WO2013111565A1 - サンプリングミクサ回路及び受信機 - Google Patents

サンプリングミクサ回路及び受信機 Download PDF

Info

Publication number
WO2013111565A1
WO2013111565A1 PCT/JP2013/000272 JP2013000272W WO2013111565A1 WO 2013111565 A1 WO2013111565 A1 WO 2013111565A1 JP 2013000272 W JP2013000272 W JP 2013000272W WO 2013111565 A1 WO2013111565 A1 WO 2013111565A1
Authority
WO
WIPO (PCT)
Prior art keywords
capacitor
charge sharing
circuit
charge
switch
Prior art date
Application number
PCT/JP2013/000272
Other languages
English (en)
French (fr)
Inventor
陽平 森下
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to JP2013555196A priority Critical patent/JP6118735B2/ja
Priority to US14/368,770 priority patent/US9318999B2/en
Publication of WO2013111565A1 publication Critical patent/WO2013111565A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C27/00Electric analogue stores, e.g. for storing instantaneous values
    • G11C27/02Sample-and-hold arrangements
    • G11C27/024Sample-and-hold arrangements using a capacitive memory element
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/12Transference of modulation from one carrier to another, e.g. frequency-changing by means of semiconductor devices having more than two electrodes
    • H03D7/125Transference of modulation from one carrier to another, e.g. frequency-changing by means of semiconductor devices having more than two electrodes with field effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/14Balanced arrangements
    • H03D7/1425Balanced arrangements with transistors
    • H03D7/1441Balanced arrangements with transistors using field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D7/00Transference of modulation from one carrier to another, e.g. frequency-changing
    • H03D7/18Modifications of frequency-changers for eliminating image frequencies
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H15/00Transversal filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H19/00Networks using time-varying elements, e.g. N-path filters
    • H03H19/004Switched capacitor networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0882Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity
    • H04B7/0885Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using post-detection diversity with combination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/08Modifications for reducing interference; Modifications for reducing effects due to line faults ; Receiver end arrangements for detecting or overcoming line faults
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/006Signal sampling
    • H03D2200/0062Computation of input samples, e.g. successive samples
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D2200/00Indexing scheme relating to details of demodulation or transference of modulation from one carrier to another covered by H03D
    • H03D2200/0041Functional aspects of demodulators
    • H03D2200/0066Mixing
    • H03D2200/0068Mixing by computation

Definitions

  • the present invention relates to a sampling mixer circuit that performs frequency conversion and filter processing by discrete-time analog processing, and a receiver using the sampling mixer circuit.
  • Patent Document 1 In order to reduce the size and power consumption of wireless receivers, and to integrate an analog signal processing unit and a digital signal processing unit, a configuration that directly receives and processes high-frequency signals in discrete time is known.
  • Patent Document 1 In order to reduce the size and power consumption of wireless receivers, and to integrate an analog signal processing unit and a digital signal processing unit, a configuration that directly receives and processes high-frequency signals in discrete time is known.
  • Patent Document 1 and Non-Patent Document 1 a configuration that directly receives and processes high-frequency signals in discrete time is known.
  • FIG. 1 is a diagram showing an overall configuration of a direct sampling circuit disclosed in Patent Document 1.
  • FIG. 2 is a timing chart showing control signals input to the circuit of FIG.
  • the direct sampling circuit of FIG. 1 converts the frequency of the received analog RF (Radio Frequency) signal using a multi-tap direct sampling mixer (Multi-Tap Direct Sampling Mixer) and converts it to a discrete-time analog signal.
  • a filter characteristic that is a product of a FIR (Finite Impulse Response) filter and an IIR (Infinite Impulse Response) filter is realized by charge transfer between a plurality of capacitors included in the circuit of FIG.
  • the characteristics in the vicinity of the pass band are determined by the second-order IIR filter characteristics.
  • FIG. 3A shows a wideband frequency characteristic
  • FIG. 3B shows an example of a narrowband frequency characteristic near the passband.
  • FIG. 4 is a diagram showing an overall configuration of the direct sampling circuit disclosed in Non-Patent Document 2.
  • FIG. 5 is a timing chart showing control signals input to the circuit of FIG.
  • the conventional technique has the following problems.
  • the direct sampling circuit shown in FIG. 1 since the vicinity of the pass band is determined by the second-order IIR having a real number pole, it is difficult to realize a broadband and steep filter characteristic.
  • the direct sampling circuit adopting the configuration shown in FIG. 4 can realize a filter characteristic having a complex pole on the transfer function and a flat passband.
  • the transfer function of this configuration has a configuration in which the coefficient of the second-order polynomial of the denominator is less than 1 in Equation (1), and the range of poles that can be realized is narrow. Furthermore, it is difficult to design a zero point in IIR and to realize image removal filter characteristics.
  • the present invention has been made in view of the above points, and provides a sampling mixer circuit and a receiver that have a high degree of freedom in setting positions of zeros and poles of a transfer function and can easily form a desired filter characteristic. Objective.
  • a sampling mixer circuit has a period corresponding to a carrier frequency of an input signal, a clock generation circuit that outputs control signals of four phases having different phases, and a voltage signal based on the input signal as a current signal 4 systems for inputting the converted current signal to a plurality of capacitors and exchanging electric charges among the plurality of capacitors by different phases based on the four-phase control signals And an interphase capacitor whose connection is switched based on the four-phase control signal at a node other than the current signal input node in the four systems of charge sharing circuits.
  • Configuration diagram of direct sampling circuit of conventional configuration 1 Timing chart of control signal input to direct sampling circuit of conventional configuration 1 Characteristic diagram showing an example of filter characteristics realized by the direct sampling circuit of the conventional configuration 1
  • Configuration diagram of direct sampling circuit of conventional configuration 2 Timing chart of control signal input to direct sampling circuit of conventional configuration 2
  • Characteristic diagram showing an example of filter characteristics realized by the direct sampling circuit of the conventional configuration 2 1 is a block diagram showing a configuration of a direct sampling receiver according to Embodiment 1 of the present invention.
  • 1 is a circuit diagram showing a configuration of a discrete-time analog circuit according to a first embodiment of the present invention. Timing chart of control signal input to discrete-time analog circuit according to Embodiment 1 of the present invention FIG.
  • FIG. 5 is a characteristic diagram showing an example of filter characteristics realized by the discrete-time analog circuit according to the first embodiment of the present invention.
  • FIG. 6 is a characteristic diagram showing an example of filter characteristics realized by the discrete-time analog circuit according to the second embodiment of the present invention.
  • Circuit diagram showing the configuration of a discrete-time analog circuit according to Embodiment 3 of the present invention A circuit diagram showing composition of a discrete time analog circuit concerning Embodiment 4 of the present invention.
  • Circuit diagram showing the configuration of a discrete-time analog circuit according to a fifth embodiment of the present invention FIG.
  • FIG. 10 is a characteristic diagram showing an example of filter characteristics realized by the discrete-time analog circuit according to the fifth embodiment of the present invention.
  • Circuit diagram showing a configuration of a discrete-time analog circuit according to a seventh embodiment of the present invention Circuit diagram showing a configuration of a discrete-time analog circuit according to an eighth embodiment of the present invention.
  • FIG. 10 is a characteristic diagram showing an example of filter characteristics realized by the discrete-time analog circuit according to the eighth embodiment of the present invention.
  • Timing chart of control signal input to discrete time analog circuit according to embodiment 10 of the present invention 22 shows the charge sharing circuit A-1 in FIG. 22, FIG. 24A is a circuit diagram thereof, and FIG. 24B is a block diagram showing its terminal configuration. 22 shows the charge sharing circuit B-2 of FIG. 22, FIG. 25A is its circuit diagram, and FIG. 25B is a block diagram showing its terminal configuration.
  • the block diagram which shows the discrete time analog circuit based on Embodiment 11 of this invention The block diagram which shows the discrete time analog circuit based on Embodiment 12 of this invention. Timing chart of control signal input to discrete-time analog circuit according to embodiment 12 of the present invention.
  • FIG. 7 is a block diagram showing a configuration of the direct sampling receiver according to the present embodiment.
  • a direct sampling receiver 10 includes an antenna 11, a low noise amplifier (LNA) 12, a discrete time analog circuit 13, a reference frequency oscillating unit 14, and an A / D (Analog to Digital).
  • a conversion processing unit 15 and a digital reception processing unit 16 are included.
  • the direct sampling receiver 10 receives the electromagnetic wave 21 transmitted at the carrier frequency fCR , and performs frequency conversion and filter processing on the received signal in discrete time to extract a desired signal component.
  • the direct sampling receiver 10 converts the extracted desired signal component into a digital signal, performs digital reception processing, and outputs the obtained reception data 27.
  • the direct sampling receiver 10 can be configured as a direct conversion receiver, and can also be configured as a LOW-IF (low intermediate frequency) receiver. Further, the direct sampling receiver 10 can be employed in any one of a plurality of individual receivers constituting the diversity receiver.
  • Antenna 11 receives the electromagnetic wave 21 that is transmitted from a transmitting station (not shown) by the carrier frequency f CR, into an analog RF signal 22.
  • the low noise amplifier 12 amplifies and outputs the analog RF signal 22.
  • the discrete time analog circuit 13 receives the amplified analog RF signal 23 and the reference frequency signal 24. Then, the discrete-time analog circuit 13 performs frequency conversion on the analog RF signal 23 in a discrete time manner and performs filter processing, thereby extracting a baseband signal (or intermediate frequency (IF) signal) 25 from which a desired signal component is extracted. Is output.
  • IF intermediate frequency
  • the reference frequency oscillating unit 14 generates a reference frequency signal 24 used for sampling processing and frequency conversion processing for the discrete-time analog circuit 13.
  • the A / D conversion processing unit 15 quantizes the input baseband signal 25 into a digital value at a predetermined sampling frequency, and outputs a converted digital baseband signal 26.
  • the digital reception processing unit 16 performs predetermined digital reception processing such as demodulation processing and decoding processing on the input digital baseband signal 26 and outputs reception data 27.
  • the demodulation process includes, for example, a fast Fourier transform process for an OFDM (OrthogonalgonFrequency Division Multiplexing) baseband signal.
  • FIG. 8 is a circuit diagram showing an example of a main configuration of the discrete time analog circuit 100 according to the first embodiment.
  • the discrete time analog circuit 100 corresponds to the discrete time analog circuit 13 of FIG. 7 and constitutes a sampling mixer circuit.
  • the capacitance value of the imaginary capacitor 140 is denoted as CIM .
  • the imaginary capacitor is a capacitor for realizing an imaginary unit in the transfer function.
  • the influence of the parasitic capacitance of the TA can be suppressed because it is connected to the four systems of charge sharing circuits 130-1 to 130-4 via the switch rather than being arranged at the input section immediately after the TA.
  • a negative coefficient can be realized by inverting the connection order of the four systems of charge sharing circuits 130-1 to 130-4.
  • the charge sharing circuit 130-1 of the first system includes a sampling switch 131 that samples a current signal according to a predetermined phase, a history capacitor 132 that is arranged after the sample switch, a charging switch 133 that is turned on at the same timing as the sampling switch, Rotating capacitor 134 arranged after the charge switch, reset switch 135 connecting the rotating capacitor to the ground, dump switch 136 connecting the rotating capacitor and the buffer capacitor, and charge sharing with the rotating capacitor A buffer capacitor 137 that determines the potential of the output unit, and a charge sharing switch that connects the buffer capacitor and the interphase capacitor (interphase charge sharing switch: interphase capacitance) Accumulated charge and I phase, having IB phase, Q phase, corresponds to a switch to control the charge sharing between the charge accumulated in the capacitor of the charge sharing circuit QB phase) 138.
  • the capacitance values of the history capacitor 132, the rotating capacitor 134, and the buffer capacitor 137 are respectively indicated as C H , C R , and C B.
  • the sampling switch 131 and the charge switch 133 are simultaneously turned on. Therefore, the input node of the charge sharing circuit 130-1 is one end of the history capacitor 132 and one end of the rotating capacitor 134 to which current is input from the voltage-current conversion circuit 120.
  • the second to fourth system charge sharing circuits 130-2 to 130-4 differ in the combination of the control signals S0 to S3 input to the switches, and the other configurations are the same as those of the first system charge sharing circuit 130-1. The same.
  • the four charge sharing circuits 130-1 to 130-4 have different combinations of the control signals S0 to S3, so that the first system, the second system, the third system, and the fourth system are arranged in the order of 1/4.
  • a current is input from the voltage-current conversion circuit 120 with a period shift.
  • the four systems of charge sharing circuits 130-1 to 130-4 are connected to the imaginary capacitor 140 by shifting by a quarter period according to the arrangement order of the first system, the second system, the third system, and the fourth system. Is done.
  • FIG. 9 is a timing chart of control signals input to the discrete-time analog circuit according to Embodiment 1 of the present invention.
  • the clock generation circuit 110 generates the control signals S0, S1, S2, and S3 shown in FIG. 9 using the reference frequency signal 24 generated in the reference frequency oscillating unit 14, and supplies it to each switch.
  • the control signals S0, S1, S2, and S3 are signals that are 90 ° out of phase with each other by the clock of the frequency f LO generated with reference to the frequency f REF .
  • the frequency f LO becomes the carrier frequency f CR when the discrete-time analog circuit 13 outputs a baseband signal.
  • the frequency f LO when discrete time analog circuit 13 outputs an intermediate frequency signal, the carrier frequency f CR and the difference between the intermediate frequency f IF frequency f CR -f IF, or a f CR + f IF Become.
  • the voltage-current conversion circuit 120 converts the analog RF signal 23 amplified in the low noise amplifier 12 into an electric current (input current signal: gm ⁇ v in ) as an input voltage signal (v in ).
  • the sampling switch 131 is connected to the output stage of the voltage-current conversion circuit 120 and is turned on when the control signal S0 supplied from the clock generation circuit 110 is high.
  • the control signal S0 is a direct conversion, a signal of a frequency that matches the carrier frequency f CR of the analog RF signal 23. That is, the frequency f LO of the control signals S0 ⁇ S3 is a carrier frequency f CR of the input signal.
  • the charging switch 133 While the control signal S0 is high, the charging switch 133 is also in the ON state at the same time, so that the analog RF input signal converted into a current in the voltage-current conversion circuit 120 is accumulated as charges in the history capacitor 132 and the rotating capacitor 134. The As a result, the input signal becomes a discrete-time analog sample value and is converted from a radio frequency to a baseband (BB) frequency.
  • BB baseband
  • IIR filtering by charge sharing is performed. This operation can be described by the following equation using a difference equation.
  • q in is the charge input during the period when the control signal S0 is high
  • v in (t) is the input voltage at time t.
  • v 1 is a potential on one end side of the history capacitor 132.
  • a function having an integer value (for example, n, n ⁇ 1) as an argument indicates a representative value for each period T LO of the function. The same applies to the following equations.
  • the rotating capacitor 134, the buffer capacitor 137, and the imaginary capacitor 140 share charges through the charge sharing switch 138. That is, the complex filtering is performed by the buffer capacitor 137 holding the charge of the previous cycle and the imaginary capacitor 140 holding the charge of the 1/4 cycle.
  • This operation can be described by the following equation.
  • the output potential v out indicates a potential on one end side of the buffer capacitor 137, and corresponds to v out I in FIG.
  • the rotating capacitor 134 is connected to the reference potential via the reset switch 135, whereby the charge accumulated in the rotating capacitor 134 is discharged.
  • the timing for turning on the reset switch may be the timing of the control signal S3.
  • the entire transfer function can be calculated by z-converting the input / output and obtaining the ratio of the z-converted inputs / outputs Vout (z) and Vin (z).
  • the transfer function is
  • the charge sharing circuit 130-1 can realize a complex transfer function having an imaginary unit “j” in the transfer function.
  • FIG. 10 is a characteristic diagram showing an example of filter characteristics realized by the discrete-time analog circuit according to Embodiment 1 of the present invention.
  • the horizontal axis represents the input frequency of the radio signal, and the vertical axis represents the conversion gain.
  • the imaginary number capacitor 140 is connected to a node other than the input nodes of the charge sharing circuits 130-1 to 130-4 of each system.
  • the imaginary number capacitor 140 employs a configuration in which it is connected to the output nodes of the charge sharing circuits 130-1 to 130-4 of each system. For this reason, the influence of the parasitic capacitance of the voltage-current conversion circuit 120 is suppressed, and the charge is accurately transferred between the charge sharing circuits 130-1 to 130-4 whose current input period is shifted by 1 ⁇ 4 period via the imaginary capacitor 140. Can be shared.
  • FIG. 11 is a block diagram illustrating an example of a main configuration of the discrete-time analog circuit 200 according to the second embodiment.
  • the discrete-time analog circuit 200 corresponds to the discrete-time analog circuit 13 in FIG. 7 and constitutes a sampling mixer circuit.
  • the capacitance value of the imaginary capacitor 240 is denoted as CIM .
  • the charge sharing circuit 230-1 of the first system includes a sampling switch 231, a history capacitor 232, a charge switch 233, a rotating capacitor 234, a reset switch 235, a dump switch 236, a buffer capacitor 237, and a charge sharing switch 238.
  • the capacitance values of the history capacitor 232, the rotating capacitor 234, and the buffer capacitor 237 are denoted as C H , C R , and C B , respectively.
  • the clock generation circuit 210 generates the control signals S0, S1, S2, and S3 shown in FIG. 9 and supplies them to each switch.
  • the second to fourth charge sharing circuits 230-2 to 230-4 change the combination of the control signals S0 to S3 input to the respective switches to change the first share charge sharing circuit 230-1. Then, the operation is performed by shifting the period by 1/4 each. Other configurations are the same as those of the charge sharing circuit 230-1 of the first system.
  • the order of the first system, the second system, the third system, and the fourth system is 1 ⁇ 4.
  • a current is input from the voltage-current conversion circuit 220 with a period shift.
  • the four systems of charge sharing circuits 230-1 to 230-4 are shifted by 1 ⁇ 4 cycle by the arrangement order of the fourth system, the third system, the second system, and the first system, that is, in the reverse order. 240.
  • the difference between the discrete time analog circuit 100 and the discrete time analog circuit 200 is a control signal input to the charge sharing switch 238.
  • the sampling switch 131 and the charge sharing switch 138 are controlled by the same control signal (any one of the control signals S0 to S3). That is, the order in which the sampling switch 231 is turned on and the order in which the charge sharing switch 238 is turned on are the same order.
  • the order in which the sampling switches 231 are turned on and the order in which the charge sharing switches 238 are turned on in the first to fourth charge sharing circuits 230-1 to 230-4 are reversed.
  • the equation for charge sharing among the rotating capacitor 234, the buffer capacitor 237, and the imaginary capacitor 240 is shown below.
  • the discrete time analog circuit 200 can realize a transfer function in which the sign of the imaginary unit (j) is inverted with respect to the discrete time analog circuit 100 of the first embodiment.
  • FIG. 12 is a characteristic diagram showing an example of filter characteristics realized by the discrete-time analog circuit according to the second embodiment of the present invention.
  • the horizontal axis represents the input frequency of the radio signal, and the vertical axis represents the conversion gain.
  • the imaginary number capacitor 240 is connected to a node other than the input nodes of the charge sharing circuits 230-1 to 230-4 of each system.
  • the imaginary number capacitor 240 employs a configuration in which it is connected to the output nodes of the charge sharing circuits 230-1 to 230-4 of each system. For this reason, the influence of the parasitic capacitance of the voltage-current conversion circuit 220 is suppressed, and the charge is accurately transferred between the charge sharing circuits 230-1 to 230-4 whose current input period is shifted by 1 ⁇ 4 cycle via the imaginary capacitor 240. Can be shared.
  • the first-system charge sharing circuit 230-1 and the third-system charge sharing circuit 230-3 are connected to the rotating capacitor 234, the buffer capacitor 237, and the imaginary capacitor 240 at the same time. These operations are almost the same as those of the charge sharing circuit 130-1 of the first embodiment, and the difference is that the sign of the charge held in the imaginary capacitor 240 is inverted. Therefore, the transfer function is obtained by equation (6).
  • the rotating capacitor 234, the buffer capacitor 237, and the imaginary number capacitor 240 are connected with a time lag. These operations are not the same as the operations of the charge sharing circuit 130-1 of the first embodiment. However, under the condition of C B >> C R, approximating the transfer function of connecting simultaneously.
  • V 2 indicates a potential after charge sharing between the rotating capacitor 234 and the buffer capacitor 237
  • V 3 indicates a potential after charge sharing between the buffer capacitor 237 and the imaginary number capacitor 240.
  • the transfer function of the second embodiment is an expression (6) obtained by inverting the sign of the charge held in the imaginary capacitor 240 in the transfer function of the first embodiment.
  • FIG. 13 is a block diagram showing an example of a main configuration of the discrete-time analog circuit 300 according to the third embodiment.
  • the discrete time analog circuit 300 corresponds to the discrete time analog circuit 13 of FIG. 7 and constitutes a sampling mixer circuit.
  • the capacitance value of the imaginary number capacitor 340 is denoted as CIM .
  • the four systems of charge sharing circuits 330-1 to 330-4 include a sampling switch 331, a history capacitor 332, a charge switch 333, a rotating capacitor 334, a reset switch 335, a dump switch 336, a buffer capacitor 337, and a charge sharing switch 338. .
  • the capacitance values of the history capacitor 332, the rotating capacitor 334, and the buffer capacitor 337 are denoted as C H , C R , and C B , respectively.
  • the clock generation circuit 310 generates the control signals S0, S1, S2, and S3 shown in FIG. 9 and supplies them to each switch.
  • the four charge sharing circuits 330-1 to 330-4 have different combinations of the control signals S0 to S3, so that the first system, the second system, the third system, and the fourth system are arranged in the order of 1/4.
  • a current is input from the voltage-current converter circuit 320 with a period shift.
  • the four systems of charge sharing circuits 330-1 to 330-4 are connected to the imaginary capacitor 340 with a shift of 1 ⁇ 4 period depending on the arrangement order of the first system, the second system, the third system, and the fourth system.
  • the discrete-time analog circuit 300 according to the third embodiment is different from the discrete-time analog circuit 100 according to the first embodiment in the connection order of control signals (control signals S0, S1, S2, S3) for controlling the charge sharing switch 338.
  • the discrete-time analog circuit 300 according to the third embodiment employs a configuration in which the dump switch 336 and the charge sharing switch 338 are turned on at different timings.
  • Equation (8) the transfer function when connected at staggered times, the condition of C B >> C R, when simultaneously connected Approximate transfer function.
  • the transfer functions of the charge sharing circuits 330-1 to 330-4 of the third embodiment can be approximated to the transfer functions of the first embodiment. Therefore, the characteristics of the discrete time analog circuit 300 of the third embodiment, in FIG. 10, according to the capacitance value C IM imaginary capacitor 340, can be realized filter characteristic passing center frequency is shifted to the left.
  • FIG. 14 is a block diagram showing an example of a main configuration of a discrete time analog circuit 400 according to the fourth embodiment.
  • the discrete time analog circuit 400 corresponds to the discrete time analog circuit 13 of FIG. 7 and constitutes a sampling mixer circuit.
  • the capacitance value of the imaginary number capacitor 440 is denoted as CIM .
  • the four systems of charge sharing circuits 430-1 to 430-4 include a sampling switch 431, a history capacitor 432, a charging switch 433, a rotating capacitor 434, a reset switch 435, a dump switch 436, a buffer capacitor 437, and a charge sharing switch 438. .
  • the capacitance values of the history capacitor 432, the rotating capacitor 434, and the buffer capacitor 437 are respectively indicated as C H , C R , and C B.
  • the clock generation circuit 410 generates the control signals S0, S1, S2, and S3 shown in FIG. 9 and supplies them to each switch.
  • the four charge sharing circuits 430-1 to 430-4 have different combinations of the control signals S0 to S3, so that the first system, the second system, the third system, and the fourth system are arranged in the order of 1/4.
  • the current is input from the voltage-current conversion circuit 420 with a period shift.
  • the four systems of charge sharing circuits 430-1 to 430-4 are shifted by 1 ⁇ 4 period by the order of arrangement of the fourth system, the third system, the second system, and the first system, that is, in the reverse order. Connected to.
  • the discrete-time analog circuit 400 of the fourth embodiment is different from the discrete-time analog circuit 200 of the second embodiment in the connection order of control signals (control signals S0, S1, S2, S3) for controlling the charge sharing switch 438.
  • control signals S0, S1, S2, S3 control signals for controlling the charge sharing switch 438.
  • a configuration is adopted in which the dump switch 436 and the charge sharing switch 438 are turned on at different timings in all the charge sharing circuits 430-1 to 430-4.
  • the difference between the discrete-time analog circuit 400 and the discrete-time analog circuit 300 is that the connection of control signals input to the charge sharing switch 438 is reversed.
  • the charge of 90 degrees before is stored in the charge sharing imaginary capacitor 340 as an initial value of charge sharing with the imaginary capacitor.
  • the charge before 270 degrees is accumulated in the imaginary number capacitor 440 as an initial value of charge sharing with the imaginary number capacitor 440.
  • the transfer functions of the charge sharing circuits 430-1 to 430-4 of the fourth embodiment can be approximated to the transfer functions of the second embodiment. Therefore, the characteristics of the discrete-time analog circuitry 400 of the fourth embodiment, in FIG. 12, according to the capacitance value C IM imaginary capacitor 440, can be realized filter characteristic passing center frequency is shifted to the right.
  • FIG. 15 is a block diagram showing an example of a main configuration of a discrete time analog circuit 500 according to the fifth embodiment.
  • the discrete time analog circuit 500 corresponds to the discrete time analog circuit 13 of FIG. 7 and constitutes a sampling mixer circuit.
  • the four sets of charge sharing circuits 530-1 to 530-4 on the first set side and one imaginary capacitor 540-1 connected thereto correspond to the first set of passive switched capacitor circuits.
  • the four sets of charge sharing circuits 530-5 to 530-8 on the second set side and one of the imaginary capacitors 540-2 connected thereto correspond to the second set of passive switched capacitor circuits.
  • the differential amplifiers 550-1 to 550-4 correspond to a combining unit that combines the outputs of the first set and the second set of passive switched capacitor circuits.
  • the charge sharing circuits 530-1 to 530-8 include a sampling switch 531, a history capacitor 532, a charge switch 533, a rotating capacitor 534, a reset switch 535, a dump switch 536, a buffer capacitor 537, and a charge sharing switch 538.
  • the capacitance values of the history capacitor 532, the rotating capacitor 534, the buffer capacitor 537, and the imaginary number capacitors 540-1 and 540-2 can be set to different values on the first set side and the second set side.
  • the capacitance values on the first set side are indicated as C H1 , C R1 , C B1 and C IM1
  • the capacitance values on the second set side are indicated as C H2 , C R2 , C B2 and C IM2 .
  • the signal connection order is different.
  • the four sets of charge sharing circuits 530-1 to 530-4 on the first set side are connected to the imaginary number capacitor 540-1 in the same order as in the third embodiment, and the four sets of charge sharing circuits 530- on the second set side. 5 to 530-8 are connected to the imaginary capacitor 540-2 in the same order as in the fourth embodiment. That is, in the imaginary capacitor 540-1 and the imaginary capacitor 540-2, the connection order to the charge sharing circuits 530-1 to 530-8 is reversed.
  • Each of the four differential amplifiers 550-1 to 550-4 includes one of the four outputs of the charge sharing circuits 530-1 to 530-4 on the first set side and the charge sharing circuit 530 on the second set side. Any one of the four outputs -1 to 530-4 is set as an input. Specifically, the outputs of the two charge sharing circuits 530-1 and 530-7 whose input phases of the input current signals are opposite to each other are input to the first differential amplifier 550-1. Two outputs having the same relationship are also input to the second to fourth differential amplifiers 550-2 to 550-4.
  • the clock generation circuit 510 generates control signals S0, S1, S2, and S3 shown in FIG. 9 from the reference frequency signal 24 generated in the reference frequency oscillating unit 14, and supplies the control signals to each switch.
  • the voltage-current conversion circuit 520 converts the analog RF signal 23 amplified by the low noise amplifier 12 into an electric current (input current signal: gm ⁇ v in ) as an input voltage signal (v in ).
  • the four sets of charge sharing circuits 530-1 to 530-4 on the first set side operate with a shift of 1/4 cycle because the combinations of the control signals S0 to S3 used are different. Further, the four systems of charge sharing circuits 530-5 to 530-8 on the second set side operate with a 1 ⁇ 4 period shift because the combinations of the control signals S0 to S3 used are different.
  • the operation of the charge sharing circuits 530-1 and 530-5 will be described as a representative.
  • the sampling switch 531 is connected to the output stage of the voltage / current conversion circuit 520, and is turned on when the control signal S0 supplied from the clock generation circuit 510 is high. While the control signal S0 is high, the charging switch 533 is also in the ON state at the same time, so that the analog RF input signal converted into a current in the voltage / current conversion circuit 520 is accumulated as charges in the history capacitor 532 and the rotating capacitor 534. . Therefore, the input signal becomes a discrete-time analog sample value and is converted from a radio frequency to a baseband (BB) frequency.
  • BB baseband
  • IIR filtering by charge sharing is performed. This operation can be described by the following equation using a difference equation.
  • the rotating capacitor 534 and the buffer capacitor 537 share the charge via the dump switch 536.
  • the buffer capacitor 537 and the imaginary capacitors 540-1 and 540-2 share the charge via the charge sharing switch 538. That is, the buffer capacitor 537 holds the charge before one cycle, the imaginary capacitor 540-1 holds the charge before 1 ⁇ 4 cycle, and the imaginary capacitor 540-2 holds the charge before ⁇ 1 cycle. Complex filtering is performed.
  • the operation of the charge sharing circuit 530-1 can be approximated by the following equation.
  • v 2A is a potential on one end side of the buffer capacitor 537 of the charge sharing circuit 530-1 on the first set side.
  • V 2B is a potential on one end side of the buffer capacitor 537 of the charge sharing circuit 530-5 on the second set side.
  • the rotating capacitor 534 is connected to the reference potential via the reset switch 535, thereby discharging the charge accumulated in the rotating capacitor 534.
  • the eight charge sharing circuits 530-1 to 530-8 repeat the same operation with a quarter cycle shift.
  • the differential amplifier 550-1 has two inputs from the outputs of the two charge sharing circuits 530-1 and 530-7 whose current input phases are shifted from each other by 1 ⁇ 2 period.
  • the sign of the output v 2B is reversed because the input phase of the current is the same phase and the opposite phase. Therefore, the output voltage of the differential amplifier 550-1 is the difference between the two outputs of the charge sharing circuits 530-1 and 530-7, that is, the following equation.
  • G is the gain of the differential amplifier.
  • the entire transfer function H (z) of the discrete-time analog circuit 500 can be calculated by z-converting the input and output to obtain the ratio of Vout (z) and Vin (z).
  • the transfer function is as follows, and a complex transfer function having an imaginary unit “j” in the transfer function can be realized.
  • FIG. 16 is a characteristic diagram showing an example of filter characteristics realized by the discrete-time analog circuit according to the fifth embodiment of the present invention.
  • f LO 1 GHz
  • gm 10 mS
  • C R1 100 fF
  • C R2 92 fF
  • the horizontal axis represents the input frequency of the radio signal
  • the vertical axis represents the conversion gain.
  • a flat pass band is obtained.
  • a broadband frequency characteristic having a 10% ratio band with an in-band deviation of 0.5 dB can be obtained.
  • the imaginary capacitors 540-1 and 540-2 are connected to nodes other than the input nodes of the charge sharing circuits 530-1 to 530-8 of each system. Become. Therefore, the influence of the parasitic capacitance of the voltage-current conversion circuit 120 is suppressed, and the charge sharing circuits 530-1 to 530-8 whose current input phase is shifted by 1 ⁇ 4 cycle are passed through the imaginary capacitors 540-1 and 540-2. , The charge can be accurately shared.
  • the imaginary capacitors 540-1 and 540-2 are connected to nodes other than the input nodes of the charge sharing circuits 530-1 to 530-8 of each system. Become. Therefore, the ratio of charge sharing between the phases via the imaginary capacitors 540-1 and 540-2 can be independently determined on the first set side and the second set side.
  • a frequency characteristic with a high degree of freedom can be set by the configuration using the one voltage-current conversion circuit 520 described above.
  • the rotating capacitor 534, the buffer capacitor 537, and the imaginary number capacitor 540-1 or 540-2 are connected as an example. However, even when these are connected at the same time, Similar characteristics are obtained.
  • C B >> is the same formula as when simultaneously connecting under the condition C R.
  • the description has been made by taking as an example a configuration in which two outputs having opposite phases are combined on the first set side and the second set side, and further subtracted and synthesized by a differential amplifier.
  • the first set side and the second set side may employ a configuration in which two outputs in phase with each other are combined and further added and synthesized by an adder, and this configuration also provides the same frequency characteristics. .
  • FIG. 17 is a block diagram showing an example of a main configuration of a discrete time analog circuit 600 according to the sixth embodiment.
  • the discrete-time analog circuit 600 corresponds to the discrete-time analog circuit 13 in FIG. 7 and constitutes a sampling mixer circuit.
  • the four systems of charge sharing circuits 630-1 to 630-4 on the first set side and one imaginary capacitor 640-1 connected thereto correspond to the first set of passive switched capacitor circuits.
  • the four sets of charge sharing circuits 630-5 to 630-8 on the second set side and one of the imaginary capacitors 640-2 connected thereto correspond to the second set of passive switched capacitor circuits.
  • the buffer capacitors 650-1 to 650-4 correspond to a combining unit that combines the outputs of the first and second sets of passive switched capacitor circuits.
  • the charge sharing circuits 630-1 to 630-8 include a sampling switch 631, a history capacitor 632, a charge switch 633, a rotating capacitor 634, a reset switch 635, a dump switch 636, a weight capacitor 637, a charge sharing switch 638, and an output switch 639.
  • a sampling switch 631 a history capacitor 632, a charge switch 633, a rotating capacitor 634, a reset switch 635, a dump switch 636, a weight capacitor 637, a charge sharing switch 638, and an output switch 639.
  • the capacitance values of the history capacitor 632, the rotating capacitor 634, the weight capacitor 637, and the imaginary number capacitors 640-1 and 640-2 can be set to different values on the first set side and the second set side.
  • the capacitance values on the first set side are indicated as C H1 , C R1 , C W1 and C IM1
  • the capacitance values on the second set side are indicated as C H2 , C R2 , C W2 and C IM2 .
  • the control signals input to the charge sharing switch 638 are different between the charge sharing circuits 630-1 to 630-4 on the first set side and the charge sharing circuits 630-5 to 630-8 on the second set side.
  • the four sets of charge sharing circuits 630-1 to 630-4 on the first set side are connected to the imaginary capacitor 640-1 in the same order as the input order of the input current signals.
  • the four sets of charge sharing circuits 630-5 to 630-8 on the second set side are connected to the imaginary capacitor 640-2 in the reverse order of the input order of the input current signals. That is, the connection order to the charge sharing circuits 630-1 to 630-8 is reversed between the imaginary number capacitor 640-1 and the imaginary number capacitor 640-2.
  • the output is synthesized by the differential amplifier in the fifth embodiment, whereas the buffer capacitor 650-1, By sharing the charge with 650-4, a two-output combined sum is formed.
  • Each of the four buffer capacitors 650-1 to 650-4 has one of the charge sharing circuits 630-1 to 630-4 on the first set side and the input phase of the input current signal in phase with this one.
  • One of the charge sharing circuits 630-5 to 630-8 on the two sets side is connected.
  • the clock generation circuit 610 generates control signals S0, S1, S2, and S3 shown in FIG. 9 from the reference frequency signal 24 generated in the reference frequency oscillating unit 14, and supplies the control signals to each switch.
  • the voltage-current conversion circuit 620 converts the analog RF signal 23 amplified in the low noise amplifier 12 into an electric current (input current signal: gm ⁇ v in ) as an input voltage signal (v in ).
  • the four sets of charge sharing circuits 630-1 to 630-4 on the first set side operate with a 1/4 cycle shift because the combinations of the control signals S0 to S3 used are different. Further, the four systems of charge sharing circuits 630-5 to 630-8 on the second set side operate with a 1 ⁇ 4 period shift because the combinations of the control signals S0 to S3 are different.
  • the operation of the charge sharing circuits 630-1 and 630-5 will be described as a representative.
  • the sampling switch 631 is connected to the output stage of the voltage-current conversion circuit 620, and is turned on when the control signal S0 supplied from the clock generation circuit 610 is high. While the control signal S0 is high, the charging switch 633 is also in the on state at the same time, so that the analog RF input signal converted into a current in the voltage-current conversion circuit 620 is accumulated as charges in the history capacitor 632 and the rotating capacitor 634. .
  • the rotating capacitor 634, the weight capacitor 637, and the imaginary capacitor 640-1 or 640-2 share charges through the charge sharing switch 638. That is, the weight capacitor 637 holds the charge of the previous cycle, the imaginary capacitor 640-1 holds the charge of 1/4 cycle, and the imaginary capacitor 640-2 holds the charge of 3/4 cycle, thereby performing complex filtering. Is done.
  • v 2A is a potential on one end side of the rotating capacitor 634 after charge sharing on the first set side.
  • v 2B is a potential on one end side of the rotating capacitor 634 after charge sharing on the second set side.
  • the output potential Vout corresponds to the output potential VoutI in FIG.
  • the charge sharing circuits 630-1 and 630-5 of the first system the above operation is repeated.
  • the charge sharing circuits 630-2 to 630-4 and 630-6 to 630-8 from the second system to the fourth system the same operation is repeated with a 1 ⁇ 4 period shifted.
  • the respective output potentials V out from the charge sharing circuits 630-2 to 630-4 and 630-6 to 630-8 of the second system to the fourth system are respectively applied to V out Q, V out IB, and V out QB in FIG. Applicable.
  • the entire transfer function of the discrete-time analog circuit 600 can be calculated by z-converting the input / output and obtaining the ratio of the z-converted inputs / outputs Vout (z) and Vin (z).
  • the transfer function is
  • Equation (20) has a complex pole like the transfer function of the discrete-time analog circuit 500 of the fifth embodiment. Therefore, the discrete-time analog circuit 600 of the sixth embodiment can realize a wide band pass characteristic similar to the frequency characteristic of FIG.
  • the configuration of combining the output from the first set and the output from the second set is combined by the output switch 639 and the buffer capacitors 650-1 to 650-4.
  • the configuration is adopted. Therefore, it is possible to reduce variation in frequency characteristics due to variation in device manufacturing.
  • the rotating capacitor 634, the weight capacitor 637, and the imaginary number capacitor 640-1 or the imaginary number capacitor 640-2 are described as an example of a configuration in which the time lag is connected. However, similar characteristics can be obtained even when these are connected simultaneously.
  • FIG. 18 is a block diagram illustrating an example of a main part configuration of a discrete-time analog circuit 700 according to the seventh embodiment.
  • the discrete time analog circuit 700 corresponds to the discrete time analog circuit 13 of FIG. 7 and constitutes a sampling mixer circuit.
  • the discrete-time analog circuit 700 has a precharge switch 739 and a bias potential VREF added to the discrete-time analog circuit 100 of the first embodiment, and the other configurations are the same.
  • the same configuration is represented in FIG. 18 by changing the reference numeral 100 in FIG. 8 to the 700 series.
  • Each switch is configured using, for example, a MOSFET (Metal-Oxide-Semiconductor-Field-Effect-Transistor) semiconductor element, and an appropriate bias potential is applied to terminals other than the control terminal, so that it can be reliably turned on and off. .
  • MOSFET Metal-Oxide-Semiconductor-Field-Effect-Transistor
  • the precharge switch 739 connects one end of the rotating capacitor 734 to the bias potential VREF .
  • Bias potential V REF is regardless of the level or amount of change in the input voltage signal v in, is set to a potential for turning off the high resistance at the time of OFF operation of the charging switch 733 and the dump switch 736.
  • the precharge switch 739 is turned on for a period of 1 ⁇ 4 period after the rotating capacitor 734 and the buffer capacitor 737 share the charge and before the charge of the rotating capacitor 734 is reset. By the ON operation, the potential of the rotating capacitor 734 during this period is set to the bias potential V REF .
  • the bias potential V REF even if the level or the amount of change in the input voltage signal v in is increased, the charge switch 733 and the dump switch 736 is turned off to a high resistance during this period. Therefore, during this period, the charges of the buffer capacitor 737 and the history capacitor 732 are prevented from leaking through the charge switch 733 and the dump switch 736. Therefore, high linearity between input and output in the discrete time analog circuit 700 can be realized.
  • the transfer function of the discrete-time analog circuit 700 is the same as the transfer function (formula (4)) of the first embodiment, and the filter characteristics of the discrete-time analog circuit 700 are the same as those of the first embodiment.
  • connection node, connection timing, and level of the bias potential V REF can be changed as appropriate. Accordingly, it is possible to prevent leakage current in the off state or increase in on-resistance in the on state for a switch other than the above in a period other than the above period.
  • FIG. 19 is a block diagram showing an example of a main configuration of a discrete time analog circuit 800 according to the eighth embodiment.
  • the discrete-time analog circuit 800 corresponds to the discrete-time analog circuit 13 in FIG. 7 and constitutes a sampling mixer circuit.
  • the discrete time analog circuit 800 has a circuit configuration similar to that of the discrete time analog circuit 500 of the fifth embodiment. However, the combinations of the two outputs synthesized by the differential amplifiers 850-1 to 850-4 among the outputs of the charge sharing circuits 830-1 to 830-8 are different. The configuration similar to that of the fifth embodiment is shown in FIG. 19 by changing the number 500 in FIG. 15 to the number 800.
  • each of the differential amplifiers 850-1 to 850-4 is in phase with each other on the first set side and the second set side among the outputs of the charge sharing circuits 830-1 to 830-8. Using two outputs as input, the difference between the two is amplified.
  • the output potentials of the differential amplifiers 850-1 to 850-4 are as follows.
  • G is the gain of the differential amplifiers 850-1 to 850-4.
  • the entire transfer function H (z) of the discrete-time analog circuit 800 can be calculated by z-converting the input and output to obtain the ratio of Vout (z) and Vin (z).
  • the transfer function is
  • FIG. 20 is a characteristic diagram showing an example of filter characteristics realized by the discrete-time analog circuit according to the eighth embodiment of the present invention.
  • the attenuation pole can be set at an asymmetrical position around the local frequency f LO . With this frequency characteristic, a high image rejection ratio can be realized in a LOW-IF type receiver.
  • FIG. 21 is a block diagram showing an example of a main configuration of a discrete time analog circuit 900 according to the ninth embodiment.
  • the discrete time analog circuit 900 corresponds to the discrete time analog circuit 13 of FIG. 7 and constitutes a sampling mixer circuit.
  • the discrete time analog circuit 900 has a circuit configuration similar to that of the discrete time analog circuit 600 of the sixth embodiment. However, the combination of the charge sharing circuits 930-1 to 930-8 connected to each of the buffer capacitors 950-1 to 950-4 is different. The configuration similar to that of the sixth embodiment is shown in FIG. 21 by changing the reference number 600 in FIG. 17 to the 900 number.
  • each of the buffer capacitors 950-1 to 950-4 is in an opposite phase relationship between the first set side and the second set side of the charge sharing circuits 930-1 to 930-8. Two charge sharing circuits are connected. Buffer capacitors 950-1 to 950-4 generate output potentials VoutI, VoutQ, VoutIB, and VoutQB by sharing charges with the two charge sharing circuits.
  • Vout the output potentials of the buffer capacitors 950-1 to 950-4 (collectively referred to as Vout) are as follows.
  • the entire transfer function H (z) of the discrete-time analog circuit 900 can be calculated by z-converting the input and output to obtain the ratio of Vout (z) and Vin (z).
  • the transfer function is
  • the transfer function of Expression (24) is represented by the difference between two transfer functions having a complex coefficient in the denominator, like the transfer function of the discrete-time analog circuit 800 of the eighth embodiment. Therefore, the attenuation pole can be set at an asymmetrical position around the local frequency f LO, and the filter characteristic shown in FIG. 20 is obtained as the characteristic of the discrete-time analog circuit 800. In the discrete-time analog circuit 800, a high image rejection ratio can be realized in the LOW-IF type receiver due to this filter characteristic.
  • FIG. 22 is a configuration diagram of a discrete-time analog circuit according to the tenth embodiment.
  • FIG. 23 is a timing chart of control signals input to the discrete-time analog circuit according to Embodiment 10 of the present invention.
  • the discrete time analog circuit 1000 is, for example, a sampling mixer circuit corresponding to the discrete time analog circuit 13 in FIG.
  • the discrete-time analog circuit 1000 is a circuit that operates with an 8-phase clock, and includes a voltage-current conversion circuit (TA) C, charge sharing circuits A-1 and B-2, a clock generation circuit E, and a synthesis circuit (FIG. , Capacity) D-1 to D-4.
  • TA voltage-current conversion circuit
  • A-1 and B-2 charge sharing circuits
  • E clock generation circuit
  • FOG. , Capacity synthesis circuit
  • the clock generation circuit E supplies the charge sharing circuits A-1 and B-2 with eight-phase clocks S 1 to S 7 having different phases from each other that do not overlap with the high times.
  • the discrete-time analog circuit 1000 of the tenth embodiment realizes the same frequency characteristics as the discrete-time analog circuit 500 of the fifth embodiment, but in the fifth embodiment, a four-phase clock (control signals S0, S1, S2, and so on).
  • the operation in S3) is different from the operation in the tenth embodiment in that it operates with an 8-phase clock.
  • FIG. 24 is the charge sharing circuit A-1 of FIG. 22, FIG. 24A is a circuit diagram thereof, and FIG. 24B is a block diagram showing a terminal configuration thereof.
  • the code of the charge sharing circuit A-1 is generalized as Ak.
  • the charge sharing circuit A-1 includes four charge transfer circuits A1 to A4 having a common input terminal in.
  • the charge transfer circuits A1 to A4 have the same configuration as the charge sharing circuits 330-1 to 330-4 in FIG. 13 and the charge sharing circuits 630-1 to 630-4 in FIG. .
  • the control terminals C0 to C3 are supplied with four-phase clocks S 0 , S 2 , S 4 , and S 6 (FIG. 23) that are high in phase by 90 degrees and do not overlap each other.
  • the charge transfer circuit A1 repeats the above operations (1) to (4).
  • FIG. 25 is the charge sharing circuit B-2 of FIG. 22, FIG. 25 (A) is its circuit diagram, and FIG. 25 (B) is a block diagram showing its terminal configuration.
  • the symbol of the charge sharing circuit B-2 is generalized and written as Bk.
  • the charge sharing circuit B-2 includes four charge transfer circuits B1 to B4 having a common input terminal in.
  • the charge transfer circuits B1 to B4 have the same configuration as the charge sharing circuits 430-1 to 430-4 in FIG. 14 and the charge sharing circuits 630-5 to 630-8 in FIG. 17, and detailed description thereof is omitted. .
  • the control terminals C0 to C3 of the charge sharing circuit B-2 are supplied with four-phase clocks S 1 , S 3 , S 5 , and S 7 that are 90 degrees out of phase and become high and the high times do not overlap each other.
  • the order of clocks supplied to the switches B18, B28, B38, and B48 is different from the order of clocks supplied to the switches A18, A28, A38, and A48. .
  • the clock order is reversed.
  • the output terminal out0 charge sharing circuits A-1 (FIG. 24 (B) refer) and the output terminal of the charge sharing circuit B-2 out0 (see FIG. 25 (B)), the capacitance C B1k Is connected to one of the terminals.
  • the output terminal out1 of the charge sharing circuit A-1 and the output terminal out1 of the charge sharing circuit B-2 are connected to one terminal of the capacitor C B2k .
  • the output terminal out2 of the charge sharing circuit A-1 and the output terminal out2 of the charge sharing circuit B-2 are connected to one terminal of the capacitor C B3k .
  • the output terminal out3 of the charge sharing circuit A-1 and the output terminal out3 of the charge sharing circuit B-2 are connected to one terminal of the capacitor C B4k .
  • the configuration of the charge sharing circuit A-1 realizes a characteristic in which the peak of the frequency characteristic is shifted to the left as shown in FIG.
  • the configuration of the charge sharing circuit B-2 realizes a characteristic in which the peak of the frequency characteristic is shifted to the right as shown in FIG. Since the discrete-time analog circuit 1000 in FIG. 22 is configured to synthesize the in-phase outputs of the charge sharing circuits A-1 and B-2, it realizes a wideband characteristic with a flat band as shown in FIG. Can do.
  • the discrete-time analog circuit 1000 according to the tenth embodiment is configured to use an eight-phase clock
  • the voltage-current conversion circuit is compared with a configuration in which eight sets of charge sharing circuits are operated using only a four-phase clock.
  • the number of capacitors connected to C simultaneously is reduced. For this reason, when it is desired to increase the cutoff frequency of the filter at the time of input to obtain a wide band characteristic, the capacitance values of the capacitors C Hk and CRk are increased in the 8-phase clock configuration than in the 4-phase clock configuration. It becomes possible and mounting becomes easy.
  • FIG. 26 is a configuration diagram of the discrete-time analog circuit 1010 according to the eleventh embodiment.
  • the discrete time analog circuit 1010 according to the eleventh embodiment is the same as the configuration of the tenth embodiment except that the way of combining the outputs of the charge sharing circuits A-1 and B-2 is changed.
  • the discrete-time analog circuit 1010 according to the eleventh embodiment realizes the same frequency characteristics as the discrete-time analog circuit 600 according to the sixth embodiment, but in the sixth embodiment, a four-phase clock (control signals S0, S1, S2, and so on).
  • the operation in S3) is different from the operation in the eleventh embodiment in that it operates with an 8-phase clock.
  • an output terminal out0 charge sharing circuits A-1 and the charge-sharing circuit B-2 of the output terminal out2 is connected to one terminal of the capacitor C B1k.
  • the output terminal out1 of the charge sharing circuit A-1 and the output terminal out3 of the charge sharing circuit B-2 are connected to one terminal of the capacitor C B2k .
  • the output terminal out2 of the charge sharing circuit A-1 and the output terminal out0 of the charge sharing circuit B-2 are connected to one terminal of the capacitor C B3k .
  • the output terminal out3 of the charge sharing circuit A-1 and the output terminal out2 of the charge sharing circuit B-2 are connected to one terminal of the capacitor C B4k .
  • the discrete-time analog circuit 1010 in FIG. 23 is configured to synthesize the reverse phase outputs of the charge sharing circuits A-1 and B-2. Therefore, the discrete time analog circuit 1010 can realize a frequency characteristic in which a transmission zero point (attenuation pole) is set at a specific frequency as shown in FIG. it can.
  • the discrete-time analog circuit 1010 is configured to use an eight-phase clock
  • the voltage-current conversion circuit is compared with a configuration in which eight sets of charge sharing circuits are operated using only a four-phase clock.
  • the number of capacitors connected to C simultaneously is reduced. For this reason, when it is desired to increase the cutoff frequency of the filter at the time of input to obtain a wide band characteristic, the capacitance values of the capacitors C Hk and CRk are increased in the 8-phase clock configuration than in the 4-phase clock configuration. It becomes possible and mounting becomes easy.
  • FIG. 27 is a block diagram showing a discrete-time analog circuit according to Embodiment 12 of the present invention.
  • FIG. 28 is a timing chart of control signals input to the discrete-time analog circuit according to Embodiment 12 of the present invention.
  • the discrete time analog circuit 1020 of the twelfth embodiment is a sampling mixer circuit corresponding to the discrete time analog circuit 13 of FIG. 7, for example.
  • the discrete time analog circuit 1020 is a circuit that operates with a 4n-phase clock.
  • the discrete-time analog circuit 1020 includes a voltage / current conversion circuit (TA) C, n charge sharing circuits A-1, B-2,..., An, a clock generation circuit F, and n charges. And a synthesis circuit (not shown) for synthesizing the outputs of the shared circuits A-1, B-2,..., An.
  • TA voltage / current conversion circuit
  • the n charge sharing circuits A-1, B-2,..., An may have either the configuration of FIG.
  • the clock generation circuit F supplies the 4n-phase clocks having different phases to the charge sharing circuits A-1, B-2,. Supply.
  • Each of the charge sharing circuits A-1, B-2,..., An performs the same operation as in the tenth embodiment that operates with an 8-phase clock, and inputs / outputs of the respective charge sharing circuits.
  • the frequency characteristic is a left-shifted or right-shifted frequency characteristic.
  • the shift amount depends on the respective capacitors C Rk , C Wk , and C IMk .
  • the combining circuit combines the outputs of the charge sharing circuits A-1, B-2,..., An so that desired characteristics can be obtained.
  • the even-numbered (2m: m is a natural number) -th plurality of charge sharing circuits B-2, B-4,... B- (n-1) are configured as shown in FIG.
  • the left shift amount and the right shift amount of these charge sharing circuits A-1, B-2,..., An are slightly shifted to synthesize outputs having the same phase. With such a configuration, a wider band characteristic can be realized as compared with the configuration in which the outputs of the two charge sharing circuits A-1 and B-2 shown in FIG. 22 are combined.
  • the above-described broadening of the bandwidth can also be realized by increasing the number of charge sharing circuits in the discrete-time analog circuit 500 of the fifth embodiment.
  • the number of sets of charge sharing circuits is increased while the clock is kept in four phases, the number of capacitors connected to the voltage-current conversion circuit increases. For this reason, it is necessary to reduce the capacitance values of the capacitors C Hk and C Rk in order to obtain a wideband characteristic by increasing the cutoff frequency of the filter at the time of input.
  • the cutoff frequency of the filter at the time of input can be increased while the capacitance values of the capacitors C Hk and CRk remain large, and the capacitors can be easily mounted.
  • the charge sharing circuits described in Embodiments 1 to 4 and 7 may be applied to these.
  • capacitors are used as the combining circuits D-1 to D-4.
  • the differential amplifier shown in the eighth embodiment may be used for these.
  • the configuration of the synthesis circuit is omitted, but either a capacitor or a differential amplifier may be applied as the synthesis circuit.
  • each configuration of the receiver of the above embodiment is typically realized as an integrated circuit on a semiconductor chip.
  • Each configuration of the receiver excluding the antenna may be individually made into one chip, or may be made into one chip so as to include a part or all of it.
  • sampling mixer circuit and the receiver according to the present invention are useful for a high-frequency signal processing circuit of a receiving unit in a wireless communication apparatus, and are suitable for performing signal frequency conversion and filter processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Filters That Use Time-Delay Elements (AREA)

Abstract

 伝達関数の零点と極との設定位置の自由度が高く、所望のフィルタ特性を形成しやすいサンプリングミクサ回路及び受信機を提供する。このサンプリングミクサ回路は、入力信号の搬送周波数に応じた周期であり、位相の異なる4相の制御信号を出力するクロック生成回路と、前記入力信号に基づく電圧信号を電流信号に変換する電圧電流変換回路と、前記4相の制御信号に基づく異なる位相によって、前記変換された電流信号を、複数のキャパシタに入力し、且つ、前記複数のキャパシタの間において電荷を取り交わす4系統の電荷共有回路と、前記4系統の電荷共有回路における前記電流信号の入力ノード以外のノードに、前記4相の制御信号に基づき接続が切り替えられる相間キャパシタと、を具備する構成を採る。

Description

サンプリングミクサ回路及び受信機
 本発明は、離散時間アナログ処理により周波数変換とフィルタ処理とを行うサンプリングミクサ回路、及び、それを用いた受信機に関する。
 無線受信機の小型化、低消費電力化、ならびに、アナログ信号処理部とデジタル信号処理部の一体化を目指すため、高周波信号を直接、離散時間的にサンプリングして受信処理する構成が知られている(例えば特許文献1、非特許文献1)。
 図1は、特許文献1に開示されているダイレクトサンプリング回路の全体構成を示す図である。図2は、図1の回路に入力される制御信号を示すタイミングチャートである。図1のダイレクトサンプリング回路は、受信したアナログRF(Radio Frequency)信号を、マルチタップ・ダイレクト・サンプリング・ミクサ(Multi-Tap Direct Sampling Mixer)を用いて周波数変換し、離散時間アナログ信号へ変換している。
 より具体的には、図1の回路に含まれる複数のキャパシタ間での電荷移動により、FIR(Finite Impulse Response)フィルタ、及びIIR(Infinite Impulse Response)フィルタの積となるフィルタ特性を実現する。通過域近傍の特性は2次IIRフィルタ特性によって決定される。図3(a)は、広帯域周波数特性を示し、図3(b)は通過域近傍の狭帯域周波数特性の一例を示す。
 さらに、上記構成を基本として、伝達関数に複素極を有する構成が知られている(非特許文献2)。図4は、非特許文献2に開示されているダイレクトサンプリング回路の全体構成を示す図である。図5は、図4の回路に入力される制御信号を示すタイミングチャートである。図6は、図4の回路によって得られる周波数特性の例(ローカル(LO)周波数fLO=2.4GHz)である。ダイレクトサンプリング回路は、伝達関数に複素極を有することによって通過域にリプルを得られていることが知られている。
米国特許出願公開第2003/0035499号明細書
 しかしながら、前記従来の技術では、以下に示す課題を有する。
 図1に示す従来のダイレクトサンプリング回路では、通過域近傍が実数極の2次IIRによって決まるため、広帯域かつ急峻なフィルタ特性を実現することが困難である。
 また、図4に示す構成を採るダイレクトサンプリング回路は、伝達関数上に複素極を実現し、通過域をフラットにしたフィルタ特性を実現できる。しかし、この構成の伝達関数は、式(1)において、分母の2次多項式の係数が1未満という構成となり、実現できる極の範囲が狭かった。さらにIIRにおける零点の設計およびイメージ除去フィルタ特性の実現が困難であった。
Figure JPOXMLDOC01-appb-M000001
 本発明は、かかる点に鑑みてなされたものであり、伝達関数の零点と極との設定位置の自由度が高く、所望のフィルタ特性を形成しやすいサンプリングミクサ回路及び受信機を提供することを目的とする。
 本発明の一態様に係るサンプリングミクサ回路は、入力信号の搬送周波数に応じた周期であり、位相の異なる4相の制御信号を出力するクロック生成回路と、前記入力信号に基づく電圧信号を電流信号に変換する電圧電流変換回路と、前記4相の制御信号に基づく異なる位相によって、前記変換された電流信号を、複数のキャパシタに入力し、且つ、前記複数のキャパシタの間において電荷を取り交わす4系統の電荷共有回路と、前記4系統の電荷共有回路における前記電流信号の入力ノード以外のノードに、前記4相の制御信号に基づき接続が切り替えられる相間キャパシタと、を具備する構成を採る。
 本発明によれば、伝達関数の零点と極との設定位置の自由度が高く、所望のフィルタ特性を得易いサンプリングミクサ回路を実現できる。
従来構成1のダイレクトサンプリング回路の構成図 従来構成1のダイレクトサンプリング回路に入力する制御信号のタイミングチャート 従来構成1のダイレクトサンプリング回路により実現されるフィルタ特性の例を示す特性図 従来構成2のダイレクトサンプリング回路の構成図 従来構成2のダイレクトサンプリング回路に入力する制御信号のタイミングチャート 従来構成2のダイレクトサンプリング回路により実現されるフィルタ特性の例を示す特性図 本発明の実施の形態1に係るダイレクトサンプリング受信機の構成を示すブロック図 本発明の実施の形態1に係る離散時間アナログ回路の構成を示す回路図 本発明の実施の形態1に係る離散時間アナログ回路に入力する制御信号のタイミングチャート 本発明の実施の形態1に係る離散時間アナログ回路により実現されるフィルタ特性の例を示す特性図 本発明の実施の形態2に係る離散時間アナログ回路の構成を示す回路図 本発明の実施の形態2に係る離散時間アナログ回路により実現されるフィルタ特性の例を示す特性図 本発明の実施の形態3に係る離散時間アナログ回路の構成を示す回路図 本発明の実施の形態4に係る離散時間アナログ回路の構成を示す回路図 本発明の実施の形態5に係る離散時間アナログ回路の構成を示す回路図 本発明の実施の形態5に係る離散時間アナログ回路により実現されるフィルタ特性の例を示す特性図 本発明の実施の形態6に係る離散時間アナログ回路の構成を示す回路図 本発明の実施の形態7に係る離散時間アナログ回路の構成を示す回路図 本発明の実施の形態8に係る離散時間アナログ回路の構成を示す回路図 本発明の実施の形態8に係る離散時間アナログ回路により実現されるフィルタ特性の例を示す特性図 本発明の実施の形態9に係る離散時間アナログ回路の構成を示す回路図 本発明の実施の形態10に係る離散時間アナログ回路を示す構成図 本発明の実施の形態10に係る離散時間アナログ回路に入力する制御信号のタイミングチャート 図22の電荷共有回路A-1を示すもので、図24(A)はその回路図、図24(B)はその端子構成を示すブロック図 図22の電荷共有回路B-2を示すもので、図25(A)はその回路図、図25(B)はその端子構成を示すブロック図 本発明の実施の形態11に係る離散時間アナログ回路を示す構成図 本発明の実施の形態12に係る離散時間アナログ回路を示す構成図 本発明の実施の形態12に係る離散時間アナログ回路に入力する制御信号のタイミングチャート
 以下、本発明の各実施の形態について図面を参照して詳細に説明する。
 (実施の形態1)
 図7は、本実施の形態に係るダイレクトサンプリング受信機の構成を示すブロック図である。図7において、ダイレクトサンプリング受信機10は、アンテナ11と、低雑音増幅器(LNA:Low Noise Amplifier)12と、離散時間アナログ回路13と、参照周波数発振部14と、A/D(Analog to Digital)変換処理部15と、デジタル受信処理部16とを有する。
 ダイレクトサンプリング受信機10は、キャリア周波数fCRによって送信された電磁波21を受信し、受信信号に対して離散時間的に周波数変換とフィルタ処理を施して所望信号成分を抽出する。ダイレクトサンプリング受信機10は、抽出した所望信号成分をデジタル信号に変換してデジタル受信処理し、得られた受信データ27を出力する。
 ダイレクトサンプリング受信機10は、ダイレクトコンバージョン方式の受信機として構成でき、LOW-IF(低中間周波数)方式の受信機としても構成できる。また、ダイレクトサンプリング受信機10を、ダイバーシチ受信機を構成する複数の個々の受信機の何れかにも採用できる。
 アンテナ11は、図示していない送信局からキャリア周波数fCRによって送信された電磁波21を受信し、アナログRF信号22に変換する。低雑音増幅器12は、アナログRF信号22を増幅して出力する。
 離散時間アナログ回路13は、増幅されたアナログRF信号23と参照周波数信号24とが入力される。そして、離散時間アナログ回路13は、アナログRF信号23を離散時間的に周波数変換してフィルタ処理することで、所望信号成分を抽出したベースバンド信号(または中間周波数(IF:Intermediate Frequency)信号)25を出力する。
 参照周波数発振部14は、離散時間アナログ回路13に対して、サンプリング処理及び周波数変換処理に用いる参照周波数信号24を生成する。
 A/D変換処理部15は、入力されるベースバンド信号25を所定のサンプリング周波数によってデジタル値に量子化し、変換したデジタルベースバンド信号26を出力する。
 デジタル受信処理部16は、入力されるデジタルベースバンド信号26に対して、例えば、復調処理及び復号処理などの所定のデジタル受信処理を行い、受信データ27を出力する。復調処理としては、例えばOFDM(Orthogonal Frequency Division Multiplexing)ベースバンド信号に対する高速フーリエ変換処理が含まれる。
 [離散時間アナログ回路100の構成]
 図8は、本実施の形態1に係る離散時間アナログ回路100の要部構成の一例を示す回路図である。離散時間アナログ回路100は、図7の離散時間アナログ回路13に相当し、サンプリングミクサ回路を構成する。
 離散時間アナログ回路100は、クロック生成回路110、電圧電流変換回路(TA:Transconductance Amplifier、トランスコンダクタンス値=gm)120、4系統の電荷共有回路130-1~130-4、及び、虚数キャパシタ(相間キャパシタ:4系統の電荷共有回路130-1~130-4にスイッチを介して接続されるキャパシタに相当)140を有する。虚数キャパシタ140の容量値をCIMと示す。
 なお、虚数キャパシタとは、伝達関数に虚数単位を実現するためのキャパシタである。また、本発明においてはTA直後の入力部に配置するのではなく、4系統の電荷共有回路130-1~130-4にスイッチを介して接続されるため、TAの寄生容量の影響を抑制できる。また、4系統の電荷共有回路130-1~130-4の接続順序を反転することで、負の係数が実現できる。
 第1系統の電荷共有回路130-1は、電流信号を所定位相によってサンプルするサンプリングスイッチ131、前記サンプルスイッチの後段に配置されたヒストリキャパシタ132、前記サンプリングスイッチと同じタイミングでオンする充電スイッチ133、前記充電スイッチの後段に配置されたローテーティングキャパシタ134、前記ローテーティングキャパシタを接地に接続するリセットスイッチ135、前記ローテーティングキャパシタと前記バッファキャパシタと接続するダンプスイッチ136、ローテーティングキャパシタとの電荷共有によって出力部の電位を決定するバッファキャパシタ137、及び、前記バッファキャパシタと前記相間キャパシタとを接続する電荷共有スイッチ(相間電荷共有スイッチ:相間キャパシタに蓄積された電荷とI相、IB相、Q相、QB相の電荷共有回路内のキャパシタに蓄積された電荷との電荷共有を制御するスイッチに相当)138を有する。ヒストリキャパシタ132、ローテーティングキャパシタ134、及び、バッファキャパシタ137の各容量値をC、C、Cとそれぞれ示す。
 なお、I相はI相、Q相はQ相において電荷が共有されていたが、相間電荷共有スイッチを介して相間を接続することで、伝達関数に虚数単位が実現できる。
 電荷共有回路130-1において、サンプリングスイッチ131と充電スイッチ133とは同時にオンされる。よって、電荷共有回路130-1の入力ノードは、電圧電流変換回路120から電流が入力されるヒストリキャパシタ132の一端及びローテーティングキャパシタ134の一端となる。
 第2~第4系統の電荷共有回路130-2~130-4は、各スイッチに入力される制御信号S0~S3の組合せが異なり、他の構成は第1系統の電荷共有回路130-1と同じである。
 つまり、4系統の電荷共有回路130-1~130-4は、制御信号S0~S3の組合せが異なるため、第1系統、第2系統、第3系統、第4系統の並び順に、1/4周期ずつずらして電圧電流変換回路120から電流が入力される。また、4系統の電荷共有回路130-1~130-4は、第1系統、第2系統、第3系統、第4系統の並び順によって、1/4周期ずつずらして、虚数キャパシタ140に接続される。
 [離散時間アナログ回路100の動作]
 図9は、本発明の実施の形態1に係る離散時間アナログ回路に入力する制御信号のタイミングチャートである。
 クロック生成回路110は、参照周波数発振部14において生成された参照周波数信号24を用いて、図9に示す制御信号S0,S1,S2,S3を生成し、各スイッチに供給する。制御信号S0,S1,S2,S3は、周波数fREFを参照して生成される周波数fLOのクロックによって、位相がそれぞれ90°ずれた信号である。周波数fLOは、離散時間アナログ回路13がベースバンド信号を出力する場合ではキャリア周波数fCRとなる。また、周波数fLOは、離散時間アナログ回路13が中間周波数信号を出力する場合には、キャリア周波数fCRと中間周波数fIFとの差分の周波数fCR-fIF、または、fCR+fIFとなる。
 電圧電流変換回路120は、低雑音増幅器12において増幅されたアナログRF信号23を、入力電圧信号(vin)として電流(入力電流信号:gm×vin)に変換する。
 先ず、代表として第1系統の電荷共有回路130-1の動作を説明する。
 サンプリングスイッチ131は、電圧電流変換回路120の出力段に接続され、クロック生成回路110から供給される制御信号S0がハイの時間においてオンする。ここで、制御信号S0は、ダイレクトコンバージョンでは、アナログRF信号23のキャリア周波数fCRと一致した周波数の信号である。つまり、制御信号S0~S3の周波数fLOは、入力信号のキャリア周波数fCRとなる。また、制御信号S0は、IF周波数を用いる場合は、キャリア周波数fCRからIF周波数分fIFずれた周波数の信号である(fLO=fCR±fIF)。
 制御信号S0がハイの間、充電スイッチ133も同時にオン状態にあるため、電圧電流変換回路120において電流に変換されたアナログRF入力信号は、ヒストリキャパシタ132とローテーティングキャパシタ134とに電荷として蓄積される。これによって、入力信号は離散時間アナログのサンプル値となり、無線周波数からベースバンド(BB)周波数に変換される。また、ヒストリキャパシタ132が一周期前の電荷を保持していることで、電荷共有によるIIRフィルタリングが行われる。この動作は差分方程式を用いて、以下の式によって記述できる。
Figure JPOXMLDOC01-appb-M000002
 ここで、qinは制御信号S0がハイの期間に入力される電荷、TLOは制御信号S0の周期(=1/fLO)、vin(t)は時刻tの入力電圧である。vはヒストリキャパシタ132の一端側の電位である。整数値(例えば、n、n-1)を引数とする関数は、当該関数の周期TLO毎の代表値を示す。以下の式においても同様である。
 次に、制御信号S1がハイの時間では、電荷共有スイッチ138を介して、ローテーティングキャパシタ134と、バッファキャパシタ137と、虚数キャパシタ140とが電荷を共有する。つまり、バッファキャパシタ137が一周期前の電荷を保持し、虚数キャパシタ140が1/4周期前の電荷を保持していることで、複素フィルタリングが行われる。この動作は、以下の式によって記述できる。
Figure JPOXMLDOC01-appb-M000003
 ここで、出力電位voutは、バッファキャパシタ137の一端側の電位を示し、図8のvoutIに該当する。
 最後に、制御信号S2がハイとなる間には、ローテーティングキャパシタ134がリセットスイッチ135を介して基準電位に接続されることによって、ローテーティングキャパシタ134に蓄積された電荷が放電される。なお、リセットスイッチをオンするタイミングは制御信号S3のタイミングでもよい。
 第1系統の電荷共有回路130-1では、上記の動作が繰り返される。入出力に対してz変換し、z変換された入出力Vout(z)、Vin(z)の比を求めることで、全体の伝達関数が算出できる。伝達関数は次式となる。
Figure JPOXMLDOC01-appb-M000004
 電荷共有回路130-1では、伝達関数に虚数単位「j」を有する複素型の伝達関数を実現できる。
 第2系統から第4系統の電荷共有回路130-2~130-4では、1/4周期をずらして、同様の動作が繰り返される。第2系統から第4系統の電荷共有回路130-2~130-4において、式(3)のvoutは、図8のvoutQ,voutIB,voutQBにそれぞれ該当し、伝達関数は同様に式(4)になる。
 図10は、本発明の実施の形態1に係る離散時間アナログ回路により実現されるフィルタ特性の例を示す特性図である。
 fLO=1GHz,gm=10mS,C=100fF,C=100fF,C=1pF,CIM=500fFにおける変換利得の周波数特性の一例を図10に示す。横軸は無線信号の入力周波数を示し、縦軸が変換利得を示す。実施の形態1の離散時間アナログ回路100では、従来の実数係数の伝達関数(式(4)においてCIM=0)の特性線を左にシフトした特性が得られる。
 また、実施の形態1の離散時間アナログ回路100では、虚数キャパシタ140が、各系統の電荷共有回路130-1~130-4の入力ノード以外のノードに接続する構成となる。具体的には、虚数キャパシタ140は、各系統の電荷共有回路130-1~130-4の出力ノードに接続する構成を採用する。このため、電圧電流変換回路120の寄生容量の影響を抑制し、虚数キャパシタ140を介して、電流入力期間が1/4周期ずれた電荷共有回路130-1~130-4間において、正確に電荷共有できる。
 (実施の形態2)
 [離散時間アナログ回路200の構成]
 図11は、本実施の形態2に係る離散時間アナログ回路200の要部構成の一例を示すブロック図である。離散時間アナログ回路200は、図7の離散時間アナログ回路13に相当し、サンプリングミクサ回路を構成する。
 実施の形態2の離散時間アナログ回路200は、クロック生成回路210、電圧電流変換回路(TA:Transconductance Amplifier、トランスコンダクタンス値=gm)220、4系統の電荷共有回路230-1~230-4、及び、虚数キャパシタ240を有する。虚数キャパシタ240の容量値をCIMと示す。
 第1系統の電荷共有回路230-1は、サンプリングスイッチ231、ヒストリキャパシタ232、充電スイッチ233、ローテーティングキャパシタ234、リセットスイッチ235、ダンプスイッチ236、バッファキャパシタ237、電荷共有スイッチ238を有する。ヒストリキャパシタ232、ローテーティングキャパシタ234、及び、バッファキャパシタ237の各容量値をC、C、Cとそれぞれ示す。クロック生成回路210は、図9に示した制御信号S0,S1,S2,S3を生成して、各スイッチに供給する。
 第2~第4系統の電荷共有回路230-2~230-4は、各スイッチに入力される制御信号S0~S3の組み合わせを変更することで、第1系統の電荷共有回路230-1に対して、周期をそれぞれ1/4ずつずらして動作する。他の構成は第1系統の電荷共有回路230-1と同じである。
 つまり、4系統の電荷共有回路230-1~230-4は、制御信号S0~S3の組合せが異なるため、第1系統、第2系統、第3系統、第4系統の並び順に、1/4周期ずつずらして電圧電流変換回路220から電流が入力される。
 また、4系統の電荷共有回路230-1~230-4は、第4系統、第3系統、第2系統、第1系統の並び順、つまり、逆順によって、1/4周期ずつずらして虚数キャパシタ240に接続される。つまり、各系統の電荷共有回路230-1~230-4は、虚数キャパシタ240を介して、電流の入力位相が-90°(=270°)異なる他の電荷共有回路230-1~230-4と電荷を共有する。
[離散時間アナログ回路200の動作]
 実施の形態2の離散時間アナログ回路200は、実施の形態1の離散時間アナログ回路100とほぼ同様の動作となるため、実施の形態1と異なる点に注目して説明する。
 離散時間アナログ回路100と離散時間アナログ回路200の相違点は、電荷共有スイッチ238へ入力される制御信号である。離散時間アナログ回路100ではサンプリングスイッチ131と電荷共有スイッチ138が同じ制御信号(制御信号S0~S3のいずれか)によって制御される。つまり、サンプリングスイッチ231がオンされる順番と電荷共有スイッチ238がオンされる順番が同じ順番である。
 一方、離散時間アナログ回路200では、第1~第4系統の電荷共有回路230-1~230-4においてサンプリングスイッチ231がオンされる順番と電荷共有スイッチ238がオンされる順番が逆順になる。これによって、ローテーティングキャパシタ234と、バッファキャパシタ237と、虚数キャパシタ240との電荷共有の式を以下に示す。
Figure JPOXMLDOC01-appb-M000005
 よって、離散時間アナログ回路200の全体の伝達関数を以下に示す。
Figure JPOXMLDOC01-appb-M000006
 離散時間アナログ回路200によって、実施の形態1の離散時間アナログ回路100に対して虚数単位(j)の符合が反転した伝達関数を実現できる。
 図12は、本発明の実施の形態2に係る離散時間アナログ回路により実現されるフィルタ特性の例を示す特性図である。
 fLO=1GHz,gm=10mS,C=100fF,C=100fF,C=1pF,CIM=500fFにおける変換利得の周波数特性の一例を図12に示す。横軸は無線信号の入力周波数を示し、縦軸が変換利得を示す。実施の形態2の離散時間アナログ回路200では、従来の実数係数の伝達関数(式(4)においてCIM=0)の特性線を右にシフトした特性が得られる。
 また、実施の形態2の離散時間アナログ回路200では、虚数キャパシタ240が、各系統の電荷共有回路230-1~230-4の入力ノード以外のノードに接続する構成となっている。具体的には、虚数キャパシタ240は、各系統の電荷共有回路230-1~230-4の出力ノードに接続する構成を採用している。このため、電圧電流変換回路220の寄生容量の影響を抑制し、虚数キャパシタ240を介して、電流入力期間が1/4周期ずれた電荷共有回路230-1~230-4間において、正確に電荷共有できる。
 なお、第1系統の電荷共有回路230-1と第3系統の電荷共有回路230-3とは、ローテーティングキャパシタ234とバッファキャパシタ237と虚数キャパシタ240とが同時に接続される。これらの動作は、実施の形態1の電荷共有回路130-1の動作とほぼ同一になり、異なる点は、虚数キャパシタ240に保持される電荷の符号が反転する点である。よって、伝達関数は、式(6)によって求められる。
 一方、第2系統の電荷共有回路230-2と第4系統の電荷共有回路230-4とは、ローテーティングキャパシタ234とバッファキャパシタ237と虚数キャパシタ240とが時間をずらして接続される。これらの動作は、実施の形態1の電荷共有回路130-1の動作と同一にならない。しかしながら、C>>Cの条件においては、同時に接続する場合の伝達関数に近似する。
 ここで、ローテーティングキャパシタ234とバッファキャパシタ237と虚数キャパシタ240とが同時に接続しない場合、それぞれの電荷共有後の電位は以下の式によって記述できる。
Figure JPOXMLDOC01-appb-M000007
 なお、Vはローテーティングキャパシタ234とバッファキャパシタ237との電荷共有後の電位、Vはバッファキャパシタ237と虚数キャパシタ240との電荷共有後の電位を示す。
 式(7)をまとめると、次式になる。
Figure JPOXMLDOC01-appb-M000008
 すなわち、ローテーティングキャパシタ234とバッファキャパシタ237と虚数キャパシタ240とが同時に接続する場合と、同じ式になる。
 従って、実施の形態2の伝達関数は、実施の形態1の伝達関数において虚数キャパシタ240に保持されている電荷の符号を反転させた式(6)となる。
 なお、電子回路のアナログシミュレーションにおいても、実施の形態2の離散時間アナログ回路200の特性として、図12では、虚数キャパシタ240の容量値CIMに応じて、通過中心周波数が右にシフトしたフィルタ特性が得られる。
 (実施の形態3)
 [離散時間アナログ回路300の構成]
 図13は、本実施の形態3に係る離散時間アナログ回路300の要部構成の一例を示すブロック図である。離散時間アナログ回路300は、図7の離散時間アナログ回路13に相当し、サンプリングミクサ回路を構成する。
 実施の形態3の離散時間アナログ回路300は、クロック生成回路310、電圧電流変換回路(TA:Transconductance Amplifier、トランスコンダクタンス値=gm)320、4系統の電荷共有回路330-1~330-4、及び、虚数キャパシタ340を有する。虚数キャパシタ340の容量値をCIMと示す。
 4系統の電荷共有回路330-1~330-4は、サンプリングスイッチ331、ヒストリキャパシタ332、充電スイッチ333、ローテーティングキャパシタ334、リセットスイッチ335、ダンプスイッチ336、バッファキャパシタ337、電荷共有スイッチ338を有する。ヒストリキャパシタ332、ローテーティングキャパシタ334、及び、バッファキャパシタ337の各容量値をC、C、Cとそれぞれ示す。クロック生成回路310は、図9に示した制御信号S0,S1,S2,S3を生成して、各スイッチに供給する。
 つまり、4系統の電荷共有回路330-1~330-4は、制御信号S0~S3の組合せが異なるため、第1系統、第2系統、第3系統、第4系統の並び順に、1/4周期ずつずらして電圧電流変換回路320から電流が入力される。また、4系統の電荷共有回路330-1~330-4は、第1系統、第2系統、第3系統、第4系統の並び順によって、1/4周期ずつずらして虚数キャパシタ340に接続される。
 実施の形態3の離散時間アナログ回路300は、実施の形態1の離散時間アナログ回路100と、電荷共有スイッチ338を制御する制御信号(制御信号S0,S1,S2,S3)の接続順番が異なる。実施の形態3の離散時間アナログ回路300では、ダンプスイッチ336と電荷共有スイッチ338とが、異なるタイミングにおいてオンになる構成を採用している。
[離散時間アナログ回路300の動作]
 4系統の電荷共有回路330-1~330-4は、ローテーティングキャパシタ334とバッファキャパシタ337と虚数キャパシタ340とが時間をずらして接続される。よって、4系統の電荷共有回路330-1~330-4は、実施の形態1の電荷共有回路130-1の動作と異なる。
 しかなしながら、式(7)と式(8)を用いて説明したように、時間をずらして接続される場合の伝達関数は、C>>Cの条件において、同時に接続される場合の伝達関数に近似する。
 従って、実施の形態3の電荷共有回路330-1~330-4の伝達関数は、実施の形態1の伝達関数に近似できる。よって、実施の形態3の離散時間アナログ回路300の特性としては、図10では、虚数キャパシタ340の容量値CIMに応じて、通過中心周波数が左にシフトしたフィルタ特性を実現できる。
 (実施の形態4)
 [離散時間アナログ回路400の構成]
 図14は、本実施の形態4に係る離散時間アナログ回路400の要部構成の一例を示すブロック図である。離散時間アナログ回路400は、図7の離散時間アナログ回路13に相当し、サンプリングミクサ回路を構成する。
 実施の形態4の離散時間アナログ回路400は、クロック生成回路410、電圧電流変換回路(TA:Transconductance Amplifier、トランスコンダクタンス値=gm)420、4系統の電荷共有回路430-1~430-4、及び、虚数キャパシタ440を有する。虚数キャパシタ440の容量値をCIMと示す。
 4系統の電荷共有回路430-1~430-4は、サンプリングスイッチ431、ヒストリキャパシタ432、充電スイッチ433、ローテーティングキャパシタ434、リセットスイッチ435、ダンプスイッチ436、バッファキャパシタ437、電荷共有スイッチ438を有する。ヒストリキャパシタ432、ローテーティングキャパシタ434、及び、バッファキャパシタ437の各容量値をC、C、Cとそれぞれ示す。クロック生成回路410は、図9に示した制御信号S0,S1,S2,S3を生成して、各スイッチに供給する。
 つまり、4系統の電荷共有回路430-1~430-4は、制御信号S0~S3の組合せが異なるため、第1系統、第2系統、第3系統、第4系統の並び順に、1/4周期ずつずらして電圧電流変換回路420から電流が入力される。また、4系統の電荷共有回路430-1~430-4は、第4系統、第3系統、第2系統、第1系統の並び順、つまり逆順によって、1/4周期ずつずらして虚数キャパシタ440に接続される。
 実施の形態4の離散時間アナログ回路400は、実施の形態2の離散時間アナログ回路200と、電荷共有スイッチ438を制御する制御信号(制御信号S0,S1,S2,S3)の接続順番が異なる。実施の形態4の離散時間アナログ回路400では、ダンプスイッチ436と電荷共有スイッチ438とが、全ての電荷共有回路430-1~430-4において異なるタイミングによってオンになる構成を採用している。
[離散時間アナログ回路400の動作]
 4系統の電荷共有回路430-1~430-4は、ローテーティングキャパシタ434とバッファキャパシタ437と虚数キャパシタ440とが時間をずらして、つまり、ダンプスイッチ436と電荷共有スイッチ438が同時にオンせずに、接続される。この場合の伝達関数は、式(7)と式(8)を用いて説明したように、C>>Cの条件において、同時に接続される場合の伝達関数に近似する。
 離散時間アナログ回路400が離散時間アナログ回路300と異なる点は、電荷共有スイッチ438に入力される制御信号の接続が逆順になっていることである。離散時間アナログ回路300では、虚数キャパシタとの電荷共有の初期値として、電荷共有の虚数キャパシタ340に90度前の電荷が蓄積されている。これに対して、離散時間アナログ回路400では、虚数キャパシタ440との電荷共有の初期値として、虚数キャパシタ440に270度前の電荷が蓄積されていることになる。
 電荷共有は以下の式で記述することができる。
Figure JPOXMLDOC01-appb-M000009
 よって、離散時間アナログ回路400の全体の伝達関数を以下に示す。
Figure JPOXMLDOC01-appb-M000010
 従って、実施の形態4の電荷共有回路430-1~430-4の伝達関数は、実施の形態2の伝達関数に近似できる。よって、実施の形態4の離散時間アナログ回路400の特性としては、図12では、虚数キャパシタ440の容量値CIMに応じて、通過中心周波数が右にシフトしたフィルタ特性を実現できる。
 (実施の形態5)
 [離散時間アナログ回路500の構成]
 図15は、本実施の形態5に係る離散時間アナログ回路500の要部構成の一例を示すブロック図である。離散時間アナログ回路500は、図7の離散時間アナログ回路13に相当し、サンプリングミクサ回路を構成する。
 離散時間アナログ回路500は、クロック生成回路510、電圧電流変換回路(TA:Transconductance Amplifier、トランスコンダクタンス値=gm)520、4系統2セットの電荷共有回路530-1~530-8、虚数キャパシタ540-1,540-2、及び、差動増幅器550-1~550-4を有する。
 ここで、第1セット側の4系統の電荷共有回路530-1~530-4と、これらに接続される一方の虚数キャパシタ540-1とが、第1セットの受動スイッチドキャパシタ回路に相当する。第2セット側の4系統の電荷共有回路530-5~530-8と、これらに接続される一方の虚数キャパシタ540-2とが、第2セットの受動スイッチドキャパシタ回路に相当する。また、差動増幅器550-1~550-4は、これら第1セットおよび第2セットの受動スイッチドキャパシタ回路の出力を合成する合成部に相当する。
 電荷共有回路530-1~530-8は、サンプリングスイッチ531、ヒストリキャパシタ532、充電スイッチ533、ローテーティングキャパシタ534、リセットスイッチ535、ダンプスイッチ536、バッファキャパシタ537、及び、電荷共有スイッチ538を有する。
 ヒストリキャパシタ532、ローテーティングキャパシタ534、バッファキャパシタ537、及び、虚数キャパシタ540-1、540-2の各容量値は、第1セット側と第2セット側とにおいて、異なる値に設定可能である。第1セット側の各容量値をCH1、CR1、CB1及びCIM1と示し、第2セット側の各容量値をCH2、CR2、CB2及びCIM2と示す。
 第1セット側の4系統の電荷共有回路530-1~530-4と、第2セット側の4系統の電荷共有回路530-5~530-8とでは、電荷共有スイッチ538に入力される制御信号の接続順番が異なる。
 よって、第1セット側の4系統の電荷共有回路530-1~530-4と虚数キャパシタ540-1,第2セット側の4系統の電荷共有回路530-5~530-8と540-2との接続順序が異なってくる。
 第1セット側の4系統の電荷共有回路530-1~530-4は、実施の形態3と同じ順序によって虚数キャパシタ540-1と接続され、第2セット側の4系統の電荷共有回路530-5~530-8は、実施の形態4と同じ順序によって虚数キャパシタ540-2と接続される。すなわち、虚数キャパシタ540-1と虚数キャパシタ540-2とでは、電荷共有回路530-1~530-8への接続順番が反転している。
 4つの差動増幅器550-1~550-4の各々は、第1セット側の電荷共有回路530-1~530-4の4つの出力の何れか1つと、第2セット側の電荷共有回路530-1~530-4の4つの出力の何れか1つとを、入力とする。詳細には、第1の差動増幅器550-1には、入力電流信号の入力位相が互いに逆相となる2つの電荷共有回路530-1、530-7の出力が入力される。第2~第4の差動増幅器550-2~550-4にも、同様の関係となる2出力が入力される。
[離散時間アナログ回路500の動作]
 クロック生成回路510は、参照周波数発振部14において生成された参照周波数信号24から、図9に示す制御信号S0,S1,S2,S3の制御信号を生成し、各スイッチに供給する。
 電圧電流変換回路520は、低雑音増幅器12において増幅されたアナログRF信号23を入力電圧信号(vin)として電流(入力電流信号:gm×vin)に変換する。
 第1セット側の4系統の電荷共有回路530-1~530-4は、用いる制御信号S0~S3の組合せが異なるため、1/4周期ずれた動作をする。また、第2セット側の4系統の電荷共有回路530-5~530-8は、用いる制御信号S0~S3の組合せが異なるため、1/4周期ずれて動作する。ここでは、代表として電荷共有回路530-1,530-5の動作を説明する。
 サンプリングスイッチ531は、電圧電流変換回路520の出力段に接続され、クロック生成回路510から供給される制御信号S0がハイの時間においてオンする。制御信号S0がハイの間、充電スイッチ533も同時にオン状態にあるため、電圧電流変換回路520において電流に変換されたアナログRF入力信号は、ヒストリキャパシタ532とローテーティングキャパシタ534に電荷として蓄積される。
 このため、入力信号は離散時間アナログのサンプル値となり、無線周波数からベースバンド(BB)周波数に変換される。また、ヒストリキャパシタ532が制御信号S0~S3の周期の一周期前の電荷を保持していることで、電荷共有によるIIRフィルタリングが行われる。この動作は差分方程式を用いて、以下の式によって記述できる。
Figure JPOXMLDOC01-appb-M000011
 制御信号S1と制御信号S2とが順次ハイとなる間、まず、ダンプスイッチ536を介して、ローテーティングキャパシタ534と、バッファキャパシタ537とが電荷共有する。続いて、電荷共有スイッチ538を介して、バッファキャパシタ537と虚数キャパシタ540-1,540-2とが電荷を共有する。つまり、バッファキャパシタ537が一周期前の電荷を保持し、虚数キャパシタ540-1が1/4周期前の電荷、虚数キャパシタ540-2が-1/4周期前の電荷を保持していることで、複素フィルタリングが行われる。
 電荷共有回路530-1の動作は、以下の式によって近似できる。
Figure JPOXMLDOC01-appb-M000012
 ここで、v2Aは、第1セット側の電荷共有回路530-1のバッファキャパシタ537の一端側の電位である。
同様に、電荷共有回路530-5の動作は、以下の式によって近似できる。
Figure JPOXMLDOC01-appb-M000013
 ここで、V2Bは、第2セット側の電荷共有回路530-5のバッファキャパシタ537の一端側の電位である。
 また、制御信号S3がハイとなる間、ローテーティングキャパシタ534がリセットスイッチ535を介して基準電位に接続されることによって、ローテーティングキャパシタ534に蓄積された電荷を放電する。
 8つの電荷共有回路530-1~530-8は、それぞれ1/4周期ずれて同様の動作を繰り返す。
 差動増幅器550-1は、電流が入力される位相が互いに1/2周期ずれた2つの電荷共有回路530-1、530-7の出力を2入力とする。1つのセット側の電荷共有回路530-5、530-7において、電流の入力位相が同相と逆相であるため、出力v2Bは、符号が逆転する。よって、差動増幅器550-1の出力電圧は、電荷共有回路530-1、530-7の2出力の差分、すなわち、次式になる。
Figure JPOXMLDOC01-appb-M000014
 ここで、Gは差動増幅器の利得である。
 入出力をz変換して、Vout(z)とVin(z)の比を求めることで、離散時間アナログ回路500の全体の伝達関数H(z)が算出できる。伝達関数は次式となり、伝達関数に虚数単位「j」を有する複素型の伝達関数を実現できる。
Figure JPOXMLDOC01-appb-M000015
 図16は、本発明の実施の形態5に係る離散時間アナログ回路により実現されるフィルタ特性の例を示す特性図である。
 fLO=1GHz,gm=10mS,CH1=CH2=100fF,CR1=100fF,CR2=92fF,CB1=CB2=1pF,CIM1=CIM2=500fFにおける変換利得の周波数特性の一例を図16に示す。横軸は無線信号の入力周波数を示し、縦軸が変換利得を示す。
 実施の形態5の離散時間アナログ回路500では、従来の実数係数の伝達関数(式(4)においてCIM=0)の特性線を左にシフトした特性と右にシフトした特性とが合成されることで、フラットな通過域が得られる。具体的には、帯域内偏差0.5dBにおいて10%の比帯域を有する広帯域な周波数特性が得られる。
 また、実施の形態5の離散時間アナログ回路500においては、虚数キャパシタ540-1,540-2が、各系統の電荷共有回路530-1~530-8の入力ノード以外のノードに接続する構成となる。従って、電圧電流変換回路120の寄生容量の影響を抑制し、虚数キャパシタ540-1,540-2を介して、電流入力位相が1/4周期ずれた電荷共有回路530-1~530-8間において、正確に電荷を共有できる。
 また、実施の形態5の離散時間アナログ回路500においては、虚数キャパシタ540-1,540-2が、各系統の電荷共有回路530-1~530-8の入力ノード以外のノードに接続する構成となる。よって、第1セット側と第2セット側とにおいて、虚数キャパシタ540-1,540-2を介した各相間の電荷共有の割合を独立的に決定できる。
 なお、虚数キャパシタ540-1,540-2を入力ノードに接続して、同様の自由度を得るには、第1セット側と第2セット側とに、それぞれ電圧電流変換回路520を設ける必要がある。
 しかし、実施の形態5の離散時間アナログ回路500では、上記に示した1つの電圧電流変換回路520を用いた構成によって、自由度の高い周波数特性を設定できる。
 なお、上記の説明ではローテーティングキャパシタ534とバッファキャパシタ537と虚数キャパシタ540-1または540-2とが時間をずらして接続される構成を例にとって説明したが、これらが同時に接続される構成でも、同様の特性が得られる。
 また、ローテーティングキャパシタ534、バッファキャパシタ537、および、虚数キャパシタ540-1或いは540-2が同時に接続されない構成では、式(7)と式(8)を用いて先に説明したように、C>>Cの条件において同時に接続する場合と同じ式になる。なお、広帯域化を実現するためには、2つの虚数キャパシタ540-1,540-2の容量値CIM1,CIM2のうち、一方の値を固定しておき、他方の値を調整すれば容易に目的の特性を実現できる。
 また、上記の説明では、第1セット側と第2セット側とにおいて、互いに逆相となる2出力を組み合わせて、更に差動増幅器によって減算して合成する構成を例にとって説明した。しかしながら、第1セット側と第2セット側とにおいて、互いに同相の2出力を組み合わせて、更に加算器によって加算して合成する構成を採用してもよく、この構成でも同様の周波数特性が得られる。
 (実施の形態6)
 [離散時間アナログ回路600の構成]
 図17は、本実施の形態6に係る離散時間アナログ回路600の要部構成の一例を示すブロック図である。離散時間アナログ回路600は、図7の離散時間アナログ回路13に相当し、サンプリングミクサ回路を構成する。
 離散時間アナログ回路600は、クロック生成回路610、電圧電流変換回路(TA:Transconductance Amplifier、トランスコンダクタンス値=gm)620、4系統2セットの電荷共有回路630-1~630-8、虚数キャパシタ640-1,640-2、及び、バッファキャパシタ650-1~650-4を有する。
 ここで、第1セット側の4系統の電荷共有回路630-1~630-4と、これらに接続される一方の虚数キャパシタ640-1とが、第1セットの受動スイッチドキャパシタ回路に相当する。第2セット側の4系統の電荷共有回路630-5~630-8と、これらに接続される一方の虚数キャパシタ640-2とが、第2セットの受動スイッチドキャパシタ回路に相当する。また、バッファキャパシタ650-1~650-4は、これら第1セットおよび第2セットの受動スイッチドキャパシタ回路の出力を合成する合成部に相当する。
 電荷共有回路630-1~630-8は、サンプリングスイッチ631、ヒストリキャパシタ632、充電スイッチ633、ローテーティングキャパシタ634、リセットスイッチ635、ダンプスイッチ636、ウエイトキャパシタ637、電荷共有スイッチ638、出力スイッチ639を有する。
 ヒストリキャパシタ632、ローテーティングキャパシタ634、ウエイトキャパシタ637、及び、虚数キャパシタ640-1、640-2の各容量値は、第1セット側と第2セット側とにおいて、異なる値に設定可能である。第1セット側の各容量値をCH1、CR1、CW1及びCIM1と示し、第2セット側の各容量値をCH2、CR2、CW2及びCIM2と示す。
 第1セット側の電荷共有回路630-1~630-4と第2セット側の電荷共有回路630-5~630-8とでは、電荷共有スイッチ638に入力される制御信号が異なる。第1セット側の4系統の電荷共有回路630-1~630-4は、入力電流信号の入力順序と同じ順序によって虚数キャパシタ640-1と接続される。第2セット側の4系統の電荷共有回路630-5~630-8は、入力電流信号の入力順序と逆順によって虚数キャパシタ640-2と接続される。すなわち、虚数キャパシタ640-1と虚数キャパシタ640-2とでは、電荷共有回路630-1~630-8への接続順番が反転している。
 実施の形態5との主な相違点の1つとして、実施の形態5では差動増幅器により出力を合成するのに対して、実施の形態6では出力スイッチ639を介してバッファキャパシタ650-1,650-4により電荷を共有することによって、2出力の合成和を形成する。
 4つのバッファキャパシタ650-1~650-4の各々には、第1セット側の電荷共有回路630-1~630-4のうちの一つと、これと入力電流信号の入力位相が同相となる第2セット側の電荷共有回路630-5~630-8のうちの一つとが接続される。
[離散時間アナログ回路600の動作]
 クロック生成回路610は、参照周波数発振部14において生成された参照周波数信号24から、図9に示す制御信号S0,S1,S2,S3の制御信号を生成し、各スイッチに供給する。
 電圧電流変換回路620は、低雑音増幅器12において増幅されたアナログRF信号23を入力電圧信号(vin)として電流(入力電流信号:gm×vin)に変換する。
 第1セット側の4系統の電荷共有回路630-1~630-4は、用いる制御信号S0~S3の組合せが異なるため、1/4周期ずれて動作する。また、第2セット側の4系統の電荷共有回路630-5~630-8は、それぞれ制御信号S0~S3の組合せが異なるため、1/4周期ずれて動作する。ここでは、代表として電荷共有回路630-1,630-5の動作を説明する。
 サンプリングスイッチ631は、電圧電流変換回路620の出力段に接続され、クロック生成回路610から供給される制御信号S0がハイの時間においてオンする。制御信号S0がハイの間、充電スイッチ633も同時にオン状態にあるため、電圧電流変換回路620において電流に変換されたアナログRF入力信号は、ヒストリキャパシタ632とローテーティングキャパシタ634に電荷として蓄積される。
 これによって、入力信号は離散時間アナログのサンプル値となり、無線周波数からベースバンド(BB)周波数に変換される。また、ヒストリキャパシタ632が一周期前の電荷を保持していることで、電荷共有によるIIRフィルタリングが行われる。この動作は差分方程式を用いて、以下の式によって記述できる。
Figure JPOXMLDOC01-appb-M000016
 次に、制御信号S1がハイの間、電荷共有スイッチ638を介して、ローテーティングキャパシタ634と、ウエイトキャパシタ637と、虚数キャパシタ640-1または640-2とが電荷共有をする。つまり、ウエイトキャパシタ637が一周期前の電荷を保持し、虚数キャパシタ640-1が1/4周期前、虚数キャパシタ640-2が3/4周期前の電荷を保持していることで、複素フィルタリングが行われる。
 電荷共有回路630-1の動作は、以下の式によって記述できる。
Figure JPOXMLDOC01-appb-M000017
 ここで、v2Aは、第1セット側における電荷共有後のローテーティングキャパシタ634の一端側の電位である。
 同様に、電荷共有回路630-5の動作は、以下の式によって記述できる。
Figure JPOXMLDOC01-appb-M000018
 ここで、v2Bは、第2セット側における電荷共有後のローテーティングキャパシタ634の一端側の電位である。
 また、制御信号S2がハイとなる間、出力スイッチ639を介して、第1セット側と第2セット側の2つのローテーティングキャパシタ634と1つのバッファキャパシタ650-1とが電荷共有し、出力電位Voutを形成する。この動作は次式によって記述できる。
Figure JPOXMLDOC01-appb-M000019
 出力電位Voutは、図17の出力電位VoutIに該当する。
 続いて、制御信号S3がハイとなる間、ローテーティングキャパシタ634がリセットスイッチ635を介して基準電位に接続されることによって、ローテーティングキャパシタ634に蓄積された電荷を放電する。
 第1系統の電荷共有回路630-1,630-5では、上記の動作が繰り返される。また、第2系統から第4系統の電荷共有回路630-2~630-4,630-6~630-8では、1/4周期をずらして、同様の動作が繰り返される。第2系統から第4系統の電荷共有回路630-2~630-4,630-6~630-8による各出力電位Voutは、図17のVoutQ,VoutIB,VoutQBにそれぞれ該当する。
 入出力に対してz変換し、z変換された入出力Vout(z),Vin(z)の比を求めることで、離散時間アナログ回路600の全体の伝達関数が算出できる。伝達関数は次式となる。
Figure JPOXMLDOC01-appb-M000020
 式(20)の伝達関数は、実施の形態5の離散時間アナログ回路500の伝達関数と同様に複素極を有する。よって、実施の形態6の離散時間アナログ回路600は、図16の周波数特性と同様の広帯域な通過特性が実現できる。
 また、実施の形態6の離散時間アナログ回路600では、第1セット側の出力と第2セット側の出力とにより合成する構成を、出力スイッチ639およびバッファキャパシタ650-1~650-4により合成する構成を採用している。従って、素子の製造バラツキによる周波数特性のバラツキを小さくできる。
 なお、上記の説明では、ローテーティングキャパシタ634、ウエイトキャパシタ637、および、虚数キャパシタ640-1或いは虚数キャパシタ640-2が、時間をずらして接続される構成を例にとって説明した。しかしながら、これらが同時に接続される構成としても、同様の特性が得られる。
 (実施の形態7)
 [離散時間アナログ回路700の構成]
 図18は、本実施の形態7に係る離散時間アナログ回路700の要部構成の一例を示すブロック図である。離散時間アナログ回路700は、図7の離散時間アナログ回路13に相当し、サンプリングミクサ回路を構成する。
 離散時間アナログ回路700は、実施の形態1の離散時間アナログ回路100にプリチャージスイッチ739およびバイアス電位VREFを追加し、他の構成は同一である。同一の構成は、図18において、図8の符号の100番台を700番台に変更して表わされる。
 各スイッチは、例えばMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)の半導体素子を用いて構成され、制御端子以外の端子に適宜なバイアス電位が加えられるため、確実にオン・オフの動作ができる。
 プリチャージスイッチ739は、ローテーティングキャパシタ734の一端をバイアス電位VREFに接続する。
 バイアス電位VREFは、入力電圧信号vinのレベル又は変化量に関わらずに、充電スイッチ733およびダンプスイッチ736をオフ動作時に高抵抗にオフさせる電位に設定される。
[離散時間アナログ回路700の動作]
 プリチャージスイッチ739は、ローテーティングキャパシタ734とバッファキャパシタ737とが電荷共有した後、ローテーティングキャパシタ734の電荷がリセットされる前までの1/4周期の期間にオンされる。オン動作により、この期間のローテーティングキャパシタ734の電位がバイアス電位VREFにされる。
 バイアス電位VREFにより、入力電圧信号vinのレベル又は変化量が増大した場合でも、充電スイッチ733およびダンプスイッチ736は、この期間に高抵抗にオフする。よって、この期間において、バッファキャパシタ737およびヒストリキャパシタ732の電荷が、充電スイッチ733およびダンプスイッチ736を介してリークすることが防止される。従って、離散時間アナログ回路700における入出力間の高い線形性を実現できる。
 ローテーティングキャパシタ734に加えられたバイアス電位VREFは、リセットスイッチ735がオンすることによって放出されるので、電荷共有回路730-1~730-4におけるフィルタリング処理には影響を抑制できる。従って、離散時間アナログ回路700の伝達関数は、実施の形態1の伝達関数(式(4))と同一になり、離散時間アナログ回路700のフィルタ特性は実施の形態1と同様となる。
 なお、バイアス電位VREFの接続ノード、接続タイミング、およびレベルは、適宜に変更可能である。それにより、上記の期間以外の期間、上記とは別のスイッチに対してもオフ状態におけるリーク電流の防止、または、オン状態におけるオン抵抗の増大の防止を図れる。
 (実施の形態8)
 [離散時間アナログ回路800の構成と動作]
 図19は、本実施の形態8に係る離散時間アナログ回路800の要部構成の一例を示すブロック図である。離散時間アナログ回路800は、図7の離散時間アナログ回路13に相当し、サンプリングミクサ回路を構成する。
 離散時間アナログ回路800は、実施の形態5の離散時間アナログ回路500と同様の回路構成を持つ。但し、電荷共有回路830-1~830-8の出力のうち差動増幅器850-1~850-4によりそれぞれ合成される2出力の組合せが異なる。実施の形態5と同様の構成は、図19において、図15の符号の500番台を800番台に変更して表わされる。
 離散時間アナログ回路800では、差動増幅器850-1~850-4の各々は、電荷共有回路830-1~830-8の出力のうち、第1セット側と第2セット側とにおいて互いに同相の2出力を入力として、両者の差分を増幅する。
 これによって、差動増幅器850-1~850-4の出力電位は以下の式となる。
Figure JPOXMLDOC01-appb-M000021
 ここで、Gは差動増幅器850-1~850-4の利得である。
 入出力をz変換して、Vout(z)とVin(z)の比を求めることで、離散時間アナログ回路800の全体の伝達関数H(z)が算出できる。伝達関数は次式となる。
Figure JPOXMLDOC01-appb-M000022
 図20は、本発明の実施の形態8に係る離散時間アナログ回路により実現されるフィルタ特性の例を示す特性図である。
 式(22)の伝達関数は、分母に複素数係数を有する2つの伝達関数の差であるため、図20では、ローカル周波数fLOを中心に左右非対称な位置に減衰極を設定できる。この周波数特性により、LOW-IF型の受信機において高いイメージ除去比が実現できる。
 (実施の形態9)
 [離散時間アナログ回路900の構成と動作]
 図21は、本実施の形態9に係る離散時間アナログ回路900の要部構成の一例を示すブロック図である。離散時間アナログ回路900は、図7の離散時間アナログ回路13に相当し、サンプリングミクサ回路を構成する。
 離散時間アナログ回路900は、実施の形態6の離散時間アナログ回路600と同様の回路構成を持つ。但し、バッファキャパシタ950-1~950-4の各々に接続される電荷共有回路930-1~930-8の組合せが異なる。実施の形態6と同様の構成は、図21において、図17の符号の600番台を900番台に変更して表わされる。
 離散時間アナログ回路900では、バッファキャパシタ950-1~950-4の各々は、電荷共有回路930-1~930-8のうち、第1セット側と第2セット側とにおいて互いに逆相の関係にある2つの電荷共有回路が接続される。そして、バッファキャパシタ950-1~950-4は、2つの電荷共有回路と電荷を共有することによって出力電位VoutI,VoutQ,VoutIB,VoutQBを生成する。
 これによって、バッファキャパシタ950-1~950-4の各出力電位(まとめてVoutと記す)は以下の式となる。
Figure JPOXMLDOC01-appb-M000023
 入出力をz変換して、Vout(z)とVin(z)の比を求めることで、離散時間アナログ回路900の全体の伝達関数H(z)が算出できる。伝達関数は次式となる。
Figure JPOXMLDOC01-appb-M000024
 式(24)の伝達関数は、実施の形態8の離散時間アナログ回路800の伝達関数と同様に、分母に複素数係数を有する2つの伝達関数の差により表わされる。よって、ローカル周波数fLOを中心に左右非対称な位置に減衰極を設定でき、離散時間アナログ回路800の特性として、図20に示すフィルタ特性が得られる。離散時間アナログ回路800では、このフィルタ特性により、LOW-IF型の受信機において高いイメージ除去比が実現できる。
 (実施の形態10)
 図22は、本実施の形態10に係る離散時間アナログ回路の構成図である。図23は、本発明の実施の形態10に係る離散時間アナログ回路に入力する制御信号のタイミングチャートである。
 実施の形態10の離散時間アナログ回路1000は、例えば、図7の離散時間アナログ回路13に相当するサンプリングミクサ回路である。
 離散時間アナログ回路1000は、8相のクロックで動作する回路であり、電圧電流変換回路(TA)Cと、電荷共有回路A-1,B-2と、クロック生成回路Eと、合成回路(図では容量)D-1~D-4とを具備する。
 クロック生成回路Eは、図23に示すように、ハイとなる時間が重ならない、互いに位相の異なる8相のクロックS~Sを、電荷共有回路A-1,B-2に供給する。
 実施の形態10の離散時間アナログ回路1000は、実施の形態5の離散時間アナログ回路500と同様の周波数特性を実現するが、実施の形態5では4相のクロック(制御信号S0,S1,S2,S3)で動作するのに対して、実施の形態10では8相のクロックで動作する点が異なる。
 図24は、図22の電荷共有回路A-1であり、図24(A)はその回路図、図24(B)はその端子構成を示すブロック図である。図24では、電荷共有回路A-1の符号を一般化してA-kと記している。
 電荷共有回路A-1は、入力端子inを共通にした4つの電荷転送回路A1~A4を具備する。電荷転送回路A1~A4は、図13の電荷共有回路330-1~330-4、および、図17の電荷共有回路630-1~630-4と同様の構成であり、詳細な説明は省略する。
 制御端子C0~C3には、90度ずつ位相がずれてハイとなり、ハイの時間が互いに重ならない4相のクロックS、S、S、S(図23)が供給される。
 電荷転送回路A1~A4は、位相が90度ずれて同じ動作を行うので、代表して1つの電荷転送回路A1の動作を説明する。
(1)C0がハイのとき、
 スイッチA11、A13を介して入力端子inから入力される電荷が容量CHk(A12)および容量CRk(A14)に蓄積される。この動作の初期状態として、容量CHk(A12)は、1周期前の電荷共有によって蓄えられた電荷を保持している。
(2)C1がハイのとき、
 容量CRk(A14)に蓄積された電荷と容量CWk(A17)に蓄積された電荷が電荷共有を行う。この動作の初期状態として、容量CWk(A17)は、1周期前の電荷共有によって蓄えられた電荷を保持している。
(3)C2がハイのとき、
 容量CWk(A17)と相間容量CIMk(A5)とが電荷共有を行う。この電荷共有の初期状態として、相間容量CIMk(A5)が、制御端子C0~C3により1/4周期位相のずれた電荷を保持している。
 同時に、容量CRkは出力端子out0に接続される。
(4)C3がハイのとき、
 容量CRk(A14)はスイッチA15を介して、接地され、リセットされる。
 電荷転送回路A1は、上記(1)~(4)の動作を繰り返す。
 図25は、図22の電荷共有回路B-2であり、図25(A)はその回路図、図25(B)はその端子構成を示すブロック図である。図25では、電荷共有回路B-2の符号を一般化してB-kと記している。
 電荷共有回路B-2は、入力端子inを共通にした4つの電荷転送回路B1~B4を具備する。電荷転送回路B1~B4は、図14の電荷共有回路430-1~430-4、および、図17の電荷共有回路630-5~630-8と同様の構成であり、詳細な説明は省略する。
 電荷共有回路B-2の制御端子C0~C3には、90度ずつ位相がずれてハイとなり、ハイの時間が互いに重ならない4相のクロックS、S、S、Sが供給される。
 2つの電荷共有回路B-2、A-1においては、スイッチB18,B28,B38,B48に供給されるクロックの順番と、スイッチA18,A28,A38,A48に供給されるクロックの順番とが異なる。クロックの順番が反転した並びとなる。
 図22に示すように、電荷共有回路A-1の出力端子out0(図24(B)参照)と電荷共有回路B-2の出力端子out0(図25(B)参照)とは、容量CB1kの一方の端子に接続されている。電荷共有回路A-1の出力端子out1と電荷共有回路B-2の出力端子out1とは、容量CB2kの一方の端子に接続されている。電荷共有回路A-1の出力端子out2と電荷共有回路B-2の出力端子out2とは、容量CB3kの一方の端子に接続されている。電荷共有回路A-1の出力端子out3と電荷共有回路B-2の出力端子out3とは、容量CB4kの一方の端子に接続されている。これらにより、電荷共有回路A-1の容量CRkの電荷と電荷共有回路B-2の容量CRkの電荷とが、容量CB1k~CB4kにおいて合成される。
 電荷共有回路A-1の構成は、図10のように周波数特性のピークを左にシフトした特性を実現する。電荷共有回路B-2の構成は、図12のように周波数特性のピークを右にシフトした特性を実現する。図22の離散時間アナログ回路1000は、電荷共有回路A-1、B-2の同相出力を合成する構成であるため、図16に示すように帯域内をフラットにした広帯域な特性を実現することができる。
 さらに、実施の形態10の離散時間アナログ回路1000は、8相のクロックを使用する構成であるため、4相のクロックのみで8組の電荷共有回路を動作させる構成に比べて、電圧電流変換回路Cに同時に接続される容量の数が減る。このため、入力時のフィルタのカットオフ周波数を高くして広帯域な特性を得たい場合に、4相クロック構成よりも8相クロック構成の方が、容量CHk,CRkの容量値を大きくすることが可能となり、実装が容易となる。
 (実施の形態11)
 図26は、本実施の形態11に係る離散時間アナログ回路1010の構成図である。
 実施の形態11の離散時間アナログ回路1010は、電荷共有回路A-1、B-2の出力の合成の仕方を変えたもので、その他は実施の形態10の構成と同じである。実施の形態11の離散時間アナログ回路1010は、実施の形態6の離散時間アナログ回路600と同様の周波数特性を実現するが、実施の形態6では4相のクロック(制御信号S0,S1,S2,S3)で動作するのに対して、実施の形態11では8相のクロックで動作する点が異なる。
 図26に示すように、実施の形態11では、電荷共有回路A-1の出力端子out0と電荷共有回路B-2の出力端子out2とが、容量CB1kの一方の端子に接続されている。また、電荷共有回路A-1の出力端子out1と電荷共有回路B-2の出力端子out3とが、容量CB2kの一方の端子に接続されている。また、電荷共有回路A-1の出力端子out2と電荷共有回路B-2の出力端子out0とが、容量CB3kの一方の端子に接続されている。また、電荷共有回路A-1の出力端子out3と電荷共有回路B-2の出力端子out2とが、容量CB4kの一方の端子に接続されている。これらにより、電荷共有回路A-1の容量CRkの電荷と電荷共有回路B-2の容量CRkの電荷とが、容量CB1k~CB4kにおいて合成される。
 図23の離散時間アナログ回路1010は、電荷共有回路A-1、B-2の逆相出力を合成する構成である。このため、離散時間アナログ回路1010は、図20に示すように特定の周波数に伝送零点(減衰極)が設定され、ローカル周波数に対して左右非対称となりイメージ除去が可能な周波数特性を実現することができる。
 さらに、実施の形態11の離散時間アナログ回路1010は、8相のクロックを使用する構成であるため、4相のクロックのみで8組の電荷共有回路を動作させる構成に比べて、電圧電流変換回路Cに同時に接続される容量の数が減る。このため、入力時のフィルタのカットオフ周波数を高くして広帯域な特性を得たい場合に、4相クロック構成よりも8相クロック構成の方が、容量CHk,CRkの容量値を大きくすることが可能となり、実装が容易となる。
 (実施の形態12)
 図27は、本発明の実施の形態12に係る離散時間アナログ回路を示す構成図である。図28は、本発明の実施の形態12に係る離散時間アナログ回路に入力する制御信号のタイミングチャートである。
 実施の形態12の離散時間アナログ回路1020は、例えば図7の離散時間アナログ回路13に相当するサンプリングミクサ回路である。
 離散時間アナログ回路1020は、4n相のクロックで動作する回路である。離散時間アナログ回路1020は、電圧電流変換回路(TA)Cと、n個の電荷共有回路A-1,B-2,・・・,A-nと、クロック生成回路Fと、n個の電荷共有回路A-1,B-2,・・・,A-nの出力を合成する合成回路(図示略)と、を具備する。
 n個の電荷共有回路A-1,B-2,・・・,A-nは、図24の構成、図25の構成の何れとしても良い。
 クロック生成回路Fは、図28に示すように、ハイとなる時間が重ならない、互いに位相の異なる4n相のクロックを、電荷共有回路A-1,B-2,・・・,A-nに供給する。
 各電荷共有回路A-1,B-2,・・・,A-nは、8相のクロックで動作する実施の形態10の場合と同様の動作を行い、それぞれの電荷共有回路の入出力の周波数特性は左シフトまたは右シフトした周波数特性となる。シフト量は、それぞれの容量CRk,CWk,CIMkに依存する。
 合成回路は、各電荷共有回路A-1,B-2,・・・,A-nの出力を所望の特性が得られるように合成する。例えば、奇数(2m-1:mは自然数)番目の複数の電荷共有回路A-1、A-3、・・・、A-nを、図24の構成(左シフト型)とする。また、偶数(2m:mは自然数)番目の複数の電荷共有回路B-2、B-4、・・・B-(n-1)を、図25の構成(右シフト型)とする。そして、これらの電荷共有回路A-1、B-2、・・・、A-nの左シフトの量と右シフトの量とを少しずつずらして、互いに同相の出力を合成する。このような構成により、図22に示した2つの電荷共有回路A-1、B-2の出力を合成する構成と比較して、より広帯域な特性を実現することができる。
 なお、上記の広帯域化は、実施の形態5の離散時間アナログ回路500において、電荷共有回路の数を増やすことでも実現可能である。しかし、クロックを4相のままで電荷共有回路の組を増やすと電圧電流変換回路に同時に接続される容量の数が増える。このため、入力時のフィルタのカットオフ周波数を高くして広帯域な特性を得るためには容量CHk,CRkの容量値を小さくする必要が生じる。クロックの相数を増やすことで、容量CHk、CRkの容量値を大きくしたままで、入力時のフィルタのカットオフ周波数を高くすることが可能となり、容量が実装しやすくなる。設計対象のアプリケーションにおける実装方法において、クロックの相数を増やすことと容量を小さくすることのどちらが実現しやすいかによって、実施の形態5,6か実施の形態10,11,12かを選択すれば良い。
 以上、本発明の各実施の形態について説明した。
 なお、上記の実施の形態10~12では、電荷共有回路A-1,B-2,・・・,A-nとして、図24および図25の構成を例にとって説明した。しかしながら、これらには、実施の形態1~実施の形態4、実施の形態7に示した電荷共有回路を適用しても良い。また、上記の実施の形態10~11では、合成回路D-1~D-4として容量を使用したが、これらには実施の形態8に示した差動増幅器を使用しても良い。実施の形態12では合成回路の構成を省略したが、合成回路として、容量、差動増幅器のどちらを適用しても良い。
 なお、上記実施の形態の受信機の各構成は、典型的には半導体チップ上に集積回路として実現される。アンテナを除く受信機の各構成は個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。
 2012年1月24日出願の特願2012-012374の日本出願に含まれる明細書、図面および要約書の開示内容は、すべて本願に援用される。
 本発明に係るサンプリングミクサ回路及び受信機は、無線通信装置における受信部の高周波信号処理回路に有用であり、信号の周波数変換とフィルタ処理とを行う場合に適している。
 10 ダイレクトサンプリング受信機
 11 アンテナ
 12 低雑音増幅器
 13,100,200,300,400,500,600,700,800,900,1000,1010,1020 離散時間アナログ回路
 14 参照周波数発振部
 15 A/D変換処理部
 16 デジタル受信処理部
 110,210,310,410,510,610,710,810,910,E,F クロック生成回路
 120,220,320,420,520,620,720,820,920,C 電圧電流変換回路(TA)
 130-1~130-4,230-1~230-4,330-1~330-4,430-1~430-4,530-1~530-8,630-1~630-8,730-1~730-4,830-1~830-8,930-1~930-8 電荷共有回路
 131,231,331,431,531,631,731,831,931 サンプリングスイッチ
 132,232,332,432,532,632,732,832,932 ヒストリキャパシタ
 133,233,333,433,533,633,733,833,933 充電スイッチ
 134,234,334,434,534,634,734,834,934 ローテーティングキャパシタ
 135,235,335,435,535,635,735,835,935 リセットスイッチ
 136,236,336,436,536,636,736,836,936 ダンプスイッチ
 639,939 出力スイッチ
 137,237,337,437,537,650-1~650-4,737,837,950-1~950-4 バッファキャパシタ
 637,937 ウエイトキャパシタ
 138,238,338,438,538,638,738,838,938 電荷共有スイッチ
 739 プリチャージスイッチ
 140,240,340,440,540-1~540-2,640-1~640-2,740,840-1~840-2,940-1~940-2 虚数キャパシタ
 550-1~550-4,850-1~850-4 差動増幅器
 A-1,B-2,・・・,A-n 電荷共有回路
 D-1,D-2,D-3,D-4 合成回路
 A1,A2,A3,A4,B1,B2,B3,B4 電荷転送回路
 
 
 

Claims (19)

  1.  入力信号の搬送周波数に応じた周期であり、位相の異なる4相の制御信号を出力するクロック生成回路と、
     前記入力信号に基づく電圧信号を電流信号に変換する電圧電流変換回路と、
     前記4相の制御信号に基づく異なる位相によって、前記変換された電流信号を、複数のキャパシタに入力し、且つ、前記複数のキャパシタの間において電荷を取り交わす4系統の電荷共有回路と、
     前記4系統の電荷共有回路における前記電流信号の入力ノード以外のノードに、前記4相の制御信号に基づき接続が切り替えられる相間キャパシタと、
     を具備するサンプリングミクサ回路。
  2.  前記4相の制御信号に基づく異なる位相によって、前記4系統の電荷共有回路と前記相間キャパシタとの接続を切り替える、
     請求項1記載のサンプリングミクサ回路。
  3.  前記相間キャパシタは前記4系統の電荷共有回路に所定の順序によって接続され、
     前記所定の順序とは、前記4系統の電荷共有回路のうち順番が連続する前後2つの電荷共有回路における前記電流信号の入力位相差が90°又は-90°となる順序である、
     請求項1記載のサンプリングミクサ回路。
  4.  前記4系統の電荷共有回路の各々は、
     前記電流信号を所定位相によってサンプルするサンプリングスイッチと、
     前記サンプルスイッチの後段に配置されたヒストリキャパシタと、
     前記サンプリングスイッチと同じタイミングでオンする充電スイッチと、
     前記充電スイッチの後段に配置されたローテーティングキャパシタと、
     前記ローテーティングキャパシタを接地に接続するリセットスイッチと、
     前記サンプルされた電流信号を受けて前記出力部の電位を決定するバッファキャパシタと、
     前記ローテーティングキャパシタと前記バッファキャパシタと接続するダンプスイッチと、
     前記バッファキャパシタと前記相間キャパシタとを接続し、前記ダンプスイッチと同じタイミングでオンする相間電荷共有スイッチと、
     を具備する請求項1記載のサンプリングミクサ回路。
  5.  前記ローテーティングキャパシタから前記相間キャパシタへ電荷が伝達されるタイミングと、前記ローテーティングキャパシタから前記バッファキャパシタへ電荷が伝達されるタイミングとが同一である、
     請求項4記載のサンプリングミクサ回路。
  6.  前記ローテーティングキャパシタから前記相間キャパシタへ電荷が伝達されるタイミングと、前記ローテーティングキャパシタから前記バッファキャパシタへ電荷が伝達されるタイミングとが異なる、
     請求項4記載のサンプリングミクサ回路。
  7.  前記4系統の電荷共有回路および前記相間キャパシタを1セットの受動スイッチドキャパシタ回路として、
     少なくとも前記4系統の電荷共有回路と前記相間キャパシタとの接続順序が異なる2セットの前記受動スイッチドキャパシタ回路と、
     前記2セットの受動スイッチドキャパシタ回路の出力を合成する合成部と、
     を具備する請求項1記載のサンプリングミクサ回路。
  8.  前記4系統の電荷共有回路の各々は、
     前記電流信号を所定位相によってサンプルするサンプリングスイッチと、
     前記サンプルスイッチの後段に配置されたヒストリキャパシタと、
     前記サンプリングスイッチと同じタイミングでオンする充電スイッチと、
     前記充電スイッチの後段に配置されたローテーティングキャパシタと、
     前記ローテーティングキャパシタを接地に接続するリセットスイッチと、
     前記サンプルされた電流信号を受けて前記出力部の電位を決定するバッファキャパシタと、
     前記ローテーティングキャパシタと前記バッファキャパシタと接続するダンプスイッチと、
     前記バッファキャパシタと前記相間キャパシタとを接続し、前記ダンプスイッチと同じタイミングでオンする相間電荷共有スイッチと、
     を具備する請求項7記載のサンプリングミクサ回路。
  9.  前記2セットの受動スイッチドキャパシタ回路のうち第1の受動スイッチドキャパシタ回路では、前記相間キャパシタと前記4系統の電荷共有回路との接続順序が、順番が連続する前後2つの電荷共有回路の前記電流信号の入力位相差が正となる順序であり、
     前記2セットの受動スイッチドキャパシタ回路のうち第2の受動スイッチドキャパシタ回路では、前記相間キャパシタと前記4系統の電荷共有回路との接続順序が、順番が連続する前後2つの電荷共有回路の前記電流信号の入力位相差が負となる順序である、
     請求項8記載のサンプリングミクサ回路。
  10.  前記合成部は、
     前記2セットの受動スイッチドキャパシタ回路のうち第1の受動スイッチドキャパシタ回路における4系統の出力と、第2の受動スイッチドキャパシタ回路における4系統の出力とをそれぞれ合成する4つの差動アンプを具備する、
     請求項8記載のサンプリングミクサ回路。
  11.  前記4つの差動アンプは、
     前記第1の受動スイッチドキャパシタ回路における4系統の出力と、これらの4系統の出力と逆相の関係にある前記第2の受動スイッチドキャパシタ回路における4系統の出力とをそれぞれ合成する、
     請求項10記載のサンプリングミクサ回路。
  12.  前記4つの差動アンプは、
     前記第1の受動スイッチドキャパシタ回路における4系統の出力と、これらの4系統の出力と同相の関係にある前記第2の受動スイッチドキャパシタ回路における4系統の出力とをそれぞれ合成する、
     請求項10記載のサンプリングミクサ回路。
  13.  前記4系統の電荷共有回路の各々は、
     前記電流信号を所定位相によってサンプルするサンプリングスイッチと、
     前記サンプルスイッチの後段に配置されたヒストリキャパシタと、
     前記サンプリングスイッチと同じタイミングでオンする充電スイッチと、
     前記充電スイッチの後段に配置されたローテーティングキャパシタと、
     前記ローテーティングキャパシタを接地に接続するリセットスイッチと、
     前記サンプルされた電流信号を受けて前記出力部の電位を決定するバッファキャパシタと、
     前記ローテーティングキャパシタと前記バッファキャパシタと接続するダンプスイッチと、
     前記バッファキャパシタと前記相間キャパシタとを接続し、前記ダンプスイッチと同じタイミングでオンする相間電荷共有スイッチと、
     を具備する請求項7記載のサンプリングミクサ回路。
  14.  前記合成部は、
     前記2セットの受動スイッチドキャパシタ回路のうち、第1の受動スイッチドキャパシタ回路における4つの前記ローテーティングキャパシタの電荷と、第2の受動スイッチドキャパシタ回路における4つの前記ローテーティングキャパシタの電荷と、が、それぞれ伝達されて電荷共有する4つのバッファキャパシタを具備し、
     前記4つのバッファキャパシタの電位を出力とする、
     請求項13記載のサンプリングミクサ回路。
  15.  前記4つのバッファキャパシタは、
     前記第1の受動スイッチドキャパシタ回路における前記4系統の電荷共有回路の各ローテーティングキャパシタの電荷と、これらの4系統の電荷共有回路と同相の関係にある前記第2の受動スイッチドキャパシタ回路における前記4系統の電荷共有回路の各ローテーティングキャパシタの電荷とをそれぞれ入力する、
     請求項14記載のサンプリングミクサ回路。
  16.  前記4つのバッファキャパシタは、
     前記第1の受動スイッチドキャパシタ回路における前記4系統の電荷共有回路の各ローテーティングキャパシタの電荷と、これらの4系統の電荷共有回路と逆相の関係にある前記第2の受動スイッチドキャパシタ回路における前記4系統の電荷共有回路の各ローテーティングキャパシタの電荷とをそれぞれ入力する、
     請求項14記載のサンプリングミクサ回路。
  17.  請求項1または請求項7記載のサンプリングミクサ回路と、
     前記入力信号を受信するアンテナと、
     前記アンテナが受信した信号を増幅し、増幅された信号を前記サンプリングミクサ回路に出力する低雑音増幅器と、
     前記サンプリングミクサ回路の出力信号をアナログデジタル変換するアナログデジタル変換部と、
     を具備する受信機。
  18.  低中間周波数受信機であって、
     前記サンプリングミクサ回路は、前記出力信号として低中間周波数帯の信号を出力する、
     請求項17記載の受信機。
  19.  少なくとも1つが請求項18に記載の受信機である複数の受信機と、
     前記複数の受信機からのデジタル出力を選択合成するデジタル処理部と、
     を具備するダイバーシチ受信機。
     
PCT/JP2013/000272 2012-01-24 2013-01-22 サンプリングミクサ回路及び受信機 WO2013111565A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013555196A JP6118735B2 (ja) 2012-01-24 2013-01-22 サンプリングミクサ回路及び受信機
US14/368,770 US9318999B2 (en) 2012-01-24 2013-01-22 Sampling mixer circuit and receiver

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012012374 2012-01-24
JP2012-012374 2012-01-24

Publications (1)

Publication Number Publication Date
WO2013111565A1 true WO2013111565A1 (ja) 2013-08-01

Family

ID=48873297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000272 WO2013111565A1 (ja) 2012-01-24 2013-01-22 サンプリングミクサ回路及び受信機

Country Status (3)

Country Link
US (1) US9318999B2 (ja)
JP (1) JP6118735B2 (ja)
WO (1) WO2013111565A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129325A (ja) * 2015-01-06 2016-07-14 パナソニック株式会社 離散時間アナログ回路
US20170187514A1 (en) * 2015-12-28 2017-06-29 Panasonic Corporation Equalizer circuit and receiving apparatus using the same
KR20170075154A (ko) * 2015-12-23 2017-07-03 주식회사 실리콘웍스 복수 회 리셋을 이용한 입력 비율 조정 회로 및 방법
CN107026616A (zh) * 2015-12-28 2017-08-08 松下电器产业株式会社 均衡器电路及使用它的接收装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2950447A1 (en) * 2014-05-28 2015-12-02 Nxp B.V. Frequency converter
US9634609B2 (en) * 2014-12-19 2017-04-25 Mediatek Singapore Pte. Ltd Switching circuit
US9997254B2 (en) * 2016-07-13 2018-06-12 Nxp Usa, Inc. Sample-and-hold circuit
US9984763B1 (en) 2016-11-30 2018-05-29 Nxp Usa, Inc. Sample and hold circuit
US11683023B1 (en) * 2022-01-06 2023-06-20 National Technology & Engineering Solutions Of Sandia, Llc Programmable delay device enabling large delay in small package

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064450A1 (ja) * 2008-12-04 2010-06-10 パナソニック株式会社 サンプリング回路およびこれを用いた受信機
WO2011024481A1 (ja) * 2009-08-31 2011-03-03 パナソニック株式会社 ダイレクトサンプリング回路及び受信機

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7519135B2 (en) 2001-08-15 2009-04-14 Texas Instruments Incorporated Direct radio frequency (RF) sampling with recursive filtering method
US20050233725A1 (en) * 2004-04-20 2005-10-20 Khurram Muhammad Image reject filtering in a direct sampling mixer
JP5019313B2 (ja) * 2006-03-07 2012-09-05 パナソニック株式会社 離散時間ダイレクトサンプリング回路及び受信機
US8385874B2 (en) * 2007-03-06 2013-02-26 Panasonic Corporation Discrete time direct sampling circuit and receiver
US8599968B2 (en) 2008-12-04 2013-12-03 Panasonic Corporation Sampling circuit and receiver utilizing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010064450A1 (ja) * 2008-12-04 2010-06-10 パナソニック株式会社 サンプリング回路およびこれを用いた受信機
WO2011024481A1 (ja) * 2009-08-31 2011-03-03 パナソニック株式会社 ダイレクトサンプリング回路及び受信機

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016129325A (ja) * 2015-01-06 2016-07-14 パナソニック株式会社 離散時間アナログ回路
KR20170075154A (ko) * 2015-12-23 2017-07-03 주식회사 실리콘웍스 복수 회 리셋을 이용한 입력 비율 조정 회로 및 방법
KR102332377B1 (ko) 2015-12-23 2021-11-29 주식회사 엘엑스세미콘 복수 회 리셋을 이용한 입력 비율 조정 회로 및 방법
US20170187514A1 (en) * 2015-12-28 2017-06-29 Panasonic Corporation Equalizer circuit and receiving apparatus using the same
CN107026616A (zh) * 2015-12-28 2017-08-08 松下电器产业株式会社 均衡器电路及使用它的接收装置
US10103914B2 (en) * 2015-12-28 2018-10-16 Panasonic Corporation Equalizer circuit and receiving apparatus using the same

Also Published As

Publication number Publication date
US9318999B2 (en) 2016-04-19
US20140362957A1 (en) 2014-12-11
JP6118735B2 (ja) 2017-04-19
JPWO2013111565A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
JP6118735B2 (ja) サンプリングミクサ回路及び受信機
US8570100B2 (en) Direct sampling circuit and receiver
US7979046B2 (en) Transceiver development in VHF/UHF/GSM/GPS/bluetooth/cordless telephones
US7489745B2 (en) Reconfigurable direct RF bandpass sampling receiver and related methods
US8766834B2 (en) Discrete time analog circuit and receiver using same
JP5019313B2 (ja) 離散時間ダイレクトサンプリング回路及び受信機
US20080013653A1 (en) Direct bandpass sampling receivers with analog interpolation filters and related methods
US8688067B2 (en) Sampling circuit and receiver using same
US8433276B2 (en) Sampling circuit and receiver
JP5587210B2 (ja) サンプリング回路およびこれを用いた受信機
US10103914B2 (en) Equalizer circuit and receiving apparatus using the same
US7671780B2 (en) Method and device for processing an incident signal, in particular for frequency transposition
Poberezhskiy et al. Influence of constructive sampling theory on the front ends and back ends of SDRs and CRs
JP2008219413A (ja) 可変フィルタ
Folkesson et al. Design of RF sampling receiver front-end
Sun et al. Implementation aspects of generalized bandpass sampling
Poberezhskiy et al. On implementation of sampling with internal antialiasing filtering in software defined receivers

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13740902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013555196

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14368770

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13740902

Country of ref document: EP

Kind code of ref document: A1