resorcin and acetone having a large amount of the compound (I ′) has a softening point. Is expensive. Patent Document 2 specifies the amount of a compound having a high melting point in the condensate of resorcin and acetone (that is, a compound (I ′) and a high molecular weight compound having a weight average molecular weight of 800 or more).
 軟化点が低いレゾルシンとアセトンとの縮合物は、軟化点が高いレゾルシンとアセトンとの縮合物に比べて、ゴム成分との混練の際に、ゴム成分中への分散性が向上することが期待される。また、軟化点が低いレゾルシンとアセトンとの縮合物を用いることによって、該縮合物とゴム成分との混練を低温で実施し得ることが期待される。 The condensate of resorcin and acetone with a low softening point is expected to improve dispersibility in the rubber component when kneaded with the rubber component, compared to the condensate of resorcin and acetone with a high softening point. Is done. Further, it is expected that kneading of the condensate and the rubber component can be performed at a low temperature by using a condensate of resorcin and acetone having a low softening point.
 本発明は上記のような状況に鑑みなされたものであって、その目的は、軟化点が低いレゾルシンとアセトンとの縮合物を提供することにある。この目的を達成し得る本発明は、以下の通りである。 The present invention has been made in view of the above situation, and an object thereof is to provide a condensate of resorcin and acetone having a low softening point. The present invention capable of achieving this object is as follows.
 [1] ゲル浸透クロマトグラフィーで分析したときに、重量平均分子量が160以上であるピークの総面積に対して、
 重量平均分子量が160以上480未満であるピーク(1)の面積割合が70%以下であり、
 重量平均分子量が480以上600未満であるピーク(2)の面積割合が25~50%であり、および
 重量平均分子量が600以上800未満であるピーク(3)の面積割合と重量平均分子量が800以上であるピーク(4)の面積割合との合計が26%以下である、
レゾルシンとアセトンとの縮合物。
[1] With respect to the total area of peaks having a weight average molecular weight of 160 or more when analyzed by gel permeation chromatography,
The area ratio of the peak (1) having a weight average molecular weight of 160 or more and less than 480 is 70% or less,
The area ratio of peak (2) having a weight average molecular weight of 480 or more and less than 600 is 25 to 50%, and the area ratio of peak (3) having a weight average molecular weight of 600 or more and less than 800 and the weight average molecular weight of 800 or more The total with the area ratio of the peak (4) is 26% or less.
Condensate of resorcin and acetone.
 [2] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が800以上であるピーク(4)の面積割合が10%未満である前記[1]に記載のレゾルシンとアセトンとの縮合物。
 [3] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が800以上であるピーク(4)の面積割合が9%以下である前記[1]に記載のレゾルシンとアセトンとの縮合物。
[2] Resorcin and acetone according to the above [1], wherein the area ratio of the peak (4) having a weight average molecular weight of 800 or more is less than 10% with respect to the total area of the peak having a weight average molecular weight of 160 or more. Condensate with
[3] Resorcin and acetone according to the above [1], wherein the area ratio of the peak (4) having a weight average molecular weight of 800 or more is 9% or less with respect to the total area of the peak having a weight average molecular weight of 160 or more. Condensate with
 [4] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が800以上であるピーク(4)の面積割合が0%以上である前記[1]~[3]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [5] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が800以上であるピーク(4)の面積割合が3%以上である前記[1]~[3]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [6] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が800以上であるピーク(4)の面積割合が4%以上である前記[1]~[3]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [7] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が800以上であるピーク(4)の面積割合が5%以上である前記[1]~[3]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[4] Any of [1] to [3] above, wherein the area ratio of the peak (4) having a weight average molecular weight of 800 or more is 0% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[5] Any of [1] to [3] above, wherein the area ratio of the peak (4) having a weight average molecular weight of 800 or more is 3% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[6] Any of [1] to [3] above, wherein the area ratio of the peak (4) having a weight average molecular weight of 800 or more is 4% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[7] Any of [1] to [3] above, wherein the area ratio of the peak (4) having a weight average molecular weight of 800 or more is 5% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
 [8] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が160以上480未満であるピーク(1)の面積割合が60%以下である前記[1]~[7]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [9] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が160以上480未満であるピーク(1)の面積割合が55%以下である前記[1]~[7]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[8] The above [1] to [7], wherein the area ratio of the peak (1) having a weight average molecular weight of 160 or more and less than 480 is 60% or less with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[9] The above [1] to [7], wherein the area ratio of the peak (1) having a weight average molecular weight of 160 or more and less than 480 is 55% or less with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
 [10] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が160以上480未満であるピーク(1)の面積割合が0%以上である前記[1]~[9]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [11] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が160以上480未満であるピーク(1)の面積割合が10%以上である前記[1]~[9]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [12] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が160以上480未満であるピーク(1)の面積割合が20%以上である前記[1]~[9]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [13] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が160以上480未満であるピーク(1)の面積割合が30%以上である前記[1]~[9]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[10] The above [1] to [9], wherein the area ratio of the peak (1) having a weight average molecular weight of 160 or more and less than 480 is 0% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[11] The above [1] to [9], wherein the area ratio of the peak (1) having a weight average molecular weight of 160 or more and less than 480 is 10% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[12] The above [1] to [9], wherein the area ratio of the peak (1) having a weight average molecular weight of 160 or more and less than 480 is 20% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[13] The above [1] to [9], wherein the area ratio of the peak (1) having a weight average molecular weight of 160 or more and less than 480 is 30% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
 [14] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が480以上600未満であるピーク(2)の面積割合が27~45%である前記[1]~[13]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [15] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が480以上600未満であるピーク(2)の面積割合が30~40%である前記[1]~[13]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[14] The area ratio of the peak (2) having a weight average molecular weight of 480 or more and less than 600 to the total area of the peak having a weight average molecular weight of 160 or more is 27 to 45%. ] The condensate of resorcin and acetone as described in any one of.
[15] The above [1] to [13], wherein the area ratio of the peak (2) having a weight average molecular weight of 480 or more and less than 600 is 30 to 40% with respect to the total area of the peak having a weight average molecular weight of 160 or more. ] The condensate of resorcin and acetone as described in any one of.
 [16] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合が25%以下である前記[1]~[15]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [17] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合が22%以下である前記[1]~[15]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [18] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合が20%以下である前記[1]~[15]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[16] The above [1] to [15], wherein the area ratio of the peak (3) having a weight average molecular weight of 600 or more and less than 800 is 25% or less with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[17] The above [1] to [15], wherein the area ratio of the peak (3) having a weight average molecular weight of 600 or more and less than 800 is 22% or less with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[18] The above [1] to [15], wherein the area ratio of the peak (3) having a weight average molecular weight of 600 or more and less than 800 is 20% or less with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
 [19] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合が0%以上である前記[1]~[18]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [20] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合が8%以上である前記[1]~[18]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [21] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合が10%以上である前記[1]~[18]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [22] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合が12%以上である前記[1]~[18]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[19] The above [1] to [18], wherein the area ratio of the peak (3) having a weight average molecular weight of 600 or more and less than 800 is 0% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[20] The above [1] to [18], wherein the area ratio of the peak (3) having a weight average molecular weight of 600 or more and less than 800 is 8% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[21] The above [1] to [18], wherein the area ratio of the peak (3) having a weight average molecular weight of 600 or more and less than 800 is 10% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
[22] The above [1] to [18], wherein the area ratio of the peak (3) having a weight average molecular weight of 600 or more and less than 800 is 12% or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. A condensate of resorcin and acetone according to any one of the above.
 [23] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合と重量平均分子量が800以上であるピーク(4)の面積割合との合計が25%以下である前記[1]~[22]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [24] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合と重量平均分子量が800以上であるピーク(4)の面積割合との合計が24%以下である前記[1]~[22]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[23] The ratio of the area of peak (3) having a weight average molecular weight of 600 or more and less than 800 to the total area of the peak having a weight average molecular weight of 160 or more and the peak (4) having a weight average molecular weight of 800 or more. The condensate of resorcin and acetone according to any one of the above [1] to [22], which has a total area ratio of 25% or less.
[24] The area ratio of the peak (3) having a weight average molecular weight of 600 or more and less than 800 and the peak (4) having a weight average molecular weight of 800 or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. The condensate of resorcin and acetone according to any one of the above [1] to [22], which has a total area ratio of 24% or less.
 [25] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合と重量平均分子量が800以上であるピーク(4)の面積割合との合計が0%以上である前記[1]~[24]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [26] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合と重量平均分子量が800以上であるピーク(4)の面積割合との合計が10%以上である前記[1]~[24]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [27] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合と重量平均分子量が800以上であるピーク(4)の面積割合との合計が12%以上である前記[1]~[24]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [28] 重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が600以上800未満であるピーク(3)の面積割合と重量平均分子量が800以上であるピーク(4)の面積割合との合計が15%以上である前記[1]~[24]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[25] The area ratio of the peak (3) having a weight average molecular weight of 600 or more and less than 800 and the peak (4) having a weight average molecular weight of 800 or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. The condensate of resorcin and acetone according to any one of [1] to [24], wherein the sum of the area ratios is 0% or more.
[26] The area ratio of the peak (3) having a weight average molecular weight of 600 or more and less than 800 and the peak (4) having a weight average molecular weight of 800 or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. The condensate of resorcin and acetone according to any one of the above [1] to [24], which has a total area ratio of 10% or more.
[27] The ratio of the area of the peak (3) having a weight average molecular weight of 600 or more and less than 800 to the total area of the peak having a weight average molecular weight of 160 or more and the peak (4) having a weight average molecular weight of 800 or more. The condensate of resorcin and acetone according to any one of the above [1] to [24], which has a total area ratio of 12% or more.
[28] The area ratio of the peak (3) having a weight average molecular weight of 600 or more and less than 800 and the peak (4) having a weight average molecular weight of 800 or more with respect to the total area of the peak having a weight average molecular weight of 160 or more. The condensate of resorcin and acetone according to any one of the above [1] to [24], which has a total area ratio of 15% or more.
 [29] レゾルシンとアセトンとの縮合物中のレゾルシンの残存量が10重量%以下である前記[1]~[28]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [30] レゾルシンとアセトンとの縮合物中のレゾルシンの残存量が8重量%以下である前記[1]~[28]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [31] レゾルシンとアセトンとの縮合物中のレゾルシンの残存量が5重量%以下である前記[1]~[28]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[29] The condensate of resorcin and acetone according to any one of the above [1] to [28], wherein the residual amount of resorcin in the condensate of resorcin and acetone is 10% by weight or less.
[30] The condensate of resorcin and acetone according to any one of the above [1] to [28], wherein the residual amount of resorcin in the condensate of resorcin and acetone is 8% by weight or less.
[31] The condensate of resorcin and acetone according to any one of the above [1] to [28], wherein the residual amount of resorcin in the condensate of resorcin and acetone is 5% by weight or less.
 [32] レゾルシンとアセトンとの縮合物中のレゾルシンの残存量が0重量%以上である前記[1]~[31]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [33] レゾルシンとアセトンとの縮合物中のレゾルシンの残存量が0.01重量%以上である前記[1]~[31]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [34] レゾルシンとアセトンとの縮合物中のレゾルシンの残存量が0.05重量%以上である前記[1]~[31]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[32] The condensate of resorcin and acetone according to any one of the above [1] to [31], wherein the residual amount of resorcin in the condensate of resorcin and acetone is 0% by weight or more.
[33] The condensate of resorcin and acetone according to any one of the above [1] to [31], wherein the residual amount of resorcin in the condensate of resorcin and acetone is 0.01% by weight or more.
[34] The condensate of resorcin and acetone according to any one of the above [1] to [31], wherein the residual amount of resorcin in the condensate of resorcin and acetone is 0.05% by weight or more.
 [35] レゾルシンとアセトンとの縮合物中のアセトンの残存量が2重量%以下である前記[1]~[34]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [36] レゾルシンとアセトンとの縮合物中のアセトンの残存量が1重量%以下である前記[1]~[34]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [37] レゾルシンとアセトンとの縮合物中のアセトンの残存量が0.5重量%以下である前記[1]~[34]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[35] The condensate of resorcin and acetone according to any one of the above [1] to [34], wherein the residual amount of acetone in the condensate of resorcin and acetone is 2% by weight or less.
[36] The condensate of resorcin and acetone according to any one of the above [1] to [34], wherein the residual amount of acetone in the condensate of resorcin and acetone is 1% by weight or less.
[37] The condensate of resorcin and acetone according to any one of the above [1] to [34], wherein the residual amount of acetone in the condensate of resorcin and acetone is 0.5% by weight or less.
 [38] レゾルシンとアセトンとの縮合物中のアセトンの残存量が0重量%以上である前記[1]~[37]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [39] レゾルシンとアセトンとの縮合物中のアセトンの残存量が0.01重量%以上である前記[1]~[37]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [40] レゾルシンとアセトンとの縮合物中のアセトンの残存量が0.05重量%以上である前記[1]~[37]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [41] レゾルシンとアセトンとの縮合物中のアセトンの残存量が0.1重量%以上である前記[1]~[37]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[38] The condensate of resorcin and acetone according to any one of [1] to [37], wherein the residual amount of acetone in the condensate of resorcin and acetone is 0% by weight or more.
[39] The condensate of resorcin and acetone according to any one of the above [1] to [37], wherein the residual amount of acetone in the condensate of resorcin and acetone is 0.01% by weight or more.
[40] The condensate of resorcin and acetone according to any one of the above [1] to [37], wherein the residual amount of acetone in the condensate of resorcin and acetone is 0.05% by weight or more.
[41] The condensate of resorcin and acetone according to any one of the above [1] to [37], wherein the residual amount of acetone in the condensate of resorcin and acetone is 0.1% by weight or more.
 [42] レゾルシンとアセトンとの縮合物中の水分量が2重量%以下である前記[1]~[41]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [43] レゾルシンとアセトンとの縮合物中の水分量が1重量%以下である前記[1]~[41]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [44] レゾルシンとアセトンとの縮合物中の水分量が0.5重量%以下である前記[1]~[41]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[42] The condensate of resorcin and acetone according to any one of the above [1] to [41], wherein the water content in the condensate of resorcin and acetone is 2% by weight or less.
[43] The condensate of resorcin and acetone according to any one of the above [1] to [41], wherein the water content in the condensate of resorcin and acetone is 1% by weight or less.
[44] The condensate of resorcin and acetone according to any one of the above [1] to [41], wherein the water content in the condensate of resorcin and acetone is 0.5% by weight or less.
 [45] レゾルシンとアセトンとの縮合物中の水分量が0重量%以上である前記[1]~[44]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [46] レゾルシンとアセトンとの縮合物中の水分量が0.01重量%以上である前記[1]~[44]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [47] レゾルシンとアセトンとの縮合物中の水分量が0.05重量%以上である前記[1]~[44]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [48] レゾルシンとアセトンとの縮合物中の水分量が0.1重量%以上である前記[1]~[44]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[45] The condensate of resorcin and acetone according to any one of the above [1] to [44], wherein the water content in the condensate of resorcin and acetone is 0% by weight or more.
[46] The condensate of resorcin and acetone according to any one of the above [1] to [44], wherein the water content in the condensate of resorcin and acetone is 0.01% by weight or more.
[47] The condensate of resorcin and acetone according to any one of the above [1] to [44], wherein the water content in the condensate of resorcin and acetone is 0.05% by weight or more.
[48] The condensate of resorcin and acetone according to any one of the above [1] to [44], wherein the water content in the condensate of resorcin and acetone is 0.1% by weight or more.
 [49] レゾルシンとアセトンとの縮合物中の不純物の残存量が5重量%以下である前記[1]~[48]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [50] レゾルシンとアセトンとの縮合物中の不純物の残存量が3重量%以下である前記[1]~[48]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[49] The condensate of resorcin and acetone according to any one of the above [1] to [48], wherein the residual amount of impurities in the condensate of resorcin and acetone is 5% by weight or less.
[50] The condensate of resorcin and acetone according to any one of the above [1] to [48], wherein the residual amount of impurities in the condensate of resorcin and acetone is 3% by weight or less.
 [51] レゾルシンとアセトンとの縮合物中の不純物の残存量が0重量%以上である前記[1]~[50]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [52] レゾルシンとアセトンとの縮合物中の不純物の残存量が0.01重量%以上である前記[1]~[50]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [53] レゾルシンとアセトンとの縮合物中の不純物の残存量が0.05重量%以上である前記[1]~[50]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [54] レゾルシンとアセトンとの縮合物中の不純物の残存量が0.1重量%以上である前記[1]~[50]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[51] The condensate of resorcin and acetone according to any one of the above [1] to [50], wherein the residual amount of impurities in the condensate of resorcin and acetone is 0% by weight or more.
[52] The condensate of resorcin and acetone according to any one of the above [1] to [50], wherein the residual amount of impurities in the condensate of resorcin and acetone is 0.01% by weight or more.
[53] The condensate of resorcin and acetone according to any one of the above [1] to [50], wherein the residual amount of impurities in the condensate of resorcin and acetone is 0.05% by weight or more.
[54] The condensate of resorcin and acetone according to any one of the above [1] to [50], wherein the residual amount of impurities in the condensate of resorcin and acetone is 0.1% by weight or more.
 [55] 軟化点が120℃以下である前記[1]~[54]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [56] 軟化点が118℃以下である前記[1]~[54]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
 [57] 軟化点が116℃以下である前記[1]~[54]のいずれか一つに記載のレゾルシンとアセトンとの縮合物。
[55] The condensate of resorcin and acetone according to any one of [1] to [54], which has a softening point of 120 ° C. or lower.
[56] The condensate of resorcin and acetone according to any one of [1] to [54], which has a softening point of 118 ° C. or lower.
[57] The condensate of resorcin and acetone according to any one of [1] to [54], which has a softening point of 116 ° C. or lower.
 [58] 前記[1]~[57]のいずれか一つに記載のレゾルシンとアセトンとの縮合物およびゴム成分を混練して得られるゴム組成物。
 [59] さらに硫黄成分を混練して得られる前記[58]に記載のゴム組成物。
 [60] 前記[59]に記載のゴム組成物を加硫して得られる加硫ゴム組成物。
[58] A rubber composition obtained by kneading a condensate of resorcin and acetone according to any one of [1] to [57] and a rubber component.
[59] The rubber composition according to [58], obtained by further kneading a sulfur component.
[60] A vulcanized rubber composition obtained by vulcanizing the rubber composition according to [59].
 [61] 前記[1]~[57]のいずれか一つに記載のレゾルシンとアセトンとの縮合物およびゴム成分を混練することを含むゴム組成物の製造方法。
 [62] さらに硫黄成分を混練することを含む前記[61]に記載の方法。
 [63] 前記[62]に記載の方法によって得られたゴム組成物を加硫することを含む加硫ゴム組成物の製造方法。
[61] A method for producing a rubber composition, comprising kneading a condensate of resorcin and acetone according to any one of [1] to [57] and a rubber component.
[62] The method according to [61], further comprising kneading a sulfur component.
[63] A method for producing a vulcanized rubber composition, comprising vulcanizing the rubber composition obtained by the method according to [62].
 本発明のレゾルシンとアセトンとの縮合物は、低い軟化点を示す。 The condensate of resorcin and acetone of the present invention exhibits a low softening point.
[レゾルシンとアセトンとの縮合物]
 本発明のレゾルシンとアセトンとの縮合物(以下「本発明の縮合物」と略称することがある)は、ゲル浸透クロマトグラフィー(GPC)で分析したときに、重量平均分子量が160以上であるピークの総面積に対して、
 重量平均分子量が160以上480未満であるピーク(1)(以下「ピーク(1)」と略称することがある)の面積割合が70%以下であり、
 重量平均分子量が480以上600未満であるピーク(2)(以下「ピーク(2)」と略称することがある)の面積割合が25~50%であり、および
 重量平均分子量が600以上800未満であるピーク(3)(以下「ピーク(3)」と略称することがある)の面積割合と重量平均分子量が800以上であるピーク(4)(以下「ピーク(4)」と略称することがある)の面積割合との合計が26%以下である、
ことを特徴とする。ここで、上記ピーク(1)~(4)の面積割合は、それぞれ、重量平均分子量が160以上であるピークの総面積を基準とする値である。
[Condensate of resorcin and acetone]
The condensate of resorcin and acetone of the present invention (hereinafter sometimes abbreviated as “condensate of the present invention”) has a weight average molecular weight of 160 or more when analyzed by gel permeation chromatography (GPC). For the total area of
The area ratio of the peak (1) having a weight average molecular weight of 160 or more and less than 480 (hereinafter sometimes abbreviated as “peak (1)”) is 70% or less,
The area ratio of the peak (2) having a weight average molecular weight of 480 or more and less than 600 (hereinafter sometimes abbreviated as “peak (2)”) is 25 to 50%, and the weight average molecular weight is 600 or more and less than 800 A peak (4) (hereinafter referred to as “peak (4)”) having an area ratio of a certain peak (3) (hereinafter sometimes abbreviated as “peak (3)”) and a weight average molecular weight of 800 or more. ) Area ratio is 26% or less,
It is characterized by that. Here, the area ratio of the peaks (1) to (4) is a value based on the total area of the peaks having a weight average molecular weight of 160 or more.
 上述のGPCは、後述する実施例に記載の条件、またはこれに準ずる条件によって測定することができる。 The above-mentioned GPC can be measured according to the conditions described in Examples described later or conditions equivalent thereto.
 ピーク(1)は、融点が高い化合物(I’)(分子量:300.14)およびこれの類似縮合物に対応する。また、ピーク(3)および(4)は、化合物(I’)、レゾルシンおよびアセトンがさらに縮合して得られる高分子量体に対応する。ピーク(2)は、その分子量が化合物(I’)(ピーク(1))の分子量と高分子量体(ピーク(3)および(4))の分子量の間にある中間化合物に対応する。 Peak (1) corresponds to compound (I ') (molecular weight: 300.14) having a high melting point and a similar condensate thereof. Peaks (3) and (4) correspond to a high molecular weight product obtained by further condensation of compound (I ′), resorcin and acetone. Peak (2) corresponds to an intermediate compound whose molecular weight is between the molecular weight of compound (I ') (peak (1)) and the high molecular weight (peaks (3) and (4)).
 本発明者らが鋭意検討を重ねた結果、上述の高分子量体(ピーク(3)および(4))の量を制限すること、および中間化合物(ピーク(2))の量を或る程度確保することによって、レゾルシンとアセトンとの縮合物の軟化点を低下させ得ることを見出した。このような構成によって縮合物の軟化点が低減されるメカニズムとしては、融点が高い高分子量体(ピーク(3)および(4))の量が少なくなること、および中間化合物(ピーク(2))が或る程度の量で存在することによって、融点が高い化合物(I’)(ピーク(1))の結晶化を中間化合物が阻害することなどが推定される。但し、本発明はこのような推定に限定されない。 As a result of extensive studies by the present inventors, the amount of the above-described high molecular weight (peaks (3) and (4)) is limited, and a certain amount of intermediate compound (peak (2)) is secured. By doing so, it has been found that the softening point of the condensate of resorcin and acetone can be lowered. As a mechanism by which the softening point of the condensate is reduced by such a configuration, the amount of the high molecular weight compound (peaks (3) and (4)) having a high melting point is reduced, and the intermediate compound (peak (2)). Is present in a certain amount, it is presumed that the intermediate compound inhibits crystallization of the compound (I ′) (peak (1)) having a high melting point. However, the present invention is not limited to such estimation.
 特許文献2の請求項4等には、本発明におけるピーク(1)に対応する化合物(I’)由来のピークの面積割合、および本発明におけるピーク(4)に対応する第一溶出ピークの面積割合が記載されている。また、特許文献2の実施例には、本発明におけるピーク(2)に対応する第三溶出ピークの面積割合、および本発明におけるピーク(3)に対応する第二溶出ピークの面積割合が記載されている。しかし、特許文献2には、レゾルシンとアセトンとの縮合物の軟化点を低下させるために、ピーク(2)の面積割合を25~50%に調整すること、およびピーク(3)の面積割合とピーク(4)の面積割合との合計を26%以下に調整することは記載されていない。 In claim 4 of Patent Document 2, the area ratio of the peak derived from the compound (I ′) corresponding to the peak (1) in the present invention and the area of the first eluting peak corresponding to the peak (4) in the present invention are described. The percentages are listed. Moreover, in the Example of patent document 2, the area ratio of the 3rd elution peak corresponding to the peak (2) in this invention and the area ratio of the 2nd elution peak corresponding to the peak (3) in this invention are described. ing. However, in Patent Document 2, in order to lower the softening point of the condensate of resorcin and acetone, the area ratio of peak (2) is adjusted to 25 to 50%, and the area ratio of peak (3) It is not described that the total with the area ratio of the peak (4) is adjusted to 26% or less.
 ピーク(1)は融点が高い化合物(I’)に対応するので、レゾルシンとアセトンとの縮合物の軟化点低下の観点から、ピーク(1)の面積割合は少ないほど好ましい。そのため、ピーク(1)の面積割合は、70%以下、好ましくは60%以下、より好ましくは55%以下である。軟化点の低下の観点からは、ピーク(1)の面積割合の下限に特に限定はなく、この面積割合は0でもよい。但し、縮合物の製造等の観点からは、ピーク(1)の面積割合は、好ましくは10%以上、より好ましくは20%以上、さらに好ましくは30%以上である。 Since the peak (1) corresponds to the compound (I ′) having a high melting point, the area ratio of the peak (1) is preferably as small as possible from the viewpoint of lowering the softening point of the condensate of resorcin and acetone. Therefore, the area ratio of the peak (1) is 70% or less, preferably 60% or less, more preferably 55% or less. From the viewpoint of lowering the softening point, the lower limit of the area ratio of peak (1) is not particularly limited, and this area ratio may be zero. However, from the viewpoint of production of the condensate, the area ratio of the peak (1) is preferably 10% or more, more preferably 20% or more, and further preferably 30% or more.
 上述したように、ピーク(2)に対応する中間化合物が、本発明の縮合物の軟化点の低下に寄与していると推定される。このような軟化点低下の観点から、ピーク(2)の面積割合は、25~50%、好ましくは27~45%、より好ましくは30~40%である。 As described above, it is presumed that the intermediate compound corresponding to peak (2) contributes to the lowering of the softening point of the condensate of the present invention. From the viewpoint of reducing the softening point, the area ratio of the peak (2) is 25 to 50%, preferably 27 to 45%, more preferably 30 to 40%.
 縮合物の軟化点低下の観点から、ピーク(3)の面積割合とピーク(4)の面積割合との合計は、26%以下、好ましくは25%以下、より好ましくは24%以下である。軟化点の低下の観点からは、この合計の下限に特に限定はなく、この合計は0でもよい。但し、縮合物の製造等の観点からは、この合計は、好ましくは10%以上、より好ましくは12%以上、さらに好ましくは15%以上である。 From the viewpoint of lowering the softening point of the condensate, the sum of the area ratio of peak (3) and the area ratio of peak (4) is 26% or less, preferably 25% or less, more preferably 24% or less. From the viewpoint of lowering the softening point, the lower limit of the total is not particularly limited, and the total may be zero. However, this total is preferably 10% or more, more preferably 12% or more, and still more preferably 15% or more from the viewpoint of the production of the condensate.
 本発明の縮合物の軟化点を低下させるために、高分子量体に対応するピーク(3)の面積割合は少ないことが好ましい。このような観点から、ピーク(3)の面積割合は、好ましくは25%以下、より好ましくは22%以下、さらに好ましくは20%以下である。軟化点の低下の観点からは、ピーク(3)の面積割合の下限に特に限定はなく、ピーク(3)の面積割合は0でもよい。但し、縮合物の製造等の観点からは、ピーク(3)の面積割合は、好ましくは8%以上、より好ましくは10%以上、さらに好ましくは12%以上である。 In order to lower the softening point of the condensate of the present invention, the area ratio of the peak (3) corresponding to the high molecular weight body is preferably small. From such a viewpoint, the area ratio of the peak (3) is preferably 25% or less, more preferably 22% or less, and further preferably 20% or less. From the viewpoint of lowering the softening point, the lower limit of the area ratio of the peak (3) is not particularly limited, and the area ratio of the peak (3) may be zero. However, from the viewpoint of production of the condensate, the area ratio of the peak (3) is preferably 8% or more, more preferably 10% or more, and further preferably 12% or more.
 本発明の縮合物の軟化点を低下させるために、ピーク(1)~(4)の中で重量平均分子量が最も高いピーク(4)の面積割合は少ないことが好ましい。このような観点から、ピーク(4)の面積割合は、好ましくは10%未満、より好ましくは9%以下である。軟化点の低下の観点からは、ピーク(4)の面積割合の下限に特に限定はなく、ピーク(4)の面積割合は0でもよい。但し、縮合物の製造等の観点からは、ピーク(4)の面積割合は、好ましくは3%以上、より好ましくは4%以上、さらに好ましくは5%以上である。 In order to reduce the softening point of the condensate of the present invention, it is preferable that the area ratio of the peak (4) having the highest weight average molecular weight among the peaks (1) to (4) is small. From such a viewpoint, the area ratio of the peak (4) is preferably less than 10%, more preferably 9% or less. From the viewpoint of lowering the softening point, the lower limit of the area ratio of the peak (4) is not particularly limited, and the area ratio of the peak (4) may be zero. However, from the viewpoint of production of the condensate, the area ratio of the peak (4) is preferably 3% or more, more preferably 4% or more, and further preferably 5% or more.
 本発明の縮合物の軟化点は、好ましくは120℃以下、より好ましくは118℃以下、さらに好ましくは116℃以下である。この軟化点は、ASTM D6090に従って測定される値である。この軟化点は低いほど好ましいため、この下限に特に限定はない。 The softening point of the condensate of the present invention is preferably 120 ° C. or lower, more preferably 118 ° C. or lower, and still more preferably 116 ° C. or lower. This softening point is a value measured according to ASTM D6090. Since this softening point is preferably as low as possible, this lower limit is not particularly limited.
 レゾルシンとアセトンとの縮合反応および脱揮後に得られるレゾルシンとアセトンとの縮合物中には、未反応のレゾルシンおよびアセトンが残存し得る。ゴム組成物の加工中におけるレゾルシンの蒸散量を低減させるために、本発明の縮合物中のレゾルシンの残存量は、好ましくは10重量%以下、より好ましくは8重量%以下、さらに好ましくは5重量%以下である。レゾルシンの蒸散量低減の観点からは、この残存量の下限に特に限定はなく、この残存量は0でもよい。但し、縮合物の製造等の観点からは、本発明の縮合物中のレゾルシンの残存量は、好ましくは0.01重量%以上、より好ましくは0.05重量%以上である。ここで、レゾルシンの残存量とは、未反応で残っているレゾルシンの量を意味し、これは、レゾルシン等の不純物を含む本発明の縮合物全体を基準とする値である。 In the condensation reaction between resorcin and acetone and the condensate of resorcin and acetone obtained after devolatilization, unreacted resorcin and acetone may remain. In order to reduce the amount of resorcin transpiration during the processing of the rubber composition, the residual amount of resorcin in the condensate of the present invention is preferably 10% by weight or less, more preferably 8% by weight or less, and further preferably 5% by weight. % Or less. From the viewpoint of reducing the amount of resorcin transpiration, the lower limit of the residual amount is not particularly limited, and the residual amount may be zero. However, from the viewpoint of production of the condensate and the like, the residual amount of resorcin in the condensate of the present invention is preferably 0.01% by weight or more, more preferably 0.05% by weight or more. Here, the residual amount of resorcin means the amount of resorcin remaining unreacted, which is a value based on the whole condensate of the present invention containing impurities such as resorcin.
 本発明の縮合物中のアセトンの残存量は、好ましくは2重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。この残存量の下限に特に限定はなく、この残存量は0でもよい。但し、縮合物の製造等の観点からは、本発明の縮合物中のアセトンの残存量は、好ましくは0.01重量%以上、より好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上である。ここで、アセトンの残存量とは、未反応で残っているアセトンの量を意味し、これは、アセトン等の不純物を含む本発明の縮合物全体を基準とする値である。 The residual amount of acetone in the condensate of the present invention is preferably 2% by weight or less, more preferably 1% by weight or less, and further preferably 0.5% by weight or less. There is no particular limitation on the lower limit of the remaining amount, and the remaining amount may be zero. However, from the viewpoint of the production of the condensate, the residual amount of acetone in the condensate of the present invention is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and still more preferably 0.1%. % By weight or more. Here, the residual amount of acetone means the amount of acetone remaining unreacted, and this is a value based on the whole condensate of the present invention containing impurities such as acetone.
 レゾルシンとアセトンとの縮合反応では、副生成物として水が生成する。また、後述するように、本発明の縮合物の好ましい製造方法は、水の存在下、レゾルシンとアセトンとを縮合させることを含む。そのため、縮合反応および脱揮後に得られるレゾルシンとアセトンとの縮合物中に水が残存し得る。本発明の縮合物中の水分量は、好ましくは2重量%以下、より好ましくは1重量%以下、さらに好ましくは0.5重量%以下である。水分量の下限に特に限定はなく、水分量は0でもよい。但し、縮合物の製造等の観点からは、本発明の縮合物中の水分量は、好ましくは0.01重量%以上、より好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上である。この水分量は、水等の不純物を含む本発明の縮合物全体を基準とする値である。 In the condensation reaction between resorcin and acetone, water is produced as a by-product. Moreover, as will be described later, a preferred method for producing the condensate of the present invention includes condensing resorcin and acetone in the presence of water. Therefore, water can remain in the condensate of resorcin and acetone obtained after the condensation reaction and devolatilization. The water content in the condensate of the present invention is preferably 2% by weight or less, more preferably 1% by weight or less, and still more preferably 0.5% by weight or less. There is no particular limitation on the lower limit of the moisture content, and the moisture content may be zero. However, from the viewpoint of production of the condensate, the water content in the condensate of the present invention is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and further preferably 0.1% by weight. That's it. This amount of water is a value based on the entire condensate of the present invention containing impurities such as water.
 レゾルシンとアセトンとの縮合反応にアセトン以外の有機溶媒を使用した場合には、該有機溶媒が不純物として本発明の縮合物中に残存し得る。また、レゾルシンとアセトンとの縮合反応では、アセトンの2量化によってジアセトンアルコールおよびメシチルオキシドが生成し、これらが不純物として本発明の縮合物中に残存し得る。上述したような、レゾルシン、アセトン、水、有機溶媒、ジアセトンアルコール、メシチルオキシド等の不純物の本発明の縮合物中の残存量は、好ましくは5重量%以下、より好ましくは3重量%以下、さらに好ましくは1重量%以下である。この残存量の下限に特に限定はなく、この残存量は0でもよい。但し、縮合物の製造等の観点からは、本発明の縮合物中の不純物の残存量は、好ましくは0.01重量%以上、より好ましくは0.05重量%以上、さらに好ましくは0.1重量%以上である。ここで、不純物の残存量は、不純物を含む本発明の縮合物全体を基準とする値である。 When an organic solvent other than acetone is used in the condensation reaction between resorcin and acetone, the organic solvent can remain as an impurity in the condensate of the present invention. In the condensation reaction between resorcin and acetone, diacetone alcohol and mesityl oxide are generated by dimerization of acetone, and these can remain as impurities in the condensate of the present invention. The residual amount of impurities such as resorcin, acetone, water, organic solvent, diacetone alcohol, mesityl oxide, etc. in the condensate of the present invention is preferably 5% by weight or less, more preferably 3% by weight or less. More preferably, it is 1% by weight or less. There is no particular limitation on the lower limit of the remaining amount, and the remaining amount may be zero. However, from the viewpoint of the production of the condensate, the residual amount of impurities in the condensate of the present invention is preferably 0.01% by weight or more, more preferably 0.05% by weight or more, and still more preferably 0.1%. % By weight or more. Here, the remaining amount of impurities is a value based on the whole condensate of the present invention containing impurities.
[レゾルシンとアセトンとの縮合物の製造方法]
 レゾルシンとアセトンとの縮合物は、一般的に特許文献1および2に記載されているように、酸触媒の存在下で、レゾルシンとアセトンとを縮合させることによって製造することができる。レゾルシンおよびアセトンは、いずれも市販のものを用いることができる。原料であるアセトンの使用量は、原料であるレゾルシン1molに対し、1~6molが好ましく、1.5~5molがより好ましい。
[Method for producing condensate of resorcin and acetone]
A condensate of resorcin and acetone can be produced by condensing resorcin and acetone in the presence of an acid catalyst, as generally described in Patent Documents 1 and 2. Commercially available resorcinol and acetone can be used. The amount of acetone used as a raw material is preferably 1 to 6 mol and more preferably 1.5 to 5 mol with respect to 1 mol of resorcin as a raw material.
 レゾルシンとアセトンとの縮合反応は脱水縮合であり、副生成物として水が生成する。そのため水が存在すると、レゾルシンとアセトンとの縮合反応の速度が低下する。このような観点から、特許文献1に記載されているように、従来、レゾルシンとアセトンとの縮合反応では、水を除去することが好ましいと考えられていた。しかし、本発明者らが鋭意検討を重ねた結果、あえて水の存在下でレゾルシンとアセトンとを縮合させることによって、高分子量体の生成が抑制されることを見出した。これは、水が存在することによって、高分子量体の分解(逆反応)が促進されるためであると推定される。但し、本発明はこのような推定に限定されない。 The condensation reaction between resorcin and acetone is dehydration condensation, and water is produced as a by-product. Therefore, when water is present, the rate of the condensation reaction between resorcin and acetone is reduced. From this point of view, as described in Patent Document 1, it has been conventionally considered that water is preferably removed in the condensation reaction between resorcin and acetone. However, as a result of extensive studies by the present inventors, it has been found that the formation of a high molecular weight product is suppressed by deliberately condensing resorcin and acetone in the presence of water. This is presumably because the presence of water promotes the decomposition (reverse reaction) of the high molecular weight product. However, the present invention is not limited to such estimation.
 上述の本発明の縮合物は、例えば、H型の酸性陽イオン交換樹脂(以下「酸性陽イオン交換樹脂」と略称することがある)を用いて、水の存在下でレゾルシンとアセトンとを縮合させることによって製造することができる。酸性陽イオン交換樹脂は、好ましくはスルホ基(-SOH)を有する強酸性陽イオン交換樹脂である。 The condensate of the present invention described above condenses resorcin and acetone in the presence of water using, for example, an H-type acidic cation exchange resin (hereinafter sometimes referred to as “acidic cation exchange resin”). Can be manufactured. The acidic cation exchange resin is preferably a strong acidic cation exchange resin having a sulfo group (—SO 3 H).
 酸性陽イオン交換樹脂を用いる上述の製造方法において、縮合反応開始時の反応溶液中の水分量は、原料であるレゾルシン1molに対して、好ましくは0.1~1.0mol、より好ましくは0.2~0.8molである。また、上述の製造方法において、縮合反応終了時の反応溶液中の水分量は、反応溶液100重量%あたり、好ましくは4~15重量%、より好ましくは6~10重量%である。 In the above-described production method using an acidic cation exchange resin, the amount of water in the reaction solution at the start of the condensation reaction is preferably 0.1 to 1.0 mol, more preferably 0.1 mol, relative to 1 mol of resorcin as a raw material. 2 to 0.8 mol. In the above production method, the amount of water in the reaction solution at the end of the condensation reaction is preferably 4 to 15% by weight, more preferably 6 to 10% by weight per 100% by weight of the reaction solution.
 酸性陽イオン交換樹脂の酸性基の濃度(即ち、酸性陽イオン交換樹脂1ml中に含まれる酸性基の量)は、好ましくは0.5~2.5meq/mlである。 The concentration of acidic groups in the acidic cation exchange resin (that is, the amount of acidic groups contained in 1 ml of acidic cation exchange resin) is preferably 0.5 to 2.5 meq / ml.
 酸性陽イオン交換樹脂の架橋度は1%以上が好ましく、2%以上がさらに好ましく、また20%以下が好ましく、15%以下がさらに好ましい。ここで架橋度とは、酸性陽イオン交換樹脂の製造に用いた全原料モノマー中の架橋性モノマーの濃度(%)(=100×架橋性モノマーの質量/全原料モノマーの質量)をいい、当該分野において使われている定義と同様である。この架橋度が小さすぎると、酸性陽イオン交換樹脂の強度を保つことが困難となり、触媒として使用する際に、酸性陽イオン交換樹脂の破砕等が生じるため好ましくない。 The degree of crosslinking of the acidic cation exchange resin is preferably 1% or more, more preferably 2% or more, more preferably 20% or less, and further preferably 15% or less. Here, the degree of cross-linking refers to the concentration (%) of the cross-linkable monomer in the total raw material monomers used in the production of the acidic cation exchange resin (= 100 × mass of cross-linkable monomer / mass of all raw material monomers). Similar definitions used in the field. If the degree of crosslinking is too small, it is difficult to maintain the strength of the acidic cation exchange resin, and the acidic cation exchange resin is crushed when used as a catalyst.
 酸性陽イオン交換樹脂の使用量に特に制限はないが、原料であるレゾルシン1重量部に対して、0.1~10重量部が好ましく、0.1~3重量部がより好ましい。 The amount of the acidic cation exchange resin used is not particularly limited, but is preferably 0.1 to 10 parts by weight, more preferably 0.1 to 3 parts by weight with respect to 1 part by weight of resorcin as a raw material.
 酸性陽イオン交換樹脂は、レゾルシンおよびアセトンを含む反応溶液との接触面積を大きくするため、粒状または粉体状であることが好ましい。酸性陽イオン交換樹脂の平均粒径は、好ましくは0.1~2.0mm、より好ましくは0.2~1.5mm、さらに好ましくは0.3~1.2mmである。この平均粒径は、乾式レーザー回折法、篩分級法等によって測定することができる。 The acidic cation exchange resin is preferably granular or powdery in order to increase the contact area with the reaction solution containing resorcin and acetone. The average particle size of the acidic cation exchange resin is preferably 0.1 to 2.0 mm, more preferably 0.2 to 1.5 mm, and still more preferably 0.3 to 1.2 mm. This average particle diameter can be measured by a dry laser diffraction method, a sieve classification method, or the like.
 酸性陽イオン交換樹脂としては、特に限定されるものではなく、市販品を用いることができる。その具体例としては、オルガノ(株)製アンバリストシリーズ(例えばSC200、SC300等)、三菱化学(株)製ダイヤイオンシリーズ(PK212、PK228)、ダウ・ケミカル(株)製DOWEXシリーズ(例えば50W×2等)、ローム・アンド・ハース(株)製デュオライトシリーズ(例えばC26CH)、ランクセス(株)製レバチットシリーズ(例えばS2328、K2629等)などが挙げられるが、これらに限定されない。 The acidic cation exchange resin is not particularly limited, and a commercially available product can be used. Specific examples include Ambalist series manufactured by Organo Corporation (for example, SC200 and SC300), Diaion Series manufactured by Mitsubishi Chemical Corporation (PK212, PK228), DOWEX Series manufactured by Dow Chemical Co., Ltd. (for example, 50W × 2), Rohm & Haas Co. Duolite series (for example, C26CH), LANXESS Co., Ltd. Lebatit series (for example, S2328, K2629, etc.) and the like.
 レゾルシンとアセトンとの縮合反応は、通常、溶液中で行われる。例えば原料のアセトンを多量に使用する場合、アセトンが出発原料および有機溶媒として作用するため、他の有機溶媒を使用する必要はない。なお、アセトンが有機溶媒として作用する場合であっても、アセトン以外の有機溶媒を使用してもよい。 The condensation reaction between resorcin and acetone is usually performed in a solution. For example, when a large amount of raw material acetone is used, it is not necessary to use another organic solvent because acetone acts as a starting material and an organic solvent. Even if acetone acts as an organic solvent, an organic solvent other than acetone may be used.
 アセトン以外の有機溶媒を使用する場合は、1種のみを使用してもよく、2種以上を併用してもよい。アセトン以外の有機溶媒としては、例えば、脂肪族炭化水素、芳香族炭化水素、ハロゲン置換芳香族炭化水素等が挙げられる。脂肪族炭化水素の具体例としては、ヘキサン、へプタン、オクタン、デカン等が挙げられる。芳香族炭化水素の具体例としては、トルエン、キシレン、エチルベンゼン等が挙げられる。ハロゲン置換芳香族炭化水素の具体例としては、クロロベンゼン、ジクロロベンゼン等が挙げられる。中でも、芳香族炭化水素が好ましく、トルエンまたはキシレンがより好ましい。アセトン以外の有機溶媒を使用する場合、その量は、原料であるレゾルシン1重量部に対して、0.5~3重量部が好ましい。 When using an organic solvent other than acetone, only one type may be used, or two or more types may be used in combination. Examples of organic solvents other than acetone include aliphatic hydrocarbons, aromatic hydrocarbons, and halogen-substituted aromatic hydrocarbons. Specific examples of the aliphatic hydrocarbon include hexane, heptane, octane, decane and the like. Specific examples of the aromatic hydrocarbon include toluene, xylene, ethylbenzene and the like. Specific examples of the halogen-substituted aromatic hydrocarbon include chlorobenzene and dichlorobenzene. Of these, aromatic hydrocarbons are preferable, and toluene or xylene is more preferable. When an organic solvent other than acetone is used, the amount is preferably 0.5 to 3 parts by weight with respect to 1 part by weight of resorcin as a raw material.
 レゾルシンとアセトンとの縮合反応は、回分式反応器で行ってもよく、連続式反応器で行ってもよい。 The condensation reaction between resorcin and acetone may be performed in a batch reactor or a continuous reactor.
 回分式反応器を用いる場合、反応器へのレゾルシン、アセトンおよび酸性陽イオン交換樹脂等の混合順序は特に限定されない。例えば、酸性陽イオン交換樹脂を仕込んだ反応器に出発原料を添加してもよく、逆に出発原料を含んだ反応器に酸性陽イオン交換樹脂を添加してもよい。また、縮合反応の進行に伴い、アセトンを連続的または断続的に追加してもよい。 When a batch reactor is used, the mixing order of resorcin, acetone, acidic cation exchange resin, etc. into the reactor is not particularly limited. For example, the starting material may be added to the reactor charged with the acidic cation exchange resin, and conversely, the acidic cation exchange resin may be added to the reactor containing the starting material. Acetone may be added continuously or intermittently as the condensation reaction proceeds.
 回分式反応器を用いる場合、不活性ガス(例えば、窒素)雰囲気下で縮合反応を行うことが好ましい。 When using a batch reactor, it is preferable to perform the condensation reaction in an inert gas (eg, nitrogen) atmosphere.
 連続式反応器を用いる態様として、例えば、酸性陽イオン交換樹脂を充填させた反応管に、レゾルシンおよびアセトンを含む反応溶液を流通させて、縮合反応を行う態様が挙げられる。反応管から流出した反応溶液を回収し、再び反応管に流通させることによって、反応溶液を循環させてもよい。 As an embodiment using a continuous reactor, there can be mentioned, for example, an embodiment in which a reaction solution containing resorcin and acetone is passed through a reaction tube filled with an acidic cation exchange resin to perform a condensation reaction. The reaction solution may be circulated by collecting the reaction solution flowing out from the reaction tube and circulating it again through the reaction tube.
 連続式反応器を用いる場合、反応溶液を反応管に流通させる際の反応管内の圧力は、好ましくは0.001~10MPa(ゲージ圧)である。 When a continuous reactor is used, the pressure in the reaction tube when the reaction solution is circulated through the reaction tube is preferably 0.001 to 10 MPa (gauge pressure).
 縮合反応の温度は、好ましくは20~120℃、より好ましくは20~100℃である。縮合反応の時間は、温度に依存するが、例えば1~48時間、好ましくは3~24時間である。縮合反応の進行は、ガスクロマトグラフィー(GC)、高速液体クロマトグラフィー(HPLC)、ゲル浸透クロマトグラフフィー(GPC)等の通常の分析手段により確認することができる。 The temperature of the condensation reaction is preferably 20 to 120 ° C, more preferably 20 to 100 ° C. The time for the condensation reaction depends on the temperature, but is, for example, 1 to 48 hours, preferably 3 to 24 hours. The progress of the condensation reaction can be confirmed by ordinary analytical means such as gas chromatography (GC), high performance liquid chromatography (HPLC), gel permeation chromatography (GPC) and the like.
 縮合反応で得られた、レゾルシンとアセトンとの縮合物を含む反応溶液から未反応のアセトン等の揮発性成分を除去して、縮合物を得ることができる。アセトン等を除去するための装置としては、例えば、回分式の蒸留装置、遠心式分子蒸留装置、薄膜蒸留装置等の蒸留装置、脱揮可能な押出機等が挙げられる。これらの蒸留装置等の熱供給部(蒸留装置の熱源ともいう。)を所定の温度(通常は蒸留温度)に調整しておき、そこに、得られた反応溶液を連続的または断続的に供給することにより、アセトン等を除去することができる。 A condensate can be obtained by removing volatile components such as unreacted acetone from the reaction solution obtained by the condensation reaction and containing a condensate of resorcin and acetone. Examples of the apparatus for removing acetone and the like include a distillation apparatus such as a batch distillation apparatus, a centrifugal molecular distillation apparatus, and a thin film distillation apparatus, and a devolatilizing extruder. The heat supply section (also called a heat source of the distillation apparatus) of these distillation apparatuses is adjusted to a predetermined temperature (usually the distillation temperature), and the obtained reaction solution is supplied continuously or intermittently there. By doing so, acetone or the like can be removed.
 アセトン等を除去する際の温度は、好ましくは0~250℃であり、より好ましくは60~230℃である。アセトン等の除去は常圧下で行ってもよく、減圧下で行ってもよい。減圧下でアセトン等を除去する場合、その圧力は、好ましくは100kPa以下、より好ましくは70kPa以下である。 The temperature at which acetone or the like is removed is preferably 0 to 250 ° C., more preferably 60 to 230 ° C. Acetone and the like may be removed under normal pressure or under reduced pressure. When removing acetone or the like under reduced pressure, the pressure is preferably 100 kPa or less, more preferably 70 kPa or less.
 アセトン等の除去後に得られた縮合物の装置からの取り出し手段としては、特に限定されるものではないが、例えば、溶融造粒、押出造粒、破砕造粒、圧縮造粒等が挙げられる。溶融造粒に用いる装置としては、例えば、サンドビック社製ロートフォーマー、カイザー社製ロータリー式ドロップフォーマー、三菱化成エンジニアリング社製ドラムクーラー、日本ベルディング社製スチールベルトクーラーおよびハイブリッドフォーマー等が挙げられる。 The means for taking out the condensate obtained after removing acetone or the like from the apparatus is not particularly limited, and examples thereof include melt granulation, extrusion granulation, crush granulation, and compression granulation. Examples of the apparatus used for melt granulation include Sandvik's Rotoformer, Kaiser's rotary drop former, Mitsubishi Kasei Engineering's drum cooler, Nippon Belding's steel belt cooler, and hybrid former. Can be mentioned.
[ゴム組成物、加硫ゴム組成物、およびそれらの製造方法]
 本発明は、上述した本発明の縮合物およびゴム成分を混練して得られるゴム組成物、およびその製造方法を提供する。また、本発明は、上述した本発明の縮合物、ゴム成分、および硫黄成分を混練して得られるゴム組成物(以下「硫黄成分を含有するゴム組成物」と記載することがある。)、およびその製造方法を提供する。また、本発明は、硫黄成分を含有するゴム組成物を加硫して得られる加硫ゴム組成物、およびその製造方法を提供する。
[Rubber composition, vulcanized rubber composition, and production method thereof]
The present invention provides a rubber composition obtained by kneading the condensate and rubber component of the present invention described above, and a method for producing the same. In addition, the present invention is a rubber composition obtained by kneading the condensate, rubber component, and sulfur component of the present invention described above (hereinafter sometimes referred to as a “rubber composition containing a sulfur component”), And a method for manufacturing the same. The present invention also provides a vulcanized rubber composition obtained by vulcanizing a rubber composition containing a sulfur component, and a method for producing the same.
 本発明の縮合物は、混練中にゴム成分等と反応し、別の化合物を形成する可能性がある。また、本発明の縮合物は、混練中に分解し、この分解物がゴム成分等と反応し、別の化合物を形成する可能性がある。しかし、固体のゴム組成物を分析する現在の技術では、ゴム組成物中で形成される可能性がある前記化合物を、その構造または特性によって直接特定することは不可能であるか、またはおよそ実際的でない。そのため、本明細書および特許請求の範囲では、本発明のゴム組成物を「本発明の縮合物およびゴム成分を混練して得られるゴム組成物」と特定する。加硫ゴム組成物についても同様である。 The condensate of the present invention may react with a rubber component or the like during kneading to form another compound. Further, the condensate of the present invention may be decomposed during kneading, and this decomposed product may react with a rubber component or the like to form another compound. However, with current techniques for analyzing solid rubber compositions, it is not possible, or approximately practical, to directly identify the compounds that may be formed in the rubber composition by their structure or properties. Not right. Therefore, in the present specification and claims, the rubber composition of the present invention is specified as “a rubber composition obtained by kneading the condensate of the present invention and a rubber component”. The same applies to the vulcanized rubber composition.
 ゴム成分は、1種のみを使用してもよく、2種以上を併用してもよい。ゴム成分としては、例えば、天然ゴム(NR)、エポキシ化天然ゴム、脱蛋白天然ゴム、200重量ppm以下のリンを含有する改質天然ゴム(HPNR)およびその他の変性天然ゴム;並びにポリイソプレンゴム(IR)、スチレン・ブタジエン共重合ゴム(SBR)、ポリブタジエンゴム(BR)、アクリロニトリル・ブタジエン共重合ゴム(NBR)、イソプレン・イソブチレン共重合ゴム(IIR)、エチレン・プロピレン-ジエン共重合ゴム(EPDM)、ハロゲン化ブチルゴム(HR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)等の合成ゴム;が挙げられる。 ¡Only one rubber component may be used, or two or more rubber components may be used in combination. Examples of rubber components include natural rubber (NR), epoxidized natural rubber, deproteinized natural rubber, modified natural rubber (HPNR) containing no more than 200 ppm by weight of phosphorus, and other modified natural rubbers; and polyisoprene rubber (IR), styrene / butadiene copolymer rubber (SBR), polybutadiene rubber (BR), acrylonitrile / butadiene copolymer rubber (NBR), isoprene / isobutylene copolymer rubber (IIR), ethylene / propylene / diene copolymer rubber (EPDM) ), Synthetic rubbers such as halogenated butyl rubber (HR), styrene isoprene butadiene rubber (SIBR), and chloroprene rubber (CR).
 天然ゴム、スチレン・ブタジエン共重合ゴム、ポリブタジエンゴム等の高不飽和性ゴムを用いることが好ましく、天然ゴムを用いることがより好ましい。また、所望の用途に応じて、天然ゴムとスチレン・ブタジエン共重合ゴムとの併用、天然ゴムとポリブタジエンゴムとの併用等、数種のゴム成分を組み合わせることも有効である。 It is preferable to use a highly unsaturated rubber such as natural rubber, styrene / butadiene copolymer rubber or polybutadiene rubber, and it is more preferable to use natural rubber. It is also effective to combine several rubber components such as a combination of natural rubber and styrene / butadiene copolymer rubber or a combination of natural rubber and polybutadiene rubber depending on the desired application.
 NRの例としては、RSS#1、RSS#3、TSR20、SIR20等のグレードの天然ゴムを挙げることができる。エポキシ化天然ゴムとしては、例えばクンプーラン ガスリー社製のENR25やENR50などのエポキシ化度10~60モル%のものが好ましい。脱蛋白天然ゴムとしては、総窒素含有率が0.3重量%以下である脱蛋白天然ゴムが好ましい。変性天然ゴムとしては、天然ゴムに4-ビニルピリジン、N,N,-ジアルキルアミノエチルアクリレート(例えばN,N,-ジエチルアミノエチルアクリレート)、2-ヒドロキシアクリレート等を反応させて得られる、極性基を含有する変性天然ゴムが好ましい。NR、IR等のイソプレンゴムは、これらから良好な破断時伸びおよび耐久性を有する加硫ゴム組成物を製造できるため、好ましい。 Examples of NR include natural rubber of grades such as RSS # 1, RSS # 3, TSR20, SIR20 and the like. As the epoxidized natural rubber, for example, those having a degree of epoxidation of 10 to 60 mol% such as ENR25 and ENR50 manufactured by Kumpulan Guthrie are preferable. As the deproteinized natural rubber, a deproteinized natural rubber having a total nitrogen content of 0.3% by weight or less is preferable. The modified natural rubber includes polar groups obtained by reacting natural rubber with 4-vinylpyridine, N, N, -dialkylaminoethyl acrylate (for example, N, N, -diethylaminoethyl acrylate), 2-hydroxyacrylate, and the like. The modified natural rubber contained is preferred. Isoprene rubbers such as NR and IR are preferable because a vulcanized rubber composition having good elongation at break and durability can be produced therefrom.
 SBRの例としては、日本ゴム協会編「ゴム工業便覧<第四版>」の210~211頁に記載されている乳化重合SBRおよび溶液重合SBRを挙げることができる。とりわけトレッド用ゴム組成物としては溶液重合SBRが好ましい。 Examples of the SBR include emulsion polymerization SBR and solution polymerization SBR described in pages 210 to 211 of the “Rubber Industry Handbook <Fourth Edition>” edited by the Japan Rubber Association. In particular, solution polymerization SBR is preferable as the rubber composition for treads.
 溶液重合SBRとしては、例えば、1種または2種以上の変性剤で変性して得られる、分子末端に窒素、スズおよびケイ素の少なくとも一つの元素を有する、変性溶液重合SBRが挙げられる。変性剤としては、例えば、ラクタム化合物、アミド化合物、尿素化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物、アミノシラン化合物、スズ化合物とアルコキシ基を有するシラン化合物との併用変性剤、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物との併用変性剤等が挙げられる。変性溶液重合SBRとしては、例えば、日本ゼオン社製「Nipol(登録商標)NS116」等の4,4’-ビス(ジアルキルアミノ)ベンゾフェノンを用いて分子末端を変性した溶液重合SBR、JSR社製「SL574」等のハロゲン化スズ化合物を用いて分子末端を変性した溶液重合SBR、および旭化成社製「E10」および「E15」等のシラン変性溶液重合SBR等が挙げられる。 Examples of the solution polymerization SBR include a modified solution polymerization SBR obtained by modifying with one or more modifiers and having at least one element of nitrogen, tin and silicon at the molecular end. Examples of the modifier include lactam compounds, amide compounds, urea compounds, N, N-dialkylacrylamide compounds, isocyanate compounds, imide compounds, silane compounds having an alkoxy group, aminosilane compounds, tin compounds and silane compounds having an alkoxy group. And a combined modifier of an alkyl acrylamide compound and a silane compound having an alkoxy group. Examples of the modified solution polymerization SBR include solution polymerization SBR having a molecular end modified with 4,4′-bis (dialkylamino) benzophenone such as “Nipol (registered trademark) NS116” manufactured by Nippon Zeon Co., Ltd. Examples thereof include solution polymerization SBR in which molecular ends are modified using a tin halide compound such as “SL574”, and silane-modified solution polymerization SBR such as “E10” and “E15” manufactured by Asahi Kasei Corporation.
 また、乳化重合SBRおよび溶液重合SBRに、プロセスオイルやアロマオイル等のオイルを添加した油添SBRも好ましい。 Further, oil-added SBR in which oil such as process oil or aroma oil is added to emulsion polymerization SBR and solution polymerization SBR is also preferable.
 BRとしては、低ビニル含量の溶液重合BRおよび高ビニル含量の溶液重合BRのいずれでもよいが、高ビニル含量の溶液重合BRが好ましい。1種または2種以上の変性剤で変性して得られる、分子末端に窒素、スズ、ケイ素の少なくとも一つの元素を有する変性溶液重合BRが特に好ましい。変性剤としては、例えば、4,4’-ビス(ジアルキルアミノ)ベンゾフェノン、ハロゲン化スズ化合物、ラクタム化合物、アミド化合物、尿素化合物、N,N-ジアルキルアクリルアミド化合物、イソシアネート化合物、イミド化合物、アルコキシ基を有するシラン化合物(例えば、トリアルコキシシラン化合物)、アミノシラン化合物、スズ化合物とアルコキシ基を有するシラン化合物との併用変性剤、アルキルアクリルアミド化合物とアルコキシ基を有するシラン化合物との併用変性剤等が挙げられる。変性溶液重合BRとしては、例えば、日本ゼオン製「Nipol(登録商標)BR1250H」等のスズ変性BRが挙げられる。 The BR may be either a solution polymerization BR having a low vinyl content or a solution polymerization BR having a high vinyl content, but a solution polymerization BR having a high vinyl content is preferred. Particularly preferred is a modified solution polymerization BR obtained by modification with one or more modifiers and having at least one element of nitrogen, tin, or silicon at the molecular end. Examples of the modifier include 4,4′-bis (dialkylamino) benzophenone, tin halide compound, lactam compound, amide compound, urea compound, N, N-dialkylacrylamide compound, isocyanate compound, imide compound, and alkoxy group. Examples thereof include a silane compound having an alkoxy group (for example, a trialkoxysilane compound), an aminosilane compound, a tin compound and a silane compound having an alkoxy group, and a combined modifier having an alkylacrylamide compound and an silane compound having an alkoxy group. Examples of the modified solution polymerization BR include tin-modified BR such as “Nipol (registered trademark) BR1250H” manufactured by Nippon Zeon.
 BRを含む本発明のゴム組成物は、トレッド用ゴム組成物やサイドウォール用ゴム組成物として好ましく用いることができる。また、本発明のゴム組成物において、例えば、日本ゼオン(株)製のBR1220、宇部興産(株)製のBR150B等の高ビニル含量のBR、宇部興産(株)製のVCR412、VCR617等の1,2-シンジオタクチックポリブタジエン結晶(SPB)を含むBR等のタイヤ工業において一般的なBRを使用できる。SPBを含むBRとしては、単にBR中にSPBを分散させたものではなく、SPBがBRと化学結合したうえで、無配向で分散しているものが、クラックの発生および伝播を抑制する傾向を有するため好ましい。また、スズ化合物により変性されたスズ変性ブタジエンゴム(スズ変性BR)も使用できる。BRは、通常、SBRおよび/または天然ゴムとブレンドして使用される。 The rubber composition of the present invention containing BR can be preferably used as a rubber composition for a tread or a rubber composition for a sidewall. In the rubber composition of the present invention, for example, BR1220 manufactured by Nippon Zeon Co., Ltd., BR150B manufactured by Ube Industries, Ltd., BR150B, etc., 1 such as VCR412, VCR617, etc. manufactured by Ube Industries, Ltd. , 2- Syndiotactic polybutadiene crystals (SPB) and other BRs such as BR can be used in the tire industry. As BR including SPB, SPB is not simply dispersed in BR, but SPB is chemically bonded to BR and dispersed non-oriented, which tends to suppress the generation and propagation of cracks. Since it has, it is preferable. In addition, tin-modified butadiene rubber (tin-modified BR) modified with a tin compound can also be used. BR is usually used by blending with SBR and / or natural rubber.
 本発明の縮合物の量は、ゴム成分100重量部に対して、0.1~10重量部が好ましく、0.5~5重量部がより好ましい。 The amount of the condensate of the present invention is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the rubber component.
 硫黄成分は、1種のみを使用してもよく、2種以上を併用してもよい。硫黄成分としては、例えば、粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、および高分散性硫黄等が挙げられる。粉末硫黄および不溶性硫黄が好ましい。硫黄成分の量は、ゴム成分100重量部に対して、1~10重量部が好ましく、2~6重量部がより好ましい。 Only one type of sulfur component may be used, or two or more types may be used in combination. Examples of the sulfur component include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, and highly dispersible sulfur. Powdered sulfur and insoluble sulfur are preferred. The amount of the sulfur component is preferably 1 to 10 parts by weight and more preferably 2 to 6 parts by weight with respect to 100 parts by weight of the rubber component.
 ゴム組成物は、上述の成分に加えて、例えば、メチレン供与体、充填剤、加硫促進剤、有機コバルト化合物および酸化亜鉛等を混練して製造してもよい。 The rubber composition may be produced by kneading, for example, a methylene donor, a filler, a vulcanization accelerator, an organic cobalt compound and zinc oxide in addition to the above-described components.
 メチレン供与体は、1種のみを使用してもよく、2種以上を併用してもよい。メチレン供与体としては、例えば、ヘキサメチレンテトラミン、メトキシ化メチロールメラミン樹脂等のゴム工業において通常使用されているものを挙げることができる。メチレン供与体は、好ましくはメトキシ化メチロールメラミン樹脂である。メトキシ化メチロールメラミン樹脂としては、例えば、ヘキサキス(メトキシメチル)メラミン、ペンタキス(メトキシメチル)メチロールメラミン、テトラキス(メトキシメチル)ジメチロールメラミンおよびこれらの混合物等が挙げられる。メチレン供与体を使用する場合、その量は、ゴム成分100重量部に対して、0.1~10重量部が好ましく、0.5~5重量部がより好ましい。 Only one type of methylene donor may be used, or two or more types may be used in combination. Examples of the methylene donor include those usually used in the rubber industry such as hexamethylenetetramine and methoxylated methylolmelamine resin. The methylene donor is preferably a methoxylated methylol melamine resin. Examples of the methoxylated methylol melamine resin include hexakis (methoxymethyl) melamine, pentakis (methoxymethyl) methylol melamine, tetrakis (methoxymethyl) dimethylol melamine, and mixtures thereof. When a methylene donor is used, the amount is preferably 0.1 to 10 parts by weight, more preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the rubber component.
 充填剤は、1種のみを使用してもよく、2種以上を併用してもよい。充填剤としては、ゴム分野で通常使用されているカーボンブラック、シリカ、タルク、クレイ等が例示される。カーボンブラックとしては、FEF(Fast Extruding Furnace)、HAF(High Abrasion Furnace)、SAF(Super Abrasion Furnace)、ISAF(Intermediate SAF)等のカーボンブラックが好ましい。また、カーボンブラックとシリカの併用等、数種の充填剤を組み合わせることも有効である。充填剤を使用する場合、その量は特に限定されるものではないが、ゴム成分100重量部に対して、10~100重量部が好ましく、30~70重量部がより好ましい。 充填 Only 1 type of filler may be used, or 2 or more types may be used in combination. Examples of the filler include carbon black, silica, talc, and clay that are usually used in the rubber field. The carbon black is preferably carbon black such as FEF (Fast Extruding Furnace), HAF (High Abrasion Furnace), SAF (Super Abrasion Furnace), ISAF (Intermediate A SAF). It is also effective to combine several kinds of fillers such as a combination of carbon black and silica. When the filler is used, the amount thereof is not particularly limited, but is preferably 10 to 100 parts by weight, more preferably 30 to 70 parts by weight with respect to 100 parts by weight of the rubber component.
 シリカとしては、例えばCTAB比表面積50~180m/gのシリカおよび/または窒素吸着比表面積50~300m/gのシリカを使用することが好ましい。これらの例としては、例えば東ソー・シリカ社製「Nipsil(登録商標)AQ」、「Nipsil(登録商標)AQ-N」、デグッサ社製「ウルトラジル(登録商標)VN3」、「ウルトラジル(登録商標)VN3-G」、「ウルトラジル(登録商標)360」、「ウルトラジル(登録商標)7000」、ローディア社製「ゼオシル(登録商標)115GR」、「ゼオシル(登録商標)1115MP」、「ゼオシル(登録商標)1205MP」、「ゼオシル(登録商標)Z85MP」等の市販品が挙げられる。pHが6~8であるシリカ、ナトリウムを0.2~1.5重量%含むシリカ、真円度が1~1.3の真球状シリカ、ジメチルシリコーンオイル等のシリコーンオイル、エトキシシリル基を含有する有機ケイ素化合物、エタノールやポリエチレングリコール等のアルコールで表面処理したシリカ、または二種類以上の異なった窒素吸着比表面積を有するシリカの混合物を使用することも好ましい。 As the silica, for example, silica having a CTAB specific surface area of 50 to 180 m 2 / g and / or silica having a nitrogen adsorption specific surface area of 50 to 300 m 2 / g is preferably used. Examples of these include “Nipsil (registered trademark) AQ” and “Nippil (registered trademark) AQ-N” manufactured by Tosoh Silica, Inc., “Ultrasil (registered trademark) VN3” manufactured by Degussa, Trademark) VN3-G "," Ultrasil (registered trademark) 360 "," Ultrasil (registered trademark) 7000 "," Zeosil (registered trademark) 115GR "," Zeosil (registered trademark) 1115MP "," Zeosil "manufactured by Rhodia (Registered trademark) 1205MP "," Zeosil (registered trademark) Z85MP "and other commercial products. Silica having a pH of 6 to 8, silica containing 0.2 to 1.5% by weight of sodium, true spherical silica having a roundness of 1 to 1.3, silicone oil such as dimethyl silicone oil, containing ethoxysilyl group It is also preferable to use an organic silicon compound, silica surface-treated with an alcohol such as ethanol or polyethylene glycol, or a mixture of silica having two or more different nitrogen adsorption specific surface areas.
 加硫促進剤は、1種のみを使用してもよく、2種以上を併用してもよい。加硫促進剤としては、例えば、ゴム工業便覧<第四版>の第412~413頁に記載されているチアゾール系加硫促進剤、スルフェンアミド系加硫促進剤、グアニジン系加硫促進剤が挙げられる。加硫促進剤を使用する場合、その量は、ゴム成分100重量部に対して、0.5~5.0重量部が好ましく、0.6~3.0重量部がより好ましい。 Only one type of vulcanization accelerator may be used, or two or more types may be used in combination. Examples of vulcanization accelerators include thiazole vulcanization accelerators, sulfenamide vulcanization accelerators, and guanidine vulcanization accelerators described in pages 412 to 413 of Rubber Industry Handbook <Fourth Edition>. Is mentioned. When a vulcanization accelerator is used, the amount thereof is preferably 0.5 to 5.0 parts by weight and more preferably 0.6 to 3.0 parts by weight with respect to 100 parts by weight of the rubber component.
 有機コバルト化合物は、1種のみを使用してもよく、2種以上を併用してもよい。有機コバルト化合物としては、例えば、ナフテン酸コバルト、ステアリン酸コバルト等の有機酸コバルト塩や、脂肪酸コバルト・ホウ素錯体化合物(例えば、マンケム社製の「マノボンドC」、Jhepherd社製の「CoMend A」および「CoMend B」)等が挙げられる。有機コバルト化合物の使用量は、そのコバルト含量を基準に定められる。このコバルト含量は、ゴム成分100重量部に対して、0.1~0.4重量部が好ましく、0.1~0.3重量部がより好ましい。 The organic cobalt compound may be used alone or in combination of two or more. Examples of the organic cobalt compound include organic acid cobalt salts such as cobalt naphthenate and cobalt stearate, fatty acid cobalt / boron complex compounds (for example, “Manobond C” manufactured by Manchem, “CoMend A” manufactured by Jhepherd, and "CoMend B"). The amount of the organic cobalt compound used is determined based on the cobalt content. The cobalt content is preferably 0.1 to 0.4 parts by weight, and more preferably 0.1 to 0.3 parts by weight with respect to 100 parts by weight of the rubber component.
 酸化亜鉛を使用する場合、その量は、ゴム成分100重量部に対して、1~15重量部が好ましく、1~10重量部がより好ましい。 When zinc oxide is used, the amount thereof is preferably 1 to 15 parts by weight and more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the rubber component.
 必要に応じて、ゴム組成物は、上述の成分に加えて、ゴム工業で通常使用されている各種のゴム薬品(例えば、酸化防止剤やオゾン劣化防止剤のような老化防止剤、しゃく解剤、加工助剤、ワックス、オイル、ステアリン酸、粘着付与剤等の1種または2種以上)を混練して製造してもよい。これら薬品の量は、ゴム組成物の意図された用途により異なるが、それぞれを、ゴム工業において通常使用されている範囲の量で用いることができる。 If necessary, in addition to the above-mentioned components, the rubber composition can be used for various rubber chemicals commonly used in the rubber industry (for example, anti-aging agents such as antioxidants and ozone deterioration inhibitors, peptizers). , One or more of processing aids, waxes, oils, stearic acid, tackifiers and the like) may be kneaded for production. The amount of these chemicals varies depending on the intended use of the rubber composition, but each can be used in an amount normally used in the rubber industry.
 ゴム組成物は、本発明の縮合物、ゴム成分、および必要に応じて他の成分(例えば、充填剤)を混練することによって製造することができる。 The rubber composition can be produced by kneading the condensate of the present invention, a rubber component, and, if necessary, other components (for example, a filler).
 前記成分に加えて、さらに硫黄成分を混練して得られるゴム組成物は、まず、ゴム成分と充填剤等とを混練する工程(以下「工程1」と略称することがある。)、次いで工程1で得られたゴム組成物と硫黄成分とを混練する工程(以下「工程2」と略称することがある。)を経て製造することが好ましい。さらに、工程1(即ち、ゴム成分と充填剤等との混練)の前に、ゴム成分を加工しやすくするため、ゴム成分を素練りする予備混練工程を設けてもよい。 In addition to the above components, the rubber composition obtained by further kneading the sulfur component is first a step of kneading the rubber component and a filler or the like (hereinafter sometimes abbreviated as “step 1”), and then a step. It is preferable to produce the rubber composition obtained in 1 through a step of kneading the rubber composition and the sulfur component (hereinafter sometimes abbreviated as “step 2”). Further, a pre-kneading step of kneading the rubber component may be provided before the step 1 (that is, kneading the rubber component with a filler or the like) to facilitate processing of the rubber component.
 硫黄成分を含有するゴム組成物の製造では、本発明の縮合物の全量を、予備混練工程、工程1または工程2のいずれかでゴム成分等と混練してもよく、本発明の縮合物を分割して、予備混練工程~工程2の少なくとも二つの工程でゴム成分等と混練してもよい。 In the production of a rubber composition containing a sulfur component, the entire amount of the condensate of the present invention may be kneaded with a rubber component or the like in either the preliminary kneading step, step 1 or step 2, and the condensate of the present invention may be mixed. It may be divided and kneaded with a rubber component or the like in at least two steps of the preliminary kneading step to step 2.
 酸化亜鉛を配合するときは、工程1でゴム成分等と混練することが好ましい。加硫促進剤を配合するときは、工程2でゴム成分等と混練することが好ましい。しゃく解剤を配合するときは、工程1でゴム成分等と混練することが好ましい。予備混練工程を設ける時は、予備混練工程でしゃく解剤の全量をゴム成分と混練するか、またはしゃく解剤を分けて、予備混練工程および工程1の両方でゴム成分と混練することが好ましい。 When blending zinc oxide, it is preferable to knead with a rubber component or the like in step 1. When a vulcanization accelerator is blended, it is preferably kneaded with a rubber component or the like in step 2. When blending a peptizer, it is preferable to knead with a rubber component or the like in step 1. When providing the preliminary kneading step, it is preferable to knead the entire amount of the peptizer in the preliminary kneading step or to separate the peptizer and knead the rubber component in both the preliminary kneading step and step 1. .
 工程1における混練には、例えば、バンバリーミキサーを含むインターナルミキサー、オープン型ニーダー、加圧式ニーダー、押出機、および射出成型機等を使用することができる。工程1における混練後のゴム組成物の排出温度は、200℃以下が好ましく、120~180℃がより好ましい。 For the kneading in Step 1, for example, an internal mixer including a Banbury mixer, an open kneader, a pressure kneader, an extruder, an injection molding machine, or the like can be used. The discharge temperature of the rubber composition after kneading in step 1 is preferably 200 ° C. or less, more preferably 120 to 180 ° C.
 工程2における混練には、例えば、オープンロール、カレンダー等を使用することができる。工程2における混練温度(混練しているゴム組成物の温度)は、60~120℃が好ましい。 For kneading in step 2, for example, an open roll, a calendar, or the like can be used. The kneading temperature in Step 2 (the temperature of the rubber composition being kneaded) is preferably 60 to 120 ° C.
 上述の硫黄成分を含有するゴム組成物を加硫することによって、加硫ゴム組成物を製造することができる。上述の硫黄成分を含有するゴム組成物を特定の形状に加工してから加硫することによって、加硫ゴム組成物を製造してもよい。 A vulcanized rubber composition can be produced by vulcanizing a rubber composition containing the above-described sulfur component. You may manufacture a vulcanized rubber composition by processing the rubber composition containing the above-mentioned sulfur component into a specific shape and then vulcanizing it.
 加硫温度は、120~180℃が好ましい。当業者であれば、ゴム組成物の組成に応じて、加硫時間を適宜設定することができる。加硫は、通常、常圧または加圧下で行われる。 The vulcanization temperature is preferably 120 to 180 ° C. A person skilled in the art can appropriately set the vulcanization time according to the composition of the rubber composition. Vulcanization is usually carried out at normal pressure or under pressure.
 ゴム組成物および加硫ゴム組成物は、様々な製品を製造するために有用である。ゴム組成物および加硫ゴム組成物から得られる製品としては、例えば、キャップトレッド、ベーストレッド、アンダートレッド、ベルト、カーカス、ビード、サイドウォール、ゴムチェーファー等のタイヤの各種部材が挙げられる。また、前記製品としては、例えば、エンジンマウント、ストラットマウント、ブッシュ、エグゾーストハンガー等の自動車用防振ゴム、ホース類、ゴムベルト等が挙げられる。 The rubber composition and the vulcanized rubber composition are useful for producing various products. Examples of products obtained from the rubber composition and the vulcanized rubber composition include various members of tires such as a cap tread, a base tread, an under tread, a belt, a carcass, a bead, a sidewall, and a rubber chafer. Examples of the product include vibration-proof rubbers for automobiles such as engine mounts, strut mounts, bushes, and exhaust hangers, hoses, rubber belts, and the like.
 例えば、ゴム組成物でスチールコードを被覆することにより、タイヤ用ベルトを製造することができる。スチールコードは、通常、平行に引き揃えた状態で用いられる。 For example, a tire belt can be manufactured by coating a steel cord with a rubber composition. Steel cords are usually used in a state of being aligned in parallel.
 スチールコードは、ゴムとの接着性の観点から、黄銅、亜鉛、あるいはこれにニッケルやコバルトを含有する合金でメッキ処理されていることが好ましく、特に黄銅メッキ処理が施されているものが好適である。さらには、黄銅メッキ中のCu含有率が75重量%以下、とりわけ55~70重量%である黄銅メッキ処理が施されたスチールコードが好適である。スチールコードの撚り構造は制限されない。 From the viewpoint of adhesion to rubber, the steel cord is preferably plated with brass, zinc, or an alloy containing nickel or cobalt, and is preferably subjected to brass plating. is there. Furthermore, a steel cord subjected to brass plating in which the Cu content in the brass plating is 75 wt% or less, particularly 55 to 70 wt%, is suitable. The twist structure of the steel cord is not limited.
 スチールコードがゴム組成物で被覆されたベルトは、複数枚積層して用いてもよい。このベルトは、主にカーカスの補強材料として使用される。 A plurality of belts in which steel cords are coated with a rubber composition may be used. This belt is mainly used as a reinforcing material for carcass.
 また、例えば、ゴム組成物を、タイヤのカーカス形状に合わせて押し出し加工し、カーカス繊維コードの上下に貼り付けることにより、カーカスを製造することもできる。カーカス繊維コードは、通常、平行に引き揃えた状態で使用される。カーカス繊維コードとしては、弾性率および耐疲労性が良好で、耐クリープ性も優秀で、安価なポリエステルおよびナイロンが好ましい。これらは、1枚または複数枚積層することで、タイヤ補強材料として使用される。 Also, for example, the carcass can be manufactured by extruding a rubber composition in accordance with the carcass shape of the tire and attaching the rubber composition on the upper and lower sides of the carcass fiber cord. The carcass fiber cord is usually used in a state of being aligned in parallel. As the carcass fiber cord, preferred are polyester and nylon which are excellent in elastic modulus and fatigue resistance, excellent in creep resistance and inexpensive. These are used as a tire reinforcing material by laminating one sheet or a plurality of sheets.
 ゴム組成物を用いて、通常の製造方法によってタイヤを製造することができる。例えば、ゴム組成物を押し出し加工し、タイヤ用部材を得、タイヤ成形機上で通常の方法により、他のタイヤ部材に貼り付け成形され、生タイヤが成形される。この生タイヤを加硫機中で加熱加圧して、タイヤが得られる。 A tire can be manufactured by a normal manufacturing method using a rubber composition. For example, a rubber composition is extruded to obtain a tire member, which is pasted and molded on another tire member by a normal method on a tire molding machine to form a raw tire. The green tire is heated and pressed in a vulcanizer to obtain a tire.
 以下、実施例等を挙げて本発明をより具体的に説明するが、本発明は以下の実施例等によって制限を受けるものではなく、上記・下記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described more specifically with reference to examples and the like, but the present invention is not limited by the following examples and the like, and appropriate modifications are made within a range that can meet the above and the following purposes. In addition, it is of course possible to carry out them, all of which are included in the technical scope of the present invention.
実施例1(縮合物1の製造)
 (1)温度計、攪拌機およびコンデンサーを備えた1000mlジャケット付セパラブルフラスコを窒素置換した後、その中に強酸性陽イオン交換樹脂(三菱化学(株)製「ダイヤイオンPK212LH」、約55重量%含水、架橋度:約6%、平均粒径:0.59mm)150g、およびアセトン(水分量:9重量%)を約400ml仕込んだ。その後、撹拌を行っている中、セパラブルフラスコの底部よりフラスコから液を排出しつつ、一方でセパラブルフラスコの上部よりアセトン(水分量:9重量%)を連続的に約2000ml供給した。このようにして、フラスコからの液の排出速度と、フラスコへの液の供給速度をほぼ一定にし、イオン交換樹脂の洗浄を行った。洗浄後、セパラブルフラスコ内のアセトンを除去した。
Example 1 (Production of condensate 1)
(1) A 1000 ml jacketed separable flask equipped with a thermometer, a stirrer, and a condenser was purged with nitrogen, and then a strongly acidic cation exchange resin ("Diaion PK212LH" manufactured by Mitsubishi Chemical Corporation), about 55 wt% About 400 ml of water content, degree of crosslinking: about 6%, average particle size: 0.59 mm (150 g), and acetone (water content: 9% by weight) were charged. Thereafter, while stirring, while discharging the liquid from the bottom of the separable flask, about 2000 ml of acetone (water content: 9% by weight) was continuously supplied from the top of the separable flask. In this way, the ion exchange resin was washed with the liquid discharge rate from the flask and the liquid supply rate to the flask being substantially constant. After washing, acetone in the separable flask was removed.
 (2)上記(1)で洗浄した強酸性陽イオン交換樹脂が入っているセパラブルフラスコに、レゾルシン300.0g(2.72mol)を仕込み、フラスコ内部を窒素置換した後、アセトン364.0g(6.27mol)およびイオン交換水24.6g(1.36mol)を仕込み、ジャケット温度を83℃に昇温した。この温度で混合物を23時間撹拌して、縮合反応を行った(レゾルシン1molに対するアセトン使用量:2.3mol、レゾルシン1molに対するイオン交換水使用量:0.5mol、レゾルシン1重量部に対する強酸性陽イオン交換樹脂の使用量:0.50重量部)。23時間の縮合反応後、内温を60℃に降温した後、アセトンを269.0g添加し、混合物を10分間撹拌した。その後、イオン交換樹脂と溶液を分離し、レゾルシンとアセトンとの縮合物のアセトン溶液(溶液A1)のみを回収した。次いで、セパラブルフラスコ内にアセトンを158.2g仕込み、イオン交換樹脂およびアセトンの混合物を10分間撹拌し、イオン交換樹脂を洗浄した後、イオン交換樹脂と溶液を分離し、アセトン溶液(溶液B1)を回収した。 (2) 300.0 g (2.72 mol) of resorcin was charged into a separable flask containing the strongly acidic cation exchange resin washed in (1) above, and the inside of the flask was purged with nitrogen, and then 364.0 g of acetone ( 6.27 mol) and 24.6 g (1.36 mol) of ion-exchanged water were charged, and the jacket temperature was raised to 83 ° C. The mixture was stirred at this temperature for 23 hours to carry out a condensation reaction (acetone usage relative to 1 mol of resorcin: 2.3 mol, ion exchange water usage relative to 1 mol of resorcin: 0.5 mol, strong acidic cation relative to 1 part by weight of resorcin. The amount of exchange resin used: 0.50 parts by weight). After the 23-hour condensation reaction, the internal temperature was lowered to 60 ° C., then 269.0 g of acetone was added, and the mixture was stirred for 10 minutes. Thereafter, the ion exchange resin and the solution were separated, and only the acetone solution (solution A1) of the condensate of resorcin and acetone was recovered. Next, 158.2 g of acetone was charged into the separable flask, and the mixture of the ion exchange resin and acetone was stirred for 10 minutes to wash the ion exchange resin. Then, the ion exchange resin and the solution were separated, and the acetone solution (solution B1) Was recovered.
 (3)上記(2)の操作後の強酸性陽イオン交換樹脂が入っているセパラブルフラスコに、上記(2)と同量のレゾルシン、アセトンおよびイオン交換水を仕込み、上記(2)と同じ条件にて縮合反応および洗浄を行い、溶液A2を887.0g、溶液B2を199.5g得た。溶液A2中の水分量は7.6重量%、溶液B2中の水分量は5.9重量%であった。なお、溶液A2のみを、次工程の脱揮に使用した。 (3) The same amount of resorcin, acetone and ion-exchanged water as in (2) above is charged into a separable flask containing the strongly acidic cation exchange resin after the operation in (2) above, and the same as in (2) above Condensation reaction and washing were performed under the same conditions to obtain 887.0 g of solution A2 and 199.5 g of solution B2. The water content in the solution A2 was 7.6% by weight, and the water content in the solution B2 was 5.9% by weight. In addition, only the solution A2 was used for the devolatilization of the next process.
 (4)薄膜蒸留(蒸発缶のジャケット温度:220℃、圧力:27kPa)によって、得られた溶液A2の脱揮を実施し、固体の縮合物1を得た。 (4) The resulting solution A2 was devolatilized by thin film distillation (evaporator jacket temperature: 220 ° C., pressure: 27 kPa) to obtain a solid condensate 1.
実施例2(縮合物2の製造)
 (1)実施例1(1)と同様の操作を行い、強酸性陽イオン交換樹脂を洗浄した。
Example 2 (Production of condensate 2)
(1) The same operation as in Example 1 (1) was performed to wash the strongly acidic cation exchange resin.
 (2)上記(1)で洗浄した強酸性陽イオン交換樹脂が入っているセパラブルフラスコに、レゾルシン300.0g(2.72mol)を仕込み、フラスコ内部を窒素置換した後、アセトン348.1g(5.99mol)およびイオン交換水34.4g(1.91mol)を仕込み、ジャケット温度を83℃に昇温した。この温度で混合物を23時間撹拌して、縮合反応を行った(レゾルシン1molに対するアセトン使用量:2.2mol、レゾルシン1molに対するイオン交換水使用量:0.7mol、レゾルシン1重量部に対する強酸性陽イオン交換樹脂の使用量:0.50重量部)。23時間の縮合反応後、内温を60℃に降温した後、アセトンを284.8g添加し、混合物を10分間撹拌した。その後、イオン交換樹脂と溶液を分離し、レゾルシンとアセトンとの縮合物のアセトン溶液(溶液C1)のみを回収した。次いで、セパラブルフラスコ内にアセトンを158.2g仕込み、イオン交換樹脂およびアセトンの混合物を10分間撹拌し、イオン交換樹脂を洗浄した後、イオン交換樹脂と溶液を分離し、アセトン溶液(溶液D1)を回収した。 (2) 300.0 g (2.72 mol) of resorcin was charged into a separable flask containing the strongly acidic cation exchange resin washed in (1) above, and the inside of the flask was purged with nitrogen, followed by 348.1 g of acetone ( 5.99 mol) and 34.4 g (1.91 mol) of ion-exchanged water were charged, and the jacket temperature was raised to 83 ° C. The mixture was stirred at this temperature for 23 hours to carry out a condensation reaction (amount of acetone used for 1 mol of resorcin: 2.2 mol, amount of ion-exchanged water used for 1 mol of resorcin: 0.7 mol, strongly acidic cation for 1 part by weight of resorcin) The amount of exchange resin used: 0.50 parts by weight). After the condensation reaction for 23 hours, the internal temperature was lowered to 60 ° C., 284.8 g of acetone was added, and the mixture was stirred for 10 minutes. Thereafter, the ion exchange resin and the solution were separated, and only an acetone solution (solution C1) of a condensate of resorcin and acetone was recovered. Next, 158.2 g of acetone was charged into the separable flask, and the mixture of the ion exchange resin and acetone was stirred for 10 minutes to wash the ion exchange resin. Then, the ion exchange resin and the solution were separated, and the acetone solution (solution D1) Was recovered.
 (3)上記(2)の操作後の強酸性陽イオン交換樹脂が入っているセパラブルフラスコに、上記(2)と同量のレゾルシン、アセトンおよびイオン交換水を仕込み、上記(2)と同じ条件にて縮合反応および洗浄を行い、溶液C2を888.3g、溶液D2を211.1g得た。溶液C2中の水分量は7.7重量%、溶液D2中の水分量は6.9重量%であった。なお、溶液C2のみを、次工程の脱揮に使用した。 (3) The same amount of resorcin, acetone and ion-exchanged water as in (2) above is charged into a separable flask containing the strongly acidic cation exchange resin after the operation in (2) above, and the same as in (2) above Condensation reaction and washing were performed under the conditions to obtain 888.3 g of solution C2 and 211.1 g of solution D2. The water content in the solution C2 was 7.7% by weight, and the water content in the solution D2 was 6.9% by weight. In addition, only the solution C2 was used for the devolatilization of the next process.
 (4)薄膜蒸留(蒸発缶のジャケット温度:220℃、圧力:27kPa)によって、得られた溶液C2の脱揮を実施し、固体の縮合物2を得た。 (4) The resulting solution C2 was devolatilized by thin film distillation (evaporator jacket temperature: 220 ° C., pressure: 27 kPa) to obtain a solid condensate 2.
実施例3(縮合物3の製造)
1.溶液E2の製造
 (1)実施例1(1)と同様の操作を行い、強酸性陽イオン交換樹脂を洗浄した。
Example 3 (Production of condensate 3)
1. Production of Solution E2 (1) The same operation as in Example 1 (1) was performed to wash the strongly acidic cation exchange resin.
 (2)上記(1)で洗浄した強酸性陽イオン交換樹脂が入っているセパラブルフラスコに、レゾルシン100.0g(0.91mol)を仕込み、フラスコ内部を窒素置換した後、アセトン263.7g(4.54mol)およびイオン交換水5.27g(2.92mol)を仕込み、ジャケット温度を70℃に昇温した。この温度で混合物を22時間撹拌して、縮合反応を行った(レゾルシン1molに対するアセトン使用量:5.0mol、レゾルシン1molに対するイオン交換水使用量:0.32mol、レゾルシン1重量部に対する強酸性陽イオン交換樹脂の使用量:1.50重量部)。22時間の縮合反応後、イオン交換樹脂と溶液を分離し、レゾルシンとアセトンとの縮合物のアセトン溶液(溶液E1)のみを回収した。 (2) 100.0 g (0.91 mol) of resorcin was charged in a separable flask containing the strongly acidic cation exchange resin washed in (1) above, and the inside of the flask was purged with nitrogen, and then 263.7 g of acetone ( 4.54 mol) and 5.27 g (2.92 mol) of ion-exchanged water were charged, and the jacket temperature was raised to 70 ° C. The mixture was stirred at this temperature for 22 hours to carry out a condensation reaction (acetone usage relative to 1 mol of resorcin: 5.0 mol, ion exchange water usage relative to 1 mol of resorcin: 0.32 mol, strongly acidic cation relative to 1 part by weight of resorcin) The amount of exchange resin used: 1.50 parts by weight). After the 22-hour condensation reaction, the ion exchange resin and the solution were separated, and only the acetone solution (solution E1) of the condensate of resorcin and acetone was recovered.
 (3)上記(2)の操作後の強酸性陽イオン交換樹脂が入っているセパラブルフラスコに、上記(2)と同量のレゾルシン、アセトンおよびイオン交換水を仕込み、撹拌時間を8時間と変更したこと以外は上記(2)と同じ条件にて縮合反応を行い、溶液E2を約350g得た。溶液E2中の水分量は6.0重量%であった。なお、後述する脱揮には、溶液E1を使用せず、溶液E2を使用した。 (3) A separable flask containing the strongly acidic cation exchange resin after the operation of (2) is charged with the same amounts of resorcin, acetone and ion exchange water as in (2) above, and the stirring time is 8 hours. Except for the change, the condensation reaction was carried out under the same conditions as in (2) above to obtain about 350 g of solution E2. The water content in the solution E2 was 6.0% by weight. In addition, the solution E2 was used for the devolatilization mentioned later, without using the solution E1.
2.溶液F2の製造
 (1)使用した強酸性陽イオン交換樹脂の量を200g、イオン交換樹脂と共に仕込んだアセトン(水分量:9重量%)の量を500ml、連続供給したアセトン(水分量:9重量%)の量を約2500mlとしたこと以外は実施例1(1)の操作と同様にして、イオン交換樹脂の洗浄を行った。
2. Production of Solution F2 (1) 200 g of the strongly acidic cation exchange resin used, 500 ml of acetone (water content: 9% by weight) charged together with the ion exchange resin, and continuously supplied acetone (water content: 9%) %) Was changed to about 2500 ml, and the ion exchange resin was washed in the same manner as in the operation of Example 1 (1).
 (2)上記(1)で洗浄した強酸性陽イオン交換樹脂が入っているセパラブルフラスコに、レゾルシン100.0g(0.91mol)を仕込み、フラスコ内部を窒素置換した後、アセトン263.7g(4.54mol)およびイオン交換水5.27g(2.92mol)を仕込み、ジャケット温度を70℃に昇温した。この温度で混合物を22時間撹拌して、縮合反応を行った(レゾルシン1molに対するアセトン使用量:5.0mol、レゾルシン1molに対するイオン交換水使用量:0.32mol、レゾルシン1重量部に対する強酸性陽イオン交換樹脂の使用量:2.00重量部)。22時間の縮合反応後、イオン交換樹脂と溶液を分離し、レゾルシンとアセトンとの縮合物のアセトン溶液(溶液F1)のみを回収した。 (2) 100.0 g (0.91 mol) of resorcin was charged in a separable flask containing the strongly acidic cation exchange resin washed in (1) above, and the inside of the flask was purged with nitrogen, and then 263.7 g of acetone ( 4.54 mol) and 5.27 g (2.92 mol) of ion-exchanged water were charged, and the jacket temperature was raised to 70 ° C. The mixture was stirred at this temperature for 22 hours to carry out a condensation reaction (acetone usage relative to 1 mol of resorcin: 5.0 mol, ion exchange water usage relative to 1 mol of resorcin: 0.32 mol, strongly acidic cation relative to 1 part by weight of resorcin) The amount of exchange resin used: 2.00 parts by weight). After the 22-hour condensation reaction, the ion exchange resin and the solution were separated, and only the acetone solution (solution F1) of the condensate of resorcin and acetone was recovered.
 (3)上記(2)の操作後の強酸性陽イオン交換樹脂が入っているセパラブルフラスコに、上記(2)と同量のレゾルシン、アセトンおよびイオン交換水を仕込み、撹拌時間を8時間と変更したこと以外は上記(2)と同じ条件にて縮合反応を行い、溶液F2を約350g得た。溶液F2中の水分量は6.5重量%であった。なお、後述する脱揮には、溶液F1を使用せず、溶液F2を使用した。 (3) A separable flask containing the strongly acidic cation exchange resin after the operation of (2) is charged with the same amounts of resorcin, acetone and ion exchange water as in (2) above, and the stirring time is 8 hours. Except for the change, the condensation reaction was performed under the same conditions as in (2) above to obtain about 350 g of the solution F2. The water content in the solution F2 was 6.5% by weight. In addition, the solution F1 was not used for the devolatilization mentioned later, but the solution F2 was used.
3.縮合物3の製造
 溶液E2(約350g)および溶液F2(約350g)を混合し、混合溶液を得た。薄膜蒸留(蒸発缶のジャケット温度:220℃、圧力:27kPa)によって、得られた混合溶液の脱揮を実施し、固体の縮合物3を得た。
3. Production of Condensate 3 Solution E2 (about 350 g) and solution F2 (about 350 g) were mixed to obtain a mixed solution. The resulting mixed solution was devolatilized by thin film distillation (evaporator jacket temperature: 220 ° C., pressure: 27 kPa) to obtain a solid condensate 3.
実施例4(縮合物4の製造)
 (1)反応溶液を循環させる連続式反応器を用いて、レゾルシンとアセトンとの縮合反応を行った。連続式反応器の反応管には、ジャケット付ステンレス鋼(SUS)製反応管(内径15.75mm、長さ600mm)を用い、強酸性陽イオン交換樹脂(三菱化学(株)製「ダイヤイオンPK212LH」、約55重量%含水、架橋度:約6%、平均粒径:0.59mm)77gを充填した。反応時は、反応溶液を、反応管の上部から下部へ流通させ(ダウンフロー式)、反応管出口に背圧レギュレータを設置し、反応管内の圧力を1.9~2.1MPa(ゲージ圧)になるように調整した。反応溶液は、始めセパラブルフラスコに仕込み、セパラブルフラスコ内とプランジャーポンプをチューブで接続し、プランジャーポンプにて反応管上部へ送った。反応管出口からセパラブルフラスコについてもチューブで接続することで、反応溶液をセパラブルフラスコへと戻し、セパラブルフラスコと反応管の間を循環させて、反応を行った。
Example 4 (Production of condensate 4)
(1) A condensation reaction between resorcin and acetone was performed using a continuous reactor in which the reaction solution was circulated. The reaction tube of the continuous reactor was a jacketed stainless steel (SUS) reaction tube (inner diameter 15.75 mm, length 600 mm), and a strongly acidic cation exchange resin ("Diaion PK212LH" manufactured by Mitsubishi Chemical Corporation). ”, About 55 wt% water content, degree of crosslinking: about 6%, average particle size: 0.59 mm). During the reaction, the reaction solution is circulated from the upper part to the lower part of the reaction tube (down flow type), a back pressure regulator is installed at the outlet of the reaction tube, and the pressure in the reaction tube is 1.9 to 2.1 MPa (gauge pressure) It was adjusted to become. The reaction solution was initially charged in a separable flask, the inside of the separable flask and a plunger pump were connected by a tube, and sent to the upper part of the reaction tube by the plunger pump. By connecting the separable flask from the outlet of the reaction tube with a tube, the reaction solution was returned to the separable flask and circulated between the separable flask and the reaction tube to carry out the reaction.
 (2)セパラブルフラスコに、レゾルシン40.1g(0.36mol)を仕込み、フラスコ内部を窒素置換した後、アセトン78.3g(1.35mol)およびイオン交換水1.6g(0.089mol)を仕込み、レゾルシンをアセトンおよびイオン交換水中に溶解させた。反応管ジャケット温度を75℃に昇温した。この温度でポンプでの送液を10~12時間行い、縮合反応を行った(レゾルシン1molに対するアセトン使用量:3.7mol、レゾルシン1molに対するイオン交換水使用量:0.24mol、レゾルシン1重量部に対する強酸性陽イオン交換樹脂の使用量:1.92重量部)。縮合反応後、ポンプ送液を停止し、反応管上部より窒素を導入することで、反応管内部の反応液をセパラブルフラスコへと排出することで、レゾルシンとアセトンとの縮合物のアセトン溶液(溶液G)を得た。 (2) A separable flask was charged with 40.1 g (0.36 mol) of resorcin, and the inside of the flask was purged with nitrogen, and then 78.3 g (1.35 mol) of acetone and 1.6 g (0.089 mol) of ion-exchanged water were added. First, resorcin was dissolved in acetone and ion-exchanged water. The reaction tube jacket temperature was raised to 75 ° C. The solution was pumped at this temperature for 10 to 12 hours, and the condensation reaction was carried out (acetone use amount relative to 1 mol of resorcin: 3.7 mol, ion exchange water use amount relative to 1 mol of resorcin: 0.24 mol, relative to 1 part by weight of resorcin Use amount of strongly acidic cation exchange resin: 1.92 parts by weight). After the condensation reaction, the pumping is stopped, and nitrogen is introduced from the top of the reaction tube to discharge the reaction solution inside the reaction tube to a separable flask, so that an acetone solution of a condensate of resorcin and acetone ( Solution G) was obtained.
 さらに、上記と同様の循環操作(縮合反応)を15回行い、循環操作1回あたり溶液Gを約120g得た。溶液G中の水分量は7.7~8.5重量%であった。 Furthermore, the same circulation operation (condensation reaction) as described above was performed 15 times, and about 120 g of the solution G was obtained per circulation operation. The water content in the solution G was 7.7 to 8.5% by weight.
 (3)第5、6、8、10、11、13および14回の循環操作で得られた溶液G(循環操作7回分の溶液G)を混合し、混合溶液を得た。薄膜蒸留(蒸発缶のジャケット温度:220℃、圧力:27kPa)によって、得られた混合溶液の脱揮を実施し、固体の縮合物4を得た。 (3) The solution G obtained by the fifth, sixth, eighth, tenth, eleventh, thirteenth, and fourteen circulation operations (the solution G for seven circulation operations) was mixed to obtain a mixed solution. The resulting mixed solution was devolatilized by thin film distillation (evaporator jacket temperature: 220 ° C., pressure: 27 kPa) to obtain a solid condensate 4.
比較例1(縮合物5の製造)
 (1)温度計、攪拌機およびコンデンサーを備えた2000Lの反応釜内部を窒素置換した後、その中に強酸性陽イオン交換樹脂(三菱化学(株)製「ダイヤイオンPK212LH」、50重量%含水、架橋度:約6%、平均粒径:0.59mm)114kgおよびアセトン228kgを仕込み、48℃で55分間撹拌した。撹拌後に静置してから、ろ過によってアセトンを除去して、強酸性陽イオン交換樹脂を洗浄した。ろ過器上のイオン交換樹脂に、さらにアセトン114kgを注いだ後、15分間静置して、イオン交換樹脂の洗浄を行った。同様の洗浄を、6回繰り返した。6回後の洗浄液であるアセトン中の水分量は1.2重量%であった。
Comparative Example 1 (Production of condensate 5)
(1) The inside of a 2000 L reaction kettle equipped with a thermometer, a stirrer and a condenser was purged with nitrogen, and then a strongly acidic cation exchange resin (“Diaion PK212LH” manufactured by Mitsubishi Chemical Corporation, containing 50 wt% water, (Degree of crosslinking: about 6%, average particle size: 0.59 mm) 114 kg and 228 kg of acetone were charged and stirred at 48 ° C. for 55 minutes. After leaving to stand after stirring, acetone was removed by filtration to wash the strongly acidic cation exchange resin. A further 114 kg of acetone was poured into the ion exchange resin on the filter, and then allowed to stand for 15 minutes to wash the ion exchange resin. The same washing was repeated 6 times. The amount of water in acetone, which is the cleaning solution after 6 times, was 1.2% by weight.
 (2)温度計、攪拌機およびコンデンサーを備えた2000Lの反応釜内部を窒素置換した後、上記(1)で洗浄した強酸性陽イオン交換樹脂を反応釜に仕込み、レゾルシン150.5kg(1367mol)およびアセトン236.7kg(4075mol、水分量:0.001重量%)を仕込み、64℃に昇温した。この温度で混合物を17時間撹拌して、縮合反応を行った(レゾルシン1molに対するアセトン使用量:3mol、レゾルシン1重量部に対する強酸性陽イオン交換樹脂の使用量:0.76重量部)。17時間の縮合反応後に、強酸性陽イオン交換樹脂をろ過で取り除くことによって縮合反応を停止させた。なお、この縮合反応では、レゾルシンおよび縮合物は反応溶液から析出しなかった。縮合反応停止後の溶液から、ろ過によって強酸性陽イオン交換樹脂を除いた。レゾルシンとアセトンとの縮合物のアセトン溶液(溶液H)594kgを取得した。 (2) After replacing the inside of a 2000 L reaction kettle equipped with a thermometer, a stirrer, and a condenser with nitrogen, the strongly acidic cation exchange resin washed in the above (1) was charged into the reaction kettle, and resorcinol 150.5 kg (1367 mol) and 236.7 kg (4075 mol, water content: 0.001 wt%) of acetone was charged, and the temperature was raised to 64 ° C. The mixture was stirred at this temperature for 17 hours to perform a condensation reaction (amount of acetone used for 1 mol of resorcin: 3 mol, amount of strongly acidic cation exchange resin used for 1 part by weight of resorcin: 0.76 parts by weight). After the 17 hour condensation reaction, the condensation reaction was stopped by removing the strongly acidic cation exchange resin by filtration. In this condensation reaction, resorcin and condensate did not precipitate from the reaction solution. The strongly acidic cation exchange resin was removed from the solution after stopping the condensation reaction by filtration. 594 kg of an acetone solution (solution H) of a condensate of resorcin and acetone was obtained.
 薄膜蒸留(蒸発缶のジャケット温度:270℃、圧力:70kPa以下)によって、得られた溶液Hの脱揮を実施し、固体の縮合物5を得た。 The resulting solution H was devolatilized by thin-film distillation (evaporator jacket temperature: 270 ° C., pressure: 70 kPa or less) to obtain a solid condensate 5.
比較例2(縮合物6の製造)
 実施例1と同じように合成したレゾルシンとアセトンとの縮合物のアセトン溶液を882.7kg測り取り、温度計、攪拌機およびコンデンサーを備えた2000Lの反応釜内部に仕込んだ。単蒸留により421.2kgの溶媒を留去した後、440.3kgのアセトンを仕込み、再度441.1kgの溶媒を単蒸留にて留去した。次いで、440.0kgのアセトンを追加した後、単蒸留にて437.5kgの溶媒を留去した。更に、440.2kgのアセトンを追加した後、単蒸留にて441.5kgの溶媒を留去した。その後、冷却した後、アセトンを207.7kg追加し、649.8kgのレゾルシンとアセトンとの縮合物のアセトン溶液(溶液I)を得た。得られた溶液I中の水分量は0.22重量%であった。
Comparative Example 2 (Production of condensate 6)
882.7 kg of an acetone solution of a condensate of resorcin and acetone synthesized in the same manner as in Example 1 was weighed and charged into a 2000 L reaction kettle equipped with a thermometer, a stirrer, and a condenser. After 421.2 kg of solvent was distilled off by simple distillation, 440.3 kg of acetone was charged, and 441.1 kg of solvent was again distilled off by simple distillation. Subsequently, 440.0 kg of acetone was added, and 437.5 kg of the solvent was distilled off by simple distillation. Furthermore, after adding 440.2 kg of acetone, 441.5 kg of the solvent was distilled off by simple distillation. Then, after cooling, 207.7 kg of acetone was added, and the acetone solution (solution I) of the condensate of resealcin and acetone of 649.8 kg was obtained. The water content in the obtained solution I was 0.22% by weight.
 上記脱水操作によって得られた溶液Iを262.1kg、および比較例1と同様にして洗浄した強酸性陽イオン交換樹脂(三菱化学(株)製「ダイヤイオンPK212LH」)80.5kgを反応容器に入れ、窒素雰囲気下、20℃で混合物を26時間撹拌して、縮合反応を行った。26時間の縮合反応後に、ろ過してイオン交換樹樹脂を取り除くことで縮合反応を停止させた後、127.4kgのアセトンでイオン交換樹脂を洗浄し、上記縮合反応で得られたアセトン溶液と洗浄後に得られたアセトン溶液とを混合し、370.8kgのレゾルシンとアセトンとの縮合物のアセトン溶液(溶液J)を得た。 262.1 kg of the solution I obtained by the above dehydration operation and 80.5 kg of strongly acidic cation exchange resin (“Diaion PK212LH” manufactured by Mitsubishi Chemical Corporation) washed in the same manner as in Comparative Example 1 were used in a reaction vessel. The mixture was stirred at 20 ° C. for 26 hours under a nitrogen atmosphere to conduct a condensation reaction. After the condensation reaction for 26 hours, the condensation reaction was stopped by filtering to remove the ion exchange resin, and then the ion exchange resin was washed with 127.4 kg of acetone and washed with the acetone solution obtained by the condensation reaction. The acetone solution obtained later was mixed to obtain 370.8 kg of an acetone solution (solution J) of a condensate of resorcin and acetone.
 薄膜蒸留(蒸発缶のジャケット温度:220℃、圧力:27kPa)によって、得られた溶液Jの脱揮を実施し、固体の縮合物6を得た。 The resulting solution J was devolatilized by thin-film distillation (evaporator jacket temperature: 220 ° C., pressure: 27 kPa) to obtain a solid condensate 6.
試験例1
 上記実施例および比較例で得られた縮合物のピーク(1)~(4)の面積割合、不純物(即ち、レゾルシン、アセトン、メシチルオキシド、ジアセトンアルコールおよび水)の残存量、および縮合物の軟化点を以下のようにして測定した。これらの結果を下記表1に示す。
Test example 1
Area ratios of peaks (1) to (4) of the condensates obtained in the above examples and comparative examples, residual amounts of impurities (that is, resorcin, acetone, mesityl oxide, diacetone alcohol and water), and condensates The softening point of was measured as follows. These results are shown in Table 1 below.
(1)縮合物のピーク(1)~(4)の面積割合
 ゲル浸透クロマトグラフィー(GPC)にて、重量平均分子量が160以上であるピークの総面積に対する縮合物のピーク(1)~(4)の面積割合を算出した。詳しくは、得られた縮合物0.3gを20mlメスフラスコに計り取り、テトラヒドロフランを加えて完全に溶かして、20mlの縮合物のテトラヒドロフラン溶液を得た。得られたテトラヒドロフラン溶液を用いて、以下の装置および条件でGPC分析し、ピーク(1)~(4)の面積割合を算出した。
 カラム:TOSOH TSKgel Super HZ2000(4.6mmφ×150cm)とTOSOH TSKgel Super HZ1000(4.6mmφ×150cm)2本とを接続
 温度:40℃
 移動相:テトラヒドロフラン
 検出:示差屈折率(Refractive Index、RI)
 標準:TSKgel 標準ポリスチレン
(1) Area ratio of peaks (1) to (4) of condensate In gel permeation chromatography (GPC), peaks (1) to (4) of condensate with respect to the total area of peaks having a weight average molecular weight of 160 or more ) Area ratio was calculated. Specifically, 0.3 g of the obtained condensate was weighed into a 20 ml volumetric flask, and tetrahydrofuran was added and completely dissolved to obtain 20 ml of a tetrahydrofuran solution of the condensate. The obtained tetrahydrofuran solution was subjected to GPC analysis under the following apparatus and conditions, and the area ratio of peaks (1) to (4) was calculated.
Column: TOSOH TSKgel Super HZ2000 (4.6 mmφ × 150 cm) and two TOSOH TSKgel Super HZ1000 (4.6 mmφ × 150 cm) are connected Temperature: 40 ° C.
Mobile phase: Tetrahydrofuran Detection: Differential refractive index (Refractive Index, RI)
Standard: TSKgel standard polystyrene
(2)縮合物中のレゾルシンの残存量
 液体クロマトグラフィー(LC)にて、縮合物中のレゾルシンの残存量を測定した。詳しくは、得られた縮合物1gを20mlメスフラスコに計り取り、アセトニトリルを加えて完全に溶かして、20mlの縮合物の溶液を調製し、この溶液をさらに25倍に希釈して、縮合物のアセトニトリル溶液を得た。得られたアセトニトリル溶液を用いて、以下の装置および条件でLC分析し、レゾルシンの残存量を算出した。
 装置:島津製作所 LC-20A
 カラム:SUMIPEX ODS Z-CLUE(4.6mmφ×250cm、3μm)
 温度:40℃
 流量:1ml/min
 注入量:10μl
 移動相:A液(HO)、B液(アセトニトリル)
 検出:UV280nm
 定量:絶対検量線法
 条件:gradient
 B液濃度
0~8min:15体積%
8~9min:15体積%→98体積%
9~25min:98体積%
25min:98体積%→15体積%
25~35min:15体積%
(2) Residual amount of resorcin in the condensate The residual amount of resorcin in the condensate was measured by liquid chromatography (LC). Specifically, 1 g of the obtained condensate was weighed into a 20 ml volumetric flask, and acetonitrile was added to completely dissolve it to prepare a 20 ml condensate solution. An acetonitrile solution was obtained. Using the obtained acetonitrile solution, LC analysis was performed with the following apparatus and conditions, and the residual amount of resorcin was calculated.
Equipment: Shimadzu LC-20A
Column: SUMIPEX ODS Z-CLUE (4.6 mmφ × 250 cm, 3 μm)
Temperature: 40 ° C
Flow rate: 1 ml / min
Injection volume: 10 μl
Mobile phase: Liquid A (H 2 O), Liquid B (acetonitrile)
Detection: UV280nm
Quantification: Absolute calibration curve Condition: gradient
B liquid concentration 0 to 8 min: 15% by volume
8-9 min: 15% by volume → 98% by volume
9 to 25 min: 98% by volume
25 min: 98% by volume → 15% by volume
25 to 35 min: 15% by volume
(3)縮合物中のアセトン、メシチルオキシドおよびジアセトンアルコールの残存量
 ガスクロマトグラフィー(GC)にて、縮合物中のアセトン、メシチルオキシドおよびジアセトンアルコールの残存量を測定した。詳しくは、得られた縮合物1gとプロピレングリコール-1-モノメチルエーテル-2-アセテート 0.1gを20mlメスフラスコに計り取り、アセトニトリルを加えて完全に溶かして、20mlの縮合物のアセトニトリル溶液を得た。得られたアセトニトリル溶液を用いて、以下の装置および条件でGC分析し、アセトン、メシチルオキシドおよびジアセトンアルコールの残存量を算出した。
 装置:Agilent 7890B
 カラム:DB-WAX(250μm×30m、0.25μm)
 注入口・検出器温度:250℃
 流量:1ml/min(コンスタントフロー)
 注入量:1μl
 検出:FID
 定量:内部標準法
 オーブン温度プログラム
0~5min:50℃
5~25min:50℃→250℃
25~50min:250℃
(3) Remaining amounts of acetone, mesityl oxide and diacetone alcohol in the condensate The residual amounts of acetone, mesityl oxide and diacetone alcohol in the condensate were measured by gas chromatography (GC). Specifically, 1 g of the obtained condensate and 0.1 g of propylene glycol-1-monomethyl ether-2-acetate are weighed into a 20 ml volumetric flask and completely dissolved by adding acetonitrile to obtain 20 ml of an acetonitrile solution of the condensate. It was. Using the obtained acetonitrile solution, GC analysis was performed under the following apparatus and conditions, and the residual amounts of acetone, mesityl oxide and diacetone alcohol were calculated.
Equipment: Agilent 7890B
Column: DB-WAX (250 μm × 30 m, 0.25 μm)
Inlet / detector temperature: 250 ° C
Flow rate: 1 ml / min (constant flow)
Injection volume: 1 μl
Detection: FID
Determination: Internal standard method Oven temperature program 0 to 5 min: 50 ° C
5 to 25 min: 50 ° C → 250 ° C
25 to 50 min: 250 ° C
(4)縮合物中の水の残存量(縮合物中の水分量)
 カールフィッシャー法にて、縮合物中の水分量を測定した。詳しくは縮合物30mgを用いて、以下の装置および条件にて測定した。
 装置:京都電子工業製 MCU-610+MKC-610
 測定方式:電量法
 陽極液:Fluka HYDRANAL Coulomat AK
 陰極液:Fluka HYDRANAL Coulomat CG-K
(4) Residual amount of water in the condensate (water content in the condensate)
The water content in the condensate was measured by the Karl Fischer method. Specifically, it was measured using 30 mg of the condensate under the following apparatus and conditions.
Device: MCU-610 + MKC-610 manufactured by Kyoto Electronics Industry
Measurement method: Coulometric method Anolyte: Fluka HYDRANAL Coulomat AK
Catholyte: Fluka HYDRANAL Coulomat CG-K
(5)縮合物の軟化点
 縮合物の軟化点は、ASTM D6090に従い測定した。
(5) Softening point of condensate The softening point of the condensate was measured according to ASTM D6090.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1に示されるように、本発明のピーク(1)~(4)の面積割合の要件を満たす縮合物1~4は、本発明のピーク(3)の面積割合とピーク(4)の面積割合との合計の要件を満たさない縮合物5および6に比べて、低い軟化点を示した。 As shown in Table 1, the condensates 1 to 4 satisfying the requirements of the area ratio of the peaks (1) to (4) of the present invention are the ratio of the area of the peak (3) and the area of the peak (4) of the present invention. Compared to condensates 5 and 6, which do not meet the total requirements with proportions, showed a lower softening point.
 本発明のレゾルシンとアセトンとの縮合物は、ゴム組成物の補強剤等として有用である。 The condensate of resorcin and acetone of the present invention is useful as a reinforcing agent for rubber compositions.
 本願は、日本で出願された特願2016-181328号を基礎としており、その内容は本願明細書に全て包含される。 This application is based on Japanese Patent Application No. 2016-181328 filed in Japan, the contents of which are incorporated in full herein.

Claims (10)

  1.  ゲル浸透クロマトグラフィーで分析したときに、重量平均分子量が160以上であるピークの総面積に対して、
     重量平均分子量が160以上480未満であるピーク(1)の面積割合が70%以下であり、
     重量平均分子量が480以上600未満であるピーク(2)の面積割合が25~50%であり、および
     重量平均分子量が600以上800未満であるピーク(3)の面積割合と重量平均分子量が800以上であるピーク(4)の面積割合との合計が26%以下である、
    レゾルシンとアセトンとの縮合物。
    When analyzed by gel permeation chromatography, the total area of peaks having a weight average molecular weight of 160 or more,
    The area ratio of the peak (1) having a weight average molecular weight of 160 or more and less than 480 is 70% or less,
    The area ratio of peak (2) having a weight average molecular weight of 480 or more and less than 600 is 25 to 50%, and the area ratio of peak (3) having a weight average molecular weight of 600 or more and less than 800 and the weight average molecular weight of 800 or more The total with the area ratio of the peak (4) is 26% or less.
    Condensate of resorcin and acetone.
  2.  重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が800以上であるピーク(4)の面積割合が10%未満である請求項1に記載のレゾルシンとアセトンとの縮合物。 The condensate of resorcin and acetone according to claim 1, wherein the area ratio of the peak (4) having a weight average molecular weight of 800 or more is less than 10% with respect to the total area of the peak having a weight average molecular weight of 160 or more. .
  3.  重量平均分子量が160以上であるピークの総面積に対して、重量平均分子量が160以上480未満であるピーク(1)の面積割合が60%以下である請求項1または2に記載のレゾルシンとアセトンとの縮合物。 Resorcin and acetone according to claim 1 or 2, wherein the area ratio of the peak (1) having a weight average molecular weight of 160 or more and less than 480 is 60% or less with respect to the total area of the peak having a weight average molecular weight of 160 or more. Condensate with
  4.  レゾルシンとアセトンとの縮合物中のレゾルシンの残存量が10重量%以下である請求項1~3のいずれか一項に記載のレゾルシンとアセトンとの縮合物。 The condensate of resorcin and acetone according to any one of claims 1 to 3, wherein the residual amount of resorcin in the condensate of resorcin and acetone is 10% by weight or less.
  5.  請求項1~4のいずれか一項に記載のレゾルシンとアセトンとの縮合物およびゴム成分を混練して得られるゴム組成物。 A rubber composition obtained by kneading the condensate of resorcin and acetone according to any one of claims 1 to 4 and a rubber component.
  6.  さらに硫黄成分を混練して得られる請求項5に記載のゴム組成物。 The rubber composition according to claim 5, which is obtained by further kneading a sulfur component.
  7.  請求項6に記載のゴム組成物を加硫して得られる加硫ゴム組成物。 A vulcanized rubber composition obtained by vulcanizing the rubber composition according to claim 6.
  8.  請求項1~4のいずれか一項に記載のレゾルシンとアセトンとの縮合物およびゴム成分を混練することを含むゴム組成物の製造方法。 A method for producing a rubber composition comprising kneading a condensate of resorcin and acetone according to any one of claims 1 to 4 and a rubber component.
  9.  さらに硫黄成分を混練することを含む請求項8に記載の方法。 The method according to claim 8, further comprising kneading a sulfur component.
  10.  請求項9に記載の方法によって得られたゴム組成物を加硫することを含む加硫ゴム組成物の製造方法。 A method for producing a vulcanized rubber composition comprising vulcanizing a rubber composition obtained by the method according to claim 9.
PCT/JP2017/032964 2016-09-16 2017-09-13 Condensate between resorcin and acetone WO2018051999A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016181328A JP2018044105A (en) 2016-09-16 2016-09-16 Condensate of resorcinol and acetone
JP2016-181328 2016-09-16

Publications (1)

Publication Number Publication Date
WO2018051999A1 true WO2018051999A1 (en) 2018-03-22

Family

ID=61618781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032964 WO2018051999A1 (en) 2016-09-16 2017-09-13 Condensate between resorcin and acetone

Country Status (3)

Country Link
JP (1) JP2018044105A (en)
TW (1) TW201819365A (en)
WO (1) WO2018051999A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103085A (en) * 1985-10-28 1987-05-13 Sumitomo Chem Co Ltd Production of spirobichroman derivative
JP2006312731A (en) * 2005-04-05 2006-11-16 Hodogaya Chem Co Ltd Manufacturing method of ketone-modified resorcin/formalin resin
JP2011032459A (en) * 2009-05-28 2011-02-17 Sumitomo Chemical Co Ltd Condensation product of resorcin and acetone
WO2012111726A1 (en) * 2011-02-18 2012-08-23 住友化学株式会社 Method for producing condensate of resorcin and acetone, and rubber composition including condensate
WO2013111895A1 (en) * 2012-01-25 2013-08-01 住友化学株式会社 Method for producing condensation product of resorcin and acetone
JP2017171837A (en) * 2016-03-25 2017-09-28 住友化学株式会社 Method for producing a condensate of resorcin and acetone

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62103085A (en) * 1985-10-28 1987-05-13 Sumitomo Chem Co Ltd Production of spirobichroman derivative
JP2006312731A (en) * 2005-04-05 2006-11-16 Hodogaya Chem Co Ltd Manufacturing method of ketone-modified resorcin/formalin resin
JP2011032459A (en) * 2009-05-28 2011-02-17 Sumitomo Chemical Co Ltd Condensation product of resorcin and acetone
WO2012111726A1 (en) * 2011-02-18 2012-08-23 住友化学株式会社 Method for producing condensate of resorcin and acetone, and rubber composition including condensate
WO2013111895A1 (en) * 2012-01-25 2013-08-01 住友化学株式会社 Method for producing condensation product of resorcin and acetone
JP2017171837A (en) * 2016-03-25 2017-09-28 住友化学株式会社 Method for producing a condensate of resorcin and acetone
WO2017164292A1 (en) * 2016-03-25 2017-09-28 住友化学株式会社 Method for producing condensate of resorcin and acetone

Also Published As

Publication number Publication date
TW201819365A (en) 2018-06-01
JP2018044105A (en) 2018-03-22

Similar Documents

Publication Publication Date Title
EP1876203B1 (en) Rubber composition and tire using same
JP5134592B2 (en) Rubber composition for cap tread and tire having cap tread comprising the same
EP1842875B1 (en) Process for production of polybutadiene rubber and rubber compositions
EP2072280B1 (en) Rubber composition for topping a case and/or breaker used for run-flat tire and run-flat tire using the same
JP5503685B2 (en) Rubber composition for sidewall or base tread, and pneumatic tire
WO2006052035A1 (en) Rubber composition
JP2012111795A (en) Rubber composition for base tread, and pneumatic tire
EP1191052A2 (en) Preparation of rubber composition by aqueous elastomer emulsion mixing and articles thereof including tires
JP2015054915A (en) Rubber composition and pneumatic tire
JP2008024913A (en) Rubber composition for clinch and tire having clinch using the same
JP6016297B2 (en) Cocondensate and rubber composition containing the same
JP2011046858A (en) Vulcanized rubber and method of manufacturing the same
JP6575464B2 (en) Rubber composition
CN104769030A (en) High-styrene content SBR in rubber compositions
JP5401924B2 (en) Method for producing rubber composition
JP3690890B2 (en) Low exothermic rubber composition
WO2012111726A1 (en) Method for producing condensate of resorcin and acetone, and rubber composition including condensate
WO2017164292A1 (en) Method for producing condensate of resorcin and acetone
WO2018051999A1 (en) Condensate between resorcin and acetone
WO2013111895A1 (en) Method for producing condensation product of resorcin and acetone
JP6305796B2 (en) Process for producing alkoxy-modified diene rubber and rubber composition using the same
JP2009256439A (en) Rubber composition
JP2009263584A (en) Rubber composition and pneumatic tire using the same
JP2014145033A (en) Rubber composition for inner liner and pneumatic tire
WO2017164295A1 (en) Resorcin condensate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17850900

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17850900

Country of ref document: EP

Kind code of ref document: A1