JP3969103B2 - Method for producing color filter substrate provided with photosensitive light scattering film - Google Patents

Method for producing color filter substrate provided with photosensitive light scattering film Download PDF

Info

Publication number
JP3969103B2
JP3969103B2 JP2002021212A JP2002021212A JP3969103B2 JP 3969103 B2 JP3969103 B2 JP 3969103B2 JP 2002021212 A JP2002021212 A JP 2002021212A JP 2002021212 A JP2002021212 A JP 2002021212A JP 3969103 B2 JP3969103 B2 JP 3969103B2
Authority
JP
Japan
Prior art keywords
light scattering
transparent
film
liquid crystal
scattering film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002021212A
Other languages
Japanese (ja)
Other versions
JP2003222711A (en
Inventor
忠俊 前田
正行 川島
久夫 星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2002021212A priority Critical patent/JP3969103B2/en
Publication of JP2003222711A publication Critical patent/JP2003222711A/en
Application granted granted Critical
Publication of JP3969103B2 publication Critical patent/JP3969103B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、反射型液晶表示装置に用いられる電極基板に関するものであり、特に、カラーフィルタ上に感光性光散乱膜を設けたカラーフィルタ基板の製造方法に関する。
【0002】
【従来の技術】
液晶表示装置は、一般的に、偏光膜と液晶駆動用の電極が各々配設された対向する一対の電極基板と、これら電極基板間に封入された液晶とで主要部が構成されている。また、カラー画像を表示するカラー液晶表示装置にあっては、上記一対とした電極基板の何れか一方にカラーフィルタ層を設けている。
画面表示を行う際、対向する透明電極間に電圧を印加することにより電極基板間に封入された液晶の配向状態を変化させて、この液晶物質を透過する光の偏光面を制御すると共に、偏光フィルムによりその透過、不透過を制御している。
【0003】
液晶表示装置としては、背面側に位置する電極基板(上記一対となる電極基板のうち、液晶を間に挟み観察者と反対側に位置する電極基板であり、以下背面側電極基板と記す)の裏面もしくは側面に光源(ランプ)を配置し、光源より照射された光線にて画面表示を行う、バックライト型もしくはライトガイド型のランプ内蔵式透過型液晶表示装置が広く普及している。
【0004】
また、従来より液晶表示装置は、低消費電力で軽量化が可能という特徴を活かし、モバイル機器等の携帯用表示装置への利用が期待されている。
しかし、ランプ内蔵式透過型液晶表示装置では内蔵した光源(ランプ)による消費電力が大きく、例えば、CRTやプラズマディスプレイ等の表示装置より消費電力は少ないが、略同等の電力を消費する。
従って、電池の占める割合が大きくなり装置が重く、かさばることになる。即ち、ランプ内蔵式透過型液晶表示装置は液晶表示装置が本来有すべき利点を活かしきれているとはいえない。
【0005】
このため、光源を内蔵しない反射型液晶表示装置が注目されている。反射型液晶表示装置は、背面側電極基板に光反射機能を有する反射板もしくは液晶駆動用電極と光反射板を兼用させた反射電極を配設し、観察者側電極基板(液晶を挟持する一対の基板のうち、観察者側に位置する電極基板)側から室内光や自然光等の外光を液晶表示装置内に入射させ、この入射光を前記光反射板もしくは反射電極で反射させ、この反射光を観察者側電極基板より射出することで画面表示を行うものである。
光源(ランプ)を内蔵しない反射型液晶表示装置は低消費電力を実現でき、また、光源を内蔵しない分、装置を小型、軽量、薄型とすることができ、携帯用表示装置として適している。
【0006】
反射型液晶表示装置においては、携帯用として使用場所を選ばない以上、室内光や自然光等の外光があらゆる角度で入射することを想定しなければならず、また同時に特定の領域のみの光源も想定しなくてはならない。
従って、明るく鮮明で適度の視野角を有する画面表示を得るため、装置内に入射した光を効率良く液晶に導入し、反射した光を効率良く観察者の位置に導き、且つ入射光を散乱させる機能を持たせることとなる。
【0007】
ここで、反射型液晶表示装置において従来より用いられている入射光の反射、散乱方式の例を図2、図3、および図4に示す。
図2に示す背面散乱膜付の反射型液晶表示装置200は、最も基本的な構造であって、液晶セル内部には光散乱反射機能はなく外部に光散乱膜、及び反射板を配置したものである。透明基板201と透明基板206の間にカラーフィルタ204、液晶駆動用の透明電極205、液晶202、及び透明電極206を形成し、光散乱反射機能は表示装置の外部にもうける。
即ち、背面側電極基板208の外側に、光散乱膜210と反射板203を配設し、観察者側電極基板207より入射した光は背面側電極基板208を通過した後、光散乱膜210と接した反射板203で折り返し再度光散乱膜210を通過して散乱光215になり表示装置内に戻る。
【0008】
図2に示す背面散乱膜付の反射型液晶表示装置200は、製造方法が平易である反面、光散乱反射機能を担う光散乱膜及び反射板が画像表示を担う液晶と透明基板の厚み分だけ離れているので解像性を劣化させている。
【0009】
図3に示す前面散乱膜付の反射型液晶表示装置300では、前面に光散乱膜を配設し光散乱を生じさせている。即ち、観察者側電極基板307を構成する透明基板301の観察者と相対する面に光の屈折と回折とを生じさせる光散乱膜309を配設しており、透明基板301の他方の面にカラーフィルタ304と液晶駆動用の透明電極305を順次積層している。
背面側電極基板308には光反射板と液晶駆動用の電極を兼用させた反射電極303を配設しており、観察者側電極基板307と背面側電極基板308とで液晶302を挟持している。反射電極303は平坦な表面であり、反射電極に入射する光を正反射させるもので、光散乱は観察者側電極基板307上に設けた光散乱膜309で行われる。
【0010】
図3に示すような光散乱膜では光散乱膜への入射光314は光散乱膜への入射光の進行方向に向けて散乱させる前方散乱光317と、入射した光の一部を光散乱膜の後方(入射方向と逆方向側)に向けて散乱させる後方散乱光316がある。図3に示す前面散乱膜付の反射型液晶表示装置300では、該後方散乱光316は液晶302には入らないで戻る光であり、画面表示に寄与しないだけでなく画面のコントラストを低下させる原因になる。
【0011】
上述した図2に示す背面散乱膜付の反射型液晶表示装置200及び図3に示す前面散乱膜付の反射型液晶表示装置300に共通して、光を散乱させる場所が液晶とは透明基板を挟む距離にあるため図2の背面側電極基板208、或いは図3の観察者側電極基板307の厚みによって解像性が劣化するので高精細の表示装置には不向きである。
通常、透明基板206、或いは透明基板301の厚みの数百μm程度に対し、画素サイズは数十μmであり、解像性を著しく劣化させる。このことはモバイル機器等の小型携帯用表示装置にとっては致命的弱点になりかねない。
【0012】
図4の散乱反射板付の反射型液晶表示装置400においては、透明基板401に透過光を所定の色に着色させるためのカラーフィルタ404および液晶駆動用の透明電極405を順次積層した観察者側電極基板407と背面側電極基板408とで液晶402を挟持している。
背面側電極基板408には、光反射板と液晶駆動用の電極とを兼用させた反射電極403を配設している。反射電極403の表面を凹凸に形成することで反射電極403に入射する光を散乱光として反射させている。
【0013】
図4に示す光の散乱方式は、入射光が反射電極で一部吸収される以外は光の損失が無いため光の利用効率が優れ且つ後方散乱がないのでコントラストの低下が少ない。しかし、反射電極403の表面凹凸の形成にあたりフォトリソグラフィー法、即ち感光性樹脂の塗布・露光・現像・焼成・金属薄膜形成等の処理工程を用いなければならないため製造工程数の増加、製造歩留まりの低下等製造コストの上昇が避けられない。
【0014】
【発明が解決しようとする課題】
本発明は、以上のような問題に鑑みなされたものであり、光散乱膜の配設する位置を、図2に示す背面散乱膜付の反射型液晶表示装置、及び図3に示す前面散乱膜付の反射型液晶表示装置のように、透明基板を介した液晶から離れた位置に設けることなく、即ち液晶に極力近づけた位置に設けて反射型液晶表示装置としての解像性の劣化を防ぎ、コントラストの低下を防いだ光散乱膜を製造工程数を増加させることなく平易に製造することのできる感光性光散乱膜を設けたカラーフィルタ基板の製造方法を提供することを課題とするものである。
【0015】
【課題を解決するための手段】
本発明は、透明基板上にカラーフィルタを形成し、該カラーフィルタ上に、少なくともアルカリ可溶型感光性透明樹脂を10〜30重量%、光重合開始剤を0.1〜3重量%、溶剤、および粒径が1.0〜5.0μmである透明粒子を5〜20重量%の割合で配合され、且つ前記アルカリ可溶型感光性透明樹脂の塗膜の屈折率と透明粒子の屈折率のいづれか小さい値に対する大きい値の比が[1.2以上:1.0]である感光性光散乱膜用樹脂組成物を、塗布、乾燥、露光、現像、焼成することにより、前記透明粒子を単層に並べた5μm以下の厚さの光散乱膜を形成することを特徴とするカラーフィルタ基板の製造方法である。
【0016】
また、本発明は、透明基板上にカラーフィルタを形成し、該カラーフィ
ルタ上に、少なくともアルカリ可溶型感光性透明樹脂を10〜30重量%、光重合モノマーを1〜20重量%、光重合開始剤を0.1〜3重量%、溶剤、および粒径が1.0〜5.0μmである透明粒子を5〜20重量%の割合で配合され、且つ前記アルカリ可溶型感光性透明樹脂の塗膜の屈折率と透明粒子の屈折率のいづれか小さい値に対する大きい値の比が[1.2以上:1.0]である感光性光散乱膜用樹脂組成物を、塗布、乾燥、露光、現像、焼成することにより、前記透明粒子を単層に並べた5μm以下の厚さの光散乱膜を形成することを特徴とするカラーフィルタ基板の製造方法である。
【0020】
【発明の実施の形態】
以下に、本発明による感光性光散乱膜用樹脂組成物の実施の形態を詳細に説明する。
本発明に用いることのできるアルカリ可溶型感光性透明樹脂としては、アルキルアクリレート、アルキルメタクリレート、環状アクリレート、環状メタクリレート、ヒドロキシエチルエチルアクリレート、ヒドロキシエチルメタクリレート等のアクリル系モノマーとエチレン性の不飽和基を有するラジカル重合性のモノマーからなるアクリル系透明樹脂、フッ素やシリコンを持つエポキシアクリレート透明樹脂やフルオレン骨格を有するエポキシアクリレート透明樹脂等を使用することができる。
【0021】
本発明による感光性光散乱膜用樹脂組成物の塗布層を部分露光して、重合法により光硬化させるために加える光重合開始剤としては、特に制限はないが、アセトフェノン系化合物、イミダゾール系化合物、ベンゾフェノン系化合物、ベンゾインエーテル系化合物、オキシムケトン系化合物やアシルホスフィンオキシド系化合物等が挙げることができるがこれらに限定されるものではない。また必要に応じて2種類以上の光重合開始剤を混合して用いても構わない。
【0022】
本発明による感光性光散乱膜用樹脂組成物は、透明基板上に1〜10ミクロンの膜厚で塗布する必要があることから塗布適性を付与するために通常は溶剤を用いて粘度調整を行う。溶剤としては、アルコール類、ケトン類、エステル類などが挙げられる。例えば、メタノール、エタノール、プロパノール、イソプロピルアルコール、n−ブタノール、tert−ブタノール、2−メチルプロピルアルコール、トルエン、キシレン、シクロヘキサン、イソホロン、セロソルブアセテート、ジエチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセタート、酢酸イソアミル、酢酸エチル、乳酸エチル、メチルエチルケトン、アセトン、シクロヘキサノン、クロロホルム、ジクロロメタン、テトラクロロメタン、1,4−ジオキサン、テトラヒドロフラン、n−ペンタン、n−ヘキサン、n−ヘプタン、2−メトキシエタノール、2−エトキシエタノール、2−ブトキシエタノール、2−エトキシエチルアセテート、2−ブトキシエチルアセテート、2−メトキシエチルアセテート、2−エトキシエチルエーテル、2−(2−エトキシ)エトキシエタノール、2−(2−ブトキシ)エトキシエタノール、2−(2−エトキシ)エトキシエチルアセテート、2−(2−ブトキシ)エトキシエチルアセテート、2−フェノキシエタノール等が挙げることができるがこれらに限定されるものではない。また必要に応じて2種類以上の溶剤を混合して用いても構わない。
【0023】
本発明に用いることのできる透明粒子としては、無機物からなる微粒子、及び有機ポリマーからなる微粒子が例示できる。無機物微粒子としては、シリカやアルミナの酸化物等の非結晶微粒子、有機ポリマー微粒子としては、シリコン樹脂、メラミン樹脂、アクリル樹脂からなる微粒子が使用可能であるがこれらに限定されるものではない。また必要に応じて2種類以上の粒子を混合して用いても構わない。
【0024】
光重合開始剤が0.1重量%以下であると、アルカリ可溶型感光性透明樹脂の架橋密度が弱く、アルカリ現像時にパターンの脱落がおきやすくなる。また、3重量%以上であると、感光性光散乱膜用樹脂組成物の保存安定性が悪くなる。
また、透明粒子が5重量%以下であると、光散乱特性が弱く、好ましい光散乱特性が得られない。また、20重量%以上であると、成膜時に膜中の粒子の占有率が高くなりすぎ膜表面から粒子が突出し膜表面がマット状になってしまう。
【0025】
本発明による感光性光散乱膜用樹脂組成物は、特に、この好ましい態様として、光重合モノマーを含有したものである。用いられる光重合モノマーとしては、ラジカル重合(又は架橋)反応が可能な化合物が用いられ、(メタ)アクリル酸、メチル(メタ)アクリレート、ブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート等の各種(メタ)アクリル酸エステル、エチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、スチレン、ジビニルベンゼン、(メタ)アクリルアミド、酢酸ビニル、N−ヒドロキシメチル(メタ)アクリルアミド、ジペンタエリスリトールヘキサ(メタ)アクリレート、メラミンアクリレート、エポキシアクリレートプレポリマーなどが挙げられるがこれらに限定されるものではない。特に、露光感度、及び硬化後の諸特性から多官能(メタ)アクリル系モノマーを用いるのが好ましい。
【0026】
光重合モノマーを加えると、架橋密度が上がり耐性、強度が向上するが、20重量%以上であると硬くなりすぎ密着強度が低下しパターンが剥がれ易くなる。
【0027】
図1は、本発明による感光性光散乱膜用樹脂組成物を用いて光散乱膜を形成した観察者側電極基板が反射型液晶表示装置に使用された一実施例を模式的に示す断面図である。
光散乱膜を図1に示すように液晶セル(液晶パネル)内に形成する場合、本発明による感光性光散乱膜用樹脂組成物から形成される感光性光散乱膜109の膜厚の上限は10μm程度であり、好ましくは膜厚5μm以下である。かかる薄膜とした感光性光散乱膜109を得るため、かつ、感光性光散乱膜の表面を平坦なものとするためには、アルカリ可溶型感光性透明樹脂113中に分散させる透明粒子112の厚み、即ち膜厚方向の粒子の径は1.0μm〜5.0μmの範囲とすることが望ましい。
【0028】
本発明による感光性光散乱膜用樹脂組成物で好ましい光散乱特性を得るためには、透明粒子の粒径、及び透明粒子とアルカリ可溶型感光性透明樹脂の屈折率の比が適切でなくてはならない。
屈折率の差を広げると、図5の光散乱の特性曲線は特性曲線502から特性曲線503の方向に変化する。正反射近傍が減少して、より広く反射するようになる。
アルカリ可溶型感光性透明樹脂の塗膜の屈折率と透明粒子の屈折率のいずれか小さい値に対する大きい値の比が[1.2以上:1.0]であると、光散乱膜として用いるのに濁度が高くなりすぎ、液晶セルにした時に画像特性が悪化する。
【0029】
また、透明粒子の粒径を変えると反射特性が変わる。同一材料でも粒径が細かくなると散乱効率が上がる。入射光が粒子へ衝突する機会が増え、且つ回折の効果と相まって散乱角が広がる。即ち粒径を細かくすることにより、図5の光散乱の特性曲線は正反射近傍が減少し横への広がりが増加し、矢印の方向、即ち特性曲線502から特性曲線503へ変化する。
【0030】
透明粒子の最適粒径は−30°入射光に対し15°近傍で反射光が高くなる光散乱膜がよい。従って、図5に示す硫酸バリューム標準白色板501は明かに広がり過ぎであり、特性曲線503より特性曲線502が15°近傍で反射率が高く良好である。
具体的な粒径では1.0μm以上5.0μm以下である。反射型液晶表示装置に内蔵される光散乱膜の膜厚は高々5μm程度であり、透明粒子の粒径も膜厚と同程度が上限値である。
尚、透明粒子は滑らかな表面を有する点対称な形状の粒子であることが好ましい。
【0031】
アルカリ可溶型感光性透明樹脂に対する透明粒子の混合比は主に以下の光散乱特性、信頼性、及び成膜条件から規定される。
【0032】
1)透明粒子112の混合量を増加させると、図5の光散乱の特性曲線は特性曲線502から特性曲線503の方向に変化する。透明粒子を増加すると入射光が膜を通過する際に、より多くの透明粒子と衝突することになり、散乱効率が高まるためである。ただし屈折率や粒径を変えた場合に比較して、混合量を変えた場合は、散乱角を広げる効果は僅少である。
光散乱特性からみた場合の感光性光散乱膜用樹脂組成物中の透明粒子以外の不揮発成分、つまり、光重合モノマーを含有しない場合には、アルカリ可溶型感光性透明樹脂の不揮発成分(A)と透明粒子の総量(B)の容積比(B/A)は0.2以上1.2以下が実用範囲であり、好ましくは、0.6以上1.2以下である。
【0033】
2)アルカリ可溶型感光性透明樹脂に対する透明粒子の混合量は、光散乱膜のカラーフィルタ、或いは基板ガラスへの接着性に関係し、耐湿性・耐溶剤性・耐薬品性等の光散乱膜の信頼性に関係する。
一般的には透明粒子が少ないほうが好ましい。光散乱効果を損なうことなく、光散乱膜の物性特性も保持できる限界はアルカリ可溶型感光性透明樹脂の不揮発成分量(A)と、透明粒子の総量(B)の容積比(B/A)が1.0以下であり、好ましくは、0.8以下である。
【0034】
3) アルカリ可溶型感光性透明樹脂に対する透明粒子の混合量は塗布特性に関係する。アルカリ可溶型感光性透明樹脂の樹脂溶液の比重と透明粒子との比重の比率は比較的1に近いものもある。しかし、透明粒子の粒径が粉体としてみた場合比較的大きいために、透明粒子の比重が1.5を越えると沈降し易い。
また、アルカリ可溶型感光性透明樹脂液中で透明粒子の量を必要以上に増すと塗膜形成時に膜の表面平坦性が低下し、感光性光散乱膜の品質低下になる。塗布特性からみた適正な透明樹脂の不揮発成分量(A)と、透明粒子の総量(B)の容積比(B/A)は1.2以下である。
【0035】
以上1)、2)、3)より、光重合モノマーを含有しない場合には、アルカリ可溶型感光性透明樹脂の不揮発成分量(A)と、透明粒子の総量(B)の容積比(B/A)は0.2以上1.2以下が実用範囲であり、好ましくは0.5以上0.8以下である。
【0036】
透明粒子がシリカ等の無機系粒子の場合、アルカリ可溶型感光性透明樹脂との分散助剤として、シランカップリング剤、チンターネットカップリング剤、アルミネートカップリング剤等が有効である。
【0037】
図1に示す反射型液晶表示装置100に内蔵される感光性光散乱膜109の膜厚は可能な限り薄いものがよい。現状の膜厚は高々10μm程度であり、更に好ましくは5μm以下である。膜厚が限定されることは即ち膜中に存在する透明粒子の量を規制することであり、また透明粒子径をも規制することは前述した。
以上より本発明における光散乱膜中の透明粒子の量、ひいては感光性光散乱膜の諸特性を規制している。
【0038】
上記のように、膜厚の上限が10μm、望ましくは5μm以下とした薄膜の感光性光散乱膜109で、効率良く光を散乱させ、所望する光散乱性を持たせるためには、感光性光散乱膜中に透明粒子を出来うる限り密度を高く充填させる必要が有る。また、感光性光散乱膜の膜厚を5μm以下にするためには透明粒子は膜厚方向に単層に並べる必要がある。ちなみに、図1に示す感光性光散乱膜109では、透明粒子112を単層に並べた例である。
【0039】
本発明による感光性光散乱膜用組成物を塗膜として形成する手段としては、グラビア印刷、ロールコータ、ディップコータ、スピンコータ、ダイコータ等が適用できる。
しかし、反射型液晶表示装置に用いる光散乱膜は膜厚の均一性が重要であり、特にスピンコータが最適である。本発明による感光性光散乱膜用組成物はスピンコータにより塗膜形成すると好適な光散乱膜を提供するものである。
【0040】
一定速度で回転するスピンコートの回転終了時点の塗液膜厚は、風の影響がなく塗液が変化しないとしたとき数式(1)で示される。
【0041】
【数1】

Figure 0003969103
【0042】
また、回転終了時点の乾燥膜厚Hは数式(3)であたえられる。
【0043】
【数2】
Figure 0003969103
【0044】
特に、回転終了時の塗液膜厚hを規制するパラメータは主として回転速度と回転時間であり、初期液量h0はほとんど関与しない。回転終了時点の塗液膜厚hを規制する塗液の特性値は、主として塗液密度と粘度であり、最終膜厚に関係するパラメータは塗液密度、不揮発成分の重量%、及び溶剤揮発後の乾燥膜の密度である。
【0045】
以下に、パラメータ値について説明する。
【0046】
回転開始時点の塗液膜厚h0
回転開始前の塗液滴下量であるが数式(1)の分母の1項目は2項目に比べきわめて小さいので無視できる。
【0047】
塗液密度ρ:
本発明における透明粒子の比重は1.15から2.1程度であり、アルカリ可溶型感光性透明樹脂の比重は1.1〜1.3程度である。また塗布特性の良好な有機溶剤の比重は0.9から1.0である。比重の異なる各種透明粒子を透明樹脂中に分散した場合でも、透明粒子の塗液中に占める割合は高々10%であり、塗液の比重を変動させる要素としては比較的軽微である。実際の塗液の密度は0.97から1.03(g/cm3 )に限定される。
【0048】
回転速度ω:
回転速度を決めるファクターとして希望する塗膜の膜厚、塗布装置の能力等がある。必要以上に高速回転すると異物の混入、空気の乱流等の影響がでる。また回転速度が遅いと所定膜厚を得るのに回転時間が長くなりタクトが延びて製造能力が低下し、かつ塗膜の均一性が悪化する。以上の観点から数10cm角の大型ガラス基板上に塗膜を形成する場合、実用上の回転数は数100rpmから1000rpm前後までである。
【0049】
回転時間t:
回転時間を決めるファクターとして希望する塗膜の膜厚、塗布装置の能力等がある。必要以上に回転時間が短いと塗液のレベリング性が失われ、塗膜の均一性が悪化するので、好ましい回転時間は10秒以上さらに好ましくは15秒以上である。
【0050】
乾燥後膜厚H:
カラーフィルタの表面に形成する膜は機能が保証できる限り極力薄いことが望まれる。本実施例においては感光性光散乱膜は液晶表示装置の前面基板に構成されており、膜厚最大で10μm、さらに望ましくは5μm以下である。
【0051】
乾燥膜の密度ρ':
光重合モノマーを含有しない場合、透明粒子の密度は1.15〜1.95(g/cm3 )程度、アルカリ可溶型感光性透明樹脂の密度は1.1〜1.3(g/cm3 )程度である。透明粒子とアルカリ可溶型感光性透明樹脂の混合の容積比は0.2〜1.2である。
この範囲で乾燥膜の密度が最大になるケースは透明粒子の密度が2.0(g/cm3 )、アルカリ可溶型感光性透明樹脂の密度が1.3(g/cm3 )、混合の容積比1.2の場合であり(ケース1)このときの乾燥膜の密度は1.68(g/cm3 )である。
同様に乾燥膜の密度が最小になるケースは透明粒子の密度が1.15(g/cm3 )、アルカリ可溶型感光性透明樹脂の密度が1.1(g/cm3 )、混合の容積比0.2の場合であり(ケース2)このときの乾燥膜の密度は1.11(g/cm3 )である。
【0052】
不揮発成分NV:
塗布性に関係し通常15重量%〜35重量%の範囲で最適塗布適性と最適膜特性が異なるレベルで観察される。数値の低い方が塗布適性は良好であるが膜特性が劣化する傾向にある。とくに膜厚と透明粒子径が近似し、且つアルカリ可溶型感光性透明樹脂量に対し透明粒子の総量の容積比が1以上の場合、溶剤成分を増して、NVを下げると膜表面が凹凸になり易い。不揮発成分は可能な限り高めに設定するのが膜特性にとっては好ましい。
【0053】
粘度η:
塗布性に関係し低粘度が作業性に優れる。通常10(mPa)〜30(mPa)が良好である。粘度に影響する要素は透明粒子の材質、粒径、溶剤との相溶性、混合量、透明樹脂の種類と分子量、溶剤との相溶性、溶剤の粘度、不揮発成分量等である。
【0054】
以上より、数式(1)、数式(2)に1/h0 2=0、t=12、ρ=1を代入し、数式(4)を得る。
数式(3)より得られた数式(5)に、数式(4)を代入して数式(6)を得る。
【0055】
【数3】
Figure 0003969103
【0056】
単位系を実用単位に変換し、数式(7)、数式(8)を得る。
H→[H]:cm→μm、η→[η]:Poise→mPs、NV→[NV]:比→%、ω→[ω]:ラジアン/s→rpm
【0057】
【数4】
Figure 0003969103
【0058】
以上より数式(8)の範囲を求める。ただし、数式(8)の[ω]と[H]は反比例の関係にあるから[ω]の最大値に対し[H]の最小値が、また[ω]の最小値に対し[H]の最大値が対応する。
実質的にはρ'の大小で範囲が決まる。即ち、数式(9)であると目的とする光散乱が製造可能な感光性光散乱膜用組成物がえられる。
【0059】
図1は、本発明による感光性光散乱膜用樹脂組成物を用いて光散乱膜を形成した観察者側電極基板が反射型液晶表示装置に使用された一実施例を模式的に示す断面図である。
図1に示すように、観察者側電極基板107は、ガラス基板等の透明基板101上に、公知の顔料分散法、または、染色法等を用いて透過光を着色光とするカラーフィルタ104が形成され、該カラーフィルタ104上に、本発明による感光性光散乱膜用樹脂組成物を用いて感光性光散乱膜109が、例えば、膜厚3μmにて形成され、該感光性光散乱膜109上に、例えば、ITO(酸化インジウムと酸化スズの混合酸化物)の透明電極105が形成されたものである。
【0060】
上記観察者側電極基板107と、別途作成した光反射機能を有する電極基板(背面側電極基板108)にて液晶102を挟持し図1に示す反射型液晶表示装置100を構成している。
なお、背面側電極基板108は光反射機能を持たせるため、光反射板と液晶駆動用の電極とを別途形成しても、もしくは、光反射板と液晶駆動用の電極とを兼用させた反射電極にしても構わない。ちなみに図1の背面側電極基板108には、反射電極103を形成しており、感光性光散乱膜109にて光散乱を生じさせるため反射電極103は平坦としている。
また、反射型液晶表示装置100の構成部材として上述の他に偏光膜、配向膜等があげられるが説明の都合上、図1では図示を省略している。
【0061】
本発明に係わる感光性光散乱膜の例を列記すると、
1)屈折率1.56のアクリル系アルカリ可溶型感光性透明樹脂に、透明粒子として平均粒径2μm、屈折率1.44のシリコン樹脂粒子を分散させたもの、
2)屈折率1.56のアクリル系アルカリ可溶型感光性透明樹脂に、透明粒子として平均粒径2μm、屈折率1.44のシリカ粒子及び平均粒径2.5μm屈折率1.43のシリコン樹脂を分散させたもの、
3)屈折率1.61のフルオレン骨格を有するアルカリ可溶型感光性樹脂に、透明粒子として平均粒径1.8μm、屈折率1.49のアクリル系粒子を分散させたもの、などが挙げられる。
なお、上記1)、2)、3)の例は、感光性透明樹脂中に透明粒子を分散させた粒子分散型の塗布液で、フォトリソグラフィー法等を用い、所定の場所に、所定のパターン形状に成形が可能なものである。
尚、アルカリ可溶型感光性透明樹脂に、透明粒子を分散するために各種分散助剤、レベリング剤、カップリング剤を添加剤として使用してもよい。
【0062】
【実施例】
以下に、本発明の実施例について説明する。
<実施例1>
透明基板101としてガラス基板を用い、ガラス基板上に公知の顔料分散法にてR(赤)、G(緑)、B(青)からなるカラーフィルタ104を形成した。
次いで、透明樹脂溶液中に透明粒子を分散させた塗液をカラーフィルタ上に塗布・乾燥・露光・現像・焼成して感光性光散乱膜109を作製した。感光性光散乱膜用樹脂組成物以下に示す組成で調製した。
Figure 0003969103
【0063】
A1とCを混合し、塗布、乾燥、露光(200mJ/cm2 )、現像後230℃60分焼成後の透明膜の屈折率は1.52(D線589nm)であった。
上記A1、B1、C、Dを重量比でA1:B1:C:D=4.5:2:0.45:26をメディアレス分散機で3時間混合撹拌し、感光性光散乱膜用樹脂組成物を得た。このときの粘度は20cp/25℃であった。
【0064】
上記組成物をカラーフィルタ上に滴下後、カラーフィルタ基板を990rpmで10秒間回転し、乾燥させ、70度で15分間ホットプレートでプリベイクした。次に露光(200mJ/cm2 )後、2.5%炭酸ナトリウム水溶液で現像し、十分に水洗した。その後乾燥し、230℃60分間焼成して感光性光散乱膜を形成した。このときの膜の特性値を表1に示す。
次いで、上記感光性光散乱膜を形成後、感光性光散乱膜上に公知のスパッタリング法にてITOの透明電極を成膜し、観察者側電極基板107を得た。
【0065】
上記の工程で得られた観察者側電極基板107と、別途作成した光反射機能を有する電極基板(背面側電極基板108)にて液晶102を挟持し、図1に示す反射型液晶表示装置100を作成した。
なお、背面側電極基板に光反射機能を持たせるため、光反射板と液晶駆動用の電極とを別途形成しても、もしくは、光反射板と液晶駆動用の電極とを兼用させた反射電極を形成しても構わない。ちなみに図1の背面側電極基板108には、光反射板と液晶駆動用の電極とを兼用させた反射電極103を形成しており、感光性光散乱膜109にて光散乱を生じさせるため反射電極の表面は平坦としている。
また、反射型液晶表示装置の構成部材として上述した他に偏光膜、配向膜等があげられるが図1にては省略する。
【0066】
<実施例2>
実施例1と同様に透明基板101上にR(赤)、G(緑)、B(青)からなるカラーフィルタ104を形成した。
次いで、透明樹脂溶液中に透明粒子を分散させた塗液をカラーフィルタ上に塗布・乾燥・露光・現像・焼成して感光性光散乱膜109を作製した。感光性光散乱膜用樹脂組成物以下に示す組成で調製した。
Figure 0003969103
【0067】
A1とCを混合し、塗布、乾燥、露光(200mJ/cm2 )、現像後230℃60分焼成後の透明膜の屈折率は1.61(D線589nm)であった。
上記A1、B1、B2、C、Dを重量比でA1:B1:B2:C:D=4.5:1.5:0.5:0.45:26をメディアレス分散機で3時間混合撹拌し、感光性光散乱膜用樹脂組成物を得た。このときの粘度は20cp/25℃であった。
【0068】
上記組成物をカラーフィルタ上に滴下後、カラーフィルタ基板を990rpmで10秒間回転し、乾燥させ、70度で15分間ホットプレートでプリベイクした。次にパターニング用マスクを重ねて露光(200mJ/cm2 )後、2.5%炭酸ナトリウム水溶液で現像し、十分に水洗した。その後乾燥し、230℃60分間焼成してパターニングされた感光性光散乱膜109を形成した。このときの膜の特性値を表1に示す。
【0069】
次いで、上記感光性光散乱膜109を形成後、感光性光散乱膜上に公知のスパッタリング法にてITOの透明電極105を成膜し、観察者側電極基板107を得た。
上記の工程で得られた観察者側電極基板と、別途作成した光反射機能を有する電極基板(背面側電極基板108)にて液晶102を挟持し、図1に示す反射型液晶表示装置100を作成した。
なお、背面側電極基板に光反射機能を持たせるため、光反射板と液晶駆動用の電極とを別途形成しても、もしくは、光反射板と液晶駆動用の電極とを兼用させた反射電極を形成しても構わない。ちなみに図1の背面側電極基板108には、光反射板と液晶駆動用の電極とを兼用させた反射電極103を形成しており、感光性光散乱膜にて光散乱を生じさせるため反射電極の表面は平坦としている。
また、反射型液晶表示装置の構成部材として上述した他に偏光膜、配向膜等があげられるが図1にては省略する。
【0070】
<実施例3>
実施例1と同様に透明基板101上にR(赤)、G(緑)、B(青)からなるカラーフィルタ104を形成した。
次いで、透明樹脂溶液中に透明粒子を分散させた塗液をカラーフィルタ上に塗布・乾燥・露光・現像・焼成して感光性光散乱膜109を作製した。感光性光散乱膜用樹脂組成物以下に示す組成で調製した。
Figure 0003969103
【0071】
A2とCを混合し、塗布、乾燥、露光(200mJ/cm2 )、現像後230℃60分焼成後の透明膜の屈折率は1.61(D線589nm)であった。
上記A2、B3、C、Dを重量比でA2:B3:C:D=4.5:2:0.45:21をメディアレス分散機で3時間混合撹拌し、感光性光散乱膜用樹脂組成物を得た。このときの粘度は12cp/25℃であった。
上記組成物をカラーフィルタ上に滴下後、カラーフィルタ基板を770rpmで10秒間回転し、乾燥させ、70度で15分間ホットプレートでプリベイクした。次にパターニング用マスクを重ねて露光(200mJ/cm2 )後、2.5%炭酸ナトリウム水溶液で現像し、十分に水洗した。その後乾燥し、230℃60間焼成してパターニングされた感光性光散乱膜109を形成した。このときの膜の特性値を表1に示す。
【0072】
次いで、上記感光性光散乱膜109を形成後、感光性光散乱膜上に公知のスパッタリング法にてITOの透明電極105を成膜し、観察者側電極基板107を得た。
上記の工程で得られた観察者側電極基板107と、別途作成した光反射機能を有する電極基板(背面側電極基板108)にて液晶102を挟持し、図1に示す反射型液晶表示装置100を作成した。
なお、背面側電極基板108に光反射機能を持たせるため、光反射板と液晶駆動用の電極とを別途形成しても、もしくは、光反射板と液晶駆動用の電極とを兼用させた反射電極を形成しても構わない。ちなみに図1の背面側電極基板108には、光反射板と液晶駆動用の電極とを兼用させた反射電極103を形成しており、感光性光散乱膜にて光散乱を生じさせるため反射電極103の表面は平坦としている。
また、反射型液晶表示装置の構成部材として上述した他に偏光膜、配向膜等があげられるが図1にては省略する。
【0073】
<実施例4>
実施例1と同様に透明基板101上にR(赤)、G(緑)、B(青)からなるカラーフィルタ104を形成した。
次いで、透明樹脂溶液中に透明粒子を分散させた塗液をカラーフィルタ104上に塗布・乾燥・露光・現像・焼成して感光性光散乱膜109を作製した。感光性光散乱膜用樹脂組成物以下に示す組成で調製した。
Figure 0003969103
【0074】
A2とCとEを混合し、塗布、乾燥、露光(200mJ/cm2 )、現像後230℃60分焼成後の透明膜の屈折率は1.58(D線589nm)であった。上記A2、B3、C、D、Eを重量比でA2:B3:C:D:E=4.5:2:0.45:21:2をメディアレス分散機で3時間混合撹拌し、感光性光散乱膜用樹脂組成物を得た。このときの粘度は14cp/25℃であった。
【0075】
上記組成物をカラーフィルタ104上に滴下後、カラーフィルタ基板を910rpmで10秒間回転し、乾燥させ、70度で15分間ホットプレートでプリベイクした。次にパターニング用マスクを重ねて露光(200mJ/cm2 )後、2.5%炭酸ナトリウム水溶液で現像し、十分に水洗した。その後乾燥し、230℃60分間焼成してパターニングされた感光性光散乱膜109を形成した。このときの膜の特性値を表1に示す。
次いで、上記感光性光散乱膜109を形成後、感光性光散乱膜上に公知のスパッタリング法にてITOの透明電極105を成膜し、観察者側電極基板107を得た。
【0076】
上記の工程で得られた観察者側電極基板107と、別途作成した光反射機能を有する電極基板(背面側電極基板108)にて液晶102を挟持し、図1に示す反射型液晶表示装置100を作成した。
なお、背面側電極基板108に光反射機能を持たせるため、光反射板と液晶駆動用の電極とを別途形成しても、もしくは、光反射板と液晶駆動用の電極とを兼用させた反射電極を形成しても構わない。ちなみに図1の背面側電極基板108には、光反射板と液晶駆動用の電極とを兼用させた反射電極103を形成しており、感光性光散乱膜にて光散乱を生じさせるため反射電極の表面は平坦としている。
また、反射型液晶表示装置の構成部材として上述した他に偏光膜、配向膜等があげられるが図1にては省略する。
【0077】
次いで、本実施例における光散乱膜の効果を見るため、膜厚計(DEKTAK)、濁度計(日本電色工業(株)製、型番「NOH2000」)、自動変角光度計(株)村上色彩研究所製、型番「GP−200型」)で測定した。測定結果を以下表1に示す。
【0078】
【表1】
Figure 0003969103
【0079】
以上、本発明の実施例につき説明したが、本発明の実施の形態は上述した説明および図面に限定されるものではなく、材料、膜厚、粒径等、必要とする反射型液晶表示装置の仕様に応じて種々の変形を行っても構わないことはいうまでもない。
【0080】
請求項1の発明によれば、少なくともアルカリ可溶型感光性透明樹脂を10〜30重量%、光重合開始剤を0.1〜3重量%、溶剤、および粒径が1.0〜5.0μmである透明粒子を5〜20重量%の割合で配合され、且つ前記アルカリ可溶型感光性透明樹脂の塗膜の屈折率と透明粒子の屈折率のいづれか小さい値に対する大きい値の比が[1.2以上:1.0]である感光性光散乱膜用樹脂組成物を用いたので、カラーフィルタ上に感光性光散乱膜を、製造工程数を増加させることなく平易に製造することが可能となった。また、製造された感光性光散乱膜は、アルカリ可溶型感光性透明樹脂の架橋密度が低くならず、光散乱特性が良好なものとなる。
【0081】
請求項2の発明によれば、上記請求項1の発明の効果に加えて、さらに、架橋密度の高い、耐性、強度に優れた感光性光散乱膜が得られる。
【図面の簡単な説明】
【図1】本発明による感光性光散乱膜用樹脂組成物を用いて光散乱膜を形成した観察者側電極基板が反射型液晶表示装置に使用された一実施例を模式的に示す断面図である。
【図2】反射型液晶表示装置における入射光の反射、散乱方式の例の説明図である。
【図3】反射型液晶表示装置における入射光の反射、散乱方式の例の説明図である。
【図4】反射型液晶表示装置における入射光の反射、散乱方式の例の説明図である。
【図5】光散乱の特性曲線の説明図である。
【符号の説明】
100・・・・本発明による感光性光散乱膜用樹脂組成物を用いて光散乱膜を形成した反射型液晶表示装置
101、106、201、209、301、306、401、406・・・・・・・・・・・・・・・・透明基板
102、202、302、402・・・・液晶
103、303、403・・・・・・・・反射電極
104、204、304、404・・・・カラーフィルタ
105、205、305、405・・・・透明電極
107、207、307、407・・・・観察者側電極基板
108、208、308、408・・・・背面側電極基板
109・・・・・・・・本発明における感光性光散乱膜
112・・・・・・・・透明粒子
113・・・・・・・・透明樹脂
114、214、314、414・・・・入射光
115、215、315、415・・・・散乱光
200・・・・背面散乱膜付の反射型液晶表示装置の例
203・・・・・・・・・・・・・・・・反射板
210、309・・・・・・・・・・・・光散乱膜
300・・・・前面散乱膜付の反射型液晶表示装置の例
400・・・・散乱反射板付の反射型液晶表示装置の例[0001]
BACKGROUND OF THE INVENTION
  The present invention relates to an electrode substrate used in a reflective liquid crystal display device.On the boardIn particular, color filtersabovePhotosensitive light scattering filmManufacturing method of provided color filter substrateAbout.
[0002]
[Prior art]
In general, a liquid crystal display device mainly includes a pair of opposing electrode substrates each provided with a polarizing film and electrodes for driving a liquid crystal, and liquid crystal sealed between the electrode substrates. In a color liquid crystal display device for displaying a color image, a color filter layer is provided on one of the pair of electrode substrates.
When performing screen display, by applying a voltage between the transparent electrodes facing each other, the orientation state of the liquid crystal sealed between the electrode substrates is changed, and the polarization plane of the light transmitted through the liquid crystal material is controlled and polarized. The transmission and non-transmission are controlled by the film.
[0003]
As a liquid crystal display device, an electrode substrate located on the back side (of the pair of electrode substrates, an electrode substrate located on the opposite side of the observer with the liquid crystal sandwiched therebetween, hereinafter referred to as a back side electrode substrate) 2. Description of the Related Art Backlight type or light guide type built-in transmissive liquid crystal display devices in which a light source (lamp) is arranged on the back surface or side surface and screen display is performed with light rays emitted from the light source are widely used.
[0004]
Conventionally, liquid crystal display devices have been expected to be used for portable display devices such as mobile devices, taking advantage of the low power consumption and light weight.
However, in a transmissive liquid crystal display device with a built-in lamp, power consumption by a built-in light source (lamp) is large. For example, the power consumption is less than that of a display device such as a CRT or a plasma display.
Therefore, the battery occupies a large proportion, and the device is heavy and bulky. That is, it cannot be said that the transmissive liquid crystal display device with a built-in lamp has fully utilized the advantages that the liquid crystal display device originally has.
[0005]
For this reason, a reflective liquid crystal display device that does not incorporate a light source has attracted attention. In the reflection type liquid crystal display device, a reflection plate having a light reflection function or a reflection electrode having both a liquid crystal driving electrode and a light reflection plate is disposed on a back side electrode substrate, and an observer side electrode substrate (a pair of liquid crystal sandwiching members) is arranged. Outside light such as room light or natural light is incident on the liquid crystal display device from the side of the electrode substrate on the viewer side, and the incident light is reflected by the light reflecting plate or the reflecting electrode. Screen display is performed by emitting light from the observer side electrode substrate.
A reflective liquid crystal display device that does not incorporate a light source (lamp) can achieve low power consumption, and the device can be made smaller, lighter, and thinner as the light source is not incorporated, and is suitable as a portable display device.
[0006]
In a reflective liquid crystal display device, it is assumed that outside light such as room light and natural light is incident at all angles as long as the place of use is not portable, and at the same time, a light source only in a specific area is also used. It must be assumed.
