JP2009250702A - Particle size measuring instrument of particle in liquid and flocculant adding control device - Google Patents

Particle size measuring instrument of particle in liquid and flocculant adding control device Download PDF

Info

Publication number
JP2009250702A
JP2009250702A JP2008096907A JP2008096907A JP2009250702A JP 2009250702 A JP2009250702 A JP 2009250702A JP 2008096907 A JP2008096907 A JP 2008096907A JP 2008096907 A JP2008096907 A JP 2008096907A JP 2009250702 A JP2009250702 A JP 2009250702A
Authority
JP
Japan
Prior art keywords
ultrasonic
liquid
particle size
particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008096907A
Other languages
Japanese (ja)
Inventor
Nobuaki Nagao
信明 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2008096907A priority Critical patent/JP2009250702A/en
Publication of JP2009250702A publication Critical patent/JP2009250702A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily and accurately perform the grasping of a flocculation state when adding a flocculant in wastewater treatment or the like. <P>SOLUTION: This particle size measuring instrument of particles in a liquid includes an ultrasonic transmitting-receiving means which includes an ultrasonic transmitter 4 for transmitting an ultrasonic pulse of predetermined frequency into the liquid 20 and an ultrasonic receiver 5 for receiving a reflected pulse produced by reflecting the ultrasonic pulse transmitted from the ultrasonic transmitter 4 by the particles 21 contained in the liquid 20 and constituted so as to relatively move the ultrasonic transmitter 4 at a predetermined moving speed so as to have excessive speed difference with respect to the particles 21 in the liquid 20, a reflected pulse intensity measuring means (control part 10) for measuring the intensity of the reflected pulse received by the ultrasonic receiver and a particle size calculation means (control part 10) for calculating the particle size of the particles from the frequency of the ultrasonic pulse, the moving speed of the ultrasonic transmitter and the reflected pulse intensity measured value measured by the reflected pulse intensity measuring means. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、排水の凝集沈澱処理や、用水処理における凝集処理分野及び脱水処理における凝集処理に適用可能な液中粒子の粒径測定機器および凝集剤添加制御装置に関するものである。   The present invention relates to an apparatus for measuring particle size of liquid particles and a flocculant addition control device applicable to the agglomeration and precipitation treatment of waste water, the agglomeration treatment field in water treatment, and the agglomeration treatment in dehydration treatment.

排水などの凝集処理では、排水などに凝集剤を添加して排水などに含まれる懸濁物質を凝集させて固液分離する方法が採用されている。排水処理などが良好になされるためには、前記凝集処理において懸濁物質が良好に凝集されることが必要であり、凝集処理の遂行において凝集状態の良否を判定することが重要な作業となる。
従来は、凝集処理における凝集状態の良否判定は、(1)人為的に凝集液を採取し、黙示確認する方法や、(2)凝集沈澱後の処理水濁度を濁度計等で連続的に計測しながら監視する方法が一般的である。また、(3)特許文献1に見られるように、凝集反応液にレーザーを照射し、粒子の光散乱による散乱光強度の最低値から、未凝集SSや凝集剤といった粒子の存在比率(粒子濃度)を計測し、凝集状態を判定する方法がある。さらに(4)フロックのような粒子密度が小さい粒子は超音波を相当量吸収するという特徴を利用して凝集状態を判断する方法が知られている。(特許文献2参照)
特開2002−195947号公報 特公平6−60890号公報
In the agglomeration treatment such as waste water, a method of adding a flocculant to the waste water and aggregating suspended substances contained in the waste water and separating the solid and liquid is adopted. In order to perform wastewater treatment and the like well, it is necessary that suspended substances be well aggregated in the agglomeration treatment, and it is an important task to determine the quality of the agglomerated state in the execution of the agglomeration treatment. .
Conventionally, the quality of the flocculation state in the flocculation process is determined by (1) a method in which the flocculated liquid is artificially collected and implicitly confirmed, or (2) the turbidity of the treated water after flocculation is continuously measured with a turbidimeter or the like Generally, monitoring is performed while measuring. (3) As seen in Patent Document 1, agglomeration reaction solution is irradiated with a laser, and the abundance ratio of particles such as unaggregated SS and aggregating agent (particle concentration) from the lowest scattered light intensity due to light scattering of particles. ) And measuring the aggregation state. Furthermore, (4) a method is known in which the aggregation state is determined by utilizing the feature that particles having a low particle density such as floc absorb a considerable amount of ultrasonic waves. (See Patent Document 2)
JP 2002-195947 A Japanese Patent Publication No. 6-60890

しかし、上記方法のうち、(1)の方法は人手を介する為、凝集状態の判断に判定者の私見に依存した個人差を生じるだけでなく、連続して凝集状態を判断しようとした場合には、長時間に渡って監視作業に選任させることなり、現実的でない。
(2)の方法は、処理結果を判断することとなるため有効であるが、凝集反応後の固液分離を経た後での判定ということとなるため、事象発生から判断までの時間的な経過が問題となる。
(3)の方法は、(1)や(2)の問題を解決するために提案されたものであるが、あくまで被測定媒体に含まれるフロックの濃度や粒度分布を概算するだけであり、個々のフロックごとに直接計測できるものではない。また個々のフロックの密度に関わる情報を判定することは難しいため、凝集状態の判定因子であるフロック強度(フロック密度に相関)については、計測することができない。
(4)の方法については、汚泥の凝集は汚泥粒子の粒子密度だけでは判断困難であり粒径も計測する必要があるが、(4)の方法では個々の粒子密度を正確に測定することはできない。
However, among the above methods, since the method (1) is manual, it causes not only individual differences depending on the judgment person's personal opinion in determining the aggregation state, but also when trying to determine the aggregation state continuously. Is unrealistic because it will be assigned to monitoring work for a long time.
The method of (2) is effective because it determines the processing result, but it is a determination after solid-liquid separation after the agglutination reaction, so the time lapse from the event occurrence to the determination Is a problem.
The method (3) has been proposed to solve the problems (1) and (2), but it merely estimates the floc concentration and particle size distribution contained in the measured medium. It cannot be measured directly for each floc. Further, since it is difficult to determine information related to the density of individual flocs, it is impossible to measure the floc strength (correlation with the floc density) which is a determination factor of the aggregation state.
As for the method (4), it is difficult to judge the aggregation of sludge only by the particle density of the sludge particles, and it is necessary to measure the particle size. However, with the method (4), it is not possible to accurately measure the individual particle density. Can not.

本発明は、このような問題に鑑み、粒子の粒径と粒子の密度を計測することを可能にすることを目的とするものであり、その基本原理は、超音波を粒子に対して照射し、超音波の照射位置を既知の速度で相対的に移動させた時に発生する反射波の発生時間で粒子の粒径を計測し、このとき受信した超音波の信号強度により、粒子の密度を計測することによる。   In view of such problems, the present invention aims to make it possible to measure the particle size and density of particles. The basic principle of the present invention is to irradiate particles with ultrasonic waves. The particle size of the particle is measured by the time of the reflected wave generated when the ultrasonic irradiation position is relatively moved at a known speed, and the density of the particle is measured based on the received signal intensity of the ultrasonic wave. By doing.

すなわち、本発明の液中粒子の粒径測定機器のうち、第1の本発明は、所定振動数の超音波パルスを液体中に向けて送信する超音波送信子、及び該超音波送信子から送信された超音波パルスが前記液体中に含まれる粒子に反射した反射パルスを受信する超音波受信子をそれぞれ少なくとも1つ備え、少なくとも前記超音波送信子が液体中の粒子に対し過剰な速度差を有して所定の移動速度で相対的に移動できるように構成されている超音波送受信手段と、前記超音波受信子で受信した前記反射パルスの強度を測定する反射パルス強度測定手段と、前記超音波パルスの前記振動数と、前記超音波送信子の前記移動速度と、前記反射パルス強度測定手段によって測定された反射パルス強度測定値とから前記粒子の粒径を求める粒径算出手段と、を具備することを特徴とする。   That is, among the particle size measuring devices for liquid particles according to the present invention, the first aspect of the present invention is an ultrasonic transmitter that transmits an ultrasonic pulse having a predetermined frequency toward the liquid, and the ultrasonic transmitter. At least one ultrasonic receiver for receiving a reflected pulse in which the transmitted ultrasonic pulse is reflected by particles contained in the liquid is provided, and at least the ultrasonic transmitter has an excessive velocity difference with respect to the particles in the liquid. An ultrasonic transmission / reception unit configured to be relatively movable at a predetermined moving speed, a reflected pulse intensity measurement unit that measures the intensity of the reflected pulse received by the ultrasonic receiver, and A particle diameter calculating means for obtaining a particle diameter of the particle from the vibration frequency of the ultrasonic pulse, the moving speed of the ultrasonic transmitter, and a reflected pulse intensity measurement value measured by the reflected pulse intensity measuring means; The Characterized in that it Bei.

第2の本発明の液中粒子の粒径測定機器は、前記第1の本発明において、少なくとも前記超音波送信子を前記所定の移動速度で移動させる超音波送受信手段移動装置を備えることを特徴とする。   The particle size measuring instrument for liquid particles according to the second aspect of the present invention is characterized in that, in the first aspect of the present invention, at least the ultrasonic transmitter / receiver moving device that moves the ultrasonic transmitter at the predetermined moving speed is provided. And

第3の本発明の液中粒子の粒径測定機器は、前記第1または第2の本発明において、前記超音波送信子の移動が回転運動であることを特徴とする。   The particle size measuring instrument for liquid particles according to the third aspect of the present invention is characterized in that, in the first or second aspect of the present invention, the movement of the ultrasonic transmitter is a rotational motion.

第4の本発明の液中粒子の粒径測定機器は、前記第1〜第3の本発明のいずれかにおいて、前記超音波送信子から送信された超音波パルスの焦点が液中に1cm以下の深さで位置するように設定することを特徴とする。   In the liquid particle size measuring instrument of the fourth aspect of the present invention, in any one of the first to third aspects of the present invention, the focal point of the ultrasonic pulse transmitted from the ultrasonic transmitter is 1 cm or less in the liquid. It is set so that it may be located in the depth of.

第5の本発明の液中粒子の粒径測定機器は、前記第1〜第4の本発明のいずれかにおいて、前記超音波送信子は、該超音波送信子の移動方向に沿って間隔を置いて複数設けられていることを特徴とする。   In the liquid particle size measuring instrument of the fifth aspect of the present invention, in any one of the first to fourth aspects of the present invention, the ultrasonic transmitter is spaced along the moving direction of the ultrasonic transmitter. It is characterized by being provided with a plurality.

第6の本発明の液中粒子の粒径測定機器は、前記第1〜第5の本発明のいずれかにおいて、前記反射パルス強度測定値から前記粒子の粒子密度を求める粒子密度算出手段をさらに具備することを特徴とする。   The particle size measuring apparatus for particles in liquid according to the sixth aspect of the present invention further includes a particle density calculating means for obtaining the particle density of the particles from the measured value of the reflected pulse intensity in any of the first to fifth aspects of the present invention. It is characterized by comprising.

第7の本発明の凝集剤添加制御装置は、前記第1〜6の本発明のいずれかに記載の液中粒子の粒径測定機器を備え、該粒径測定機器によって測定された、凝集剤を添加した有機物含有水の凝集コロイド粒子の粒径と粒子密度に基づいて、前記有機含有水の凝集状態を判断し、該凝集状態に基づいて凝集剤の添加を制御する制御手段を備えることを特徴とする。   A flocculant addition control device according to a seventh aspect of the present invention comprises the particle size measuring instrument for liquid particles according to any one of the first to sixth aspects of the present invention, and the flocculant measured by the particle size measuring instrument. A control means for determining the aggregation state of the organic-containing water based on the particle size and particle density of the agglomerated colloidal particles containing the organic substance added with the control, and controlling the addition of the aggregating agent based on the aggregation state. Features.

第8の本発明の凝集剤添加制御装置は、前記第7の本発明の凝集剤添加制御装置において、前記制御手段を液中に凝集剤を添加する凝集剤添加装置の添加量または/および添加時期の制御が可能であることを特徴とする。   The flocculant addition control device according to the eighth aspect of the present invention is the flocculant addition control device according to the seventh aspect of the present invention, wherein the control means adds the amount and / or addition of the flocculant addition device that adds the flocculant to the liquid. It is possible to control the timing.

本発明によれば、所定振動数の超音波パルスを液体中に向けて送信する超音波送信子、及び該超音波送信子から送信された超音波パルスが前記液体中に含まれる粒子に反射した反射パルスを受信する超音波受信子をそれぞれ少なくとも1つ備え、少なくとも前記超音波送信子が液体中の粒子に対し過剰な速度差を有して所定の移動速度で相対的に移動できるように構成されている超音波送受信手段と、前記超音波受信子で受信した前記反射パルスの強度を測定する反射パルス強度測定手段と、前記超音波パルスの前記振動数と、前記超音波送信子の前記移動速度と、前記反射パルス強度測定手段によって測定された反射パルス強度測定値とから前記粒子の粒径を求める粒径算出手段と、を具備するので、刻々と測定点を移動する超音波によって粒子の大きさが算出され、液体における粒子の凝集状態を容易かつ的確に判定することができる。   According to the present invention, an ultrasonic transmitter that transmits an ultrasonic pulse of a predetermined frequency toward a liquid, and the ultrasonic pulse transmitted from the ultrasonic transmitter is reflected by particles contained in the liquid. At least one ultrasonic receiver for receiving reflected pulses is provided, and at least the ultrasonic transmitter has an excessive speed difference with respect to particles in the liquid and can move relatively at a predetermined moving speed. Ultrasonic transmitting / receiving means, reflected pulse intensity measuring means for measuring the intensity of the reflected pulse received by the ultrasonic receiver, the frequency of the ultrasonic pulse, and the movement of the ultrasonic transmitter Since there is provided a particle size calculating means for obtaining the particle diameter of the particle from the velocity and the reflected pulse intensity measurement value measured by the reflected pulse intensity measuring means, the ultrasonic wave moving the measurement point every moment is provided. The calculated size of the particles, the aggregation state of the particles in the liquid can be determined easily and accurately.

なお、超音波測定点が測定粒子に対し刻々と移動するためには、超音波送信子を粒子に対し、粒子の速度に対して測定精度を保てる程度に十分に大きな速度差(例えば粒子に対して10倍以上の速度差)で相対的に移動させることが必要となる。この要求に応えるために、超音波パルスの周波数や粒子の移動速度、超音波送信子の移動速度、想定される粒子の大きさなどを考慮して、これらに関し必要な設定がなされる。   In order for the ultrasonic measurement point to move relative to the measurement particle, the velocity difference (e.g., relative to the particle) is large enough to maintain the measurement accuracy with respect to the velocity of the particle. Therefore, it is necessary to move it relatively at a speed difference of 10 times or more. In order to meet this requirement, necessary settings are made in consideration of the frequency of the ultrasonic pulse, the moving speed of the particle, the moving speed of the ultrasonic transmitter, the assumed particle size, and the like.

また、本発明の凝集剤添加制御装置によれば、本発明の液中粒子の粒径測定機器を備え、該粒径測定機器によって測定された、凝集剤を添加した有機物含有水の凝集コロイド粒子の粒径と粒子密度に基づいて、前記有機含有水の凝集状態を判断し、該凝集状態に基づいて凝集剤の添加を制御する凝集剤添加制御手段を備えるので、液中粒子の凝集状態を的確に判定して、良好な凝集状態が得られるように凝集剤の添加を制御して、良好な凝集状態を常に維持することができる。   Further, according to the flocculant addition control device of the present invention, the water-borne particle size measuring device of the present invention is provided, and the organic material-containing water-flocculated colloidal particles to which the flocculant is added are measured by the particle size measuring device. A coagulant addition control means for determining the aggregation state of the organic water based on the particle size and particle density of the liquid and controlling the addition of the coagulant based on the aggregation state. It is possible to accurately maintain the good aggregation state by controlling the addition of the flocculant so as to obtain a good aggregation state.

以下に、本発明の一実施形態を添付図面に基づき説明する。
本実施形態の粒径測定機器1は、測定を行う液20に浸漬する回転体2を備え、該回転体2は、超音波送受信手段移動装置3による駆動によって回転可能になっている。該回転体2内には、回転中心から偏心した位置に超音波送信子4が設けられており、該超音波送信子4は、送信された超音波パルスが、回転体2の表面から1cm以下の距離で回転体2の外側に焦点が結ばれるように、物理的な構造および設置位置が設定されている。なお、収束されて焦点を結ぶ超音波パルスを発生させるための構造は既知のものを用いることができ、本発明としては特定の構造に限定をされるものではない。また、この実施形態では、回転体を液中に浸漬するため、焦点を回転体の表面からの距離(深さ)で示しているが、液外に回転体を配置する場合には、液表面(貯液槽内面など)からの距離(深さ)において上記数値が満たされるように設定する。ただし液によって適切な値が変わるので、液ごとに調整する必要がある。
上記焦点は、例えば、焦点における音波の進行方向に垂直な断面積を直径30μm程度の円とするものでよく、超音波送信子4が回転体2とともに回転することで、該焦点は線状の計測領域Aを移動することになる。
Hereinafter, an embodiment of the present invention will be described with reference to the accompanying drawings.
The particle size measuring instrument 1 of the present embodiment includes a rotating body 2 that is immersed in a liquid 20 for measurement, and the rotating body 2 is rotatable by being driven by an ultrasonic transmitting / receiving means moving device 3. An ultrasonic transmitter 4 is provided in the rotating body 2 at a position eccentric from the center of rotation. The ultrasonic transmitter 4 transmits an ultrasonic pulse of 1 cm or less from the surface of the rotating body 2. The physical structure and the installation position are set so that the focal point is formed on the outside of the rotating body 2 at a distance of. As a structure for generating an ultrasonic pulse that is focused and focused, a known structure can be used, and the present invention is not limited to a specific structure. In this embodiment, since the rotating body is immersed in the liquid, the focal point is indicated by the distance (depth) from the surface of the rotating body. However, when the rotating body is arranged outside the liquid, the liquid surface It sets so that the said numerical value may be satisfy | filled in the distance (depth) from (liquid tank inner surface etc.). However, since the appropriate value varies depending on the liquid, it must be adjusted for each liquid.
The focal point may be, for example, a circle having a cross-sectional area perpendicular to the traveling direction of the sound wave at the focal point and having a diameter of about 30 μm. The measurement area A is moved.

上記焦点の位置は、1cmを超えると複数の粒子が超音波パルスの軌道上に重なったとき測定精度が低下するため好ましくない。   If the position of the focal point exceeds 1 cm, the measurement accuracy decreases when a plurality of particles overlap the trajectory of the ultrasonic pulse, which is not preferable.

また、回転体2内には、上記超音波送信子4から送信された超音波パルスが液20中で粒子に反射した反射パルスを受信する超音波受信子5が配置されており、該超音波受信子5は、回転体2の回転中心またはその近傍に位置している。前記超音波送信子4と該超音波受信子5とによって本発明の超音波送受信手段が構成されている。
なお、回転体2の素材としては例えば樹脂が挙げられるが、本発明としては水中に浸漬でき、回転させても強度が維持できるものであれば特に限定されない。
Further, in the rotating body 2, an ultrasonic receiver 5 that receives a reflected pulse in which an ultrasonic pulse transmitted from the ultrasonic transmitter 4 is reflected by particles in the liquid 20 is disposed. The receiver 5 is located at the rotation center of the rotating body 2 or in the vicinity thereof. The ultrasonic transmitter 4 and the ultrasonic receiver 5 constitute an ultrasonic transmission / reception means of the present invention.
In addition, although resin is mentioned as a raw material of the rotary body 2, as long as it can immerse in water and can maintain intensity | strength even if it rotates, it will not specifically limit.

また、前記超音波送信子4と該超音波受信子5とは、信号ライン4a、5aによって制御部10に接続されており、該制御部10から信号ライン4aを通して前記超音波送信子4に送られる駆動信号に基づいて、所定周波数の超音波パルスが出力される。また、前記超音波受信子5で受信された信号は、信号ライン5aを通して制御部10に送られてデータ処理がなされる。制御部10は、例えば、CPUとこれを動作させるプログラム、該プログラムを格納するROM、作業エリアとなるRAM、設定データなどを格納した不揮発のフラッシュメモリなどに構成することができる。
また、制御部10では、超音波送受信手段移動装置3に対し駆動制御信号を送り、超音波送受信手段移動装置3すなわち、回転体2を所定の速度で回転制御することができる。超音波送受信手段移動装置3では、センサなどによって回転位置情報が取得されており、該回転位置情報が制御部10に送信される。
The ultrasonic transmitter 4 and the ultrasonic receiver 5 are connected to the control unit 10 by signal lines 4a and 5a, and sent from the control unit 10 to the ultrasonic transmitter 4 through the signal line 4a. An ultrasonic pulse having a predetermined frequency is output based on the drive signal. The signal received by the ultrasonic receiver 5 is sent to the control unit 10 through the signal line 5a for data processing. The control unit 10 can be configured as, for example, a CPU and a program that operates the CPU, a ROM that stores the program, a RAM that serves as a work area, a non-volatile flash memory that stores setting data, and the like.
Further, the control unit 10 can send a drive control signal to the ultrasonic transmission / reception means moving device 3 to control the rotation of the ultrasonic transmission / reception means moving device 3, that is, the rotating body 2 at a predetermined speed. In the ultrasonic transmission / reception means moving device 3, rotational position information is acquired by a sensor or the like, and the rotational position information is transmitted to the control unit 10.

なお、制御部10では、前記超音波受信子5で受信された反射波パルスの受信データに基づいて該反射パルスの強度を求めることができる。したがって、制御部10は、反射パルス強度測定手段としての機能を有している。
また、制御部10では、詳細には後述するように、上記反射パルスの受信データと、前記超音波パルスの前記振動数と、前記超音波送信子の移動速度と、前記反射パルス強度とに基づいて液中の粒子の粒径を求めることができる。したがって、制御部10は、粒径算出手段としての機能を有している。
The control unit 10 can determine the intensity of the reflected pulse based on the received data of the reflected wave pulse received by the ultrasonic receiver 5. Therefore, the control unit 10 has a function as reflected pulse intensity measuring means.
Further, as will be described later in detail, the control unit 10 is based on the reception data of the reflected pulse, the frequency of the ultrasonic pulse, the moving speed of the ultrasonic transmitter, and the reflected pulse intensity. Thus, the particle size of the particles in the liquid can be obtained. Therefore, the control part 10 has a function as a particle size calculation means.

次に、上記粒径測定機器1の動作について説明する。
回転体2の少なくとも先端側を液20中に浸漬し、該回転体2を、制御部10からの駆動制御信号に基づいて超音波送受信手段移動装置3によって所定の回転速度で移動させる。
制御部10から出力された発信信号は超音波送信子4に伝達され、該超音波送信子4によって超音波信号に変換される。超音波送信子4から発信された超音波は回転体2を伝わって回転体2外部に到達し、計測領域Aに焦点を結ぶ。
いま、液20中の粒子21が計測点に存在し、前記超音波送信子4から出力された超音波パルスがその粒子21にあたって反射したとすると、その反射波の一部は超音波受信子5に到達する。超音波受信子5では、受けた超音波を電気信号に変換し、制御部10に伝達する。このときの超音波の旅程および受信波形の例を図2に示す。
Next, the operation of the particle size measuring device 1 will be described.
At least the distal end side of the rotating body 2 is immersed in the liquid 20, and the rotating body 2 is moved at a predetermined rotation speed by the ultrasonic transmitting / receiving means moving device 3 based on a drive control signal from the control unit 10.
The transmission signal output from the control unit 10 is transmitted to the ultrasonic transmitter 4 and converted into an ultrasonic signal by the ultrasonic transmitter 4. The ultrasonic waves transmitted from the ultrasonic transmitter 4 reach the outside of the rotating body 2 through the rotating body 2 and focus on the measurement region A.
If a particle 21 in the liquid 20 is present at a measurement point and an ultrasonic pulse output from the ultrasonic transmitter 4 is reflected by the particle 21, a part of the reflected wave is an ultrasonic receiver 5. To reach. In the ultrasonic receiver 5, the received ultrasonic wave is converted into an electric signal and transmitted to the control unit 10. An example of the ultrasonic itinerary and the received waveform at this time is shown in FIG.

図2に示す旅行時間tは、図1における超音波送信子4から発信された超音波が計測点にある粒子21で反射して、超音波受信子5まで戻ってくるまでの音波の伝播時間である。つまり、計測領域A以外の位置にある粒子からの反射波は、計測点にある粒子21の旅行時間よりも必ず長くなるか、短くなるため、発信信号を出力してから一定の旅行時間で受信した超音波信号のみを処理することで、計測点のみの粒子21についての情報を処理することが可能となる。   The travel time t shown in FIG. 2 is the propagation time of the sound wave until the ultrasonic wave transmitted from the ultrasonic transmitter 4 in FIG. 1 is reflected by the particle 21 at the measurement point and returns to the ultrasonic receiver 5. It is. In other words, the reflected wave from the particle located at a position other than the measurement region A is always longer or shorter than the travel time of the particle 21 at the measurement point, so that it is received at a constant travel time after the transmission signal is output. By processing only the ultrasonic signal that has been processed, it is possible to process information about the particles 21 only at the measurement points.

また、受信音圧レベルは、計測点にある粒子21の表面にあたった超音波が、超音波伝播媒体(ここでは空気、又は水)と粒子21との音響インピーダンスの違いによって発生するため、固体密度差が大きい方が、また計測点に占める面積が大きい方が反射信号のレベルは高くなる。いま、凝集処理を行っている反応液中に上記回転体2を浸漬した時、反応液中に形成されたフロックや粒子は前記計測領域Aに侵入する。このとき、計測点が、フロックの移動速度に比べて十分に早い速度で移動していれば、相対的に粒子を静止物として扱うことが可能となる。   The received sound pressure level is generated because the ultrasonic wave hitting the surface of the particle 21 at the measurement point is generated by the difference in acoustic impedance between the ultrasonic wave propagation medium (air or water here) and the particle 21. The level of the reflected signal is higher when the density difference is larger and the area occupied by the measurement point is larger. Now, when the rotator 2 is immersed in a reaction solution that is undergoing agglomeration treatment, flocs and particles formed in the reaction solution enter the measurement region A. At this time, if the measurement point is moving at a speed sufficiently higher than the movement speed of the floc, the particles can be handled as a stationary object relatively.

例えば、回転体2が角速度ω(rad/s)で回転し、超音波パルスを周期T(ms)で出力しているとする。このとき、1パルスあたりの移動角θ(rad)と、計測領域の円周上に存在する計測点の個数Nは下式で表される。   For example, it is assumed that the rotating body 2 rotates at an angular velocity ω (rad / s) and outputs an ultrasonic pulse with a period T (ms). At this time, the movement angle θ (rad) per pulse and the number N of measurement points existing on the circumference of the measurement region are expressed by the following equations.

Figure 2009250702
Figure 2009250702

Figure 2009250702
Figure 2009250702

Figure 2009250702
Figure 2009250702

今、N個目のパルスが発射されたときに、始点のずれdθは、式2を用いて   Now, when the Nth pulse is fired, the deviation dθ of the starting point is

Figure 2009250702
Figure 2009250702

つまりnθ(rad)だけ1回転毎に回転方向とは逆方向に計測点が移動することとなる。よって、回転に伴う計測点の角移動速度ν(rad/s)を求めると下記式(5)となる。   That is, the measurement point moves in the direction opposite to the rotation direction for each rotation by nθ (rad). Therefore, when the angular movement speed ν (rad / s) of the measurement point accompanying rotation is obtained, the following equation (5) is obtained.

Figure 2009250702
Figure 2009250702

いま、計測領域の円周上に、計測点が始点以外に1点しか存在しない場合(N=1 つまりπ<θ<2π)について考える。
計測領域の円周の半径をr(mm)とすると計測点の移動速度V(mm/s)は下式で与えられる。
Consider a case where there is only one measurement point other than the start point on the circumference of the measurement region (N = 1, that is, π <θ <2π).
If the radius of the circumference of the measurement region is r (mm), the moving speed V (mm / s) of the measurement point is given by the following equation.

Figure 2009250702
計測対象となる粒子の移動速度をβ(mm/s)とする時、回転体の計測点の移動速度Vがβよりも十分に大きく(V>>β)、粒子と計測点の相対的な移動速度における粒子の移動速度が無視できる場合を考える。
粒子径を10μm単位で計測するためには、計測1回あたりの計測点の移動距離l(mm)が10μm以下である必要があるため、下記の式を満足する必要がある。
Figure 2009250702
When the moving speed of the particle to be measured is β (mm / s), the moving speed V of the measuring point of the rotating body is sufficiently larger than β (V >> β), and the relative speed between the particle and the measuring point is Consider the case where the moving speed of particles at the moving speed is negligible.
In order to measure the particle diameter in units of 10 μm, the movement distance l (mm) of the measurement point per measurement needs to be 10 μm or less, and therefore it is necessary to satisfy the following formula.

Figure 2009250702
Figure 2009250702

いま、粒子の移動速度βを1mm/s(6cm/min)とすると、計測点の移動速度V(mm/s)は10mm/s以上が望ましいので、下記式(8)が成立する。   Now, if the moving speed β of the particles is 1 mm / s (6 cm / min), the moving speed V (mm / s) of the measurement point is preferably 10 mm / s or more, so the following formula (8) is established.

Figure 2009250702
Figure 2009250702

今、回転体の半径を10mm(直径20mm)とすると、下記式(9)が成立する。   If the radius of the rotating body is 10 mm (diameter 20 mm), the following equation (9) is established.

Figure 2009250702
Figure 2009250702

式7にr=10を代入すると、下記式(10)が得られる。   Substituting r = 10 into Equation 7, the following Equation (10) is obtained.

Figure 2009250702
Figure 2009250702

上記より   From above

Figure 2009250702
Figure 2009250702

T=0.999840846msを選択すると、下記数値が得られる。   When T = 0.99984084046 ms is selected, the following numerical value is obtained.

Figure 2009250702
Figure 2009250702

いま、計測円周上に、N個の計測点が存在する場合について考える。
この場合、上記における式(6)は、以下のように書き直すことができる。
Consider a case where N measurement points exist on the measurement circumference.
In this case, the above equation (6) can be rewritten as follows.

Figure 2009250702
Figure 2009250702

同様に、式7、式8を書き直すと、   Similarly, when Expression 7 and Expression 8 are rewritten,

Figure 2009250702
Figure 2009250702

Figure 2009250702
Figure 2009250702

つまり、N=T’/Tの関係で定義される超音波パルスの発射周期T(ms)を与えることにより、計測円周上に複数の任意な計測点を設定することが可能となる。但し、超音波パルスの旅行時間(パルスを発射してから計測点に戻ってくるまでの時間)や、残響波低減時間(パルス信号を発射した後の残響波が与える受信処理への影響が低減するまでの時間)を計測にあたっては考慮する必要があり、10μm程度の粒子を計測する場合には、実用的にはN=5程度が適当と思われる。   That is, it is possible to set a plurality of arbitrary measurement points on the measurement circumference by giving the ultrasonic pulse emission period T (ms) defined by the relationship N = T ′ / T. However, the travel time of the ultrasonic pulse (the time from when the pulse is emitted until it returns to the measurement point) and the reverberation wave reduction time (the influence of the reverberation wave after emitting the pulse signal on the reception processing is reduced. The time until measurement is required to be taken into account, and when measuring particles of about 10 μm, it is considered that N = 5 is practically appropriate.

一回に計測領域が移動する距離(10μm)よりも大きな粒子が存在し、粒子の上を計測点が横切った場合、1回以上の受信波が得られることとなり、検出した時間(回数×10μm)からおおよその粒子径を推定することができる。この際に、制御部10で得られる回転位置情報により、超音波送信子4から粒子21および超音波受信子5に至る距離が求められ、また、送信から受信に至る時間も制御部10で把握されている。   If there is a particle larger than the distance (10 μm) that the measurement region moves at one time and the measurement point crosses the particle, one or more received waves will be obtained, and the detected time (number of times × 10 μm) ) Can be used to estimate the approximate particle size. At this time, the distance from the ultrasonic transmitter 4 to the particle 21 and the ultrasonic receiver 5 is obtained from the rotational position information obtained by the control unit 10, and the time from transmission to reception is also grasped by the control unit 10. Has been.

図3のように粒子上を計測点aが横切る場合を考える。このとき、反射波レベルは計測点aの移動に従って計測領域内に占める粒子の占有面積が変化することで、反射波レベルが変化する。反射波レベルが現れた時から消滅した時までの反射波レベルが得られた回数は、粒子の大きさに依存する。計測領域が10μmの間隔で移動するとし、図のように6回反射波が受かったとすると、
粒子径≒(計測領域の移動間隔)×(反射波レベルが一定以上になる回数)=10×4=40μm
と計算される。
Consider the case where the measurement point a crosses the particle as shown in FIG. At this time, the reflected wave level changes as the occupied area of the particles occupying the measurement region changes as the measurement point a moves. The number of times the reflected wave level is obtained from when the reflected wave level appears until it disappears depends on the size of the particle. Assuming that the measurement area moves at an interval of 10 μm and the reflected wave is received six times as shown in the figure,
Particle diameter ≒ (moving interval of measurement region) x (number of times the reflected wave level exceeds a certain level) = 10 x 4 = 40 μm
Is calculated.

また3・4番目の受信信号は、ほぼ計測領域全体に粒子表面があると予想されるため、反射面積に依存しない受信信号レベルが得られると予想される。よって、このときの反射強度(反射波レベル)は、粒子表面の密度が高いほど反射波レベルは高くなる。つまり、フロック強度(密度)に相関した信号を得ることができる。
一般に密度の高いものほど音響インピーダンスは高く、反射強度が強くなる。
{音響インピーダンス(Z)=密度(ρ)×音速(c)}
良好な凝集フロックは、水中のSS分が高い密度で凝集している為、反射波レベルは高くなる。逆に、水和分が多く、SS分の少ないフロックからの反射レベルは低くなる。これにより粒子の密度を制御部10において算出することができる。すなわち、制御部10は、粒子密度算出手段としての機能を果たしている。
Further, since the third and fourth received signals are expected to have a particle surface almost in the entire measurement region, it is expected that a received signal level that does not depend on the reflection area can be obtained. Therefore, the reflection intensity (reflection wave level) at this time becomes higher as the density of the particle surface is higher. That is, a signal correlated with the floc intensity (density) can be obtained.
Generally, the higher the density, the higher the acoustic impedance and the higher the reflection intensity.
{Acoustic impedance (Z) = Density (ρ) × Sonic velocity (c)}
A good coagulation floc aggregates SS in water at a high density, so that the reflected wave level becomes high. On the contrary, the reflection level from the flocs with much hydration and little SS becomes low. Thereby, the density of the particles can be calculated in the control unit 10. That is, the control unit 10 functions as a particle density calculation unit.

上記の計測方法において、分解能をあげたい(さらに小さい粒子を見たい)場合には、上記式6で与えられる計測点の移動速度Vを小さくすればいい。つまり、回転体の半径を大きくし、回転体の角速度ωと超音波発信周期Tから与えられる1回転毎の計測点の”ずれ”角を小さくすることで、細かくサンプリング点を取ることができる。しかし、回転体の大きさや、回転体の角速度を大きくするためにより早く回転させることや、回転速度に合わせて超音波の発信間隔を短くすることには、寸法拡大する上での回転速度や回転精度の問題、回転体の駆動源の問題、超音波の伝搬速度の問題等により物理的な制約を受けることとなる。   In the above measurement method, when it is desired to increase the resolution (see smaller particles), the moving speed V of the measurement point given by the above equation 6 may be decreased. That is, by increasing the radius of the rotating body and reducing the “deviation” angle of the measurement point for each rotation given from the angular velocity ω of the rotating body and the ultrasonic wave transmission period T, it is possible to take fine sampling points. However, in order to increase the size of the rotator and the angular velocity of the rotator and to rotate it faster, or to shorten the transmission interval of the ultrasonic wave according to the rotation speed, the rotation speed and rotation for expanding the dimensions It is subject to physical constraints due to problems of accuracy, problems of the drive source of the rotating body, problems of ultrasonic wave propagation speed, and the like.

上記のような物理的な制約に対する対策としては、適用例の説明文段落0045〜0050に述べたように発信子を増やすと言う手段がある。この場合、図4に示すように、受信子をそれぞれの発信子に対して対で用意する方法の他、回転体の中心に設けて、すべての発信子からの信号を一つの受信子で受ける方法も可能である。今、複数の発信子を用いた例を図4に基づいて説明する。   As a countermeasure against the physical constraints as described above, there is means for increasing the number of transmitters as described in the explanation paragraphs 0045 to 0050 of the application example. In this case, as shown in FIG. 4, in addition to a method of preparing a receiver for each transmitter in pairs, it is provided at the center of the rotating body and receives signals from all the transmitters by one receiver. A method is also possible. An example using a plurality of transmitters will now be described with reference to FIG.

図4(a)は、回転体2の先端から見た図である。回転体2の回転方向に沿って90度間隔で超音波送信子40〜43と超音波受信子50〜53とを配置し、それぞれの送信子から送信された超音波パルスが液中の粒子で反射した反射パルスをそれぞれの受信子で受信する。図4(b)は、超音波送信子40の超音波パルスの送信による計測点a0と、超音波送信子41の超音波パルスの送信による計測点a1と、超音波送信子42の超音波パルスの送信による計測点a2と、超音波送信子43の超音波パルスの送信による計測点a3と、各計測点によって得られる受信波の反射波レベルを示すものである。各受信波はそれぞれ上記超音波受信子50〜53で受信されて制御部10でデータ処理することができ、各超音波受信子50〜53で受信された受信波を合波して上記反射パルスの強度を求め、さらに粒径を算出することができる。
以上のような方法により、超音波素子を回転する回転体と一緒に回転させ、回転に伴う計測領域の移動によって対象物の大きさを計測することが可能となる。
FIG. 4A is a view as seen from the tip of the rotating body 2. The ultrasonic transmitters 40 to 43 and the ultrasonic receivers 50 to 53 are arranged at intervals of 90 degrees along the rotation direction of the rotating body 2, and the ultrasonic pulses transmitted from the respective transmitters are particles in the liquid. The reflected pulse reflected is received by each receiver. FIG. 4B shows a measurement point a0 due to transmission of an ultrasonic pulse from the ultrasonic transmitter 40, a measurement point a1 due to transmission of an ultrasonic pulse from the ultrasonic transmitter 41, and an ultrasonic pulse from the ultrasonic transmitter 42. The measurement point a2 by the transmission of the ultrasonic wave, the measurement point a3 by the transmission of the ultrasonic pulse of the ultrasonic transmitter 43, and the reflected wave level of the reception wave obtained by each measurement point are shown. The received waves are received by the ultrasonic receivers 50 to 53, respectively, and can be processed by the control unit 10, and the received waves received by the ultrasonic receivers 50 to 53 are combined to generate the reflected pulses. The particle size can be calculated.
By the method as described above, the ultrasonic element can be rotated together with the rotating rotating body, and the size of the object can be measured by moving the measurement region accompanying the rotation.

上記粒径測定機器を、排水の固液分離処理に適用する例を図5に基づいて述べる。
この例の固液分離処理では、排水を貯水する調整池100と、該調整池100から排水を導入して凝集剤添加装置111によって適宜の凝集剤を添加してフロックを成長させる凝集反応槽110と、フロックを成長させた排水を凝集反応槽110から導入して固液分離を行うろ過装置120とを備えている。なお、固液分離を行う装置としてはろ過装置に限定されるものではない。また、凝集反応槽110には、凝集剤を添加した排水を撹拌してフロックの成長を高める撹拌混合手段112が備えられている。
An example in which the particle size measuring device is applied to solid-liquid separation processing of waste water will be described with reference to FIG.
In the solid-liquid separation process of this example, the adjustment pond 100 that stores the wastewater, and the aggregation reaction tank 110 that introduces the wastewater from the adjustment pond 100 and adds an appropriate flocculant by the flocculant addition device 111 to grow the floc. And a filtering device 120 that performs solid-liquid separation by introducing wastewater in which flocs are grown from the agglomeration reaction tank 110. In addition, as an apparatus which performs solid-liquid separation, it is not limited to a filtration apparatus. Further, the agglomeration reaction tank 110 is provided with an agitation and mixing means 112 for agitating the drainage to which the aggregating agent is added to increase the growth of flocs.

本発明による粒径測定機器1の設置位置としては、凝集反応槽110出口E1が望ましいが、ろ過装置120の入口E2でも良い。なお、この例では、粒径測定機器1に備える制御部10によって前記凝集剤添加装置111の制御が可能になっており、該凝集剤添加装置111による凝集剤の添加タイミングを制御することができる。また、凝集剤添加装置111において添加量の調整が可能な構成を採用し、制御部10によって添加剤の制御量を制御可能にしてもよい。   As an installation position of the particle size measuring instrument 1 according to the present invention, the agglomeration reaction tank 110 outlet E1 is desirable, but it may be the inlet E2 of the filtration device 120. In this example, the flocculant addition device 111 can be controlled by the control unit 10 provided in the particle size measuring instrument 1, and the flocculant addition timing by the flocculant addition device 111 can be controlled. . Further, the flocculant addition apparatus 111 may employ a configuration in which the addition amount can be adjusted so that the control amount of the additive can be controlled by the control unit 10.

調整池100によりpH等を調整された排水は凝集反応槽110に導入され、凝集剤添加装置11によって凝集剤が添加され、さらに撹拌混合手段112によって撹拌混合される。凝集剤を添加された排水中の懸濁物は、荷電中和・架橋作用によりフロックに成長する。この際に、フロックは上記撹拌混合によって所定の流速を持って移動する。
凝集処理がなされた排水は、ろ過装置120において十分に凝集したフロックがろ過によって分別されることで固液分離がなされ、さらに下流の処理などに供される。
The waste water whose pH and the like are adjusted by the adjustment basin 100 is introduced into the agglomeration reaction tank 110, the aggregating agent is added by the aggregating agent adding device 11, and the agitation and mixing means 112 is further agitated and mixed. The suspension in the wastewater to which the flocculant is added grows into flocs by charge neutralization and crosslinking. At this time, the floc moves at a predetermined flow rate by the stirring and mixing.
The wastewater that has been subjected to the agglomeration process is subjected to solid-liquid separation by separating the flocs sufficiently agglomerated in the filtration device 120 by filtration, and further supplied to a downstream process or the like.

上記排水は、凝集反応槽110の出口E1やろ過装置120の入口E2において、前記した粒径測定機器1によって上記のように超音波を利用してフロックの粒径や粒子密度が算出されている。該測定による粒度分布および強度分布のパターン例を図6に示す。   As for the waste water, the particle size and particle density of flocs are calculated by using the ultrasonic wave as described above at the outlet E1 of the agglomeration reaction tank 110 and the inlet E2 of the filtration device 120 as described above. . A pattern example of the particle size distribution and the intensity distribution by the measurement is shown in FIG.

流入した排水に対して凝集剤が不足していた場合には、フロックの成長が不十分のために、フロックに取り込まれない細かな微細粒子が多量に残るため、粒径の小さな方(例えば10μm以下)に山のある流度分布特性となる(図6(a))。また、このときの粒径の小さな粒子から帰ってくる超音波の反射強度は、ほぼ固形物そのものの反射波に近いが、超音波の反射対としての体積が小さいため、強度の低い反射波が帰ってくる(図6(A))。   When the flocculant is insufficient with respect to the wastewater that has flowed in, the growth of flocs is insufficient, and a large amount of fine fine particles that are not taken into the flocs remain, so the smaller one (for example, 10 μm) The flow rate distribution characteristic has peaks in the following (FIG. 6A). In addition, the reflected intensity of the ultrasonic wave returned from the small particle at this time is almost similar to the reflected wave of the solid substance itself, but the reflected wave with a low intensity is generated because the volume of the ultrasonic reflected pair is small. Come back (Fig. 6 (A)).

凝集剤が適正に注入されたとすると、懸濁物はフロックに取り込まれて大きく成長するため、流度分布は粒径の大きな方(例えば100〜500)にピークを発生する(図6(b))。一方微細な粒子はフロックに取り込まれるため少なくなる。また、超音波の反射強度も、大きく成長したフロックは、適切な固形物密度を持つため、粒径の大きい側に強い反射強度を得ることができる(図6(B))。   Assuming that the flocculant is properly injected, the suspension is taken up into the floc and grows large, so that the flow rate distribution has a peak at the larger particle size (for example, 100 to 500) (FIG. 6B). ). On the other hand, fine particles are reduced because they are taken into the floc. In addition, since flocs that have grown greatly in ultrasonic reflection intensity have an appropriate solid density, strong reflection intensity can be obtained on the larger particle size side (FIG. 6B).

一方、凝集剤が過剰に注入された場合には、フロックはさらに大きく成長する一方、フロックにおける水酸化物の量が増加し、固形物密度が低下するため、フロック自体が壊れやすくなり、壊れた細かな水酸化物方のフロックが発生し、流度分布はピークをさらに大きな方(例えば500μm〜)に持つものの、全体的にブロードな形となる(図6(c))。また、粒子からの反射強度も、固形物密度が低下し、粒径が大きくなることで反射物としての体積が増大するほどには、大きくはならない(図6(C))。   On the other hand, if the flocculant is injected excessively, the floc grows larger, while the amount of hydroxide in the floc increases and the solid density decreases, so the floc itself becomes fragile and breaks. Although fine hydroxide flocs are generated and the flow rate distribution has a larger peak (for example, 500 μm or more), it has a broad shape as a whole (FIG. 6C). In addition, the reflection intensity from the particles does not increase so much that the volume of the reflection object increases as the solid density decreases and the particle size increases (FIG. 6C).

一方、排水の性状や、後段の固液分離手段に従い、最適とすべき凝集状態が、粒径による場合と反射波強度による場合が存在する。例えば、砂ろ過装置のように、凝集剤を過剰に注入することで目詰まりを起こしやすいろ過機の場合には、粒径を最適化する方向で凝集剤の薬注量を調整すればよい。スクリュープレス脱水機等の場合は、凝集剤をある程度過剰に注入する必要があり、この場合は粒度分布よりも反射強度で判断する方が適している。
上記のように、凝集剤による凝集状態の変化に対して、粒度分布と反射強度の両面での評価が可能となるため、凝集剤の量を排水の性状に対して適性に保持することが可能となる。
On the other hand, depending on the properties of the waste water and the solid-liquid separation means in the subsequent stage, there are cases where the optimum aggregation state depends on the particle diameter and on the reflected wave intensity. For example, in the case of a filter that easily causes clogging due to excessive injection of a flocculant, such as a sand filtration device, the dosage of the flocculant may be adjusted in the direction of optimizing the particle size. In the case of a screw press dehydrator or the like, it is necessary to inject the flocculant to some extent, and in this case, it is more suitable to judge by the reflection intensity rather than the particle size distribution.
As described above, it is possible to evaluate both the particle size distribution and the reflection intensity with respect to changes in the aggregation state caused by the aggregating agent, so that the amount of the aggregating agent can be kept appropriate to the properties of the waste water. It becomes.

上記凝集剤の添加調整は、粒径測定機器1による測定結果を表示装置などに表示して、その表示内容に応じて操作者が凝集剤の添加調整を行うことができるが、測定結果をフィードバックして凝集剤の添加を制御可能にすることも可能である。その例を以下に説明する。
上記凝集状態の判定基準は、例えば表1に示すように、予め制御部10の不揮発メモリなどに設定をしておき、粒径測定機器1によって測定された測定結果に基づいて、制御部10において凝集状態を判定することができる。制御部10では、該判定結果に基づいて前記凝集剤添加装置111をフィードバック制御して凝集剤の添加を制御することができる。したがって、制御部10は、凝集剤添加制御手段としての機能を果たしている。該制御によって、凝集反応槽110における凝集状態を常に良好に維持して排水処理などを適切に行うことを可能にする。
The addition adjustment of the flocculant is performed by displaying the measurement result by the particle size measuring instrument 1 on a display device or the like, and the operator can adjust the addition of the flocculant according to the display content, but the measurement result is fed back. Thus, the addition of the flocculant can be controlled. An example of this will be described below.
For example, as shown in Table 1, the determination criterion of the aggregation state is set in advance in a nonvolatile memory of the control unit 10, and based on the measurement result measured by the particle size measuring device 1, The aggregation state can be determined. The control unit 10 can control the addition of the flocculant by feedback control of the flocculant addition device 111 based on the determination result. Therefore, the control unit 10 functions as a flocculant addition control unit. With this control, it is possible to appropriately perform wastewater treatment and the like while always maintaining a good aggregation state in the aggregation reaction tank 110.

Figure 2009250702
Figure 2009250702

なお、上記実施形態の説明においては、超音波送信子と超音波受信子を一つずつ備えた粒径測定機器を例に挙げて説明したが、本発明はこれに限定されるものではなく、それぞれを複数個備えたものも同様の機能を示す。   In the description of the above embodiment, the particle size measuring device provided with one ultrasonic transmitter and one ultrasonic receiver has been described as an example, but the present invention is not limited to this, A device provided with a plurality of them exhibits the same function.

本発明の一実施形態の粒径測定機器を示す概略図である。It is the schematic which shows the particle size measuring apparatus of one Embodiment of this invention. 同じく、粒径測定機器における超音波の旅程を示す図である。Similarly, it is a figure which shows the itinerary of the ultrasonic wave in a particle size measuring instrument. 同じく、測定領域での測定点の軌跡と測定による反射波レベルを示す図である。Similarly, it is a figure which shows the locus | trajectory of the measurement point in a measurement area | region, and the reflected wave level by measurement. 本発明の他の実施形態における超音波送受信手段の配置例と測定領域での測定点の軌跡および測定による反射波レベルを示す図であるIt is a figure which shows the example of arrangement | positioning of the ultrasonic transmission / reception means in other embodiment of this invention, the locus | trajectory of the measurement point in a measurement area | region, and the reflected wave level by measurement. 本発明の凝集剤添加制御装置の適用例を示す図である。It is a figure which shows the example of application of the coagulant | flocculant addition control apparatus of this invention. 同じく、超音波測定結果のパターンを示す図である。Similarly, it is a figure which shows the pattern of an ultrasonic measurement result.

符号の説明Explanation of symbols

1 粒径測定機器
2 回転体
3 超音波送受信手段移動装置
4 超音波送信子
5 超音波受信子
DESCRIPTION OF SYMBOLS 1 Particle size measuring instrument 2 Rotating body 3 Ultrasonic transmission / reception means moving device 4 Ultrasonic transmitter 5 Ultrasonic receiver

Claims (8)

所定振動数の超音波パルスを液体中に向けて送信する超音波送信子、及び該超音波送信子から送信された前記超音波パルスが前記液体中に含まれる粒子に反射した反射パルスを受信する超音波受信子をそれぞれ少なくとも1つ備え、少なくとも前記超音波送信子が液体中の粒子に対し過剰な速度差を有して所定の移動速度で相対的に移動できるように構成されている超音波送受信手段と、
前記超音波受信子で受信した前記反射パルスの強度を測定する反射パルス強度測定手段と、
前記超音波パルスの前記振動数と、前記超音波送信子の前記移動速度と、前記反射パルス強度測定手段によって測定された反射パルス強度測定値とから前記粒子の粒径を求める粒径算出手段と、を具備することを特徴とする液中粒子の粒径測定機器。
An ultrasonic transmitter that transmits an ultrasonic pulse of a predetermined frequency toward the liquid, and a reflected pulse in which the ultrasonic pulse transmitted from the ultrasonic transmitter is reflected by particles contained in the liquid. Ultrasound including at least one ultrasonic receiver, and at least the ultrasonic transmitter having an excessive speed difference with respect to particles in the liquid and capable of moving relatively at a predetermined moving speed Transmitting and receiving means;
Reflected pulse intensity measuring means for measuring the intensity of the reflected pulse received by the ultrasonic receiver;
Particle size calculating means for determining the particle diameter of the particles from the vibration frequency of the ultrasonic pulse, the moving speed of the ultrasonic transmitter, and the reflected pulse intensity measurement value measured by the reflected pulse intensity measuring means; A device for measuring the particle size of particles in liquid.
少なくとも前記超音波送信子を前記所定の移動速度で移動させる超音波送受信手段移動装置を備えることを特徴とする請求項1記載の液中粒子の粒径測定機器。   2. The particle size measuring apparatus for particles in liquid according to claim 1, further comprising an ultrasonic transmission / reception means moving device for moving at least the ultrasonic transmitter at the predetermined moving speed. 前記超音波送信子の移動が回転運動であることを特徴とする請求項1または2に記載の液中粒子の粒径測定機器。   The apparatus for measuring a particle size of liquid particles according to claim 1 or 2, wherein the movement of the ultrasonic transmitter is a rotational motion. 前記超音波送信子から送信された超音波パルスの焦点が液中に1cm以下の深さで位置するように設定することを特徴とする請求項1〜3のいずれかに記載の液中粒子の粒径測定機器。   The ultrasonic particles transmitted from the ultrasonic transmitter are set so that the focal point of the ultrasonic pulse is located at a depth of 1 cm or less in the liquid. Particle size measuring instrument. 前記超音波送信子は、該超音波送信子の移動方向に沿って間隔を置いて複数設けられていることを特徴とする請求項1〜4のいずれかに記載の液中粒子の粒径測定機器。   The particle size measurement of particles in liquid according to any one of claims 1 to 4, wherein a plurality of the ultrasonic transmitters are provided at intervals along the moving direction of the ultrasonic transmitters. machine. 前記反射パルス強度測定値から前記粒子の粒子密度を求める粒子密度算出手段をさらに具備することを特徴とする請求項1〜5のいずれかに記載の液中粒子の粒径測定機器。   The particle size measuring device for particles in liquid according to any one of claims 1 to 5, further comprising a particle density calculating means for obtaining a particle density of the particles from the measured value of the reflected pulse intensity. 請求項1〜6のいずれか1項に記載の液中粒子の粒径測定機器を備え、該粒径測定機器によって測定された、凝集剤を添加した有機物含有水の凝集コロイド粒子の粒径と粒子密度に基づいて、前記有機含有水の凝集状態を判断し、該凝集状態に基づいて凝集剤の添加を制御する凝集剤添加制御手段を備えることを特徴とする凝集剤添加制御装置。   The particle size measurement apparatus of the particle | grains in a liquid of any one of Claims 1-6, The particle size of the aggregation colloidal particle of the organic substance containing water which added the flocculent measured by this particle size measurement device, and A flocculant addition control device comprising: flocculant addition control means for determining the aggregation state of the organic water based on particle density and controlling the addition of the flocculant based on the aggregation state. 前記制御手段を液中に凝集剤を添加する凝集剤添加装置の添加量または/および添加時期の制御が可能であることを特徴とする請求項7記載の凝集剤添加制御装置。   8. The flocculant addition control device according to claim 7, wherein the control means can control the addition amount and / or addition timing of the flocculant addition device for adding the flocculant to the liquid.
JP2008096907A 2008-04-03 2008-04-03 Particle size measuring instrument of particle in liquid and flocculant adding control device Pending JP2009250702A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008096907A JP2009250702A (en) 2008-04-03 2008-04-03 Particle size measuring instrument of particle in liquid and flocculant adding control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008096907A JP2009250702A (en) 2008-04-03 2008-04-03 Particle size measuring instrument of particle in liquid and flocculant adding control device

Publications (1)

Publication Number Publication Date
JP2009250702A true JP2009250702A (en) 2009-10-29

Family

ID=41311584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008096907A Pending JP2009250702A (en) 2008-04-03 2008-04-03 Particle size measuring instrument of particle in liquid and flocculant adding control device

Country Status (1)

Country Link
JP (1) JP2009250702A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154262A (en) * 2012-01-26 2013-08-15 Sumitomo Metal Mining Co Ltd Thickener apparatus in process for ore slurry production and method for administering operation thereof
WO2016091208A1 (en) * 2014-12-12 2016-06-16 通用电气公司 Measurement method and system
JP2020146614A (en) * 2019-03-12 2020-09-17 株式会社日立製作所 Sludge treatment system and sludge treatment method
JP2021113720A (en) * 2020-01-17 2021-08-05 日立Geニュークリア・エナジー株式会社 Measurement method and measurement device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013154262A (en) * 2012-01-26 2013-08-15 Sumitomo Metal Mining Co Ltd Thickener apparatus in process for ore slurry production and method for administering operation thereof
WO2016091208A1 (en) * 2014-12-12 2016-06-16 通用电气公司 Measurement method and system
CN105738257A (en) * 2014-12-12 2016-07-06 通用电气公司 Measurement method and measurement system
US10605711B2 (en) 2014-12-12 2020-03-31 General Electric Company Ultrasonic measuring method and system for measuring particle size and mass concentration
JP2020146614A (en) * 2019-03-12 2020-09-17 株式会社日立製作所 Sludge treatment system and sludge treatment method
JP7182497B2 (en) 2019-03-12 2022-12-02 株式会社日立製作所 Sludge treatment system
JP2021113720A (en) * 2020-01-17 2021-08-05 日立Geニュークリア・エナジー株式会社 Measurement method and measurement device
JP7208935B2 (en) 2020-01-17 2023-01-19 日立Geニュークリア・エナジー株式会社 Measuring method and measuring device

Similar Documents

Publication Publication Date Title
ES2909730T3 (en) Method and system for monitoring the properties of an aqueous stream
JP2009250702A (en) Particle size measuring instrument of particle in liquid and flocculant adding control device
JP5422516B2 (en) Aggregation magnetic separator
US20040182138A1 (en) System and technique for ultrasonic characterization of settling suspensions
US20150259230A1 (en) System and method for chemical dosage optimization in water treatment and system and method for water treatment
US10690594B2 (en) Optical sensing device and method in a liquid treatment system
JP2015085252A (en) Water treatment method and apparatus
JP2008055299A (en) Flocculating sedimentation treating equipment
JP2022140787A (en) Sludge treatment method
CA2501974C (en) Process for mixing treatment additives to contaminated liquids
JP6139349B2 (en) Water treatment system
JP2009025027A (en) Method and system for analyzing suspended substance
JP2019171309A5 (en)
JPS61250552A (en) Apparatus for discriminating flocculation effect of suspended substance
JPWO2016006419A1 (en) Aggregation method and apparatus
JP2019155285A (en) Solid/liquid separation apparatus
Halfi et al. Separation of colloidal minerals from water by oscillating flows and grouping
JP6270655B2 (en) Flock aggregation condition control method, floc aggregation condition control device, water treatment method and water treatment apparatus
Kan et al. Coagulation monitoring in surface water treatment facilities
JP3845309B2 (en) Particle size distribution measuring device and defoaming method of particle size distribution measuring device
JP2015100719A (en) Suspension treatment apparatus and suspension treatment method
JP6762255B2 (en) Coagulation sedimentation treatment device and detection device
JP6262092B2 (en) Flock aggregation state evaluation method and floc aggregation state evaluation apparatus
WO2024018885A1 (en) Method for determining state of aggregation and method for processing aggregation
Sutomo et al. The morphology aspect of CaCO3 scale impact of solenoid magnetic field in the various flow rate solution in the piping system