WO2013111674A1 - Photosensitive composition, pattern, and display device having pattern - Google Patents

Photosensitive composition, pattern, and display device having pattern Download PDF

Info

Publication number
WO2013111674A1
WO2013111674A1 PCT/JP2013/050883 JP2013050883W WO2013111674A1 WO 2013111674 A1 WO2013111674 A1 WO 2013111674A1 JP 2013050883 W JP2013050883 W JP 2013050883W WO 2013111674 A1 WO2013111674 A1 WO 2013111674A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
pattern
light
photosensitive composition
acrylate
Prior art date
Application number
PCT/JP2013/050883
Other languages
French (fr)
Japanese (ja)
Inventor
水澤 竜馬
高木 利哉
真也 門脇
Original Assignee
東京応化工業株式会社
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社, シャープ株式会社 filed Critical 東京応化工業株式会社
Priority to KR1020147023704A priority Critical patent/KR20140121860A/en
Priority to CN201380006593.6A priority patent/CN104067172A/en
Publication of WO2013111674A1 publication Critical patent/WO2013111674A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/0236Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element
    • G02B5/0242Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place within the volume of the element by means of dispersed particles
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0047Photosensitive materials characterised by additives for obtaining a metallic or ceramic pattern, e.g. by firing

Definitions

  • the present invention relates to a photosensitive composition for forming a pattern having a light scattering function for use in a display device, a pattern and a display device having the pattern.
  • a full-color display device using a white light backlight instead of a self-luminous type is mainly composed of the backlight and an optical shutter.
  • a liquid crystal display device includes a light source such as an LED or a cold cathode tube, a light guide plate, and an optical sheet as a backlight, and a liquid crystal panel as an optical shutter.
  • the liquid crystal panel includes two polarizing plates, a pair of substrates, and a liquid crystal layer sealed between the substrates.
  • the pair of substrates has a TFT pattern and red, green, blue (R, G, B), respectively. ) Color filter (CF).
  • the white light emitted from the light source is transmitted only about 1/3 because light other than the color is absorbed by the color filter. That is, in the above configuration, the utilization efficiency of white light is low.
  • a blue light backlight is used, a liquid crystal panel, a red phosphor that absorbs blue light and emits red light, and blue light that absorbs green light.
  • a liquid crystal display device including a green phosphor that emits light has been proposed (Patent Documents 1 and 2).
  • the amount of light absorbed by the color filter is reduced, so that the light use efficiency is improved.
  • the light emitted in the lateral direction is reflected and emitted from the transparent substrate, thereby improving the light utilization efficiency.
  • An apparatus has also been proposed (Patent Document 5).
  • the alignment characteristics of red light emitted from the red phosphor and green light emitted from the green phosphor exhibit Lambertian (light intensity distribution), whereas blue light is phosphor. Therefore, the blue light does not show Lambertian in the alignment characteristics. That is, the alignment characteristics of blue light are different from the alignment characteristics of red light and green light. Therefore, the display quality is deteriorated by increasing the chromaticity change in the oblique direction with respect to the front direction in the liquid crystal display device.
  • Patent Document 6 discloses a carboxylic acid compound, a copolymer of an epoxy group-containing unsaturated compound and an olefinic-containing unsaturated compound, A radiation-sensitive composition containing a light-scattering substance, a polyfunctional monomer, and a photopolymerization initiator has been proposed.
  • JP 2000-131683 (May 12, 2000)” Japanese Patent Publication “JP 2003-5182 (published Jan. 8, 2003)” Japanese Published Patent Publication “JP 2009-115925 (May 28, 2009)” Japanese Patent Publication “JP 2009-244383 (released on Oct. 22, 2009)” Japanese Patent Publication “JP 2010-66437 (published on March 25, 2010)” Japanese Patent Publication “JP 2001-316408 (published Nov. 13, 2001)”
  • the radiation-sensitive composition described in Patent Document 6 is intended to efficiently scatter reflected light and realize surface illumination with high front luminance (described in paragraph [0006] and the like). No particular consideration is given to preventing chromaticity change (color shift) between the front direction and the oblique direction in the display device. That is, in the radiation-sensitive composition described in Patent Document 6, no special consideration is given to the light scattering function that scatters blue light emitted from a light source at a wide angle.
  • a conventional light scattering film containing an acrylic filler or the like used for a display device has a narrow scattering angle width of about 10 to 30 degrees of light transmitted through the light scattering film. For this reason, the conventional light scattering film has a problem that blue light cannot be scattered at a wide angle.
  • the alignment characteristics of blue light should also be Lambertian (light intensity distribution). Need to show.
  • the composition which forms a diffused layer needs to have a photolithography characteristic. That is, the pattern (scattering layer) formed using the photosensitive composition needs to have a light scattering function of scattering blue light emitted from the light source at a wide angle.
  • a photosensitive composition having a photolithography characteristic suitable for use in a display device and having a light scattering characteristic for scattering blue light at a wide angle, that is, the above-mentioned
  • a photosensitive composition for forming a pattern having an excellent light scattering function.
  • the present invention has been made in view of the above problems, and a main object thereof is to provide a photosensitive composition for forming a pattern having a light scattering function used in a display device. Another object is to provide a pattern having a light scattering function formed by using the photosensitive composition, and a display device having the pattern.
  • the photosensitive composition according to the present invention is a photosensitive composition for forming a pattern having a light scattering function used in a display device in order to solve the above-described problem, and includes a TiO 2 filler, a photopolymerizable ( meth) acrylic monomer, an alkali-soluble resin, a photopolymerization initiator, and comprises an organic solvent, the TiO 2 filler, the proportion of the photopolymerizable (meth) TiO 2 filler to the total weight of the acrylic monomer and the alkali-soluble resin, 10 It is characterized by being in the range of ⁇ 35% by mass.
  • the TiO 2 filler is dispersed in the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin, that is, in the negative photosensitive resin, the photolithography characteristics and the light scattering characteristics are compatible.
  • a photosensitive composition can be obtained. That is, it is possible to provide a photosensitive composition suitable for use in a display device, having a photolithography characteristic and having a light scattering characteristic that scatters blue light at a wider angle than an incident angle by a TiO 2 filler. it can.
  • the pattern according to the present invention is formed using the photosensitive composition in order to solve the above-described problems. Furthermore, the display device according to the present invention has the above pattern in order to solve the above-described problems.
  • the photosensitive composition of the present invention has a photolithography characteristic suitable for use in a display device, and has a light scattering characteristic that scatters blue light at a wider angle than an incident angle by a TiO 2 filler.
  • a photolithography characteristic suitable for use in a display device
  • a light scattering characteristic that scatters blue light at a wider angle than an incident angle by a TiO 2 filler.
  • FIG. 1 is a block diagram illustrating a schematic configuration of an example of a display device according to the present invention. It is a block diagram which shows another example of the display apparatus which concerns on this invention, and shows a schematic structure. An example of the principal part of the said display apparatus is shown, and it is sectional drawing which shows a schematic structure.
  • FIG. 2 is a cross-sectional view illustrating an example of a color conversion substrate included in the display device and illustrating a schematic configuration. It is sectional drawing which shows another example of the color conversion board
  • the photosensitive composition according to the present invention includes a TiO 2 filler, a photopolymerizable (meth) acrylic monomer, an alkali-soluble resin, a photopolymerization initiator, and an organic solvent, and the TiO 2 filler, the photopolymerizable (meth) acrylic.
  • the proportion of the TiO 2 filler in the total amount of monomer and alkali-soluble resin is in the range of 10 to 35% by mass. Each configuration will be described below.
  • the TiO 2 filler may be any particle size or shape that can exhibit a light scattering function for scattering blue light. Therefore, the particle size or shape is not particularly limited, but specifically, the average particle size is 100 It is more preferably in the range of ⁇ 1,000 nm, and further preferably in the range of 150 to 250 nm. If the average particle size is less than 100 nm, it may be difficult to exhibit the light scattering function. If the average particle diameter exceeds 1,000 nm, blue light may hardly pass through the pattern.
  • the proportion of the TiO 2 filler in the total amount of the TiO 2 filler, the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin is preferably in the range of 10 to 35% by mass, and 20 to 30% by mass. More preferably within the range.
  • the proportion of the TiO 2 filler is less than 10% by mass, it becomes difficult to exhibit the light scattering function. If the proportion of the TiO 2 filler exceeds 35% by mass, it is difficult for blue light to pass through the pattern.
  • the photopolymerizable (meth) acrylic monomer has an acryloyl group (—CH ⁇ CH—CO—) or a methacryloyl group (—CH ⁇ C (CH 3 ) —CO—), which is a functional group containing an ethylenically unsaturated group, as a molecule. Any (meth) acrylic monomer that can be photopolymerized can be used.
  • a photopolymerizable (meth) acryl monomer constitutes a negative photosensitive resin together with an alkali-soluble resin.
  • the photopolymerizable (meth) acrylic monomer may be at least one selected from monofunctional (meth) acrylic monomers and polyfunctional (meth) acrylic monomers. That is, the photopolymerizable (meth) acrylic monomer may be composed of a monofunctional (meth) acrylic monomer, may be composed of a polyfunctional (meth) acrylic monomer, or may be composed of a monofunctional (meth) acrylic monomer. It may consist of a mixture of monomers and polyfunctional (meth) acrylic monomers.
  • the monofunctional (meth) acrylic monomer examples include (meth) acrylamide, methylol (meth) acrylamide, methoxymethyl (meth) acrylamide, ethoxymethyl (meth) acrylamide, and propoxymethyl (meth) acrylamide.
  • polyfunctional (meth) acrylic monomer examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and propylene glycol di (meth) acrylate.
  • the alkali-soluble resin may be any resin that is soluble in an alkaline aqueous solution, and therefore the structure is not particularly limited.
  • the acid value which is an index of resin solubility, is in the range of 50 to 250 mgKOH / g. More preferably. If the acid value of the alkali-soluble resin is less than 50 mgKOH / g, it may be difficult to dissolve in the alkaline aqueous solution. If the acid value of the alkali-soluble resin exceeds 250 mgKOH / g, the alkali resistance may be lowered.
  • the alkali-soluble resin may have an acryloyl group or a methacryloyl group in the molecule.
  • the monomer constituting the alkali-soluble resin examples include unsaturated carboxylic acids, acrylic esters, methacrylic esters, acrylamides, methacrylamides, allyl compounds, vinyl ethers, vinyl esters, styrenes, and the like. It is done. That is, the alkali-soluble resin is a polymer or copolymer obtained by polymerizing at least one of these monomers.
  • unsaturated carboxylic acids include monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, and itaconic acid; and The anhydride of these dicarboxylic acids etc. are mentioned.
  • acrylic esters include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, amyl acrylate, ethyl hexyl acrylate, octyl acrylate, acrylic acid- linear or branched alkyl acrylates such as t-octyl; fats such as cyclohexyl acrylate, dicyclopentanyl acrylate, 2-methylcyclohexyl acrylate, dicyclopentanyl acrylate, dicyclopentaoxyethyl acrylate, isobornyl acrylate, etc.
  • Cyclic alkyl acrylate ; chloroethyl acrylate, 2,2-dimethylhydroxypropyl acrylate, 2-hydroxyethyl acrylate, 5-hydroxypentyl acrylate, trimethyl Lumpur propane monoacrylate, pentaerythritol monoacrylate, benzyl acrylate, methoxybenzyl acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate, and aryl acrylates (e.g., phenyl acrylate, and the like) and the like.
  • aryl acrylates e.g., phenyl acrylate, and the like
  • methacrylic acid esters include methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, amyl methacrylate, and hexyl methacrylate.
  • Linear or branched alkyl methacrylates such as octyl methacrylate; alicyclic alkyl methacrylates such as cyclohexyl methacrylate, dicyclopentanyl methacrylate, 2-methylcyclohexyl methacrylate, dicyclopentanyloxyethyl methacrylate, isobornyl methacrylate; glycidyl Epoxy group-containing methacrylates such as methacrylate; 2-hydroxyethyl methacrylate Cyclates, 4-hydroxybutyl methacrylate, 5-hydroxypentyl methacrylate, 2,2-dimethyl-3-hydroxypropyl methacrylate, trimethylolpropane monomethacrylate, pentaerythritol monomethacrylate; cyclic ether groups such as furfuryl methacrylate and tetrahydrofurfuryl methacrylate Included methacrylates; aryl methacrylates such as benzyl me
  • acrylamides include, for example, acrylamide, N-alkylacrylamide (the alkyl group preferably has 1 to 10 carbon atoms, such as methyl group, ethyl group, propyl group, butyl group, t-butyl group).
  • N-arylacrylamide examples include phenyl group, tolyl group, nitrophenyl group, naphthyl group, hydroxyphenyl group
  • N-dialkylacrylamide the alkyl group preferably has 1 to 10 carbon atoms
  • N, N-arylacrylamide the aryl group includes, for example, a phenyl group
  • N -Methyl-N-phenylacrylamide N-hydroxy ester Le -N- methylacrylamide, N-2-acetamidoethyl -N- acetyl acrylamide.
  • methacrylamides include, for example, methacrylamide, N-alkylmethacrylamide (the alkyl group preferably has 1 to 10 carbon atoms, such as a methyl group, an ethyl group, a t-butyl group, an ethylhexyl group).
  • N-aryl methacrylamide the aryl group includes, for example, phenyl group
  • N, N-dialkylmethacrylamide the alkyl group includes, for example, ethyl group) , A propyl group, a butyl group, etc.
  • N, N-diarylmethacrylamide an aryl group includes, for example, a phenyl group
  • N-hydroxyethyl-N-methylmethacrylamide N-methyl-N -Phenylmethacrylamide
  • N-ethyl-N-phenylmeta Riruamido and the like.
  • allyl compound examples include allyl esters (for example, allyl acetate, allyl caproate, allyl caprylate, allyl laurate, allyl palmitate, allyl stearate, allyl benzoate, allyl acetoacetate, lactic acid). Allyl and the like), and allyloxyethanol and the like.
  • allyl esters for example, allyl acetate, allyl caproate, allyl caprylate, allyl laurate, allyl palmitate, allyl stearate, allyl benzoate, allyl acetoacetate, lactic acid). Allyl and the like), and allyloxyethanol and the like.
  • vinyl ethers include alkyl vinyl ethers (for example, hexyl vinyl ether, octyl vinyl ether, decyl vinyl ether, ethylhexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, chloroethyl vinyl ether, 1-methyl-2,2-dimethyl).
  • alkyl vinyl ethers for example, hexyl vinyl ether, octyl vinyl ether, decyl vinyl ether, ethylhexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, chloroethyl vinyl ether, 1-methyl-2,2-dimethyl).
  • vinyl esters include, for example, vinyl butyrate, vinyl isobutyrate, vinyl trimethyl acetate, vinyl diethyl acetate, vinyl Valate, vinyl caproate, vinyl chloroacetate, vinyl dichloroacetate, vinyl methoxy.
  • vinyl butoxyacetate vinylphenyl acetate, vinyl acetoacetate, vinyl lactate, vinyl- ⁇ -phenylbutyrate, vinyl benzoate, vinyl salicylate, vinyl chlorobenzoate, vinyl tetrachlorobenzoate, vinyl naphthoate and the like.
  • styrenes include styrene and alkyl styrene (for example, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, isopropyl styrene, butyl styrene, hexyl styrene, cyclohexyl styrene, decyl styrene, benzyl).
  • alkyl styrene for example, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, isopropyl styrene, butyl styrene, hexyl styrene, cyclohexyl styrene, de
  • Styrene chloromethyl styrene, trifluoromethyl styrene, ethoxymethyl styrene, acetoxymethyl styrene, etc.), alkoxy styrene (for example, methoxy styrene, 4-methoxy-3-methyl styrene, dimethoxy styrene, etc.), halogen styrene (For example, chlorostyrene, dichlorostyrene, trichlorostyrene, tetrachlorostyrene, pentachlorostyrene, bromostyrene, dibromostyrene Iodostyrene, fluorostyrene, trifluorostyrene, 2-bromo-4-trifluoromethyl styrene, 4-fluoro-3-trifluoromethyl styrene, and the like) and the like.
  • alkoxy styrene for example, meth
  • These monomers constituting the alkali-soluble resin may be used alone or in combination of two or more.
  • methacrylic acid, methyl methacrylate, isobutyl methacrylate, glycidyl methacrylate, and benzyl methacrylate are more preferable, a combination of methacrylic acid, glycidyl methacrylate, and benzyl methacrylate, and a combination of methacrylic acid, methyl methacrylate, and isobutyl methacrylate.
  • the alkali-soluble resin is more preferably a polymer or copolymer obtained by polymerizing these monomers.
  • the alkali-soluble resin is a copolymer obtained by copolymerizing a monomer composition containing at least one of the above-exemplified monomers and another monomer. It may be a polymer.
  • the production method of the alkali-soluble resin that is, the polymerization method of the monomer is not particularly limited, and a conventionally known polymerization method can be employed.
  • the weight average molecular weight (Mw) of the alkali-soluble resin is not particularly limited, but is more preferably in the range of 5,000 to 80,000.
  • a photoinitiator is an initiator which can photopolymerize the said photopolymerizable (meth) acryl monomer and alkali-soluble resin (however, when it has an acryloyl group or a methacryloyl group in a molecule
  • numerator acryloyl group or a methacryloyl group in a molecule
  • photopolymerization initiators can be used and are not particularly limited.
  • photopolymerization initiator examples include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and 1- [4- (2-hydroxyethoxy). Phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl)- 2-hydroxy-2-methylpropan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, bis (4-dimethylaminophenyl) ketone, 2-methyl-1- [4- ( Methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane- -One, ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-c
  • photopolymerization initiator commercially available products “IRGACURE OXE02”, “IRGACURE OXE01”, “IRGACURE 369”, “IRGACURE 651”, “IRGACURE 907” (trade names: all manufactured by BASF), “NCI- 831 "(trade name: manufactured by ADEKA) or the like can also be used.
  • the photopolymerizable (meth) acrylic monomer is 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, bisphenol.
  • 2- (meth) acrylic acid adduct of A diglycidyl ether 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one is more preferred.
  • the addition amount of the photopolymerization initiator can be set according to the type and ratio of the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin (provided that the acryloyl group or methacryloyl group is contained in the molecule). Well, although not particularly limited, it is within the range of 0.5 to 10% by mass with respect to the total amount (100% by mass) of the TiO 2 filler, the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin. More preferred.
  • Organic solvent only needs to be a solvent that can uniformly dissolve the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin at a necessary concentration, and conventionally known organic solvents can be used and are particularly limited. It is not a thing.
  • organic solvent examples include saturated aliphatic hydrocarbons, aromatic hydrocarbons, terpene solvents, lactones, ketones, polyhydric alcohols, cyclic ethers, esters, ethylene glycol monoacetate, diethylene glycol monoester.
  • saturated aliphatic hydrocarbon examples include linear, branched or cyclic hydrocarbons, and specifically, for example, hexane, heptane, octane, nonane, methyloctane, decane, undecane, dodecane, tridecane, etc.
  • Linear hydrocarbons branched hydrocarbons having 3 to 15 carbon atoms; cyclohexane, cycloheptane, cyclooctane, decahydronaphthalene, p-menthane, o-menthane, m-menthane, diphenylmenthane, ⁇ -terpinene , ⁇ -terpinene, ⁇ -terpinene, 1,4-terpine, 1,8-terpine, bornane, norbornane, pinane, ⁇ -pinene, ⁇ -pinene, tujang, ⁇ -tujon, ⁇ -tujon, caran, longifolene, etc. Cyclic hydrocarbons; and the like.
  • aromatic hydrocarbon examples include anisole, ethyl benzyl ether, cresyl methyl ether, diphenyl ether, dibenzyl ether, phenetole, and butyl phenyl ether.
  • condensed polycyclic hydrocarbon can also be used as an aromatic hydrocarbon.
  • a condensed polycyclic hydrocarbon is a condensed ring hydrocarbon formed by two or more monocycles supplying only one side of each ring to each other, and is a hydrocarbon obtained by condensing two monocycles. It is preferable to use it. Examples of such hydrocarbons include a combination of a 5-membered ring and a 6-membered ring, or a combination of two 6-membered rings.
  • hydrocarbons combining 5-membered rings and 6-membered rings include indene, pentalene, indane, tetrahydroindene, etc.
  • hydrocarbons combining two 6-membered rings include naphthalene, tetrahydronaphthalene. (Tetralin) and decahydronaphthalene (decalin).
  • the terpene solvent has an oxygen atom, a carbonyl group or an acetoxy group as a polar group.
  • Specific examples of the terpene solvent include geraniol, nerol, linalool, citral, citronellol, menthol, isomenthol, neomenthol, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol, terpinene-1-ol, terpinene.
  • Examples include -4-ol, dihydroterpinyl acetate, 1,4-cineole, 1,8-cineole, borneol, carvone, yonon, tuyon, camphor and the like.
  • lactones include ⁇ -butyrolactone.
  • ketones include acetone, methyl ethyl ketone, cyclohexanone, methyl-n-pentyl ketone, methyl isopentyl ketone, and 2-heptanone.
  • polyhydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol.
  • cyclic ethers include dioxane.
  • esters include methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, and ethyl ethoxypropionate.
  • organic solvents may be used alone or in combination of two or more as a mixed solvent.
  • the photopolymerizable (meth) acrylic monomer is 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, bisphenol A diester.
  • a (meth) acrylic acid adduct of glycidyl ether a derivative of a polyhydric alcohol is more preferable.
  • the amount of the organic solvent used may be set according to the type and ratio of the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin, and is not particularly limited.
  • the TiO 2 filler, photopolymerizable (meth) acrylic monomer, alkali-soluble resin, photopolymerization initiator, and organic solvent are mixed together, and the total of the TiO 2 filler, photopolymerizable (meth) acrylic monomer, and alkali-soluble resin.
  • the photosensitive composition according to the present invention can be obtained by adjusting the proportion of the TiO 2 filler in the amount within the range of 10 to 35% by mass.
  • the mixing order of the TiO 2 filler, photopolymerizable (meth) acrylic monomer, alkali-soluble resin, photopolymerization initiator, and organic solvent is not particularly limited, the TiO 2 filler, photopolymerizable to the organic solvent is easy to mix. More preferably, the (meth) acrylic monomer and the alkali-soluble resin are added and mixed.
  • a mixing method for example, a TiO 2 filler, a photopolymerizable (meth) acrylic monomer, an alkali-soluble resin, a photopolymerization initiator, and an organic solvent are put in a container and stirred, and then roughly mixed.
  • a method of further mixing using a disperser such as a roll mill or a mixer can be mentioned, but there is no particular limitation as long as the method can uniformly mix and disperse the TiO 2 filler uniformly.
  • the pattern having the ratio and average particle diameter of the TiO 2 filler, and by optimizing within the scope of the present invention the composition of the photopolymerizable (meth) acrylic monomer and an alkali-soluble resin, the light scattering properties of interest A photosensitive composition having photolithographic properties suitable for forming a film is obtained.
  • the photosensitive composition By polymerizing the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin (provided that they have an acryloyl group or a methacryloyl group in the molecule) contained in the photosensitive composition, that is, photolithography characteristics
  • the above-mentioned photosensitive composition comprising the above is applied to a transparent substrate, dried, exposed and developed to form a film, whereby the pattern having the light scattering function according to the present invention can be efficiently formed.
  • the method for applying the photosensitive composition includes, for example, a method using an applicator, but may be any method that can be applied to a uniform thickness according to the viscosity of the photosensitive composition, and is not particularly limited. It is not something. Moreover, what is necessary is just to set suitably application
  • a method for drying the applied photosensitive composition for example, there is a method of heating (baking) using a heating device such as a hot plate, but the entire photosensitive composition is heated uniformly to remove the organic solvent. Any method can be used as long as it can be volatilized sufficiently, and it is not particularly limited. Moreover, what is necessary is just to set suitably drying conditions, such as heating temperature and a heating time, according to the kind of organic solvent, the film thickness of a photosensitive composition, etc.
  • Examples of the exposure method of the dried photosensitive composition include a method of irradiating light with a curing light source such as an ultrahigh pressure mercury lamp through a mask corresponding to a desired pattern, but the entire photosensitive composition
  • the method is not particularly limited as long as it can be uniformly exposed.
  • what is necessary is just to set suitably exposure conditions, such as the kind of light, intensity
  • an alkaline aqueous solution such as an aqueous solution of sodium carbonate (Na 2 CO 3 ), an aqueous solution of tetramethylammonium hydroxide, an aqueous solution of potassium hydroxide, or an aqueous solution of sodium hydroxide is sprayed and developed.
  • any method that can sufficiently dissolve the alkali-soluble resin in the uncured portion that is, a method that can remove the photosensitive composition, may be used. Is not to be done.
  • development conditions such as a kind and density
  • a film that is a cured product, that is, a desired pattern having a light scattering function according to the present invention can be efficiently obtained.
  • the pattern which concerns on this invention can be used conveniently as a scattering layer of a display apparatus, for example. Since the pattern according to the present invention can be formed by photolithography, in the manufacturing method of the display device, alignment with other patterns (underground) formed before forming the scattering layer can be performed with high accuracy. Therefore, the pattern can be formed with high definition.
  • the film thickness of the film as the pattern formed by using the photosensitive composition according to the present invention is in the range of 5 to 20 ⁇ m suitable for use as the scattering layer of the display device according to the present invention. More preferably, it is more preferably in the range of 5 to 15 ⁇ m, and particularly preferably in the range of 7 to 12 ⁇ m. By making the film thickness within the above range, both the alignment characteristics of blue light and the photolithography characteristics can be achieved. Moreover, it is more preferable that the coating film as the pattern has the following physical properties suitable for use as the scattering layer of the display device according to the present invention.
  • the haze measured using a haze meter is more preferably 90% or more, and the total light transmittance and diffuse transmittance are more preferably 30% or more.
  • the alignment characteristics of blue light measured using a spectroscopic colorimeter can be accepted as a product when viewed as the display quality of a display device, compared to the calculated Lambertian (light intensity distribution). It is more preferable that the deviation is within a range of ⁇ 5%. Therefore, the viewing angle is more preferably ⁇ 80 degrees.
  • the pattern according to the present invention is used by configuring a color conversion substrate together with a red phosphor and a green phosphor as a scattering layer of the display device according to the present invention, as will be described later.
  • the red light emitted from the red phosphor and the green light emitted from the green phosphor have an alignment characteristic of Lambertian (light intensity distribution). Therefore, in order to prevent a color shift from occurring in the front direction and the oblique direction in the display device, the alignment characteristics of the blue light must also exhibit Lambertian.
  • the scattering layer which is a pattern according to the present invention, has a light scattering function, and the alignment characteristic exhibits Lambertian, so that the change in chromaticity in the oblique direction with respect to the front direction in the display device is reduced, thereby Display quality can be improved.
  • the display device includes a display device (display unit) including at least a backlight 1, an optical shutter 2, and a color conversion substrate 3.
  • the manufacturing method of a display device (display part) and the manufacturing method of a display apparatus can employ
  • the backlight 1 is a so-called edge light type, and includes a light source 11 having a blue LED, a blue cold cathode tube, and the like, and a light guide plate 12.
  • the blue light emitted from the light source 11 is incident on the end surface of the light guide plate 12, the light guide plate 12 has a function of guiding the blue light and emitting it from the surface of the optical shutter 2.
  • an optical sheet (not shown) having a prism shape is provided. Thereby, the said light-guide plate 12 can radiate
  • the display device may have a so-called direct-type display device in which the backlight 1 is composed of a plurality of light sources 11 as shown in FIG.
  • the light sources 11 are arranged so as to face the optical shutter 2, and thus it is more preferable to have a blue LED with high directivity.
  • the optical shutter 2 is composed of, for example, a liquid crystal panel or a transmissive MEMS (Micro Electro Mechanical System).
  • a liquid crystal panel or a transmissive MEMS (Micro Electro Mechanical System).
  • MEMS Micro Electro Mechanical System
  • the liquid crystal panel that is the optical shutter 2 includes, from the backlight 1 side, the light source side polarizing plate 21, the light source side substrate 22, the liquid crystal layer 23, the viewing side substrate 24, and the viewing side.
  • the side polarizing plate 25 is configured by being laminated in this order.
  • the liquid crystal panel arbitrarily controls the transmittance of the blue light incident on the liquid crystal panel by applying a voltage to the liquid crystal layer 23 sealed between the pair of substrates 22 and 24. Yes.
  • the color conversion substrate 3 is incident through the transparent substrate 31, phosphors 32 and 33 that convert the wavelength of blue light incident through the optical shutter 2, and the optical shutter 2. And a scattering layer 34 that scatters blue light. That is, the display device according to the present invention uses the light source 11 that emits blue light, converts the blue light into red light and green light by the phosphors 32 and 33, and uses the blue light from the light source 11 as it is. It is designed to be used as blue light.
  • FIGS. 4 to 6 are opposite to the upper and lower sides of the color conversion board 3 shown in FIG.
  • the color conversion substrate 3 includes a transparent substrate 31 made of a material such as glass that is substantially transparent in the visible light region, and converts the blue light incident through the optical shutter 2 into red light.
  • the red phosphor 32, the green phosphor 33, and the scattering layer 34 are regularly arranged with respect to the transparent substrate 31 to form a pattern constituting pixels, and can be displayed as a display device. .
  • FIG. 9B which is a plan view seen from the viewing side
  • the red phosphor 32, the green phosphor 33, and the scattering layer 34 are latticed with respect to the transparent substrate 31.
  • the pattern which comprises a pixel is formed by arranging in order.
  • the size and shape of each red phosphor 32, green phosphor 33, and scattering layer 34 constituting one pixel is usually a rectangle of about 30 to 120 ⁇ m ⁇ 90 to 360 ⁇ m (in FIG. 9A, Although it is the size and shape seen from the visual recognition side shown by the arrow), it is not particularly limited.
  • the phosphor material constituting the red phosphor 32 and the green phosphor 33 is the thickness of the phosphors 32 and 33 among various phosphor materials such as an organic phosphor material, an inorganic phosphor material, and a nano phosphor material.
  • the thickness (film thickness), the absorptivity of blue light that excites the phosphor material, and the transmittance of red light or green light emitted from the phosphors 32 and 33 may be selected as appropriate.
  • the phosphor material is excited when it receives blue light, generates red light or green light as excitation light, and emits it toward the transparent substrate 31 side.
  • Examples of the organic phosphor material include red fluorescent dyes such as rhodamine dyes such as rhodamine B, and green fluorescent dyes such as coumarin dyes such as coumarin 6.
  • Examples of the inorganic phosphor material include CdSe and ZnS.
  • As the nanophosphor material for example, nanoparticles made of CdSe, ZnS, etc. are uniformly diffused into a binder made of a substantially transparent resin such as silicone resin, epoxy resin, (meth) acrylic resin, etc. The material which consists of.
  • the scattering layer 34 is a pattern according to the present invention, and is composed of a film-like cured product (film) formed by curing the photopolymerizable (meth) acrylic monomer or the like contained in the photosensitive composition according to the present invention.
  • film film-like cured product
  • the scattering layer 34 has substantially the same orientation characteristics as the orientation characteristics of the red phosphor 32 and the green phosphor 33.
  • substantially the same orientation characteristic refers to an orientation characteristic in which the display quality of the display device is acceptable as a product.
  • a reflective layer 35 is formed on the side surfaces (surfaces not parallel to the transparent substrate 31) of the red phosphor 32, the green phosphor 33, and the scattering layer 34 as necessary.
  • the reflective layer 35 has a function of reflecting light that is not emitted from the transparent substrate 31, for example, in a lateral direction (a direction parallel to the transparent substrate 31) or the like and that is emitted from the transparent substrate 31. Thereby, the utilization efficiency of light can be improved more.
  • a black matrix (not shown) may be formed between the red phosphor 32, the green phosphor 33, and the scattering layer 34 (a gap on the transparent substrate 31) as necessary.
  • a black matrix By filling the space between the red phosphor 32, the green phosphor 33, and the scattering layer 34 with a black matrix, crosstalk of emitted light can be prevented.
  • the red phosphor 32, the green phosphor 33, and the reflective layer 35 formed on the scattering layer 34 are connected to each other to prevent crosstalk. May be.
  • the red phosphor 32, the green phosphor 33, and the scattering layer 34 are shaped so that when the reflecting layer 35 is formed on the side surface thereof, the cross section parallel to the incident blue light is on the transparent substrate 31 side.
  • the cross section is not limited to the trapezoidal shape, for example, a rectangular shape. The shape which becomes may be sufficient.
  • the pattern according to the present invention formed by using the photosensitive composition according to the present invention, that is, the scattering layer 34 has a light scattering function. That is, the display device according to the present invention has the above pattern.
  • the film thickness of the red phosphor 32, the green phosphor 33, and the scattering layer 34, that is, the film thickness of the pattern is not particularly limited, but is more preferably in the range of 3 to 20 ⁇ m. More preferably, it is in the range of 10 ⁇ m. When the film thickness is less than 3 ⁇ m, the scattering layer 34 may not have a sufficient light scattering function. When the film thickness exceeds 20 ⁇ m, the color conversion substrate 3 may be thick.
  • the color conversion substrate 3 may further include a low refractive index layer 36 between the transparent substrate 31 and the red phosphor 32, the green phosphor 33, and the scattering layer 34.
  • the low refractive index layer 36 is, for example, light (shallow angle) directed in the lateral direction (direction parallel to the transparent substrate 31) among the light emitted from the red phosphor 32, the green phosphor 33, and the scattering layer 34. The light is emitted from the transparent substrate 31 by being reflected back to the reflective layer 35 side and reflected again. Thereby, the utilization efficiency of light can be improved more.
  • the color conversion substrate 3 may further include a color filter 37 between the transparent substrate 31 and the low refractive index layer 36.
  • the color filter 37 includes a red filter 37a, a green filter 37b, a blue filter 37c, and a black matrix 37d.
  • the red filter 37a, the green filter 37b, and the blue filter 37c are disposed at positions where light emitted from the red phosphor 32, the green phosphor 33, and the scattering layer 34 is incident, respectively.
  • the color purity of the light is improved and emitted to the transparent substrate 31 side.
  • the red filter 37a and the green filter 37b generate unnecessary excitation light in the red phosphor 32 and the green phosphor 33 by removing the blue light contained in the external light incident from the transparent substrate 31 side.
  • the blue filter 37c also has a function of suppressing scattering of the light in the scattering layer 34 by removing light other than blue light included in external light incident from the transparent substrate 31 side.
  • the black matrix 37d is formed so as to fill the space between the red filter 37a, the green filter 37b, and the blue filter 37c, and the crosstalk of the light emitted from the red phosphor 32, the green phosphor 33, and the scattering layer 34 is reduced. It comes to prevent. Thereby, the display quality can be further improved.
  • the color conversion substrate 3 includes a black matrix 37d formed so as to fill the space between the red phosphor 32, the green phosphor 33, and the scattering layer 34. It may be a configuration. In this configuration, the reflecting layer 35 is not formed on the side surfaces of the red phosphor 32, the green phosphor 33, and the scattering layer 34, and the cross section parallel to the incident blue light is rectangular.
  • the black matrix 37d prevents crosstalk of light emitted from the red phosphor 32, the green phosphor 33, and the scattering layer 34. Thereby, the display quality can be further improved.
  • Example 1 TiO 2 filler (average particle size 200 nm), 2-hydroxy-3-phenoxypropyl acrylate as photopolymerizable (meth) acrylic monomer, benzyl methacrylate (BZMA) / methacrylic acid (MAA) / glycidyl as alkali-soluble resin Methacrylate (GMA) copolymer, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one as a photopolymerization initiator, and diethylene glycol monobutyl ether / propylene as an organic solvent Glycol monomethyl ether acetate mixed solvent was stirred in a container so that the weight ratio was 30: 40: 30: 3: 100 in this order and mixed roughly, and then further mixed using a three-roll mill. . As a result, a photosensitive composition in which the TiO 2 filler was uniformly dispersed was produced.
  • BZMA benzyl methacrylate
  • MAA me
  • the BZMA / MAA / GMA copolymer has a weight ratio of BZMA, MAA and GMA of 75: 16.8: 8.2 (since GMA is a glycidylated product of MAA, the weight ratio of BZMA and MAA is 75:
  • the copolymer obtained by copolymerization in 25) was used.
  • the weight average molecular weight (Mw) of the BZMA / MAA / GMA copolymer was 10,000, and the acid value was 131 mgKOH / g.
  • the diethylene glycol monobutyl ether / propylene glycol monomethyl ether acetate mixed solvent was a mixed solvent obtained by mixing diethylene glycol monobutyl ether and propylene glycol monomethyl ether acetate at a weight ratio of 1: 1.
  • the obtained photosensitive composition was coated on a glass substrate made of soda glass using an applicator under coating conditions of a temperature of 23 ° C. and a humidity of 40%. And the said mixed solvent was volatilized by heating the apply
  • the coating film was irradiated with light at 3,000 mJ / cm 2 using a super high pressure mercury lamp (manufactured by Hakuto Co., Ltd .; MAT-2500) through a chromium mask formed with a space width of 30 ⁇ m. Exposure was performed. After the exposure, an uncured portion of the coating film was removed by spraying and developing (spray development) an aqueous solution of Na 2 CO 3 having a concentration of 0.5% at 30 ° C. for 30 seconds. As a result, a film as a cured product, that is, a pattern having a thickness of 8 ⁇ m having a light scattering function was obtained.
  • the physical properties of the pattern were as follows. That is, the haze measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd .; NDH2000) was 91.4%, the total light transmittance was 33.3%, and the diffuse transmittance was 30.4%. Met. Moreover, as shown in FIG. 7, the alignment characteristics of blue light measured using a spectral goniochromimeter (manufactured by Nippon Denshoku Industries Co., Ltd .; GC5000) are substantially the same as the calculated Lambertian (light intensity distribution). Agreed. The viewing angle was ⁇ 80 degrees. In FIG.
  • the pattern formed using the photosensitive composition according to the present invention can reduce the change in chromaticity in the oblique direction with respect to the front direction in the display device, thereby improving the display quality of the display device. I understand.
  • Table 1 The composition of the photosensitive composition and the evaluation results of the pattern are summarized in Table 1.
  • indicates that the pattern reproducibility is good, and “x” indicates that the pattern is poor (or the coating film is not cured). Further, “ ⁇ ” indicates that the alignment characteristic of the pattern substantially shows Lambertian, “X” indicates that the alignment characteristic is not indicated, and “ ⁇ ” indicates that the alignment characteristic cannot be confirmed.
  • Example 2 TiO 2 filler, 2-hydroxy-3-phenoxypropyl acrylate, BZMA / MAA / GMA copolymer, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, and
  • the weight ratio of the diethylene glycol monobutyl ether / propylene glycol monomethyl ether acetate mixed solvent was changed to 10: 50: 40: 3: 100 in this order, Sex compositions and patterns were prepared.
  • the composition and pattern evaluation results of the resulting photosensitive composition are summarized in Table 1.
  • Example 3 The same operation as in Example 1 is carried out except that a methacrylic acid adduct of bisphenol A diglycidyl ether is used in place of 2-hydroxy-3-phenoxypropyl acrylate as the photopolymerizable (meth) acrylic monomer.
  • a photosensitive composition and a pattern were produced.
  • the composition and pattern evaluation results of the resulting photosensitive composition are summarized in Table 1.
  • Example 4 The same operation as in Example 1 except that as the alkali-soluble resin, a methyl methacrylate (MMA) / isobutyl methacrylate (IBMA) / methacrylic acid (MAA) copolymer was used instead of the BZMA / MAA / GMA copolymer. By performing the operation, a photosensitive composition and a pattern were produced.
  • MMA / IBMA / MAA copolymer a copolymer obtained by copolymerizing MMA, IBMA and MAA at a weight ratio of 50:25:25 was used.
  • the weight average molecular weight (Mw) of the MMA / IBMA / MAA copolymer was 14,900, and the acid value was 171 mgKOH / g.
  • the composition and pattern evaluation results of the resulting photosensitive composition are summarized in Table 1.
  • Example 5 Example 1 except that 2-hydroxy-3-phenoxypropyl acrylate and methacrylic acid adduct of bisphenol A diglycidyl ether were mixed at a weight ratio of 1: 1 as the photopolymerizable (meth) acrylic monomer. By performing the same operation as the operation, a photosensitive composition and a pattern were produced. The composition and pattern evaluation results of the resulting photosensitive composition are summarized in Table 1.
  • Example 6 TiO 2 filler, 2-hydroxy-3-phenoxypropyl acrylate, BZMA / MAA / GMA copolymer, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, and
  • the weight ratio of the diethylene glycol monobutyl ether / propylene glycol monomethyl ether acetate mixed solvent was 35: 40: 25: 3: 100 in this order, the photosensitivity was obtained.
  • Sex compositions and patterns were prepared. The composition and pattern evaluation results of the resulting photosensitive composition are summarized in Table 1.
  • Example 1 By performing the same operation as that of Example 1 except that an acrylic filler (manufactured by Sekisui Plastics Co., Ltd .; SSX-102, average particle size 2 ⁇ m) was used instead of the TiO 2 filler, Photosensitive compositions and comparative patterns were produced. However, the film thickness of the coating film was 20 ⁇ m, and the light intensity during exposure was 6,000 mJ / cm 2 . The film thickness of the comparative pattern was 20 ⁇ m.
  • an acrylic filler manufactured by Sekisui Plastics Co., Ltd .
  • SSX-102 average particle size 2 ⁇ m
  • Comparative Example 1 Since the comparative pattern of Comparative Example 1 did not use the TiO 2 filler, it could be formed by photolithography, but did not have a sufficient light scattering function. In other words, although the transmittance in the 0 degree direction was high, the ratio of the transmittance to the 0 degree direction in the ⁇ 80 to ⁇ 5 degrees and 5 to 80 degrees directions was low, and thus the light scattering function was not sufficient. .
  • the display device having a photosensitive composition, a pattern and a pattern according to the present invention can be suitably used for manufacturing various electrical appliances including the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Materials For Photolithography (AREA)
  • Optical Filters (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

Provided are: a photosensitive composition for forming a pattern that is used in a display device and has a light scattering function; a pattern; and a display device which has a pattern. This photosensitive composition for forming a pattern that is used in a display device and has a light scattering function contains a TiO2 filler, a photopolymerizable (meth)acrylic monomer, an alkali-soluble resin, a photopolymerization initiator and an organic solvent. The ratio of the TiO2 filler in the total mass of the TiO2 filler, the photopolymerizable (meth)acrylic monomer and the alkali-soluble resin is within the range of 10-35% by mass.

Description

感光性組成物、パターンおよびパターンを有する表示装置Photosensitive composition, pattern and display device having pattern
 本発明は、表示装置に用いる光散乱機能を有するパターンを形成するための感光性組成物、パターンおよびパターンを有する表示装置に関するものである。 The present invention relates to a photosensitive composition for forming a pattern having a light scattering function for use in a display device, a pattern and a display device having the pattern.
 従来、自発光型ではなく白色光のバックライトを使用するフルカラーの表示装置は、当該バックライトと光シャッターとで主に構成されている。例えば、液晶表示装置は、バックライトとしてLEDや冷陰極管等の光源と導光板と光学シートとを備えており、光シャッターとして液晶パネルを備えている。上記液晶パネルは、二枚の偏光板と一対の基板と当該基板間に封入された液晶層とからなり、上記一対の基板にはそれぞれ、TFTパターンと赤・緑・青(R・G・B)色のカラーフィルタ(CF)とが設けられている。ところが、光源から出射された白色光は、カラーフィルタで当該色以外の光が吸収されるため、1/3程度しか透過しない。つまり、上記構成では白色光の利用効率が低い。 Conventionally, a full-color display device using a white light backlight instead of a self-luminous type is mainly composed of the backlight and an optical shutter. For example, a liquid crystal display device includes a light source such as an LED or a cold cathode tube, a light guide plate, and an optical sheet as a backlight, and a liquid crystal panel as an optical shutter. The liquid crystal panel includes two polarizing plates, a pair of substrates, and a liquid crystal layer sealed between the substrates. The pair of substrates has a TFT pattern and red, green, blue (R, G, B), respectively. ) Color filter (CF). However, the white light emitted from the light source is transmitted only about 1/3 because light other than the color is absorbed by the color filter. That is, in the above configuration, the utilization efficiency of white light is low.
 それゆえ、光の利用効率を向上させるために、青色光のバックライトを使用し、液晶パネルと、青色光を吸収して赤色光を発光する赤色蛍光体と、青色光を吸収して緑色光を発光する緑色蛍光体とを備えた液晶表示装置が提案されている(特許文献1,2)。上記構成ではカラーフィルタで吸収される光が少なくなるので光の利用効率が向上する。さらに、蛍光体の側面に反射層を形成することにより、横方向(透明基板に平行な方向)に出射された光を反射させて透明基板から出射させ、光の利用効率を向上させた液晶表示装置も提案されている(特許文献5)。 Therefore, in order to improve the light utilization efficiency, a blue light backlight is used, a liquid crystal panel, a red phosphor that absorbs blue light and emits red light, and blue light that absorbs green light. A liquid crystal display device including a green phosphor that emits light has been proposed (Patent Documents 1 and 2). In the above configuration, the amount of light absorbed by the color filter is reduced, so that the light use efficiency is improved. In addition, by forming a reflective layer on the side surface of the phosphor, the light emitted in the lateral direction (direction parallel to the transparent substrate) is reflected and emitted from the transparent substrate, thereby improving the light utilization efficiency. An apparatus has also been proposed (Patent Document 5).
 ところが、上記各構成では、赤色蛍光体から出射される赤色光、および緑色蛍光体から出射される緑色光の配向特性がランバーシアン(光強度分布)を示すのに対して、青色光は蛍光体を透過させずに直進若しくは反射させて用いるため、青色光は配向特性がランバーシアンを示さない。つまり、青色光の配向特性は、赤色光および緑色光の配向特性と異なる。従って、上記液晶表示装置における正面方向に対する斜め方向の色度変化が大きくなることによって表示品位が低下する。 However, in each of the above configurations, the alignment characteristics of red light emitted from the red phosphor and green light emitted from the green phosphor exhibit Lambertian (light intensity distribution), whereas blue light is phosphor. Therefore, the blue light does not show Lambertian in the alignment characteristics. That is, the alignment characteristics of blue light are different from the alignment characteristics of red light and green light. Therefore, the display quality is deteriorated by increasing the chromaticity change in the oblique direction with respect to the front direction in the liquid crystal display device.
 そこで、青色光を、光散乱機能を有する散乱層に透過させることにより、液晶表示装置における正面方向に対する斜め方向の色度変化を低減させ、これにより表示品位を向上させた液晶表示装置が提案されている(特許文献3,4)。 Therefore, a liquid crystal display device has been proposed in which blue light is transmitted through a scattering layer having a light scattering function, thereby reducing a change in chromaticity in an oblique direction with respect to the front direction in the liquid crystal display device, thereby improving display quality. (Patent Documents 3 and 4).
 そして近年、上記散乱層を形成するための組成物が種々検討されており、例えば特許文献6には、カルボン酸化合物、エポキシ基含有不飽和化合物とオレフィン性含有不飽和化合物との共重合体、光散乱性物質、多官能モノマー、および光重合開始剤を含有する感放射線性組成物が提案されている。 In recent years, various compositions for forming the scattering layer have been studied. For example, Patent Document 6 discloses a carboxylic acid compound, a copolymer of an epoxy group-containing unsaturated compound and an olefinic-containing unsaturated compound, A radiation-sensitive composition containing a light-scattering substance, a polyfunctional monomer, and a photopolymerization initiator has been proposed.
日本国公開特許公報「特開2000-131683(2000年5月12日公開)」Japanese Patent Publication “JP 2000-131683 (May 12, 2000)” 日本国公開特許公報「特開2003-5182(2003年1月8日公開)」Japanese Patent Publication “JP 2003-5182 (published Jan. 8, 2003)” 日本国公開特許公報「特開2009-115925(2009年5月28日公開)」Japanese Published Patent Publication “JP 2009-115925 (May 28, 2009)” 日本国公開特許公報「特開2009-244383(2009年10月22日公開)」Japanese Patent Publication “JP 2009-244383 (released on Oct. 22, 2009)” 日本国公開特許公報「特開2010-66437(2010年3月25日公開)」Japanese Patent Publication “JP 2010-66437 (published on March 25, 2010)” 日本国公開特許公報「特開2001-316408(2001年11月13日公開)」Japanese Patent Publication “JP 2001-316408 (published Nov. 13, 2001)”
 しかしながら、特許文献6に記載されている感放射線性組成物は、反射光を効率よく散乱し、正面輝度の高い面照明を実現することを目的としている(段落〔0006〕等に記載)ため、表示装置における正面方向と斜め方向とで色度変化(色のシフト)が生じないようにすることについては特段の考慮がなされていない。つまり、特許文献6に記載されている感放射線性組成物では、光源から出射された青色光を広角度に散乱させる光散乱機能について、特段の考慮がなされていない。 However, the radiation-sensitive composition described in Patent Document 6 is intended to efficiently scatter reflected light and realize surface illumination with high front luminance (described in paragraph [0006] and the like). No particular consideration is given to preventing chromaticity change (color shift) between the front direction and the oblique direction in the display device. That is, in the radiation-sensitive composition described in Patent Document 6, no special consideration is given to the light scattering function that scatters blue light emitted from a light source at a wide angle.
 また、表示装置に用いられる、アクリルフィラー等を含んでなる従来の光散乱膜は、当該光散乱膜を透過した光の散乱角度の幅が10~30度程度と狭い。このため、従来の光散乱膜は、青色光を広角度に散乱させることができないという問題点を有している。 Also, a conventional light scattering film containing an acrylic filler or the like used for a display device has a narrow scattering angle width of about 10 to 30 degrees of light transmitted through the light scattering film. For this reason, the conventional light scattering film has a problem that blue light cannot be scattered at a wide angle.
 表示装置における正面方向(発光面に対する法線方向)と斜め方向とで色度変化(色のシフト)が生じないようにするためには、青色光の配向特性もランバーシアン(光強度分布)を示す必要がある。また、パターンを効率的に作成するには、拡散層を形成する組成物がフォトリソグラフィー特性を有している必要がある。即ち、感光性組成物を用いて形成されるパターン(散乱層)が、光源から出射された青色光を広角度に散乱させる光散乱機能を有する必要がある。それゆえ、表示品位を向上させるために、表示装置に用いるのに好適な、フォトリソグラフィー特性を有し、かつ、青色光を広角度に散乱させる光散乱特性を有する感光性組成物、つまり、上記光散乱機能に優れたパターンを形成するための感光性組成物が求められている。 In order to prevent chromaticity change (color shift) between the front direction (normal direction with respect to the light emitting surface) and the oblique direction in the display device, the alignment characteristics of blue light should also be Lambertian (light intensity distribution). Need to show. Moreover, in order to produce a pattern efficiently, the composition which forms a diffused layer needs to have a photolithography characteristic. That is, the pattern (scattering layer) formed using the photosensitive composition needs to have a light scattering function of scattering blue light emitted from the light source at a wide angle. Therefore, in order to improve display quality, a photosensitive composition having a photolithography characteristic suitable for use in a display device and having a light scattering characteristic for scattering blue light at a wide angle, that is, the above-mentioned There is a need for a photosensitive composition for forming a pattern having an excellent light scattering function.
 本発明は、上記課題に鑑みてなされたものであり、その主たる目的は、表示装置に用いる光散乱機能を有するパターンを形成するための感光性組成物を提供することにある。また、他の目的は、上記感光性組成物を用いて形成してなる光散乱機能を有するパターン、およびパターンを有する表示装置を提供することにある。 The present invention has been made in view of the above problems, and a main object thereof is to provide a photosensitive composition for forming a pattern having a light scattering function used in a display device. Another object is to provide a pattern having a light scattering function formed by using the photosensitive composition, and a display device having the pattern.
 本発明に係る感光性組成物は、上記の課題を解決するために、表示装置に用いる光散乱機能を有するパターンを形成するための感光性組成物であって、TiO2フィラー、光重合性(メタ)アクリルモノマー、アルカリ可溶性樹脂、光重合開始剤、および有機溶剤を含み、上記TiO2フィラー、光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂の合計量に占めるTiO2フィラーの割合が、10~35質量%の範囲内であることを特徴としている。 The photosensitive composition according to the present invention is a photosensitive composition for forming a pattern having a light scattering function used in a display device in order to solve the above-described problem, and includes a TiO 2 filler, a photopolymerizable ( meth) acrylic monomer, an alkali-soluble resin, a photopolymerization initiator, and comprises an organic solvent, the TiO 2 filler, the proportion of the photopolymerizable (meth) TiO 2 filler to the total weight of the acrylic monomer and the alkali-soluble resin, 10 It is characterized by being in the range of ~ 35% by mass.
 上記の構成によれば、TiO2フィラーが光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂に、即ち、ネガ型感光性樹脂に分散されるので、フォトリソグラフィー特性と光散乱特性とが両立された感光性組成物を得ることができる。即ち、表示装置に用いるのに好適な、フォトリソグラフィー特性を有し、かつ、TiO2フィラーによって青色光を入射角よりも広角度に散乱させる光散乱特性を有する感光性組成物を提供することができる。 According to the above configuration, since the TiO 2 filler is dispersed in the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin, that is, in the negative photosensitive resin, the photolithography characteristics and the light scattering characteristics are compatible. A photosensitive composition can be obtained. That is, it is possible to provide a photosensitive composition suitable for use in a display device, having a photolithography characteristic and having a light scattering characteristic that scatters blue light at a wider angle than an incident angle by a TiO 2 filler. it can.
 また、本発明に係るパターンは、上記の課題を解決するために、上記感光性組成物を用いて形成してなっている。さらに、本発明に係る表示装置は、上記の課題を解決するために、上記パターンを有している。 Further, the pattern according to the present invention is formed using the photosensitive composition in order to solve the above-described problems. Furthermore, the display device according to the present invention has the above pattern in order to solve the above-described problems.
 上記の構成によれば、青色光の配向特性がランバーシアン(光強度分布)を示すので、正面方向と斜め方向とで色度変化(色のシフト)が生じない、表示品位が向上された表示装置を提供することができる。 According to the above configuration, since the alignment characteristic of blue light shows Lambertian (light intensity distribution), chromaticity change (color shift) does not occur between the front direction and the diagonal direction, and the display quality is improved. An apparatus can be provided.
 本発明に係る感光性組成物によれば、表示装置に用いるのに好適な、フォトリソグラフィー特性を有し、かつ、TiO2フィラーによって青色光を入射角よりも広角度に散乱させる光散乱特性を有する感光性組成物を提供することができるという効果を奏する。また、本発明に係るパターン並びに本発明に係る表示装置によれば、青色光の配向特性がランバーシアン(光強度分布)を示すので、正面方向と斜め方向とで色度変化(色のシフト)が生じない、表示品位が向上された表示装置を提供することができるという効果を奏する。 According to the photosensitive composition of the present invention, it has a photolithography characteristic suitable for use in a display device, and has a light scattering characteristic that scatters blue light at a wider angle than an incident angle by a TiO 2 filler. There exists an effect that the photosensitive composition which has can be provided. Further, according to the pattern according to the present invention and the display device according to the present invention, since the alignment characteristic of blue light indicates Lambertian (light intensity distribution), chromaticity change (color shift) between the front direction and the oblique direction. This produces an effect that a display device with improved display quality can be provided.
本発明に係る表示装置の一例を示すものであり、概略の構成を示すブロック図である。FIG. 1 is a block diagram illustrating a schematic configuration of an example of a display device according to the present invention. 本発明に係る表示装置の他の一例を示すものであり、概略の構成を示すブロック図である。It is a block diagram which shows another example of the display apparatus which concerns on this invention, and shows a schematic structure. 上記表示装置の要部の一例を示すものであり、概略の構成を示す断面図である。An example of the principal part of the said display apparatus is shown, and it is sectional drawing which shows a schematic structure. 上記表示装置が備える色変換基板の一例を示すものであり、概略の構成を示す断面図である。FIG. 2 is a cross-sectional view illustrating an example of a color conversion substrate included in the display device and illustrating a schematic configuration. 上記表示装置が備える色変換基板の他の一例を示すものであり、概略の構成を示す断面図である。It is sectional drawing which shows another example of the color conversion board | substrate with which the said display apparatus is provided, and shows a schematic structure. 上記表示装置が備える色変換基板のさらに他の一例を示すものであり、概略の構成を示す断面図である。It is sectional drawing which shows another example of the color conversion board | substrate with which the said display apparatus is provided, and shows a schematic structure. 本発明の実施例1におけるパターンが示す光強度分布を、表示装置における正面方向の光強度を「1」としたときの相対値で示したグラフである。It is the graph which showed the light intensity distribution which the pattern in Example 1 of this invention shows with the relative value when the light intensity of the front direction in a display apparatus is set to "1". 比較例1におけるパターンが示す光強度分布を、表示装置における正面方向の光強度を「1」としたときの相対値で示したグラフである。It is the graph which showed the light intensity distribution which the pattern in the comparative example 1 shows by the relative value when the light intensity of the front direction in a display apparatus is set to "1". 上記表示装置の要部の一例を示すものであり、概略の構成を示す(a)は断面図であり、(b)は視認側から見た平面図である。An example of the principal part of the said display apparatus is shown, (a) which shows schematic structure is sectional drawing, (b) is the top view seen from the visual recognition side. 上記表示装置の要部の他の一例を示すものであり、概略の構成を示す(a)は断面図であり、(b)は視認側から見た平面図である。The other example of the principal part of the said display apparatus is shown, (a) which shows schematic structure is sectional drawing, (b) is the top view seen from the visual recognition side.
 本発明の一実施形態について、感光性組成物、パターン、表示装置の順に、以下に詳しく説明する。 An embodiment of the present invention will be described in detail below in the order of a photosensitive composition, a pattern, and a display device.
 〔感光性組成物〕
 本発明に係る感光性組成物は、TiO2フィラー、光重合性(メタ)アクリルモノマー、アルカリ可溶性樹脂、光重合開始剤、および有機溶剤を含み、上記TiO2フィラー、光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂の合計量に占めるTiO2フィラーの割合が、10~35質量%の範囲内である。以下、各構成について説明する。
[Photosensitive composition]
The photosensitive composition according to the present invention includes a TiO 2 filler, a photopolymerizable (meth) acrylic monomer, an alkali-soluble resin, a photopolymerization initiator, and an organic solvent, and the TiO 2 filler, the photopolymerizable (meth) acrylic. The proportion of the TiO 2 filler in the total amount of monomer and alkali-soluble resin is in the range of 10 to 35% by mass. Each configuration will be described below.
 <TiO2フィラー>
 TiO2フィラーは、青色光を散乱させる光散乱機能を発揮することができる粒径や形状であればよく、従って当該粒径や形状は特に限定されないものの、具体的には、平均粒径は100~1,000nmの範囲内であることがより好ましく、150~250nmの範囲内であることがさらに好ましい。平均粒径が100nm未満であると、光散乱機能を発揮し難くなる場合がある。平均粒径が1,000nmを超えると、青色光がパターンを透過し難くなる場合がある。
<TiO 2 filler>
The TiO 2 filler may be any particle size or shape that can exhibit a light scattering function for scattering blue light. Therefore, the particle size or shape is not particularly limited, but specifically, the average particle size is 100 It is more preferably in the range of ˜1,000 nm, and further preferably in the range of 150 to 250 nm. If the average particle size is less than 100 nm, it may be difficult to exhibit the light scattering function. If the average particle diameter exceeds 1,000 nm, blue light may hardly pass through the pattern.
 また、TiO2フィラー、光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂の合計量に占めるTiO2フィラーの割合は、10~35質量%の範囲内であることが好ましく、20~30質量%の範囲内であることがより好ましい。TiO2フィラーの割合が10質量%未満であると、光散乱機能を発揮し難くなる。TiO2フィラーの割合が35質量%を超えると、青色光がパターンを透過し難くなる。 The proportion of the TiO 2 filler in the total amount of the TiO 2 filler, the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin is preferably in the range of 10 to 35% by mass, and 20 to 30% by mass. More preferably within the range. When the proportion of the TiO 2 filler is less than 10% by mass, it becomes difficult to exhibit the light scattering function. If the proportion of the TiO 2 filler exceeds 35% by mass, it is difficult for blue light to pass through the pattern.
 <光重合性(メタ)アクリルモノマー>
 光重合性(メタ)アクリルモノマーは、エチレン性不飽和基を含む官能基であるアクリロイル基(-CH=CH-CO-)またはメタクリロイル基(-CH=C(CH3)-CO-)を分子内に有し、光重合可能な(メタ)アクリルモノマーであればよい。光重合性(メタ)アクリルモノマーは、アルカリ可溶性樹脂と共にネガ型感光性樹脂を構成する。
<Photopolymerizable (meth) acrylic monomer>
The photopolymerizable (meth) acrylic monomer has an acryloyl group (—CH═CH—CO—) or a methacryloyl group (—CH═C (CH 3 ) —CO—), which is a functional group containing an ethylenically unsaturated group, as a molecule. Any (meth) acrylic monomer that can be photopolymerized can be used. A photopolymerizable (meth) acryl monomer constitutes a negative photosensitive resin together with an alkali-soluble resin.
 上記光重合性(メタ)アクリルモノマーは、具体的には、単官能の(メタ)アクリルモノマーおよび多官能の(メタ)アクリルモノマーから選ばれる少なくとも一種であればよい。つまり、上記光重合性(メタ)アクリルモノマーは、単官能の(メタ)アクリルモノマーからなっていてもよく、多官能の(メタ)アクリルモノマーからなっていてもよく、単官能の(メタ)アクリルモノマーおよび多官能の(メタ)アクリルモノマーの混合物からなっていてもよい。 Specifically, the photopolymerizable (meth) acrylic monomer may be at least one selected from monofunctional (meth) acrylic monomers and polyfunctional (meth) acrylic monomers. That is, the photopolymerizable (meth) acrylic monomer may be composed of a monofunctional (meth) acrylic monomer, may be composed of a polyfunctional (meth) acrylic monomer, or may be composed of a monofunctional (meth) acrylic monomer. It may consist of a mixture of monomers and polyfunctional (meth) acrylic monomers.
