WO2013111237A1 - 静電容量式タッチ入力装置 - Google Patents

静電容量式タッチ入力装置 Download PDF

Info

Publication number
WO2013111237A1
WO2013111237A1 PCT/JP2012/008063 JP2012008063W WO2013111237A1 WO 2013111237 A1 WO2013111237 A1 WO 2013111237A1 JP 2012008063 W JP2012008063 W JP 2012008063W WO 2013111237 A1 WO2013111237 A1 WO 2013111237A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive
drive electrode
detection
electrode group
input operation
Prior art date
Application number
PCT/JP2012/008063
Other languages
English (en)
French (fr)
Inventor
誠也 村瀬
吉川 治
Original Assignee
株式会社東海理化電機製作所
Smk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東海理化電機製作所, Smk株式会社 filed Critical 株式会社東海理化電機製作所
Priority to EP12866696.3A priority Critical patent/EP2808769B1/en
Priority to CN201280066686.3A priority patent/CN104040472B/zh
Publication of WO2013111237A1 publication Critical patent/WO2013111237A1/ja
Priority to US14/332,395 priority patent/US9342201B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04166Details of scanning methods, e.g. sampling time, grouping of sub areas or time sharing with display driving
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04104Multi-touch detection in digitiser, i.e. details about the simultaneous detection of a plurality of touching locations, e.g. multiple fingers or pen and finger