Therefore, in order to obtain a bright and clear screen display having an appropriate viewing angle, the light incident in the apparatus is efficiently introduced into the liquid crystal, the reflected light is efficiently guided to the position of the observer, and the incident light is scattered. It will have a function.
[0007]
Here, FIG. 2, FIG. 3, and FIG. 4 show examples of incident light reflection and scattering methods conventionally used in reflection type liquid crystal display devices.
The reflection type liquid crystal display device 200 with the back scattering film shown in FIG. 2 has the most basic structure, and has no light scattering reflection function inside the liquid crystal cell, and a light scattering film and a reflection plate are arranged outside. It is. A color filter 204, a transparent electrode 205 for driving liquid crystal, a liquid crystal 202, and a transparent electrode 206 are formed between the transparent substrate 201 and the transparent substrate 206, and the light scattering reflection function is provided outside the display device.
That is, the light scattering film 210 and the reflection plate 203 are disposed outside the back side electrode substrate 208, and light incident from the observer side electrode substrate 207 passes through the back side electrode substrate 208, and then the light scattering film 210 and The light is returned by the reflecting plate 203 in contact with the light scattering film 210 again to become scattered light 215 and returns to the display device.
[0008]
Although the reflective liquid crystal display device 200 with the back scattering film shown in FIG. 2 is simple in manufacturing method, the light scattering film responsible for the light scattering reflection function and the reflective plate for the thickness of the liquid crystal responsible for image display and the thickness of the transparent substrate. Since it is far away, the resolution is degraded.
[0009]
In the reflective liquid crystal display device 300 with the front scattering film shown in FIG. 3, a light scattering film is provided on the front surface to cause light scattering. That is, a light scattering film 309 that causes light refraction and diffraction is disposed on the surface of the transparent substrate 301 that constitutes the observer-side electrode substrate 307 facing the observer, and the other surface of the transparent substrate 301 is disposed on the other surface. A color filter 304 and a transparent electrode 305 for driving a liquid crystal are sequentially stacked.
The rear electrode substrate 308 is provided with a reflective electrode 303 that serves as both a light reflector and a liquid crystal driving electrode. The liquid crystal 302 is sandwiched between the observer side electrode substrate 307 and the rear electrode substrate 308. Yes. The reflective electrode 303 has a flat surface and regularly reflects light incident on the reflective electrode, and light scattering is performed by a light scattering film 309 provided on the observer side electrode substrate 307.
[0010]
In the light scattering film as shown in FIG. 3, the incident light 314 to the light scattering film scatters the forward scattered light 317 to be scattered in the traveling direction of the incident light to the light scattering film and a part of the incident light to the light scattering film. There is backscattered light 316 that scatters toward the back (opposite direction to the incident direction). In the reflective liquid crystal display device 300 with the front scattering film shown in FIG. 3, the backscattered light 316 is light that does not enter the liquid crystal 302 and does not contribute to screen display, but also causes a decrease in screen contrast. become.
[0011]
In common with the reflection type liquid crystal display device 200 with the back scattering film shown in FIG. 2 and the reflection type liquid crystal display device 300 with the front scattering film shown in FIG. 3, the place where light is scattered is a transparent substrate. Since the distance is between, the resolution deteriorates depending on the thickness of the back-side electrode substrate 208 in FIG. 2 or the observer-side electrode substrate 307 in FIG. 3, so that it is not suitable for a high-definition display device.
Usually, the pixel size is several tens of μm with respect to the thickness of the transparent substrate 206 or the transparent substrate 301 of about several hundred μm, and the resolution is remarkably deteriorated. This can be a fatal weakness for small portable display devices such as mobile devices.
[0012]
In the reflective liquid crystal display device 400 with a scattering reflector of FIG. 4, an observer side electrode in which a transparent substrate 401 is sequentially laminated with a color filter 404 for coloring transmitted light in a predetermined color and a transparent electrode 405 for driving liquid crystal. The liquid crystal 402 is sandwiched between the substrate 407 and the back electrode substrate 408.
The back electrode substrate 408 is provided with a reflection electrode 403 that serves as both a light reflection plate and a liquid crystal driving electrode. By forming the surface of the reflective electrode 403 to be uneven, light incident on the reflective electrode 403 is reflected as scattered light.
[0013]
The light scattering method shown in FIG. 4 has no loss of light except that incident light is partially absorbed by the reflecting electrode, so that the light utilization efficiency is excellent and there is no backscattering, so that the contrast is not lowered. However, the formation of surface irregularities on the reflective electrode 403 requires the use of a photolithographic method, that is, processing steps such as photosensitive resin coating, exposure, development, baking, and metal thin film formation, which increases the number of manufacturing steps and increases the manufacturing yield. An increase in manufacturing cost such as a decrease is inevitable.
[0014]
[Problems to be solved by the invention]
  The present invention has been made in view of the above-described problems, and the position where the light scattering film is disposed is arranged at a reflection type liquid crystal display device with a back scattering film shown in FIG. 2, and a front scattering film shown in FIG. As in the case of the reflective liquid crystal display device attached, it is not provided at a position distant from the liquid crystal through the transparent substrate, that is, it is provided at a position as close as possible to the liquid crystal to prevent deterioration of resolution as a reflective liquid crystal display device. Photosensitive light scattering film that can easily produce a light scattering film that prevents the decrease in contrast without increasing the number of manufacturing stepsOf manufacturing color filter substrate provided withIt is a problem to provide.
[0015]
[Means for Solving the Problems]
  The present invention forms a color filter on a transparent substrate, and on the color filter,At least 10 to 30% by weight of an alkali-soluble photosensitive transparent resin, 0.1 to 3% by weight of a photopolymerization initiator, a solvent, and 5 to 20 transparent particles having a particle size of 1.0 to 5.0 μm The ratio of the larger value to the smaller value of either the refractive index of the coating film of the alkali-soluble photosensitive transparent resin and the refractive index of the transparent particles is [1.2 or more: 1.0]. By applying, drying, exposing, developing and baking the resin composition for photosensitive light scattering film, a light scattering film having a thickness of 5 μm or less in which the transparent particles are arranged in a single layer is formed.A method for manufacturing a color filter substrate.
[0016]
  In the present invention, a color filter is formed on a transparent substrate, and the color filter is formed.
On Ruta,10-30 wt% of at least alkali-soluble photosensitive transparent resin, 1-20 wt% of photopolymerization monomer, 0.1-3 wt% of photopolymerization initiator, solvent, and particle size of 1.0-5 A ratio of a large value to a small value of either the refractive index of the coating film of the alkali-soluble photosensitive transparent resin or the refractive index of the transparent particle is blended at a ratio of 5 to 20% by weight of transparent particles of 0.0 μm. By applying, drying, exposing, developing and baking the resin composition for photosensitive light scattering film which is [1.2 or more: 1.0], the thickness of the transparent particles arranged in a single layer is 5 μm or less. Forming light scattering filmA method for manufacturing a color filter substrate.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Below, the embodiment of the resin composition for photosensitive light-scattering films | membranes by this invention is described in detail.
Examples of alkali-soluble photosensitive transparent resins that can be used in the present invention include acrylic monomers such as alkyl acrylates, alkyl methacrylates, cyclic acrylates, cyclic methacrylates, hydroxyethyl ethyl acrylates, hydroxyethyl methacrylates, and ethylenically unsaturated groups. An acrylic transparent resin composed of a radical polymerizable monomer having an epoxy, an epoxy acrylate transparent resin having fluorine or silicon, an epoxy acrylate transparent resin having a fluorene skeleton, or the like can be used.
[0021]
The photopolymerization initiator added for partially exposing the coating layer of the resin composition for photosensitive light scattering film according to the present invention and photocuring by the polymerization method is not particularly limited, but acetophenone compounds, imidazole compounds Benzophenone compounds, benzoin ether compounds, oxime ketone compounds, acylphosphine oxide compounds, and the like, but are not limited thereto. Moreover, you may mix and use two or more types of photoinitiators as needed.
[0022]
Since the resin composition for photosensitive light scattering film according to the present invention needs to be applied on a transparent substrate with a film thickness of 1 to 10 microns, the viscosity is usually adjusted using a solvent in order to impart coating suitability. . Examples of the solvent include alcohols, ketones, esters and the like. For example, methanol, ethanol, propanol, isopropyl alcohol, n-butanol, tert-butanol, 2-methylpropyl alcohol, toluene, xylene, cyclohexane, isophorone, cellosolve acetate, diethylene glycol dimethyl ether, ethylene glycol diethyl ether, propylene glycol monomethyl ether, propylene Glycol monomethyl ether acetate, isoamyl acetate, ethyl acetate, ethyl lactate, methyl ethyl ketone, acetone, cyclohexanone, chloroform, dichloromethane, tetrachloromethane, 1,4-dioxane, tetrahydrofuran, n-pentane, n-hexane, n-heptane, 2 -Methoxyethanol, 2-ethoxyethanol, 2-butoxyethanol, 2 Ethoxyethyl acetate, 2-butoxyethyl acetate, 2-methoxyethyl acetate, 2-ethoxyethyl ether, 2- (2-ethoxy) ethoxyethanol, 2- (2-butoxy) ethoxyethanol, 2- (2-ethoxy) ethoxy Examples thereof include, but are not limited to, ethyl acetate, 2- (2-butoxy) ethoxyethyl acetate, 2-phenoxyethanol and the like. Moreover, you may mix and use 2 or more types of solvents as needed.
[0023]
Examples of transparent particles that can be used in the present invention include fine particles composed of inorganic substances and fine particles composed of organic polymers. As the inorganic fine particles, amorphous fine particles such as silica and alumina oxides, and as the organic polymer fine particles, fine particles made of silicon resin, melamine resin, and acrylic resin can be used, but are not limited thereto. Moreover, you may mix and use 2 or more types of particle | grains as needed.
[0024]
When the photopolymerization initiator is 0.1% by weight or less, the crosslink density of the alkali-soluble photosensitive transparent resin is weak, and the pattern is likely to drop off during alkali development. Moreover, the storage stability of the resin composition for photosensitive light-scattering films | membranes that it is 3 weight% or more worsens.
On the other hand, when the transparent particles are 5% by weight or less, the light scattering property is weak and a preferable light scattering property cannot be obtained. On the other hand, if it is 20% by weight or more, the occupancy ratio of the particles in the film becomes too high at the time of film formation, so that the particles protrude from the film surface and the film surface becomes mat-like.
[0025]
The resin composition for a photosensitive light scattering film according to the present invention particularly contains a photopolymerizable monomer as this preferred embodiment. As the photopolymerization monomer used, a compound capable of radical polymerization (or crosslinking) reaction is used, and (meth) acrylic acid, methyl (meth) acrylate, butyl (meth) acrylate, benzyl (meth) acrylate, 2-hydroxy Various (meth) acrylic esters such as ethyl (meth) acrylate and 2-hydroxypropyl (meth) acrylate, ethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, styrene , Divinylbenzene, (meth) acrylamide, vinyl acetate, N-hydroxymethyl (meth) acrylamide, dipentaerythritol hexa (meth) acrylate, melamine acrylate, epoxy acrylate prepolymer, etc. Including but not limited to. In particular, it is preferable to use a polyfunctional (meth) acrylic monomer in terms of exposure sensitivity and various characteristics after curing.
[0026]
When the photopolymerization monomer is added, the crosslinking density is increased and the resistance and strength are improved. However, if it is 20% by weight or more, it becomes too hard and the adhesion strength is lowered and the pattern is easily peeled off.
[0027]
FIG. 1 is a cross-sectional view schematically showing an embodiment in which an observer-side electrode substrate on which a light scattering film is formed using a resin composition for a photosensitive light scattering film according to the present invention is used in a reflective liquid crystal display device. It is.
When the light scattering film is formed in a liquid crystal cell (liquid crystal panel) as shown in FIG. 1, the upper limit of the film thickness of the photosensitive light scattering film 109 formed from the resin composition for photosensitive light scattering film according to the present invention is The thickness is about 10 μm, and preferably the film thickness is 5 μm or less. In order to obtain the photosensitive light scattering film 109 having such a thin film and to make the surface of the photosensitive light scattering film flat, the transparent particles 112 dispersed in the alkali-soluble photosensitive transparent resin 113 are used. The thickness, that is, the diameter of the particles in the film thickness direction is preferably in the range of 1.0 μm to 5.0 μm.
[0028]
In order to obtain preferable light scattering characteristics with the resin composition for photosensitive light scattering film according to the present invention, the particle diameter of the transparent particles and the ratio of the refractive index of the transparent particles to the alkali-soluble photosensitive transparent resin are not appropriate. must not.
When the difference in refractive index is increased, the characteristic curve of light scattering in FIG. 5 changes from the characteristic curve 502 to the characteristic curve 503. The vicinity of regular reflection is reduced, and the reflection is more widespread.
When the ratio of the larger value to the smaller value of the refractive index of the coating film of the alkali-soluble photosensitive transparent resin and the refractive index of the transparent particles is [1.2 or more: 1.0], it is used as a light scattering film. However, the turbidity becomes too high, and the image characteristics deteriorate when the liquid crystal cell is formed.
[0029]
Also, the reflection characteristics change when the particle size of the transparent particles is changed. Even with the same material, the scattering efficiency increases as the particle size becomes smaller. Increasing the chance of incident light colliding with the particles increases the scattering angle combined with diffraction effects. That is, by reducing the particle size, the light scattering characteristic curve in FIG. 5 decreases in the vicinity of specular reflection and increases in lateral spread, and changes from the direction of the arrow, that is, from the characteristic curve 502 to the characteristic curve 503.
[0030]
The optimum particle diameter of the transparent particles is preferably a light scattering film in which the reflected light becomes high near 15 ° with respect to -30 ° incident light. Therefore, the sulfemic valem standard white plate 501 shown in FIG. 5 clearly spreads too much, and the characteristic curve 502 is higher than the characteristic curve 503 in the vicinity of 15 °.
The specific particle size is 1.0 μm or more and 5.0 μm or less. The film thickness of the light scattering film built in the reflective liquid crystal display device is at most about 5 μm, and the upper limit of the particle diameter of the transparent particles is about the same as the film thickness.
The transparent particles are preferably point-symmetric particles having a smooth surface.
[0031]
The mixing ratio of the transparent particles to the alkali-soluble photosensitive transparent resin is mainly defined by the following light scattering characteristics, reliability, and film forming conditions.
[0032]
1) When the mixing amount of the transparent particles 112 is increased, the characteristic curve of light scattering in FIG. 5 changes from the characteristic curve 502 to the characteristic curve 503. This is because when the number of transparent particles is increased, incident light collides with more transparent particles when passing through the film, thereby increasing the scattering efficiency. However, when the mixing amount is changed, the effect of widening the scattering angle is negligible compared to the case where the refractive index and the particle diameter are changed.
Non-volatile components other than the transparent particles in the resin composition for photosensitive light-scattering film as viewed from the light-scattering characteristics, that is, when no photopolymerizable monomer is contained, the non-volatile components of the alkali-soluble photosensitive transparent resin (A ) And the total amount (B) of the transparent particles (B / A) is in a practical range of 0.2 or more and 1.2 or less, preferably 0.6 or more and 1.2 or less.
[0033]
2) The amount of transparent particles mixed with the alkali-soluble photosensitive transparent resin is related to the adhesion of the light scattering film to the color filter or substrate glass, and light scattering such as moisture resistance, solvent resistance, and chemical resistance. It relates to the reliability of the film.
In general, fewer transparent particles are preferred. The limit of maintaining the physical properties of the light scattering film without impairing the light scattering effect is the volume ratio (B / A) of the nonvolatile component amount (A) of the alkali-soluble photosensitive transparent resin and the total amount (B) of the transparent particles. ) Is 1.0 or less, preferably 0.8 or less.
[0034]
3) The amount of the transparent particles mixed with the alkali-soluble photosensitive transparent resin is related to the coating characteristics. The ratio of the specific gravity of the resin solution of the alkali-soluble photosensitive transparent resin and the specific gravity of the transparent particles may be relatively close to 1. However, since the particle size of the transparent particles is relatively large when viewed as a powder, the particles are likely to settle when the specific gravity of the transparent particles exceeds 1.5.
Further, if the amount of transparent particles is increased more than necessary in the alkali-soluble photosensitive transparent resin liquid, the surface flatness of the film is lowered during the formation of the coating film, and the quality of the photosensitive light scattering film is lowered. The volume ratio (B / A) of the appropriate amount (A) of the non-volatile component of the transparent resin and the total amount (B) of the transparent particles as viewed from the coating characteristics is 1.2 or less.
[0035]
From 1), 2), and 3) above, when no photopolymerizable monomer is contained, the volume ratio (B) of the nonvolatile component amount (A) of the alkali-soluble photosensitive transparent resin and the total amount (B) of transparent particles / A) is in a practical range of 0.2 or more and 1.2 or less, preferably 0.5 or more and 0.8 or less.
[0036]
When the transparent particles are inorganic particles such as silica, a silane coupling agent, a tinter net coupling agent, an aluminate coupling agent, or the like is effective as a dispersion aid with the alkali-soluble photosensitive transparent resin.
[0037]
The photosensitive light scattering film 109 built in the reflective liquid crystal display device 100 shown in FIG. 1 should be as thin as possible. The current film thickness is at most about 10 μm, more preferably 5 μm or less. As described above, the film thickness is limited, that is, the amount of the transparent particles existing in the film is regulated, and the transparent particle diameter is also regulated.
As described above, the amount of the transparent particles in the light scattering film in the present invention, and thus various characteristics of the photosensitive light scattering film, are regulated.
[0038]
As described above, in order to efficiently scatter light and provide the desired light scattering property with the thin photosensitive light scattering film 109 having an upper limit of the film thickness of 10 μm, desirably 5 μm or less, photosensitive light It is necessary to fill the scattering film with transparent particles as high as possible. In order to make the thickness of the photosensitive light scattering film 5 μm or less, it is necessary to arrange the transparent particles in a single layer in the film thickness direction. Incidentally, the photosensitive light scattering film 109 shown in FIG. 1 is an example in which the transparent particles 112 are arranged in a single layer.
[0039]
Gravure printing, roll coater, dip coater, spin coater, die coater and the like can be applied as means for forming the composition for photosensitive light scattering film according to the present invention as a coating film.
However, the uniformity of the film thickness is important for the light scattering film used in the reflective liquid crystal display device, and a spin coater is particularly suitable. The composition for photosensitive light scattering film according to the present invention provides a suitable light scattering film when a coating film is formed by a spin coater.
[0040]
The coating film thickness at the end of rotation of the spin coat rotating at a constant speed is expressed by Equation (1) when there is no influence of wind and the coating liquid does not change.
[0041]
[Expression 1]
Figure 0003969103
[0042]
Further, the dry film thickness H at the end of the rotation is given by Equation (3).
[0043]
[Expression 2]
Figure 0003969103
[0044]
In particular, the parameters that regulate the coating film thickness h at the end of rotation are mainly the rotation speed and the rotation time, and the initial liquid volume h0Is hardly involved. The characteristic values of the coating liquid that regulates the coating film thickness h at the end of rotation are mainly the coating liquid density and viscosity, and the parameters related to the final film thickness are the coating liquid density, wt% of non-volatile components, and after solvent volatilization The density of the dry film.
[0045]
The parameter values will be described below.
[0046]
Coating film thickness h at the start of rotation0:
Although it is the amount of applied liquid droplets before the start of rotation, one item of the denominator of Equation (1) is extremely small compared to two items and can be ignored.
[0047]
Coating liquid density ρ:
The specific gravity of the transparent particles in the present invention is about 1.15 to 2.1, and the specific gravity of the alkali-soluble photosensitive transparent resin is about 1.1 to 1.3. The specific gravity of the organic solvent having good coating properties is 0.9 to 1.0. Even when various transparent particles having different specific gravities are dispersed in the transparent resin, the proportion of the transparent particles in the coating liquid is at most 10%, and it is relatively minor as an element for changing the specific gravity of the coating liquid. The actual density of the coating liquid is 0.97 to 1.03 (g / cmThree).
[0048]
Rotational speed ω:
Factors that determine the rotation speed include the desired film thickness of the coating film and the ability of the coating apparatus. If it rotates at a higher speed than necessary, it will be affected by foreign matter and air turbulence. On the other hand, if the rotation speed is low, the rotation time becomes long to obtain a predetermined film thickness, the tact is extended, the production capacity is lowered, and the uniformity of the coating film is deteriorated. From the above viewpoint, when a coating film is formed on a large glass substrate having a size of several tens of centimeters, the practical rotational speed is from several hundred rpm to around 1000 rpm.
[0049]
Rotation time t:
Factors that determine the rotation time include the desired film thickness of the coating and the ability of the coating apparatus. If the rotation time is shorter than necessary, the leveling property of the coating liquid is lost and the uniformity of the coating film is deteriorated. Therefore, the preferable rotation time is 10 seconds or more, more preferably 15 seconds or more.
[0050]
Film thickness H after drying:
The film formed on the surface of the color filter is desired to be as thin as possible as long as the function can be guaranteed. In this embodiment, the photosensitive light scattering film is formed on the front substrate of the liquid crystal display device, and has a maximum film thickness of 10 μm, more preferably 5 μm or less.
[0051]
Density of dry film ρ ':
When no photopolymerization monomer is contained, the density of the transparent particles is 1.15 to 1.95 (g / cmThreeThe density of the alkali-soluble photosensitive transparent resin is 1.1 to 1.3 (g / cm).Three) The volume ratio of the mixture of the transparent particles and the alkali-soluble photosensitive transparent resin is 0.2 to 1.2.
In the case where the density of the dry film is maximum in this range, the density of the transparent particles is 2.0 (g / cmThree), The density of the alkali-soluble photosensitive transparent resin is 1.3 (g / cmThree), And the mixing volume ratio is 1.2 (case 1). The density of the dry film at this time is 1.68 (g / cmThree).
Similarly, in the case where the density of the dry film is minimized, the density of the transparent particles is 1.15 (g / cmThree), The density of the alkali-soluble photosensitive transparent resin is 1.1 (g / cmThree), And the mixing volume ratio is 0.2 (case 2). The density of the dry film at this time is 1.11 (g / cmThree).
[0052]
Nonvolatile component NV:
In relation to the coating property, the optimum coating suitability and the optimum film property are usually observed at different levels in the range of 15% by weight to 35% by weight. The lower the numerical value, the better the coating suitability, but the film properties tend to deteriorate. In particular, when the film thickness is close to the transparent particle diameter and the volume ratio of the total amount of transparent particles to the amount of alkali-soluble photosensitive transparent resin is 1 or more, increasing the solvent component and lowering NV will cause the film surface to become uneven. It is easy to become. It is preferable for film characteristics that the non-volatile component is set as high as possible.
[0053]
Viscosity η:
Low viscosity is excellent in workability in relation to coating properties. Usually, 10 (mPa) to 30 (mPa) is good. Factors affecting the viscosity are the material of transparent particles, particle size, compatibility with solvent, mixing amount, type and molecular weight of transparent resin, compatibility with solvent, viscosity of solvent, amount of non-volatile components, and the like.
[0054]
From the above, 1 / h is added to Equation (1) and Equation (2).0 2= 0, t = 12, and ρ = 1 are substituted to obtain Equation (4).
Expression (6) is obtained by substituting Expression (4) into Expression (5) obtained from Expression (3).
[0055]
[Equation 3]
Figure 0003969103
[0056]
The unit system is converted to a practical unit, and Equations (7) and (8) are obtained.
H → [H]: cm → μm, η → [η]: Poise → mPs, NV → [NV]: Ratio →%, ω → [ω]: Radians / s → rpm
[0057]
[Expression 4]
Figure 0003969103
[0058]
From the above, the range of Equation (8) is obtained. However, since [ω] and [H] in Equation (8) are inversely proportional, the minimum value of [H] is relative to the maximum value of [ω], and [H] is relative to the minimum value of [ω]. The maximum value corresponds.
The range is substantially determined by the magnitude of ρ ′. That is, the composition for photosensitive light-scattering film which can manufacture the target light scattering as it is Numerical formula (9) is obtained.
[0059]
FIG. 1 is a cross-sectional view schematically showing an embodiment in which an observer-side electrode substrate on which a light scattering film is formed using a resin composition for a photosensitive light scattering film according to the present invention is used in a reflective liquid crystal display device. It is.
As shown in FIG. 1, an observer-side electrode substrate 107 includes a color filter 104 that uses a known pigment dispersion method, a staining method, or the like to transmit transmitted light as colored light on a transparent substrate 101 such as a glass substrate. A photosensitive light scattering film 109 is formed on the color filter 104 with a film thickness of 3 μm, for example, using the resin composition for photosensitive light scattering film according to the present invention, and the photosensitive light scattering film 109 is formed. On top of this, for example, a transparent electrode 105 of ITO (mixed oxide of indium oxide and tin oxide) is formed.
[0060]
The reflective liquid crystal display device 100 shown in FIG. 1 is configured by sandwiching the liquid crystal 102 between the observer side electrode substrate 107 and a separately prepared electrode substrate (back side electrode substrate 108) having a light reflection function.
Since the back electrode substrate 108 has a light reflecting function, a light reflecting plate and a liquid crystal driving electrode may be separately formed, or the light reflecting plate and the liquid crystal driving electrode may be combined. It may be an electrode. Incidentally, a reflective electrode 103 is formed on the back side electrode substrate 108 in FIG. 1, and the reflective electrode 103 is flat in order to cause light scattering in the photosensitive light scattering film 109.
In addition to the above-described components, the reflective liquid crystal display device 100 includes a polarizing film, an alignment film, and the like, but are not shown in FIG.
[0061]
When listing examples of photosensitive light scattering films according to the present invention,
1) A dispersion of silicon resin particles having an average particle diameter of 2 μm and a refractive index of 1.44 as transparent particles in an acrylic alkali-soluble photosensitive transparent resin having a refractive index of 1.56,
2) An acrylic alkali-soluble photosensitive transparent resin having a refractive index of 1.56, transparent particles having an average particle diameter of 2 μm, silica particles having a refractive index of 1.44, and silicon having an average particle diameter of 2.5 μm and a refractive index of 1.43 Resin dispersed,
3) An alkali-soluble photosensitive resin having a fluorene skeleton having a refractive index of 1.61, and acrylic particles having an average particle diameter of 1.8 μm and a refractive index of 1.49 dispersed as transparent particles. .
The above examples 1), 2) and 3) are particle-dispersed coating liquids in which transparent particles are dispersed in a photosensitive transparent resin. A predetermined pattern is formed at a predetermined place using a photolithography method or the like. It can be molded into a shape.
Various dispersing aids, leveling agents, and coupling agents may be used as additives in order to disperse the transparent particles in the alkali-soluble photosensitive transparent resin.
[0062]
【Example】
Examples of the present invention will be described below.
<Example 1>
A glass substrate was used as the transparent substrate 101, and a color filter 104 made of R (red), G (green), and B (blue) was formed on the glass substrate by a known pigment dispersion method.
Next, a coating liquid in which transparent particles were dispersed in a transparent resin solution was applied, dried, exposed, developed, and baked on a color filter to produce a photosensitive light scattering film 109. Resin composition for photosensitive light scattering film It was prepared with the composition shown below.
Figure 0003969103
[0063]
A1 and C are mixed, applied, dried and exposed (200 mJ / cm2The refractive index of the transparent film after development and baking at 230 ° C. for 60 minutes was 1.52 (D line 589 nm).
A1: B1: C: D = 4.5: 2: 0.45: 26 in a weight ratio of the above A1, B1, C, and D is mixed and stirred for 3 hours with a medialess disperser, and a photosensitive light scattering film resin A composition was obtained. The viscosity at this time was 20 cp / 25 ° C.
[0064]
After dropping the composition onto the color filter, the color filter substrate was rotated at 990 rpm for 10 seconds, dried, and prebaked on a hot plate at 70 degrees for 15 minutes. Next, exposure (200 mJ / cm2) And then developed with a 2.5% aqueous sodium carbonate solution and thoroughly washed with water. Thereafter, it was dried and baked at 230 ° C. for 60 minutes to form a photosensitive light scattering film. The characteristic values of the film at this time are shown in Table 1.
Next, after forming the photosensitive light scattering film, an ITO transparent electrode was formed on the photosensitive light scattering film by a known sputtering method, and an observer-side electrode substrate 107 was obtained.
[0065]
The liquid crystal 102 is sandwiched between the observer-side electrode substrate 107 obtained in the above process and an electrode substrate (back-side electrode substrate 108) having a light reflection function that is separately prepared, and the reflective liquid crystal display device 100 shown in FIG. It was created.
In order to give the back side electrode substrate a light reflecting function, a light reflecting plate and a liquid crystal driving electrode may be separately formed, or a reflecting electrode combining the light reflecting plate and the liquid crystal driving electrode. May be formed. Incidentally, the back electrode substrate 108 in FIG. 1 is formed with a reflective electrode 103 that serves both as a light reflecting plate and an electrode for driving a liquid crystal, and is reflected to cause light scattering in the photosensitive light scattering film 109. The surface of the electrode is flat.
In addition to the above-described components, the reflective liquid crystal display device includes a polarizing film, an alignment film, and the like, which are omitted in FIG.
[0066]
<Example 2>
Similarly to Example 1, a color filter 104 made of R (red), G (green), and B (blue) was formed on the transparent substrate 101.
Next, a coating liquid in which transparent particles were dispersed in a transparent resin solution was applied, dried, exposed, developed, and baked on a color filter to produce a photosensitive light scattering film 109. Resin composition for photosensitive light scattering film It was prepared with the composition shown below.
Figure 0003969103
[0067]
A1 and C are mixed, applied, dried and exposed (200 mJ / cm2), The refractive index of the transparent film after development and baking at 230 ° C. for 60 minutes was 1.61 (D line 589 nm).
The above A1, B1, B2, C, and D are mixed at a weight ratio of A1: B1: B2: C: D = 4.5: 1.5: 0.5: 0.45: 26 with a medialess disperser for 3 hours. The mixture was stirred to obtain a resin composition for photosensitive light scattering film. The viscosity at this time was 20 cp / 25 ° C.
[0068]
After dropping the composition onto the color filter, the color filter substrate was rotated at 990 rpm for 10 seconds, dried, and prebaked on a hot plate at 70 degrees for 15 minutes. Next, the patterning mask is overlaid and exposed (200 mJ / cm2) And then developed with a 2.5% aqueous sodium carbonate solution and thoroughly washed with water. Thereafter, it was dried and baked at 230 ° C. for 60 minutes to form a patterned photosensitive light scattering film 109. The characteristic values of the film at this time are shown in Table 1.
[0069]
Next, after forming the photosensitive light scattering film 109, an ITO transparent electrode 105 was formed on the photosensitive light scattering film by a known sputtering method, and an observer side electrode substrate 107 was obtained.
The liquid crystal 102 is sandwiched between the observer-side electrode substrate obtained in the above process and an electrode substrate (back-side electrode substrate 108) having a light reflection function that is separately prepared, and the reflective liquid crystal display device 100 shown in FIG. Created.
In order to give the back side electrode substrate a light reflecting function, a light reflecting plate and a liquid crystal driving electrode may be separately formed, or a reflecting electrode combining the light reflecting plate and the liquid crystal driving electrode. May be formed. Incidentally, the back electrode substrate 108 in FIG. 1 is formed with a reflective electrode 103 that serves both as a light reflecting plate and a liquid crystal driving electrode. In order to cause light scattering in the photosensitive light scattering film, the reflecting electrode 103 is used. The surface is flat.
In addition to the above-described components, the reflective liquid crystal display device includes a polarizing film, an alignment film, and the like, which are omitted in FIG.
[0070]
<Example 3>
Similarly to Example 1, a color filter 104 made of R (red), G (green), and B (blue) was formed on the transparent substrate 101.
Next, a coating liquid in which transparent particles were dispersed in a transparent resin solution was applied, dried, exposed, developed, and baked on a color filter to produce a photosensitive light scattering film 109. Resin composition for photosensitive light scattering film It was prepared with the composition shown below.
Figure 0003969103
[0071]
A2 and C are mixed, applied, dried, and exposed (200 mJ / cm2), The refractive index of the transparent film after development and baking at 230 ° C. for 60 minutes was 1.61 (D line 589 nm).
A2: B3: C: D = 4.5: 2: 0.45: 21 in the weight ratio of A2, B3, C, and D described above is mixed and stirred for 3 hours with a medialess disperser, and photosensitive resin for light scattering film A composition was obtained. The viscosity at this time was 12 cp / 25 ° C.
After dropping the composition onto the color filter, the color filter substrate was rotated at 770 rpm for 10 seconds, dried, and prebaked on a hot plate at 70 degrees for 15 minutes. Next, the patterning mask is overlaid and exposed (200 mJ / cm2) And then developed with a 2.5% aqueous sodium carbonate solution and thoroughly washed with water. Thereafter, it was dried and baked at 230 ° C. for 60 to form a patterned photosensitive light scattering film 109. The characteristic values of the film at this time are shown in Table 1.
[0072]
Next, after forming the photosensitive light scattering film 109, an ITO transparent electrode 105 was formed on the photosensitive light scattering film by a known sputtering method, and an observer side electrode substrate 107 was obtained.
The liquid crystal 102 is sandwiched between the observer-side electrode substrate 107 obtained in the above process and an electrode substrate (back-side electrode substrate 108) having a light reflection function that is separately prepared, and the reflective liquid crystal display device 100 shown in FIG. It was created.
In order to give the back electrode substrate 108 a light reflecting function, a light reflecting plate and a liquid crystal driving electrode may be separately formed, or the light reflecting plate and the liquid crystal driving electrode may be combined. An electrode may be formed. Incidentally, the back electrode substrate 108 in FIG. 1 is formed with a reflective electrode 103 that serves both as a light reflecting plate and a liquid crystal driving electrode. In order to cause light scattering in the photosensitive light scattering film, the reflecting electrode 103 is used. The surface 103 is flat.
In addition to the above-described components, the reflective liquid crystal display device includes a polarizing film, an alignment film, and the like, which are omitted in FIG.
[0073]
<Example 4>
Similarly to Example 1, a color filter 104 made of R (red), G (green), and B (blue) was formed on the transparent substrate 101.
Next, a coating liquid in which transparent particles were dispersed in a transparent resin solution was applied onto the color filter 104, dried, exposed, developed, and baked to produce a photosensitive light scattering film 109. Resin composition for photosensitive light scattering film It was prepared with the composition shown below.
Figure 0003969103
[0074]
A2, C and E are mixed, applied, dried and exposed (200 mJ / cm2The refractive index of the transparent film after development and baking at 230 ° C. for 60 minutes was 1.58 (D line 589 nm). A2: B3: C: D: E in the above weight ratio of A2, B3, C, D, E is mixed and stirred for 3 hours with a medialess disperser for 4.5: 2: 0.45: 21: 2, and photosensitive A light-scattering film resin composition was obtained. The viscosity at this time was 14 cp / 25 ° C.
[0075]
After dropping the composition onto the color filter 104, the color filter substrate was rotated at 910 rpm for 10 seconds, dried, and prebaked on a hot plate at 70 degrees for 15 minutes. Next, the patterning mask is overlaid and exposed (200 mJ / cm2) And then developed with a 2.5% aqueous sodium carbonate solution and thoroughly washed with water. Thereafter, it was dried and baked at 230 ° C. for 60 minutes to form a patterned photosensitive light scattering film 109. The characteristic values of the film at this time are shown in Table 1.
Next, after forming the photosensitive light scattering film 109, an ITO transparent electrode 105 was formed on the photosensitive light scattering film by a known sputtering method, and an observer side electrode substrate 107 was obtained.
[0076]
The liquid crystal 102 is sandwiched between the observer-side electrode substrate 107 obtained in the above process and an electrode substrate (back-side electrode substrate 108) having a light reflection function that is separately prepared, and the reflective liquid crystal display device 100 shown in FIG. It was created.
In order to give the back electrode substrate 108 a light reflecting function, a light reflecting plate and a liquid crystal driving electrode may be separately formed, or the light reflecting plate and the liquid crystal driving electrode may be combined. An electrode may be formed. Incidentally, the back electrode substrate 108 in FIG. 1 is formed with a reflective electrode 103 that serves both as a light reflecting plate and a liquid crystal driving electrode. In order to cause light scattering in the photosensitive light scattering film, the reflecting electrode 103 is used. The surface is flat.
In addition to the above-described components, the reflective liquid crystal display device includes a polarizing film, an alignment film, and the like, which are omitted in FIG.
[0077]
Next, in order to see the effect of the light scattering film in this example, a film thickness meter (DEKTAK), a turbidimeter (manufactured by Nippon Denshoku Industries Co., Ltd., model number “NOH2000”), an automatic variable angle photometer Murakami Measured by Color Research Laboratory, model number “GP-200 type”). The measurement results are shown in Table 1 below.
[0078]
[Table 1]
Figure 0003969103
[0079]
As described above, the embodiments of the present invention have been described. However, the embodiments of the present invention are not limited to the above description and drawings. It goes without saying that various modifications may be made according to the specifications.
[0080]
  According to the invention of claim 1,At least 10 to 30% by weight of an alkali-soluble photosensitive transparent resin, 0.1 to 3% by weight of a photopolymerization initiator, a solvent, and 5 to 20 transparent particles having a particle size of 1.0 to 5.0 μm The ratio of the larger value to the smaller value of either the refractive index of the coating film of the alkali-soluble photosensitive transparent resin and the refractive index of the transparent particles is [1.2 or more: 1.0]. A photosensitive light scattering film resin compositionAs a result, the photosensitive light scattering film can be easily manufactured on the color filter without increasing the number of manufacturing steps. Further, the produced photosensitive light scattering film does not have a low crosslink density of the alkali-soluble photosensitive transparent resin, and has good light scattering characteristics.
[0081]
  According to the invention of claim 2, in addition to the effect of the invention of claim 1, a photosensitive light scattering film having a high crosslinking density, excellent resistance and strength can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an embodiment in which an observer-side electrode substrate on which a light scattering film is formed using a resin composition for a photosensitive light scattering film according to the present invention is used in a reflective liquid crystal display device. It is.
FIG. 2 is an explanatory diagram of an example of a reflection / scattering method of incident light in a reflective liquid crystal display device;
FIG. 3 is an explanatory diagram of an example of a reflection / scattering method of incident light in a reflective liquid crystal display device;
FIG. 4 is an explanatory diagram of an example of a reflection / scattering method of incident light in a reflective liquid crystal display device;
FIG. 5 is an explanatory diagram of a characteristic curve of light scattering.
[Explanation of symbols]
100... Reflective liquid crystal display device in which a light scattering film is formed using the resin composition for photosensitive light scattering film according to the present invention
101, 106, 201, 209, 301, 306, 401, 406 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Transparent substrate
102, 202, 302, 402... Liquid crystal
103, 303, 403... Reflective electrode
104, 204, 304, 404... Color filter
105, 205, 305, 405... Transparent electrode
107, 207, 307, 407... Observer side electrode substrate
108, 208, 308, 408... Back side electrode substrate
109... Photosensitive light scattering film in the present invention
112 ・ ・ ・ ・ ・ ・ ・ ・ Transparent particles
113 ... Transparent resin
114, 214, 314, 414... Incident light
115, 215, 315, 415, ... scattered light
200... Example of reflective liquid crystal display device with back scattering film
203 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ Reflector
210, 309 ... Light scattering film
300... Example of reflective liquid crystal display device with front scattering film
400... Example of reflective liquid crystal display device with scattering reflector

Claims (2)

透明基板上にカラーフィルタを形成し、該カラーフィルタ上に、少なくともアルカリ可溶型感光性透明樹脂を10〜30重量%、光重合開始剤を0.1〜3重量%、溶剤、および粒径が1.0〜5.0μmである透明粒子を5〜20重量%の割合で配合され、且つ前記アルカリ可溶型感光性透明樹脂の塗膜の屈折率と透明粒子の屈折率のいづれか小さい値に対する大きい値の比が[1.2以上:1.0]である感光性光散乱膜用樹脂組成物を、塗布、乾燥、露光、現像、焼成することにより、前記透明粒子を単層に並べた5μm以下の厚さの光散乱膜を形成することを特徴とするカラーフィルタ基板の製造方法。A color filter is formed on a transparent substrate, and at least 10 to 30% by weight of an alkali-soluble photosensitive transparent resin, 0.1 to 3% by weight of a photopolymerization initiator, a solvent, and a particle size are formed on the color filter. A transparent particle having a particle size of 1.0 to 5.0 μm is blended at a ratio of 5 to 20% by weight, and either the refractive index of the coating film of the alkali-soluble photosensitive transparent resin or the refractive index of the transparent particle is smaller. The transparent particles are arranged in a single layer by coating, drying, exposing, developing and baking a resin composition for photosensitive light scattering film having a ratio of a large value to [1.2 or more: 1.0]. And forming a light scattering film having a thickness of 5 μm or less . 透明基板上にカラーフィルタを形成し、該カラーフィルタ上に、少なくともアルカリ可溶型感光性透明樹脂を10〜30重量%、光重合モノマーを1〜20重量%、光重合開始剤を0.1〜3重量%、溶剤、および粒径が1.0〜5.0μmである透明粒子を5〜20重量%の割合で配合され、且つ前記アルカリ可溶型感光性透明樹脂の塗膜の屈折率と透明粒子の屈折率のいづれか小さい値に対する大きい値の比が[1.2以上:1.0]である感光性光散乱膜用樹脂組成物を、塗布、乾燥、露光、現像、焼成することにより、前記透明粒子を単層に並べた5μm以下の厚さの光散乱膜を形成することを特徴とするカラーフィルタ基板の製造方法。A color filter is formed on a transparent substrate, and at least 10 to 30% by weight of an alkali-soluble photosensitive transparent resin, 1 to 20% by weight of a photopolymerization monomer, and 0.1% of a photopolymerization initiator are formed on the color filter. The refractive index of the coating film of the alkali-soluble photosensitive transparent resin, which is blended in a proportion of 5 to 20% by weight of ˜3% by weight, a solvent, and transparent particles having a particle size of 1.0 to 5.0 μm Coating, drying, exposing, developing, and baking a resin composition for a photosensitive light-scattering film, wherein the ratio of a large value to a small value of the refractive index of the transparent particles is [1.2 or more: 1.0] To produce a light scattering film having a thickness of 5 μm or less in which the transparent particles are arranged in a single layer .
JP2002021212A 2002-01-30 2002-01-30 Method for producing color filter substrate provided with photosensitive light scattering film Expired - Fee Related JP3969103B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002021212A JP3969103B2 (en) 2002-01-30 2002-01-30 Method for producing color filter substrate provided with photosensitive light scattering film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002021212A JP3969103B2 (en) 2002-01-30 2002-01-30 Method for producing color filter substrate provided with photosensitive light scattering film

Publications (2)

Publication Number Publication Date
JP2003222711A JP2003222711A (en) 2003-08-08
JP3969103B2 true JP3969103B2 (en) 2007-09-05

Family

ID=27744518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002021212A Expired - Fee Related JP3969103B2 (en) 2002-01-30 2002-01-30 Method for producing color filter substrate provided with photosensitive light scattering film

Country Status (1)

Country Link
JP (1) JP3969103B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5699096B2 (en) * 2012-01-26 2015-04-08 東京応化工業株式会社 Photosensitive composition, pattern and display device having pattern

Also Published As

Publication number Publication date
JP2003222711A (en) 2003-08-08

Similar Documents

Publication Publication Date Title
EP1012671B1 (en) Photosensitive black matrix composition and process of making it
US8470503B2 (en) Photosensitive resin composition for color filter and color filter using same
CN105938295B (en) Black resin composition for light-shielding film, substrate with light-shielding film, color filter and touch panel
CN101410729A (en) Optical laminate
TW200900751A (en) Optical filter, and liquid-crystal display device comprising it
TW201239470A (en) Color filter substrate for liquid crystal display device with inclined electric field and liquid crystal display device
US9581738B2 (en) Display apparatus
KR20120049796A (en) Liquid crystal display and method of manufacturing liquid crystal display device
JP4948914B2 (en) Black dispersion containing fine metal particles, coloring composition, photosensitive transfer material, substrate with light-shielding image, color filter, and liquid crystal display device
JP2003255118A (en) Color filter with photosensitive light scattering film
JP3969103B2 (en) Method for producing color filter substrate provided with photosensitive light scattering film
KR20010047842A (en) Base coating composition for forming lcd reflector having diffusing properties
JP3995797B2 (en) Coating liquid for light scattering film
JP3640008B2 (en) Reflective plate for liquid crystal display device, method for producing the reflective plate, and reflective liquid crystal display device
US20040048197A1 (en) Photosensitive black matrix
JP2007147665A (en) Colored composition, transfer material using the same, light shielding image for display apparatus, substrate with light shielding image, liquid crystal display element and liquid crystal display apparatus
JP2006003647A (en) Coating composition for forming recess and projection layer, and method for manufacturing reflection plate
JP3531615B2 (en) Light scattering film, electrode substrate for liquid crystal display device, and liquid crystal display device
JP2003227917A (en) Color filter
JP5309512B2 (en) Method for manufacturing color filter for transflective IPS liquid crystal display device
JP4178760B2 (en) Light scattering film, electrode substrate for liquid crystal display device, and liquid crystal display device
JP2004037706A (en) Color filter
TWI792104B (en) Anti-glare film, polarizing plate and display apparatus
JP2001051105A (en) Resin solution for light scattering film and light scattering film
KR100671105B1 (en) Conductive light diffusion film coating composition and method for preparing conductive light diffusion film by using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070419

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070528

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120615

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130615

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140615

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees