WO2013111845A1 - Thickener device in ore slurry manufacturing process and operation management method using same - Google Patents
Thickener device in ore slurry manufacturing process and operation management method using same Download PDFInfo
- Publication number
- WO2013111845A1 WO2013111845A1 PCT/JP2013/051551 JP2013051551W WO2013111845A1 WO 2013111845 A1 WO2013111845 A1 WO 2013111845A1 JP 2013051551 W JP2013051551 W JP 2013051551W WO 2013111845 A1 WO2013111845 A1 WO 2013111845A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thickener
- slurry
- ultrasonic
- sedimentation
- state
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/24—Feed or discharge mechanisms for settling tanks
- B01D21/2427—The feed or discharge opening located at a distant position from the side walls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/28—Mechanical auxiliary equipment for acceleration of sedimentation, e.g. by vibrators or the like
- B01D21/286—Means for gentle agitation for enhancing flocculation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D21/00—Separation of suspended solid particles from liquids by sedimentation
- B01D21/30—Control equipment
- B01D21/34—Controlling the feed distribution; Controlling the liquid level ; Control of process parameters
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/296—Acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F23/00—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
- G01F23/22—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
- G01F23/28—Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
- G01F23/296—Acoustic waves
- G01F23/2962—Measuring transit time of reflected waves
Definitions
- the present invention relates to a thickener apparatus in an ore slurry manufacturing process and an operation management method thereof, and more particularly, to a thickener management method of a nickel oxide ore slurry manufacturing process sent to a high-temperature pressurized sulfuric acid leaching process.
- a thickener is generally used as a means for adding an additive to a slurry formed from ore containing a non-ferrous metal and then collecting the slurry by sedimentation.
- the thickener structure is composed of a feed well to which slurry and additives are supplied, and a sedimentation concentration unit that concentrates the sedimented slurry by slow rotation of a rake connected to the drive unit by a rotating shaft.
- a floc is formed using an aggregating agent as an additive in order to improve the sedimentation property of the slurry, or a neutralizing agent is used as an additive to neutralize the slurry. To promote precipitation.
- HPAL High Pressure Acid Leaching
- nickel oxide ore is crushed and classified into a slurry.
- the leaching step (2) sulfuric acid is added to the slurry obtained in the pretreatment step (1), and the mixture is stirred at 220 to 280 ° C., and high-temperature pressure acid leaching is performed to obtain a leaching slurry.
- the leaching slurry obtained in the leaching step (2) is subjected to solid-liquid separation to obtain a leachate containing nickel and cobalt (hereinafter referred to as “crude nickel sulfate aqueous solution”) and the leaching residue. obtain.
- the crude nickel sulfate aqueous solution obtained in the solid-liquid separation step (3) is neutralized.
- step (5) hydrogen sulfide gas is added to the crude nickel sulfate aqueous solution neutralized in the neutralization step (4) to precipitate and remove zinc as zinc sulfide.
- the sulfidation step (6) hydrogen sulfide gas is added to the dezincification final solution obtained in the dezincification step (5) to obtain a nickel / cobalt composite sulfide and a nickel poor solution.
- the detoxification step (7) the leaching residue generated in the solid-liquid separation step (3) and the nickel poor solution generated in the sulfidation step (6) are detoxified (see, for example, Patent Document 2).
- the ore sent to the high-temperature pressurized sulfuric acid leaching step is less than a predetermined size using a wet sieve And is slurried.
- ore slurry usually sent to the high-temperature pressurized sulfuric acid leaching process has several types so that the acid consumption in the high-temperature pressurized sulfuric acid leaching process, the nickel concentration of the resulting leachate, and other impurity concentrations are at a predetermined ratio. Made by blending nickel oxide ore.
- the solid% (solid content concentration (wt%)) of the ore slurry obtained at this time is as low as 10 to 20%, so if it is sent to the high-temperature pressurized sulfuric acid leaching process as it is, the nickel of the leachate after the high-temperature pressurized leaching process There is a problem that the concentration is low and the amount of liquid for treating the same amount of nickel increases and nickel cannot be recovered efficiently. Therefore, the ore slurry sent to the high-temperature pressurized sulfuric acid leaching process increases the Solid% using a thickener to increase the amount of nickel passing per unit time to the high-temperature pressurized sulfuric acid leaching process to 40-45%. Adjusted.
- an ore slurry having a low Solid% is sent to a high-temperature pressurized sulfuric acid leaching process after increasing the Solid% of the ore slurry using a thickener.
- the Solid% of the slurry obtained from thickener has different settling behavior depending on the ore type, so the kind of blended ore, Depends on blend ratio and type, amount, etc. of flocculant used.
- the amount of flocculant added was changed according to past data and the worker's empirical rule according to the blended ore type and ratio, and in addition, the bed level measuring jig was used to check the state of aggregation and sedimentation by the worker.
- the target Solid% was obtained by checking and managing the optimum thickener bed level.
- the present invention has been devised in view of the above-described conventional situation, and the purpose of the present invention is to provide nickel oxide ore in a nickel hydrometallurgical smelting method using a high-temperature pressure sulfuric acid leaching method from nickel oxide ore.
- the target Solid% ore slurry can be obtained without being affected by the ore type and blend ratio, and the high Solid% ore slurry can always be sent to the high temperature pressure leaching process.
- Another object of the present invention is to provide a thickener device and an operation management method thereof in an ore slurry manufacturing process that can contribute to a reduction in the use amount of a flocculant.
- the inventors of the present invention as a result of earnest research on the management method of thickener operation, in the nickel oxide ore slurry manufacturing process sent to the high-temperature pressurized sulfuric acid leaching process, the liquid level by the ultrasonic level measuring device
- the present invention was completed by finding a method for obtaining a target solid% ore slurry regardless of different ore ratios and ore types by applying level measurement results to image management as image data.
- the present invention is a thickener device used in a nickel oxide ore slurry manufacturing process that is sent to a high-temperature pressurized sulfuric acid leaching process, wherein the supplied ore slurry is allowed to settle, so that A thickener in which a sedimentation concentration part is formed, and is installed so as to be positioned above the supernatant liquid part in the thickener, transmits ultrasonic waves, and the liquid level of the supernatant liquid part and the sedimentation aggregation layer of the sedimentation concentration part
- An ultrasonic transducer that receives the reflected wave from the interface, measures the time it takes to transmit the ultrasonic wave and receives the reflected wave, and calculates the distance to the interface based on that time by the measurement processing unit
- a level measuring device, and a monitoring device that displays the reflection state of the ultrasonic wave on the screen based on a measurement result by the ultrasonic level measuring device, Based on the measurement result by the sonic level measuring device, the reflection state of the ultrasound corresponding to
- the present invention also relates to an operation management method for a thickener device used in a nickel oxide ore slurry manufacturing process to be sent to a high-temperature pressurized sulfuric acid leaching process, wherein the upper supernatant liquid is settled by settling the supplied ore slurry.
- the ultrasonic transducer that receives the reflected wave from the interface measures the time until the ultrasonic wave is transmitted and the reflected wave is received, the distance to the interface is calculated by the measurement processing unit based on the time, and the measurement processing is performed.
- the reflection state of the ultrasonic wave according to the slurry settling state inside the thickener is continuously displayed on the screen by the monitoring device, Based on the screen display by the monitoring device, the slurry settling of internal the thickener quantitatively evaluated over time, characterized in that it manages the operation of thickener apparatus.
- the layer detected as the ultrasonic noise is a floating state layer in the middle of the slurry changing from the sedimented state to the aggregated state. In view of this, the operation of the thickener device can be managed.
- the thickness of the floating state layer inside the thickener is quantitatively evaluated, and the addition amount of the flocculant to the ore slurry in the thickener is optimized. be able to.
- the present invention in the ore slurry manufacturing process, it becomes possible to obtain the target Solid% ore slurry without being affected by the ore type and blend ratio, and the high Solid% ore slurry is always leached at a high temperature under high pressure. Can be sent to the process. Moreover, it can also contribute to reduction of the usage-amount of a flocculant.
- the present invention is applied to a thickener device 100 having a configuration as shown in FIG.
- This thickener device 100 is used in a nickel oxide ore slurry manufacturing process that is sent to a high-temperature pressurized sulfuric acid leaching process, and is designed so that an upper supernatant liquid portion and a lower sedimentation concentration portion are formed in a steady state.
- a thickener 10, and an ultrasonic level measuring device 20 and a monitoring device 30 for monitoring the reflected state of the ultrasonic wave in order to continuously and quantitatively obtain the settling state and agglomeration state of the slurry in the thickener 10. Prepare.
- the thickener 10 includes a thickener body 3 including a cylindrical outer frame 1 and a conical bottom portion 2 that gradually decreases toward the center.
- the thickener body 3 has a slurry recovery port 4 formed at the center of the conical bottom 2.
- a rake 5 is disposed inside the thickener 10 along the inner surface of the conical bottom 2, and a cylindrical feed well 6 centering on the rotating shaft 5 ⁇ / b> A of the rake 5 is provided in the thickener 10. It is provided so that it may be located in the upper part of the supernatant liquid part in 10.
- the feed well 6 is fixed to a lid 7 provided on the upper part of the thickener 10.
- the feed well 6 is connected to the upper position of the feed well 6 with a slurry supply pipe 11 for feeding slurry for sedimentation and concentration, and an additive supply pipe 12 for feeding an additive such as a flocculant.
- a dilution water inlet 13 is provided.
- a dispersion cone 14 for discharging the slurry from the feed well 6 is provided at a lower position of the feed well 6.
- the ore slurry, the flocculant and the dilution water that are subjected to sedimentation concentration are mixed in the feed well 6 and supplied from the feed well 6 into the thickener 10.
- the ore slurry supplied into the thickener 10 settles and aggregates in a mixed state with a flocculant and dilution water, thereby forming an upper supernatant liquid portion and a lower sedimentation concentration portion.
- the slurry is recovered as a slurry having a desired concentration from the slurry recovery port 4 provided at the lowermost part.
- the rake 5 is slowly rotated by a driving unit (not shown) connected to the rotating shaft 5A, so that the slurry is allowed to settle and concentrate in the sedimentation concentration unit to ensure a uniform deposition state.
- the ultrasonic level measuring apparatus 20 transmits an ultrasonic wave and receives the reflected wave.
- the ultrasonic transducer 21 measures the time until the ultrasonic transducer 21 transmits the ultrasonic wave and receives the reflected wave.
- the ultrasonic transducer 21 is arranged so as to be positioned above the supernatant liquid portion in the thickener 10.
- the measurement processing unit 22 calculates the distance to the object based on the time.
- a commercially available ultrasonic level meter can be used for the ultrasonic level measuring apparatus 20.
- the monitoring device 30 is connected to the measurement processing unit 22 of the ultrasonic level measurement device 20, and the measurement processing unit 22 is used to monitor the reflection state of the ultrasonic waves by the ultrasonic level measurement device 20. Display the calculation result by.
- the object to be measured by the ultrasonic level measuring device 20 is an interface between the liquid surface of the supernatant liquid portion and the sedimentation aggregated layer of the sediment concentration portion, and the monitoring device 30 performs the measurement process.
- the interface level between the sedimentation aggregated layer and the liquid surface is continuously grasped, and at the same time, the layer detected as ultrasonic noise.
- the ore has different thickening behavior depending on the ore type, and in particular, there is a strong correlation between the Si grade and the thickening behavior in the ore slurry.
- Si grade increases, the sedimentation deteriorates and the Solid% decreases. Tend to.
- nickel in the ore slurry it may be necessary to treat ore with high Si grade, and when the ore blend is changed and the Si grade fluctuates, especially when the Si grade rises, Adjustment is not in time, and the slurry is likely to float on the upper part of the sedimentation layer of the thickener 10.
- the measurement result by the ultrasonic level measuring device 20 is displayed on the screen by the monitoring device 30, whereby the suspended state of the slurry can be grasped.
- FIG. 2 shows an example of image data obtained as a result of measurement by the ultrasonic level measurement apparatus 20.
- the range A in FIG. 2 means that the amount of reflection from the ultrasonic wave emitted from the transducer 21 is large, and the lower part is a solid part (slurry) in which the slurry is completely settled in the thickener 10. (Sedimentation layer).
- the range of A in which the amount of reflected ultrasonic waves is large can be regarded as a floating layer in the middle of the slurry from the settling state to the agglomerated state at the upper part of the settling layer.
- the state shown in FIG. 3 (30 cm or less as a slurry floating layer) is continuously monitored and maintained in operation management, and when the range of A is expanded, the flocculant By increasing the added amount of the slurry, it is possible to suppress slurry overflow and stably obtain a slurry with a high Solid%.
- the ultrasonic level measuring device 20 and the monitoring device 30 capable of monitoring the reflected state of the ultrasonic waves are provided, so that the interface level between the sedimentation aggregate layer and the liquid surface in the thickener 10 can be continuously grasped.
- the layer detected as ultrasonic noise as a layer that is in a suspended state while the slurry is in the aggregated state from the settled state
- the thickness of the suspended layer in the middle of the aggregation can be quantitatively evaluated, Accurately grasp the agglomeration state inside the thickener 10, adjust the excess or deficiency of the flocculant and adjust the supply amount to the thickener 10 or the extraction amount from the thickener 10 before the deterioration progresses to adjust the bet level. This makes it possible to maintain the target Solid% and prevent slurry overflow troubles. It made.
- a sample extracted from the lower part of the thickener is analyzed periodically, and the solid% is evaluated as a representative value of the entire thickener to grasp the internal aggregation state. Since the sedimentation property can be judged when the slurry thus obtained reaches the upper part of the sedimentation layer, it is possible to judge the increase / decrease of the flocculant without causing a time lag. Therefore, excessive addition of the flocculant can be prevented, and the amount of flocculant added can be optimized.
- the thickener device 100 in the nickel oxide ore slurry manufacturing process to be sent to the high-temperature pressurized sulfuric acid leaching process, the supplied ore slurry is allowed to settle to form an upper supernatant liquid part and a lower sedimentation concentration part.
- the ultrasonic wave is installed so as to be positioned above the supernatant liquid portion in the thickener 10, transmits ultrasonic waves, and receives reflected waves from the interface between the liquid surface of the supernatant liquid part and the sedimentation aggregate layer of the sedimentation concentration part.
- the time until the transducer 21 transmits the ultrasonic wave and receives the reflected wave is measured, the distance to the interface is calculated by the measurement processing unit 22 based on the time, and based on the calculation result by the measurement processing unit 22. Then, the reflection state of the ultrasonic wave according to the slurry settling situation inside the thickener 10 is continuously displayed on the screen by the monitoring device 30, Serial based on the screen display by the monitoring device 30, and quantitatively evaluated chronologically slurry settling of internal the thickener 10, operations are managed.
- the thickener device 100 based on the screen display by the monitoring device 30, the slurry of the layer detected as the ultrasonic noise by the ultrasonic level measuring device 20 is changed from the settled state to the aggregated state. Operation is managed as a floating layer in the middle.
- the thickness of the floating layer in the thickener 10 is quantitatively evaluated, and the amount of flocculant added to the ore slurry in the thickener 10 is optimized.
- Table 1 below shows the amount (g) of flocculant used per ton of ore before and after the adoption of such an operation management method (coagulant basic unit).
- the measurement results before the adoption of the operation management method were 26 times, and the measurement results after the same adoption were 52 times.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
Abstract
Through sedimentation of ore slurry that is supplied, the time taken between the sending of an ultrasonic wave and the receiving of a reflected wave is measured by an ultrasonic transducer (21) which is installed so as to be disposed at an upper portion of a supernatant liquid portion inside a thickener (10) including the supernatant liquid portion at an upper portion thereof and a sedimentation concentration portion at a lower portion thereof, wherein the ultrasonic transducer sends the ultrasonic wave and receives the reflected wave using an interface between a liquid surface of the supernatant liquid portion and a sedimentation aggregation layer of the sedimentation concentration portion. Based on the time, a distance to the interface is calculated by a measurement processing unit (22). Based on the result of the calculation by the measurement processing unit (22), the state of reflection of the ultrasonic wave commensurate with slurry sedimentation conditions inside the thickener (10) is continuously displayed on a screen using a monitoring device (30). Based on the screen display provided by the monitoring device (30), the slurry sedimentation situation inside the thickener (10) is evaluated quantitatively in chronological order. The operation is thus managed.
Description
本発明は、本発明は、鉱石スラリー製造工程におけるシックナー装置及びその操業管理方法に関し、特に、高温加圧硫酸浸出工程に送るニッケル酸化鉱石のスラリー製造工程のシックナー管理方法に関する。本出願は、日本国において2012年1月26日に出願された日本特許出願番号2012-014556を基礎として優先権を主張するものであり、この出願は参照することにより、本出願に援用される。
The present invention relates to a thickener apparatus in an ore slurry manufacturing process and an operation management method thereof, and more particularly, to a thickener management method of a nickel oxide ore slurry manufacturing process sent to a high-temperature pressurized sulfuric acid leaching process. This application claims priority on the basis of Japanese Patent Application No. 2012-014556 filed on January 26, 2012 in Japan, and this application is incorporated herein by reference. .
従来より、非鉄金属を含有する鉱石から形成されるスラリーに添加剤を添加し、その後、スラリーを沈降濃縮して回収する手段として、一般的にシックナーが用いられている。シックナーの構造としては、スラリー及び添加剤が供給されるフィードウェルと、駆動部と回転軸で接続されたレーキのゆっくりした回転により、沈降したスラリーを濃縮する沈降濃縮部から構成される形式のものが使用されている。ここで、フィードウェル内では、例えば、スラリーの沈降性を向上させるため、添加剤として凝集剤を用いてフロックを形成させること、或いはスラリーを中和処理するため、添加剤として中和剤を用いて沈殿生成を促進させること等がなされる。
Conventionally, a thickener is generally used as a means for adding an additive to a slurry formed from ore containing a non-ferrous metal and then collecting the slurry by sedimentation. The thickener structure is composed of a feed well to which slurry and additives are supplied, and a sedimentation concentration unit that concentrates the sedimented slurry by slow rotation of a rake connected to the drive unit by a rotating shaft. Is used. Here, in the feed well, for example, a floc is formed using an aggregating agent as an additive in order to improve the sedimentation property of the slurry, or a neutralizing agent is used as an additive to neutralize the slurry. To promote precipitation.
また、ボーキサイトからアルミナを製造するバイヤー法で副生する赤泥、石灰泥、鉱石泥等のスラリーの沈降分離の際にシックナーの管理に用いるシックナー濃縮スラリー界面の測定方法及びその装置として、シックナー内で沈降濃縮されたスラリーの上澄み層と濃密層との界面の位置を、人手によらず安全で正確に測定するために、超音波濃度計を用いたシックナー濃縮スラリー界面の測定方法及びその装置が提案されている(例えば、特許文献1参照)。
In addition, as a measuring method and apparatus for thickener concentrated slurry interface used to manage thickeners during the sedimentation and separation of slurries such as red mud, lime mud and ore mud that are by-produced by the buyer method of producing alumina from bauxite, In order to measure the position of the interface between the supernatant layer and the dense layer precipitated and concentrated in a safe and accurate manner without human intervention, a measuring method and apparatus for the thickener concentrated slurry interface using an ultrasonic densitometer are provided. It has been proposed (see, for example, Patent Document 1).
また、リモナイト鉱等に代表される低ニッケル含有量のニッケル酸化鉱石からニッケル、コバルト等の有価金属を回収する湿式製錬法として、硫酸を用いた高圧酸浸出法(HPAL(High Pressure Acid Leaching)の硫酸浸出法が行なわれている。
In addition, as a hydrometallurgical method for recovering valuable metals such as nickel and cobalt from nickel oxide ores with low nickel content, such as limonite ore, high pressure acid leaching using sulfuric acid (HPAL (High Pressure Acid Leaching)) The sulfuric acid leaching method is used.
ニッケル・コバルト混合硫化物を得るための高圧酸浸出法では、例えば、図6に示すように、前処理工程(1)と、浸出工程(2)と、固液分離工程(3)と、中和工程(4)と、脱亜鉛工程(5)と、硫化工程(6)と、無害化工程(7)とを含む。
In the high pressure acid leaching method for obtaining the nickel-cobalt mixed sulfide, for example, as shown in FIG. 6, the pretreatment step (1), the leaching step (2), the solid-liquid separation step (3), It includes a summing step (4), a dezincing step (5), a sulfiding step (6), and a detoxifying step (7).
前処理工程(1)では、ニッケル酸化鉱石を解砕分級してスラリーとする。
In the pretreatment step (1), nickel oxide ore is crushed and classified into a slurry.
浸出工程(2)では、前処理工程(1)で得られたスラリーに硫酸を添加し、220~280℃で攪拌して高温加圧酸浸出し、浸出スラリーを得る。
In the leaching step (2), sulfuric acid is added to the slurry obtained in the pretreatment step (1), and the mixture is stirred at 220 to 280 ° C., and high-temperature pressure acid leaching is performed to obtain a leaching slurry.
固液分離工程(3)では、浸出工程(2)で得られた浸出スラリーを固液分離して、ニッケル及びコバルトを含む浸出液(以下、「粗硫酸ニッケル水溶液」という。)と浸出残渣とを得る。
In the solid-liquid separation step (3), the leaching slurry obtained in the leaching step (2) is subjected to solid-liquid separation to obtain a leachate containing nickel and cobalt (hereinafter referred to as “crude nickel sulfate aqueous solution”) and the leaching residue. obtain.
中和工程(4)では、固液分離工程(3)で得られた粗硫酸ニッケル水溶液を中和する。
In the neutralization step (4), the crude nickel sulfate aqueous solution obtained in the solid-liquid separation step (3) is neutralized.
脱亜鉛工程(5)では、中和工程(4)で中和した粗硫酸ニッケル水溶液に硫化水素ガスを添加して亜鉛を硫化亜鉛として沈殿除去する。
In the zinc removal step (5), hydrogen sulfide gas is added to the crude nickel sulfate aqueous solution neutralized in the neutralization step (4) to precipitate and remove zinc as zinc sulfide.
硫化工程(6)では、脱亜鉛工程(5)で得られた脱亜鉛終液に硫化水素ガスを添加してニッケル・コバルト複合硫化物とニッケル貧液を得る。無害化工程(7)では、固液分離工程(3)で発生した浸出残渣と、硫化工程(6)で発生したニッケル貧液とを無害化する(例えば、特許文献2を参照)。
In the sulfidation step (6), hydrogen sulfide gas is added to the dezincification final solution obtained in the dezincification step (5) to obtain a nickel / cobalt composite sulfide and a nickel poor solution. In the detoxification step (7), the leaching residue generated in the solid-liquid separation step (3) and the nickel poor solution generated in the sulfidation step (6) are detoxified (see, for example, Patent Document 2).
ここで、低品位ニッケル酸化鉱石からニッケルを回収する高温加圧硫酸浸出に基づく湿式製錬方法において、高温加圧硫酸浸出工程に送られる鉱石は、湿式篩を使用して、所定の大きさ以下に分類され、スラリー化される。また、通常、高温加圧硫酸浸出工程に送られる鉱石スラリーは、高温加圧硫酸浸出工程における酸消費量、得られる浸出液のニッケル濃度及びその他の不純物濃度が所定の割合となる様に、数種類のニッケル酸化鉱石をブレンドして作られる。
Here, in the wet smelting method based on high-temperature pressurized sulfuric acid leaching to recover nickel from low-grade nickel oxide ore, the ore sent to the high-temperature pressurized sulfuric acid leaching step is less than a predetermined size using a wet sieve And is slurried. In addition, ore slurry usually sent to the high-temperature pressurized sulfuric acid leaching process has several types so that the acid consumption in the high-temperature pressurized sulfuric acid leaching process, the nickel concentration of the resulting leachate, and other impurity concentrations are at a predetermined ratio. Made by blending nickel oxide ore.
この時点で得られる鉱石スラリーのSolid%(固形分濃度(重量%))は、10~20%と低い為、このまま、高温加圧硫酸浸出工程に送ると高温加圧浸出工程後の浸出液のニッケル濃度が低く、同じニッケル量を処理するための液量が多くなり効率的にニッケルを回収出来ない問題が生じる。そこで、高温加圧硫酸浸出工程に送られる鉱石スラリーは、高温加圧硫酸浸出工程への単位時間当たりのニッケル通過量を増加させる為、シックナーを用いてSolid%を上昇させ、40~45%に調整される。
The solid% (solid content concentration (wt%)) of the ore slurry obtained at this time is as low as 10 to 20%, so if it is sent to the high-temperature pressurized sulfuric acid leaching process as it is, the nickel of the leachate after the high-temperature pressurized leaching process There is a problem that the concentration is low and the amount of liquid for treating the same amount of nickel increases and nickel cannot be recovered efficiently. Therefore, the ore slurry sent to the high-temperature pressurized sulfuric acid leaching process increases the Solid% using a thickener to increase the amount of nickel passing per unit time to the high-temperature pressurized sulfuric acid leaching process to 40-45%. Adjusted.
すなわち、Solid%の低い鉱石スラリーはシックナーを利用して、鉱石スラリーのSolid%を上げてから高温加圧硫酸浸出工程へ送られる。
That is, an ore slurry having a low Solid% is sent to a high-temperature pressurized sulfuric acid leaching process after increasing the Solid% of the ore slurry using a thickener.
ところで、低品位ニッケル酸化鉱石からニッケルを回収する高温加圧硫酸浸出に基づく湿式製錬方法において、シックナーから得られるスラリーのSolid%は、鉱石種により沈降挙動が異なるため、ブレンドした鉱石の種類、ブレンドの比率及び用いる凝集剤の種類、量等に依存する。
By the way, in the hydrometallurgical method based on high-temperature pressurized sulfuric acid leaching for recovering nickel from low-grade nickel oxide ore, the Solid% of the slurry obtained from thickener has different settling behavior depending on the ore type, so the kind of blended ore, Depends on blend ratio and type, amount, etc. of flocculant used.
しかし、鉱石は鉱石種によりシックナー内部での沈降挙動が異なる為、目的とするSolid%を得るためにはブレンドした鉱石種およびその比率に応じて過去のデータおよび作業者の経験則で凝集剤添加量を変更し、加えて、ベッドレベル(完全沈降したスラリー層の厚み)測定治具を用いて作業者による凝集状態の確認と最適なシックナーベッドレベルの維持が必要となる。
However, since the ore has different sedimentation behavior inside the thickener depending on the ore type, in order to obtain the desired Solid%, the addition of the flocculant based on past data and the rule of thumb of the operator according to the blended ore type and its ratio In addition, it is necessary to check the agglomeration state by an operator and maintain an optimum thickener bed level using a bed level (thickness of the completely settled slurry layer) measuring jig.
従来はブレンドした鉱石種およびその比率に応じて過去のデータおよび作業者の経験則で凝集剤添加量を変更し、加えて、ベッドレベル測定治具を用いて作業者による凝集状態、沈降状態の確認と最適なシックナーベッドレベルを管理することで目的とするSolid%を得ていた。
Conventionally, the amount of flocculant added was changed according to past data and the worker's empirical rule according to the blended ore type and ratio, and in addition, the bed level measuring jig was used to check the state of aggregation and sedimentation by the worker. The target Solid% was obtained by checking and managing the optimum thickener bed level.
そのため鉱石種変更時はシックナーの安定的な管理が困難となり、しばしば凝集剤不足による凝集性悪化やベッドレベルの変動を引き起こし、特に凝集性の悪化によりシックナー下部にスラリー浮遊状態の層を形成した際は人間による感度測定ではその凝集状態の判断が困難であること、また測定頻度が少ないと沈降状態が改善しているのか悪化しているのか時系列情報が得られないことから対応が遅れ、結果としてスラリーが充分沈降せずシックナーからオーバーフローするトラブルが多々発生していた。特に、凝集性の悪化によりスラリーの沈降性が悪化し、シックナー下部に浮遊状態の層を形成した際はその判断が困難であった。
Therefore, when changing the ore type, stable management of the thickener becomes difficult, often causing deterioration of cohesiveness and bed level fluctuation due to lack of coagulant, especially when a slurry floating layer is formed at the bottom of the thickener due to deterioration of cohesiveness. The response is delayed because it is difficult to determine the aggregation state by human sensitivity measurement, and if the measurement frequency is low, the sedimentation state is improved or deteriorated, and time series information cannot be obtained. As a result, there were many troubles that the slurry did not settle sufficiently and overflowed from the thickener. In particular, the sedimentation property of the slurry deteriorated due to the deterioration of the cohesiveness, and it was difficult to judge when a floating layer was formed under the thickener.
そこで、本発明は、上述の如き従来の実情に鑑み案出されたものであって、その目的は、ニッケル酸化鉱石から高温加圧硫酸浸出法を用いたニッケル湿式製錬方法におけるニッケル酸化鉱石のスラリー製造工程において、鉱石種類やブレンド比率に影響されずに、目的とするSolid%の鉱石スラリーを得て、常に高Solid%の鉱石スラリーを高温加圧浸出工程に送ることができるようにするとともに、凝集剤の使用量削減にも寄与することができる鉱石スラリー製造工程におけるシックナー装置及びその操業管理方法を提供することにある。
Therefore, the present invention has been devised in view of the above-described conventional situation, and the purpose of the present invention is to provide nickel oxide ore in a nickel hydrometallurgical smelting method using a high-temperature pressure sulfuric acid leaching method from nickel oxide ore. In the slurry manufacturing process, the target Solid% ore slurry can be obtained without being affected by the ore type and blend ratio, and the high Solid% ore slurry can always be sent to the high temperature pressure leaching process. Another object of the present invention is to provide a thickener device and an operation management method thereof in an ore slurry manufacturing process that can contribute to a reduction in the use amount of a flocculant.
本発明の他の目的、本発明によって得られる具体的な利点は、以下に説明される実施の形態の説明から一層明らかにされる。
Other objects of the present invention and specific advantages obtained by the present invention will become more apparent from the description of the embodiments described below.
本発明者らは、上記目的を達成するために、シックナー操業の管理方法について鋭意研究の結果、高温加圧硫酸浸出工程に送るニッケル酸化鉱石のスラリー製造工程において、超音波レベル測定装置による液面レベルの測定結果を画像データとして操業管理に応用することで、異なる鉱石比率、鉱石種に関わらず目的とするSolid%の鉱石スラリーを得る方法を見出し、本発明を完成した。
In order to achieve the above object, the inventors of the present invention as a result of earnest research on the management method of thickener operation, in the nickel oxide ore slurry manufacturing process sent to the high-temperature pressurized sulfuric acid leaching process, the liquid level by the ultrasonic level measuring device The present invention was completed by finding a method for obtaining a target solid% ore slurry regardless of different ore ratios and ore types by applying level measurement results to image management as image data.
すなわち、本発明は、高温加圧硫酸浸出工程に送るニッケル酸化鉱石のスラリー製造工程において使用されるシックナー装置であって、供給された鉱石スラリーを沈降させることにより、上部の上澄み液部分と下部の沈降濃縮部が形成されるシックナーと、上記シックナー内の上澄み液部分の上部に位置するように設置され、超音波を送信し、上記上澄み液部分の液面と沈降濃縮部の沈降凝集層との界面による反射波を受信する超音波トランスジューサが、超音波を送信して反射波を受信するまでの時間を計測し、その時間に基づいて上記界面までの距離を計測処理部により算出する超音波式レベル測定装置と、上記超音波式レベル測定装置による計測結果に基づいて上記超音波の反射状態を画面表示するモニタリング装置とを備え、上記超音波式レベル測定装置による計測結果に基づいて、上記シックナー内部のスラリー沈降状況に応じた上記超音波の反射状態を上記モニタリング装置により連続的に画面表示することを特徴とする。
That is, the present invention is a thickener device used in a nickel oxide ore slurry manufacturing process that is sent to a high-temperature pressurized sulfuric acid leaching process, wherein the supplied ore slurry is allowed to settle, so that A thickener in which a sedimentation concentration part is formed, and is installed so as to be positioned above the supernatant liquid part in the thickener, transmits ultrasonic waves, and the liquid level of the supernatant liquid part and the sedimentation aggregation layer of the sedimentation concentration part An ultrasonic transducer that receives the reflected wave from the interface, measures the time it takes to transmit the ultrasonic wave and receives the reflected wave, and calculates the distance to the interface based on that time by the measurement processing unit A level measuring device, and a monitoring device that displays the reflection state of the ultrasonic wave on the screen based on a measurement result by the ultrasonic level measuring device, Based on the measurement result by the sonic level measuring device, the reflection state of the ultrasound corresponding to the slurry settling of internal the thickener, characterized in that continuously the screen displayed by the monitoring device.
また、本発明は、高温加圧硫酸浸出工程に送るニッケル酸化鉱石のスラリー製造工程において使用されるシックナー装置の操業管理方法であって、供給された鉱石スラリーを沈降させることにより、上部の上澄み液部分と下部の沈降濃縮部が形成されるシックナー内の上澄み液部分の上部に位置するように設置され、超音波を送信し、上記上澄み液部分の液面と沈降濃縮部の沈降凝集層との界面による反射波を受信する超音波トランスジューサが超音波を送信して反射波を受信するまでの時間を計測し、その時間に基づいて上記界面までの距離を計測処理部により算出し、上記計測処理部による算出結果に基づいて、上記シックナー内部のスラリー沈降状況に応じた上記超音波の反射状態をモニタリング装置により連続的に画面表示し、上記モニタリング装置による画面表示に基づいて、上記シックナー内部のスラリー沈降状況を時系列で定量的に評価し、シックナー装置の操業を管理することを特徴とする。
The present invention also relates to an operation management method for a thickener device used in a nickel oxide ore slurry manufacturing process to be sent to a high-temperature pressurized sulfuric acid leaching process, wherein the upper supernatant liquid is settled by settling the supplied ore slurry. It is installed so that it is located at the upper part of the supernatant liquid part in the thickener where the part and lower sediment concentration part is formed, transmits ultrasonic waves, and the liquid level of the supernatant liquid part and the sedimentation aggregation layer of the sediment concentration part The ultrasonic transducer that receives the reflected wave from the interface measures the time until the ultrasonic wave is transmitted and the reflected wave is received, the distance to the interface is calculated by the measurement processing unit based on the time, and the measurement processing is performed. Based on the calculation result by the unit, the reflection state of the ultrasonic wave according to the slurry settling state inside the thickener is continuously displayed on the screen by the monitoring device, Based on the screen display by the monitoring device, the slurry settling of internal the thickener quantitatively evaluated over time, characterized in that it manages the operation of thickener apparatus.
本発明に係るシックナー装置の操業管理方法では、さらに、上記モニタリング装置による画面表示に基づいて、上記超音波のノイズとして検出される層をスラリーが沈降状態から凝集状態になる途中の浮遊状態層とみなして、シックナー装置の操業を管理するものとすることができる。
In the operation management method of the thickener device according to the present invention, based on the screen display by the monitoring device, the layer detected as the ultrasonic noise is a floating state layer in the middle of the slurry changing from the sedimented state to the aggregated state. In view of this, the operation of the thickener device can be managed.
本発明に係るシックナー装置の操業管理方法では、上記シックナー内部の上記浮遊状態層の厚みを定量的に評価して、上記シックナー内の鉱石スラリーへの凝集剤の添加量を最適化するものとすることができる。
In the operation management method of the thickener device according to the present invention, the thickness of the floating state layer inside the thickener is quantitatively evaluated, and the addition amount of the flocculant to the ore slurry in the thickener is optimized. be able to.
鉱石スラリー製造工程のシックナーにおけるシックニング工程で、従来の作業者による測定治具を用いてのシックナー内部のスラリー沈降状態確認に代えて、本発明では、連続的にモニタリング可能な超音波式レベル測定装置を利用することでスラリーの沈降状態と凝集状態を連続的且つ定量的に得ることができ、シックナー内部の凝集状態を的確に把握し、凝集剤の過不足を調整すると共に悪化が進行する前にシックナーへの供給量あるいはシックナーからの抜き取り量の調整を行いベットレベルの調整を行うことで、目的とするSolid%を維持すること、およびスラリーオーバーフロートラブルを未然に防ぐことが可能となる。
In the thickening process in the thickener of the ore slurry manufacturing process, instead of confirming the slurry sedimentation state inside the thickener using a measurement jig by a conventional worker, in the present invention, ultrasonic level measurement that can be continuously monitored By using the equipment, it is possible to obtain the sedimentation state and aggregation state of the slurry continuously and quantitatively, accurately grasp the aggregation state inside the thickener, adjust the excess and deficiency of the flocculant, and before the deterioration progresses In addition, by adjusting the supply amount to the thickener or the extraction amount from the thickener and adjusting the bet level, it is possible to maintain the target Solid% and prevent a slurry overflow trouble.
すなわち、本発明により、鉱石スラリー製造工程において、鉱石種類やブレンド比率に影響されずに、目的とするSolid%の鉱石スラリーを得ることが可能となり、常に高Solid%の鉱石スラリーを高温加圧浸出工程に送ることができる。また、凝集剤の使用量削減にも寄与することができる。
That is, according to the present invention, in the ore slurry manufacturing process, it becomes possible to obtain the target Solid% ore slurry without being affected by the ore type and blend ratio, and the high Solid% ore slurry is always leached at a high temperature under high pressure. Can be sent to the process. Moreover, it can also contribute to reduction of the usage-amount of a flocculant.
以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
本発明は、例えば図1に示すような構成のシックナー装置100に適用される。
The present invention is applied to a thickener device 100 having a configuration as shown in FIG.
このシックナー装置100は、高温加圧硫酸浸出工程に送るニッケル酸化鉱石のスラリー製造工程において使用されるもので、定常状態において、上部の上澄み液部分と下部の沈降濃縮部が形成されるように設計されたシックナー10と、このシックナー10内におけるスラリーの沈降状態と凝集状態を連続的且つ定量的に得るために超音波レベル測定装置20とその超音波の反射状態をモニタリングするためのモニタリング装置30を備える。
This thickener device 100 is used in a nickel oxide ore slurry manufacturing process that is sent to a high-temperature pressurized sulfuric acid leaching process, and is designed so that an upper supernatant liquid portion and a lower sedimentation concentration portion are formed in a steady state. A thickener 10, and an ultrasonic level measuring device 20 and a monitoring device 30 for monitoring the reflected state of the ultrasonic wave in order to continuously and quantitatively obtain the settling state and agglomeration state of the slurry in the thickener 10. Prepare.
上記シックナー10は、円筒状外枠1と中心に向かって次第に低くなった円錐状の底部2とからなるシックナー本体3を備える。このシックナー本体3には、上記円錐状の底部2の中央にスラリー回収口4が形成されている。また、上記シックナー10の内部には、上記円錐状の底部2の内面に沿ってレーキ5が配置されているとともに、上記レーキ5の回転軸5Aを中心とする円筒形状のフィードウェル6が当該シックナー10内の上澄み液部分の上部に位置するように設けられている。
The thickener 10 includes a thickener body 3 including a cylindrical outer frame 1 and a conical bottom portion 2 that gradually decreases toward the center. The thickener body 3 has a slurry recovery port 4 formed at the center of the conical bottom 2. In addition, a rake 5 is disposed inside the thickener 10 along the inner surface of the conical bottom 2, and a cylindrical feed well 6 centering on the rotating shaft 5 </ b> A of the rake 5 is provided in the thickener 10. It is provided so that it may be located in the upper part of the supernatant liquid part in 10.
上記フィードウェル6は、シックナー10の上部に設けられた蓋7に固定されている。また、上記フィードウェル6には、該フィードウェル6の上部位置に、沈降濃縮に付すスラリーを送入するスラリー供給管11、及び凝集剤等の添加剤を送入する添加剤供給管12が連結されるとともに、希釈水流入口13が設けられている。さらに、上記フィードウェル6の下部位置に、該フィードウェル6からスラリーを排出する分散コーン14が設けられている。
The feed well 6 is fixed to a lid 7 provided on the upper part of the thickener 10. The feed well 6 is connected to the upper position of the feed well 6 with a slurry supply pipe 11 for feeding slurry for sedimentation and concentration, and an additive supply pipe 12 for feeding an additive such as a flocculant. In addition, a dilution water inlet 13 is provided. Further, a dispersion cone 14 for discharging the slurry from the feed well 6 is provided at a lower position of the feed well 6.
上記シックナー10では、沈降濃縮に付す鉱石スラリー、凝集剤および希釈水がフィードウェル6において混合され、該フィードウェル6から該シックナー10内に供給される。そして、上記シックナー10内に供給された鉱石スラリーは、凝集剤および希釈水との混合状態で沈降して凝集することにより、上部の上澄み液部分と下部の沈降濃縮部を形成し、上記シックナー10の最下部に設けられているスラリー回収口4から所望の濃度のスラリーとして回収される。上記レーキ5は、その回転軸5Aに接続されている図示しない駆動部によりゆっくりと回転されることにより、沈降濃縮部でスラリーの沈降濃縮をすすめ、一様な堆積状態を確保する。
In the thickener 10, the ore slurry, the flocculant and the dilution water that are subjected to sedimentation concentration are mixed in the feed well 6 and supplied from the feed well 6 into the thickener 10. The ore slurry supplied into the thickener 10 settles and aggregates in a mixed state with a flocculant and dilution water, thereby forming an upper supernatant liquid portion and a lower sedimentation concentration portion. The slurry is recovered as a slurry having a desired concentration from the slurry recovery port 4 provided at the lowermost part. The rake 5 is slowly rotated by a driving unit (not shown) connected to the rotating shaft 5A, so that the slurry is allowed to settle and concentrate in the sedimentation concentration unit to ensure a uniform deposition state.
また、超音波レベル測定装置20は、超音波を送信し、その反射波を受信する超音波トランスジューサ21と、上記超音波トランスジューサ21が超音波を送信して反射波を受信するまでの時間を計測し、その時間に基づいて対象物までの距離を算出する計測処理部22からなり、上記超音波トランスジューサ21が上記シックナー10内の上澄み液部分の上部に位置するように設置されている。この超音波レベル測定装置20には、市販の超音波レベル計を使用することができる。そして、上記モニタリング装置30は、上記超音波レベル測定装置20の計測処理部22に接続されており、上記超音波レベル測定装置20による超音波の反射状態をモニタリングするために、上記計測処理部22による演算結果を画面表示する。
The ultrasonic level measuring apparatus 20 transmits an ultrasonic wave and receives the reflected wave. The ultrasonic transducer 21 measures the time until the ultrasonic transducer 21 transmits the ultrasonic wave and receives the reflected wave. The ultrasonic transducer 21 is arranged so as to be positioned above the supernatant liquid portion in the thickener 10. The measurement processing unit 22 calculates the distance to the object based on the time. A commercially available ultrasonic level meter can be used for the ultrasonic level measuring apparatus 20. The monitoring device 30 is connected to the measurement processing unit 22 of the ultrasonic level measurement device 20, and the measurement processing unit 22 is used to monitor the reflection state of the ultrasonic waves by the ultrasonic level measurement device 20. Display the calculation result by.
このシックナー装置100において、上記超音波レベル測定装置20で計測する対象物は、澄み液部分の液面と沈降濃縮部の沈降凝集層との界面であって、上記モニタリング装置30では、上記計測処理部22による演算結果すなわち上記超音波レベル測定装置20による計測結果を画面表示することにより、沈降凝集層と液面の界面レベルを連続的に把握すると同時に、超音波のノイズとして検出される層をスラリーが沈降状態から凝集状態になる途中の浮遊状態である層とみなすことで、凝集途中の浮遊状態層厚みの定量評価を行うことができる。
In the thickener device 100, the object to be measured by the ultrasonic level measuring device 20 is an interface between the liquid surface of the supernatant liquid portion and the sedimentation aggregated layer of the sediment concentration portion, and the monitoring device 30 performs the measurement process. By displaying the calculation result by the unit 22, that is, the measurement result by the ultrasonic level measuring device 20 on the screen, the interface level between the sedimentation aggregated layer and the liquid surface is continuously grasped, and at the same time, the layer detected as ultrasonic noise By considering the slurry as a layer that is in a floating state in the middle from the settled state to the agglomerated state, a quantitative evaluation of the thickness of the floating state layer in the middle of the aggregation can be performed.
ここで、鉱石は鉱石種によりシックニング挙動が異なり、特に鉱石スラリー中のSi品位とシックニング挙動には強い相関が得られており、Si品位が上昇すると沈降性が悪化し、Solid%が低下する傾向がある。しかしながら、鉱石スラリー中のニッケルを制御する上では高Si品位の鉱石処理を余儀なくされる場合があり、鉱石ブレンドを変更しSi品位が変動した際、特にSi品位が上昇した際には凝集剤の調整が間に合わず、シックナー10の沈降層上部でスラリーが浮遊した状態が生じやすくなる。
Here, the ore has different thickening behavior depending on the ore type, and in particular, there is a strong correlation between the Si grade and the thickening behavior in the ore slurry. As the Si grade increases, the sedimentation deteriorates and the Solid% decreases. Tend to. However, in order to control nickel in the ore slurry, it may be necessary to treat ore with high Si grade, and when the ore blend is changed and the Si grade fluctuates, especially when the Si grade rises, Adjustment is not in time, and the slurry is likely to float on the upper part of the sedimentation layer of the thickener 10.
上記シックナー装置100では、上記超音波レベル測定装置20による計測結果を上記モニタリング装置30で画面表示することにより、スラリーの浮遊状態を把握することができる。
In the thickener device 100, the measurement result by the ultrasonic level measuring device 20 is displayed on the screen by the monitoring device 30, whereby the suspended state of the slurry can be grasped.
上記超音波レベル測定装置20による計測結果として得られた画像データの一例を図2に示す。
FIG. 2 shows an example of image data obtained as a result of measurement by the ultrasonic level measurement apparatus 20.
図2中のAの範囲がトランスジューサ21から発せられた超音波からの反射量が多いことを意味しており、この部分より下部がシックナー10内でスラリーが完全に沈降している固形部分(スラリー沈降層)の範囲である。超音波の反射量が多いAの範囲は言い換えれば沈降層上部でスラリーが沈降状態から凝集状態になる途中の浮遊状態である層とみなすことができ、このAの範囲の層厚みを時系列で評価することで沈降状態の管理、ひいてはSolid%の管理を行うことができる。
The range A in FIG. 2 means that the amount of reflection from the ultrasonic wave emitted from the transducer 21 is large, and the lower part is a solid part (slurry) in which the slurry is completely settled in the thickener 10. (Sedimentation layer). In other words, the range of A in which the amount of reflected ultrasonic waves is large can be regarded as a floating layer in the middle of the slurry from the settling state to the agglomerated state at the upper part of the settling layer. By evaluating, it is possible to manage the sedimentation state, and hence Solid%.
また、上記超音波レベル測定装置20による計測結果として得られた種々の画像データとAの範囲、およびその時のSolid%を図3~5に示す。
Also, various image data obtained as a result of measurement by the ultrasonic level measuring apparatus 20, the range of A, and Solid% at that time are shown in FIGS.
図3に示すように、Aの範囲が小さくなるほど沈降状態が良好で高いSolid%が得られ、図4に示すように、Aが大きくなると沈降性が悪化し、Solid%が低下する。また、図4の状態で凝集剤の添加量調整等の対応をせず長時間放置させてしまうと、図5のBに示すように、沈降層との界面が上昇し始め、最終的にはスラリーがシックナー上部からオーバーフローしてしまい、シックナー底部から抜いているスラリーのSolid%は急激に低下してしまう。
As shown in FIG. 3, the lower the range of A, the better the sedimentation state and the higher Solid%. As shown in FIG. 4, when A increases, the sedimentation deteriorates and the Solid% decreases. In addition, if it is allowed to stand for a long time without adjusting the addition amount of the flocculant in the state of FIG. 4, as shown in FIG. 5B, the interface with the sedimentation layer starts to rise. The slurry overflows from the upper part of the thickener, and the Solid% of the slurry pulled out from the bottom part of the thickener decreases rapidly.
上記シックナー装置100では、これらの現象を踏まえた上で操業管理上では図3に示す状態(スラリー浮遊層として30cm以下)を連続的に監視維持し、Aの範囲が拡大してきた際に凝集剤の添加量を増量させることでスラリーオーバーフローを抑え、安定的に高Solid%のスラリーを得ることが可能となる。
In the thickener device 100, in consideration of these phenomena, the state shown in FIG. 3 (30 cm or less as a slurry floating layer) is continuously monitored and maintained in operation management, and when the range of A is expanded, the flocculant By increasing the added amount of the slurry, it is possible to suppress slurry overflow and stably obtain a slurry with a high Solid%.
上記シックナー装置100では、超音波レベル測定装置20とその超音波の反射状態をモニタリングできるモニタリング装置30を備えることで、シックナー10内の沈降凝集層と液面の界面レベルを連続的に把握すると同時に、超音波のノイズとして検出される層をスラリーが沈降状態から凝集状態になる途中の浮遊状態である層とみなすことで、凝集途中の浮遊状態層の厚みを定量的に評価することができ、シックナー10内部の凝集状態を的確に把握し、凝集剤の過不足を調整すると共に悪化が進行する前にシックナー10への供給量あるいはシックナー10からの抜き取り量の調整を行いベットレベルの調整を行うことで、目的とするSolid%を維持すること、およびスラリーオーバーフロートラブルを未然に防ぐことが可能となる。
In the thickener device 100, the ultrasonic level measuring device 20 and the monitoring device 30 capable of monitoring the reflected state of the ultrasonic waves are provided, so that the interface level between the sedimentation aggregate layer and the liquid surface in the thickener 10 can be continuously grasped. By considering the layer detected as ultrasonic noise as a layer that is in a suspended state while the slurry is in the aggregated state from the settled state, the thickness of the suspended layer in the middle of the aggregation can be quantitatively evaluated, Accurately grasp the agglomeration state inside the thickener 10, adjust the excess or deficiency of the flocculant and adjust the supply amount to the thickener 10 or the extraction amount from the thickener 10 before the deterioration progresses to adjust the bet level. This makes it possible to maintain the target Solid% and prevent slurry overflow troubles. It made.
また、従来は、定期的にシックナー下部から抜き取ったサンプルを分析し、そのSolid%をシックナー全体の代表値として評価することで内部凝集状態の把握を行っていたが、上記シックナー装置100では、供給されたスラリーが沈降層上部に達した時点で沈降性を判断できるため時間のずれを生じさせること無く凝集剤の増減を判断することが可能である。そのため、凝集剤の過剰添加をも防ぐことができ、凝集剤の添加量を最適化することができる。
Conventionally, a sample extracted from the lower part of the thickener is analyzed periodically, and the solid% is evaluated as a representative value of the entire thickener to grasp the internal aggregation state. Since the sedimentation property can be judged when the slurry thus obtained reaches the upper part of the sedimentation layer, it is possible to judge the increase / decrease of the flocculant without causing a time lag. Therefore, excessive addition of the flocculant can be prevented, and the amount of flocculant added can be optimized.
すなわち、上記シックナー装置100では、高温加圧硫酸浸出工程に送るニッケル酸化鉱石のスラリー製造工程において、供給された鉱石スラリーを沈降させることにより、上部の上澄み液部分と下部の沈降濃縮部が形成されるシックナー10内の上澄み液部分の上部に位置するように設置され、超音波を送信し、上記上澄み液部分の液面と沈降濃縮部の沈降凝集層との界面による反射波を受信する超音波トランスジューサ21が超音波を送信して反射波を受信するまでの時間を計測し、その時間に基づいて上記界面までの距離を計測処理部22により算出し、上記計測処理部22による算出結果に基づいて、上記シックナー10内部のスラリー沈降状況に応じた上記超音波の反射状態をモニタリング装置30により連続的に画面表示し、上記モニタリング装置30による画面表示に基づいて、上記シックナー10内部のスラリー沈降状況を時系列で定量的に評価して、操業が管理される。
That is, in the thickener device 100, in the nickel oxide ore slurry manufacturing process to be sent to the high-temperature pressurized sulfuric acid leaching process, the supplied ore slurry is allowed to settle to form an upper supernatant liquid part and a lower sedimentation concentration part. The ultrasonic wave is installed so as to be positioned above the supernatant liquid portion in the thickener 10, transmits ultrasonic waves, and receives reflected waves from the interface between the liquid surface of the supernatant liquid part and the sedimentation aggregate layer of the sedimentation concentration part. The time until the transducer 21 transmits the ultrasonic wave and receives the reflected wave is measured, the distance to the interface is calculated by the measurement processing unit 22 based on the time, and based on the calculation result by the measurement processing unit 22. Then, the reflection state of the ultrasonic wave according to the slurry settling situation inside the thickener 10 is continuously displayed on the screen by the monitoring device 30, Serial based on the screen display by the monitoring device 30, and quantitatively evaluated chronologically slurry settling of internal the thickener 10, operations are managed.
また、上記シックナー装置100では、さらに、上記モニタリング装置30による画面表示に基づいて、上記超音波式レベル測定装置20により上記超音波のノイズとして検出される層をスラリーが沈降状態から凝集状態になる途中の浮遊状態層とみなして、操業が管理される。
Further, in the thickener device 100, based on the screen display by the monitoring device 30, the slurry of the layer detected as the ultrasonic noise by the ultrasonic level measuring device 20 is changed from the settled state to the aggregated state. Operation is managed as a floating layer in the middle.
そして、上記シックナー装置100では、上記シックナー10内部の上記浮遊状態層の厚みを定量的に評価して、上記シックナー10内の鉱石スラリーへの凝集剤の添加量が最適化される。
In the thickener device 100, the thickness of the floating layer in the thickener 10 is quantitatively evaluated, and the amount of flocculant added to the ore slurry in the thickener 10 is optimized.
このような操業管理方法の採用前後での鉱石1tあたりの凝集剤使用量(g)(凝集剤原単位)を次の表1に示す。上記操業管理方法の採用前における測定回数は26回、同じく採用後における測定回数は52回の測定結果を用いた。
Table 1 below shows the amount (g) of flocculant used per ton of ore before and after the adoption of such an operation management method (coagulant basic unit). The measurement results before the adoption of the operation management method were 26 times, and the measurement results after the same adoption were 52 times.
表1から、ほぼ同等のSolid%を得るために必要な凝集剤添加量は上記操業管理方法の採用後は採用前に比べ低減できていることが分かる。加えて、凝集剤使用量のばらつきも低減できており、当該操業管理方法は凝集剤使用量の削減に寄与できていると言える。
From Table 1, it can be seen that the amount of the flocculant added to obtain approximately the same Solid% can be reduced after the operation management method is adopted compared to before the adoption. In addition, variation in the amount of the flocculant used can be reduced, and it can be said that the operation management method contributes to the reduction of the amount of flocculant used.
1 円筒状外枠、2 底部、3 シックナー本体、4 スラリー回収口、5 レーキ、5A 回転軸、6 フィードウェル、7 蓋、10 シックナー、11 スラリー供給管、12 添加剤供給管、13 希釈水流入口、14 分散コーン、20 超音波レベル測定装置、21 超音波トランスジューサ、22 計測処理部、30 モニタリング装置、100 シックナー装置
1 cylindrical outer frame, 2 bottom, 3 thickener body, 4 slurry recovery port, 5 rake, 5A rotating shaft, 6 feedwell, 7 lid, 10 thickener, 11 slurry supply pipe, 12 additive supply pipe, 13 dilution water inlet , 14 Dispersion cone, 20 Ultrasonic level measuring device, 21 Ultrasonic transducer, 22 Measurement processing unit, 30 Monitoring device, 100 Thickener device
Claims (4)
- 高温加圧硫酸浸出工程に送るニッケル酸化鉱石のスラリー製造工程において使用されるシックナー装置であって、
供給された鉱石スラリーを沈降させることにより、上部の上澄み液部分と下部の沈降濃縮部が形成されるシックナーと、
上記シックナー内の上澄み液部分の上部に位置するように設置され、超音波を送信し、上記上澄み液部分の液面と沈降濃縮部の沈降凝集層との界面による反射波を受信する超音波トランスジューサが、超音波を送信して反射波を受信するまでの時間を計測し、その時間に基づいて上記界面までの距離を計測処理部により算出する超音波式レベル測定装置と、
上記超音波式レベル測定装置による計測結果に基づいて上記超音波の反射状態を画面表示するモニタリング装置と
を備え、
上記超音波式レベル測定装置による計測結果に基づいて、上記シックナー内部のスラリー沈降状況に応じた上記超音波の反射状態を上記モニタリング装置により連続的に画面表示することを特徴とするシックナー装置。 A thickener device used in a slurry manufacturing process of nickel oxide ore to be sent to a high-temperature pressurized sulfuric acid leaching process,
A thickener in which an upper supernatant liquid part and a lower sedimentation concentration part are formed by settling the supplied ore slurry,
An ultrasonic transducer that is installed so as to be located above the supernatant liquid portion in the thickener, transmits ultrasonic waves, and receives reflected waves from the interface between the liquid surface of the supernatant liquid portion and the sedimentation aggregate layer of the sedimentation concentration portion. Measuring the time from transmitting an ultrasonic wave until receiving a reflected wave, and calculating the distance to the interface based on the time by the measurement processing unit,
A monitoring device that displays a reflection state of the ultrasonic wave on the screen based on a measurement result by the ultrasonic level measuring device,
A thickener device characterized in that, based on the measurement result of the ultrasonic level measuring device, the reflection state of the ultrasonic wave corresponding to the state of slurry settling inside the thickener is continuously displayed on the screen by the monitoring device. - 高温加圧硫酸浸出工程に送るニッケル酸化鉱石のスラリー製造工程において使用されるシックナー装置の操業管理方法であって、
供給された鉱石スラリーを沈降させることにより、上部の上澄み液部分と下部の沈降濃縮部が形成されるシックナー内の上澄み液部分の上部に位置するように設置され、超音波を送信し、上記上澄み液部分の液面と沈降濃縮部の沈降凝集層との界面による反射波を受信する超音波トランスジューサが超音波を送信して反射波を受信するまでの時間を計測し、その時間に基づいて上記界面までの距離を計測処理部により算出し、
上記計測処理部による算出結果に基づいて、上記シックナー内部のスラリー沈降状況に応じた上記超音波の反射状態をモニタリング装置により連続的に画面表示し、
上記モニタリング装置による画面表示に基づいて、上記シックナー内部のスラリー沈降状況を時系列で定量的に評価し、シックナー装置の操業を管理することを特徴とするシックナー装置の操業管理方法。 An operation management method for a thickener device used in a slurry manufacturing process of nickel oxide ore to be sent to a high-temperature pressurized sulfuric acid leaching process,
By setting the supplied ore slurry, the upper supernatant liquid part and the lower sediment concentration part are formed so as to be positioned above the supernatant liquid part in the thickener, transmitting ultrasonic waves, The ultrasonic transducer that receives the reflected wave from the interface between the liquid surface of the liquid part and the sedimentation aggregated layer of the sedimentation concentration part measures the time until the ultrasonic wave is transmitted and the reflected wave is received. The distance to the interface is calculated by the measurement processor,
Based on the calculation result by the measurement processing unit, the reflection state of the ultrasonic wave according to the slurry settling state inside the thickener is continuously displayed on the screen by a monitoring device,
An operation management method for a thickener device characterized in that, based on the screen display by the monitoring device, the slurry settling condition inside the thickener is quantitatively evaluated in time series to manage the operation of the thickener device. - さらに、上記モニタリング装置による画面表示に基づいて、上記超音波のノイズとして検出される層をスラリーが沈降状態から凝集状態になる途中の浮遊状態層とみなして、シックナー装置の操業を管理することを特徴とする請求項2記載のシックナー装置の操業管理方法。 Furthermore, based on the screen display by the monitoring device, the layer detected as the ultrasonic noise is regarded as a floating state layer in the middle of the slurry changing from the settled state to managing the operation of the thickener device. The operation management method for a thickener device according to claim 2, wherein
- 上記シックナー内部の上記浮遊状態層の厚みを定量的に評価して、上記シックナー内の鉱石スラリーへの凝集剤の添加量を最適化することを特徴とする請求項3記載のシックナー装置の操業管理方法。 The operation management of the thickener device according to claim 3, wherein the thickness of the floating layer in the thickener is quantitatively evaluated to optimize the amount of the flocculant added to the ore slurry in the thickener. Method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012014556A JP5834960B2 (en) | 2012-01-26 | 2012-01-26 | Thickener device and operation management method in ore slurry manufacturing process |
JP2012-014556 | 2012-01-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013111845A1 true WO2013111845A1 (en) | 2013-08-01 |
Family
ID=48873557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/051551 WO2013111845A1 (en) | 2012-01-26 | 2013-01-25 | Thickener device in ore slurry manufacturing process and operation management method using same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5834960B2 (en) |
WO (1) | WO2013111845A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107596739A (en) * | 2017-10-31 | 2018-01-19 | 天津科艾福特科技有限公司 | A kind of rectangular sedimentation tank of intelligent automation |
CN108926879A (en) * | 2018-07-26 | 2018-12-04 | 首钢集团有限公司 | A kind of mine tailing concentrator trolley detection system |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102082256B1 (en) * | 2019-09-16 | 2020-05-26 | (주)우진 | Agitator having ultrasonic detection equipment |
JP7425994B2 (en) * | 2020-03-31 | 2024-02-01 | 住友金属鉱山株式会社 | Thickener rake swing bearing inspection device |
JP7484963B2 (en) | 2021-07-27 | 2024-05-16 | Jfeスチール株式会社 | Method for concentrating iron-making dust collection water and method for producing granulated raw material for sintering |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02237604A (en) * | 1989-03-13 | 1990-09-20 | Ebara Infilco Co Ltd | Flocculating and settling device |
JPH04264235A (en) * | 1991-02-19 | 1992-09-21 | Hitachi Ltd | Precipitation condition measuring system and water treatment plant controller |
JP2000234130A (en) * | 1999-02-12 | 2000-08-29 | Taiheiyo Kinzoku Kk | Method of recovering valuable metal from oxide ore |
JP2001183354A (en) * | 1999-12-27 | 2001-07-06 | Kaijo Corp | Ultrasonic concentration meter |
JP2003088707A (en) * | 2001-09-19 | 2003-03-25 | Kurita Water Ind Ltd | Solid-liquid separator |
JP2005350766A (en) * | 2004-05-13 | 2005-12-22 | Sumitomo Metal Mining Co Ltd | Hydrometallurgical process of nickel oxide ore |
JP2008189999A (en) * | 2007-02-06 | 2008-08-21 | Sumitomo Metal Mining Co Ltd | Pretreatment method for nickel oxidation ore |
JP2010201324A (en) * | 2009-03-03 | 2010-09-16 | Sumitomo Metal Mining Co Ltd | Feed well for thickener |
JP2011047761A (en) * | 2009-08-26 | 2011-03-10 | Kurita Water Ind Ltd | In-tank monitor |
JP2011047760A (en) * | 2009-08-26 | 2011-03-10 | Kurita Water Ind Ltd | Detection method of interface level, and management method of solid-liquid separation tank |
JP2011104510A (en) * | 2009-11-17 | 2011-06-02 | Showa Denko Kk | Automatic extraction system for surplus sludge |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4822611B2 (en) * | 2001-05-18 | 2011-11-24 | 西松建設株式会社 | Muddy water treatment apparatus and muddy water treatment method |
JP2009250702A (en) * | 2008-04-03 | 2009-10-29 | Kurita Water Ind Ltd | Particle size measuring instrument of particle in liquid and flocculant adding control device |
-
2012
- 2012-01-26 JP JP2012014556A patent/JP5834960B2/en active Active
-
2013
- 2013-01-25 WO PCT/JP2013/051551 patent/WO2013111845A1/en active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02237604A (en) * | 1989-03-13 | 1990-09-20 | Ebara Infilco Co Ltd | Flocculating and settling device |
JPH04264235A (en) * | 1991-02-19 | 1992-09-21 | Hitachi Ltd | Precipitation condition measuring system and water treatment plant controller |
JP2000234130A (en) * | 1999-02-12 | 2000-08-29 | Taiheiyo Kinzoku Kk | Method of recovering valuable metal from oxide ore |
JP2001183354A (en) * | 1999-12-27 | 2001-07-06 | Kaijo Corp | Ultrasonic concentration meter |
JP2003088707A (en) * | 2001-09-19 | 2003-03-25 | Kurita Water Ind Ltd | Solid-liquid separator |
JP2005350766A (en) * | 2004-05-13 | 2005-12-22 | Sumitomo Metal Mining Co Ltd | Hydrometallurgical process of nickel oxide ore |
JP2008189999A (en) * | 2007-02-06 | 2008-08-21 | Sumitomo Metal Mining Co Ltd | Pretreatment method for nickel oxidation ore |
JP2010201324A (en) * | 2009-03-03 | 2010-09-16 | Sumitomo Metal Mining Co Ltd | Feed well for thickener |
JP2011047761A (en) * | 2009-08-26 | 2011-03-10 | Kurita Water Ind Ltd | In-tank monitor |
JP2011047760A (en) * | 2009-08-26 | 2011-03-10 | Kurita Water Ind Ltd | Detection method of interface level, and management method of solid-liquid separation tank |
JP2011104510A (en) * | 2009-11-17 | 2011-06-02 | Showa Denko Kk | Automatic extraction system for surplus sludge |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107596739A (en) * | 2017-10-31 | 2018-01-19 | 天津科艾福特科技有限公司 | A kind of rectangular sedimentation tank of intelligent automation |
CN108926879A (en) * | 2018-07-26 | 2018-12-04 | 首钢集团有限公司 | A kind of mine tailing concentrator trolley detection system |
CN108926879B (en) * | 2018-07-26 | 2021-06-15 | 首钢集团有限公司 | Tailing thickener dolly detecting system |
Also Published As
Publication number | Publication date |
---|---|
JP2013154262A (en) | 2013-08-15 |
JP5834960B2 (en) | 2015-12-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013111845A1 (en) | Thickener device in ore slurry manufacturing process and operation management method using same | |
JP5005225B2 (en) | Treatment method of fluorine-containing waste liquid | |
Liu et al. | Recovery of valuable metals from lepidolite by atmosphere leaching and kinetics on dissolution of lithium | |
AU2009203214A1 (en) | Separation method for zinc sulfide | |
EP2957332B1 (en) | Solid-liquid-separation processing method, and hydrometallurgical method for nickel oxide ore | |
JP5358040B1 (en) | Cleaning method of red mud containing goethite | |
JP6746890B2 (en) | Specific gravity separator | |
AU2012318304B2 (en) | Method of producing ore slurry and metal refining method | |
CN110961244B (en) | Method for pre-enriching vanadium-containing minerals in medium-fine scale graphite ores | |
JP5790839B2 (en) | Chromite recovery method | |
JP6729536B2 (en) | Leaching method, hydrometallurgical method of nickel oxide ore | |
JP5315614B2 (en) | Pretreatment method of nickel oxide ore | |
JPWO2019172392A1 (en) | Ni/Co sulfide manufacturing method and iron quality stabilizing system | |
Feng et al. | Effect of pH on surface characteristics and flotation of sulfidized cerussite | |
JP6036875B2 (en) | Method for hydrometallizing nickel oxide ore | |
JP2019000834A (en) | Solid-liquid separation method of nickel high pressure leach residue | |
JP7006436B2 (en) | Thickener device, rotation detection method of thickener rake | |
JP2013095988A (en) | Method for precipitating metal sulfide | |
JP7003848B2 (en) | How to select a pump to transport the slurry | |
JP2014037632A (en) | Thickner device in ore slurry manufacturing process and control method of its solid component percentage | |
WO2022118743A1 (en) | Method for preparing nickel oxide ore slurry | |
JP2020041171A (en) | Liquid transferring method for slurry and transportation device for slurry | |
JP7039936B2 (en) | Solid-liquid separation method of nickel high-pressure leachate residue | |
CN118594759B (en) | Intelligent recovery method for cobalt in cobalt slag of cobalt removing agent | |
Janwong et al. | Impact of silica on cadmium cementation by zinc dust in a zinc SX/EW plant |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13740975 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13740975 Country of ref document: EP Kind code of ref document: A1 |