Definitions

  • the present invention provides a capacitive touch panel for detecting an input operation position from a position on an insulating panel of a detection electrode whose capacitance with the input operation body increases as the input operation body approaches, or a capacitance More specifically, a capacitive touch input device such as a touch-sensitive touch pad is more specifically described.
  • the electrostatic operation is performed by the input operating body approaching each crossing position of the drive electrode to which the detection voltage is applied and the detection electrode orthogonal to the drive electrode.
  • the present invention relates to a capacitive touch input device that detects an input operation position by a cross-point method that detects a change in capacitance.
  • the input detection method of a capacitive touch input device that detects an input position by an input operation body such as a finger detects a detection electrode whose stray capacitance increases when the input operation body approaches, and the arrangement position of the detection electrode
  • a self-capacitance method for detecting the input operation position from the drive electrode, a detection voltage of a predetermined voltage level is applied to the drive electrode, and a detection electrode whose detection voltage level is lowered as the input operation body approaches is detected. It is classified into a mutual capacitance method (two-wire type) that detects an input operation position from the arrangement position of the detection electrode.
  • the former method since the drive electrode is not wired, the structure is simplified.
  • the stray capacitance to be detected is 10 to 20 pF, which is a minute level that is difficult to detect, the latter mutual capacitance method is generally adopted. Yes.
  • a plurality of X direction electrodes and a plurality of Y direction electrodes are insulated from each other and arranged on an insulating panel, one of which is a drive electrode that applies a detection voltage, and the other is a detection that detects a detection voltage level.
  • a plurality of detection electrodes are arranged so as to be orthogonal to each other, and at each crossing position where the drive electrode and the detection voltage cross each other, the input position is detected from the crossing position of the detection electrode where the detection voltage level is lowered.
  • a detection voltage is simultaneously applied to the entire drive electrodes of the X-direction electrode or the Y-direction electrode, and a detection electrode having a reduced detection voltage level is detected from all the other detection electrodes.
  • the detection voltage level due to the approach of the input operation body is detected for all the cross positions, so that each input position can be detected even if two or more different positions are input simultaneously. Since the detection voltage is applied to each of the plurality of drive electrodes and the detection voltage levels of all the detection electrodes orthogonal to each of the drive electrodes to which the detection voltage is applied are detected, the detection of the input position is delayed. In particular, in a capacitive touch panel with an enlarged input operation surface, the number of crossing positions to be detected increases proportionally, and thus the problem that the response speed of the input operation decreases becomes obvious.
  • a capacitive touch panel (Patent Document 1) that drives and scans all of the drive electrodes in detail or a plurality of adjacent drive electrodes in the drive scanning direction is bundled, and a detection voltage is applied to each bundled drive electrode group
  • Patent Document 2 A capacitive touch panel
  • FIG. 6 is an explanatory diagram showing a method of detecting an input operation position by the capacitive touch panel 100 disclosed in Patent Document 2, and in this capacitive touch panel 100, the direction is perpendicular to the paper surface in the same.
  • the plurality of drive electrodes Dn to be wired n is a natural number of 1 or more
  • two drive electrodes D2n-1 and D2n adjacent in the drive scanning direction are used as the drive electrode group, and the drive electrode group
  • An alternating drive voltage is applied every DV (n).
  • 6A, 6B, and 6C show the input operation position and the input operation position of the input operation body along the drive scanning direction when a drive voltage is applied to each drive electrode group DV (n).
  • the relationship between the detection voltage level R (m, n) and the detection voltage level R (m, n) appearing in the vicinity of the detection electrode S (m) wired along the drive scanning direction is shown by inverting the polarity of the detection voltage level R (m, n). Yes.
  • the drive electrode and the input are applied to the capacitance between the drive electrode to which the drive voltage is applied and the detection electrode. Since the capacitance between the operating bodies is reduced to a negligible level, the detection voltage level R (m, n) detected at the detection electrode does not change.
  • the input operation position of the input operation body can be detected from the detection voltage level R (m, n) appearing on the detection electrode S (m).
  • the position of the drawing y 0 along the drive scanning direction is assumed to be input operation position, upon applying a driving voltage to the drive electrode group DV (n) (n is from 1 to 3), the detection electrodes S (
  • the detected voltage level R (m, n) detected from m) is a 0 , b 0 , c 0 according to the amount of change, respectively.
  • Detection voltage level R (m, n) so as smaller distance from the wiring position of applying the driving voltage driving electrode group DV (n), a 0 and b 0 ratio from the drive electrode group DV between (1) and input operation position y 0 between the wiring position of the drive electrode group DV (2) is obtained.
  • the detection voltage is simultaneously applied to a plurality of drive electrodes constituting the drive electrode group DV (n). Therefore, between the drive electrodes to which the drive voltage is applied, As shown in FIG. 6, regardless of which position is the input operation position, the amount of change in the detection voltage level R (m, n) appearing on the detection electrode S (m) is substantially constant, and the input between the drive electrodes The operation position cannot be detected accurately.
  • the detection voltage level R (m, n) appears symmetrically at the center position with the center position of the drive electrode group DV (n) as a peak, so that the input operation position is equidistant from the center position of the drive electrode group DV (n).
  • the input operation position can not determine whether it is any of y 1 and y 2.
  • the present invention has been made in consideration of such conventional problems, and can detect two or more different input operation positions, and can detect each input operation position in a short time.
  • An object is to provide an apparatus.
  • a capacitive touch input device includes a plurality of drive electrodes wired along the first direction at equal intervals on the insulating panel, and orthogonal to the first direction on the insulating panel.
  • a plurality of drive electrode groups DV (n) composed of two or more drive electrodes adjacent in two directions are set along the second direction so that all the drive electrodes belong to at least one of the drive electrode groups DV (n).
  • the drive control is executed for all the drive electrode groups DV (n), in which the drive voltage is applied to the drive electrodes belonging to the drive electrode group DV (n) in synchronization with each drive electrode group DV (n).
  • the control unit and the drive control unit are the drive electrode group DV.
  • a capacitive touch input device that detects an input operation position of an input operation body in a first direction and a second direction on an insulating panel from a detection voltage level R (m, n) detected by a detection means,
  • One of the two or more drive electrodes belonging to the drive electrode group DV (n) and the drive electrode group DV (n ′) adjacent in the second direction is common to the drive electrodes wired between them, and the drive control unit drives
  • the input operation body is input at a position away from the drive electrode group DV (n) to at least the intermediate position of the drive electrode group DV (n ′) adjacent in the second direction.
  • the pitch between the drive electrodes wired at equal intervals in the second direction is set so that the detection voltage level R (m, n) changes in the detection electrode S (m) wired in the vicinity of the operating body. It is characterized by.
  • the detection electrodes S (m) are respectively controlled. Since changes in the detection voltage level R (m, n) and the detection voltage level R (m, n ′) appear, the amount of change in the detection voltage level R (m, n) and the detection voltage level R (m, n ′) All input operation positions along the second direction can be detected from the wiring positions along the second direction of the drive electrode group DV (n) and the drive electrode group DV (n ′).
  • the detection electrodes for detecting the detection voltage level R (m, n) The number of intersection positions with S (m) can be reduced, and the detection time of the input operation position is shortened.
  • the capacitive touch input device is characterized in that a plurality of drive electrode groups DV (n) set along the second direction are driven and controlled in an order different from the second direction.
  • the input operation position is detected from the voltage level R (m, n).
  • the drive control unit is formed by a microcomputer having a plurality of input / output ports respectively corresponding to the plurality of drive electrodes, and connects between the detection voltage generation circuit and each drive electrode. Connect the input / output port of the microcomputer corresponding to the drive electrode to each voltage output line, and the microcomputer uses the OFF mode with the input / output port as the output port and the ON mode with the input / output port as the input port or high impedance. And switching control between application and stop of application of the detection voltage to the drive electrode connected to the input / output port.
  • the potential of the drive electrode connected to the input / output port is stabilized at the potential of the output port, and no AC detection voltage is applied.
  • the input / output port is in the input port or high impedance state, no current flows from the detection voltage generation circuit to the input / output port, and an AC detection voltage is applied to the drive electrode.
  • the input operation position is detected from the change in capacitance at each intersection position of the drive electrode group DV (n) and the detection electrode S (m), two or more points on the insulating panel are detected.
  • Each input operation position can be detected even if input operations are performed simultaneously at different positions, and the drive control is performed for each of the drive electrode groups DV (n) smaller than the number of drive electrodes wired to the insulating panel. Since the operation position is detected, all input operation positions can be detected in a short time.
  • the drive electrode groups DV (n) set in a plurality along the second direction can be driven and controlled in an arbitrary order, and therefore periodically generated from the surrounding commercial AC power supply.
  • the drive control order can be adjusted so as not to be affected by the common mode noise, and the drive electrode group DV (n) can be driven and controlled according to the input operation speed.
  • the number of drive electrodes constituting the drive electrode group on the insulating panel can be changed according to the input operation position and the input operation speed with a simple configuration for switching the state of the input / output port of the microcomputer.
  • the drive order of the drive electrode group can be changed, and the input operation position can be detected more accurately and quickly.
  • FIG. 3 is a circuit diagram of a drive control unit 5.
  • FIG. It is a state diagram which shows the mode state of the input / output port p of the microcomputer 4 which drives and controls the drive electrode group DV (n). The relationship between the drive electrode group DV (n) to which the drive voltage is applied and the detection voltage level R (m, n) appearing on the detection electrode Sm is shown.
  • (A) shows the drive control of the drive electrode group DV (1).
  • (B) is the detected voltage level R (m, 2) when driving the drive electrode group DV (2) and (c) is the drive electrode group DV.
  • (A) shows the drive electrode group.
  • (C) is a waveform diagram showing the detected voltage level R (m, 3) when the drive electrode group DV (3) is driven and controlled.
  • the touch panel 1 includes 13 drive electrodes D1 to D13 each having a diamond pattern continuous along the X direction on the insulating panel 2, and a diamond pattern continuously along the Y direction.
  • the twelve detected electrodes S1 to S12 are wired so as to be insulated from each other.
  • the thirteen drive electrodes D1 to D13 are wired at equal pitches in the Y direction, and the twelve detection electrodes S1 to S12 are wired at equal pitches in the X direction, and the rhomboid pattern of one electrode is the rhombic pattern of the other electrode. Complementing the gaps in the pattern, the entire pattern appears as a staggered pattern.
  • the surface side of the drive electrodes D1 to D13 and the detection electrodes S1 to S12 wired in a grid pattern on the insulating panel 2 protects these electrodes, and an input operation body such as a finger directly touches these electrodes to cause an error. In order not to operate, it is covered with a transparent insulating sheet (not shown). That is, the touch panel 1 according to the present embodiment performs an input operation by touching or bringing the input operation body into contact with the transparent insulating sheet, and the drive electrode D and the input when the input operation body approaches through the transparent insulating sheet.
  • the increase in the capacitance between the operating bodies is read from the detection voltage level R (m, n) appearing on the detection electrode S (m) in the vicinity of the input operating body, and the input operation position is detected.