 上記単官能の(メタ)アクリルモノマーとしては、具体的には、例えば、(メタ)アクリルアミド、メチロール(メタ)アクリルアミド、メトキシメチル(メタ)アクリルアミド、エトキシメチル(メタ)アクリルアミド、プロポキシメチル(メタ)アクリルアミド、ブトキシメトキシメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、(メタ)アクリル酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、クロトン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、t-ブチルアクリルアミドスルホン酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、グリセリンモノ(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジメチルアミノ(メタ)アクリレート、グリシジル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、フタル酸誘導体のハーフ(メタ)アクリレート等が挙げられる。これら単官能の(メタ)アクリルモノマーは、単独で用いてもよく、二種類以上を組み合わせて用いてもよい。 Specific examples of the monofunctional (meth) acrylic monomer include (meth) acrylamide, methylol (meth) acrylamide, methoxymethyl (meth) acrylamide, ethoxymethyl (meth) acrylamide, and propoxymethyl (meth) acrylamide. , Butoxymethoxymethyl (meth) acrylamide, N-methylol (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, (meth) acrylic acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citracone Acid, citraconic anhydride, crotonic acid, 2-acrylamido-2-methylpropanesulfonic acid, t-butylacrylamidesulfonic acid, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-phenoxy-2-hydroxypropyl (Meth) acrylate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, glycerin mono ( (Meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dimethylamino (meth) acrylate, glycidyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, , 2,3,3-tetrafluoro propyl (meth) acrylate, a half (meth) acrylate of phthalic acid derivatives. These monofunctional (meth) acrylic monomers may be used alone or in combination of two or more.
 上記多官能の(メタ)アクリルモノマーとしては、具体的には、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、グリセリントリアクリレート、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、ウレタン(メタ)アクリレート(即ち、トリレンジイソシアネート)、トリメチルヘキサメチレンジイソシアネートとヘキサメチレンジイソシアネートと2-ヒドロキシエチル(メタ)アクリレートとの反応物、メチレンビス(メタ)アクリルアミド、(メタ)アクリルアミドメチレンエーテル、多価アルコールとN-メチロール(メタ)アクリルアミドとの縮合物、ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物等が挙げられる。また、多官能の(メタ)アクリルモノマーとして、トリアクリルホルマールも用いることができる。これら多官能の(メタ)アクリルモノマーは、単独で用いてもよく、二種類以上を組み合わせて用いてもよい。 Specific examples of the polyfunctional (meth) acrylic monomer include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and propylene glycol di (meth) acrylate. , Polypropylene glycol di (meth) acrylate, butylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexane glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, glycerin di ( (Meth) acrylate, pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaeryth Tall penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 2,2-bis (4- (meth) acryloxydiethoxyphenyl) propane, 2,2-bis (4- (meth) acryloxy polyethoxy Phenyl) propane, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) ) Acrylate, glycerin triacrylate, glycerin polyglycidyl ether poly (meth) acrylate, urethane (meth) acrylate (ie, tolylene diisocyanate), trimethylhexamethylene diisocyanate , Hexamethylene diisocyanate and 2-hydroxyethyl (meth) acrylate, methylenebis (meth) acrylamide, (meth) acrylamide methylene ether, condensate of polyhydric alcohol and N-methylol (meth) acrylamide, bisphenol A di Examples include (meth) acrylic acid adducts of glycidyl ether. Moreover, triacryl formal can also be used as a polyfunctional (meth) acryl monomer. These polyfunctional (meth) acrylic monomers may be used alone or in combination of two or more.
 上記例示の光重合性(メタ)アクリルモノマーのうち、2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物がより好ましく、2-メタクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、ビスフェノールAジグリシジルエーテルのメタクリル酸付加物がさらに好ましい。 Among the photopolymerizable (meth) acrylic monomers exemplified above, 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, and (meta) of bisphenol A diglycidyl ether ) Acrylic acid adduct is more preferable, and methacrylic acid adduct of 2-methacryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl acrylate and bisphenol A diglycidyl ether is more preferable.
 <アルカリ可溶性樹脂>
 アルカリ可溶性樹脂は、アルカリ性水溶液に可溶な樹脂であればよく、従ってその構造は特に限定されないものの、具体的には、樹脂の可溶性の指標である酸価が50~250mgKOH/gの範囲内であることがより好ましい。アルカリ可溶性樹脂の酸価が50mgKOH/g未満であると、アルカリ性水溶液に溶解し難くなる場合がある。アルカリ可溶性樹脂の酸価が250mgKOH/gを超えると、耐アルカリ性が低下する場合がある。また、アルカリ可溶性樹脂は、アクリロイル基またはメタクリロイル基を分子内に有していてもよい。
<Alkali-soluble resin>
The alkali-soluble resin may be any resin that is soluble in an alkaline aqueous solution, and therefore the structure is not particularly limited. Specifically, the acid value, which is an index of resin solubility, is in the range of 50 to 250 mgKOH / g. More preferably. If the acid value of the alkali-soluble resin is less than 50 mgKOH / g, it may be difficult to dissolve in the alkaline aqueous solution. If the acid value of the alkali-soluble resin exceeds 250 mgKOH / g, the alkali resistance may be lowered. The alkali-soluble resin may have an acryloyl group or a methacryloyl group in the molecule.
 上記アルカリ可溶性樹脂を構成するモノマーとしては、例えば、不飽和カルボン酸類、アクリル酸エステル類、メタクリル酸エステル類、アクリルアミド類、メタクリルアミド類、アリル化合物、ビニルエーテル類、ビニルエステル類、スチレン類等が挙げられる。つまり、アルカリ可溶性樹脂は、これらモノマーのうちの少なくとも一種類を重合してなる重合体または共重合体である。 Examples of the monomer constituting the alkali-soluble resin include unsaturated carboxylic acids, acrylic esters, methacrylic esters, acrylamides, methacrylamides, allyl compounds, vinyl ethers, vinyl esters, styrenes, and the like. It is done. That is, the alkali-soluble resin is a polymer or copolymer obtained by polymerizing at least one of these monomers.
 上記不飽和カルボン酸類としては、具体的には、例えば、アクリル酸、メタクリル酸、クロトン酸等のモノカルボン酸;マレイン酸、フマル酸、シトラコン酸、メサコン酸、イタコン酸等のジカルボン酸、および、これらジカルボン酸の無水物等が挙げられる。 Specific examples of the unsaturated carboxylic acids include monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid; dicarboxylic acids such as maleic acid, fumaric acid, citraconic acid, mesaconic acid, and itaconic acid; and The anhydride of these dicarboxylic acids etc. are mentioned.
 上記アクリル酸エステル類としては、具体的には、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸イソプロピル、アクリル酸ブチル、アクリル酸アミル、アクリル酸エチルヘキシル、アクリル酸オクチル、アクリル酸-t-オクチル等の直鎖状または分岐鎖状アルキルアクリレート;シクロヘキシルアクリレート、ジシクロペンタニルアクリレート、2-メチルシクロヘキシルアクリレート、ジシクロペンタニルアクリレート、ジシクロペンタオキシエチルアクリレート、イソボロニルアクリレート等の脂環式アルキルアクリレート;クロルエチルアクリレート、2,2-ジメチルヒドロキシプロピルアクリレート、2-ヒドロキシエチルアクリレート、5-ヒドロキシペンチルアクリレート、トリメチロールプロパンモノアクリレート、ペンタエリスリトールモノアクリレート、ベンジルアクリレート、メトキシベンジルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、アリールアクリレート(例えばフェニルアクリレート等が挙げられる)等が挙げられる。 Specific examples of the acrylic esters include, for example, methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl acrylate, amyl acrylate, ethyl hexyl acrylate, octyl acrylate, acrylic acid- linear or branched alkyl acrylates such as t-octyl; fats such as cyclohexyl acrylate, dicyclopentanyl acrylate, 2-methylcyclohexyl acrylate, dicyclopentanyl acrylate, dicyclopentaoxyethyl acrylate, isobornyl acrylate, etc. Cyclic alkyl acrylate; chloroethyl acrylate, 2,2-dimethylhydroxypropyl acrylate, 2-hydroxyethyl acrylate, 5-hydroxypentyl acrylate, trimethyl Lumpur propane monoacrylate, pentaerythritol monoacrylate, benzyl acrylate, methoxybenzyl acrylate, furfuryl acrylate, tetrahydrofurfuryl acrylate, and aryl acrylates (e.g., phenyl acrylate, and the like) and the like.
 上記メタクリル酸エステル類としては、具体的には、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、sec-ブチルメタクリレート、t-ブチルメタクリレート、アミルメタクリレート、ヘキシルメタクリレート、オクチルメタクリレート等の直鎖状または分岐鎖状アルキルメタクリレート;シクロヘキシルメタクリレート、ジシクロペンタニルメタクリレート、2-メチルシクロヘキシルメタクリレート、ジシクロペンタニルオキシエチルメタクリレート、イソボニルメタクリレート等の脂環式アルキルメタクリレート;グリシジルメタクリレート等のエポキシ基含有メタクリレート;2-ヒドロキシエチルメタクリレート、4-ヒドロキシブチルメタクリレート、5-ヒドロキシペンチルメタクリレート、2,2-ジメチル-3-ヒドロキシプロピルメタクリレート、トリメチロールプロパンモノメタクリレート、ペンタエリスリトールモノメタクリレート;フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート等の環状エーテル基含有メタクリレート;ベンジルメタクリレート、クロルベンジルメタクリレート、フェニルメタクリレート、クレジルメタクリレート、ナフチルメタクリレート等のアリールメタクリレート;等が挙げられる。 Specific examples of the methacrylic acid esters include methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, sec-butyl methacrylate, t-butyl methacrylate, amyl methacrylate, and hexyl methacrylate. Linear or branched alkyl methacrylates such as octyl methacrylate; alicyclic alkyl methacrylates such as cyclohexyl methacrylate, dicyclopentanyl methacrylate, 2-methylcyclohexyl methacrylate, dicyclopentanyloxyethyl methacrylate, isobornyl methacrylate; glycidyl Epoxy group-containing methacrylates such as methacrylate; 2-hydroxyethyl methacrylate Cyclates, 4-hydroxybutyl methacrylate, 5-hydroxypentyl methacrylate, 2,2-dimethyl-3-hydroxypropyl methacrylate, trimethylolpropane monomethacrylate, pentaerythritol monomethacrylate; cyclic ether groups such as furfuryl methacrylate and tetrahydrofurfuryl methacrylate Included methacrylates; aryl methacrylates such as benzyl methacrylate, chlorobenzyl methacrylate, phenyl methacrylate, cresyl methacrylate, naphthyl methacrylate;
 上記アクリルアミド類としては、具体的には、例えば、アクリルアミド、N-アルキルアクリルアミド(アルキル基は炭素数1~10であることが好ましく、例えばメチル基、エチル基、プロピル基、ブチル基、t-ブチル基、ヘプチル基、オクチル基、シクロヘキシル基、ヒドロキシエチル基、ベンジル基等が挙げられる)、N-アリールアクリルアミド(アリール基としては、例えばフェニル基、トリル基、ニトロフェニル基、ナフチル基、ヒドロキシフェニル基等が挙げられる)、N,N-ジアルキルアクリルアミド(アルキル基は炭素数1~10であることが好ましい)、N,N-アリールアクリルアミド(アリール基としては、例えばフェニル基等が挙げられる)、N-メチル-N-フェニルアクリルアミド、N-ヒドロキシエチル-N-メチルアクリルアミド、N-2-アセトアミドエチル-N-アセチルアクリルアミド等が挙げられる。 Specific examples of the acrylamides include, for example, acrylamide, N-alkylacrylamide (the alkyl group preferably has 1 to 10 carbon atoms, such as methyl group, ethyl group, propyl group, butyl group, t-butyl group). Group, heptyl group, octyl group, cyclohexyl group, hydroxyethyl group, benzyl group, etc.), N-arylacrylamide (examples of aryl group include phenyl group, tolyl group, nitrophenyl group, naphthyl group, hydroxyphenyl group) N, N-dialkylacrylamide (the alkyl group preferably has 1 to 10 carbon atoms), N, N-arylacrylamide (the aryl group includes, for example, a phenyl group), N -Methyl-N-phenylacrylamide, N-hydroxy ester Le -N- methylacrylamide, N-2-acetamidoethyl -N- acetyl acrylamide.
 上記メタクリルアミド類としては、具体的には、例えば、メタクリルアミド、N-アルキルメタクリルアミド(アルキル基は炭素数1~10であることが好ましく、例えばメチル基、エチル基、t-ブチル基、エチルヘキシル基、ヒドロキシエチル基、シクロヘキシル基等が挙げられる)、N-アリールメタクリルアミド(アリール基としては、例えばフェニル基等が挙げられる)、N,N-ジアルキルメタクリルアミド(アルキル基としては、例えばエチル基、プロピル基、ブチル基等が挙げられる)、N,N-ジアリールメタクリルアミド(アリール基としては、例えばフェニル基等が挙げられる)、N-ヒドロキシエチル-N-メチルメタクリルアミド、N-メチル-N-フェニルメタクリルアミド、N-エチル-N-フェニルメタクリルアミド等が挙げられる。 Specific examples of the methacrylamides include, for example, methacrylamide, N-alkylmethacrylamide (the alkyl group preferably has 1 to 10 carbon atoms, such as a methyl group, an ethyl group, a t-butyl group, an ethylhexyl group). Group, hydroxyethyl group, cyclohexyl group and the like), N-aryl methacrylamide (the aryl group includes, for example, phenyl group), N, N-dialkylmethacrylamide (the alkyl group includes, for example, ethyl group) , A propyl group, a butyl group, etc.), N, N-diarylmethacrylamide (an aryl group includes, for example, a phenyl group), N-hydroxyethyl-N-methylmethacrylamide, N-methyl-N -Phenylmethacrylamide, N-ethyl-N-phenylmeta Riruamido, and the like.
 上記アリル化合物としては、具体的には、例えば、アリルエステル類(例えば酢酸アリル、カプロン酸アリル、カプリル酸アリル、ラウリン酸アリル、パルミチン酸アリル、ステアリン酸アリル、安息香酸アリル、アセト酢酸アリル、乳酸アリル等が挙げられる)、アリルオキシエタノール等が挙げられる。 Specific examples of the allyl compound include allyl esters (for example, allyl acetate, allyl caproate, allyl caprylate, allyl laurate, allyl palmitate, allyl stearate, allyl benzoate, allyl acetoacetate, lactic acid). Allyl and the like), and allyloxyethanol and the like.
 上記ビニルエーテル類としては、具体的には、例えば、アルキルビニルエーテル(例えばヘキシルビニルエーテル、オクチルビニルエーテル、デシルビニルエーテル、エチルヘキシルビニルエーテル、メトキシエチルビニルエーテル、エトキシエチルビニルエーテル、クロルエチルビニルエーテル、1-メチル-2,2-ジメチルプロピルビニルエーテル、2-エチルブチルビニルエーテル、ヒドロキシエチルビニルエーテル、ジエチレングリコールビニルエーテル、ジメチルアミノエチルビニルエーテル、ジエチルアミノエチルビニルエーテル、ブチルアミノエチルビニルエーテル、ベンジルビニルエーテル、テトラヒドロフルフリルビニルエーテル等が挙げられる)、ビニルアリールエーテル(例えばビニルフェニルエーテル、ビニルトリルエーテル、ビニルクロルフェニルエーテル、ビニル-2,4-ジクロルフェニルエーテル、ビニルナフチルエーテル、ビニルアントラニルエーテル等が挙げられる)等が挙げられる。 Specific examples of the vinyl ethers include alkyl vinyl ethers (for example, hexyl vinyl ether, octyl vinyl ether, decyl vinyl ether, ethylhexyl vinyl ether, methoxyethyl vinyl ether, ethoxyethyl vinyl ether, chloroethyl vinyl ether, 1-methyl-2,2-dimethyl). Propyl vinyl ether, 2-ethylbutyl vinyl ether, hydroxyethyl vinyl ether, diethylene glycol vinyl ether, dimethylaminoethyl vinyl ether, diethylaminoethyl vinyl ether, butylaminoethyl vinyl ether, benzyl vinyl ether, tetrahydrofurfuryl vinyl ether, etc.), vinyl aryl ether (for example, vinyl phenyl) Ether, vinyl Rirueteru, vinyl chlorophenyl ether, vinyl 2,4-dichlorophenyl ether, vinyl naphthyl ether and vinyl anthranyl ether and the like) and the like.
 上記ビニルエステル類としては、具体的には、例えば、ビニルブチレート、ビニルイソブチレート、ビニルトリメチルアセテート、ビニルジエチルアセテート、ビニルバレート、ビニルカプロエート、ビニルクロルアセテート、ビニルジクロルアセテート、ビニルメトキシアセテート、ビニルブトキシアセテート、ビニルフェニルアセテート、ビニルアセトアセテート、ビニルラクテート、ビニル-β-フェニルブチレート、安息香酸ビニル、サリチル酸ビニル、クロル安息香酸ビニル、テトラクロル安息香酸ビニル、ナフトエ酸ビニル等が挙げられる。 Specific examples of the vinyl esters include, for example, vinyl butyrate, vinyl isobutyrate, vinyl trimethyl acetate, vinyl diethyl acetate, vinyl Valate, vinyl caproate, vinyl chloroacetate, vinyl dichloroacetate, vinyl methoxy. Examples include acetate, vinyl butoxyacetate, vinylphenyl acetate, vinyl acetoacetate, vinyl lactate, vinyl-β-phenylbutyrate, vinyl benzoate, vinyl salicylate, vinyl chlorobenzoate, vinyl tetrachlorobenzoate, vinyl naphthoate and the like.
 上記スチレン類としては、具体的には、例えば、スチレン、アルキルスチレン(例えばメチルスチレン、ジメチルスチレン、トリメチルスチレン、エチルスチレン、ジエチルスチレン、イソプロピルスチレン、ブチルスチレン、ヘキシルスチレン、シクロヘキシルスチレン、デシルスチレン、ベンジルスチレン、クロルメチルスチレン、トリフルオロメチルスチレン、エトキシメチルスチレン、アセトキシメチルスチレン等が挙げられる)、アルコキシスチレン(例えばメトキシスチレン、4-メトキシ-3-メチルスチレン、ジメトキシスチレン等が挙げられる)、ハロゲンスチレン(例えばクロルスチレン、ジクロルスチレン、トリクロルスチレン、テトラクロルスチレン、ペンタクロルスチレン、ブロムスチレン、ジブロムスチレン、ヨードスチレン、フルオロスチレン、トリフルオロスチレン、2-ブロム-4-トリフルオロメチルスチレン、4-フルオロ-3-トリフルオロメチルスチレン等が挙げられる)等が挙げられる。 Specific examples of the styrenes include styrene and alkyl styrene (for example, methyl styrene, dimethyl styrene, trimethyl styrene, ethyl styrene, diethyl styrene, isopropyl styrene, butyl styrene, hexyl styrene, cyclohexyl styrene, decyl styrene, benzyl). Styrene, chloromethyl styrene, trifluoromethyl styrene, ethoxymethyl styrene, acetoxymethyl styrene, etc.), alkoxy styrene (for example, methoxy styrene, 4-methoxy-3-methyl styrene, dimethoxy styrene, etc.), halogen styrene (For example, chlorostyrene, dichlorostyrene, trichlorostyrene, tetrachlorostyrene, pentachlorostyrene, bromostyrene, dibromostyrene Iodostyrene, fluorostyrene, trifluorostyrene, 2-bromo-4-trifluoromethyl styrene, 4-fluoro-3-trifluoromethyl styrene, and the like) and the like.
 アルカリ可溶性樹脂を構成するこれらモノマーは、単独で用いてもよく、二種類以上を組み合わせて用いてもよい。 These monomers constituting the alkali-soluble resin may be used alone or in combination of two or more.
 上記例示のモノマーのうち、メタクリル酸、メチルメタクリレート、イソブチルメタクリレート、グリシジルメタクリレート、ベンジルメタクリレートがより好ましく、メタクリル酸とグリシジルメタクリレートとベンジルメタクリレートとの組み合わせ、および、メタクリル酸とメチルメタクリレートとイソブチルメタクリレートとの組み合わせがさらに好ましい。つまり、アルカリ可溶性樹脂は、これらモノマーを重合してなる重合体または共重合体であることがより好ましい。 Among the monomers exemplified above, methacrylic acid, methyl methacrylate, isobutyl methacrylate, glycidyl methacrylate, and benzyl methacrylate are more preferable, a combination of methacrylic acid, glycidyl methacrylate, and benzyl methacrylate, and a combination of methacrylic acid, methyl methacrylate, and isobutyl methacrylate. Is more preferable. That is, the alkali-soluble resin is more preferably a polymer or copolymer obtained by polymerizing these monomers.
 尚、酸価が50~250mgKOH/gの範囲内であれば、アルカリ可溶性樹脂は、上記例示のモノマーのうち、少なくとも一種類と、他のモノマーとを含むモノマー組成物を共重合してなる共重合体であってもよい。 If the acid value is in the range of 50 to 250 mgKOH / g, the alkali-soluble resin is a copolymer obtained by copolymerizing a monomer composition containing at least one of the above-exemplified monomers and another monomer. It may be a polymer.
 アルカリ可溶性樹脂の製造方法、つまり、上記モノマーの重合方法は、特に限定されるものではなく、従来公知の重合方法を採用することができる。また、アルカリ可溶性樹脂の重量平均分子量(Mw)は、特に限定されないものの、5,000~80,000の範囲内であることがより好適である。 The production method of the alkali-soluble resin, that is, the polymerization method of the monomer is not particularly limited, and a conventionally known polymerization method can be employed. The weight average molecular weight (Mw) of the alkali-soluble resin is not particularly limited, but is more preferably in the range of 5,000 to 80,000.
 <光重合開始剤>
 光重合開始剤は、前記光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂(但し、アクリロイル基またはメタクリロイル基を分子内に有していている場合)を光重合させることができる開始剤であればよく、従来公知の光重合開始剤を用いることができ、特に限定されるものではない。
<Photopolymerization initiator>
If a photoinitiator is an initiator which can photopolymerize the said photopolymerizable (meth) acryl monomer and alkali-soluble resin (however, when it has an acryloyl group or a methacryloyl group in a molecule | numerator). Well known photopolymerization initiators can be used and are not particularly limited.
 上記光重合開始剤としては、具体的には、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ビス(4-ジメチルアミノフェニル)ケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾル-3-イル],1-(o-アセチルオキシム)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、4-ベンゾイル-4’-メチルジメチルスルフィド、4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸ブチル、4-ジメチルアミノ-2-エチルヘキシル安息香酸、4-ジメチルアミノ-2-イソアミル安息香酸、ベンジル-β-メトキシエチルアセタール、ベンジルジメチルケタール、1-フェニル-1,2-プロパンジオン-2-(o-エトキシカルボニル)オキシム、o-ベンゾイル安息香酸メチル、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、1-クロロ-4-プロポキシチオキサントン、チオキサンテン、2-クロロチオキサンテン、2,4-ジエチルチオキサンテン、2-メチルチオキサンテン、2-イソプロピルチオキサンテン、2-エチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ジフェニルアントラキノン、アゾビスイソブチロニトリル、ベンゾイルパーオキシド、クメンパーオキシド、2-メルカプトベンゾイミダール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール、2-(o-クロロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-クロロフェニル)-4,5-ジ(メトキシフェニル)イミダゾール二量体、2-(o-フルオロフェニル)-4,5-ジフェニルイミダゾール二量体、2-(o-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2-(p-メトキシフェニル)-4,5-ジフェニルイミダゾール二量体、2,4,5-トリアリールイミダゾール二量体、ベンゾフェノン、2-クロロベンゾフェノン、4,4’-ビスジメチルアミノベンゾフェノン(即ち、ミヒラーズケトン)、4,4’-ビスジエチルアミノベンゾフェノン(即ち、エチルミヒラーズケトン)、4,4’-ジクロロベンゾフェノン、3,3-ジメチル-4-メトキシベンゾフェノン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、ベンゾイン-t-ブチルエーテル、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ジクロロアセトフェノン、トリクロロアセトフェノン、p-t-ブチルアセトフェノン、p-ジメチルアミノアセトフェノン、p-t-ブチルトリクロロアセトフェノン、p-t-ブチルジクロロアセトフェノン、α,α-ジクロロ-4-フェノキシアセトフェノン、チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、ジベンゾスベロン、ペンチル-4-ジメチルアミノベンゾエート、9-フェニルアクリジン、1,7-ビス-(9-アクリジニル)ヘプタン、1,5-ビス-(9-アクリジニル)ペンタン、1,3-ビス-(9-アクリジニル)プロパン、p-メトキシトリアジン、2,4,6-トリス(トリクロロメチル)-s-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(5-メチルフラン-2-イル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(フラン-2-イル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(4-ジエチルアミノ-2-メチルフェニル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(3,4-ジメトキシフェニル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-n-ブトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-ビス-トリクロロメチル-6-(3-ブロモ-4-メトキシ)フェニル-s-トリアジン、2,4-ビス-トリクロロメチル-6-(2-ブロモ-4-メトキシ)フェニル-s-トリアジン、2,4-ビス-トリクロロメチル-6-(3-ブロモ-4-メトキシ)スチリルフェニル-s-トリアジン、2,4-ビス-トリクロロメチル-6-(2-ブロモ-4-メトキシ)スチリルフェニル-s-トリアジン等が挙げられる。また、光重合開始剤として、市販品である「IRGACURE OXE02」,「IRGACURE OXE01」,「IRGACURE 369」,「IRGACURE 651」,「IRGACURE 907」(商品名:何れもBASF社製)、「NCI-831」(商品名:ADEKA製)等も用いることができる。 Specific examples of the photopolymerization initiator include 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and 1- [4- (2-hydroxyethoxy). Phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl)- 2-hydroxy-2-methylpropan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, bis (4-dimethylaminophenyl) ketone, 2-methyl-1- [4- ( Methylthio) phenyl] -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane- -One, ethanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl], 1- (o-acetyloxime), 2,4,6-trimethylbenzoyldiphenylphosphine oxide 4-benzoyl-4′-methyldimethylsulfide, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, butyl 4-dimethylaminobenzoate, 4-dimethylamino-2- Ethylhexylbenzoic acid, 4-dimethylamino-2-isoamylbenzoic acid, benzyl-β-methoxyethyl acetal, benzyldimethyl ketal, 1-phenyl-1,2-propanedione-2- (o-ethoxycarbonyl) oxime, o- Methyl benzoylbenzoate, 2,4-diethylthioxanthone, 2 -Chlorothioxanthone, 2,4-dimethylthioxanthone, 1-chloro-4-propoxythioxanthone, thioxanthene, 2-chlorothioxanthene, 2,4-diethylthioxanthene, 2-methylthioxanthene, 2-isopropylthioxanthene, 2- Ethyl anthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-diphenylanthraquinone, azobisisobutyronitrile, benzoyl peroxide, cumene peroxide, 2-mercaptobenzoimidar, 2-mercaptobenzoxazole, 2 -Mercaptobenzothiazole, 2- (o-chlorophenyl) -4,5-diphenylimidazole dimer, 2- (o-chlorophenyl) -4,5-di (methoxyphenyl) imidazole dimer, 2- o-fluorophenyl) -4,5-diphenylimidazole dimer, 2- (o-methoxyphenyl) -4,5-diphenylimidazole dimer, 2- (p-methoxyphenyl) -4,5-diphenylimidazole Dimer, 2,4,5-triarylimidazole dimer, benzophenone, 2-chlorobenzophenone, 4,4′-bisdimethylaminobenzophenone (ie, Michler's ketone), 4,4′-bisdiethylaminobenzophenone (ie, Ethyl Michler's ketone), 4,4'-dichlorobenzophenone, 3,3-dimethyl-4-methoxybenzophenone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobu Ether, benzoin-t-butyl ether, acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, dichloroacetophenone, trichloroacetophenone, pt-butylacetophenone, p-dimethylaminoacetophenone, pt-butyltrichloroacetophenone, pt-butyldichloroacetophenone, α, α-dichloro-4-phenoxyacetophenone, thioxanthone, 2-methylthioxanthone, 2-isopropylthioxanthone, dibenzosuberone, pentyl-4-dimethylaminobenzoate 9-phenylacridine, 1,7-bis- (9-acridinyl) heptane, 1,5-bis- (9-acridinyl) pentane, 1,3-bis- (9-a Lysinyl) propane, p-methoxytriazine, 2,4,6-tris (trichloromethyl) -s-triazine, 2-methyl-4,6-bis (trichloromethyl) -s-triazine, 2- [2- (5 -Methylfuran-2-yl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (furan-2-yl) ethenyl] -4,6-bis (trichloromethyl)- s-triazine, 2- [2- (4-diethylamino-2-methylphenyl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (3,4-dimethoxyphenyl) ethenyl ] -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-etho Xistyryl) -4,6-bis (trichloromethyl) -s-triazine, 2- (4-n-butoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2,4-bis-trichloromethyl -6- (3-bromo-4-methoxy) phenyl-s-triazine, 2,4-bis-trichloromethyl-6- (2-bromo-4-methoxy) phenyl-s-triazine, 2,4-bis- And trichloromethyl-6- (3-bromo-4-methoxy) styrylphenyl-s-triazine, 2,4-bis-trichloromethyl-6- (2-bromo-4-methoxy) styrylphenyl-s-triazine, etc. It is done. As the photopolymerization initiator, commercially available products “IRGACURE OXE02”, “IRGACURE OXE01”, “IRGACURE 369”, “IRGACURE 651”, “IRGACURE 907” (trade names: all manufactured by BASF), “NCI- 831 "(trade name: manufactured by ADEKA) or the like can also be used.
 上記例示の光重合開始剤のうち、例えば前記光重合性(メタ)アクリルモノマーが2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物である場合には、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オンがより好ましい。 Among the photopolymerization initiators exemplified above, for example, the photopolymerizable (meth) acrylic monomer is 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, bisphenol. In the case of a (meth) acrylic acid adduct of A diglycidyl ether, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one is more preferred.
 光重合開始剤の添加量は、光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂(但し、アクリロイル基またはメタクリロイル基を分子内に有していている場合)の種類や割合に応じて設定すればよく、特に限定されないものの、前記TiO2フィラー、光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂の合計量(100質量%)に対して、0.5~10質量%の範囲内であることがより好ましい。 The addition amount of the photopolymerization initiator can be set according to the type and ratio of the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin (provided that the acryloyl group or methacryloyl group is contained in the molecule). Well, although not particularly limited, it is within the range of 0.5 to 10% by mass with respect to the total amount (100% by mass) of the TiO 2 filler, the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin. More preferred.
 <有機溶剤>
 有機溶剤は、前記光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂を必要な濃度で均一に溶解させることができる溶剤であればよく、従来公知の有機溶剤を用いることができ、特に限定されるものではない。
<Organic solvent>
The organic solvent only needs to be a solvent that can uniformly dissolve the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin at a necessary concentration, and conventionally known organic solvents can be used and are particularly limited. It is not a thing.
 上記有機溶剤としては、例えば、飽和脂肪族炭化水素、芳香族炭化水素、テルペン溶剤、ラクトン類、ケトン類、多価アルコール類、環式エーテル類、エステル類、或いは、エチレングリコールモノアセテート、ジエチレングリコールモノアセテート、プロピレングリコールモノアセテート、ジプロピレングリコールモノアセテート等のエステル結合を有する化合物;上記多価アルコール類または上記エステル結合を有する化合物のモノメチルエーテル、モノエチルエーテル、モノプロピルエーテル、モノブチルエーテル等の、モノアルキルエーテルまたはモノフェニルエーテル等のエーテル結合を有する化合物;等の多価アルコール類の誘導体等を用いることができる。上記多価アルコール類の誘導体のうち、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテートがより好ましい。 Examples of the organic solvent include saturated aliphatic hydrocarbons, aromatic hydrocarbons, terpene solvents, lactones, ketones, polyhydric alcohols, cyclic ethers, esters, ethylene glycol monoacetate, diethylene glycol monoester. Compounds having an ester bond such as acetate, propylene glycol monoacetate, dipropylene glycol monoacetate; monohydric compounds such as monomethyl ether, monoethyl ether, monopropyl ether, monobutyl ether of the above polyhydric alcohols or compounds having an ester bond Derivatives of polyhydric alcohols such as compounds having an ether bond such as alkyl ether or monophenyl ether; Of the polyhydric alcohol derivatives, diethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), and propylene glycol monoethyl ether acetate are more preferable.
 上記飽和脂肪族炭化水素としては、直鎖状、分岐状または環状の炭化水素が挙げられ、具体的には、例えば、ヘキサン、ヘプタン、オクタン、ノナン、メチルオクタン、デカン、ウンデカン、ドデカン、トリデカン等の直鎖状の炭化水素、炭素数3から15の分岐状の炭化水素;シクロヘキサン、シクロヘプタン、シクロオクタン、デカヒドロナフタレン、p-メンタン、o-メンタン、m-メンタン、ジフェニルメンタン、α-テルピネン、β-テルピネン、γ-テルピネン、1,4-テルピン、1,8-テルピン、ボルナン、ノルボルナン、ピナン、α-ピネン、β-ピネン、ツジャン、α-ツジョン、β-ツジョン、カラン、ロンギホレン等の環状の炭化水素;等が挙げられる。 Examples of the saturated aliphatic hydrocarbon include linear, branched or cyclic hydrocarbons, and specifically, for example, hexane, heptane, octane, nonane, methyloctane, decane, undecane, dodecane, tridecane, etc. Linear hydrocarbons, branched hydrocarbons having 3 to 15 carbon atoms; cyclohexane, cycloheptane, cyclooctane, decahydronaphthalene, p-menthane, o-menthane, m-menthane, diphenylmenthane, α-terpinene , Β-terpinene, γ-terpinene, 1,4-terpine, 1,8-terpine, bornane, norbornane, pinane, α-pinene, β-pinene, tujang, α-tujon, β-tujon, caran, longifolene, etc. Cyclic hydrocarbons; and the like.
 上記芳香族炭化水素としては、具体的には、例えば、アニソール、エチルベンジルエーテル、クレジルメチルエーテル、ジフェニルエーテル、ジベンジルエーテル、フェネトール、ブチルフェニルエーテル等が挙げられる。また、芳香族炭化水素として、縮合多環式炭化水素を用いることもできる。縮合多環式炭化水素とは、二つ以上の単環がそれぞれの環の辺を互いに一つだけ供給してできる縮合環の炭化水素であり、二つの単環が縮合されてなる炭化水素を用いることが好ましい。このような炭化水素としては、5員環と6員環との組み合わせ、または、二つの6員環の組み合わせが挙げられる。5員環と6員環とを組み合わせた炭化水素としては、例えば、インデン、ペンタレン、インダン、テトラヒドロインデン等が挙げられ、二つの6員環を組み合わせた炭化水素としては、例えば、ナフタレン、テトラヒドロナフタリン(テトラリン)、およびデカヒドロナフタリン(デカリン)等が挙げられる。 Specific examples of the aromatic hydrocarbon include anisole, ethyl benzyl ether, cresyl methyl ether, diphenyl ether, dibenzyl ether, phenetole, and butyl phenyl ether. Moreover, condensed polycyclic hydrocarbon can also be used as an aromatic hydrocarbon. A condensed polycyclic hydrocarbon is a condensed ring hydrocarbon formed by two or more monocycles supplying only one side of each ring to each other, and is a hydrocarbon obtained by condensing two monocycles. It is preferable to use it. Examples of such hydrocarbons include a combination of a 5-membered ring and a 6-membered ring, or a combination of two 6-membered rings. Examples of hydrocarbons combining 5-membered rings and 6-membered rings include indene, pentalene, indane, tetrahydroindene, etc. Examples of hydrocarbons combining two 6-membered rings include naphthalene, tetrahydronaphthalene. (Tetralin) and decahydronaphthalene (decalin).
 上記テルペン溶剤は、極性基として酸素原子、カルボニル基またはアセトキシ基等を有している。当該テルペン溶剤としては、具体的には、例えば、ゲラニオール、ネロール、リナロール、シトラール、シトロネロール、メントール、イソメントール、ネオメントール、α-テルピネオール、β-テルピネオール、γ-テルピネオール、テルピネン-1-オール、テルピネン-4-オール、ジヒドロターピニルアセテート、1,4-シネオール、1,8-シネオール、ボルネオール、カルボン、ヨノン、ツヨン、カンファー等が挙げられる。 The terpene solvent has an oxygen atom, a carbonyl group or an acetoxy group as a polar group. Specific examples of the terpene solvent include geraniol, nerol, linalool, citral, citronellol, menthol, isomenthol, neomenthol, α-terpineol, β-terpineol, γ-terpineol, terpinene-1-ol, terpinene. Examples include -4-ol, dihydroterpinyl acetate, 1,4-cineole, 1,8-cineole, borneol, carvone, yonon, tuyon, camphor and the like.
 上記ラクトン類としては、具体的には、例えば、γ-ブチロラクトン等が挙げられる。 Specific examples of the lactones include γ-butyrolactone.
 上記ケトン類としては、具体的には、例えば、アセトン、メチルエチルケトン、シクロヘキサノン、メチル-n-ペンチルケトン、メチルイソペンチルケトン、2-ヘプタノン等が挙げられる。 Specific examples of the ketones include acetone, methyl ethyl ketone, cyclohexanone, methyl-n-pentyl ketone, methyl isopentyl ketone, and 2-heptanone.
 上記多価アルコール類としては、具体的には、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール等が挙げられる。 Specific examples of the polyhydric alcohols include ethylene glycol, diethylene glycol, propylene glycol, and dipropylene glycol.
 上記環式エーテル類としては、具体的には、例えば、ジオキサン等が挙げられる。 Specific examples of the cyclic ethers include dioxane.
 上記エステル類としては、具体的には、例えば、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸ブチル、ピルビン酸メチル、ピルビン酸エチル、メトキシプロピオン酸メチル、エトキシプロピオン酸エチル等が挙げられる。 Specific examples of the esters include methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, butyl acetate, methyl pyruvate, ethyl pyruvate, methyl methoxypropionate, and ethyl ethoxypropionate.
 これら有機溶剤は、単独で用いてもよく、二種類以上を組み合わせて混合溶剤として用いてもよい。 These organic solvents may be used alone or in combination of two or more as a mixed solvent.
 上記例示の有機溶剤のうち、例えば前記光重合性(メタ)アクリルモノマーが2-(メタ)アクリロイルオキシエチル-2-ヒドロキシプロピルフタレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、ビスフェノールAジグリシジルエーテルの(メタ)アクリル酸付加物である場合には、多価アルコール類の誘導体がより好ましく、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル(PGME)、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノエチルエーテルアセテートがさらに好ましい。 Among the organic solvents exemplified above, for example, the photopolymerizable (meth) acrylic monomer is 2- (meth) acryloyloxyethyl-2-hydroxypropyl phthalate, 2-hydroxy-3-phenoxypropyl (meth) acrylate, bisphenol A diester. In the case of a (meth) acrylic acid adduct of glycidyl ether, a derivative of a polyhydric alcohol is more preferable. Diethylene glycol monobutyl ether, propylene glycol monomethyl ether (PGME), propylene glycol monomethyl ether acetate (PGMEA), propylene glycol mono More preferred is ethyl ether acetate.
 有機溶剤の使用量は、光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂の種類や割合に応じて設定すればよく、特に限定されないものの、前記TiO2フィラー、光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂の合計量(100質量%)に対して、3~20質量%の範囲内であることがより好ましい。 The amount of the organic solvent used may be set according to the type and ratio of the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin, and is not particularly limited. However, the TiO 2 filler, the photopolymerizable (meth) acrylic monomer and More preferably, it is in the range of 3 to 20% by mass with respect to the total amount (100% by mass) of the alkali-soluble resin.
 <感光性組成物の製造方法>
 前記TiO2フィラー、光重合性(メタ)アクリルモノマー、アルカリ可溶性樹脂、光重合開始剤、および有機溶剤を互いに混合すると共に、TiO2フィラー、光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂の合計量に占めるTiO2フィラーの割合を、10~35質量%の範囲内に調節することにより、本発明に係る感光性組成物が得られる。TiO2フィラー、光重合性(メタ)アクリルモノマー、アルカリ可溶性樹脂、光重合開始剤、および有機溶剤の混合順序は特に限定されないものの、混合の容易さから、有機溶剤にTiO2フィラー、光重合性(メタ)アクリルモノマー、およびアルカリ可溶性樹脂を添加して混合することがより好ましい。また、混合方法としては、例えば、TiO2フィラー、光重合性(メタ)アクリルモノマー、アルカリ可溶性樹脂、光重合開始剤、および有機溶剤を容器に入れて攪拌し、大まかに混合した後、3本ロールミル等の分散機や混合機を用いてさらに混合する方法が挙げられるが、均一に混合してTiO2フィラーを均一に分散させることができる方法であればよく、特に限定されるものではない。
<Method for producing photosensitive composition>
The TiO 2 filler, photopolymerizable (meth) acrylic monomer, alkali-soluble resin, photopolymerization initiator, and organic solvent are mixed together, and the total of the TiO 2 filler, photopolymerizable (meth) acrylic monomer, and alkali-soluble resin. The photosensitive composition according to the present invention can be obtained by adjusting the proportion of the TiO 2 filler in the amount within the range of 10 to 35% by mass. Although the mixing order of the TiO 2 filler, photopolymerizable (meth) acrylic monomer, alkali-soluble resin, photopolymerization initiator, and organic solvent is not particularly limited, the TiO 2 filler, photopolymerizable to the organic solvent is easy to mix. More preferably, the (meth) acrylic monomer and the alkali-soluble resin are added and mixed. In addition, as a mixing method, for example, a TiO 2 filler, a photopolymerizable (meth) acrylic monomer, an alkali-soluble resin, a photopolymerization initiator, and an organic solvent are put in a container and stirred, and then roughly mixed. A method of further mixing using a disperser such as a roll mill or a mixer can be mentioned, but there is no particular limitation as long as the method can uniformly mix and disperse the TiO 2 filler uniformly.
 そして、TiO2フィラーの割合および平均粒径、並びに、光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂の組成を本発明の範囲内で最適化することにより、目的とする光散乱特性を有するパターンを形成するのに好適な、フォトリソグラフィー特性を備えた感光性組成物が得られる。 Then, the pattern having the ratio and average particle diameter of the TiO 2 filler, and by optimizing within the scope of the present invention the composition of the photopolymerizable (meth) acrylic monomer and an alkali-soluble resin, the light scattering properties of interest A photosensitive composition having photolithographic properties suitable for forming a film is obtained.
 〔パターン〕
 上記感光性組成物に含まれる光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂(但し、アクリロイル基またはメタクリロイル基を分子内に有していている場合)を重合させることにより、つまり、フォトリソグラフィー特性を備えた上記感光性組成物を例えば透明基板に塗布し、乾燥、露光および現像して被膜とすることにより、本発明に係る光散乱機能を有するパターンを効率的に形成することができる。
〔pattern〕
By polymerizing the photopolymerizable (meth) acrylic monomer and the alkali-soluble resin (provided that they have an acryloyl group or a methacryloyl group in the molecule) contained in the photosensitive composition, that is, photolithography characteristics For example, the above-mentioned photosensitive composition comprising the above is applied to a transparent substrate, dried, exposed and developed to form a film, whereby the pattern having the light scattering function according to the present invention can be efficiently formed.
 感光性組成物の塗布方法としては、例えば、アプリケーターを用いた方法が挙げられるものの、感光性組成物の粘度に応じて均一な厚さに塗布することができる方法であればよく、特に限定されるものではない。また、塗布時の温度や湿度等の塗布条件は、感光性組成物の組成等に応じて適宜設定すればよい。 The method for applying the photosensitive composition includes, for example, a method using an applicator, but may be any method that can be applied to a uniform thickness according to the viscosity of the photosensitive composition, and is not particularly limited. It is not something. Moreover, what is necessary is just to set suitably application | coating conditions, such as temperature at the time of application | coating, and humidity, according to the composition of the photosensitive composition, etc.
 塗布した感光性組成物の乾燥方法としては、例えば、ホットプレート等の加熱装置を用いて加熱する(ベーク処理する)方法が挙げられるものの、感光性組成物全体を均一に加熱して有機溶剤を充分に揮発させることができる方法であればよく、特に限定されるものではない。また、加熱温度や加熱時間等の乾燥条件は、有機溶剤の種類や感光性組成物の膜厚等に応じて適宜設定すればよい。 As a method for drying the applied photosensitive composition, for example, there is a method of heating (baking) using a heating device such as a hot plate, but the entire photosensitive composition is heated uniformly to remove the organic solvent. Any method can be used as long as it can be volatilized sufficiently, and it is not particularly limited. Moreover, what is necessary is just to set suitably drying conditions, such as heating temperature and a heating time, according to the kind of organic solvent, the film thickness of a photosensitive composition, etc.
 乾燥した感光性組成物の露光方法としては、例えば、所望するパターンに対応するマスクを介して、超高圧水銀灯等の硬化用光源を用いて光照射する方法が挙げられるものの、感光性組成物全体を均一に露光することができる方法であればよく、特に限定されるものではない。また、光の種類や強度、照射時間等の露光条件は、光重合開始剤の種類や感光性組成物の膜厚等に応じて適宜設定すればよい。 Examples of the exposure method of the dried photosensitive composition include a method of irradiating light with a curing light source such as an ultrahigh pressure mercury lamp through a mask corresponding to a desired pattern, but the entire photosensitive composition The method is not particularly limited as long as it can be uniformly exposed. Moreover, what is necessary is just to set suitably exposure conditions, such as the kind of light, intensity | strength, and irradiation time, according to the kind of photoinitiator, the film thickness of a photosensitive composition, etc.
 露光後の感光性組成物の現像方法としては、例えば、炭酸ナトリウム(Na2CO3)水溶液、テトラメチルアンモニウムヒドロキシド水溶液、水酸化カリウム水溶液、水酸化ナトリウム水溶液等のアルカリ性水溶液をスプレーして現像(スプレー現像)する方法が挙げられるものの、硬化していない部分のアルカリ可溶性樹脂を充分に溶解させることができる方法、つまり、感光性組成物を除去することができる方法であればよく、特に限定されるものではない。また、アルカリ性水溶液の種類や濃度、現像時間等の現像条件は、アルカリ可溶性樹脂の種類や感光性組成物の膜厚等に応じて適宜設定すればよい。 As a developing method of the photosensitive composition after exposure, for example, an alkaline aqueous solution such as an aqueous solution of sodium carbonate (Na 2 CO 3 ), an aqueous solution of tetramethylammonium hydroxide, an aqueous solution of potassium hydroxide, or an aqueous solution of sodium hydroxide is sprayed and developed. Although there is a method of (spray development), any method that can sufficiently dissolve the alkali-soluble resin in the uncured portion, that is, a method that can remove the photosensitive composition, may be used. Is not to be done. Moreover, what is necessary is just to set suitably development conditions, such as a kind and density | concentration of alkaline aqueous solution, and development time, according to the kind of alkali-soluble resin, the film thickness of a photosensitive composition, etc.
 露光後の感光性組成物を現像することにより、硬化物である被膜、つまり、本発明に係る光散乱機能を有する所望のパターンが効率的に得られる。本発明に係るパターンは、例えば表示装置の散乱層として好適に使用することができる。そして、本発明に係るパターンは、フォトリソグラフィーにより形成することができるので、表示装置の製造方法において、散乱層を形成する前に形成した他のパターン(下地)と高精度でアライメントができ、それゆえ、高精細に当該パターンを形成することができる。 By developing the photosensitive composition after exposure, a film that is a cured product, that is, a desired pattern having a light scattering function according to the present invention can be efficiently obtained. The pattern which concerns on this invention can be used conveniently as a scattering layer of a display apparatus, for example. Since the pattern according to the present invention can be formed by photolithography, in the manufacturing method of the display device, alignment with other patterns (underground) formed before forming the scattering layer can be performed with high accuracy. Therefore, the pattern can be formed with high definition.
 本発明に係る感光性組成物を用いて形成してなる上記パターンとしての被膜の膜厚は、本発明に係る表示装置の散乱層として使用するのに好適な、5~20μmの範囲内であることがより好ましく、5~15μmの範囲内であることがさらに好ましく、7~12μmの範囲内であることが特に好ましい。被膜の膜厚を上記範囲内にすることにより、青色光の配向特性およびフォトリソグラフィー特性を両立させることができる。また、上記パターンとしての被膜は、本発明に係る表示装置の散乱層として使用するのに好適な、下記物理的性質を備えていることがより好ましい。即ち、ヘイズメーターを用いて測定したヘイズは、90%以上であることがより好ましく、全光線透過率および拡散透過率は、30%以上であることがより好ましい。また、分光変角色差計を用いて測定した青色光の配向特性は、計算上のランバーシアン(光強度分布)と比較して、表示装置の表示品位として見た場合に商品として許容することができる±5%の範囲内のずれに納まっていることがより好ましい。従って、視認角度は、±80度であることがより好ましい。尚、ランバーシアンとは、発光面に対する法線方向(θ=0)の光強度をI0としたときに、式「I(θ)=I0×COSθ」で示される光強度分布(I(θ))を指す。 The film thickness of the film as the pattern formed by using the photosensitive composition according to the present invention is in the range of 5 to 20 μm suitable for use as the scattering layer of the display device according to the present invention. More preferably, it is more preferably in the range of 5 to 15 μm, and particularly preferably in the range of 7 to 12 μm. By making the film thickness within the above range, both the alignment characteristics of blue light and the photolithography characteristics can be achieved. Moreover, it is more preferable that the coating film as the pattern has the following physical properties suitable for use as the scattering layer of the display device according to the present invention. That is, the haze measured using a haze meter is more preferably 90% or more, and the total light transmittance and diffuse transmittance are more preferably 30% or more. In addition, the alignment characteristics of blue light measured using a spectroscopic colorimeter can be accepted as a product when viewed as the display quality of a display device, compared to the calculated Lambertian (light intensity distribution). It is more preferable that the deviation is within a range of ± 5%. Therefore, the viewing angle is more preferably ± 80 degrees. Note that Lambertian is a light intensity distribution (I (θ)) represented by the formula “I (θ) = I0 × COSθ”, where I0 is the light intensity in the normal direction (θ = 0) with respect to the light emitting surface. ).
 本発明に係るパターンは、後述するように、本発明に係る表示装置の散乱層として、赤色蛍光体および緑色蛍光体と共に色変換基板を構成することによって使用される。赤色蛍光体から出射される赤色光、および緑色蛍光体から出射される緑色光は、配向特性がランバーシアン(光強度分布)を示す。従って、表示装置における正面方向と斜め方向とで色のシフトが生じないようにするには、青色光の配向特性もランバーシアンを示す必要がある。本発明に係るパターンである散乱層は、光散乱機能を有しており、配向特性がランバーシアンを示すので、表示装置における正面方向に対する斜め方向の色度変化を低減させ、これにより表示装置の表示品位を向上させることができる。 The pattern according to the present invention is used by configuring a color conversion substrate together with a red phosphor and a green phosphor as a scattering layer of the display device according to the present invention, as will be described later. The red light emitted from the red phosphor and the green light emitted from the green phosphor have an alignment characteristic of Lambertian (light intensity distribution). Therefore, in order to prevent a color shift from occurring in the front direction and the oblique direction in the display device, the alignment characteristics of the blue light must also exhibit Lambertian. The scattering layer, which is a pattern according to the present invention, has a light scattering function, and the alignment characteristic exhibits Lambertian, so that the change in chromaticity in the oblique direction with respect to the front direction in the display device is reduced, thereby Display quality can be improved.
 〔表示装置〕
 本発明に係る表示装置は、例えば、図1に示すように、バックライト1と、光シャッター2と、色変換基板3とで少なくとも構成されているディスプレイデバイス(表示部)を有している。尚、ディスプレイデバイス(表示部)の製造方法、および、表示装置の製造方法は、従来公知の製造方法を採用することができ、特に限定されるものではない。
[Display device]
For example, as shown in FIG. 1, the display device according to the present invention includes a display device (display unit) including at least a backlight 1, an optical shutter 2, and a color conversion substrate 3. In addition, the manufacturing method of a display device (display part) and the manufacturing method of a display apparatus can employ | adopt a conventionally well-known manufacturing method, and are not specifically limited.
 バックライト1は、いわゆるエッジライト型であり、青色LEDや青色冷陰極管等を有する光源11と、導光板12とで構成されている。導光板12は、その端面に光源11から出射された青色光が入射されると、当該青色光を導光して光シャッター2側表面から出射する機能を有している。当該導光板12の光シャッター2側表面には、例えばプリズム形状を有する光学シート(図示しない)が設けられている。これにより、当該導光板12は、指向性の高い平行の青色光を出射することができる。 The backlight 1 is a so-called edge light type, and includes a light source 11 having a blue LED, a blue cold cathode tube, and the like, and a light guide plate 12. When the blue light emitted from the light source 11 is incident on the end surface of the light guide plate 12, the light guide plate 12 has a function of guiding the blue light and emitting it from the surface of the optical shutter 2. On the light shutter 2 side surface of the light guide plate 12, for example, an optical sheet (not shown) having a prism shape is provided. Thereby, the said light-guide plate 12 can radiate | emit parallel blue light with high directivity.
 また、本発明に係る表示装置は、例えば、図2に示すように、バックライト1が複数の光源11…で構成されたいわゆる直下型であるディスプレイデバイスを有していてもよい。この表示装置では、光源11…は光シャッター2に対向するように配置されるので、指向性の高い青色LEDを有していることがより好ましい。 Further, the display device according to the present invention may have a so-called direct-type display device in which the backlight 1 is composed of a plurality of light sources 11 as shown in FIG. In this display device, the light sources 11 are arranged so as to face the optical shutter 2, and thus it is more preferable to have a blue LED with high directivity.
 上記光シャッター2は、例えば、液晶パネルや透過型MEMS(微小電子機械システム; Micro Electro Mechanical System)で構成されており、バックライト1から出射された青色光が入射されると、その透過率を制御して色変換基板3側、即ち、視認側に出射する機能を有している。 The optical shutter 2 is composed of, for example, a liquid crystal panel or a transmissive MEMS (Micro Electro Mechanical System). When blue light emitted from the backlight 1 is incident on the optical shutter 2, the transmittance is increased. It has a function of controlling and emitting light to the color conversion substrate 3 side, that is, the visual recognition side.
 上記光シャッター2が液晶パネルである場合について更に説明する。図3および図9(a)に示すように、光シャッター2である液晶パネルは、バックライト1側から、光源側偏光板21、光源側基板22、液晶層23、視認側基板24、および視認側偏光板25がこの順に積層されることによって構成されている。そして、当該液晶パネルは、上記一対の基板22・24間に封入された液晶層23に電圧を印加することにより、液晶パネルに入射された青色光の透過率を任意に制御するようになっている。 The case where the optical shutter 2 is a liquid crystal panel will be further described. As shown in FIG. 3 and FIG. 9A, the liquid crystal panel that is the optical shutter 2 includes, from the backlight 1 side, the light source side polarizing plate 21, the light source side substrate 22, the liquid crystal layer 23, the viewing side substrate 24, and the viewing side. The side polarizing plate 25 is configured by being laminated in this order. The liquid crystal panel arbitrarily controls the transmittance of the blue light incident on the liquid crystal panel by applying a voltage to the liquid crystal layer 23 sealed between the pair of substrates 22 and 24. Yes.
 図3に示すように、上記色変換基板3は、透明基板31と、光シャッター2を介して入射される青色光を波長変換する蛍光体32・33と、光シャッター2を介して入射される青色光を散乱させる散乱層34とを少なくとも備えている。つまり、本発明に係る表示装置は、青色光を出射する光源11を用い、蛍光体32・33によって青色光を赤色光および緑色光に変換して使用すると共に、光源11からの青色光をそのまま青色光として使用するようになっている。色変換基板3の具体的な構成について、図4~6を参照しながら更に説明する。尚、説明の便宜上、紙面において、図4~6に示す色変換基板3の上下は、図3に示す色変換基板3の上下と逆になっている。 As shown in FIG. 3, the color conversion substrate 3 is incident through the transparent substrate 31, phosphors 32 and 33 that convert the wavelength of blue light incident through the optical shutter 2, and the optical shutter 2. And a scattering layer 34 that scatters blue light. That is, the display device according to the present invention uses the light source 11 that emits blue light, converts the blue light into red light and green light by the phosphors 32 and 33, and uses the blue light from the light source 11 as it is. It is designed to be used as blue light. A specific configuration of the color conversion substrate 3 will be further described with reference to FIGS. For convenience of explanation, the upper and lower sides of the color conversion board 3 shown in FIGS. 4 to 6 are opposite to the upper and lower sides of the color conversion board 3 shown in FIG.
 図4に示すように、色変換基板3は、可視光の領域で実質的に透明な例えばガラス等の材料からなる透明基板31、光シャッター2を介して入射される青色光を赤色光に波長変換して透明基板31側に出射する赤色蛍光体32、光シャッター2を介して入射される青色光を緑色光に波長変換して透明基板31側に出射する緑色蛍光体33、および、光シャッター2を介して入射される青色光を散乱させて透明基板31側に出射する散乱層34を備えている。上記赤色蛍光体32、緑色蛍光体33および散乱層34は、透明基板31に対して規則的に配列されることによって画素を構成するパターンを形成しており、ディスプレイデバイスとして表示可能となっている。 As shown in FIG. 4, the color conversion substrate 3 includes a transparent substrate 31 made of a material such as glass that is substantially transparent in the visible light region, and converts the blue light incident through the optical shutter 2 into red light. A red phosphor 32 that is converted and emitted to the transparent substrate 31 side, a blue phosphor incident through the optical shutter 2 is converted into green light, and a green phosphor 33 that is emitted to the transparent substrate 31 side, and an optical shutter 2 is provided with a scattering layer 34 that scatters blue light incident through 2 and emits the blue light to the transparent substrate 31 side. The red phosphor 32, the green phosphor 33, and the scattering layer 34 are regularly arranged with respect to the transparent substrate 31 to form a pattern constituting pixels, and can be displayed as a display device. .
 より具体的には、視認側から見た平面図である図9(b)に示すように、赤色蛍光体32、緑色蛍光体33、および、散乱層34は、透明基板31に対して格子状に順番に配列されることによって画素を構成するパターンを形成している。一つの画素を構成する個々の赤色蛍光体32、緑色蛍光体33、および、散乱層34の大きさおよび形状は、通常、30~120μm×90~360μm程度の長方形(図9(a)中、矢印で示す視認側から見た大きさおよび形状)であるものの、特に限定されるものではない。 More specifically, as shown in FIG. 9B, which is a plan view seen from the viewing side, the red phosphor 32, the green phosphor 33, and the scattering layer 34 are latticed with respect to the transparent substrate 31. The pattern which comprises a pixel is formed by arranging in order. The size and shape of each red phosphor 32, green phosphor 33, and scattering layer 34 constituting one pixel is usually a rectangle of about 30 to 120 μm × 90 to 360 μm (in FIG. 9A, Although it is the size and shape seen from the visual recognition side shown by the arrow), it is not particularly limited.
 上記赤色蛍光体32および緑色蛍光体33を構成する蛍光体材料は、有機蛍光体材料、無機蛍光体材料、ナノ蛍光体材料等の各種蛍光体材料の中から、当該蛍光体32・33の厚さ(膜厚)、蛍光体材料を励起する青色光の吸収率、蛍光体32・33から出射される赤色光または緑色光の透過率等の各種条件を考慮して適宜選択すればよい。蛍光体材料は、青色光を受光すると励起して、励起光である赤色光または緑色光を発生して透明基板31側に出射する。有機蛍光体材料としては、例えば、ローダミンB等のローダミン系色素等の赤色蛍光色素、クマリン6等のクマリン系色素等の緑色蛍光色素が挙げられる。無機蛍光体材料としては、例えば、CdSe、ZnS等が挙げられる。ナノ蛍光体材料としては、例えば、CdSeやZnS等からなるナノ粒子を、例えばシリコーン系樹脂やエポキシ系樹脂、(メタ)アクリル系樹脂等の実質的に透明樹脂からなるバインダ内に均一に拡散してなる材料が挙げられる。 The phosphor material constituting the red phosphor 32 and the green phosphor 33 is the thickness of the phosphors 32 and 33 among various phosphor materials such as an organic phosphor material, an inorganic phosphor material, and a nano phosphor material. The thickness (film thickness), the absorptivity of blue light that excites the phosphor material, and the transmittance of red light or green light emitted from the phosphors 32 and 33 may be selected as appropriate. The phosphor material is excited when it receives blue light, generates red light or green light as excitation light, and emits it toward the transparent substrate 31 side. Examples of the organic phosphor material include red fluorescent dyes such as rhodamine dyes such as rhodamine B, and green fluorescent dyes such as coumarin dyes such as coumarin 6. Examples of the inorganic phosphor material include CdSe and ZnS. As the nanophosphor material, for example, nanoparticles made of CdSe, ZnS, etc. are uniformly diffused into a binder made of a substantially transparent resin such as silicone resin, epoxy resin, (meth) acrylic resin, etc. The material which consists of.
 上記散乱層34は、本発明に係るパターンであり、本発明に係る感光性組成物に含まれる前記光重合性(メタ)アクリルモノマー等を硬化してなる膜状の硬化物(被膜)で構成されている。散乱層34は、赤色蛍光体32および緑色蛍光体33の配向特性と実質的に同一の配向特性を備えていることが望ましい。尚、本発明において「実質的に同一の配向特性」とは、表示装置の表示品位が商品として許容することができる状態である配向特性を指す。 The scattering layer 34 is a pattern according to the present invention, and is composed of a film-like cured product (film) formed by curing the photopolymerizable (meth) acrylic monomer or the like contained in the photosensitive composition according to the present invention. Has been. It is desirable that the scattering layer 34 has substantially the same orientation characteristics as the orientation characteristics of the red phosphor 32 and the green phosphor 33. In the present invention, “substantially the same orientation characteristic” refers to an orientation characteristic in which the display quality of the display device is acceptable as a product.
 また、上記赤色蛍光体32、緑色蛍光体33および散乱層34の側面(透明基板31に対して平行でない面)部には、反射層35が必要に応じて形成されている。反射層35は、透明基板31から出射されない例えば横方向(透明基板31に対して平行な方向)等に向かう光を反射させて透明基板31から出射させる機能を有している。これにより、光の利用効率をより向上させることができる。 Further, a reflective layer 35 is formed on the side surfaces (surfaces not parallel to the transparent substrate 31) of the red phosphor 32, the green phosphor 33, and the scattering layer 34 as necessary. The reflective layer 35 has a function of reflecting light that is not emitted from the transparent substrate 31, for example, in a lateral direction (a direction parallel to the transparent substrate 31) or the like and that is emitted from the transparent substrate 31. Thereby, the utilization efficiency of light can be improved more.
 さらに、上記赤色蛍光体32、緑色蛍光体33および散乱層34の間(透明基板31上における隙間)には、必要に応じてブラックマトリクス(図示しない)が形成されていてもよい。ブラックマトリクスで赤色蛍光体32、緑色蛍光体33および散乱層34の間を埋めることにより、出射される光のクロストークを防止することができる。また、ブラックマトリクスを形成する替わりに、図9(a)に示すように、赤色蛍光体32、緑色蛍光体33および散乱層34に形成されている反射層35を互いに繋げてクロストークを防止してもよい。 Furthermore, a black matrix (not shown) may be formed between the red phosphor 32, the green phosphor 33, and the scattering layer 34 (a gap on the transparent substrate 31) as necessary. By filling the space between the red phosphor 32, the green phosphor 33, and the scattering layer 34 with a black matrix, crosstalk of emitted light can be prevented. Further, instead of forming a black matrix, as shown in FIG. 9A, the red phosphor 32, the green phosphor 33, and the reflective layer 35 formed on the scattering layer 34 are connected to each other to prevent crosstalk. May be.
 尚、上記赤色蛍光体32、緑色蛍光体33および散乱層34の形状は、その側面部に反射層35が形成されている場合には、入射される青色光に平行な断面が透明基板31側に開いた台形状となる形状であることが望ましいものの、その側面部に反射層35が形成されていない場合には、当該断面が台形状となる形状に限定されるものではなく、例えば長方形状となる形状であってもよい。 The red phosphor 32, the green phosphor 33, and the scattering layer 34 are shaped so that when the reflecting layer 35 is formed on the side surface thereof, the cross section parallel to the incident blue light is on the transparent substrate 31 side. However, when the reflective layer 35 is not formed on the side surface portion, the cross section is not limited to the trapezoidal shape, for example, a rectangular shape. The shape which becomes may be sufficient.
 本発明に係る感光性組成物を用いて形成してなる本発明に係るパターン、即ち、散乱層34は、光散乱機能を有している。つまり、本発明に表示装置は、上記パターンを有している。上記赤色蛍光体32、緑色蛍光体33および散乱層34の膜厚、つまり、パターンの膜厚は、特に限定されるものではないが、3~20μmの範囲内であることがより好ましく、5~10μmの範囲内であることがさらに好ましい。膜厚が3μm未満である場合には、散乱層34が充分な光散乱機能を有しない場合がある。膜厚が20μmを超える場合には、色変換基板3が分厚くなる場合がある。 The pattern according to the present invention formed by using the photosensitive composition according to the present invention, that is, the scattering layer 34 has a light scattering function. That is, the display device according to the present invention has the above pattern. The film thickness of the red phosphor 32, the green phosphor 33, and the scattering layer 34, that is, the film thickness of the pattern is not particularly limited, but is more preferably in the range of 3 to 20 μm. More preferably, it is in the range of 10 μm. When the film thickness is less than 3 μm, the scattering layer 34 may not have a sufficient light scattering function. When the film thickness exceeds 20 μm, the color conversion substrate 3 may be thick.
 上記の構成によれば、正面方向と斜め方向とで色度変化(色のシフト)が生じない、表示品位が向上された表示装置を提供することができる。 According to the above configuration, it is possible to provide a display device with improved display quality, in which chromaticity change (color shift) does not occur between the front direction and the oblique direction.
 図5に示すように、色変換基板3は、透明基板31と、赤色蛍光体32、緑色蛍光体33および散乱層34との間に、低屈折率層36を更に備えていてもよい。上記低屈折率層36は、赤色蛍光体32、緑色蛍光体33および散乱層34から出射された光のうち、例えば横方向(透明基板31に対して平行な方向)等に向かう光(浅い角度で出射された光)を反射させて反射層35側に戻して再反射させ、透明基板31から出射させる機能を有している。これにより、光の利用効率をより向上させることができる。 As shown in FIG. 5, the color conversion substrate 3 may further include a low refractive index layer 36 between the transparent substrate 31 and the red phosphor 32, the green phosphor 33, and the scattering layer 34. The low refractive index layer 36 is, for example, light (shallow angle) directed in the lateral direction (direction parallel to the transparent substrate 31) among the light emitted from the red phosphor 32, the green phosphor 33, and the scattering layer 34. The light is emitted from the transparent substrate 31 by being reflected back to the reflective layer 35 side and reflected again. Thereby, the utilization efficiency of light can be improved more.
 図6に示すように、色変換基板3は、透明基板31と、低屈折率層36との間に、カラーフィルタ37を更に備えていてもよい。上記カラーフィルタ37は、赤色フィルタ37a、緑色フィルタ37b、青色フィルタ37c、およびブラックマトリクス37dからなっている。上記赤色フィルタ37a、緑色フィルタ37bおよび青色フィルタ37cは、各々、赤色蛍光体32、緑色蛍光体33および散乱層34から出射される光が入射される位置に配設されており、入射された光の色純度を向上させて透明基板31側に出射するようになっている。また、赤色フィルタ37aおよび緑色フィルタ37bは、透明基板31側から入射される外光に含まれている青色光を除去することにより、赤色蛍光体32および緑色蛍光体33における不要な励起光の発生を抑制する機能も有している。青色フィルタ37cは、透明基板31側から入射される外光に含まれている青色光以外の光を除去することにより、散乱層34における当該光の散乱を抑制する機能も有している。ブラックマトリクス37dは、赤色フィルタ37a、緑色フィルタ37bおよび青色フィルタ37cの間を埋めるようにして形成されており、赤色蛍光体32、緑色蛍光体33および散乱層34から出射される光のクロストークを防止するようになっている。これにより、表示品位をより向上させることができる。 As shown in FIG. 6, the color conversion substrate 3 may further include a color filter 37 between the transparent substrate 31 and the low refractive index layer 36. The color filter 37 includes a red filter 37a, a green filter 37b, a blue filter 37c, and a black matrix 37d. The red filter 37a, the green filter 37b, and the blue filter 37c are disposed at positions where light emitted from the red phosphor 32, the green phosphor 33, and the scattering layer 34 is incident, respectively. The color purity of the light is improved and emitted to the transparent substrate 31 side. The red filter 37a and the green filter 37b generate unnecessary excitation light in the red phosphor 32 and the green phosphor 33 by removing the blue light contained in the external light incident from the transparent substrate 31 side. It also has a function to suppress this. The blue filter 37c also has a function of suppressing scattering of the light in the scattering layer 34 by removing light other than blue light included in external light incident from the transparent substrate 31 side. The black matrix 37d is formed so as to fill the space between the red filter 37a, the green filter 37b, and the blue filter 37c, and the crosstalk of the light emitted from the red phosphor 32, the green phosphor 33, and the scattering layer 34 is reduced. It comes to prevent. Thereby, the display quality can be further improved.
 さらに、図10(a),(b)に示すように、色変換基板3は、赤色蛍光体32、緑色蛍光体33および散乱層34の間を埋めるようにして形成されたブラックマトリクス37dを備える構成であってもよい。当該構成においては、赤色蛍光体32、緑色蛍光体33および散乱層34の側面部には反射層35が形成されておらず、入射される青色光に平行な断面が長方形状となっている。上記ブラックマトリクス37dは、赤色蛍光体32、緑色蛍光体33および散乱層34から出射される光のクロストークを防止するようになっている。これにより、表示品位をより向上させることができる。 Further, as shown in FIGS. 10A and 10B, the color conversion substrate 3 includes a black matrix 37d formed so as to fill the space between the red phosphor 32, the green phosphor 33, and the scattering layer 34. It may be a configuration. In this configuration, the reflecting layer 35 is not formed on the side surfaces of the red phosphor 32, the green phosphor 33, and the scattering layer 34, and the cross section parallel to the incident blue light is rectangular. The black matrix 37d prevents crosstalk of light emitted from the red phosphor 32, the green phosphor 33, and the scattering layer 34. Thereby, the display quality can be further improved.
 以下、実施例に基づいて本発明をより詳細に説明するが、本発明は以下の実施例の構成にのみ限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to the configurations of the following examples.
 〔実施例1〕
 TiO2フィラー(平均粒径200nm)と、光重合性(メタ)アクリルモノマーとしての2-ヒドロキシ-3-フェノキシプロピルアクリレートと、アルカリ可溶性樹脂としてのベンジルメタクリレート(BZMA)/メタクリル酸(MAA)/グリシジルメタクリレート(GMA)共重合体と、光重合開始剤としての2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オンと、有機溶剤としてのジエチレングリコールモノブチルエーテル/プロピレングリコールモノメチルエーテルアセテート混合溶剤とを、重量比がこの順に30:40:30:3:100になるようにして容器に入れて攪拌し、大まかに混合した後、3本ロールミルを用いてさらに混合した。これにより、TiO2フィラーが均一に分散された感光性組成物を製造した。
[Example 1]
TiO 2 filler (average particle size 200 nm), 2-hydroxy-3-phenoxypropyl acrylate as photopolymerizable (meth) acrylic monomer, benzyl methacrylate (BZMA) / methacrylic acid (MAA) / glycidyl as alkali-soluble resin Methacrylate (GMA) copolymer, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one as a photopolymerization initiator, and diethylene glycol monobutyl ether / propylene as an organic solvent Glycol monomethyl ether acetate mixed solvent was stirred in a container so that the weight ratio was 30: 40: 30: 3: 100 in this order and mixed roughly, and then further mixed using a three-roll mill. . As a result, a photosensitive composition in which the TiO 2 filler was uniformly dispersed was produced.
 上記BZMA/MAA/GMA共重合体は、BZMAとMAAとGMAとを重量比75:16.8:8.2(GMAはMAAのグリシジル化物であるので、BZMAとMAAとの重量比は75:25)で共重合してなる共重合体を用いた。BZMA/MAA/GMA共重合体の重量平均分子量(Mw)は10,000であり、酸価は131mgKOH/gであった。また、ジエチレングリコールモノブチルエーテル/プロピレングリコールモノメチルエーテルアセテート混合溶剤は、ジエチレングリコールモノブチルエーテルとプロピレングリコールモノメチルエーテルアセテートとを重量比1:1で混合してなる混合溶剤を用いた。 The BZMA / MAA / GMA copolymer has a weight ratio of BZMA, MAA and GMA of 75: 16.8: 8.2 (since GMA is a glycidylated product of MAA, the weight ratio of BZMA and MAA is 75: The copolymer obtained by copolymerization in 25) was used. The weight average molecular weight (Mw) of the BZMA / MAA / GMA copolymer was 10,000, and the acid value was 131 mgKOH / g. The diethylene glycol monobutyl ether / propylene glycol monomethyl ether acetate mixed solvent was a mixed solvent obtained by mixing diethylene glycol monobutyl ether and propylene glycol monomethyl ether acetate at a weight ratio of 1: 1.
 得られた感光性組成物を、温度23℃、湿度40%の塗布条件下で、アプリケーターを用いてソーダガラスからなるガラス基板に塗布した。そして、塗布した感光性組成物を、ホットプレート上で110℃、3分間加熱する(ベーク処理する)ことにより、上記混合溶剤を揮発させた。これにより、膜厚が8μmの塗布膜を得た。 The obtained photosensitive composition was coated on a glass substrate made of soda glass using an applicator under coating conditions of a temperature of 23 ° C. and a humidity of 40%. And the said mixed solvent was volatilized by heating the apply | coated photosensitive composition on a hotplate at 110 degreeC for 3 minute (baking process). Thereby, a coating film having a film thickness of 8 μm was obtained.
 その後、上記塗布膜に、スペース幅が30μmに形成されているクロムマスクを介して、超高圧水銀灯(伯東(株)製;MAT-2500)を用いて3,000mJ/cm2で光照射して露光を行った。露光後、上記塗布膜に、濃度0.5%のNa2CO3水溶液を30℃で30秒間スプレーして現像(スプレー現像)することにより、硬化していない部分の塗布膜を除去した。これにより、硬化物である被膜、つまり、光散乱機能を有する膜厚が8μmのパターンを得た。 Thereafter, the coating film was irradiated with light at 3,000 mJ / cm 2 using a super high pressure mercury lamp (manufactured by Hakuto Co., Ltd .; MAT-2500) through a chromium mask formed with a space width of 30 μm. Exposure was performed. After the exposure, an uncured portion of the coating film was removed by spraying and developing (spray development) an aqueous solution of Na 2 CO 3 having a concentration of 0.5% at 30 ° C. for 30 seconds. As a result, a film as a cured product, that is, a pattern having a thickness of 8 μm having a light scattering function was obtained.
 得られたパターンの幅(スペース幅)を確認したところ、35.9μmであり、パターン再現性は良好であった。従って、光散乱機能を有するパターンを、フォトリソグラフィーにより形成することが可能であることが判った。 When the width (space width) of the obtained pattern was confirmed, it was 35.9 μm and the pattern reproducibility was good. Therefore, it was found that a pattern having a light scattering function can be formed by photolithography.
 上記パターンが備える物理的性質、つまり評価結果は、以下の通りであった。即ち、ヘイズメーター(日本電色工業(株)製;NDH2000)を用いて測定したヘイズは91.4%であり、全光線透過率は33.3%であり、拡散透過率は30.4%であった。また、分光変角色差計(日本電色工業(株)製;GC5000)を用いて測定した青色光の配向特性は、図7に示すように、計算上のランバーシアン(光強度分布)と実質的に一致した。視認角度は±80度であった。尚、図7は、横軸を受光角度(度)、縦軸を光強度(強度(a.u.)と記す)とし、パターンが示す光強度分布を、表示装置における正面方向(発光面に対する法線方向、受光角度=0度)の光強度を「1」としたときの相対値で示したグラフである。 The physical properties of the pattern, that is, the evaluation results were as follows. That is, the haze measured using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd .; NDH2000) was 91.4%, the total light transmittance was 33.3%, and the diffuse transmittance was 30.4%. Met. Moreover, as shown in FIG. 7, the alignment characteristics of blue light measured using a spectral goniochromimeter (manufactured by Nippon Denshoku Industries Co., Ltd .; GC5000) are substantially the same as the calculated Lambertian (light intensity distribution). Agreed. The viewing angle was ± 80 degrees. In FIG. 7, the horizontal axis represents the light receiving angle (degrees), the vertical axis represents the light intensity (indicated as intensity (au)), and the light intensity distribution indicated by the pattern is the front direction (normal direction relative to the light emitting surface) of the display device. FIG. 6 is a graph showing relative values when the light intensity at the light receiving angle = 0 degree is “1”.
 従って、本発明に係る感光性組成物を用いて形成してなるパターンは、表示装置における正面方向に対する斜め方向の色度変化を低減させ、これにより表示装置の表示品位を向上させることができることが判る。 Therefore, the pattern formed using the photosensitive composition according to the present invention can reduce the change in chromaticity in the oblique direction with respect to the front direction in the display device, thereby improving the display quality of the display device. I understand.
 感光性組成物の組成およびパターンの評価結果をまとめて表1に示した。尚、表1では、パターン再現性が良好である場合を「○」、不良である(または塗布膜が硬化しない)場合を「×」と記している。また、パターンの配向特性が実質的にランバーシアンを示している場合を「○」、示していない場合を「×」、配向特性を確認できなかった場合を「-」と記している。 The composition of the photosensitive composition and the evaluation results of the pattern are summarized in Table 1. In Table 1, “◯” indicates that the pattern reproducibility is good, and “x” indicates that the pattern is poor (or the coating film is not cured). Further, “◯” indicates that the alignment characteristic of the pattern substantially shows Lambertian, “X” indicates that the alignment characteristic is not indicated, and “−” indicates that the alignment characteristic cannot be confirmed.
 〔実施例2〕
 TiO2フィラー、2-ヒドロキシ-3-フェノキシプロピルアクリレート、BZMA/MAA/GMA共重合体、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、および、ジエチレングリコールモノブチルエーテル/プロピレングリコールモノメチルエーテルアセテート混合溶剤を、重量比がこの順に10:50:40:3:100になるようにした以外は、実施例1の操作と同一の操作を行うことにより、感光性組成物およびパターンを製造した。得られた感光性組成物の組成およびパターンの評価結果をまとめて表1に示した。
[Example 2]
TiO 2 filler, 2-hydroxy-3-phenoxypropyl acrylate, BZMA / MAA / GMA copolymer, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, and By performing the same operation as in Example 1 except that the weight ratio of the diethylene glycol monobutyl ether / propylene glycol monomethyl ether acetate mixed solvent was changed to 10: 50: 40: 3: 100 in this order, Sex compositions and patterns were prepared. The composition and pattern evaluation results of the resulting photosensitive composition are summarized in Table 1.
 〔実施例3〕
 光重合性(メタ)アクリルモノマーとして、2-ヒドロキシ-3-フェノキシプロピルアクリレートの替わりにビスフェノールAジグリシジルエーテルのメタクリル酸付加物を用いた以外は、実施例1の操作と同一の操作を行うことにより、感光性組成物およびパターンを製造した。得られた感光性組成物の組成およびパターンの評価結果をまとめて表1に示した。
Example 3
The same operation as in Example 1 is carried out except that a methacrylic acid adduct of bisphenol A diglycidyl ether is used in place of 2-hydroxy-3-phenoxypropyl acrylate as the photopolymerizable (meth) acrylic monomer. Thus, a photosensitive composition and a pattern were produced. The composition and pattern evaluation results of the resulting photosensitive composition are summarized in Table 1.
 〔実施例4〕
 アルカリ可溶性樹脂として、BZMA/MAA/GMA共重合体の替わりにメチルメタクリレート(MMA)/イソブチルメタクリレート(IBMA)/メタクリル酸(MAA)共重合体を用いた以外は、実施例1の操作と同一の操作を行うことにより、感光性組成物およびパターンを製造した。上記MMA/IBMA/MAA共重合体は、MMAとIBMAとMAAとを重量比50:25:25で共重合してなる共重合体を用いた。MMA/IBMA/MAA共重合体の重量平均分子量(Mw)は14,900であり、酸価は171mgKOH/gであった。得られた感光性組成物の組成およびパターンの評価結果をまとめて表1に示した。
Example 4
The same operation as in Example 1 except that as the alkali-soluble resin, a methyl methacrylate (MMA) / isobutyl methacrylate (IBMA) / methacrylic acid (MAA) copolymer was used instead of the BZMA / MAA / GMA copolymer. By performing the operation, a photosensitive composition and a pattern were produced. As the MMA / IBMA / MAA copolymer, a copolymer obtained by copolymerizing MMA, IBMA and MAA at a weight ratio of 50:25:25 was used. The weight average molecular weight (Mw) of the MMA / IBMA / MAA copolymer was 14,900, and the acid value was 171 mgKOH / g. The composition and pattern evaluation results of the resulting photosensitive composition are summarized in Table 1.
 〔実施例5〕
 光重合性(メタ)アクリルモノマーとして、2-ヒドロキシ-3-フェノキシプロピルアクリレートとビスフェノールAジグリシジルエーテルのメタクリル酸付加物とを重量比1:1で混合して用いた以外は、実施例1の操作と同一の操作を行うことにより、感光性組成物およびパターンを製造した。得られた感光性組成物の組成およびパターンの評価結果をまとめて表1に示した。
Example 5
Example 1 except that 2-hydroxy-3-phenoxypropyl acrylate and methacrylic acid adduct of bisphenol A diglycidyl ether were mixed at a weight ratio of 1: 1 as the photopolymerizable (meth) acrylic monomer. By performing the same operation as the operation, a photosensitive composition and a pattern were produced. The composition and pattern evaluation results of the resulting photosensitive composition are summarized in Table 1.
 〔実施例6〕
 TiO2フィラー、2-ヒドロキシ-3-フェノキシプロピルアクリレート、BZMA/MAA/GMA共重合体、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、および、ジエチレングリコールモノブチルエーテル/プロピレングリコールモノメチルエーテルアセテート混合溶剤を、重量比がこの順に35:40:25:3:100になるようにした以外は、実施例1の操作と同一の操作を行うことにより、感光性組成物およびパターンを製造した。得られた感光性組成物の組成およびパターンの評価結果をまとめて表1に示した。
Example 6
TiO 2 filler, 2-hydroxy-3-phenoxypropyl acrylate, BZMA / MAA / GMA copolymer, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, and By carrying out the same operation as that of Example 1 except that the weight ratio of the diethylene glycol monobutyl ether / propylene glycol monomethyl ether acetate mixed solvent was 35: 40: 25: 3: 100 in this order, the photosensitivity was obtained. Sex compositions and patterns were prepared. The composition and pattern evaluation results of the resulting photosensitive composition are summarized in Table 1.
 〔比較例1〕
 TiO2フィラーの替わりにアクリルフィラー(積水化成品工業(株)製;SSX-102、平均粒径2μm)を用いた以外は、実施例1の操作と同一の操作を行うことにより、比較用の感光性組成物および比較用のパターンを製造した。但し、塗布膜の膜厚は20μmとし、露光時の光強度は6,000mJ/cm2とした。上記比較用のパターンの膜厚は20μmであった。
[Comparative Example 1]
By performing the same operation as that of Example 1 except that an acrylic filler (manufactured by Sekisui Plastics Co., Ltd .; SSX-102, average particle size 2 μm) was used instead of the TiO 2 filler, Photosensitive compositions and comparative patterns were produced. However, the film thickness of the coating film was 20 μm, and the light intensity during exposure was 6,000 mJ / cm 2 . The film thickness of the comparative pattern was 20 μm.
 得られたパターンの幅(スペース幅)を確認したところ、40.9μmであり、パターン再現性は良好であった。しかしながら、実施例1と同様にして測定した青色光の配向特性は、図8に示すように、計算上のランバーシアン(光強度分布)と全く一致しなかった。視認角度は±30度であり狭かった。得られた比較用の感光性組成物および比較用のパターンの評価結果をまとめて表1に示した。 When the width (space width) of the obtained pattern was confirmed, it was 40.9 μm and the pattern reproducibility was good. However, the blue light alignment characteristics measured in the same manner as in Example 1 did not coincide with the calculated Lambertian (light intensity distribution) as shown in FIG. The viewing angle was ± 30 degrees and was narrow. Table 1 summarizes the evaluation results of the obtained comparative photosensitive composition and comparative pattern.
 比較例1の比較用のパターンは、TiO2フィラーを用いていないため、フォトリソグラフィーにより形成することが可能であったものの、充分な光散乱機能を有していなかった。つまり、0度方向の透過率は高かったものの、-80~-5度および5~80度方向の0度方向に対する透過率の比は低く、従って、充分な光散乱機能を有していなかった。 Since the comparative pattern of Comparative Example 1 did not use the TiO 2 filler, it could be formed by photolithography, but did not have a sufficient light scattering function. In other words, although the transmittance in the 0 degree direction was high, the ratio of the transmittance to the 0 degree direction in the −80 to −5 degrees and 5 to 80 degrees directions was low, and thus the light scattering function was not sufficient. .
 〔比較例2〕
 TiO2フィラー、2-ヒドロキシ-3-フェノキシプロピルアクリレート、BZMA/MAA/GMA共重合体、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、および、ジエチレングリコールモノブチルエーテル/プロピレングリコールモノメチルエーテルアセテート混合溶剤を、重量比がこの順に40:30:30:3:100になるようにした以外は、実施例1の操作と同一の操作を行うことにより、比較用の感光性組成物および比較用のパターンを製造した。得られた比較用の感光性組成物および比較用のパターンの評価結果をまとめて表1に示した。
[Comparative Example 2]
TiO 2 filler, 2-hydroxy-3-phenoxypropyl acrylate, BZMA / MAA / GMA copolymer, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, and By comparing the diethylene glycol monobutyl ether / propylene glycol monomethyl ether acetate mixed solvent in the same manner as in Example 1 except that the weight ratio was 40: 30: 30: 3: 100 in this order, a comparison was made. Photosensitive compositions and comparative patterns were prepared. Table 1 summarizes the evaluation results of the obtained comparative photosensitive composition and comparative pattern.
 比較例2の比較用のパターンは、TiO2フィラーの割合が35質量%を超えていたことによって露光時の光が塗布膜の内部まで届かなかったため、表面部分は硬化したものの、内部は硬化しなかった。従って、現像時にパターン形成部分の塗布膜まで除去されてしまい、パターンを形成することができなかった。 In the comparative pattern of Comparative Example 2, since the light at the time of exposure did not reach the inside of the coating film because the proportion of the TiO 2 filler exceeded 35% by mass, the surface portion was cured, but the inside was cured. There wasn't. Therefore, the coating film at the pattern forming portion is removed during development, and the pattern cannot be formed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 尚、本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態に開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 Note that the present invention is not limited to the above-described embodiment, and various modifications are possible within the scope shown in the claims, and the embodiment is obtained by appropriately combining technical means disclosed in the embodiment. Is also included in the technical scope of the present invention.
 本発明に係る感光性組成物、パターンおよびパターンを有する表示装置は、当該表示装置を備えた様々な電化製品の製造に好適に利用することができる。 The display device having a photosensitive composition, a pattern and a pattern according to the present invention can be suitably used for manufacturing various electrical appliances including the display device.
 1 バックライト
 2 光シャッター
 3 色変換基板
11 光源
12 導光板
21 光源側偏光板
22 光源側基板
23 液晶層
24 視認側基板
25 視認側偏光板
31 透明基板
32 赤色蛍光体
33 緑色蛍光体
34 散乱層
35 反射層
36 低屈折率層
37 カラーフィルタ
DESCRIPTION OF SYMBOLS 1 Backlight 2 Optical shutter 3 Color conversion board | substrate 11 Light source 12 Light guide plate 21 Light source side polarizing plate 22 Light source side board | substrate 23 Liquid crystal layer 24 Viewing side board | substrate 25 Viewing side polarizing plate 31 Transparent substrate 32 Red fluorescent substance 33 Green fluorescent substance 34 Scattering layer 35 Reflective layer 36 Low refractive index layer 37 Color filter

Claims (7)

  1.  表示装置に用いる光散乱機能を有するパターンを形成するための感光性組成物であって、
     TiO2フィラー、光重合性(メタ)アクリルモノマー、アルカリ可溶性樹脂、光重合開始剤、および有機溶剤を含み、
     上記TiO2フィラー、光重合性(メタ)アクリルモノマーおよびアルカリ可溶性樹脂の合計量に占めるTiO2フィラーの割合が、10~35質量%の範囲内であることを特徴とする感光性組成物。
    A photosensitive composition for forming a pattern having a light scattering function used in a display device,
    Including TiO 2 filler, photopolymerizable (meth) acrylic monomer, alkali-soluble resin, photopolymerization initiator, and organic solvent,
    A photosensitive composition, wherein a ratio of the TiO 2 filler to a total amount of the TiO 2 filler, the photopolymerizable (meth) acrylic monomer, and the alkali-soluble resin is in a range of 10 to 35% by mass.
  2.  上記TiO2フィラーの平均粒径が100~1,000nmの範囲内である、請求項1に記載の感光性組成物。 The photosensitive composition according to claim 1, wherein the average particle diameter of the TiO 2 filler is in the range of 100 to 1,000 nm.
  3.  上記光重合性(メタ)アクリルモノマーが、単官能の(メタ)アクリルモノマーおよび多官能の(メタ)アクリルモノマーから選ばれる少なくとも一種の(メタ)アクリルモノマーである、請求項1または2に記載の感光性組成物。 The said photopolymerizable (meth) acryl monomer is at least 1 type (meth) acryl monomer chosen from a monofunctional (meth) acryl monomer and a polyfunctional (meth) acryl monomer, The Claim 1 or 2 Photosensitive composition.
  4.  上記アルカリ可溶性樹脂の酸価が50~250mgKOH/gの範囲内である、請求項1~3の何れか一項に記載の感光性組成物。 The photosensitive composition according to any one of claims 1 to 3, wherein the acid value of the alkali-soluble resin is in the range of 50 to 250 mgKOH / g.
  5.  請求項1~4の何れか一項に記載の感光性組成物を用いて形成してなる、光散乱機能を有するパターン。 A pattern having a light scattering function, which is formed using the photosensitive composition according to any one of claims 1 to 4.
  6.  膜厚が3~20μmの範囲内である、請求項5に記載のパターン。 The pattern according to claim 5, wherein the film thickness is in the range of 3 to 20 μm.
  7.  請求項5または6に記載のパターンを有する表示装置。 A display device having the pattern according to claim 5 or 6.
PCT/JP2013/050883 2012-01-26 2013-01-18 Photosensitive composition, pattern, and display device having pattern WO2013111674A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020147023704A KR20140121860A (en) 2012-01-26 2013-01-18 Photosensitive composition, pattern, and display device having pattern
CN201380006593.6A CN104067172A (en) 2012-01-26 2013-01-18 Photosensitive composition, pattern, and display device having pattern

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-014658 2012-01-26
JP2012014658A JP5699096B2 (en) 2012-01-26 2012-01-26 Photosensitive composition, pattern and display device having pattern

Publications (1)

Publication Number Publication Date
WO2013111674A1 true WO2013111674A1 (en) 2013-08-01

Family

ID=48873395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/050883 WO2013111674A1 (en) 2012-01-26 2013-01-18 Photosensitive composition, pattern, and display device having pattern

Country Status (4)

Country Link
JP (1) JP5699096B2 (en)
KR (1) KR20140121860A (en)
CN (2) CN104067172A (en)
WO (1) WO2013111674A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015152676A (en) * 2014-02-12 2015-08-24 日立化成株式会社 Material and method for forming viewing angle expansion pattern, and photosensitive element used therefor
KR102201361B1 (en) * 2014-09-26 2021-01-11 동우 화인켐 주식회사 Self emission type photosensitive resin composition, and display device comprising color conversion layer prepared thereby
KR101879016B1 (en) * 2014-11-21 2018-07-16 동우 화인켐 주식회사 Self emission type photosensitive resin composition, color filter manufactured using thereof and image display device having the same
KR20170039560A (en) * 2015-10-01 2017-04-11 롬엔드하스전자재료코리아유한회사 Photosensitive resin composition and organic insulating film using same
JP6692682B2 (en) * 2016-04-21 2020-05-13 スタンレー電気株式会社 Surface emitting laser device and manufacturing method thereof
KR102028970B1 (en) * 2016-10-26 2019-10-07 동우 화인켐 주식회사 Metal oxide photosensitive resin composition, color filter and image display device produced using the same
KR102432808B1 (en) * 2018-08-31 2022-08-16 동우 화인켐 주식회사 A white resin composition, a back light unit prepared using the same, and a display devide comprising the same
KR102436143B1 (en) * 2019-03-27 2022-08-26 동우 화인켐 주식회사 A colored photosensitive resin composition, a color filter and an image display device produced using the same
JP2020166255A (en) 2019-03-29 2020-10-08 日鉄ケミカル&マテリアル株式会社 Method for manufacturing substrate with cured film, substrate with cured film, photosensitive resin composition, cured film formed by curing photosensitive resin composition, and display device having cured film or substrate with cured film
CN113557457A (en) * 2019-04-10 2021-10-26 昭和电工材料株式会社 Wavelength conversion member, backlight unit and image display device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133591A (en) * 1997-10-31 1999-05-21 Fujirekkusu Kk Photosensitive film for light diffusive image formation, production of decorative glass and decorative glass
JP2000047184A (en) * 1998-07-27 2000-02-18 Sharp Corp Liquid crystal display device
JP2001316408A (en) * 2000-05-09 2001-11-13 Jsr Corp Radiation-sensitive composition for forming light- scattering film and light-scattering film
JP2003021708A (en) * 2001-07-05 2003-01-24 Fujitsu Ltd Reflection substrate, method for forming the same and reflective display element using the same
JP2003255118A (en) * 2002-02-27 2003-09-10 Toppan Printing Co Ltd Color filter with photosensitive light scattering film
JP2006146115A (en) * 2004-11-22 2006-06-08 Koditech Co Ltd Light excitation-diffusion sheet for backlight unit and backlight unit for liquid crystal display using the same
JP2007176964A (en) * 2005-12-26 2007-07-12 Toppan Printing Co Ltd Substrate for photosensitive resin, photosensitive resin composition and light scattering film
JP2008216875A (en) * 2007-03-07 2008-09-18 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive resin composition film, photosensitive resin composition film stacked substrate, photosensitive resin composition cured film and photosensitive resin composition cured film stacked substrate
JP2009086341A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Light-scattering film, polarizing plate, and liquid crystal display
JP2009244383A (en) * 2008-03-28 2009-10-22 Fujifilm Corp Liquid crystal display device
JP2011116943A (en) * 2009-10-28 2011-06-16 Nagase Chemtex Corp Composite resin composition
WO2011148823A1 (en) * 2010-05-26 2011-12-01 コニカミノルタホールディングス株式会社 Light extraction sheet, organic electroluminescent element, and lighting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3969103B2 (en) * 2002-01-30 2007-09-05 凸版印刷株式会社 Method for producing color filter substrate provided with photosensitive light scattering film
KR101221450B1 (en) * 2005-07-19 2013-01-11 주식회사 동진쎄미켐 Photosensitive resin composition comprising organic and inorganic compound
CN101395533A (en) * 2006-03-01 2009-03-25 考格尼斯知识产权管理有限责任公司 Curable compositions for providing a cured composition with enhanced water resistance
EP2293354B1 (en) * 2008-05-30 2020-05-06 Sharp Kabushiki Kaisha Light emitting device, planar light source, liquid crystal display device
JP5112230B2 (en) * 2008-09-10 2013-01-09 株式会社ジャパンディスプレイイースト Liquid crystal display
JP5701576B2 (en) * 2009-11-20 2015-04-15 富士フイルム株式会社 Dispersion composition, photosensitive resin composition, and solid-state imaging device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133591A (en) * 1997-10-31 1999-05-21 Fujirekkusu Kk Photosensitive film for light diffusive image formation, production of decorative glass and decorative glass
JP2000047184A (en) * 1998-07-27 2000-02-18 Sharp Corp Liquid crystal display device
JP2001316408A (en) * 2000-05-09 2001-11-13 Jsr Corp Radiation-sensitive composition for forming light- scattering film and light-scattering film
JP2003021708A (en) * 2001-07-05 2003-01-24 Fujitsu Ltd Reflection substrate, method for forming the same and reflective display element using the same
JP2003255118A (en) * 2002-02-27 2003-09-10 Toppan Printing Co Ltd Color filter with photosensitive light scattering film
JP2006146115A (en) * 2004-11-22 2006-06-08 Koditech Co Ltd Light excitation-diffusion sheet for backlight unit and backlight unit for liquid crystal display using the same
JP2007176964A (en) * 2005-12-26 2007-07-12 Toppan Printing Co Ltd Substrate for photosensitive resin, photosensitive resin composition and light scattering film
JP2008216875A (en) * 2007-03-07 2008-09-18 Hitachi Chem Co Ltd Photosensitive resin composition, photosensitive resin composition film, photosensitive resin composition film stacked substrate, photosensitive resin composition cured film and photosensitive resin composition cured film stacked substrate
JP2009086341A (en) * 2007-09-28 2009-04-23 Fujifilm Corp Light-scattering film, polarizing plate, and liquid crystal display
JP2009244383A (en) * 2008-03-28 2009-10-22 Fujifilm Corp Liquid crystal display device
JP2011116943A (en) * 2009-10-28 2011-06-16 Nagase Chemtex Corp Composite resin composition
WO2011148823A1 (en) * 2010-05-26 2011-12-01 コニカミノルタホールディングス株式会社 Light extraction sheet, organic electroluminescent element, and lighting device

Also Published As

Publication number Publication date
KR20140121860A (en) 2014-10-16
CN104067172A (en) 2014-09-24
JP2013156304A (en) 2013-08-15
CN107479327A (en) 2017-12-15
JP5699096B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5699096B2 (en) Photosensitive composition, pattern and display device having pattern
JP4883235B2 (en) Color filter pigment dispersion, method for producing color filter pigment dispersion, and method for producing color resist negative resist composition
JP6320975B2 (en) Self-luminous photosensitive resin composition and display device including color conversion layer produced thereby
KR102614831B1 (en) Black resin composition for light-shielding film, substrate with the light-shielding film formed by curing that composition, and color filter or tough panel with that substrate
JP5683095B2 (en) Green composition for color filter and photosensitive green composition
JP5966629B2 (en) Non-aqueous dispersant, coloring material dispersion and method for producing the same, colored resin composition and method for producing the same, color filter, liquid crystal display device and organic light emitting display device
CN102778813A (en) Photosensitive resin composition
JP5363844B2 (en) Alkali-soluble photosensitive coloring composition and color filter
JP2013092684A (en) Green composition for color filter, and color filter
JP2014071440A (en) Pigment dispersion liquid and production method thereof, colored resin composition for color filter and production method thereof, color filter, liquid crystal display device, and organic light emitting display device
JP5471037B2 (en) Photosensitive resin composition, color filter using the photosensitive resin composition, and display device using the color filter
KR20210038385A (en) Photosensitive resin composition for black resist, manufacturing method of that, light-shielding film cured the same, color filter and touch panel having that film, display device having them
KR20140143951A (en) Photosensitive resin composition and spacer prepared therefrom
JP5374903B2 (en) Negative resist composition for color filter, color filter, and liquid crystal display device
JP5849392B2 (en) Color filter for white light emitting diode light source and display device
JP2010117481A (en) Color filter
KR20200115218A (en) Photosensitive resin composition for black resist, light-shielding layer cured thereof, and color filter with them
JP2009244785A (en) Method for manufacturing color filter
JP6157111B2 (en) Colored photosensitive resin composition, color filter, and color liquid crystal display element
WO2022270349A1 (en) Photosensitive red resin composition, cured product, color filter and display device
JP2009244784A (en) Method of manufacturing color filter
JP2008308640A (en) Alkali-soluble resin, alkali-soluble photosensitive coloring composition and color filter
JP2024068130A (en) Photosensitive resin composition for black resist, light-shielding film, color filter, touch panel and display device
JP2008003322A (en) Photosensitive resin composition and bump for controlling orientation of liquid crystal using the same
KR20230100680A (en) Photosensitive resin composition for black resist, manufacturing method thereof, light-shielding film, color filter, touch panel, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13741085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147023704

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13741085

Country of ref document: EP

Kind code of ref document: A1