  • the pitch between the drive electrodes D1 to D13 is a pitch at which the input operation position can be detected regardless of which input operation is performed on the insulating panel 2. The details will be described later. .
  • each of the drive electrodes D1 to D13 is supplied to a detection voltage generation circuit 3 that outputs a detection voltage having a pulse height Vo as a rectangular wave AC signal via a damping resistor 6 that removes noise.
  • a detection voltage generation circuit 3 that outputs a detection voltage having a pulse height Vo as a rectangular wave AC signal via a damping resistor 6 that removes noise.
  • input / output ports P1 to P13 of the microcomputer 4 are connected to connection points of the drive electrodes D1 to D13 and the damping resistor 6 corresponding to the drive electrodes D1 to D13.
  • the potentials of the drive electrodes (D1, D5, D13 in the figure) to which the input / output port is connected are the output ports.
  • the rectangular wave AC signal output from the detection voltage generating circuit 3 is stable at its input / output port P. It is not applied to the drive electrode D (D1, D5, D13 in the figure) connected to.
  • the input port P is in a high impedance state.
  • the wave AC signal does not flow into the input / output port P (P2 to P4 in the figure), and the detection voltage by the rectangular wave AC signal is applied to the drive electrodes D (D2 to D4 in the figure) connected to the input / output port P.
  • the microcomputer 4 applies the detection voltage to the drive electrode D to which the input / output port P is connected only by setting any one or two or more input / output ports P to the output port or input port state in any order. Can be controlled.
  • the three drive electrodes D adjacent in the Y direction are grouped into the drive electrode group DV (n), and the drive electrode group DV (n) adjacent in the Y direction.
  • the drive electrode group DV (n ′) overlaps in the drive electrode D wired between them, and the overlapped drive electrode D constitutes any drive electrode group DV (n), DV (n ′).
  • six types of drive electrode groups DV (n) are set from the 13 drive electrodes D wired to the insulating panel 2.
  • the microcomputer 4 sets the input / output port P corresponding to the drive electrode group DV (n) in the order of the drive electrode group DV (n) along the Y direction to the 0N mode and sets the drive electrode group DV.
  • a rectangular wave AC signal synchronized with the three drive electrodes D constituting (n) is output, and a drive voltage having a pulse height Vo is applied.
  • the drive voltage can be applied to all the drive electrodes D wired on the insulating panel 2 by the drive control of applying the drive voltage for each drive electrode group DV (n) six times.
  • the twelve detection electrodes S (m) (m is an integer from 1 to 12) are connected to the multiplexer 7 whose connection with the voltage detection circuit 4a of the microcomputer 4 is switched under the control of the microcomputer 4.
  • the microcomputer 4 sequentially switches the connection with the twelve detection electrodes S (m) every drive control period of each drive electrode group DV (n), and detects the voltage of the microcomputer 4 by detecting the switched connection of the detection electrodes S (m). Connect to circuit 4a.
  • the voltage detection circuit 4a applies a drive voltage to the three drive electrodes D of the drive electrode group DV (n), thereby causing a capacitance between the detection electrodes S (m) intersecting the drive electrode group DV (n). pulse height of the rectangular wave AC signal appearing on the detection electrode S (m) through the C 0 (input voltage Vi) read. Since the capacitance C 0 is a substantially constant value, the input voltage Vi is a constant proportional to the drive voltage Vo unless the input operating body approaches and the stray capacitance of the drive electrode group DV (n) does not change. It does not change with voltage Vc.
  • the electrostatic charge between the drive electrode group DV (n) or the detection electrode S (m) and the input operation body A capacity
  • capacitance increases, a part of rectangular wave alternating current signal flows into an input operation body, and the input voltage Vi which appears in detection electrode S (m) falls.
  • the input voltage Vi decreases from the constant voltage Vc.
  • the voltage detection circuit 4a expresses the read input voltage Vi as a detection voltage level R (m, n) that is binarized by inverting the potential difference from the constant voltage Vc.
  • a detection voltage level R (m, n) of n rows and m columns is obtained from the voltage detection circuit 4a.
  • the detection voltage level R (m, n) is a change in potential appearing at the detection electrode S (m) that intersects the drive electrode group DV (n) while driving the drive electrode group DV (n). Since this represents a quantity, the detection voltage level R (m, n) increases when the input operating body approaches the intersection position of the drive electrode group DV (n) and the detection electrode S (m). Therefore, the microcomputer 4 compares the detection voltage level R (m, n) of n rows and m columns, and detects the vicinity of the intersection position where the maximum value is detected as the input operation position.
  • FIG. 4 shows that when the wiring position of the detection electrode S (m) is the input operation position in the X direction and the drive electrode group DV (1), DV (2), DV (3) is driven and controlled
  • FIG. 6 is a waveform diagram showing the relationship between the detected voltage level R (m, n) detected from m) and the input operation position in the Y direction (position in the Y direction on the detection electrode S (m)); ),
  • the detected voltage level R (m, 2) is the input operation position at the center of the drive electrode group DV (2) (the wiring position of the drive electrode D4).
  • the input operation position changes at a high value between the drive electrodes D1 and D3 constituting the drive electrode group DV (2).
  • the detected voltage level R (m, 2) decreases as the input operation position deviates from the drive electrode group DV (2) whose drive is controlled, but at least the input operation position is adjacent to the drive electrode group DV (2).
  • the detection voltage level R (m, 2) is a constant value (b1) (b4) even when the drive electrode groups DV (1) and DV (3) are separated to the intermediate position (Y 1 ) (Y 4 ).
  • the distance from the drive electrode group DV (2) to the intermediate position (Y 1 ) (Y 4 ), that is, the pitch in the Y direction between the drive electrodes D is set.
  • the input operation position here is a position in the Y direction of the input operation body in an input operation in which the input operation body is brought into contact with or close to the transparent insulating sheet. Therefore, the input operation body is moved to the intermediate position (Y 1 ) ( In a state of being close to the upper side of Y 4 ), at least the detection voltage level R (m, 2) is detected as a constant value (b1) (b4).
  • each drive electrode D1 to D13 has the same shape and is wired at an equal pitch, the drive electrode group DV (1) is driven and controlled, and the drive electrode group DV (1) adjacent to the drive electrode group DV (1) is controlled. Even when the intermediate position of 2) (wiring position of the drive electrode D4) is the input operation position, the detection voltage level R (m, 1) is detected at a constant value, and similarly, the drive electrode group DV (3) is driven and detected even when the intermediate position (wiring position of the drive electrode D4) of the drive electrode group DV (2) adjacent to the drive electrode group DV (3) is the input operation position. The voltage level R (m, 3) is detected at a constant value.
  • At least two types of drive electrode groups DV (n) DV (n ′) adjacent to each other around the input operation position (position in the Y direction on the detection electrode S (m)) are in any of the Y directions. ) Is detected at a constant value that does not become 0, and the detected voltage level R (m, n), R (m, n ′) detected when driving is controlled at any input operation position in the Y direction. It can be detected even if it exists.
  • detection voltage level R (m, 1) indicates the input position of the drive electrode group DV (1) in a1
  • detection voltage level R (m, since 2) is b1 which decreases as the input operation position away from the drive electrode group DV (2)
  • the input operation position Y 1 in the drive electrode group DV (1) is detected.
  • the detected voltage level R (m, 1) when the input operation position is Y 2 is the drive electrode group DV.
  • the input voltage Vi read from the detection electrode S (m) is a constant voltage Vc.
  • the detection voltage level R (m, n) at the position (m, n) is “0”.
  • the detected voltage level R (m, n) at the intersection position (m, n) in the vicinity of the input operation position is maximum as compared with the surrounding area, so that local maximum values are detected in the X and Y directions in the figure. It is estimated that the vicinity of the intersection position (m, n) is the input operation position, and the detected voltage level R (m, n) at the surrounding intersection position adjacent to the intersection position (m, n) is input operation position.
  • the detected voltage level R (m, n) may be a constant value due to common mode noise, detection error, etc., regardless of the input operation body, in order to distinguish it from the change in the input voltage Vi due to the input operation.
  • the maximum value is a detection voltage level R (m, n) less than a certain threshold value (less than “20” in FIG. 5)
  • a certain threshold value less than “20” in FIG. 5
  • the maximum value exceeding the predetermined threshold is only “90” at the intersection position (7, 4) of the detection electrode S (7) and the drive electrode group DV (4). It is estimated that this is an input operation to one place in the vicinity of the intersection position (7, 4), and the detected voltage level R (6-8, 3-5) around the intersection position (7, 4) is valid data (slashed line in the figure). Display).
  • the detection of the input operation position x in the X direction is obtained from the weighted average value in the X direction of valid data. That is, for each wiring position on the insulating panel 2 of the twelve detection electrodes S (m), “16” is assigned to the initial value and “32” is assigned to the pitch in the X direction and weighted. The reason why the weight of the detection electrode S (1) is set to “16” is that the influence of the input operation body is received only from one side in the X direction.
  • the effective data is summed in the Y direction for each detection electrode S (6-8) to calculate Sum (6) “110”, Sum (7) “177”, Sum (8) “88”, and The total “375” is calculated, and the total value Sum (6-8) for each detection electrode S (6-8) is multiplied by the weight assigned to the wiring position of the detection electrode S (6-8).
  • the sum “77296” is calculated.
  • the input operation position in the X direction obtained from the weighted average is 206.1 of “77296” / “375”, and the position of 206.1 weighted in the X direction (detection electrode S (6) and detection electrode S (7) Is detected as the input operation position.
  • the detection of the input operation position y in the Y direction is obtained from the weighted average value in the Y direction of valid data.
  • “16” is assigned to the interval between the six types of drive electrode groups DV (n), and is incremented by “16” for each intermediate position of each drive electrode group DV (n).
  • the effective data is summed in the X direction for each drive electrode group DV (3-5) to calculate Sum (3) “80”, Sum (4) “194”, Sum (5) “101”, The total “375” is calculated, and the total value Sum (3-5) for each drive electrode group DV (3-5) is given to the intermediate position in the Y direction of the drive electrode group DV (3-5).
  • the input operation position in the Y direction obtained from the weighted average is 64.9 of “22436” / “375”, and the position of 64.9 weighted in the Y direction (drive electrode group DV (4) and drive electrode group DV ( 5)) is detected as the input operation position.
  • the drive voltage can be applied to the entire 13 drive electrodes D wired to the insulating panel 2 only by controlling the drive of the 6 types of drive electrode groups DV (n).
  • the input operation position between the drive electrodes D can be detected within the number of times of control in which the drive electrodes D are bundled every two and the drive voltage is applied.
  • drive control is performed in the order of the drive electrode group DV (n) along the Y direction.
  • the drive electrode group DV (n) to be driven and each drive electrode group DV (n) are drive controlled.
  • the detection electrodes S (m) can be connected in any order under the control of the microcomputer 4 during the period.
  • the input operation position is detected from the detection voltage level R (m, n) of 6 rows and 12 columns detected by one driving scan for driving and controlling the six types of driving electrode groups DV (n).
  • the input operation position may be detected using a plurality of detection voltage levels R (m, n) obtained for each intersection position (m, n) by repeating a plurality of driving scans.
  • the order of the drive electrode group DV (n) is changed for each drive scan, and the average value of the detected voltage level R (m, n) detected for each drive scan is calculated for the intersection position (m, n).
  • the detection voltage level R (m, n) may be used to eliminate the influence of common mode noise that periodically occurs from the detection voltage level R (m, n) for detecting the input operation position.
  • the input / output port P of the microcomputer 4 has been described as the input / output port P that can switch the mode between the output port and the input port.
  • the mode may be a so-called tri-state port.
  • the same function can be realized in the high-impedance mode instead of the input port mode.
  • the detection voltage generation circuit 3 is described as outputting a rectangular wave AC signal.
  • the AC signal is not limited to a rectangular wave, and may be an AC signal of another aspect such as a sine wave. There may be.
  • the present invention is suitable for a capacitive touch input device that detects an input operation position by a cross-point method.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

 隣り合う駆動電極群DV(n)と駆動電極群DV(n')にそれぞれ属する2以上の駆動電極の一つが、その間に配線される駆動電極で共通し、駆動制御部が駆動電極群DV(n)を駆動制御した際に、隣り合う駆動電極群DV(n')の中間位置まで入力操作体が離れた位置で、入力操作体の近傍に配線される検出電極S(m)に検出電圧レベルR(m、n)の変化が表れるように、等間隔で配線される駆動電極間のピッチを設定することにより、2点以上の異なる入力操作位置が検出可能で、各入力操作位置を短時間に検出する。

Description

静電容量式タッチ入力装置
 本発明は、入力操作体が接近することにより入力操作体との静電容量が増大する検出電極の絶縁パネル上の配置位置から、入力操作位置を検出する電容量式タッチパネル、あるいは、静電容量式タッチパッドなどのような静電容量式タッチ入力装置に関し、更に詳しくは、検出電圧を印加する駆動電極と駆動電極に直交する検出電極との交差位置毎に入力操作体が接近することによる静電容量の変化を検出するクロスポイント方式で入力操作位置を検出する静電容量式タッチ入力装置に関する。
 指などの入力操作体による入力位置を検出する静電容量式タッチ入力装置の入力検出方式は、入力操作体が接近することにより浮遊容量が増大する検出電極を検出し、その検出電極の配置位置から入力操作位置を検出する自己容量方式(1線式)と、駆動電極へ所定電圧レベルの検出電圧を印加し、入力操作体が接近することにより検出電圧レベルが低下する検出電極を検出し、その検出電極の配置位置から入力操作位置を検出する相互容量方式(2線式)とに分けられる。前者の方式は、駆動電極を配線しないので、構造が簡略化されるが、検出する浮遊容量が10乃至20pFと検出が困難な微小レベルであるので、一般には後者の相互容量方式が採用されている。
 相互容量方式は、更に、複数のX方向電極と複数のY方向電極を互いに絶縁して絶縁パネル上に配置し、その一方を検出電圧を印加する駆動電極、他方を検出電圧レベルを検出する検出電極とする検出動作を交互に行い、検出電圧レベルが低下した検出電極の位置からXY方向での入力位置を検出するプロジェクティブ方式と、検出電圧を印加する複数の駆動電極と検出電圧レベルを検出する複数の検出電極を互いに直交させて配線し、駆動電極と検出電圧が交差する交差位置毎に、検出電圧レベルが低下した検出電極の交差位置から入力位置を検出するクロスポイント方式に分けられる。プロジェクティブ方式は、X方向電極若しくはY方向電極の複数の駆動電極全体に同時に検出電圧を印加し、他側の全ての検出電極から、検出電圧レベルが低下した検出電極を検出することによって、短時間に入力位置を検出できるが、入力操作面の異なる2つの入力位置を同時に入力操作した場合には、2つの入力位置のXY方向に更に二つの入力位置と判定される虚像が生じ、2点以上の同時入力操作では入力位置を検出できない。
 逆に、クロスポイント方式によれば、全ての交差位置について入力操作体の接近による検出電圧レベルを検出するので、2点以上の異なる位置が同時に入力操作されても、各入力位置を検出できるが、複数の駆動電極毎に検出電圧を印加し、検出電圧を印加した駆動電極毎に直交する全ての検出電極の検出電圧レベルを検出するので、入力位置の検出が遅れる。特に、入力操作面を拡大させた静電容量式タッチパネルでは、検出する交差位置数も比例して増大するので、入力操作の応答速度が低下するという問題が顕在化する。
 そこで、クロスポイント方式で入力位置を検出する従来の静電容量式タッチパネルでは、検出電圧を印加する駆動電極の一部を間引く飛び越し駆動走査を行い、入力操作を検出した場合に、入力操作位置近傍の全ての駆動電極を詳細に駆動走査する静電容量式タッチパネル(特許文献1)や、駆動走査方向で隣り合う複数本の駆動電極を束ねて、束ねた駆動電極群毎に検出電圧を印加する静電容量式タッチパネル(特許文献2)が提案されている。
 図6は、特許文献2に開示された静電容量式タッチパネル100により入力操作位置を検出する方法を示す説明図であり、この静電容量式タッチパネル100では、同中の紙面に直交する方向に配線される複数の駆動電極Dn(nは1以上の自然数)のうち、駆動走査方向(図中左右方向)で隣り合う2本の駆動電極D2n-1、D2nを駆動電極群として、駆動電極群DV(n)毎に交流の駆動電圧を印加する。図6の(a)(b)(c)は、それぞれ各駆動電極群DV(n)に駆動電圧を印加した際に、駆動走査方向に沿った入力操作体の入力操作位置と、入力操作位置近傍で駆動走査方向に沿って配線される検出電極S(m)に表れる検出電圧レベルR(m、n)との関係を、検出電圧レベルR(m、n)の極性を反転させて示している。
 同図から明らかなように、駆動電圧を印加した駆動電極群DV(n)の近傍に入力操作体が接近すると、駆動電圧が印加された駆動電極と入力操作体間の静電容量が増加し、駆動電圧信号の一部が入力操作体へ流れ、駆動電極と一定の静電容量で容量結合する検出電極において駆動電圧を検出する検出電圧レベルR(m、n)が低下する(図示では極性を逆転させているので、上昇する)。一方、駆動電圧を印加した駆動電極群DV(n)から離れた位置に入力操作体があると、駆動電圧が印加された駆動電極と検出電極間の静電容量に対して、駆動電極と入力操作体間の静電容量は無視できるほど低下するので、検出電極において検出される検出電圧レベルR(m、n)が変化しない。
 従って、各駆動電極群DV(n)に駆動電圧を印加した際に、検出電極S(m)に表れる検出電圧レベルR(m、n)から、入力操作体の入力操作位置を検出できる。例えば、駆動走査方向に沿った図中yの位置が入力操作位置であるとすると、駆動電極群DV(n)(nは1から3)に駆動電圧を印加した際に、検出電極S(m)から検出される検出電圧レベルR(m、n)は、それぞれその変化量に応じて、a、b、cとなる。検出電圧レベルR(m、n)は、駆動電圧を印加した駆動電極群DV(n)の配線位置から離れるほど小さくなるので、aとbとの比から駆動電極群DV(1)と駆動電極群DV(2)の配線位置間の入力操作位置yが得られる。
 このように、特許文献1や特許文献2に示される従来の静電容量式タッチ入力装置によれば、実際に配線される検出電極数に比べて少ない回数で駆動電圧を印加するので、入力操作位置の検出時間が短縮される。
特開平7-129308号公報 特開2009-258903号公報
 上述の特許文献1に開示された静電容量式タッチ入力装置では、特定の入力位置について詳細に駆動走査を行っている間に、他の位置へ入力操作があった場合には、その入力位置を検出できず、2点以上の入力位置が同時に入力操作された場合には、飛び越し走査の後に、その入力位置毎に重ねて詳細な駆動走査を行う必要があり、充分に入力位置の検出時間を短縮させることができない。
 また、特許文献2に示される静電容量式タッチ入力装置では、駆動電極群DV(n)を構成する複数の駆動電極に同時に検出電圧を印加するので、駆動電圧を印加した駆動電極間では、図6に示すように、いずれの位置が入力操作位置であっても、検出電極S(m)に表れる検出電圧レベルR(m、n)の変化量はほぼ一定値となり、駆動電極間の入力操作位置を正確に検出できない。特に検出電圧レベルR(m、n)は、駆動電極群DV(n)の中央位置をピークとして中央位置に対称に表れるので、入力操作位置が駆動電極群DV(n)の中央位置から等距離離れたy、yである場合には、検出電圧レベルR(m、n)の変化量を表す(a、b、c)と(a、b、c)とがそれぞれ等しく、入力操作位置がyとyのいずれであるのかを判別できない。
 従って、入力操作位置が駆動電圧を印加する駆動電極間にある場合には、再びその駆動電極群DV(n)を構成する各駆動電極毎に駆動電圧を印加して、入力操作位置を検出する必要があり、特許文献1に記載の発明と同様に、充分に入力位置の検出時間を短縮させることができない。
 本発明は、このような従来の問題点を考慮してなされたものであり、2点以上の異なる入力操作位置が検出可能で、各入力操作位置を短時間に検出する静電容量式タッチ入力装置を提供することを目的とする。
 上述の目的を達成するため、請求項1の静電容量式タッチ入力装置は、絶縁パネルに等間隔で第1方向に沿って配線される複数の駆動電極と、絶縁パネルに第1方向と直交する第2方向に沿って配線され、それぞれ前記複数の全ての駆動電極と絶縁間隔を隔てて交差する複数の検出電極S(m)と、交流の検出電圧を発生する検出電圧発生回路と、第2方向で隣り合う2以上の駆動電極からなる駆動電極群DV(n)を、全ての駆動電極が少なくともいずれかの駆動電極群DV(n)に属するように、第2方向に沿って複数設定し、各駆動電極群DV(n)毎に駆動電極群DV(n)に属する各駆動電極へ検出電圧を同期させて印加する駆動制御を、全ての駆動電極群DV(n)について実行する駆動制御部と、駆動制御部が駆動電極群DV(n)を駆動制御した際に、駆動電極群DV(n)と入力操作体との静電容量の変化に応じて、駆動電極群DV(n)と交差する検出電極S(m)に表れる検出電圧レベルR(m、n)を検出する静電容量検出手段とを備え、全ての駆動電極群DV(n)を駆動制御する毎に、全ての検出電極S(m)について、それぞれ静電容量検出手段が検出した検出電圧レベルR(m、n)から、絶縁パネル上の第1方向と第2方向の入力操作体の入力操作位置を検出する静電容量式タッチ入力装置であって、
 第2方向で隣り合う駆動電極群DV(n)と駆動電極群DV(n’)にそれぞれ属する2以上の駆動電極の一つが、その間に配線される駆動電極で共通し、駆動制御部が駆動電極群DV(n)を駆動制御した際に、駆動電極群DV(n)より少なくとも第2方向で隣り合う駆動電極群DV(n’)の中間位置まで入力操作体が離れた位置で、入力操作体の近傍に配線される検出電極S(m)に検出電圧レベルR(m、n)の変化が表れるように、第2方向に等間隔で配線される駆動電極間のピッチを設定することを特徴とする。
 第2方向に沿った全ての入力操作位置で、第2方向で隣り合う駆動電極群DV(n)と駆動電極群DV(n’)を駆動制御した際に、それぞれ検出電極S(m)に検出電圧レベルR(m、n)と検出電圧レベルR(m、n’)の変化が表れるので、検出電圧レベルR(m、n)と検出電圧レベルR(m、n’)の変化量と、駆動電極群DV(n)と駆動電極群DV(n’)の第2方向に沿った配線位置とから、第2方向に沿った全ての入力操作位置を検出できる。
 駆動電圧を印加して駆動制御する駆動電極群DV(n)の数nは、絶縁パネルに配線される駆動電極の数以下であるので、検出電圧レベルR(m、n)を検出する検出電極S(m)との交差位置数を減少させることができ、入力操作位置の検出時間が短縮される。
 請求項2の静電容量式タッチ入力装置は、第2方向に沿って複数設定される各駆動電極群DV(n)を、第2方向と異なる順に駆動制御することを特徴とする。
 各駆動電極群DV(n)の駆動制御順にかかわらず、全ての駆動電極群DV(n)を駆動制御する一走査周期内で、各検出電極S(m)との交差位置毎に検出する検出電圧レベルR(m、n)から入力操作位置が検出される。
 請求項3の静電容量式タッチ入力装置は、駆動制御部は、複数の各駆動電極にそれぞれ対応する複数の入出力ポートを有するマイコンで形成され、検出電圧発生回路と各駆動電極間を接続する電圧出力線毎に、その駆動電極に対応するマイコンの入出力ポートを接続し、マイコンは、入出力ポートを出力ポートとするOFFモードと、入出力ポートを入力ポートもしくはハイインピーダンスとするONモードとの間で切り換え、その入出力ポートが接続する駆動電極への検出電圧の印加と印加停止を切り換え制御することを特徴とする。
 入出力ポートが出力ポートの状態では、その入出力ポートが接続する駆動電極の電位が出力ポートの電位で安定し、交流の検出電圧が印加されない。入出力ポートが入力ポートもしくはハイインピーダンスの状態では、検出電圧発生回路から入出力ポートに電流が流れず、駆動電極に交流の検出電圧が印加される。
 請求項1の発明によれば、駆動電極群DV(n)と検出電極S(m)との交差位置毎の静電容量の変化から入力操作位置を検出するので、絶縁パネル上の2点以上の異なる位置を同時に入力操作しても、各入力操作位置を検出でき、また、絶縁パネルに配線される駆動電極の数より少ない数の駆動電極群DV(n)毎に駆動制御して、入力操作位置を検出するので、短時間に全ての入力操作位置を検出できる。
 請求項2の発明によれば、第2方向に沿って複数設定される各駆動電極群DV(n)を、任意の順に駆動制御することができるので、周囲の商用交流電源から周期的に発生するコモンモードノイズの影響を受けないように駆動制御順を調整したり、入力操作速度に応じて駆動電極群DV(n)を飛び越し駆動制御することができる。
 請求項3の発明よれば、マイコンの入出力ポートの状態を切り換える簡単な構成で、入力操作位置や入力操作速度に応じて、絶縁パネル上の駆動電極群を構成する駆動電極数を変更したり、駆動電極群の駆動順序を変更でき、より正確に迅速に入力操作位置を検出できる。
本発明の一実施の形態に係る静電容量式タッチパネル1の駆動電極群DV(n)と検出電極Smに表れる検出電圧レベルR(m、n)との関係を示す説明図である。 駆動制御部5の回路図である。 駆動電極群DV(n)を駆動制御するマイコン4の入出力ポートpのモード状態を示す状態図である。 駆動電圧を印加した駆動電極群DV(n)と検出電極Smに表れる検出電圧レベルR(m、n)との関係を示し、(a)は、駆動電極群DV(1)を駆動制御した際の検出電圧レベルR(m、1)を、(b)は、駆動電極群DV(2)を駆動制御した際の検出電圧レベルR(m、2)を、(c)は、駆動電極群DV(3)を駆動制御した際の検出電圧レベルR(m、3)を、それぞれを示す波形図である。 検出電圧レベルR(m、n)から入力操作位置を検出する方法を示す説明図である。 従来の静電容量式タッチパネル100の駆動電圧を印加した駆動電極群DV(n)と検出電極Smに表れる検出電圧レベルR(m、n)との関係を示し、(a)は、駆動電極群DV(1)を駆動制御した際の検出電圧レベルR(m、1)を、(b)は、駆動電極群DV(2)を駆動制御した際の検出電圧レベルR(m、2)を、(c)は、駆動電極群DV(3)を駆動制御した際の検出電圧レベルR(m、3)を、それぞれを示す波形図である。
 以下、本発明の一実施の形態に係る静電容量式タッチパネル(以下、タッチパネルという)1を、図1乃至図5を用いて説明する。図1に示すように、このタッチパネル1は、絶縁パネル2上に、X方向に沿って菱形のパターンを連続させた13本の駆動電極D1~D13と、Y方向に沿って菱形のパターンを連続させた12本の検出電極S1~S12がそれぞれ互いに絶縁して配線されている。13本の駆動電極D1~D13は、Y方向に等ピッチで、12本の検出電極S1~S12は、X方向に等ピッチで配線され、一方の電極の菱形のパターンが他方の電極の菱形のパターンの隙間を相補し、全体で千鳥状のパターンとなって表れている。
 絶縁パネル2上に格子状に配線された駆動電極D1~D13及び検出電極S1~S12の表面側は、これらの電極を保護するとともに、指等の入力操作体が直接これらの電極に触れて誤作動しないように、図示しない透明絶縁シートで覆われている。すなわち、本実施の形態に係るタッチパネル1は、入力操作体を透明絶縁シートに触れ、若しくは近接させて入力操作を行い、透明絶縁シートを介して入力操作体が接近することによる駆動電極Dと入力操作体間の静電容量の増大を、入力操作体近傍の検出電極S(m)に表れる検出電圧レベルR(m、n)から読みとり、入力操作位置を検出するものである。この検出原理のもとに、駆動電極D1~D13間のピッチは、絶縁パネル2上のいずれに入力操作があっても、その入力操作位置が検出できるピッチとするが、その詳細は、後述する。
 図2に示すように、各駆動電極D1~D13は、それぞれノイズを除去するダンピング抵抗6を介して、パルス高さがVoの検出電圧を矩形波交流信号にして出力する検出電圧発生回路3に接続している。また、各駆動電極D1~D13とダンピング抵抗6の接続点には、マイコン4の入出力ポートP1~P13が各駆動電極D1~D13に対応して接続している。
 入出力ポートPが、その入出力ポートPを出力ポートの状態とするOFFモードである場合には、その入出力ポートが接続する駆動電極(図中のD1、D5、D13)の電位が出力ポートの電位(例えば「L」)レベルであれば0V、「H」レベルであればVCC)で安定し、検出電圧発生回路3から出力される矩形波交流信号の検出電圧は、その入出力ポートPに接続する駆動電極D(図中のD1、D5、D13)に印加されない。また、入出力ポートPが、その入出力ポートPを入力ポートの状態とするONモードである場合には、その入力ポートPがハイインピーダンス状態であるので、検出電圧発生回路3から出力される矩形波交流信号は、入出力ポートP(図中のP2~P4)へ流れ込まず、その入出力ポートPに接続する駆動電極D(図中のD2~D4)に、矩形波交流信号による検出電圧が印加される。つまり、マイコン4は、任意の順に任意の1又は2以上の入出力ポートPを出力ポートか入力ポートの状態とするだけで、その入出力ポートPが接続する駆動電極Dへの検出電圧を印加を制御することができる。
 本実施の形態では、図1に示すように、Y方向で隣り合う3本の駆動電極D毎に駆動電極群DV(n)にまとめられ、Y方向で隣り合う駆動電極群DV(n)と駆動電極群DV(n’)は、その間に配線される駆動電極Dにおいて重複し、重複する駆動電極Dがいずれの駆動電極群DV(n)、DV(n’)をも構成している。このようにして、絶縁パネル2に配線される13本の駆動電極Dから、6種類の駆動電極群DV(n)(nは1から6までの整数)が設定される。
 マイコン4は、図3に示すように、Y方向に沿った駆動電極群DV(n)の順に、駆動電極群DV(n)に対応する入出力ポートPを0Nモードとして、その駆動電極群DV(n)を構成する3本の駆動電極Dに同期する矩形波交流信号を出力し、パルス高さがVoの駆動電圧を印加する。これにより、駆動電極群DV(n)毎に駆動電圧を印加する6回の駆動制御で、絶縁パネル2上に配線された全ての駆動電極Dへ駆動電圧を印加することができる。
 12本の検出電極S(m)(mは1から12までの整数)は、マイコン4からの制御によりマイコン4の電圧検出回路4aとの接続が切り換えられるマルチプレクサ7に接続している。マイコン4は、各駆動電極群DV(n)の駆動制御期間毎に、12本の検出電極S(m)との接続を順に切り換え、切り替え接続した検出電極S(m)をマイコン4の電圧検出回路4aへ接続する。
 電圧検出回路4aは、駆動電極群DV(n)の3本の駆動電極Dに駆動電圧を印加することにより、駆動電極群DV(n)と交差する検出電極S(m)間の静電容量Cを介して検出電極S(m)に表れる矩形波交流信号のパルス高さ(入力電圧Vi)を読みとる。この静電容量Cはほぼ一定値であるので、入力操作体が接近せずに駆動電極群DV(n)の浮遊容量に変動がなければ、入力電圧Viは、駆動電圧Voに比例する一定電圧Vcで変化しない。一方、入力操作体が駆動制御された駆動電極群DV(n)若しくは検出電極S(m)に接近すると、駆動電極群DV(n)若しくは検出電極S(m)と入力操作体間の静電容量が増大し、矩形波交流信号の一部が入力操作体へ流れ、検出電極S(m)に表れる入力電圧Viは低下する。入力操作体とこれらの駆動電極群DV(n)若しくは検出電極S(m)との距離が接近するほど、入力電圧Viは、一定電圧Vcから低下するので、マイコン4がこの電位差から入力操作位置を算出するように、電圧検出回路4aは、読みとった入力電圧Viを、一定電圧Vcとの電位差を反転させて二値化した検出電圧レベルR(m、n)で表す。
 マイコン4は、各駆動電極群DV(n)を駆動制御し、駆動制御した駆動電極群DV(n)毎に交差する検出電極S(m)の接続を切り替え制御するので、これらの一走査周期で電圧検出回路4aから、図1に示すように、n行m列の検出電圧レベルR(m、n)が得られる。ここで、検出電圧レベルR(m、n)は、駆動電極群DV(n)を駆動制御している間に駆動電極群DV(n)に交差する検出電極S(m)に表れる電位の変化量を表すので、入力操作体が駆動電極群DV(n)と検出電極S(m)の交差位置に接近すると、検出電圧レベルR(m、n)が増大する。従って、マイコン4は、n行m列の検出電圧レベルR(m、n)を比較し、極大値が検出された交差位置の近傍を入力操作位置として検出する。
 図4は、検出電極S(m)の配線位置をX方向の入力操作位置とし、駆動電極群DV(1)、DV(2)、DV(3)を駆動制御した場合に、検出電極S(m)から検出される検出電圧レベルR(m、n)とY方向の入力操作位置(検出電極S(m)上のY方向の位置)との関係を示す波形図であり、同図(b)に示すように、駆動電極群DV(2)を駆動制御した場合の検出電圧レベルR(m、2)は、入力操作位置が駆動電極群DV(2)の中央(駆動電極D4の配線位置)である場合に最も高く、入力操作位置が駆動電極群DV(2)を構成する駆動電極D1とD3間で高い値で推移する。上述の通り、入力操作位置が駆動制御される駆動電極群DV(2)からはずれるほど検出電圧レベルR(m、2)は減少するが、少なくとも入力操作位置が駆動電極群DV(2)に隣り合う駆動電極群DV(1)、DV(3)の中間位置(Y)(Y)まで離れている場合にも、検出電圧レベルR(m、2)が一定値(b1)(b4)として検出されるように、駆動電極群DV(2)から中間位置(Y)(Y)までの距離、すなわち、駆動電極D間のY方向のピッチを設定する。ここでの入力操作位置とは、入力操作体を透明絶縁シートに触れ、若しくは近接させる入力操作での入力操作体のY方向の位置であり、従って、入力操作体を中間位置(Y)(Y)の上方に近接させた状態で、少なくとも検出電圧レベルR(m、2)が一定値(b1)(b4)として検出される。
 各駆動電極D1~D13は、同一形状で互いが等ピッチで配線されているので、駆動電極群DV(1)を駆動制御し、その駆動電極群DV(1)に隣り合う駆動電極群DV(2)の中間位置(駆動電極D4の配線位置)が入力操作位置である場合であっても、検出電圧レベルR(m、1)が一定値で検出され、また、同様に、駆動電極群DV(3)を駆動制御し、その駆動電極群DV(3)に隣り合う駆動電極群DV(2)の中間位置(駆動電極D4の配線位置)が入力操作位置である場合であっても、検出電圧レベルR(m、3)が一定値で検出される。その結果、入力操作位置(検出電極S(m)上のY方向の位置)がY方向のいずれにあっても、その周囲で隣り合う少なくとも2種類の駆動電極群DV(n)DV(n’)を駆動制御した際に検出される各検出電圧レベルR(m、n)、R(m、n’)が0とならない一定値で検出され、この値からY方向のいずれの入力操作位置であっても検出できる。
 例えば、図4において、入力操作位置がYである場合に、検出電圧レベルR(m、1)が駆動電極群DV(1)内の入力操作位置を示すa1、検出電圧レベルR(m、2)が駆動電極群DV(2)から入力操作位置が離れるほど減少するb1であることから、駆動電極群DV(1)内の入力操作位置Yが検出される。
 また、同様に駆動電極群DV(2)内の入力操作位置Y、Yであっても、入力操作位置がYである場合の検出電圧レベルR(m、1)が駆動電極群DV(1)から入力操作位置が離れるほど減少するa2であること、及び入力操作位置がYである場合の検出電圧レベルR(m、3)が駆動電極群DV(3)から入力操作位置が離れるほど減少するc3であることから、駆動電極群DV(2)内の入力操作位置YとYが正確に検出される。
 以下、上述のタッチパネル1により入力操作体の入力操作位置を検出する一例を説明する。6種類の各駆動電極群DV(n)を駆動制御している間に、12本の各検出電極S(m)から読みとった入力電圧Viをもとに、図5に示すように、6行12列の検出電圧レベルR(m、n)が検出されたものとする。ここで、説明を容易にするため、電圧検出回路4aにより二値化された検出電圧レベルR(m、n)は、10進値で示している。
 入力操作体との静電容量が無視できるほど入力操作位置から離れた交差位置(m、n)では、検出電極S(m)から読みとった入力電圧Viは、一定電圧Vcであるので、その交差位置(m、n)での検出電圧レベルR(m、n)は「0」となる。一方、入力操作位置近傍の交差位置(m、n)での検出電圧レベルR(m、n)は、その周囲に比べて最大となるので、図中X方向とY方向で極大値が検出された交差位置(m、n)の近傍が入力操作位置であると推定し、その交差位置(m、n)に隣接する周囲の交差位置での検出電圧レベルR(m、n)を入力操作位置の検出に利用する有効データとする。
 しかしながら、入力操作体と無関係に、コモンモードノイズや検出誤差などにより、検出電圧レベルR(m、n)が一定値となる場合があるので、入力操作による入力電圧Viの変化と識別するため、極大値が一定の閾値未満(図5では「20」未満)の検出電圧レベルR(m、n)である場合には無視し、以下の入力操作位置の検出を行わない。また、閾値以上の極大値が複数検出された場合には、それぞれの交差位置の近傍に同時に入力操作があったものと推定し、各交差位置について入力操作位置の検出を繰り返して行う。
 図5では、極大値のうち、所定の閾値を越えた極大値は、検出電極S(7)と駆動電極群DV(4)の交差位置(7,4)での「90」のみであるので、交差位置(7,4)近傍の一箇所への入力操作と推定し、その交差位置(7,4)周囲の検出電圧レベルR(6-8、3-5)を有効データ(図中斜線で表示)とする。
 X方向の入力操作位置xの検出は、有効データのX方向の加重平均値から求める。すなわち、12本の検出電極S(m)の絶縁パネル2上の配線位置毎に、初期値に「16」、X方向のピッチに「32」を割り当てて重み付けする。検出電極S(1)の重み付けを「16」とするのは、入力操作体の影響をX方向の片側からのみ受けるからである。続いて、有効データを検出電極S(6-8)毎にY方向に合計し、Sum(6)「110」、Sum(7)「177」、Sum(8)「88」を算出し、その総和「375」を算定すると共に、検出電極S(6-8)毎の合計値Sum(6-8)に、その検出電極S(6-8)の配線位置に付与された重み付けを乗じて、その総和「77296」を算出する。加重平均から求めるX方向の入力操作位置は、「77296」/「375」の206.1であり、X方向について重み付けした206.1の位置(検出電極S(6)と検出電極S(7)の間)が入力操作位置として検出される。
 同様に、Y方向の入力操作位置yの検出は、有効データのY方向の加重平均値から求める。Y方向の位置の重み付けは、6種類の各駆動電極群DV(n)間の間隔に「16」を割り当て、各駆動電極群DV(n)の中間位置毎に「16」づつ繰り上げる。続いて、有効データを駆動電極群DV(3-5)毎にX方向に合計し、Sum(3)「80」、Sum(4)「194」、Sum(5)「101」を算出し、その総和「375」を算定すると共に、駆動電極群DV(3-5)毎の合計値Sum(3-5)に、その駆動電極群DV(3-5)のY方向中間位置に付与された重み付けを乗じて、その総和「24336」を算出する。加重平均から求めるY方向の入力操作位置は、「22436」/「375」の64.9であり、Y方向について重み付けした64.9の位置(駆動電極群DV(4)と駆動電極群DV(5)の間)が入力操作位置として検出される。
 本実施の形態によれば、6種類の駆動電極群DV(n)を駆動制御するだけで、絶縁パネル2に配線した13本の駆動電極Dの全体に駆動電圧を印加することができ、少なくとも2本毎に駆動電極Dを束ねて駆動電圧を印加する制御回数以下で、駆動電極D間の入力操作位置を検出できる。
 上記実施の形態では、Y方向に沿った駆動電極群DV(n)の順に駆動制御したが、駆動制御する駆動電極群DV(n)と、各駆動電極群DV(n)を駆動制御している間の各検出電極S(m)の接続は、マイコン4による制御で任意の順とすることができる。
 また、上述のタッチパネル1では、6種類の駆動電極群DV(n)を駆動制御する一駆動走査で検出される6行12列の検出電圧レベルR(m、n)から入力操作位置を検出しているが、複数回の駆動走査を繰り返し、各交差位置(m、n)について得られる複数の検出電圧レベルR(m、n)を用いて、入力操作位置を検出してもよい。
 例えば、駆動電極群DV(n)の順を、各駆動走査毎に変えて各駆動走査毎に検出される検出電圧レベルR(m、n)の平均値を、交差位置(m、n)についての検出電圧レベルR(m、n)とし、入力操作位置を検出する検出電圧レベルR(m、n)から周期的に発生するコモンモードノイズの影響を除くようにしてもよい。
 上記実施の形態では、マイコン4の入出力ポートPについて、出力ポートと入力ポートとの間でモードを切り換えることができる入出力ポートPとして説明したが、例えば、更に、入出力ポートPを高インピーダンスモードとする、いわゆるトライステートポートであってもよく、この場合は、入力ポートとするモードに代えて、高インピーダンスモードとしても同様の機能を実現できる。
 また、上記実施の形態では、検出電圧発生回路3が矩形波交流信号を出力するものとして説明したが、交流信号は矩形波に限定されず、例えば、正弦波など、他の態様の交流信号であってもよい。
 本発明は、クロスポイント方式で入力操作位置を検出する静電容量式タッチ入力装置に適している。
 1     静電容量式タッチパネル
 2     絶縁パネル
 3     検出電圧発生回路
 4     マイコン
 4a    電圧検出回路(静電容量検出手段)
 5     駆動制御部
 D     駆動電極
 DV(n) 駆動電極群
 S(m)  検出電極
 P     入出力ポート

Claims (3)

  1. 絶縁パネルに等間隔で第1方向に沿って配線される複数の駆動電極と、
     絶縁パネルに第1方向と直交する第2方向に沿って配線され、それぞれ前記複数の全ての駆動電極と絶縁間隔を隔てて交差する複数の検出電極S(m)と、
     交流の検出電圧を発生する検出電圧発生回路と、
     第2方向で隣り合う2以上の駆動電極からなる駆動電極群DV(n)を、全ての駆動電極が少なくともいずれかの駆動電極群DV(n)に属するように、第2方向に沿って複数設定し、各駆動電極群DV(n)毎に駆動電極群DV(n)に属する各駆動電極へ検出電圧を同期させて印加する駆動制御を、全ての駆動電極群DV(n)について実行する駆動制御部と、
     駆動制御部が駆動電極群DV(n)を駆動制御した際に、駆動電極群DV(n)と入力操作体との静電容量の変化に応じて、駆動電極群DV(n)と交差する検出電極S(m)に表れる検出電圧レベルR(m、n)を検出する静電容量検出手段とを備え、
     全ての駆動電極群DV(n)を駆動制御する毎に、全ての検出電極S(m)について、それぞれ静電容量検出手段が検出した検出電圧レベルR(m、n)から、絶縁パネル上の第1方向と第2方向の入力操作体の入力操作位置を検出する静電容量式タッチ入力装置であって、
     第2方向で隣り合う駆動電極群DV(n)と駆動電極群DV(n’)にそれぞれ属する2以上の駆動電極の一つが、その間に配線される駆動電極で共通し、
     駆動制御部が駆動電極群DV(n)を駆動制御した際に、駆動電極群DV(n)より少なくとも第2方向で隣り合う駆動電極群DV(n’)の中間位置まで入力操作体が離れた位置で、入力操作体の近傍に配線される検出電極S(m)に検出電圧レベルR(m、n)の変化が表れるように、第2方向に等間隔で配線される駆動電極間のピッチを設定することを特徴とする静電容量式タッチ入力装置。
  2. 第2方向に沿って複数設定される各駆動電極群DV(n)を、第2方向と異なる順に駆動制御することを特徴とする請求項1に記載の静電容量式タッチ入力装置。
  3. 駆動制御部は、複数の各駆動電極にそれぞれ対応する複数の入出力ポートを有するマイコンで形成され、
     検出電圧発生回路と各駆動電極間を接続する電圧出力線毎に、その駆動電極に対応するマイコンの入出力ポートを接続し、
     マイコンは、入出力ポートを出力ポートとするOFFモードと、入出力ポートを入力ポートもしくはハイインピーダンスとするONモードとの間で切り換え、その入出力ポートが接続する駆動電極への検出電圧の印加と印加停止を切り換え制御することを特徴とする請求項1又は請求項2のいずれか1項に記載の静電容量式タッチ入力装置。
PCT/JP2012/008063 2012-01-25 2012-12-18 静電容量式タッチ入力装置 WO2013111237A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12866696.3A EP2808769B1 (en) 2012-01-25 2012-12-18 Capacitive touch input device
CN201280066686.3A CN104040472B (zh) 2012-01-25 2012-12-18 静电容量式触控输入装置
US14/332,395 US9342201B2 (en) 2012-01-25 2014-07-16 Capacitive touch input device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012013394A JP5876304B2 (ja) 2012-01-25 2012-01-25 静電容量式タッチ入力装置
JP2012-013394 2012-01-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/332,395 Continuation US9342201B2 (en) 2012-01-25 2014-07-16 Capacitive touch input device

Publications (1)

Publication Number Publication Date
WO2013111237A1 true WO2013111237A1 (ja) 2013-08-01

Family

ID=48873015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008063 WO2013111237A1 (ja) 2012-01-25 2012-12-18 静電容量式タッチ入力装置

Country Status (6)

Country Link
US (1) US9342201B2 (ja)
EP (1) EP2808769B1 (ja)
JP (1) JP5876304B2 (ja)
CN (1) CN104040472B (ja)
TW (1) TWI569189B (ja)
WO (1) WO2013111237A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190485A4 (en) * 2014-09-04 2018-04-18 SMK Corporation Capacitive touch panel
CN111095174A (zh) * 2017-08-15 2020-05-01 苹果公司 自电容和互电容混合触摸传感器面板架构
US11733801B2 (en) 2017-09-29 2023-08-22 Apple Inc. Touch sensor panel architecture with multiple sensing mode capabilities

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014045603A1 (ja) * 2012-09-24 2014-03-27 パナソニック株式会社 入力装置
TWI474248B (zh) * 2013-05-08 2015-02-21 Touchplus Information Corp 應用於電容式面板的控制點感測方法與裝置
JP6260864B2 (ja) * 2014-03-24 2018-01-17 ぺんてる株式会社 タッチスイッチシステム
JP6199825B2 (ja) * 2014-07-30 2017-09-20 Smk株式会社 静電容量式タッチパネルとその入力操作位置検出方法
US9696862B2 (en) * 2014-09-04 2017-07-04 Smk Corporation Capacitance type touch panel
KR102230549B1 (ko) * 2014-09-12 2021-03-22 삼성디스플레이 주식회사 접촉 감지 기능을 가진 광학계 및 이를 포함하는 표시 장치
TWI543060B (zh) * 2015-07-21 2016-07-21 矽創電子股份有限公司 校正方法與電容式感測裝置
JP6518203B2 (ja) * 2016-02-26 2019-05-22 株式会社ジャパンディスプレイ タッチ検出装置及びタッチ検出方法
CN105677129B (zh) * 2016-03-25 2018-09-18 京东方(河北)移动显示技术有限公司 一种触控检测电路、其驱动方法及显示装置
CN106775096B (zh) * 2016-12-27 2020-05-08 厦门天马微电子有限公司 阵列基板、显示面板、显示装置和驱动方法
CN106598341B (zh) * 2016-12-29 2019-12-24 厦门天马微电子有限公司 触控显示面板及其驱动方法、触控显示装置
US10067603B1 (en) 2017-05-03 2018-09-04 Himax Technologies Limited Touch panel and sensing method of touch panel capable of simultaneously activating columns of sensors within one drive cycle
TWI621981B (zh) * 2017-05-03 2018-04-21 奇景光電股份有限公司 觸控面板以及觸控面板的感測方法
CN108874197A (zh) * 2017-05-16 2018-11-23 奇景光电股份有限公司 触控面板以及触控面板的感测方法
JP6414765B2 (ja) * 2017-11-02 2018-10-31 ぺんてる株式会社 タッチスイッチシステム
JP6610813B1 (ja) * 2019-02-04 2019-11-27 Smk株式会社 静電容量式タッチパネルの補助入力具
JP7445523B2 (ja) * 2020-06-04 2024-03-07 ホシデン株式会社 静電容量センサ

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129308A (ja) 1993-10-28 1995-05-19 Pentel Kk タブレット走査方法
JP2002041216A (ja) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd 操作入力装置
JP2009258903A (ja) 2008-04-15 2009-11-05 Mitsubishi Electric Corp タッチパネル装置
JP2010092275A (ja) * 2008-10-08 2010-04-22 Sony Corp 接触検出装置、表示装置および接触検出方法
JP2010140465A (ja) * 2008-12-12 2010-06-24 Wacom Co Ltd タッチスクリーン走査の指示体位置検出装置および方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0623432D0 (en) * 2006-11-24 2007-01-03 Trw Ltd Capacitance sensing apparatus
US7812827B2 (en) * 2007-01-03 2010-10-12 Apple Inc. Simultaneous sensing arrangement
JP4770889B2 (ja) * 2008-08-01 2011-09-14 ソニー株式会社 タッチパネルおよびその動作方法ならびに電子機器およびその動作方法
JP2010262460A (ja) * 2009-05-07 2010-11-18 Panasonic Corp 静電容量方式タッチパネル装置及びそのタッチ入力位置検出方法
CN102124426A (zh) * 2009-09-27 2011-07-13 智点科技(深圳)有限公司 一种触控显示器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07129308A (ja) 1993-10-28 1995-05-19 Pentel Kk タブレット走査方法
JP2002041216A (ja) * 2000-07-27 2002-02-08 Matsushita Electric Ind Co Ltd 操作入力装置
JP2009258903A (ja) 2008-04-15 2009-11-05 Mitsubishi Electric Corp タッチパネル装置
JP2010092275A (ja) * 2008-10-08 2010-04-22 Sony Corp 接触検出装置、表示装置および接触検出方法
JP2010140465A (ja) * 2008-12-12 2010-06-24 Wacom Co Ltd タッチスクリーン走査の指示体位置検出装置および方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3190485A4 (en) * 2014-09-04 2018-04-18 SMK Corporation Capacitive touch panel
CN111095174A (zh) * 2017-08-15 2020-05-01 苹果公司 自电容和互电容混合触摸传感器面板架构
CN111095174B (zh) * 2017-08-15 2023-03-17 苹果公司 自电容和互电容混合触摸传感器面板架构
US11733801B2 (en) 2017-09-29 2023-08-22 Apple Inc. Touch sensor panel architecture with multiple sensing mode capabilities

Also Published As

Publication number Publication date
TWI569189B (zh) 2017-02-01
TW201346687A (zh) 2013-11-16
CN104040472B (zh) 2017-08-15
EP2808769B1 (en) 2018-04-18
JP5876304B2 (ja) 2016-03-02
US9342201B2 (en) 2016-05-17
JP2013152635A (ja) 2013-08-08
US20140327652A1 (en) 2014-11-06
CN104040472A (zh) 2014-09-10
EP2808769A1 (en) 2014-12-03
EP2808769A4 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP5876304B2 (ja) 静電容量式タッチ入力装置
JP6199825B2 (ja) 静電容量式タッチパネルとその入力操作位置検出方法
KR101473541B1 (ko) 투사형 정전용량식 터치 패널을 스캐닝하기 위한 방법
TWI472979B (zh) 可重組感測點之觸控面板裝置及感測方法
JP2012526333A (ja) デジタル静電容量式タッチスクリーン
JP6062914B2 (ja) 制御点検知パネル、及び当該制御点検知パネルのデザイン方法
JP4568771B2 (ja) 座標入力装置
US8248382B2 (en) Input device
TW201841100A (zh) 具有陣列電極之觸控面板之可辨識控制器及驅動方法
WO2013080638A1 (ja) タッチパネル
CN110045861B (zh) 电容检测电路和静电电容传感器设备
JP5926454B1 (ja) 静電容量式タッチパネル
JP5982624B2 (ja) 静電容量式タッチパネル
CN104793819A (zh) 自电容式触摸屏结构、内嵌式触摸屏以及液晶显示器
TW201401341A (zh) 觸控面板及觸控顯示裝置
TWI765056B (zh) 位置感測裝置與位置感測方法
CN101968701A (zh) 触控输入装置
JP2018160174A (ja) タッチ検出装置
TWI536231B (zh) 多點觸碰偵測方法及其裝置
TWI439908B (zh) 觸控輸入裝置
WO2021024727A1 (ja) 操作ノブの位置を検出するタッチパネル入力装置
KR101649230B1 (ko) 터치패널 및 그의 구동방법
JP2021026589A5 (ja)
CN102375594A (zh) 触控输入装置及其扫描方法
KR20140108876A (ko) 멀티 포인트 감지기능을 구비한 터치패널 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012866696

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE