WO2013111180A1 - 空気調和装置の冷媒充填方法、空気調和装置 - Google Patents

空気調和装置の冷媒充填方法、空気調和装置 Download PDF

Info

Publication number
WO2013111180A1
WO2013111180A1 PCT/JP2012/000419 JP2012000419W WO2013111180A1 WO 2013111180 A1 WO2013111180 A1 WO 2013111180A1 JP 2012000419 W JP2012000419 W JP 2012000419W WO 2013111180 A1 WO2013111180 A1 WO 2013111180A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
heat
heat medium
heat exchanger
temperature
Prior art date
Application number
PCT/JP2012/000419
Other languages
English (en)
French (fr)
Inventor
山下 浩司
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2012/000419 priority Critical patent/WO2013111180A1/ja
Priority to US14/345,666 priority patent/US9599380B2/en
Priority to EP12866916.5A priority patent/EP2808625B1/en
Publication of WO2013111180A1 publication Critical patent/WO2013111180A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/001Charging refrigerant to a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2345/00Details for charging or discharging refrigerants; Service stations therefor
    • F25B2345/003Control issues for charging or collecting refrigerant to or from a cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel

Definitions

  • the present invention relates to a refrigerant filling method for an air conditioner applied to, for example, a building multi-air conditioner, and an air conditioner filled with the refrigerant by the method.
  • Patent Document 1 Conventionally, an intermediate heat exchanger having a first refrigeration cycle on a high-source side and a second refrigeration cycle on a low-source side and for exchanging heat in a counterflow with the refrigerant circulating through these refrigeration cycles is mounted.
  • a binary air conditioner see, for example, Patent Document 1.
  • the technology described in Patent Document 1 employs non-azeotropic refrigerant mixtures with different temperature gradients as refrigerant circulating in the first and second refrigeration cycles.
  • a building multi-air conditioner has been proposed that has a first refrigeration cycle and a second refrigeration cycle, and is capable of generating hot water by exchanging heat between the refrigerant circulating through them (for example, And Patent Document 3).
  • JP-A-7-269964 (see, for example, page 6 of the specification and FIG. 3) Japanese Patent Laid-Open No. 11-182951 (see, for example, pages 5 and 6 of the specification and FIG. 1) WO2009 / 098751 (see, for example, page 5 of the specification and FIG. 1)
  • Patent Document 1 can improve the heat exchange efficiency by making the refrigerant supplied to the intermediate heat exchanger counterflow, but the temperature gradient of the non-azeotropic refrigerant mixture in the ph diagram From this point of view, the heat exchange efficiency was not improved. That is, the technique described in Patent Document 1 is caused by the fact that the temperature gradient between the non-azeotropic refrigerant mixture flowing in the first refrigeration cycle and the non-azeotropic refrigerant mixture flowing in the second refrigeration cycle is greatly different. There was a problem that the heat exchange efficiency would be reduced.
  • Patent Document 2 can improve the heat exchange efficiency by considering that the circulation composition of the refrigerant changes, but from the viewpoint of the temperature gradient of the non-azeotropic refrigerant mixture in the ph diagram It did not improve the heat exchange efficiency. That is, the technique described in Patent Document 2 does not consider that the heat exchange efficiency is reduced if the temperature gradients of the non-azeotropic refrigerants in different refrigeration cycles are different. When the refrigerant is applied, there is a problem that the heat exchange efficiency is reduced.
  • This invention was made in order to solve said subject, and it aims at providing the refrigerant
  • the refrigerant filling method of the air conditioner according to the present invention includes the first compressor, the heat source side heat exchanger, the first expansion device, the first heat exchanger related to heat medium, and the first flow path of the heating heat exchanger.
  • a first refrigerating pipe is connected to form a first refrigeration cycle, and the second compressor, the second flow path of the heating heat exchanger, the second expansion device, and the second heat exchanger related to heat medium are secondly connected.
  • the refrigerant pipe is connected to form a second refrigeration cycle, and the first refrigerant that fills the first refrigeration cycle and the second refrigerant that fills the second refrigeration cycle are saturated gas temperature and saturated liquid temperature at the same pressure.
  • the heating heat exchanger is the heating heat exchanger.
  • the first refrigerant supplied to the first flow path and the second refrigerant supplied to the second flow path are opposed to each other.
  • the first refrigerant pipe and the second refrigerant pipe are connected to the first refrigerant pipe and the second refrigerant pipe, and the difference between the saturated gas temperature on the inlet side of the first refrigerant and the saturated liquid temperature on the outlet side in the heating heat exchanger is defined as the first temperature difference.
  • the difference between the saturated gas temperature on the outlet side of the second refrigerant and the temperature on the inlet side in the heat exchanger for use is the second temperature difference
  • a plurality of single refrigerants constituting the second refrigerant are in a predetermined mixing ratio.
  • the second refrigerant is filled in the second refrigeration cycle so that the difference between the first temperature difference and the second temperature difference falls within a predetermined value.
  • the second refrigerant is charged into the second refrigeration cycle so that the plurality of single refrigerants constituting the second refrigerant have a predetermined mixing ratio, and the first refrigerant is charged.
  • the difference between the temperature difference and the second temperature difference below a predetermined value, the heat exchange efficiency between the first refrigerant and the second refrigerant flowing into the heat exchanger for heating can be improved.
  • coolant filling method of the air conditioning apparatus of this invention energy saving can be achieved by the part which can improve heat exchange efficiency.
  • FIG. 1 is a schematic diagram illustrating an installation example of an air-conditioning apparatus according to Embodiment 1.
  • FIG. Based on FIG. 1, the installation example of an air conditioning apparatus is demonstrated.
  • the relationship of the size of each component may be different from the actual one.
  • the air conditioner according to the present embodiment includes one outdoor unit 1 that is a heat source unit, a plurality of indoor units 2, and heat that is interposed between the outdoor unit 1 and the indoor unit 2. It has a medium converter 3 and a hot water supply device 14.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 that conducts the first heat source side refrigerant.
  • the heat medium relay unit 3 and the indoor unit 2 are connected by a pipe (heat medium pipe) 5 that conducts the first heat medium.
  • the hot water supply device 14 and the heat medium relay unit 3 are connected by a refrigerant pipe 4 that conducts the first heat source side refrigerant.
  • the hot water supply device 14 is connected to a hot water storage tank 24 which will be described later, and the heat generated by the outdoor unit 1 is used to heat water stored in the hot water storage tank 24.
  • the outdoor unit 1 is normally disposed in an outdoor space 6 that is a space outside a building 9 such as a building (for example, a rooftop), and supplies cold or hot heat to the indoor unit 2 via the heat medium converter 3. It is.
  • the indoor unit 2 is disposed at a position where cooling air or heating air can be supplied to the indoor space 7 which is a space (for example, a living room) inside the building 9, and the cooling air is supplied to the indoor space 7 as the air-conditioning target space. Alternatively, heating air is supplied.
  • the heat medium relay unit 3 is configured as a separate housing from the outdoor unit 1 and the indoor unit 2 and is configured to be installed at a position different from the outdoor space 6 and the indoor space 7.
  • the hot water supply device 14 supplies hot water to a load side such as hot water supply.
  • the hot water supply device 14 is illustrated as being installed in the indoor space 7, but is not limited thereto, and is installed, for example, at any position inside the building 9. Good.
  • an outdoor unit 1 and a heat medium converter 3 are connected via a refrigerant pipe 4, and the heat medium converter 3 and a hot water supply device. 14 is connected through the refrigerant pipe 4.
  • the heat medium converter 3 and each indoor unit 2 are connected via a heat medium pipe 5.
  • the air conditioner according to the present embodiment is configured by connecting each unit (the outdoor unit 1, the indoor unit 2, the hot water supply device 14, and the heat medium converter 3) by the refrigerant pipe 4 and the heat medium pipe 5. Construction is easy.
  • the heat medium converter 3 is installed in a space such as the back of the ceiling (hereinafter simply referred to as a space 8) that is inside the building 9 but is different from the indoor space 7.
  • the state is shown as an example.
  • the heat medium relay 3 can also be installed in a common space where there is an elevator or the like.
  • the indoor unit 2 is a ceiling cassette type
  • mold is shown as an example, it is not limited to this, It is directly or directly in the indoor space 7, such as a ceiling embedded type and a ceiling suspended type. Any type of air may be used as long as heating air or cooling air can be blown out by a duct or the like.
  • FIG. 1 shows an example in which the outdoor unit 1 is installed in the outdoor space 6, but the present invention is not limited to this.
  • the outdoor unit 1 may be installed in an enclosed space such as a machine room with a ventilation opening. If the waste heat can be exhausted outside the building 9 by an exhaust duct, the outdoor unit 1 may be installed inside the building 9. It may be installed, or may be installed inside the building 9 when the water-cooled outdoor unit 1 is used. Even if the outdoor unit 1 is installed in such a place, no particular problem occurs.
  • the heat medium converter 3 can also be installed in the vicinity of the outdoor unit 1. However, it should be noted that if the distance from the heat medium relay unit 3 to the indoor unit 2 is too long, the power for transporting the first heat medium becomes considerably large, and thus the energy saving effect is diminished. Furthermore, the number of connected outdoor units 1, indoor units 2, and heat medium converters 3 is not limited to the number shown in FIG. 1, but in building 9 where the air conditioner according to the present embodiment is installed. The number of units may be determined accordingly.
  • FIG. 2 is a diagram illustrating a circuit configuration example of the air-conditioning apparatus (hereinafter referred to as the air-conditioning apparatus 100) according to the embodiment of the present invention. Based on FIG. 2, the detailed structure of the air conditioning apparatus 100 is demonstrated.
  • the outdoor unit 1 and the heat medium converter 3 are connected to each other by inter-heat medium heat exchangers 15 a and 15 b through a refrigerant pipe 4 to constitute a first refrigeration cycle.
  • the indoor unit 2 are connected to the heat exchangers 15a, 15b and the like by the heat medium pipe 5 to constitute a first heat medium cycle.
  • the hot water supply device 14 is connected to a heating heat exchanger 15c or the like by a refrigerant pipe 4c to form a second refrigeration cycle.
  • the hot water supply device 14 and the hot water storage tank 24 are connected to a heat exchanger 15d between heat mediums or the like as a heat medium. It is connected by a pipe 5a to constitute a second heat medium cycle.
  • a compressor 10 a In the outdoor unit 1, a compressor 10 a, a first refrigerant flow switching device 11 such as a four-way valve, a heat source side heat exchanger 12, and an accumulator 19 are connected and mounted via a refrigerant pipe 4. Yes.
  • the outdoor unit 1 is also provided with a first connection pipe 4a, a second connection pipe 4b, a check valve 13a, a check valve 13b, a check valve 13c, and a check valve 13d.
  • the heat medium is provided by providing the first connection pipe 4a, the second connection pipe 4b, the check valve 13a, the check valve 13b, the check valve 13c, and the check valve 13d.
  • the flow of the first heat source side refrigerant flowing into the converter 3 can be in a certain direction.
  • the compressor 10a sucks the first heat source side refrigerant and compresses the first heat source side refrigerant to a high temperature / high pressure state.
  • the compressor 10a may be composed of an inverter compressor capable of capacity control.
  • the compressor 10 a has a discharge side connected to the first refrigerant flow switching device 11 and a suction side connected to the accumulator 19.
  • the compressor 10a corresponds to the first compressor.
  • the first refrigerant flow switching device 11 is configured so that the flow of the first heat source side refrigerant during the heating operation (in the heating only operation mode and the heating main operation mode) and the cooling operation (in the all cooling operation mode and the cooling main operation mode). ) To switch the flow of the first heat source side refrigerant.
  • the first refrigerant flow switching device 11 connects the discharge side of the compressor 10 and the first connection pipe 4 a and connects the heat source side heat exchanger 12 and the accumulator 19. The state is illustrated.
  • the heat source side heat exchanger 12 functions as an evaporator during heating operation, functions as a condenser (or radiator) during cooling operation, and generates heat between air and refrigerant supplied from a blower such as a fan (not shown). Exchange is performed, and the refrigerant is evaporated or condensed and liquefied.
  • One of the heat source side heat exchangers 12 is connected to the first refrigerant flow switching device 11, and the other is connected to the refrigerant pipe 4 provided with the check valve 13a.
  • the accumulator 19 stores excess refrigerant.
  • One of the accumulators 19 is connected to the first refrigerant flow switching device 11, and the other is connected to the suction side of the compressor 10a.
  • the check valve 13a is provided in the refrigerant pipe 4 between the heat source side heat exchanger 12 and the heat medium converter 3, and the check valve 13a is used only in a predetermined direction (direction from the outdoor unit 1 to the heat medium converter 3). It allows flow.
  • the check valve 13b is provided in the first connection pipe 4a, and causes the refrigerant discharged from the compressor 10a during the heating operation to flow to the heat medium relay unit 3.
  • the check valve 13c is provided in the second connection pipe 4b, and causes the refrigerant returned from the heat medium relay unit 3 to flow to the suction side of the compressor 10 during the heating operation.
  • the check valve 13d is provided in the refrigerant pipe 4 between the heat medium converter 3 and the first refrigerant flow switching device 11, and only in a predetermined direction (direction from the heat medium converter 3 to the outdoor unit 1). The refrigerant flow is allowed.
  • the first connection pipe 4a is a refrigerant pipe 4 between the first refrigerant flow switching device 11 and the check valve 13d, and a refrigerant between the check valve 13a and the heat medium relay unit 3.
  • the pipe 4 is connected.
  • the second connection pipe 4b includes a refrigerant pipe 4 between the check valve 13d and the heat medium relay unit 3, and a refrigerant pipe 4 between the heat source side heat exchanger 12 and the check valve 13a.
  • the air conditioner 100 shown in FIG. 2 includes the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d, but is not limited thereto. That is, the first connection pipe 4a, the second connection pipe 4b, and the check valves 13a to 13d are not necessarily provided in the air conditioner 100.
  • Each indoor unit 2 is equipped with a use side heat exchanger 26.
  • the use side heat exchanger 26 is connected to the heat medium flow control device 25 and the second heat medium flow switching device 23 of the heat medium converter 3 by the heat medium pipe 5.
  • the use-side heat exchanger 26 exchanges heat between air supplied from a blower such as a fan (not shown) and the first heat medium, and supplies heating air or cooling air to the indoor space 7. Is generated.
  • FIG. 2 shows an example in which four indoor units 2 are connected to the heat medium relay unit 3, and are illustrated as an indoor unit 2a, an indoor unit 2b, an indoor unit 2c, and an indoor unit 2d from the bottom of the page. Show.
  • the use side heat exchanger 26 also uses the use side heat exchanger 26a, the use side heat exchanger 26b, the use side heat exchanger 26c, and the use side heat exchange from the lower side of the drawing. It is shown as a container 26d.
  • the number of indoor units 2 connected is not limited to four as shown in FIG.
  • the heat medium relay 3 includes two heat medium heat exchangers 15, two expansion devices 16, two opening / closing devices 17, two second refrigerant flow switching devices 18, and two pumps 21.
  • Four first heat medium flow switching devices 22, four second heat medium flow switching devices 23, and four heat medium flow control devices 25 are mounted.
  • the heat medium relay 3 is provided with various detection devices (two first temperature sensors 31, four second temperature sensors 34, four third temperature sensors 35, and a pressure sensor 36).
  • the two heat exchangers between heat mediums 15 function as a condenser (heat radiator) or an evaporator, and the first heat source side refrigerant and the first heat Heat exchange is performed with the medium, and the cold or warm heat generated in the outdoor unit 1 and stored in the first heat source side refrigerant is transmitted to the first heat medium.
  • the heat exchanger related to heat medium 15a is provided between the expansion device 16a and the second refrigerant flow switching device 18a in the refrigerant circuit A, and serves to cool the first heat medium in the cooling / heating mixed operation mode. Is.
  • the heat exchanger related to heat medium 15b is provided between the expansion device 16b and the second refrigerant flow switching device 18b in the refrigerant circuit A, and heats the first heat medium in the cooling / heating mixed operation mode. It is for use.
  • the heat exchangers related to heat medium 15a and 15b correspond to the first heat exchanger related to heat medium.
  • the two expansion devices 16 have a function as a pressure reducing valve or an expansion valve, and expand the first heat source side refrigerant by reducing the pressure.
  • the expansion device 16a is provided on the upstream side of the heat exchanger related to heat medium 15a in the flow of the first heat source side refrigerant during the cooling operation.
  • the expansion device 16b is provided on the upstream side of the heat exchanger related to heat medium 15b in the flow of the first heat source side refrigerant during the cooling operation.
  • the two expansion devices 16 may be configured by a device whose opening degree can be variably controlled, for example, an electronic expansion valve.
  • the diaphragm devices 16a and 16b correspond to the first diaphragm device.
  • the two opening / closing devices 17 are configured by a two-way valve or the like, and open / close the refrigerant pipe 4.
  • the opening / closing device 17a is provided in the refrigerant pipe 4 on the inlet side of the first heat source side refrigerant.
  • the opening / closing device 17b is provided in a pipe connecting the refrigerant pipe 4 on the inlet side and the outlet side of the first heat source side refrigerant.
  • the two second refrigerant flow switching devices 18 are configured by four-way valves or the like, and the flow of the first heat source side refrigerant according to the operation mode. Is to switch.
  • the second refrigerant flow switching device 18a is provided on the downstream side of the heat exchanger related to heat medium 15a in the flow of the first heat source side refrigerant during the cooling operation.
  • the second refrigerant flow switching device 18b is provided on the downstream side of the heat exchanger related to heat medium 15b in the flow of the first heat source side refrigerant during the cooling operation.
  • the two pumps 21 (pump 21a and pump 21b) circulate the first heat medium that is conducted through the heat medium pipe 5.
  • the pump 21 a is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15 a and the second heat medium flow switching device 23.
  • the pump 21 b is provided in the heat medium pipe 5 between the heat exchanger related to heat medium 15 b and the second heat medium flow switching device 23.
  • the two pumps 21 may be constituted by, for example, pumps capable of capacity control.
  • the four first heat medium flow switching devices 22 are configured by a three-way valve or the like. Is to switch.
  • the first heat medium flow switching device 22 is provided in a number (here, four) according to the number of indoor units 2 installed.
  • the first heat medium flow switching device 22 is provided on the outlet side of the heat medium flow path of the use side heat exchanger 26. Specifically, the first heat medium flow switching device 22 is connected to the heat exchanger related to heat medium 15 a, the heat exchanger related to heat medium 15 b, and the heat medium flow control device 25.
  • the four second heat medium flow switching devices 23 are configured by three-way valves or the like. Is to switch.
  • the number of the second heat medium flow switching devices 23 is set according to the number of installed indoor units 2 (here, four).
  • the second heat medium flow switching device 23 is provided on the inlet side of the flow path of the first heat medium of the use side heat exchanger 26. Specifically, the second heat medium flow switching device 23 is connected to the heat exchanger related to heat medium 15 a, the heat exchanger related to heat medium 15 b, and the use side heat exchanger 26.
  • the four heat medium flow control devices 25 are configured by a two-way valve or the like capable of controlling the opening area, and control the flow rate flowing through the heat medium pipe 5. Is.
  • the number of the heat medium flow control devices 25 is set according to the number of indoor units 2 installed (four in this case).
  • the heat medium flow control device 25 is provided on the outlet side of the heat medium flow path of the use side heat exchanger 26. Specifically, one of the heat medium flow control devices 25 is connected to the use side heat exchanger 26 and the other is connected to the first heat medium flow switching device 22.
  • the heat medium flow control device 25 may be provided on the inlet side of the flow path of the first heat medium of the use side heat exchanger 26.
  • the two first temperature sensors 31 are the first heat medium that has flowed out of the heat exchanger related to heat medium 15, that is, the first heat medium at the outlet of the heat exchanger related to heat medium 15.
  • the temperature of the heat medium is detected, and for example, a thermistor may be used.
  • the first temperature sensor 31a is provided in the heat medium pipe 5 on the inlet side of the pump 21a.
  • the first temperature sensor 31b is provided in the heat medium pipe 5 on the inlet side of the pump 21b.
  • the four second temperature sensors 34 are provided between the first heat medium flow switching device 22 and the heat medium flow control device 25, and use side heat exchangers. 26, the temperature of the first heat medium flowing out from the heater 26 is detected, and it may be constituted by a thermistor or the like.
  • the number of the second temperature sensors 34 (four here) according to the number of indoor units 2 installed is provided.
  • the second temperature sensor 34 may be provided in a flow path between the heat medium flow control device 25 and the use side heat exchanger 26. Further, the heat medium flow control device 25 may be provided on the inlet side of the flow path of the first heat medium of the use side heat exchanger 26.
  • the four third temperature sensors 35 are provided on the inlet side or the outlet side of the first heat source side refrigerant of the heat exchanger related to heat medium 15, and perform heat exchange between heat medium.
  • coolant which flowed out from the heat exchanger 15 between heat media is detected, and it is good to comprise with a thermistor etc.
  • the third temperature sensor 35a is provided between the heat exchanger related to heat medium 15a and the second refrigerant flow switching device 18a.
  • the third temperature sensor 35b is provided between the heat exchanger related to heat medium 15a and the expansion device 16a.
  • the third temperature sensor 35c is provided between the heat exchanger related to heat medium 15b and the second refrigerant flow switching device 18b.
  • the third temperature sensor 35d is provided between the heat exchanger related to heat medium 15b and the expansion device 16b.
  • the pressure sensor 36 is provided between the heat exchanger related to heat medium 15b and the expansion device 16b, and between the heat exchanger related to heat medium 15b and the expansion device 16b. The pressure of the flowing first heat source side refrigerant is detected.
  • the heat medium pipe 5 that conducts the heat medium is composed of one that is connected to the heat exchanger related to heat medium 15a and one that is connected to the heat exchanger related to heat medium 15b.
  • the heat medium pipe 5 is branched (here, four branches each) according to the number of indoor units 2 connected to the heat medium converter 3.
  • the heat medium pipe 5 is connected by a first heat medium flow switching device 22 and a second heat medium flow switching device 23. By controlling the first heat medium flow switching device 22 and the second heat medium flow switching device 23, the heat medium from the heat exchanger related to heat medium 15a flows into the use-side heat exchanger 26, or the heat medium Whether the heat medium from the intermediate heat exchanger 15b flows into the use side heat exchanger 26 is determined.
  • the hot water supply device 14 transmits the temperature of the first heat source side refrigerant to the second heat source side refrigerant, and further transmits the temperature of the second heat source side refrigerant to the second heat medium.
  • the hot water supply device 14 includes a compressor 10b that compresses the second heat source side refrigerant, a heat exchanger related to heat medium 15d that functions as a condenser, and a second heat source side refrigerant that constitute the second refrigeration cycle.
  • An expansion device 16d for reducing the pressure and a heating heat exchanger 15c functioning as an evaporator are mounted.
  • the hot water supply device 14 is equipped with a throttle device 16c that forms part of the first refrigeration cycle and depressurizes the first heat source side refrigerant.
  • the hot water supply device 14 is connected to a pump 21c for conveying the second heat medium and a hot water storage tank 24 capable of storing the second heat medium, as constituting the second heat medium cycle. ing.
  • the hot water supply device 14 further includes a second pressure sensor 37 that detects the pressure of the second heat source side refrigerant, a third pressure sensor 39 that detects the pressure of the first heat source side refrigerant, and a temperature of the second heat source side refrigerant.
  • the fourth temperature sensor 38, the fifth temperature sensor 40 for detecting the temperature of the first heat source side refrigerant, and the sixth temperature sensor 41 for detecting the temperature of the second heat medium are provided.
  • the air-conditioning harmony device 100 is not limited to the structure provided with one hot-water supply apparatus 14, and multiple units may be provided.
  • the air conditioning apparatus 100 is provided with two or more hot water supply apparatuses 14, it is good for the hot water supply apparatus 14 to be connected in parallel with the heat medium converter 3 via the refrigerant
  • the compressor 10b sucks the second heat source side refrigerant and compresses the second heat source side refrigerant to a high temperature and high pressure state, and may be configured by an inverter compressor capable of capacity control, for example.
  • the compressor 10b has a discharge side connected to the heat exchanger related to heat medium 15d and a suction side connected to the heat exchanger 15c for heating.
  • the compressor 10b corresponds to a second compressor.
  • the heat exchanger for heating 15c functions as an evaporator, and heat is exchanged between the first heat source side refrigerant and the second heat source side refrigerant, thereby being generated in the outdoor unit 1 and stored in the first heat source side refrigerant. Heat is transmitted to the second heat source side refrigerant.
  • One side of the second heat source side of the heating heat exchanger 15c is connected to the suction side of the compressor 10b, and the other side is connected to the expansion device 16d.
  • the flow direction of the first heat source side refrigerant and the flow direction of the second heat source side refrigerant in the heating heat exchanger 15c are opposed to each other regardless of the operation mode. Are connected to the refrigerant pipe 4 and the refrigerant pipe 4c. Thereby, the heat exchange efficiency in the heat exchanger 15c for heating is improved.
  • the expansion device 16d has a function as a pressure reducing valve or an expansion valve, and expands the second heat source side refrigerant by reducing the pressure.
  • One of the expansion devices 16d is connected to the intermediate heat exchanger 15d, and the other is connected to the heating heat exchanger 15c.
  • the expansion device 16d may be capable of adjusting the opening by providing a stepping motor, for example.
  • the diaphragm device 16c corresponds to the first diaphragm device, similarly to the diaphragm devices 16a and 16b.
  • the heat exchanger related to heat medium 15d functions as a condenser (heat radiator) and performs heat exchange between the second heat source side refrigerant and the second heat medium, thereby generating the second heat source side refrigerant generated in the hot water supply device 14.
  • the heat stored in is transferred to the second heat medium.
  • One side of the second heat source side of the heat exchanger related to heat medium 15d is connected to the discharge side of the compressor 10b, and the other side is connected to the expansion device 16d. Note that the heat exchanger related to heat medium 15d corresponds to a second heat exchanger related to heat medium.
  • the expansion device 16c functions as a pressure reducing valve or an expansion valve, and expands the first heat source side refrigerant by reducing the pressure.
  • the expansion device 16c is provided on the downstream side of the heating heat exchanger 15c in the flow of the first heat source side refrigerant during the heating only operation, the heating main operation, and the cooling main operation.
  • the expansion device 16c may be capable of adjusting the opening by providing a stepping motor, for example.
  • the diaphragm device 16c corresponds to the first diaphragm device.
  • the pump 21c circulates the second heat medium that is conducted through the heat medium pipe 5a.
  • the pump 21 c is provided in the heat medium pipe 5 a between the heat exchanger related to heat medium 15 d and the hot water storage tank 24.
  • the pump 21c may be constituted by a pump whose capacity can be controlled, for example.
  • the hot water storage tank 24 stores the second heat medium that is conducted through the heat medium pipe 5a.
  • One of the hot water storage tanks 24 is connected to the discharge side of the pump 21c, and the other is connected to the heat exchanger related to heat medium 15d.
  • the second pressure sensor 37 detects the pressure of the second heat source side refrigerant flowing out of the heating heat exchanger 15c.
  • the second pressure sensor 37 is provided between the heating heat exchanger 15c and the suction side of the compressor 10b, similarly to the installation position of the fourth temperature sensor 38.
  • the 3rd pressure sensor 39 detects the pressure of the 1st heat source side refrigerant which flowed out of heat exchanger 15c for heating.
  • the third pressure sensor 39 is provided on the downstream side of the heating heat exchanger 15c, similarly to the installation position of the fifth temperature sensor 40.
  • the fourth temperature sensor 38 detects the temperature of the second heat source side refrigerant flowing out of the heating heat exchanger 15c. Similar to the installation position of the second pressure sensor 37, the fourth temperature sensor 38 is provided between the heating heat exchanger 15c and the suction side of the compressor 10b.
  • the fifth temperature sensor 40 detects the temperature of the first heat source side refrigerant flowing out of the heating heat exchanger 15c. The fifth temperature sensor 40 is provided on the downstream side of the heat exchanger 15c for heating, similarly to the installation position of the third pressure sensor 39.
  • the sixth temperature sensor 41 detects the temperature of the second heat medium that has flowed out of the heat exchanger related to heat medium 15d. The sixth temperature sensor 41 is provided between the heat exchanger related to heat medium 15d and the suction side of the pump 21c.
  • the 4th temperature sensor 38, the 5th temperature sensor 40, and the 6th temperature sensor 41 are good to comprise, for example with a thermistor etc.
  • the 1st control apparatus 80 and the 2nd control apparatus 81 are comprised by the microcomputer etc., the information (temperature information, pressure information) detected with the various detection apparatuses of the heat carrier converter 3, and the various detection apparatuses of the hot water supply apparatus 14
  • the operation of the compressors 10a, 10b, etc. can be comprehensively controlled based on the information detected in the above and instructions from the remote controller, and each operation mode to be described later can be executed.
  • the first control device 80 and the second control device 81 can perform mutual control by exchanging information with each other.
  • detection results of the first temperature sensor 31, the second temperature sensor 34, the third temperature sensor 35, and the pressure sensor 36 are output to the first control device 80, and the second control device 81 is output to the second control device 81.
  • the detection results of the fourth temperature sensor 38, the fifth temperature sensor 40, the sixth temperature sensor 41, the second pressure sensor 37, and the third pressure sensor 39 are output.
  • the first control device 80 and the second control device 81 mutually exchange the detection result output to the first control device and the detection result output to the second control device 81, and perform overall control of the following operations. To do.
  • the first control device 80 includes the driving frequency of the compressor 10a, the rotational speed (including ON / OFF) of a blower (not shown) attached to the heat source side heat exchanger 12, the opening degree of the expansion device 16, and the opening / closing device 17. Switching, switching of the first refrigerant flow switching device 11 and the second refrigerant flow switching device 18, driving frequency of the pump 21, switching of the first heat medium flow switching device 22, and second heat medium flow switching device 23 Switching, and the overall control of the opening degree of the heat medium flow control device 25 and the like.
  • the second control device 81 performs overall control such as the drive frequency of the compressor 10b and the opening degrees of the expansion devices 16c and 16d.
  • the installation position of the first control device 80 is described as being provided in the heat medium relay unit 3 in FIG. 2, it is not limited thereto, and may be provided for each unit, for example, outdoor It may be provided in the machine 1. Further, the installation position of the second control device 81 is preferably provided, for example, in the hot water supply device 14 as shown in FIG. Note that the first control device 80 and the second control device 81 are configured to be able to communicate with each other by wired or wireless communication so as to perform cooperative control.
  • the refrigerant circuit A is configured by connecting the first heat source side refrigerant flow path, the expansion device 16, the expansion device 16 c, and the accumulator 19 of the heat exchanger 15 c with the refrigerant pipe 4. Further, the first heat medium flow path of the heat exchanger related to heat medium 15, the pump 21, the first heat medium flow path switching device 22, the heat medium flow control device 25, the use side heat exchanger 26, and the second heat medium flow The path switching device 23 is connected by the heat medium pipe 5 to constitute the heat medium circulation circuit B. Then, a plurality of use side heat exchangers 26 are connected in parallel to each of the heat exchangers 15 between heat mediums, and the heat medium circulation circuit B is made into a plurality of systems.
  • the compressor 10b, the second heat source side refrigerant flow path of the heating heat exchanger 15c, the second heat source side refrigerant flow path of the heat exchanger related to heat medium 15d, and the expansion device 16d are connected by a refrigerant pipe 4c.
  • a refrigerant circulation circuit A2 is configured.
  • the heat medium circulation circuit B2 is configured by connecting the second heat medium flow path of the pump 21c, the hot water storage tank 24, and the heat exchanger related to heat medium 15d with the heat medium pipe 5a.
  • the outdoor unit 1 and the heat medium relay unit 3 are connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b provided in the heat medium converter 3.
  • the heat medium relay unit 3 and the indoor unit 2 are also connected via the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the heat medium converter 3 and the hot water supply device 14 are connected via a heat exchanger 15c for heating provided in the hot water supply device 24, and the hot water supply device 14 and the hot water storage tank 24 are connected to the heat exchanger between heat media. 15d is connected.
  • the first heat source side refrigerant circulating in the refrigerant circulation circuit A in the heating heat exchanger 15c exchanges heat with the second heat source side refrigerant circulating in the refrigerant circulation circuit A2, and the intermediate heat exchanger 15d.
  • the second heat source side refrigerant circulating in the refrigerant circuit A2 and the second heat medium circulating in the heat medium circuit B2 exchange heat.
  • the flow path of the first heat source side refrigerant and the flow path of the second heat source side refrigerant are independent and do not mix with each other. Also, the flow path of the first heat medium and the flow path of the second heat medium are independent and do not mix with each other.
  • the air conditioner 100 can perform a cooling operation or a heating operation in the indoor unit 2 based on an instruction from each indoor unit 2. That is, the air conditioning apparatus 100 can perform the same operation for all the indoor units 2 and can perform different operations for each of the indoor units 2.
  • the air conditioner 100 uses the heat of the first heat source side refrigerant in the first refrigeration cycle and the heat of the second heat source side refrigerant in the second refrigeration cycle to be stored in the hot water storage tank 24. 2 Heating medium can be heated.
  • the operation mode executed by the air conditioner 100 includes a cooling only operation mode in which all the driven indoor units 2 execute a cooling operation, and a heating only operation in which all the driven indoor units 2 execute a heating operation.
  • the hot water supply device 14 is operated to heat the second heat medium.
  • FIG. 3 is a diagram for explaining the flow of the refrigerant and the heat medium during the cooling only operation of the air-conditioning apparatus 100 shown in FIG.
  • the cooling only operation mode will be described by taking as an example a case where a cooling load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the pipes represented by thick lines indicate the pipes through which the refrigerant (first heat source side refrigerant) and the heat medium (first heat medium) flow.
  • the flow direction of the refrigerant is indicated by a solid line arrow
  • the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 a flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the first heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b. Note that the hot water supply device 14 is stopped in the cooling only operation mode.
  • the low-temperature / low-pressure first heat source side refrigerant is compressed by the compressor 10a and discharged as a high-temperature / high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 a flows into the heat source side heat exchanger 12 through the first refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses and liquefies while radiating heat to the outdoor air, and becomes a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the high-pressure liquid refrigerant that has flowed into the heat medium relay unit 3 is branched after passing through the opening / closing device 17a and expanded by the expansion device 16a and the expansion device 16b to become a low-temperature / low-pressure two-phase refrigerant.
  • This two-phase refrigerant flows into each of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b acting as an evaporator, and absorbs heat from the heat medium circulating in the heat medium circulation circuit B. It becomes a low-temperature, low-pressure gas refrigerant while cooling.
  • the gas refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b.
  • the refrigerant flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10a again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening of the expansion device 16a is such that the superheat (superheat degree) obtained as the difference between the temperature detected by the third temperature sensor 35a and the temperature detected by the third temperature sensor 35b is constant. Be controlled.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d is constant.
  • the opening / closing device 17a is open and the opening / closing device 17b is closed.
  • the flow of the first heat medium in the heat medium circuit B will be described.
  • the cold heat of the heat source side refrigerant is transmitted to the heat medium in both the heat exchanger 15a and the heat exchanger 15b, and the cooled heat medium is heated by the pump 21a and the pump 21b.
  • the inside of the pipe 5 is allowed to flow.
  • the heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the use side heat exchanger 26a and the use side heat exchange. Flows into the vessel 26b.
  • the heat medium absorbs heat from the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby cooling the indoor space 7.
  • the heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the heat medium flow control device 25a and the heat medium flow control device 25b control the flow rate of the heat medium to a flow rate necessary to cover the air conditioning load required in the room, so that the use-side heat exchanger 26a. And it flows into the use side heat exchanger 26b.
  • the heat medium flowing out from the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and the heat exchanger related to heat medium 15a. And flows into the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. It is possible to cover by controlling so that the difference between the two is kept at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • FIG. 4 is a diagram for explaining the flow of the refrigerant and the heat medium during the heating only operation of the air-conditioning apparatus 100 shown in FIG.
  • the heating only operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • pipes represented by thick lines indicate the pipes through which the refrigerant (first heat source side refrigerant and second heat source side refrigerant) and the heat medium (first heat medium and second heat medium) flow.
  • the flow direction of the refrigerant is indicated by a solid line arrow
  • the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 is used so that the first heat source side refrigerant discharged from the compressor 10 a does not pass through the heat source side heat exchanger 12. It switches so that it may flow in into the heat carrier converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the operation of the hot water supply device 14 to heat the second heat medium is also included. In the description of the heating only operation mode here, it is assumed that the hot water supply device 14 is operating.
  • the low-temperature / low-pressure first heat source side refrigerant is compressed by the compressor 10a and discharged as a high-temperature / high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10a passes through the first refrigerant flow switching device 11, conducts through the first connection pipe 4a, passes through the check valve 13b, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • One of the high-temperature and high-pressure gas refrigerant that flows into the heat medium relay unit 3 and branches off before the opening / closing device 17 passes through the second refrigerant flow switching device 18a and the second refrigerant flow switching device 18b, It flows into each of the heat exchanger 15a and the heat exchanger 15b.
  • the high-temperature and high-pressure gas refrigerant flowing into the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the heat medium circulating in the heat medium circulation circuit B, and becomes a high-pressure liquid refrigerant. .
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b is expanded by the expansion device 16a and the expansion device 16b to become a low-temperature, low-pressure two-phase refrigerant.
  • the two-phase refrigerant flows out of the heat medium relay unit 3 through the opening / closing device 17b, and flows into the outdoor unit 1 through the refrigerant pipe 4 again.
  • the two-phase refrigerant that has flowed into the outdoor unit 1 is conducted through the second connection pipe 4b, passes through the check valve 13c, and flows into the heat source side heat exchanger 12 that functions as an evaporator.
  • the two-phase refrigerant that has flowed into the heat source side heat exchanger 12 absorbs heat from the outdoor air in the heat source side heat exchanger 12 and becomes a low-temperature and low-pressure gas refrigerant.
  • the low-temperature and low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 12 is again sucked into the compressor 10 a via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16a has a constant subcool (degree of subcooling) obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b.
  • the opening degree is controlled.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. Be controlled.
  • the opening / closing device 17a is closed and the opening / closing device 17b is open.
  • the temperature at the intermediate position may be used instead of the pressure sensor 36, and the system can be configured at low cost.
  • the liquid refrigerant flowing out of the heating heat exchanger 15c is expanded by the expansion device 16c and becomes a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed out of the expansion device 16c flows out of the hot water supply device 14, flows into the heat medium relay unit 3 again through the refrigerant pipe 4, and merges with the refrigerant that has flowed out of the expansion device 16a and the expansion device 16b. .
  • the opening degree of the expansion device 16c is controlled so that the subcool, which is the temperature difference between the detected temperature of the fifth temperature sensor 40 and the saturation temperature converted from the detected pressure of the third pressure sensor 39, is constant.
  • the flow of the second heat source side refrigerant in the refrigerant circuit A2 will be described.
  • the second heat source side refrigerant is compressed by the compressor 10b and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10b flows into the heat exchanger related to heat medium 15d.
  • the heat exchanger with heat exchanger 15d condenses while radiating heat to the second heat medium, and becomes a two-phase refrigerant.
  • the second heat source side refrigerant dissipates heat to the second heat medium and heats the second heat medium.
  • the two-phase refrigerant that has flowed out of the heat exchanger related to heat medium 15d flows into the heating heat exchanger 15c through the expansion device 16d.
  • the two-phase refrigerant that has flowed into the heating heat exchanger 15c is transferred with heat from the first heat source side refrigerant.
  • the heat absorbed by the second heat source side refrigerant from the first heat source side refrigerant is consumed as the amount of heat for evaporating the second heat source side refrigerant.
  • the gas refrigerant flowing out of the heating heat exchanger 15c is again sucked into the compressor 10b.
  • the expansion device 16d controls the degree of opening so that the degree of superheat, which is the temperature difference between the detected temperature of the fourth temperature sensor 38 and the saturation temperature converted from the detected pressure of the second pressure sensor 37, is constant. Is done. Further, the rotation frequency of the compressor 10b is controlled so that the temperature detected by the sixth temperature sensor 41 becomes the target temperature.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the heat of the first heat source side refrigerant is transmitted to the first heat medium in both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b, and the warmed first heat medium is transferred to the pump 21a.
  • the heat medium pipe 5 is caused to flow by the pump 21b.
  • the first heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the utilization side heat exchanger 26a and utilization side It flows into the heat exchanger 26b.
  • the first heat medium radiates heat to the indoor air in the use side heat exchanger 26a and the use side heat exchanger 26b, thereby heating the indoor space 7.
  • the first heat medium flows out of the use-side heat exchanger 26a and the use-side heat exchanger 26b and flows into the heat medium flow control device 25a and the heat medium flow control device 25b.
  • the flow rate of the first heat medium is controlled to a flow rate necessary to cover the load required indoors by the action of the heat medium flow rate adjusting device 25a and the heat medium flow rate adjusting device 25b, and the use side heat exchanger 26a, it flows into the use side heat exchanger 26b.
  • the first heat medium flowing out of the heat medium flow control device 25a and the heat medium flow control device 25b passes through the first heat medium flow switching device 22a and the first heat medium flow switching device 22b, and performs heat exchange between heat media. Flows into the heat exchanger 15a and the heat exchanger related to heat medium 15b, and is sucked into the pump 21a and the pump 21b again.
  • the second heat medium flow switching device 23 passes through the heat medium flow control device 25 and reaches the first heat medium flow switching device 22. 1 Heat medium is flowing.
  • the air conditioning load required in the indoor space 7 includes the temperature detected by the first temperature sensor 31a, the temperature detected by the first temperature sensor 31b, and the temperature detected by the second temperature sensor 34. It is possible to cover by controlling so that the difference between the two is kept at the target value.
  • the outlet temperature of the heat exchanger related to heat medium 15 either the temperature of the first temperature sensor 31a or the first temperature sensor 31b may be used, or the average temperature thereof may be used.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 ensure a flow path that flows to both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b.
  • the intermediate opening is set.
  • the usage-side heat exchanger 26a should be controlled by the temperature difference between the inlet and the outlet, but the temperature of the heat medium on the inlet side of the usage-side heat exchanger 26 is detected by the first temperature sensor 31b. By using the first temperature sensor 31b, the number of temperature sensors can be reduced and the system can be configured at low cost.
  • the flow of the second heat medium in the heat medium circuit B2 will be described.
  • the heat of the second heat source side refrigerant is transmitted to the second heat medium by the heat exchanger related to heat medium 15d, and the heated second heat medium is caused to flow in the heat medium pipe 5a by the pump 21c.
  • the second heat medium that has been pressurized and discharged by the pump 21 c flows into the hot water storage tank 24.
  • the second heat medium that has flowed into the hot water storage tank 24 again flows into the heat exchanger related to heat medium 15d, and is then sucked into the pump 21c.
  • FIG. 5 is a diagram for explaining the flow of the refrigerant and the heat medium during the cooling main operation of the air-conditioning apparatus 100 shown in FIG.
  • the cooling main operation mode will be described by taking as an example a case where a cooling load is generated in the use side heat exchanger 26a and a heating load is generated in the use side heat exchanger 26b.
  • pipes represented by bold lines indicate pipes through which the refrigerant (first heat source side refrigerant and second heat source side refrigerant) and the heat medium (first heat medium and second heat medium) circulate.
  • the flow direction of the refrigerant is indicated by solid arrows
  • the flow direction of the heat medium is indicated by broken line arrows.
  • the first refrigerant flow switching device 11 is switched so that the heat source side refrigerant discharged from the compressor 10 a flows into the heat source side heat exchanger 12.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the first heat medium circulates between the heat exchanger related to heat medium 15a and the use side heat exchanger 26a, and between the heat exchanger related to heat medium 15b and the use side heat exchanger 26b.
  • the cooling main operation mode includes operating the hot water supply device 14 to heat the second heat medium. In the description of the cooling main operation mode here, it is assumed that the hot water supply device 14 is operated.
  • the low-temperature / low-pressure first heat source side refrigerant is compressed by the compressor 10a and discharged as a high-temperature / high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10 a flows into the heat source side heat exchanger 12 through the first refrigerant flow switching device 11. Then, the heat source side heat exchanger 12 condenses while radiating heat to the outdoor air, and becomes a two-phase refrigerant.
  • the two-phase refrigerant that has flowed out of the heat source side heat exchanger 12 flows out of the outdoor unit 1 through the check valve 13a, and flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • One of the two-phase refrigerant that has flowed into the heat medium relay unit 3 flows into the heat exchanger related to heat medium 15b that acts as a condenser through the second refrigerant flow switching device 18b.
  • the two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the first heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant. This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant that has flowed into the heat exchanger related to heat medium 15a absorbs heat from the first heat medium circulating in the heat medium circuit B, and becomes a low-pressure gas refrigerant while cooling the first heat medium.
  • the gas refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows into the outdoor unit 1 again through the refrigerant pipe 4.
  • the refrigerant flowing into the outdoor unit 1 passes through the check valve 13d and is sucked into the compressor 10a again via the first refrigerant flow switching device 11 and the accumulator 19.
  • the opening degree of the expansion device 16b is controlled so that the superheat obtained as the difference between the temperature detected by the third temperature sensor 35c and the temperature detected by the third temperature sensor 35d becomes constant.
  • the expansion device 16a is fully open, the opening / closing device 17a is closed, and the opening / closing device 17b is closed.
  • the expansion device 16b controls the opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35d is constant. May be.
  • the expansion device 16b may be fully opened, and the superheat or subcool may be controlled by the expansion device 16a.
  • the other of the two-phase refrigerant that has flowed into the heat medium converter 3, that is, the first heat source side refrigerant branched before the opening / closing device 17 a that is closed of the heat medium converter 3 is transferred from the heat medium converter 3. It flows out and flows into the hot water supply device 14 through the refrigerant pipe 4. And the 1st heat source side refrigerant
  • the liquid refrigerant flowing out of the heating heat exchanger 15c is expanded by the expansion device 16c and becomes a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed out of the expansion device 16c flows out of the hot water supply device 14, flows into the heat medium relay unit 3 again through the refrigerant pipe 4, and merges with the refrigerant that has flowed out of the expansion device 16b.
  • the opening degree of the expansion device 16c is controlled so that the subcool, which is the temperature difference between the detected temperature of the fifth temperature sensor 40 and the saturation temperature converted from the detected pressure of the third pressure sensor 39, is constant.
  • the flow of the second heat source side refrigerant in the refrigerant circuit A2 will be described.
  • the second heat source side refrigerant is compressed by the compressor 10b and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10b flows into the heat exchanger related to heat medium 15d.
  • the heat exchanger with heat exchanger 15d condenses while radiating heat to the second heat medium, and becomes a two-phase refrigerant.
  • the second heat source side refrigerant dissipates heat to the second heat medium and heats the second heat medium.
  • the two-phase refrigerant that has flowed out of the heat exchanger related to heat medium 15d flows into the heating heat exchanger 15c via the expansion device 16d, and the heat is transferred from the first heat source side refrigerant.
  • the heating heat exchanger 15c the heat absorbed by the second heat source side refrigerant from the first heat source side refrigerant is consumed as the amount of heat for evaporating the second heat source side refrigerant.
  • the gas refrigerant flowing out of the heating heat exchanger 15c is again sucked into the compressor 10b.
  • the expansion device 16d controls the degree of opening so that the degree of superheat, which is the temperature difference between the detected temperature of the fourth temperature sensor 38 and the saturation temperature converted from the detected pressure of the second pressure sensor 37, is constant. Is done. Further, the rotation frequency of the compressor 10b is controlled so that the temperature detected by the sixth temperature sensor 41 becomes the target temperature.
  • the flow of the first heat medium in the heat medium circuit B will be described.
  • the heat of the first heat source side refrigerant is transmitted to the first heat medium in the heat exchanger related to heat medium 15b, and the heated first heat medium is caused to flow in the heat medium pipe 5 by the pump 21b. It will be.
  • the heat of the heat source side refrigerant is transmitted to the first heat medium in the heat exchanger related to heat medium 15a, and the cooled first heat medium is caused to flow in the heat medium pipe 5 by the pump 21a. It will be.
  • the first heat medium pressurized and discharged by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b, and the utilization side heat exchanger 26a and utilization side It flows into the heat exchanger 26b.
  • the first heat medium radiates heat to the indoor air, thereby heating the indoor space 7. Further, in the use side heat exchanger 26a, the first heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. At this time, the flow rate of the first heat medium is controlled to a flow rate necessary to cover the load required indoors by the action of the heat medium flow rate adjusting device 25a and the heat medium flow rate adjusting device 25b, and the use side heat exchanger 26a, it flows into the use side heat exchanger 26b.
  • the first heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26b passes through the heat medium flow control device 25b and the first heat medium flow switching device 22b and flows into the heat exchanger related to heat medium 15b.
  • the first heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26a flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25a and the first heat medium flow switching device 22a. Then, it is sucked into the pump 21a again.
  • the first heat medium flow switching is performed from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the first heat medium flows in the direction to the device 22.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a so as to keep the target value.
  • the flow path is closed by the heat medium flow control device 25, The first heat medium may be prevented from flowing to the use side heat exchanger 26.
  • the flow of the second heat medium in the heat medium circuit B2 will be described.
  • the heat of the second heat source side refrigerant is transmitted to the second heat medium by the heat exchanger related to heat medium 15d, and the heated second heat medium is caused to flow in the heat medium pipe 5a by the pump 21c.
  • the second heat medium that has been pressurized and discharged by the pump 21 c flows into the hot water storage tank 24.
  • the second heat medium that has flowed into the hot water storage tank 24 again flows into the heat exchanger related to heat medium 15d, and is then sucked into the pump 21c.
  • FIG. 6 is a diagram for explaining the flow of the refrigerant and the heat medium during the heating-main operation of the air-conditioning apparatus 100 shown in FIG.
  • the heating main operation mode will be described by taking as an example a case where a thermal load is generated only in the use side heat exchanger 26a and the use side heat exchanger 26b.
  • pipes represented by thick lines indicate pipes through which the refrigerant (first heat source side refrigerant and second heat source side refrigerant) and the heat medium (first heat medium and second heat medium) flow.
  • the flow direction of the refrigerant is indicated by a solid line arrow
  • the flow direction of the heat medium is indicated by a broken line arrow.
  • the first refrigerant flow switching device 11 is used so that the first heat source side refrigerant discharged from the compressor 10 a does not pass through the heat source side heat exchanger 12. It switches so that it may flow in into the heat carrier converter 3.
  • the pump 21a and the pump 21b are driven, the heat medium flow control device 25a and the heat medium flow control device 25b are opened, and the heat medium flow control device 25c and the heat medium flow control device 25d are fully closed.
  • the heat medium circulates between the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b and the use side heat exchanger 26a and the use side heat exchanger 26b.
  • the heating main operation mode includes operating the hot water supply device 14 to heat the second heat medium. In the description of the heating main operation mode here, it is assumed that the hot water supply device 14 is operating.
  • the low-temperature / low-pressure first heat source side refrigerant is compressed by the compressor 10a and discharged as a high-temperature / high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10a passes through the first refrigerant flow switching device 11, conducts through the first connection pipe 4a, passes through the check valve 13b, and flows out of the outdoor unit 1.
  • the high-temperature and high-pressure gas refrigerant that has flowed out of the outdoor unit 1 flows into the heat medium relay unit 3 through the refrigerant pipe 4.
  • the gas refrigerant flowing into the heat exchanger related to heat medium 15b is condensed and liquefied while dissipating heat to the first heat medium circulating in the heat medium circuit B, and becomes liquid refrigerant.
  • the liquid refrigerant flowing out of the heat exchanger related to heat medium 15b is expanded by the expansion device 16b and becomes a low-pressure two-phase refrigerant.
  • This low-pressure two-phase refrigerant flows into the heat exchanger related to heat medium 15a acting as an evaporator via the expansion device 16a.
  • the low-pressure two-phase refrigerant flowing into the heat exchanger related to heat medium 15a evaporates by absorbing heat from the first heat medium circulating in the heat medium circulation circuit B, thereby cooling the first heat medium.
  • This low-pressure two-phase refrigerant flows out of the heat exchanger related to heat medium 15a, flows out of the heat medium converter 3 via the second refrigerant flow switching device 18a, and flows again into the outdoor unit 1 through the refrigerant pipe 4. To do.
  • the two-phase refrigerant that has flowed into the outdoor unit 1 passes through the check valve 13c and flows into the heat source side heat exchanger 12 that acts as an evaporator. Then, the two-phase refrigerant that has flowed into the heat source side heat exchanger 12 absorbs heat from the outdoor air in the heat source side heat exchanger 12 and becomes a low-temperature and low-pressure gas refrigerant. The low-temperature and low-pressure gas refrigerant that has flowed out of the heat source side heat exchanger 12 is again sucked into the compressor 10 a via the first refrigerant flow switching device 11 and the accumulator 19.
  • the expansion device 16b has an opening degree so that a subcool obtained as a difference between a value obtained by converting the pressure detected by the pressure sensor 36 into a saturation temperature and a temperature detected by the third temperature sensor 35b is constant. Be controlled. Further, the expansion device 16a is fully opened, and the opening / closing devices 17a and 17b are closed. Note that the expansion device 16b may be fully opened, and the subcooling may be controlled by the expansion device 16a.
  • the liquid refrigerant flowing out of the heating heat exchanger 15c is expanded by the expansion device 16c and becomes a gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant that has flowed out of the expansion device 16c flows out of the hot water supply device 14, flows into the heat medium relay unit 3 again through the refrigerant pipe 4, and merges with the refrigerant that has flowed out of the expansion device 16b.
  • the opening degree of the expansion device 16c is controlled so that the subcool, which is the temperature difference between the detected temperature of the fifth temperature sensor 40 and the saturation temperature converted from the detected pressure of the third pressure sensor 39, is constant.
  • the flow of the second heat source side refrigerant in the refrigerant circuit A2 will be described.
  • the second heat source side refrigerant is compressed by the compressor 10b and discharged as a high-temperature and high-pressure gas refrigerant.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 10b flows into the heat exchanger related to heat medium 15d.
  • the heat exchanger with heat exchanger 15d condenses while radiating heat to the second heat medium, and becomes a two-phase refrigerant.
  • the second heat source side refrigerant dissipates heat to the second heat medium and heats the second heat medium.
  • the two-phase refrigerant that has flowed out of the heat exchanger related to heat medium 15d flows into the heating heat exchanger 15c via the expansion device 16d, and the heat is transferred from the first heat source side refrigerant.
  • the heating heat exchanger 15c the heat absorbed by the second heat source side refrigerant from the first heat source side refrigerant is consumed as the amount of heat for evaporating the second heat source side refrigerant.
  • the gas refrigerant flowing out of the heating heat exchanger 15c is again sucked into the compressor 10b.
  • the expansion device 16d controls the degree of opening so that the degree of superheat, which is the temperature difference between the detected temperature of the fourth temperature sensor 38 and the saturation temperature converted from the detected pressure of the second pressure sensor 37, is constant. Is done. Further, the rotation frequency of the compressor 10b is controlled so that the temperature detected by the sixth temperature sensor 41 becomes the target temperature.
  • the flow of the heat medium in the heat medium circuit B will be described.
  • the heat of the first heat source side refrigerant is transmitted to the first heat medium by the heat exchanger related to heat medium 15b, and the heated first heat medium is caused to flow in the heat medium pipe 5 by the pump 21b. It will be.
  • the cold heat of the heat source side refrigerant is transmitted to the first heat medium in the heat exchanger related to heat medium 15a, and the cooled first heat medium is caused to flow in the heat medium pipe 5 by the pump 21a. It will be.
  • the first heat medium pressurized and flowing out by the pump 21a and the pump 21b passes through the second heat medium flow switching device 23a and the second heat medium flow switching device 23b to the use side heat exchanger 26a and the use side. It flows into the heat exchanger 26b.
  • the first heat medium absorbs heat from the indoor air, thereby cooling the indoor space 7. Further, in the use side heat exchanger 26a, the first heat medium radiates heat to the indoor air, thereby heating the indoor space 7. At this time, the flow rate of the first heat medium is controlled to a flow rate necessary to cover the load required indoors by the action of the heat medium flow rate adjusting device 25a and the heat medium flow rate adjusting device 25b, and the use side heat exchanger 26a, it flows into the use side heat exchanger 26b.
  • the first heat medium whose temperature has slightly increased after passing through the use side heat exchanger 26b flows into the heat exchanger related to heat medium 15a through the heat medium flow control device 25b and the first heat medium flow switching device 22b.
  • the first heat medium whose temperature has slightly decreased after passing through the use side heat exchanger 26a passes through the heat medium flow control device 25a and the first heat medium flow switching device 22a, flows into the heat exchanger related to heat medium 15b, It is sucked into the pump 21b again.
  • the first heat medium flow switching is performed from the second heat medium flow switching device 23 via the heat medium flow control device 25 on both the heating side and the cooling side.
  • the first heat medium flows in the direction to the device 22.
  • the air conditioning load required in the indoor space 7 is the difference between the temperature detected by the first temperature sensor 31b on the heating side and the temperature detected by the second temperature sensor 34 on the heating side, This can be covered by controlling the difference between the temperature detected by the two temperature sensor 34 and the temperature detected by the first temperature sensor 31a so as to keep the target value.
  • the heat medium flow control device 25 closes the flow path, The first heat medium may be prevented from flowing to the use side heat exchanger 26.
  • the flow of the second heat medium in the heat medium circuit B2 will be described.
  • the heat of the second heat source side refrigerant is transmitted to the second heat medium by the heat exchanger related to heat medium 15d, and the heated second heat medium is caused to flow in the heat medium pipe 5a by the pump 21c.
  • the second heat medium that has been pressurized and discharged by the pump 21 c flows into the hot water storage tank 24.
  • the second heat medium that has flowed into the hot water storage tank 24 again flows into the heat exchanger related to heat medium 15d, and is then sucked into the pump 21c.
  • the temperature of the second heat medium is set to be higher than the target temperature of the first heat medium flowing through the use side heat exchangers 26a to 26d. This is because the second heat medium is mainly used to cover the hot water supply load.
  • the target temperature of the first heat medium flowing through the use side heat exchangers 26a to 26d is set to a value such as 50 ° C.
  • the target temperature of the second heat medium flowing through the heat exchanger related to heat medium 15d is set to 70 ° C.
  • the condensation temperature or pseudo condensation temperature of the second heat source side refrigerant used in the hot water supply device 14 is higher than the condensation temperature or pseudo condensation temperature of the refrigerant circulating between the outdoor unit 1 and the heat medium relay unit 3.
  • the condensation temperature or pseudo condensation temperature of the second heat source side refrigerant used in the hot water supply device 14 is 75 ° C.
  • the condensation temperature or pseudo condensation temperature of the refrigerant circulating between the outdoor unit 1 and the heat medium relay unit 3 is 55. It is controlled to a value such as ° C.
  • HFO1234yf tetrafluoropropene
  • HFO1234ze (E), etc. tetrafluoropropene represented by the chemical formula C 3 H 2 F 4 and the chemical formula CH 2 F
  • a mixed refrigerant containing difluoromethane (R32) represented by 2 is mixed and circulated.
  • HFO1234ze there are two geometric isomers. There are a trans type in which F and CF 3 are symmetrical with respect to a double bond, and a cis type on the same side. The physical properties are different.
  • HFO1234ze (E) in this embodiment is a transformer type.
  • tetrafluoropropene Since tetrafluoropropene has a double bond in the chemical formula, it is easily decomposed in the atmosphere, and has a low global warming potential (GWP) of about 4 (in the case of HFO1234yf), for example, and is an environmentally friendly refrigerant.
  • GWP global warming potential
  • tetrafluoropropene has a lower density than the refrigerant such as R410A that has been adopted in the conventional air conditioner, if it is used alone as a refrigerant, a compressor is required to exert a large heating capacity and cooling capacity. Must be very large.
  • the refrigerant piping In order to prevent an increase in pressure loss in the piping, the refrigerant piping must also be made thick, resulting in an expensive air conditioner.
  • R32 is mixed with tetrafluoropropene.
  • This R32 is a refrigerant that is relatively easy to use because the characteristics of the refrigerant are close to those of conventional refrigerants.
  • the GWP of R32 is relatively high at about 675. That is, from the viewpoint of environmental load, R32 is a refrigerant that is not suitable for use alone without being mixed with other refrigerants.
  • the characteristics of the refrigerant are improved without increasing the GWP so much, and an air conditioner that is easy for the global environment and efficient is obtained. be able to.
  • a mixing ratio of tetrafluoropropene and R32 it is conceivable to use the mixture by mass%, for example, 70% to 30%. However, the mixing ratio is not limited to this.
  • a refrigerant obtained by mixing tetrafluoropropene and R32 is a non-azeotropic refrigerant having refrigerants having different boiling points. It becomes. For example, when this non-azeotropic refrigerant flows into a liquid reservoir such as the accumulator 19, a component having a lower boiling point stays as the liquid refrigerant. Thereby, the circulation composition of the refrigerant
  • FIG. 7 is an explanatory diagram of a ph diagram (pressure-enthalpy diagram) of a predetermined non-azeotropic refrigerant.
  • FIG. 8 is a case where a non-azeotropic refrigerant is employed as the first heat source side refrigerant and a single refrigerant is employed as the second heat source side refrigerant, and is an explanatory diagram of both refrigerant temperatures in the heating heat exchanger 15c. It is.
  • FIG. 8 is a case where a non-azeotropic refrigerant is employed as the first heat source side refrigerant and a single refrigerant is employed as the second heat source side refrigerant, and is an explanatory diagram of both refrigerant temperatures in the heating heat exchanger 15c. It is.
  • FIG. 8 is a case where a non-azeotropic refrigerant is employed as the first heat source side refrigerant and a single refrigerant is employed as the second heat source side ref
  • FIG. 9 is an explanatory diagram of the temperature of both refrigerants in the heating heat exchanger 15c in the case where a non-azeotropic refrigerant is employed as the first heat source side refrigerant and the second heat source side refrigerant.
  • 8 and 9 correspond to the flow path of the first heat source side refrigerant and the flow path of the second heat source side refrigerant of the heat exchanger 15c for heating. That is, the positive direction of the horizontal axis corresponds to the inlet side of the flow path of the first heat source side refrigerant, and the negative direction corresponds to the outlet side of the flow path of the first heat source side refrigerant.
  • the positive direction of the horizontal axis corresponds to the outlet side of the flow path of the second heat source side refrigerant, and the negative direction corresponds to the inlet side of the flow path of the second heat source side refrigerant.
  • shaft of FIG.8 and FIG.9 has shown the temperature of the 1st heat source side refrigerant
  • the first heat source side refrigerant on the inlet side refers to the first heat source side refrigerant flowing into the heating heat exchanger 15c
  • the first heat source side refrigerant on the outlet side The 1st heat source side refrigerant
  • the saturated liquid temperature and the saturated gas temperature at the same pressure are different. That is, the saturated liquid temperature T L1 at the pressure P1 becomes lower temperature than the saturation gas temperature T G1 in the pressure P1.
  • the isotherm in the two-phase region of the ph diagram is inclined with a predetermined temperature gradient.
  • the ph diagram becomes different and the temperature gradient changes. For example, when the mixing ratio of HFO1234yf and R32 is 70% to 30%, the temperature gradient is about 5.6 ° C. on the high pressure side and about 6.8 ° C. on the low pressure side.
  • the temperature gradient is about 2.5 ° C. on the high pressure side and about 2.8 ° C. on the low pressure side. That is, assuming that the pressure loss is small, when the first heat source side refrigerant having the above mixing ratio is supplied to the heating heat exchanger 15c of the hot water supply device 14, the inlet of the heating heat exchanger 15c is obtained. The refrigerant temperature gradually decreases from the outlet toward the outlet.
  • a refrigerant other than an azeotropic refrigerant that is, a refrigerant such as a single refrigerant or a pseudo-azeotropic refrigerant
  • the circulatory composition of the refrigerant does not change. Is used for the phase change of the refrigerant and no temperature gradient occurs. That is, in the case of a refrigerant that is not a non-azeotropic refrigerant, the refrigerant temperature does not gradually decrease from the inlet to the outlet of the heat exchanger 15c for heating.
  • the first heat source side refrigerant and the second heat source side refrigerant are counterflowing. That is, as for the positional relationship of the refrigerant, the first heat source side refrigerant on the inlet side corresponds to the second heat source side refrigerant on the outlet side, and the first heat source side refrigerant on the outlet side corresponds to the second heat source side refrigerant on the inlet side. It will be.
  • a single refrigerant or a pseudo-azeotropic refrigerant mixture (for example, HFO1234yf) is adopted as the second heat source side refrigerant.
  • a single refrigerant or a pseudo-azeotropic refrigerant mixture for example, HFO1234yf
  • the saturated gas temperature and the saturated liquid temperature at the same pressure in the single refrigerant or the pseudo-azeotropic refrigerant are the same or nearly the same (temperature Therefore, the temperature of the second heat source side refrigerant passage in the heat exchanger 15c for heating is almost constant.
  • the inlet side first heat source side refrigerant temperature and the outlet side second heat source side refrigerant temperature, the outlet side first heat source side refrigerant temperature, and the inlet side second heat source side refrigerant temperature are shown in FIG.
  • the outlet side of the second heat source side refrigerant in the heating heat exchanger 15c is large.
  • the “subtracted value” becomes large and the heat exchange efficiency of the heat exchanger 15c for heating is reduced.
  • the operating efficiency of the apparatus 14 will deteriorate.
  • the air-conditioning apparatus 100 employs a non-azeotropic refrigerant mixture (for example, a refrigerant mixture of HFO1234yf and R32) as the second heat source side refrigerant.
  • a non-azeotropic refrigerant mixture for example, a refrigerant mixture of HFO1234yf and R32
  • the saturated gas temperature at the same pressure is higher than the saturated liquid temperature (has a temperature gradient). Therefore, the second heat source side refrigerant temperature on the outlet side is higher than the second heat source side refrigerant temperature on the inlet side in the heat exchanger 15c for heating.
  • the inlet side first heat source side refrigerant temperature and the outlet side second heat source side refrigerant temperature, the outlet side first heat source side refrigerant temperature, and the inlet side second heat source side refrigerant temperature are shown in FIG.
  • the outlet side of the second heat source side refrigerant in the heating heat exchanger 15c is smaller than the “subtracted value” in FIG.
  • the heat exchange for heating The temperature difference between the outlet side temperature of the second heat source side refrigerant and the inlet side temperature of the second heat source side refrigerant in the vessel 15c is smaller than the temperature difference between the saturated gas temperature and the saturated liquid temperature.
  • the first heat source side refrigerant becomes a gas part (gas phase) on the inlet side of the heating heat exchanger 15c and a liquid part (liquid phase) on the outlet side of the heating heat exchanger 15c. It is a two-phase part (gas-liquid two-phase).
  • the length of a gas part and a liquid part is not so long (compared with a two-phase part), and a heat transfer rate is also small, the contribution with respect to the total heat exchange amount is small.
  • the degree of superheat on the outlet side of the second heat source side refrigerant is controlled to a small value. Since the value of the degree of superheat is small and the heat transfer coefficient of the gas phase is small, most of the heat exchange of the heating heat exchanger 15c is performed in the two-phase portion of the second heat source side refrigerant.
  • the heat exchange between the two-phase portion of the first heat source side refrigerant and the two-phase portion of the second heat source side refrigerant accounts for most of the total heat exchange amount in the heat exchanger for heating 15c. is occupying.
  • reducing the temperature difference in the two-phase state means that “the saturated gas temperature on the inlet side of the first heat source side refrigerant (the point at which the gas changes into two phases)” and “the saturated liquid temperature on the outlet side ( The temperature difference (the first temperature difference) between the two-phase to the liquid) and the saturated gas temperature on the outlet side of the second heat source side refrigerant in the heating heat exchanger 15c (the point where the two-phase changes to the gas).
  • This state may be realized by adjusting the opening of the expansion device 16d so that the difference between the first temperature difference and the second temperature difference is less than or equal to a predetermined value.
  • the above-mentioned first temperature difference and “second” it is also possible to make the temperature difference between the “saturated gas of the heat source side refrigerant (point changing from two phase to gas) temperature” and the “saturated liquid of the second heat source side refrigerant (point changing from two phase to liquid) temperature” close to the value.
  • the heat exchange efficiency of the heat exchanger 15c for heating can be improved, and the operating efficiency of the hot water supply device 14 can be improved.
  • FIG. 10 is an explanatory diagram of the temperature difference (corresponding to the temperature gradient shown in FIG. 7) between the saturated gas and the saturated liquid at the same pressure of the non-azeotropic refrigerant (HFO1234yf and R32) supplied to the heating heat exchanger 15c. It is.
  • the horizontal axis indicates the ratio of R32 in the mixed refrigerant, and the vertical axis indicates the temperature difference of the refrigerant.
  • the “condensation side” corresponds to the side on which the first heat source side refrigerant is condensed in the heat exchanger 15c for heating, and the “condensation side temperature difference” is a saturation gas temperature of 45 at each mixing ratio.
  • the temperature difference between the saturated gas and the saturated liquid at a pressure of ° C. is shown.
  • the “evaporation side” corresponds to the side where the second heat source side refrigerant evaporates in the heating heat exchanger 15c, and the “evaporation side temperature difference” means that the saturation gas temperature is 5 at each mixing ratio.
  • the temperature difference between the saturated gas and the evaporator inlet refrigerant at a pressure of ° C. is shown.
  • three examples of the temperature difference on the evaporation side of the heat exchanger 15c for heating are shown when the inlet dryness is “0.1”, “0.2”, and “saturated liquid”.
  • the drying heat exchanger 15c if the dryness of the inlet of the second heat source side refrigerant on the evaporation side is as small as about 0.1, the saturated gas and the saturated liquid of the second heat source side refrigerant on the evaporation side are reduced.
  • the temperature difference is larger than the temperature difference between the saturated gas and the saturated liquid of the first heat source side refrigerant on the condensing side.
  • the dryness of the second heat source side refrigerant on the inlet side is 0.2, the temperature difference on the condensing side is larger than the temperature difference on the evaporating side.
  • the temperature difference between the saturated gas and the saturated liquid of the first heat source side refrigerant on the condensation side is larger than the saturated gas and the saturated liquid of the second heat source side refrigerant on the evaporation side.
  • the ratio of the first heat source side refrigerant and the second heat source side refrigerant may be set as follows. That is, when the ratio of R32 in the first heat source side refrigerant is 20%, the ratio of R32 in the second heat source side refrigerant is set to about 8% or about 24%. As shown in FIG. 10, when the ratio of R32 in the first heat source side refrigerant is 20%, the temperature difference between the saturated gas and the saturated liquid is 7.3 ° C., and the second heat source When the dryness of the side refrigerant is 0.1, the temperature difference can be set to about 7.3 degrees by setting the ratio of R32 of the second heat source side refrigerant to about 8% or about 24%. Because.
  • the heat exchange efficiency of the heat exchanger 15c for heating can be improved, and the operating efficiency of the hot water supply apparatus 14 can be improved.
  • the ratio of R32 in the first heat source side refrigerant is 20% and the dryness of the second heat source side refrigerant is 0.1
  • the ratio of R32 in the second heat source side refrigerant is 6 to What is necessary is just to set to 29%.
  • the first temperature difference and the second temperature difference can be kept within 1 ° C.
  • the second heat source side refrigerant may be regarded as a saturated liquid.
  • the ratio of R32 in the first heat source side refrigerant is 20%, if the ratio of R32 in the second heat source side refrigerant is 6% or 28%, the first temperature difference and the second temperature difference If the ratio of R32 in the second heat source side refrigerant is 5 to 8% and 23 to 32%, the second temperature difference should be within 1 ° C of the first temperature difference. Can do.
  • the first heat source side refrigerant is filled after the device is installed on site. More specifically, after the device is installed, the first refrigeration cycle is filled with the first heat source side refrigerant by the refrigerant cylinder whose ratio of R32 is 20%.
  • the second heat source side refrigerant is filled in the device in advance before shipment from the factory. More specifically, when the inlet dryness of the second heat source side refrigerant in the second heat source side refrigerant side flow path of the heat exchanger for heating 15c is 0.1, the second heat source is preliminarily set before shipping from the factory.
  • the second refrigeration cycle is filled with the second heat source side refrigerant by the refrigerant cylinder whose ratio of R32 to the side refrigerant is about 8% or about 24%.
  • the first refrigeration cycle and the second refrigeration cycle are filled with the first heat source side refrigerant and the second heat source side refrigerant.
  • the simplest in reality, it is rare that two types of refrigerants having a predetermined ratio of R32, that is, a convenient ratio, are commercialized and distributed in the market.
  • the air conditioner 100 uses the first heat source side refrigerant and the second heat source side refrigerant as follows. It is good to fill.
  • the refrigerant when only a refrigerant cylinder having a R32 ratio of 20% is distributed in the market as a mixed refrigerant, the refrigerant is charged into the first refrigeration cycle locally as a first heat source side refrigerant. .
  • the refrigerant having the R32 ratio of 24% is to be charged into the second refrigeration cycle as the second refrigerant.
  • the HFO 1234yf refrigerant cylinder and the R32 refrigerant cylinder are used in the factory, and the second refrigeration cycle is first filled with HFO 1234yf of 0.76 times the specified refrigerant amount, and then the specified refrigerant amount of 0 It is good to ship after filling 24 times R32 refrigerant.
  • HFO1234yf which is 0.76 times the amount of the specified refrigerant, is shipped to the second refrigeration cycle by a refrigerant cylinder at the factory, and is then shipped 0.24 times the amount of the specified refrigerant by the R32 refrigerant cylinder.
  • the R32 refrigerant can be additionally charged.
  • the air conditioner 100 fills the second refrigeration cycle with the second heat source side refrigerant so that the plurality of single refrigerants constituting the second heat source side refrigerant have a predetermined mixing ratio.
  • the difference between the first temperature difference and the second temperature difference can be kept below a predetermined value, and the first heat source side refrigerant flowing into the heating heat exchanger 15c and the second heat source The heat exchange efficiency with the side refrigerant can be improved.
  • the air-conditioning apparatus 100 has several operation modes. In these operation modes, the heat source side refrigerant flows through the pipe 4 connecting the outdoor unit 1 and the heat medium relay unit 3.
  • Heat medium piping 5 In some operation modes executed by the air-conditioning apparatus 100 according to Embodiment 1, a heat medium such as water or antifreeze flows through the heat medium pipe 5 that connects the heat medium converter 3 and the indoor unit 2. Yes.
  • the air-conditioning apparatus 100 according to Embodiment 1 is a refrigerant that fills the second heat source side refrigerant in the second refrigeration cycle so that the plurality of single refrigerants constituting the second heat source side refrigerant have a predetermined mixing ratio. Since the filling method is adopted, the difference between the first temperature difference and the second temperature difference can be kept below a predetermined value, and the first heat source side refrigerant flowing into the heating heat exchanger 15c and the second temperature difference can be reduced. Heat exchange efficiency with the two heat source side refrigerant can be improved. And energy saving can be aimed at by the part which can improve heat exchange efficiency in this way.
  • FIG. FIG. 11 is a circuit configuration example of the air-conditioning apparatus 200 according to Embodiment 2.
  • the same parts as those in the first embodiment are denoted by the same reference numerals, and differences from the first embodiment will be mainly described.
  • the frequency of the compressor 10b of the second refrigeration cycle changes according to the target value, the change in the circulation flow rate of the second heat medium, and the like, and the inlet dryness of the second heat source side refrigerant flowing into the heating heat exchanger 15c May change.
  • the inlet side second heat source side refrigerant temperature may change. That is, the temperature difference between the second heat source side refrigerant temperature on the outlet side and the second heat source side refrigerant temperature on the inlet side in the heat exchanger 15c for heating changes, that is, the second temperature difference may change. That is.
  • the air conditioning apparatus 200 can improve the heat exchange efficiency of the heating heat exchanger 15c even if the inlet dryness of the second heat source side refrigerant changes, and the hot water supply apparatus 14 It is possible to improve the operation efficiency of the.
  • an accumulator 19a is installed between the suction side of the compressor 10b of the second refrigeration cycle and the heat exchanger 15c for heating.
  • the accumulator 19a can change the amount of the second heat source side refrigerant to be stored, thereby changing the circulation composition of the second heat source side refrigerant circulating in the second refrigeration cycle. Yes.
  • the second heat source refrigerant of the second refrigeration cycle is charged so that the ratio of R32 is 8%.
  • the refrigerant amount accumulated in the accumulator 19a is adjusted by adjusting the opening of the expansion device 16d, so that the "saturated gas side temperature of the second heat source side refrigerant" and the "two-phase refrigerant temperature on the inlet side of the second heat source side refrigerant”.
  • the second temperature difference which is a temperature difference from “”, can be greatly adjusted.
  • the refrigerant amount accumulated in the accumulator 19a is adjusted by adjusting the opening of the expansion device 16d.
  • the temperature difference between the two can be adjusted small.
  • the accumulator 19a can adjust the second temperature difference large or the second temperature difference small, so even if the dryness of the second heat source side refrigerant changes.
  • the second temperature difference can be kept within 1 ° C. with respect to the first temperature difference.
  • the opening degree of the expansion device 16d is changed.
  • the degree of dryness of the second heat source side refrigerant flowing into the accumulator 19a is controlled to control the circulation composition.
  • the degree of dryness of the inlet refrigerant of the second heat source side refrigerant of the heating heat exchanger 15c is assumed, and the heating heat exchanger A temperature difference between the saturated gas of 15c and the temperature of the inlet refrigerant of the second heat source side refrigerant may be estimated.
  • the circulation composition can be accurately controlled by using the calculation result of the dryness of the second heat source side refrigerant flowing into the heating heat exchanger 15c. Therefore, as shown in FIG. 11, a fourth pressure sensor 42 for detecting the pressure of the second heat source side refrigerant flowing out from the heat exchanger related to heat medium 15d, and a second heat source side refrigerant flowing out from the heat exchanger related to heat medium 15d. It is preferable to install a seventh temperature sensor 43 for detecting the temperature of.
  • the enthalpy of the second heat source side refrigerant flowing out from the heat exchanger related to heat medium 15d is calculated, and from this, the second of the heating heat exchanger 15c is calculated.
  • the dryness of the inlet refrigerant of the heat source side refrigerant is calculated and used to control the circulation composition.
  • the difference between the first temperature difference and the second temperature difference is shifted due to the change in the dryness of the inlet of the second heat source side refrigerant circulating in the second refrigeration cycle.
  • the case where the heat exchange efficiency in the heat exchanger 15c for heating deteriorates has been described.
  • the heat exchange efficiency in the heat exchanger 15c for heating may deteriorate due to the first heat source side refrigerant circulating in the first refrigeration cycle.
  • the amount of refrigerant required for the refrigeration cycle differs between the cooling only operation and the heating only operation. That is, a larger amount of refrigerant is required during the cooling only operation. Accordingly, surplus refrigerant is generated during the all-heating operation, and therefore, the surplus first heat source side refrigerant is stored in the accumulator 19.
  • the composition of R32 contained in the circulating first heat source side refrigerant changes according to the amount stored in the accumulator 19. That is, as a result of the change in the first temperature difference that is the difference between the first heat source side refrigerant temperature on the outlet side and the first heat source side refrigerant temperature on the inlet side in the heat exchanger for heating 15c, the first temperature difference and There is a possibility that the difference from the second temperature difference is deviated, and the heat exchange efficiency in the heating heat exchanger 15c is deteriorated. Therefore, the opening amount of the expansion device 16d may be controlled to change the storage amount of the second heat source side refrigerant in the accumulator 19a.
  • the ratio of R32 and HFO1234yf of the second heat source side refrigerant circulating in the second refrigeration cycle changes, reducing the difference between the first temperature difference and the second temperature difference, and heating
  • the heat exchange efficiency of the heat exchanger for heat 15c can be improved, and the operating efficiency of the hot water supply device 14 can be improved.
  • the corresponding first heat medium flow switching device 22 and second heat medium flow switching device. 23 is set to an intermediate opening so that the heat medium flows through both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b. Accordingly, both the heat exchanger related to heat medium 15a and the heat exchanger related to heat medium 15b can be used for the heating operation or the cooling operation, so that the heat transfer area is increased, and an efficient heating operation or cooling operation is performed. Can be done.
  • the first heat medium flow switching device corresponding to the use side heat exchanger 26 performing the heating operation. 22 and the second heat medium flow switching device 23 are switched to flow paths connected to the heat exchanger related to heat medium 15b for heating, and the first heat medium corresponding to the use side heat exchanger 26 performing the cooling operation.
  • the flow path switching device 22 and the second heat medium flow path switching device 23 By switching the flow path switching device 22 and the second heat medium flow path switching device 23 to a flow path connected to the heat exchanger related to heat medium 15a for cooling, in each indoor unit 2, heating operation and cooling operation are performed. It can be done freely.
  • the first heat medium flow switching device 22 and the second heat medium flow switching device 23 described in the first and second embodiments are those that can switch a three-way flow path such as a three-way valve, and two-way such as an on-off valve. What is necessary is just to switch a flow path, such as combining two things which open and close a flow path.
  • the first heat medium can be obtained by combining two things that can change the flow rate of the three-way flow path such as a stepping motor drive type mixing valve and two things that can change the flow rate of the two-way flow path such as an electronic expansion valve.
  • the flow path switching device 22 and the second heat medium flow path switching device 23 may be used. In this case, it is possible to prevent water hammer due to sudden opening and closing of the flow path.
  • the case where the heat medium flow control device 25 is a two-way valve has been described as an example. You may make it install with a pipe
  • the usage-side heat medium flow control device 25 may be a stepping motor drive type that can control the flow rate flowing through the flow path, and may be a two-way valve or one that closes one end of the three-way valve.
  • a device that opens and closes a two-way flow path such as an open / close valve may be used, and the average flow rate may be controlled by repeating ON / OFF.
  • the second refrigerant flow switching device 18 is shown as a four-way valve, the present invention is not limited to this, and a plurality of two-way flow switching valves and three-way flow switching valves are used, You may comprise so that it may flow.
  • the heat medium flow control device 25 is built in the heat medium converter 3 has been described as an example.
  • the heat medium flow control device 25 is not limited thereto, and may be built in the indoor unit 2. 3 and the indoor unit 2 may be configured separately.
  • a mixed refrigerant of R32 and HFO1234yf is used as the first heat source side refrigerant and the second heat source side refrigerant, and a mixed refrigerant in which R32 is 20% and HFO1234yf is 80% is used as the first heat source side refrigerant.
  • a refrigerant or other non-azeotropic refrigerant mixture may be used, and the same effect is obtained.
  • the first heat medium and the second heat medium may be the same heat medium or different ones.
  • the heat medium for example, brine (antifreeze), water, a mixed solution of brine and water, a mixed solution of water and an additive having a high anticorrosion effect, or the like can be used. . Therefore, even if the heat medium leaks into the indoor space 7 through the indoor unit 2, a highly safe heat medium is used, which contributes to an improvement in safety.
  • a heat blower is attached to the heat source side heat exchanger 12 and the use side heat exchangers 26a to 26d, and in many cases, condensation or evaporation is promoted by air blowing, but it is not limited to this.
  • the use side heat exchangers 26a to 26d those such as panel heaters using radiation can be used.
  • the heat source side heat exchanger 12 a water-cooled type in which heat is transferred by water or antifreeze liquid. Any material can be used as long as it can dissipate or absorb heat.
  • heat mediums 15a and 15b there are two heat exchangers between heat mediums 15a and 15b has been described as an example, but of course, it is not limited to this, and if the heat medium can be cooled or / and heated, Any number may be installed.
  • the number of pumps 21a and 21b is not limited to one, and a plurality of small capacity pumps may be arranged in parallel.
  • the first refrigeration cycle or / and the second refrigeration cycle have a function of detecting the circulation composition, it can be controlled with higher accuracy.
  • the circulation composition can be detected by calculation by measuring the pressure and temperature at the inlet and outlet of the expansion devices 16a, 16b, 16c, and 16d.
  • the circulating composition of the refrigerant may be detected by other methods.
  • the refrigerant circulation composition in the state where the refrigerant is not accumulated in the accumulator 19 or / and 19a is the refrigerant filling composition at the time of installation, etc., and from the operating state (measured values of temperature and pressure of each part),
  • the amount of refrigerant stored in the accumulator may be estimated, and the circulation composition may be calculated based on the estimated value.
  • the compressor 10 the four-way valve (first refrigerant flow switching device) 11, and the heat source side heat exchanger 12 are accommodated in the outdoor unit 1. Further, the use side heat exchanger 26 is accommodated in the indoor unit 2, and the heat exchanger related to heat medium 15 and the expansion device 16 are accommodated in the heat medium converter 3.
  • the outdoor unit 1 and the heat medium converter 3 are connected by a set of two pipes, the first heat source side refrigerant is circulated between the outdoor unit 1 and the heat medium converter 3, and the indoor unit 2 Are connected to each other by a set of pipes, the first heat medium is circulated between the indoor unit 2 and the heat medium converter 3, and the heat exchanger 15 between the heat medium
  • the description has been given by taking as an example a system for exchanging heat between the first heat source side refrigerant and the first heat medium.
  • the air conditioners 100 and 200 are not limited thereto.
  • the compressor 10, the four-way valve (first refrigerant flow switching device) 11, and the heat source side heat exchanger 12 are accommodated in the outdoor unit 1, and the load exchanges heat between the air in the air-conditioning target space and the first heat source side refrigerant.
  • the side heat exchanger and the expansion device 16 are accommodated in the indoor unit 2, provided with a repeater formed separately from the outdoor unit 1 and the indoor unit 2, and a set of two between the outdoor unit 1 and the repeater Are connected to each other by connecting a pair of pipes between the indoor unit 2 and the relay unit, and the first heat source side refrigerant is circulated between the outdoor unit 1 and the indoor unit 2 via the relay unit. Therefore, the present invention can be applied to a direct expansion system capable of performing a cooling only operation, a heating only operation, a cooling main operation, and a heating main operation, and similar effects are obtained.
  • One heat exchanger 15 and one expansion device 16 are connected to each other, and a plurality of use side heat exchangers 26 and heat medium flow control devices 25 are connected in parallel to perform either a cooling operation or a heating operation. Even if there is no configuration, the same effect is obtained.
  • it is a direct expansion system which circulates a refrigerant
  • Heat source unit (outdoor unit), 2 indoor unit, 2a to 2d indoor unit, 3, 3a, 3b heat medium converter, 4 refrigerant pipe, 4a first connection pipe, 4b second connection pipe, 5 heat medium pipe, 6 Outdoor space, 7 indoor space, 8 space, 9 building, 10a compressor (first compressor), 10b compressor (second compressor), 11 four-way valve (first refrigerant flow switching device), 12 heat source side heat Exchanger, 13a-13d check valve, 14 hot water supply device, 15a, 15b heat exchanger between heat medium (first heat exchanger between heat medium), 15c heat exchanger for heating, heat exchanger for heat medium (first) 2 heat exchanger between heat medium), 16a, 16b, 16c throttle device (first throttle device), 16d throttle device (second throttle device), 17a, 17b switchgear, 18a, 18b second refrigerant flow switching device, 19 Accumulator First accumulator), 19a Accumulator (second accumulator), 21a-21c Pump (heat medium delivery device), 22a-22d First heat medium flow switching device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Other Air-Conditioning Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

 加熱用熱交換器15cにおける第1冷媒の入口側の飽和ガス温度と、出口側の飽和液温度との差を第1の温度差とし、加熱用熱交換器15cにおける第2冷媒の出口側の飽和ガス温度と、入口側の温度との差を第2の温度差とするとき、第2冷媒を構成する複数の単一冷媒が所定の混合割合となるように、第2の冷凍サイクルに第2冷媒を充填して、第1の温度差と第2の温度差との差を所定値以下に収める。

Description

空気調和装置の冷媒充填方法、空気調和装置
 本発明は、たとえばビル用マルチエアコンなどに適用される空気調和装置の冷媒充填方法、及び当該方法で冷媒が充填された空気調和装置に関するものである。
 従来から、高元側の第1の冷凍サイクル及び低元側の第2の冷凍サイクルを有し、これらの冷凍サイクルを循環する冷媒を対向流で熱交換させるための中間熱交換器が搭載された二元式の空気調和装置が存在している(たとえば、特許文献1参照)。特許文献1に記載の技術は、第1及び第2の冷凍サイクルを循環する冷媒に、温度勾配の異なる非共沸混合冷媒を採用している。
 また、アキュムレーター内に貯留された液冷媒の量により冷媒の循環組成が変化することを考慮して、凝縮温度及び蒸発温度の制御をし、熱交換効率を向上させることを可能としている空気調和装置も提案されている(たとえば、特許文献2参照)。
 さらに、第1の冷凍サイクル及び第2の冷凍サイクルを有し、これらを循環する冷媒を熱交換させることでお湯を生成することが可能となっているビル用マルチエアコンが提案されている(たとえば、特許文献3参照)。
特開平7-269964号公報(たとえば、明細書の6頁及び図3参照) 特開平11-182951号公報(たとえば、明細書の5、6頁及び図1参照) WO2009/098751号公報(たとえば、明細書の第5頁及び図1参照)
 特許文献1に記載の技術は、中間熱交換器に供給される冷媒を対向流とすることにより熱交換効率の向上が可能となっているが、ph線図における非共沸混合冷媒の温度勾配の観点から熱交換効率を向上させるものではなかった。すなわち、特許文献1に記載の技術は、第1の冷凍サイクルを流れる非共沸混合冷媒と、第2の冷凍サイクルを流れる非共沸混合冷媒との温度勾配とが大きく異なることに起因して熱交換効率が低減してしまうという課題があった。
 特許文献2に記載の技術は、冷媒の循環組成が変化することを考慮することで熱交換効率の向上が可能となっているが、ph線図における非共沸混合冷媒の温度勾配の観点から熱交換効率を向上させるものではなかった。すなわち、特許文献2に記載の技術は、異なる冷凍サイクルにおける非共沸混合冷媒の同士の温度勾配が異なると熱交換効率が低減してしまうことが考慮されていないので、冷媒として非共沸混合冷媒を適用すると、熱交換効率が低減してしまうという課題があった。
 特許文献3に記載の技術は、第1の冷凍サイクル及び第2の冷凍サイクルを循環する冷媒が、そもそも非共沸混合冷媒でないため、ph線図における非共沸混合冷媒の温度勾配によって熱交換効率が低減してしまうことがなかった。すなわち、特許文献3に記載の技術は、ph線図における非共沸混合冷媒の温度勾配の観点から熱交換効率を向上させるものではなかったため、冷媒として非共沸混合冷媒を適用すると、熱交換効率が低減してしまうという課題があった。
 本発明は、上記の課題を解決するためになされたもので、熱交換効率を向上させることを可能とする空気調和装置の冷媒充填方法を提供することを目的としている。
 本発明に係る空気調和装置の冷媒充填方法は、第1圧縮機、熱源側熱交換器、第1絞り装置、第1熱媒体間熱交換器、及び加熱用熱交換器の第1流路を第1冷媒配管で接続して第1の冷凍サイクルを構成し、第2圧縮機、加熱用熱交換器の第2流路、第2絞り装置、及び第2熱媒体間熱交換器を第2冷媒配管で接続して第2の冷凍サイクルを構成し、第1の冷凍サイクルに充填する第1冷媒及び第2の冷凍サイクルに充填する第2冷媒を、同一圧力における飽和ガス温度と飽和液温度とが異なる非共沸混合冷媒とし、第1冷媒と第2冷媒とを加熱用熱交換器で熱交換させる空気調和装置の冷媒充填方法において、加熱用熱交換器は、当該加熱用熱交換器の第1流路に供給される第1冷媒と第2流路に供給される第2冷媒が、対向流となるように第1冷媒配管及び第2冷媒配管に接続され、加熱用熱交換器における第1冷媒の入口側の飽和ガス温度と、出口側の飽和液温度との差を第1の温度差とし、加熱用熱交換器における第2冷媒の出口側の飽和ガス温度と、入口側の温度との差を第2の温度差とするとき、第2冷媒を構成する複数の単一冷媒が所定の混合割合となるように、第2の冷凍サイクルに第2冷媒を充填して、第1の温度差と第2の温度差との差を所定値以下に収めるものである。
 本発明の空気調和装置の冷媒充填方法によれば、第2冷媒を構成する複数の単一冷媒が所定の混合割合となるように、第2の冷凍サイクルに第2冷媒を充填して第1の温度差と第2の温度差との差を所定値以下に収めることにより、加熱用熱交換器に流入する第1冷媒と第2冷媒との熱交換効率を向上させることができる。
 また、本発明の空気調和装置の冷媒充填方法によれば、熱交換効率を向上させることができる分、省エネルギー化を図ることができる。
本発明の実施の形態1に係る空気調和装置の設置例を示す概略図である。 本発明の実施の形態1に係る空気調和装置の回路構成例を示す図である。 図2に示す空気調和装置の全冷房運転時の冷媒及び熱媒体の流れを説明する図である。 図2に示す空気調和装置の全暖房運転時の冷媒及び熱媒体の流れを説明する図である。 図2に示す空気調和装置の冷房主体運転時の冷媒及び熱媒体の流れを説明する図である。 図2に示す空気調和装置の暖房主体運転時の冷媒及び熱媒体の流れを説明する図である。 所定の非共沸冷媒のph線図の説明図である。 第1熱源側冷媒に非共沸冷媒を採用し、第2熱源側冷媒に単一冷媒を採用した場合であって、加熱用熱交換器内の両方の冷媒温度の説明図である。 第1熱源側冷媒及び第2熱源側冷媒に非共沸冷媒を採用した場合であって、加熱用熱交換器内の両方の冷媒温度の説明図である。 熱媒体間熱交換器に供給される非共沸混合冷媒の同一圧力における飽和ガスと飽和液との温度差の説明図である。 本発明の実施の形態2に係る空気調和装置の回路構成例である。
実施の形態1.
 図1は、実施の形態1に係る空気調和装置の設置例を示す概略図である。図1に基づいて、空気調和装置の設置例について説明する。なお、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。
 図1においては、本実施の形態に係る空気調和装置は、熱源機である1台の室外機1と、複数台の室内機2と、室外機1と室内機2との間に介在する熱媒体変換機3と、給湯装置14と、を有している。
 室外機1と熱媒体変換機3とは、第1熱源側冷媒を導通する冷媒配管4で接続されている。熱媒体変換機3と室内機2とは、第1熱媒体を導通する配管(熱媒体配管)5で接続されている。また、給湯装置14と熱媒体変換機3とは、第1熱源側冷媒を導通する冷媒配管4で接続されている。
 なお、給湯装置14は後ほど説明する貯湯タンク24に接続されており、室外機1で生成された温熱が、貯湯タンク24に貯留される水の加熱に利用されるようになっている。
 室外機1は、通常、ビルなどの建物9の外の空間(たとえば、屋上など)である室外空間6に配置され、熱媒体変換機3を介して室内機2に冷熱又は温熱を供給するものである。室内機2は、建物9の内部の空間(たとえば、居室など)である室内空間7に冷房用空気あるいは暖房用空気を供給できる位置に配置され、空調対象空間となる室内空間7に冷房用空気あるいは暖房用空気を供給するものである。
 熱媒体変換機3は、室外機1及び室内機2とは別筐体として、室外空間6及び室内空間7とは別の位置に設置できるように構成されており、室外機1及び室内機2とは冷媒配管4及び熱媒体配管5でそれぞれ接続され、室外機1から供給される冷熱あるいは温熱を室内機2に伝達するものである。
 給湯装置14は、給湯などの負荷側へお湯を供給するものである。なお、図1において、この給湯装置14は、室内空間7に設置された例を図示しているが、それに限定されるものではなく、たとえば建物9の内部のいずれかの位置に設置されているとよい。
 図1に示すように、本実施の形態1に係る空気調和装置においては、室外機1と熱媒体変換機3とが冷媒配管4を介して接続されるとともに、熱媒体変換機3と給湯装置14とが冷媒配管4を介して接続されている。また、熱媒体変換機3と各室内機2とが熱媒体配管5を介して接続されている。
 このように、本実施の形態に係る空気調和装置は、冷媒配管4及び熱媒体配管5によって各ユニット(室外機1、室内機2、給湯装置14及び熱媒体変換機3)が接続されて構成されており、施工が容易となっている。
 なお、図1においては、熱媒体変換機3が、建物9の内部ではあるが室内空間7とは別の空間である天井裏などの空間(以下、単に空間8と称する)に設置されている状態を例に示している。熱媒体変換機3は、その他、エレベーターなどがある共用空間などに設置することも可能である。また、図1においては、室内機2が天井カセット型である場合を例に示してあるが、これに限定するものではなく、天井埋込型や天井吊下式など、室内空間7に直接又はダクトなどにより、暖房用空気あるいは冷房用空気を吹き出せるようになっていればどんな種類のものでもよい。
 図1においては、室外機1が室外空間6に設置されている場合を例に示しているが、これに限定するものではない。たとえば、室外機1は、換気口付の機械室などの囲まれた空間に設置してもよく、排気ダクトで廃熱を建物9の外に排気することができるのであれば建物9の内部に設置してもよく、あるいは、水冷式の室外機1を用いる場合にも建物9の内部に設置するようにしてもよい。このような場所に室外機1を設置するとしても、特段の問題が発生することはない。
 また、熱媒体変換機3は、室外機1の近傍に設置することもできる。ただし、熱媒体変換機3から室内機2までの距離が長すぎると、第1熱媒体の搬送動力がかなり大きくなるため、省エネの効果は薄れることに留意が必要である。さらに、室外機1、室内機2及び熱媒体変換機3の接続台数を図1に図示してある台数に限定するものではなく、本実施の形態に係る空気調和装置が設置される建物9に応じて台数を決定すればよい。
 図2は、本発明の実施の形態に係る空気調和装置(以下、空気調和装置100と称する)の回路構成例を示す図である。図2に基づいて、空気調和装置100の詳しい構成について説明する。
 図2に示すように、室外機1と熱媒体変換機3とは熱媒体間熱交換器15a、15bなどが冷媒配管4で接続されて第1の冷凍サイクルを構成し、熱媒体変換機3と室内機2とは熱媒体間熱交換器15a、15bなどが熱媒体配管5で接続されて第1の熱媒体サイクルを構成している。
 また、給湯装置14は加熱用熱交換器15cなどが冷媒配管4cで接続されて第2の冷凍サイクルを構成し、給湯装置14と貯湯タンク24とは熱媒体間熱交換器15dなどが熱媒体配管5aで接続されて第2の熱媒体サイクルを構成している。
[室外機1]
 室外機1には、圧縮機10aと、四方弁などの第1冷媒流路切替装置11と、熱源側熱交換器12と、アキュムレーター19とが冷媒配管4を介して接続されて搭載されている。また、室外機1には、第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c及び逆止弁13dが設けられている。第1接続配管4a、第2接続配管4b、逆止弁13a、逆止弁13b、逆止弁13c、及び逆止弁13dを設けることで、室内機2の要求する運転に関わらず、熱媒体変換機3に流入させる第1熱源側冷媒の流れを一定方向にすることができる。
 圧縮機10aは、第1熱源側冷媒を吸入し、その第1熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機などで構成するとよい。圧縮機10aは、吐出側が第1冷媒流路切替装置11に接続され、吸入側がアキュムレーター19に接続されている。なお、圧縮機10aが第1圧縮機に相当する。
 第1冷媒流路切替装置11は、暖房運転時(全暖房運転モード時及び暖房主体運転モード時)における第1熱源側冷媒の流れと冷房運転時(全冷房運転モード時及び冷房主体運転モード時)における第1熱源側冷媒の流れとを切り替えるものである。なお、図2では、第1冷媒流路切替装置11が、圧縮機10の吐出側と第1接続配管4aとを接続するとともに、熱源側熱交換器12とアキュムレーター19とを接続している状態を図示している。
 熱源側熱交換器12は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器(又は放熱器)として機能し、図示省略のファンなどの送風機から供給される空気と冷媒との間で熱交換を行ない、その冷媒を蒸発ガス化又は凝縮液化するものである。熱源側熱交換器12は、一方が第1冷媒流路切替装置11に接続され、他方が逆止弁13aが設けられる冷媒配管4に接続されている。
 アキュムレーター19は、過剰な冷媒を貯留するものである。アキュムレーター19は、一方が第1冷媒流路切替装置11に接続され、他方が圧縮機10aの吸入側に接続される。
 逆止弁13aは、熱源側熱交換器12と熱媒体変換機3との間における冷媒配管4に設けられ、所定の方向(室外機1から熱媒体変換機3への方向)のみに冷媒の流れを許容するものである。逆止弁13bは、第1接続配管4aに設けられ、暖房運転時において圧縮機10aから吐出された冷媒を熱媒体変換機3に流通させるものである。逆止弁13cは、第2接続配管4bに設けられ、暖房運転時において熱媒体変換機3から戻ってきた冷媒を圧縮機10の吸入側に流通させるものである。逆止弁13dは、熱媒体変換機3と第1冷媒流路切替装置11との間における冷媒配管4に設けられ、所定の方向(熱媒体変換機3から室外機1への方向)のみに冷媒の流れを許容するものである。
 第1接続配管4aは、室外機1内において、第1冷媒流路切替装置11と逆止弁13dとの間における冷媒配管4と、逆止弁13aと熱媒体変換機3との間における冷媒配管4と、を接続するものである。
 第2接続配管4bは、室外機1内において、逆止弁13dと熱媒体変換機3との間における冷媒配管4と、熱源側熱交換器12と逆止弁13aとの間における冷媒配管4と、を接続するものである。
 なお、図2に示す空気調和装置100は、第1接続配管4a、第2接続配管4b、及び逆止弁13a~13dが設けられたものであるが、それに限定されるものではな。すなわち、必ずしも第1接続配管4a、第2接続配管4b、及び逆止弁13a~13dが、空気調和装置100に設けられる必要はない。
[室内機2]
 室内機2には、それぞれ利用側熱交換器26が搭載されている。この利用側熱交換器26は、熱媒体配管5によって熱媒体変換機3の熱媒体流量調整装置25と第2熱媒体流路切替装置23に接続するようになっている。この利用側熱交換器26は、図示省略のファンなどの送風機から供給される空気と第1熱媒体との間で熱交換を行ない、室内空間7に供給するための暖房用空気あるいは冷房用空気を生成するものである。
 この図2では、4台の室内機2が熱媒体変換機3に接続されている場合を例に示しており、紙面下から室内機2a、室内機2b、室内機2c、室内機2dとして図示している。また、室内機2a~室内機2dに応じて、利用側熱交換器26も、紙面下側から利用側熱交換器26a、利用側熱交換器26b、利用側熱交換器26c、利用側熱交換器26dとして図示している。なお、図1と同様に、室内機2の接続台数は、図2に示す4台に限定されるものではない。
[熱媒体変換機3]
 熱媒体変換機3には、2つの熱媒体間熱交換器15と、2つの絞り装置16と、2つの開閉装置17と、2つの第2冷媒流路切替装置18と、2つのポンプ21と、4つの第1熱媒体流路切替装置22と、4つの第2熱媒体流路切替装置23と、4つの熱媒体流量調整装置25と、が搭載されている。
 また、熱媒体変換機3には、各種検出装置(2つの第1温度センサー31、4つの第2温度センサー34、4つの第3温度センサー35、及び、圧力センサー36)が設けられている。
 2つの熱媒体間熱交換器15(熱媒体間熱交換器15a、熱媒体間熱交換器15b)は、凝縮器(放熱器)又は蒸発器として機能し、第1熱源側冷媒と第1熱媒体とで熱交換を行ない、室外機1で生成され第1熱源側冷媒に貯えられた冷熱又は温熱を第1熱媒体に伝達するものである。熱媒体間熱交換器15aは、冷媒循環回路Aにおける絞り装置16aと第2冷媒流路切替装置18aとの間に設けられており、冷房暖房混在運転モード時において第1熱媒体の冷却に供するものである。また、熱媒体間熱交換器15bは、冷媒循環回路Aにおける絞り装置16bと第2冷媒流路切替装置18bとの間に設けられており、冷房暖房混在運転モード時において第1熱媒体の加熱に供するものである。なお、熱媒体間熱交換器15a、15bが第1熱媒体間熱交換器に相当する。
 2つの絞り装置16(絞り装置16a、絞り装置16b)は、減圧弁や膨張弁としての機能を有し、第1熱源側冷媒を減圧して膨張させるものである。絞り装置16aは、冷房運転時の第1熱源側冷媒の流れにおいて熱媒体間熱交換器15aの上流側に設けられている。絞り装置16bは、冷房運転時の第1熱源側冷媒の流れにおいて熱媒体間熱交換器15bの上流側に設けられている。2つの絞り装置16は、開度が可変に制御可能なもの、たとえば電子式膨張弁などで構成するとよい。なお、絞り装置16a、16bが第1絞り装置に相当する。
 2つの開閉装置17(開閉装置17a、開閉装置17b)は、二方弁などで構成されており、冷媒配管4を開閉するものである。開閉装置17aは、第1熱源側冷媒の入口側における冷媒配管4に設けられている。開閉装置17bは、第1熱源側冷媒の入口側と出口側の冷媒配管4を接続した配管に設けられている。2つの第2冷媒流路切替装置18(第2冷媒流路切替装置18a、第2冷媒流路切替装置18b)は、四方弁などで構成され、運転モードに応じて第1熱源側冷媒の流れを切り替えるものである。第2冷媒流路切替装置18aは、冷房運転時の第1熱源側冷媒の流れにおいて熱媒体間熱交換器15aの下流側に設けられている。第2冷媒流路切替装置18bは、冷房運転時の第1熱源側冷媒の流れにおいて熱媒体間熱交換器15bの下流側に設けられている。
 2つのポンプ21(ポンプ21a、ポンプ21b)は、熱媒体配管5を導通する第1熱媒体を循環させるものである。ポンプ21aは、熱媒体間熱交換器15aと第2熱媒体流路切替装置23との間における熱媒体配管5に設けられている。ポンプ21bは、熱媒体間熱交換器15bと第2熱媒体流路切替装置23との間における熱媒体配管5に設けられている。2つのポンプ21は、たとえば容量制御可能なポンプなどで構成するとよい。
 4つの第1熱媒体流路切替装置22(第1熱媒体流路切替装置22a~第1熱媒体流路切替装置22d)は、三方弁などで構成されており、第1熱媒体の流路を切り替えるものである。第1熱媒体流路切替装置22は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。
 第1熱媒体流路切替装置22は、利用側熱交換器26の熱媒体流路の出口側に設けられているものである。詳細には、第1熱媒体流路切替装置22は、熱媒体間熱交換器15a、熱媒体間熱交換器15b、及び熱媒体流量調整装置25に接続されている。
 4つの第2熱媒体流路切替装置23(第2熱媒体流路切替装置23a~第2熱媒体流路切替装置23d)は、三方弁などで構成されており、第1熱媒体の流路を切り替えるものである。第2熱媒体流路切替装置23は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。
 第2熱媒体流路切替装置23は、利用側熱交換器26の第1熱媒体の流路の入口側に設けられている。詳細には、第2熱媒体流路切替装置23は、熱媒体間熱交換器15a、熱媒体間熱交換器15b、及び利用側熱交換器26に接続されている。
 4つの熱媒体流量調整装置25(熱媒体流量調整装置25a~熱媒体流量調整装置25d)は、開口面積を制御できる二方弁などで構成されており、熱媒体配管5に流れる流量を制御するものである。熱媒体流量調整装置25は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。
 熱媒体流量調整装置25は、利用側熱交換器26の熱媒体流路の出口側に設けられているものである。詳細には、熱媒体流量調整装置25は、一方が利用側熱交換器26に接続され、他方が第1熱媒体流路切替装置22に接続されている。なお、熱媒体流量調整装置25は、利用側熱交換器26の第1熱媒体の流路の入口側に設けてもよい。
 2つの第1温度センサー31(第1温度センサー31a、第1温度センサー31b)は、熱媒体間熱交換器15から流出した第1熱媒体、つまり熱媒体間熱交換器15の出口における第1熱媒体の温度を検出するものであり、たとえばサーミスターなどで構成するとよい。
 第1温度センサー31aは、ポンプ21aの入口側における熱媒体配管5に設けられている。第1温度センサー31bは、ポンプ21bの入口側における熱媒体配管5に設けられている。
 4つの第2温度センサー34(第2温度センサー34a~第2温度センサー34d)は、第1熱媒体流路切替装置22と熱媒体流量調整装置25との間に設けられ、利用側熱交換器26から流出した第1熱媒体の温度を検出するものであり、サーミスターなどで構成するとよい。
 第2温度センサー34は、室内機2の設置台数に応じた個数(ここでは4つ)が設けられるようになっている。なお、第2温度センサー34は、熱媒体流量調整装置25と利用側熱交換器26との間の流路に設けられていてもよい。また、熱媒体流量調整装置25を利用側熱交換器26の第1熱媒体の流路の入口側に設けてもよい。
 4つの第3温度センサー35(第3温度センサー35a~第3温度センサー35d)は、熱媒体間熱交換器15の第1熱源側冷媒の入口側又は出口側に設けられ、熱媒体間熱交換器15に流入する第1熱源側冷媒の温度又は熱媒体間熱交換器15から流出した第1熱源側冷媒の温度を検出するものであり、サーミスターなどで構成するとよい。
 第3温度センサー35aは、熱媒体間熱交換器15aと第2冷媒流路切替装置18aとの間に設けられている。第3温度センサー35bは、熱媒体間熱交換器15aと絞り装置16aとの間に設けられている。第3温度センサー35cは、熱媒体間熱交換器15bと第2冷媒流路切替装置18bとの間に設けられている。第3温度センサー35dは、熱媒体間熱交換器15bと絞り装置16bとの間に設けられている。
 圧力センサー36は、第3温度センサー35dの設置位置と同様に、熱媒体間熱交換器15bと絞り装置16bとの間に設けられ、熱媒体間熱交換器15bと絞り装置16bとの間を流れる第1熱源側冷媒の圧力を検出するものである。
 熱媒体を導通する熱媒体配管5は、熱媒体間熱交換器15aに接続されるものと、熱媒体間熱交換器15bに接続されるものと、で構成されている。熱媒体配管5は、熱媒体変換機3に接続される室内機2の台数に応じて分岐(ここでは、各4分岐)されている。そして、熱媒体配管5は、第1熱媒体流路切替装置22、及び第2熱媒体流路切替装置23で接続されている。第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を制御することで、熱媒体間熱交換器15aからの熱媒体を利用側熱交換器26に流入させるか、熱媒体間熱交換器15bからの熱媒体を利用側熱交換器26に流入させるかが決定されるようになっている。
[給湯装置14、ポンプ21c、貯湯タンク24]
 給湯装置14は、第1熱源側冷媒の温熱を第2熱源側冷媒に伝達させ、さらに、当該第2熱源側冷媒の温熱を第2熱媒体に伝達させるものである。
 給湯装置14には、第2の冷凍サイクルを構成するものとして、第2熱源側冷媒を圧縮する圧縮機10bと、凝縮器として機能する熱媒体間熱交換器15dと、第2熱源側冷媒を減圧させる絞り装置16dと、蒸発器として機能する加熱用熱交換器15cと、が搭載されている。
 また、給湯装置14には、第1の冷凍サイクルの一部を構成するものとして、第1熱源側冷媒を減圧させる絞り装置16cが搭載されている。
 また、給湯装置14には、第2の熱媒体サイクルを構成するものとして、第2熱媒体を搬送するためのポンプ21c、及び第2熱媒体を貯留可能な貯湯タンク24が接続されて設けられている。
 さらに、給湯装置14には、第2熱源側冷媒の圧力を検出する第2圧力センサー37及び第1熱源側冷媒の圧力を検出する第3圧力センサー39と、第2熱源側冷媒の温度を検出する第4温度センサー38、第1熱源側冷媒の温度を検出する第5温度センサー40及び第2熱媒体の温度を検出する第6温度センサー41とが設けられている。
 なお、空調調和装置100は、図2に示すように、給湯装置14が1台設けられた構成に限定されるものではなく、複数台が設けられていてもよい。なお、空気調和装置100は、給湯装置14が複数台設けられている場合には、給湯装置14が冷媒配管4を介して熱媒体変換機3に並列接続されているとよい。
 圧縮機10bは、第2熱源側冷媒を吸入し、その第2熱源側冷媒を圧縮して高温・高圧の状態にするものであり、たとえば容量制御可能なインバータ圧縮機などで構成するとよい。圧縮機10bは、吐出側が熱媒体間熱交換器15dに接続され、吸入側が加熱用熱交換器15cに接続されている。なお、圧縮機10bが第2圧縮機に相当する。
 加熱用熱交換器15cは、蒸発器として機能し、第1熱源側冷媒と第2熱源側冷媒とで熱交換を行なわせることで、室外機1で生成され第1熱源側冷媒に貯えられた温熱を第2熱源側冷媒に伝達させるものである。加熱用熱交換器15cの第2熱源側は、一方が圧縮機10bの吸入側に接続され、他方が絞り装置16dに接続されている。
 なお、加熱用熱交換器15cには、加熱用熱交換器15cにおける第1熱源側冷媒の流れ方向と、第2熱源側冷媒の流れ方向とが、運転モードによらず、対向流となるように冷媒配管4及び冷媒配管4cに接続されている。これにより、加熱用熱交換器15cにおける熱交換効率を向上させている。
 絞り装置16dは、減圧弁や膨張弁としての機能を有し、第2熱源側冷媒を減圧して膨張させるものである。絞り装置16dは、一方が熱媒体間熱交換器15dに接続され、他方が加熱用熱交換器15cに接続されている。絞り装置16dは、たとえばステッピングモータを設けるなどして開度調整を可能とするとよい。なお、絞り装置16cは、絞り装置16a、16bと同様に第1絞り装置に相当する。
 熱媒体間熱交換器15dは、凝縮器(放熱器)として機能し、第2熱源側冷媒と第2熱媒体とで熱交換を行なわせることで、給湯装置14で生成され第2熱源側冷媒に貯えられた温熱を第2熱媒体に伝達させるものである。熱媒体間熱交換器15dの第2熱源側は、一方が圧縮機10bの吐出側に接続され、他方が絞り装置16dに接続されている。なお、熱媒体間熱交換器15dが第2熱媒体間熱交換器に相当する。
 絞り装置16cは、減圧弁や膨張弁としての機能を有し、第1熱源側冷媒を減圧して膨張させるものである。絞り装置16cは、全暖房運転、暖房主体運転、及び冷房主体運転時における第1熱源側冷媒の流れにおいて加熱用熱交換器15cの下流側に設けられている。絞り装置16cは、たとえばステッピングモータを設けるなどして開度調整を可能とするとよい。なお、絞り装置16cが第1絞り装置に相当する。
 ポンプ21cは、熱媒体配管5aを導通する第2熱媒体を循環させるものである。ポンプ21cは、熱媒体間熱交換器15dと貯湯タンク24との間における熱媒体配管5aに設けられている。ポンプ21cは、たとえば容量制御可能なポンプなどで構成するとよい。
 貯湯タンク24は、熱媒体配管5aを導通する第2熱媒体を貯留するものである。貯湯タンク24は、一方がポンプ21cの吐出側に接続され、他方が熱媒体間熱交換器15dに接続されている。
 第2圧力センサー37は、加熱用熱交換器15cから流出した第2熱源側冷媒の圧力を検出するものである。この第2圧力センサー37は、第4温度センサー38の設置位置と同様に、加熱用熱交換器15cと圧縮機10bの吸入側との間に設けられているものである。
 第3圧力センサー39は、加熱用熱交換器15cから流出した第1熱源側冷媒の圧力を検出するものである。この第3圧力センサー39は、第5温度センサー40の設置位置と同様に、加熱用熱交換器15cの下流側に設けられているものである。
 第4温度センサー38は、加熱用熱交換器15cから流出した第2熱源側冷媒の温度を検出するものである。この第4温度センサー38は、第2圧力センサー37の設置位置と同様に、加熱用熱交換器15cと圧縮機10bの吸入側との間に設けられているものである。
 第5温度センサー40は、加熱用熱交換器15cから流出した第1熱源側冷媒の温度を検出するものである。この第5温度センサー40は、第3圧力センサー39の設置位置と同様に、加熱用熱交換器15cの下流側に設けられているものである。
 第6温度センサー41は、熱媒体間熱交換器15dから流出した第2熱媒体の温度を検出するものである。この第6温度センサー41は、熱媒体間熱交換器15dとポンプ21cの吸入側との間に設けられているものである。
 なお、第4温度センサー38、第5温度センサー40及び第6温度センサー41は、たとえばサーミスターなどで構成するとよい。
[第1制御装置80及び第2制御装置81]
 第1制御装置80及び第2制御装置81は、マイコンなどで構成されており、熱媒体変換機3の各種検出装置で検出された情報(温度情報、圧力情報)、給湯装置14の各種検出装置で検出された情報、及びリモコンからの指示に基づいて、圧縮機10a、10bなどの動作を統括制御し、後述する各運転モードを実行可能なものである。第1制御装置80と第2制御装置81とは、相互に情報のやり取りを実施し、連携制御をすることができるものである。
 なお、詳細には、第1制御装置80には、第1温度センサー31、第2温度センサー34、第3温度センサー35、及び圧力センサー36の検出結果が出力され、第2制御装置81には、第4温度センサー38、第5温度センサー40、第6温度センサー41、第2圧力センサー37、及び第3圧力センサー39の検出結果が出力される。そして、第1制御装置80と第2制御装置81とは、第1制御装置に出力された検出結果及び第2制御装置81に出力された検出結果を相互にやり取りし、以下の動作を統括制御するものである。
 すなわち、第1制御装置80は、圧縮機10aの駆動周波数、熱源側熱交換器12に付設される図示省略の送風機の回転数(ON/OFF含む)、絞り装置16の開度、開閉装置17の開閉、第1冷媒流路切替装置11及び第2冷媒流路切替装置18の切替、ポンプ21の駆動周波数、第1熱媒体流路切替装置22の切り替え、第2熱媒体流路切替装置23の切り替え、熱媒体流量調整装置25の開度などの統括制御をするものである。また、第2制御装置81は、圧縮機10bの駆動周波数、絞り装置16c、16dの開度などの統括制御をするものである。
 第1制御装置80の設置位置は、図2では熱媒体変換機3に設けられているものとして説明しているが、それに限定されるものではなく、たとえばユニット毎に設けてもよいし、室外機1に設けてもよい。また、第2制御装置81の設置位置は、図2に示すように、たとえば給湯装置14に設けるとよい。なお、第1制御装置80と第2制御装置81とは、有線又は無線によって両者が通信可能に接続され、連携制御を行うことができるように構成されている。
 そして、空気調和装置100では、圧縮機10a、第1冷媒流路切替装置11、熱源側熱交換器12、開閉装置17、第2冷媒流路切替装置18、熱媒体間熱交換器15及び加熱用熱交換器15cの第1熱源側冷媒流路、絞り装置16、絞り装置16c、アキュムレーター19を、冷媒配管4で接続して冷媒循環回路Aを構成している。
 また、熱媒体間熱交換器15の第1熱媒体流路、ポンプ21、第1熱媒体流路切替装置22、熱媒体流量調整装置25、利用側熱交換器26、及び第2熱媒体流路切替装置23を、熱媒体配管5で接続して熱媒体循環回路Bを構成している。
 そして、熱媒体間熱交換器15のそれぞれに複数台の利用側熱交換器26を並列に接続して、熱媒体循環回路Bを複数系統としているのである。
 また、圧縮機10b、加熱用熱交換器15cの第2熱源側冷媒流路、熱媒体間熱交換器15dの第2熱源側冷媒流路、及び絞り装置16dを、冷媒配管4cで接続して冷媒循環回路A2を構成している。
 さらに、ポンプ21c、貯湯タンク24、及び熱媒体間熱交換器15dの第2熱媒体流路を、熱媒体配管5aで接続して熱媒体循環回路B2を構成している。
 よって、空気調和装置100では、室外機1と熱媒体変換機3とが、熱媒体変換機3に設けられている熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続され、熱媒体変換機3と室内機2とも、熱媒体間熱交換器15a及び熱媒体間熱交換器15bを介して接続されている。さらに、熱媒体変換機3と給湯装置14とが、給湯装置24に設けられている加熱用熱交換器15cを介して接続され、給湯装置14と貯湯タンク24とが、熱媒体間熱交換器15dを介して接続されている。
 すなわち、空気調和装置100では、熱媒体間熱交換器15a及び熱媒体間熱交換器15bで冷媒循環回路Aを循環する第1熱源側冷媒と熱媒体循環回路Bを循環する第1熱媒体とが熱交換し、加熱用熱交換器15cで冷媒循環回路Aを循環する第1熱源側冷媒と冷媒循環回路A2を循環する第2熱源側冷媒とが熱交換し、熱媒体間熱交換器15dで冷媒循環回路A2を循環する第2熱源側冷媒と熱媒体循環回路B2を循環する第2熱媒体とが熱交換するようになっている。
 そして、第1熱源側冷媒の流路と、第2熱源側冷媒の流路とは、独立しており、互いに混じり合うことはない。また、第1熱媒体の流路と、第2熱媒体の流路とにおいても、独立しており、互いに混じり合うことはない。
 次に、空気調和装置100が実行する各運転モードについて説明する。この空気調和装置100は、各室内機2からの指示に基づいて、その室内機2で冷房運転あるいは暖房運転が可能になっている。つまり、空気調和装置100は、室内機2の全部で同一運転をすることができるとともに、室内機2のそれぞれで異なる運転をすることができるようになっている。それに加えて、空気調和装置100は、第1の冷凍サイクルの第1熱源側冷媒の温熱及び第2の冷凍サイクルの第2熱源側冷媒の温熱を利用して、貯湯タンク24に貯留される第2熱媒体を加温することができるものである。
 空気調和装置100が実行する運転モードには、駆動している室内機2の全てが冷房運転を実行する全冷房運転モード、駆動している室内機2の全てが暖房運転を実行する全暖房運転モード、冷房負荷の方が大きい冷房主体運転モード、及び、暖房負荷の方が大きい暖房主体運転モードがある。なお、全暖房運転モード、暖房主体運転モード及び冷房主体運転モード時には、給湯装置14を運転して、第2熱媒体を加温することも含まれる。以下に、各運転モードについて、熱源側冷媒及び熱媒体の流れとともに説明する。
[全冷房運転モード]
 図3は、図2に示す空気調和装置100の全冷房運転時の冷媒及び熱媒体の流れを説明する図である。この図3では、利用側熱交換器26a及び利用側熱交換器26bでのみ冷熱負荷が発生している場合を例に全冷房運転モードについて説明する。なお、図3では、太線で表された配管が冷媒(第1熱源側冷媒)、及び熱媒体(第1熱媒体)の流れる配管を示している。また、図3では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図3に示す全冷房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10aから吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a及び熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を第1熱媒体が循環するようにしている。なお、全冷房運転モードにおいては、給湯装置14は停止している。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の第1熱源側冷媒が圧縮機10aによって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10aから吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮液化し、高圧液冷媒となる。熱源側熱交換器12から流出した高圧液冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した高圧液冷媒は、開閉装置17aを経由した後に分岐されて絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。
 この二相冷媒は、蒸発器として作用する熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入し、熱媒体循環回路Bを循環する熱媒体から吸熱することで、熱媒体を冷却しながら、低温・低圧のガス冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出したガス冷媒は、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10aへ再度吸入される。
 このとき、絞り装置16aは、第3温度センサー35aで検出された温度と第3温度センサー35bで検出された温度との差として得られるスーパーヒート(過熱度)が一定になるように開度が制御される。同様に、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、開閉装置17aは開、開閉装置17bは閉となっている。
 次に、熱媒体循環回路Bにおける第1熱媒体の流れについて説明する。
 全冷房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で熱源側冷媒の冷熱が熱媒体に伝えられ、冷やされた熱媒体がポンプ21a及びポンプ21bによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した熱媒体は、第2熱媒体流路切替装置23a及び第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。そして、熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気から吸熱することで、室内空間7の冷房を行なう。
 それから、熱媒体は、利用側熱交換器26a及び利用側熱交換器26bから流出して熱媒体流量調整装置25a及び熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a及び熱媒体流量調整装置25bの作用によって熱媒体の流量が室内にて必要とされる空調負荷を賄うのに必要な流量に制御されて利用側熱交換器26a及び利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a及び熱媒体流量調整装置25bから流出した熱媒体は、第1熱媒体流路切替装置22a及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の熱媒体配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31a又は第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。
 全冷房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにする。図3においては、利用側熱交換器26a及び利用側熱交換器26bにおいては熱負荷があるため熱媒体を流しているが、利用側熱交換器26c、利用側熱交換器26dにおいては熱負荷がなく、対応する熱媒体流量調整装置25c、熱媒体流量調整装置25dを全閉としている。そして、利用側熱交換器26cや利用側熱交換器26dから熱負荷の発生があった場合には、熱媒体流量調整装置25cや熱媒体流量調整装置25dを開放し、熱媒体を循環させればよい。
[全暖房運転モード]
 図4は、図2に示す空気調和装置100の全暖房運転時の冷媒及び熱媒体の流れを説明する図である。この図4では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に全暖房運転モードについて説明する。なお、図4では、太線で表された配管が冷媒(第1熱源側冷媒及び第2熱源側冷媒)、及び熱媒体(第1熱媒体及び第2熱媒体)の流れる配管を示している。また、図4では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図4に示す全暖房運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10aから吐出された第1熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a、熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。また、全暖房運転モードにおいては、給湯装置14を運転して第2熱媒体を加温することも含まれている。ここでの全暖房運転モードの説明では、給湯装置14を運転しているものとして説明する。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の第1熱源側冷媒が圧縮機10aによって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10aから吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入し、開閉装置17の手前で分岐された高温・高圧のガス冷媒の一方は、第2冷媒流路切替装置18a及び第2冷媒流路切替装置18bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれに流入する。
 熱媒体間熱交換器15a及び熱媒体間熱交換器15bに流入した高温・高圧のガス冷媒は、熱媒体循環回路Bを循環する熱媒体に放熱しながら凝縮液化し、高圧の液冷媒となる。熱媒体間熱交換器15a及び熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16a及び絞り装置16bで膨張させられて、低温・低圧の二相冷媒となる。この二相冷媒は、開閉装置17bを通って、熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した二相冷媒は、第2接続配管4bを導通し、逆止弁13cを通過して、蒸発器として作用する熱源側熱交換器12に流入する。
 そして、熱源側熱交換器12に流入した二相冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10aへ再度吸入される。
 このとき、絞り装置16aは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクール(過冷却度)が一定になるように開度が制御される。同様に、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、開閉装置17aは閉、開閉装置17bは開となっている。なお、熱媒体間熱交換器15の中間位置の温度が測定できる場合は、その中間位置での温度を圧力センサー36の代わりに用いてもよく、安価にシステムを構成できる。
 また、熱媒体変換機3に流入した高温・高圧のガス冷媒の他方、すなわち熱媒体変換機3の閉となっている開閉装置17aの手前で分岐された第1熱源側冷媒は、熱媒体変換機3から流出し、冷媒配管4を介して給湯装置14に流入する。そして、給湯装置14に流入した第1熱源側冷媒は、加熱用熱交換器15cで第2熱源側冷媒に温熱を伝達して凝縮液化し、液冷媒となる。加熱用熱交換器15cから流出した液冷媒は、絞り装置16cで膨張させられて気液二相冷媒となる。
 絞り装置16cから流出した気液二相冷媒は、給湯装置14から流出し、冷媒配管4を介して熱媒体変換機3に再度流入し、絞り装置16a及び絞り装置16bから流出した冷媒と合流する。
 このとき、絞り装置16cは、第5温度センサー40の検出温度と、第3圧力センサー39の検出圧力から換算した飽和温度との温度差であるサブクールが一定になるように、開度が制御される。
 冷媒循環回路A2における第2熱源側冷媒の流れについて説明する。
 第2熱源側冷媒が圧縮機10bによって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10bから吐出された高温・高圧のガス冷媒は、熱媒体間熱交換器15dに流入する。そして、熱媒体間熱交換器15dで第2熱媒体に放熱しながら凝縮し、二相冷媒となる。なお、熱媒体間熱交換器15dにおいて、第2熱源側冷媒は第2熱媒体に放熱し、第2熱媒体を加温している。
 熱媒体間熱交換器15dから流出した二相冷媒は、絞り装置16dを介して加熱用熱交換器15cに流入する。加熱用熱交換器15cに流入した二相冷媒は、第1熱源側冷媒から温熱を伝達される。なお、加熱用熱交換器15cにおいて、第2熱源側冷媒が第1熱源側冷媒から吸熱した熱は、第2熱源側冷媒が蒸発するための熱量として消費される。加熱用熱交換器15cから流出したガス冷媒は、再び圧縮機10bへ再度吸入される。
 このとき、絞り装置16dは、第4温度センサー38の検出温度と、第2圧力センサー37の検出圧力から換算した飽和温度との温度差である過熱度が一定になるように、開度が制御される。また、圧縮機10bの回転周波数は、第6温度センサー41の検出温度が目標温度になるように制御される。
 熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 全暖房運転モードでは、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方で第1熱源側冷媒の温熱が第1熱媒体に伝えられ、暖められた第1熱媒体がポンプ21a及びポンプ21bによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した第1熱媒体は、第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23bを介して、利用側熱交換器26a、利用側熱交換器26bに流入する。そして、第1熱媒体が利用側熱交換器26a及び利用側熱交換器26bで室内空気に放熱し、室内空間7の暖房を行なう。
 それから、第1熱媒体は、利用側熱交換器26a、利用側熱交換器26bから流出して熱媒体流量調整装置25a、熱媒体流量調整装置25bに流入する。このとき、熱媒体流量調整装置25a、熱媒体流量調整装置25bの作用によって第1熱媒体の流量が室内にて必要とされる負荷を賄うのに必要な流量に制御されて利用側熱交換器26a、利用側熱交換器26bに流入するようになっている。熱媒体流量調整装置25a、熱媒体流量調整装置25bから流出した第1熱媒体は、第1熱媒体流路切替装置22a、第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15a及び熱媒体間熱交換器15bへ流入し、再びポンプ21a及びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の熱媒体配管5内では、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに第1熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、第1温度センサー31aで検出された温度、あるいは、第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を目標値に保つように制御することにより、賄うことができる。熱媒体間熱交換器15の出口温度は、第1温度センサー31a又は第1温度センサー31bのどちらの温度を使用してもよいし、これらの平均温度を使用してもよい。
 このとき、第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方へ流れる流路が確保されるように、中間的な開度にしている。また、本来、利用側熱交換器26aは、その入口と出口の温度差で制御すべきであるが、利用側熱交換器26の入口側の熱媒体温度は、第1温度センサー31bで検出された温度とほとんど同じ温度であり、第1温度センサー31bを使用することにより温度センサーの数を減らすことができ、安価にシステムを構成できる。
 全暖房運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは第1熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ熱媒体が流れないようにすればよい。
 熱媒体循環回路B2における第2熱媒体の流れについて説明する。
 熱媒体間熱交換器15dで第2熱源側冷媒の温熱が第2熱媒体に伝えられ、暖められた第2熱媒体がポンプ21cによって熱媒体配管5a内を流動させられることになる。ポンプ21cで加圧されて流出した第2熱媒体は、貯湯タンク24に流入する。貯湯タンク24に流入した第2熱媒体は、再び熱媒体間熱交換器15dに流入した後に、ポンプ21cへ吸い込まれる。
[冷房主体運転モード]
 図5は、図2に示す空気調和装置100の冷房主体運転時の冷媒及び熱媒体の流れを説明する図である。この図5では、利用側熱交換器26aで冷熱負荷が発生し、利用側熱交換器26bで温熱負荷が発生している場合を例に冷房主体運転モードについて説明する。なお、図5では、太線で表された配管が冷媒(第1熱源側冷媒及び第2熱源側冷媒)、及び熱媒体(第1熱媒体及び第2熱媒体)の循環する配管を示している。また、図5では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図5に示す冷房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10aから吐出された熱源側冷媒を熱源側熱交換器12へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a、熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15aと利用側熱交換器26aとの間、熱媒体間熱交換器15bと利用側熱交換器26bとの間を、それぞれ第1熱媒体が循環するようにしている。また、冷房主体運転モードにおいては、給湯装置14を運転して第2熱媒体を加温することも含まれている。ここでの冷房主体運転モードの説明では、給湯装置14を運転しているものとして説明する。
 まず始めに、冷媒循環回路Aにおける第1熱源側冷媒の流れについて説明する。
 低温・低圧の第1熱源側冷媒が圧縮機10aによって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10aから吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を介して熱源側熱交換器12に流入する。そして、熱源側熱交換器12で室外空気に放熱しながら凝縮し、二相冷媒となる。熱源側熱交換器12から流出した二相冷媒は、逆止弁13aを通って室外機1から流出し、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入した二相冷媒の一方は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入した二相冷媒は、熱媒体循環回路Bを循環する第1熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する第1熱媒体から吸熱することで、第1熱媒体を冷却しながら、低圧のガス冷媒となる。このガス冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。室外機1に流入した冷媒は、逆止弁13dを通って、第1冷媒流路切替装置11及びアキュムレーター19を介して、圧縮機10aへ再度吸入される。
 このとき、絞り装置16bは、第3温度センサー35cで検出された温度と第3温度センサー35dで検出された温度との差として得られるスーパーヒートが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17aは閉、開閉装置17bは閉となっている。なお、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35dで検出された温度との差として得られるサブクールが一定になるように開度を制御してもよい。また、絞り装置16bを全開とし、絞り装置16aでスーパーヒート又はサブクールを制御するようにしてもよい。
 また、熱媒体変換機3に流入した二相冷媒の他方、すなわち熱媒体変換機3の閉となっている開閉装置17aの手前で分岐された第1熱源側冷媒は、熱媒体変換機3から流出し、冷媒配管4を介して給湯装置14に流入する。そして、給湯装置14に流入した第1熱源側冷媒は、加熱用熱交換器15cで第2熱源側冷媒に温熱を伝達して凝縮液化し、液冷媒となる。加熱用熱交換器15cから流出した液冷媒は、絞り装置16cで膨張させられて気液二相冷媒となる。
 絞り装置16cから流出した気液二相冷媒は、給湯装置14から流出し、冷媒配管4を介して熱媒体変換機3に再度流入し、絞り装置16bから流出した冷媒と合流する。
 このとき、絞り装置16cは、第5温度センサー40の検出温度と、第3圧力センサー39の検出圧力から換算した飽和温度との温度差であるサブクールが一定になるように、開度が制御される。
 冷媒循環回路A2における第2熱源側冷媒の流れについて説明する。
 第2熱源側冷媒が圧縮機10bによって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10bから吐出された高温・高圧のガス冷媒は、熱媒体間熱交換器15dに流入する。そして、熱媒体間熱交換器15dで第2熱媒体に放熱しながら凝縮し、二相冷媒となる。なお、熱媒体間熱交換器15dにおいて、第2熱源側冷媒は第2熱媒体に放熱し、第2熱媒体を加温している。
 熱媒体間熱交換器15dから流出した二相冷媒は、絞り装置16dを介して加熱用熱交換器15cに流入し、第1熱源側冷媒から温熱を伝達される。なお、加熱用熱交換器15cにおいて、第2熱源側冷媒が第1熱源側冷媒から吸熱した熱は、第2熱源側冷媒が蒸発するための熱量として消費される。加熱用熱交換器15cから流出したガス冷媒は、再び圧縮機10bへ再度吸入される。
 このとき、絞り装置16dは、第4温度センサー38の検出温度と、第2圧力センサー37の検出圧力から換算した飽和温度との温度差である過熱度が一定になるように、開度が制御される。また、圧縮機10bの回転周波数は、第6温度センサー41の検出温度が目標温度になるように制御される。
 熱媒体循環回路Bにおける第1熱媒体の流れについて説明する。
 冷房主体運転モードでは、熱媒体間熱交換器15bで第1熱源側冷媒の温熱が第1熱媒体に伝えられ、暖められた第1熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、冷房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が第1熱媒体に伝えられ、冷やされた第1熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した第1熱媒体は、第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23bを介して、利用側熱交換器26a、利用側熱交換器26bに流入する。
 利用側熱交換器26bでは第1熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。また、利用側熱交換器26aでは第1熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。このとき、熱媒体流量調整装置25a、熱媒体流量調整装置25bの作用によって第1熱媒体の流量が室内にて必要とされる負荷を賄うのに必要な流量に制御されて利用側熱交換器26a、利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が低下した第1熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通り、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。利用側熱交換器26aを通過し若干温度が上昇した第1熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通って、熱媒体間熱交換器15aへ流入し、再びポンプ21aへ吸い込まれる。
 なお、利用側熱交換器26の熱媒体配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに第1熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
 冷房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは第1熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ第1熱媒体が流れないようにすればよい。
 熱媒体循環回路B2における第2熱媒体の流れについて説明する。
 熱媒体間熱交換器15dで第2熱源側冷媒の温熱が第2熱媒体に伝えられ、暖められた第2熱媒体がポンプ21cによって熱媒体配管5a内を流動させられることになる。ポンプ21cで加圧されて流出した第2熱媒体は、貯湯タンク24に流入する。貯湯タンク24に流入した第2熱媒体は、再び熱媒体間熱交換器15dに流入した後に、ポンプ21cへ吸い込まれる。
[暖房主体運転モード]
 図6は、図2に示す空気調和装置100の暖房主体運転時の冷媒及び熱媒体の流れを説明する図である。この図6では、利用側熱交換器26a及び利用側熱交換器26bでのみ温熱負荷が発生している場合を例に暖房主体運転モードについて説明する。なお、図6では、太線で表された配管が冷媒(第1熱源側冷媒及び第2熱源側冷媒)、及び熱媒体(第1熱媒体及び第2熱媒体)の流れる配管を示している。また、図6では、冷媒の流れ方向を実線矢印で、熱媒体の流れ方向を破線矢印で示している。
 図6に示す暖房主体運転モードの場合、室外機1では、第1冷媒流路切替装置11を、圧縮機10aから吐出された第1熱源側冷媒を熱源側熱交換器12を経由させずに熱媒体変換機3へ流入させるように切り替える。熱媒体変換機3では、ポンプ21a及びポンプ21bを駆動させ、熱媒体流量調整装置25a、熱媒体流量調整装置25bを開放し、熱媒体流量調整装置25c及び熱媒体流量調整装置25dを全閉とし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bのそれぞれと利用側熱交換器26a及び利用側熱交換器26bとの間を熱媒体が循環するようにしている。また、暖房主体運転モードにおいては、給湯装置14を運転して第2熱媒体を加温することも含まれている。ここでの暖房主体運転モードの説明では、給湯装置14を運転しているものとして説明する。
 まず始めに、冷媒循環回路Aにおける熱源側冷媒の流れについて説明する。
 低温・低圧の第1熱源側冷媒が圧縮機10aによって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10aから吐出された高温・高圧のガス冷媒は、第1冷媒流路切替装置11を通り、第1接続配管4aを導通し、逆止弁13bを通過し、室外機1から流出する。室外機1から流出した高温・高圧のガス冷媒は、冷媒配管4を通って熱媒体変換機3に流入する。熱媒体変換機3に流入し、開閉装置17の手前で分岐された高温・高圧のガス冷媒の一方は、第2冷媒流路切替装置18bを通って凝縮器として作用する熱媒体間熱交換器15bに流入する。
 熱媒体間熱交換器15bに流入したガス冷媒は、熱媒体循環回路Bを循環する第1熱媒体に放熱しながら凝縮液化し、液冷媒となる。熱媒体間熱交換器15bから流出した液冷媒は、絞り装置16bで膨張させられて低圧二相冷媒となる。この低圧二相冷媒は、絞り装置16aを介して蒸発器として作用する熱媒体間熱交換器15aに流入する。熱媒体間熱交換器15aに流入した低圧二相冷媒は、熱媒体循環回路Bを循環する第1熱媒体から吸熱することで蒸発し、第1熱媒体を冷却する。この低圧二相冷媒は、熱媒体間熱交換器15aから流出し、第2冷媒流路切替装置18aを介して熱媒体変換機3から流出し、冷媒配管4を通って再び室外機1へ流入する。
 室外機1に流入した二相冷媒は、逆止弁13cを通って、蒸発器として作用する熱源側熱交換器12に流入する。そして、熱源側熱交換器12に流入した二相冷媒は、熱源側熱交換器12で室外空気から吸熱して、低温・低圧のガス冷媒となる。熱源側熱交換器12から流出した低温・低圧のガス冷媒は、第1冷媒流路切替装置11及びアキュムレーター19を介して圧縮機10aへ再度吸入される。
 このとき、絞り装置16bは、圧力センサー36で検出された圧力を飽和温度に換算した値と第3温度センサー35bで検出された温度との差として得られるサブクールが一定になるように開度が制御される。また、絞り装置16aは全開、開閉装置17a、17bは閉となっている。なお、絞り装置16bを全開とし、絞り装置16aでサブクールを制御するようにしてもよい。
 また、熱媒体変換機3に流入した高温・高圧のガス冷媒の他方、すなわち熱媒体変換機3の閉となっている開閉装置17aの手前で分岐された第1熱源側冷媒は、熱媒体変換機3から流出し、冷媒配管4を介して給湯装置14に流入する。そして、給湯装置14に流入した第1熱源側冷媒は、加熱用熱交換器15cで第2熱源側冷媒に温熱を伝達して凝縮液化し、液冷媒となる。加熱用熱交換器15cから流出した液冷媒は、絞り装置16cで膨張させられて気液二相冷媒となる。
 絞り装置16cから流出した気液二相冷媒は、給湯装置14から流出し、冷媒配管4を介して熱媒体変換機3に再度流入し、絞り装置16bから流出した冷媒と合流する。
 このとき、絞り装置16cは、第5温度センサー40の検出温度と、第3圧力センサー39の検出圧力から換算した飽和温度との温度差であるサブクールが一定になるように、開度が制御される。
 冷媒循環回路A2における第2熱源側冷媒の流れについて説明する。
 第2熱源側冷媒が圧縮機10bによって圧縮され、高温・高圧のガス冷媒となって吐出される。圧縮機10bから吐出された高温・高圧のガス冷媒は、熱媒体間熱交換器15dに流入する。そして、熱媒体間熱交換器15dで第2熱媒体に放熱しながら凝縮し、二相冷媒となる。なお、熱媒体間熱交換器15dにおいて、第2熱源側冷媒は第2熱媒体に放熱し、第2熱媒体を加温している。
 熱媒体間熱交換器15dから流出した二相冷媒は、絞り装置16dを介して加熱用熱交換器15cに流入し、第1熱源側冷媒から温熱を伝達される。なお、加熱用熱交換器15cにおいて、第2熱源側冷媒が第1熱源側冷媒から吸熱した熱は、第2熱源側冷媒が蒸発するための熱量として消費される。加熱用熱交換器15cから流出したガス冷媒は、再び圧縮機10bへ再度吸入される。
 このとき、絞り装置16dは、第4温度センサー38の検出温度と、第2圧力センサー37の検出圧力から換算した飽和温度との温度差である過熱度が一定になるように、開度が制御される。また、圧縮機10bの回転周波数は、第6温度センサー41の検出温度が目標温度になるように制御される。
 熱媒体循環回路Bにおける熱媒体の流れについて説明する。
 暖房主体運転モードでは、熱媒体間熱交換器15bで第1熱源側冷媒の温熱が第1熱媒体に伝えられ、暖められた第1熱媒体がポンプ21bによって熱媒体配管5内を流動させられることになる。また、暖房主体運転モードでは、熱媒体間熱交換器15aで熱源側冷媒の冷熱が第1熱媒体に伝えられ、冷やされた第1熱媒体がポンプ21aによって熱媒体配管5内を流動させられることになる。ポンプ21a及びポンプ21bで加圧されて流出した第1熱媒体は、第2熱媒体流路切替装置23a、第2熱媒体流路切替装置23bを介して、利用側熱交換器26a及び利用側熱交換器26bに流入する。
 利用側熱交換器26bでは第1熱媒体が室内空気から吸熱することで、室内空間7の冷房を行なう。また、利用側熱交換器26aでは第1熱媒体が室内空気に放熱することで、室内空間7の暖房を行なう。このとき、熱媒体流量調整装置25a、熱媒体流量調整装置25bの作用によって第1熱媒体の流量が室内にて必要とされる負荷を賄うのに必要な流量に制御されて利用側熱交換器26a、利用側熱交換器26bに流入するようになっている。利用側熱交換器26bを通過し若干温度が上昇した第1熱媒体は、熱媒体流量調整装置25b及び第1熱媒体流路切替装置22bを通って、熱媒体間熱交換器15aに流入し、再びポンプ21aへ吸い込まれる。利用側熱交換器26aを通過し若干温度が低下した第1熱媒体は、熱媒体流量調整装置25a及び第1熱媒体流路切替装置22aを通り、熱媒体間熱交換器15bへ流入し、再びポンプ21bへ吸い込まれる。
 なお、利用側熱交換器26の熱媒体配管5内では、暖房側、冷房側ともに、第2熱媒体流路切替装置23から熱媒体流量調整装置25を経由して第1熱媒体流路切替装置22へ至る向きに第1熱媒体が流れている。また、室内空間7にて必要とされる空調負荷は、暖房側においては第1温度センサー31bで検出された温度と第2温度センサー34で検出された温度との差を、冷房側においては第2温度センサー34で検出された温度と第1温度センサー31aで検出された温度との差を目標値に保つように制御することにより、賄うことができる。
 暖房主体運転モードを実行する際、熱負荷のない利用側熱交換器26(サーモオフを含む)へは第1熱媒体を流す必要がないため、熱媒体流量調整装置25により流路を閉じて、利用側熱交換器26へ第1熱媒体が流れないようにすればよい。
 熱媒体循環回路B2における第2熱媒体の流れについて説明する。
 熱媒体間熱交換器15dで第2熱源側冷媒の温熱が第2熱媒体に伝えられ、暖められた第2熱媒体がポンプ21cによって熱媒体配管5a内を流動させられることになる。ポンプ21cで加圧されて流出した第2熱媒体は、貯湯タンク24に流入する。貯湯タンク24に流入した第2熱媒体は、再び熱媒体間熱交換器15dに流入した後に、ポンプ21cへ吸い込まれる。
[給湯装置14の温度設定]
 この給湯装置14は、第2熱媒体の温度を、利用側熱交換器26a~26dを流れる第1熱媒体の目標温度よりも、高い温度に設定している。これは、第2熱媒体が、主に給湯負荷を賄うために使用するものであるためである。たとえば、利用側熱交換器26a~26dを流れる第1熱媒体の目標温度が50℃、熱媒体間熱交換器15dを流れる第2熱媒体の目標温度は70℃などの値に設定される。
 そのため、給湯装置14に使用されている第2熱源側冷媒の凝縮温度又は擬似凝縮温度は、室外機1と熱媒体変換機3の間を循環する冷媒の凝縮温度又は擬似凝縮温度よりも高い値に制御される。たとえば、給湯装置14に使用されている第2熱源側冷媒の凝縮温度又は擬似凝縮温度が75℃、室外機1と熱媒体変換機3の間を循環する冷媒の凝縮温度又は擬似凝縮温度が55℃といった値に制御される。
[非共沸冷媒について]
 第1の冷凍サイクル内の冷媒配管4の内部には、たとえば、化学式がC3 2 4 で表されるテトラフルオロプロペン(たとえば、HFO1234yf、HFO1234ze(E)など)と、化学式がCH2 2 で表されるジフルオロメタン(R32)とを含む混合冷媒とが混合されて循環している。なお、HFO1234zeについては、二つの幾何学的異性体が存在しており、二重結合に対してFとCFが対称の位置にあるトランス型と、同じ側にあるシス型があり、両者で物性が異なる。本実施の形態のHFO1234ze(E)はトランス型である。
 テトラフルオロプロペンは、化学式中に二重結合を有するため、大気中で分解しやすく、地球温暖化係数(GWP)がたとえば4程度(HFO1234yfの場合)と低く、環境に優しい冷媒である。しかし、テトラフルオロプロペンは従来の空気調和装置に採用されてきたR410Aなどの冷媒に比べて密度が小さいため、単独で冷媒として使用すると、大きな暖房能力や冷房能力を発揮させるためには、圧縮機を非常に大きなものにしなければならない。また、配管での圧力損失の増大を防ぐため、冷媒配管も太いものにしなければならず、コストの高い空気調和装置になってしまう。
 そこで、テトラフルオロプロペンにR32を混合した冷媒を採用することが考えられる。このR32は、冷媒の特性が従来の冷媒に近いため比較的使いやすい冷媒である。しかし、R410AのGWP2088程度と比べると小さいが、R32のGWPが675程度と比較的高い。すなわち、環境に対する負荷の観点で言えば、R32は、その他の冷媒と混合せずに単独で使用するには、若干向いていない冷媒である。
 そこで、テトラフルオロプロペンとR32とを混合させた冷媒を使用することにより、GWPをあまり大きくせずに、冷媒の特性を改善し、地球環境にも易しく、かつ、効率のよい空気調和装置を得ることができる。テトラフルオロプロペンとR32との混合比率としては、質量%で、たとえば70%対30%などのように混合させて使用することが考えられるが、この混合比率に限ったものではない。
 しかし、HFO1234yfの沸点が-29(℃)、R32の沸点は-53.2(℃)であるため、テトラフルオロプロペンとR32とを混合させた冷媒は、沸点の異なる冷媒を有する非共沸冷媒となる。この非共沸冷媒は、たとえば、アキュムレータ19などの液溜に流入すると、沸点の低い方の成分が液冷媒として滞留する。これにより、空気調和装置の配管内を循環する冷媒の循環組成が時々刻々と変化することになる。
[非共沸冷媒のph線図における温度勾配]
 図7は、所定の非共沸冷媒のph線図(圧力-エンタルピ線図)の説明図である。図8は、第1熱源側冷媒に非共沸冷媒を採用し、第2熱源側冷媒に単一冷媒を採用した場合であって、加熱用熱交換器15c内の両方の冷媒温度の説明図である。図9は、第1熱源側冷媒及び第2熱源側冷媒に非共沸冷媒を採用した場合であって、加熱用熱交換器15c内の両方の冷媒温度の説明図である。
 なお、図8及び図9の横軸は、加熱用熱交換器15cの第1熱源側冷媒の流路及び第2熱源側冷媒の流路に対応している。すなわち、この横軸の正の方向が第1熱源側冷媒の流路の入口側に対応し、負の方向が第1熱源側冷媒の流路の出口側に対応している。また、この横軸の正の方向が第2熱源側冷媒の流路の出口側に対応し、負の方向が第2熱源側冷媒の流路の入口側に対応している。図8及び図9の縦軸は、第1熱源側冷媒及び第2熱源側冷媒の温度を示している。
 また、以下の説明において「入口側の第1熱源側冷媒」とは、加熱用熱交換器15cに流入する第1熱源側冷媒を指し、「出口側の第1熱源側冷媒」とは、加熱用熱交換器15cから流出する第1熱源側冷媒を指すものとする。また、第2熱源側冷媒についても同様である。
 図7に示すように、非共沸冷媒は沸点が異なるため、ph線図を描くと、同一圧力における飽和液温度と飽和ガス温度が異なる。すなわち、圧力P1における飽和液温度TL1 は、圧力P1における飽和ガス温度TG1 よりも低い温度となる。これにより、ph線図の二相領域における等温線は、所定の温度勾配で傾いている。
 混合している冷媒の比率を変えると、ph線図は異なったものとなり、温度勾配が変化する。たとえば、HFO1234yfとR32との混合比率を70%対30%とした場合は、温度勾配が高圧側で5.6℃、低圧側で6.8℃程度となる。また、HFO1234yfとR32との混合比率を50%対50%とした場合は、温度勾配が高圧側で2.5℃、低圧側で2.8℃程度となる。
 すなわち、圧力損失が小さいものと仮定すれば、上述のような混合比率の第1熱源側冷媒が、給湯装置14の加熱用熱交換器15cに供給されると、加熱用熱交換器15cの入口から出口に向かって、冷媒温度が徐々に下がることになる。
 なお、共沸混合冷媒以外の冷媒、すなわち単一冷媒や擬似共沸混合冷媒などのような冷媒の場合には、冷媒の循環組成が変化することがないため、二相変化する領域におけるエンタルピ変化は冷媒の相変化に利用され、温度勾配は生じない。すなわち、非共沸冷媒でない冷媒の場合には、加熱用熱交換器15cの入口から出口に向かって、冷媒温度が徐々に下がることはない。
[非共沸混合冷媒による効果1]
 加熱用熱交換器15cにおいては、第1熱源側冷媒と第2熱源側冷媒とが対向流となっている。すなわち、冷媒の位置関係としては、入口側の第1熱源側冷媒が出口側の第2熱源側冷媒に対応し、出口側の第1熱源側冷媒が入口側の第2熱源側冷媒に対応することになる。
 ここで、仮に、第2熱源側冷媒として単一冷媒や擬似共沸混合冷媒(たとえばHFO1234yfなど)を採用するものとする。この場合には、[非共沸冷媒のph線図における温度勾配]で説明したように、単一冷媒や擬似共沸冷媒が同一圧力における飽和ガス温度と飽和液温度が同じかほぼ同じ(温度勾配がない)であるため、加熱用熱交換器15cのうちの第2熱源側冷媒の流路においては、ほとんど一定の温度となる。
 具体的には、入口側の第1熱源側冷媒温度及び出口側の第2熱源側冷媒温度と、出口側の第1熱源側冷媒温度及び入口側の第2熱源側冷媒温度とは、図8に示したようになる。 ここで、加熱用熱交換器15cにおける第1熱源側冷媒の入口側の飽和ガス温度と出口側の飽和液温度との温度差から、加熱用熱交換器15cにおける第2熱源側冷媒の出口側の飽和ガス温度と入口側の温度との温度差を「差し引いた値」が大きい。
 このように、第2熱源側冷媒として単一冷媒や擬似共沸混合冷媒を採用すると、上記「差し引いた値」が大きくなって加熱用熱交換器15cの熱交換効率が低減してしまい、給湯装置14の運転効率が悪くなってしまう。
 そこで、実施の形態1に係る空気調和装置100では、第2熱源側冷媒として非共沸混合冷媒(たとえばHFO1234yfとR32との混合冷媒)を採用する。非共沸混合冷媒では、同一圧力における飽和ガス温度が飽和液温度よりも高い(温度勾配を有する)。そのため、加熱用熱交換器15cにおける入口側の第2熱源側冷媒温度よりも出口側の第2熱源側冷媒温度の方が高い状態となる。
 具体的には、入口側の第1熱源側冷媒温度及び出口側の第2熱源側冷媒温度と、出口側の第1熱源側冷媒温度及び入口側の第2熱源側冷媒温度とは、図9に示したようになる。
 ここで、加熱用熱交換器15cにおける第1熱源側冷媒の入口側の飽和ガス温度と出口側の飽和液温度との温度差から、加熱用熱交換器15cにおける第2熱源側冷媒の出口側の飽和ガス温度と入口側の温度との温度差を「差し引いた値」は、図8における「差し引いた値」と比較すると小さくなる。なお、図9における「差し引いた値」は、第1熱源側冷媒と第2熱源側冷媒の二相部(蒸発器において過熱度がゼロの場合は全域)の温度差に対応するものである。
 このように、第2熱源側冷媒として非共沸混合冷媒を採用すると、上記「差し引いた値」が小さくなって加熱用熱交換器15cの熱交換効率を向上させることができ、給湯装置14の運転効率を向上させることができる。
 ただし、加熱用熱交換器15cの入口側の第2熱源側冷媒には、乾き度がたとえば0.1~0.2程度の気液混在状態の二相冷媒が流入するため、加熱用熱交換器15cにおける第2熱源側冷媒の出口側温度と第2熱源側冷媒の入口側温度との温度差は、飽和ガス温度と飽和液温度との温度差よりも小さくなる。
[非共沸混合冷媒による効果2]
 次に、加熱用熱交換器15cにおける第1熱源側冷媒及び第2熱源側冷媒の状態について説明する。
 第1熱源側冷媒は、加熱用熱交換器15cの入口側においてガス部(気相)、加熱用熱交換器15cの出口側において液部(液相)となり、当該入口側と当該出口側の間において二相部(気液二相)となっている。なお、ガス部と液部の長さは(二相部に比べて)それほど長くなく、熱伝達率も小さいため、全体の熱交換量に対する寄与度は小さい。そのため、加熱用熱交換器15cの熱交換の大半は、第1熱源側冷媒の二相部で行われている。
 また、加熱用熱交換器15cの第2熱源側冷媒の流路においては、第2熱源側冷媒の出口側での過熱度が小さい値に制御される。この過熱度の値が小さいこと、及び気相の熱伝達率は小さいことにより、加熱用熱交換器15cの熱交換の大半は第2熱源側冷媒の二相部で行われることになる。
 したがって、加熱用熱交換器15cにおいては、第1熱源側冷媒の二相部と第2熱源側冷媒の二相部とによる熱交換が、加熱用熱交換器15cにおける全熱交換量の大半を占めている。
 そこで、第1熱源側冷媒及び第2熱源側冷媒が、二相部の状態であるときの温度差を小さくすることで、加熱用熱交換器15cの熱交換効率を向上させることができ、給湯装置14の運転効率を向上させることができる。なお、二相部の状態であるときの温度差を小さくするとは、「第1熱源側冷媒の入口側の飽和ガス温度(ガスから二相に変わる点)」と「出口側の飽和液温度(二相から液に変わる点)」との温度差(第1の温度差)と、加熱用熱交換器15cにおける「第2熱源側冷媒の出口側の飽和ガス温度(二相からガスに変わる点)」と「入口側の温度(たとえば乾き度0.1~0.2)」との温度差(第2の温度差)と、の温度差を小さい値にする(第1の温度差と第2の温度差を近い値にする)ことである。
 なお、この状態は、第1の温度差と第2の温度差との差を所定値以下に収めるように絞り装置16dの開度を調整することで実現してもよいし、第2の温度差を第1の温度差に近づけるように絞り装置16dの開度を調整して実現してもよい。なお、この「所定値」については後述するものとする。
 また、第2熱源側冷媒の入口側の二相冷媒の乾き度が、たとえば0.1~0.2などのようにあまり大きくない場合には、上記の第1の温度差と、「第2熱源側冷媒の飽和ガス(二相からガスに変わる点)温度」と「第2熱源側冷媒の飽和液(二相から液に変わる点)温度」との温度差とを近い値にすることでも、加熱用熱交換器15cの熱交換効率を向上させることができ、給湯装置14の運転効率を向上させることができる。
[非共沸混合冷媒による効果3]
 図10は、加熱用熱交換器15cに供給される非共沸混合冷媒(HFO1234yfとR32)の同一圧力における飽和ガスと飽和液との温度差(図7に示す温度勾配に対応)の説明図である。
 なお、図10において、横軸は混合冷媒に占めるR32の割合を示し、縦軸は冷媒の温度差を示している。また、「凝縮側」とは、加熱用熱交換器15cで第1熱源側冷媒が凝縮する側に対応しており、「凝縮側温度差」とは、各混合割合において、飽和ガス温度が45℃となる圧力における飽和ガスと飽和液との温度差を示している。
 また、「蒸発側」とは、加熱用熱交換器15cで第2熱源側冷媒が蒸発する側に対応しており、「蒸発側温度差」とは、各混合割合において、飽和ガス温度が5℃となる圧力における飽和ガスと蒸発器入口冷媒との温度差を示している。
 さらに、加熱用熱交換器15cの蒸発側温度差は、入口乾き度が「0.1」、「0.2」及び「飽和液」の場合の3つを例に示している。
 図10に示すように、HFO1234yfとR32との非共沸混合冷媒において、それぞれの混合比が同じ(図10のR32が0.5)であれば、蒸発側の飽和ガスと飽和液との温度差が、凝縮側の飽和ガスと飽和液との温度差よりも大きいことがわかる。
 また、第2熱源側冷媒の乾き度が0.1の場合でも、蒸発側の温度差の方が、凝縮側の温度差よりも大きい。すなわち、加熱用熱交換器15cにおいては、蒸発側である第2熱源側冷媒の入口乾き度が0.1程度と小さければ、蒸発側である第2熱源側冷媒の飽和ガスと飽和液との温度差の方が、凝縮側である第1熱源側冷媒の飽和ガスと飽和液との温度差よりも大きい。
 さらに、蒸発側であって入口側の第2熱源側冷媒の乾き度が0.2の場合は、凝縮側の温度差の方が蒸発側の温度差よりも大きい。すなわち、加熱用熱交換器15cにおいては、凝縮側である第1熱源側冷媒の飽和ガスと飽和液との温度差の方が、蒸発側である第2熱源側冷媒の飽和ガスと飽和液との温度差よりも少し大きい値になる。
 そこで、この図10に基づき、たとえば以下のように第1熱源側冷媒及び第2熱源側冷媒の割合を設定するとよい。
 すなわち、第1熱源側冷媒に占めるR32の割合が20%である場合には、第2熱源側冷媒のR32の割合が約8%又は約24%と設定する。これは、図10に示すように、第1熱源側冷媒に占めるR32の割合が20%である場合には、飽和ガスと飽和液との温度差は7.3℃となり、そして、第2熱源側冷媒の乾き度が0.1のときおいて、第2熱源側冷媒のR32の割合を約8%又は約24%と設定することで、温度差を約7.3度とすることができるためである。
 これは、上述の[非共沸混合冷媒による効果2]において説明した、加熱用熱交換器15cにおける「第1熱源側冷媒の入口側の飽和ガス温度(ガスから二相に変わる点)」と「出口側の飽和液温度(二相から液に変わる点)」との温度差(第1の温度差)と、加熱用熱交換器15cにおける「第2熱源側冷媒の出口側の飽和ガス温度(二相からガスに変わる点)」と「入口側の温度(たとえば乾き度0.1~0.2)」との温度差(第2の温度差)とを近い値にすることに対応している。これにより、加熱用熱交換器15cの熱交換効率を向上させることができ、給湯装置14の運転効率を向上させることができる。
 なお、実際には、双方の温度に1℃以内の温度差があっても、熱交換効率に大きな差はない。そこで、たとえば、第1熱源側冷媒に占めるR32の割合が20%であり、第2熱源側冷媒の乾き度が0.1である場合は、第2熱源側冷媒に占めるR32の割合が6~29%と設定すればよい。これにより、第1の温度差と第2の温度差とを1℃以内に収めることができる。
 また、第2熱源側冷媒の入口乾き度が非常に小さい場合には、第2熱源側冷媒を飽和液とみなしてよい。第1熱源側冷媒に占めるR32の割合が20%である場合には、第2熱源側冷媒に占めるR32の割合を6%又は28%とすると、第1の温度差と第2の温度差とを近い値にすることができ、第2熱源側冷媒に占めるR32の割合を5~8%、23~32%とすると、第2の温度差を第1の温度差の1℃以内に収めることができる。
 このように、第2の温度差を第1の温度差の1℃以内に収まるように、好ましくはこれらの温度差がさらに近い値になるように空気調和装置100に冷媒を充填することで、加熱用熱交換器15cの熱交換効率を向上させることができ、給湯装置14の運転効率を向上させることができる。
[非共沸混合冷媒の充填方法]
 ここまで、第1熱源側冷媒及び第2熱源側冷媒のR32とHFO1234yfの混合割合について説明してきた。次に、当該混合割合の冷媒を空気調和装置100に充填する方法について説明する。
 所定の混合割合の冷媒を、空気調和装置100に充填する方法としては、第1の冷凍サイクルに充填する冷媒と、第2の冷凍サイクルに充填する冷媒として、別々の組成割合が充填された冷媒ボンベを使って、充填する方法がある。
 たとえば、空気調和装置100のようなビル用マルチエアコンにおいて、第1熱源側冷媒は、機器が現地に設置された後に充填される。より詳細には、機器が設置された後に、R32の割合が20%である冷媒ボンベによって、第1の冷凍サイクルに第1熱源側冷媒が充填される。
 一方、第2熱源側冷媒は、工場から出荷前に、機器に予め充填される。より詳細には、加熱用熱交換器15cの第2熱源側冷媒側流路の第2熱源側冷媒の入口乾き度が0.1である場合には、工場から出荷前に予め、第2熱源側冷媒に占めるR32の割合が約8%又は約24%である冷媒ボンベによって、第2の冷凍サイクルに第2熱源側冷媒が充填される。
 このように、R32が所定の割合となっている冷媒ボンベを使用して、第1の冷凍サイクル及び第2の冷凍サイクルに、第1熱源側冷媒及び第2熱源側冷媒を充填するのが、最も簡単である。しかし、現実には、R32が所定の割合、すなわち都合の良い割合の冷媒が2種類共、製品化され、市場に流通していることはまれである。
 たとえば、R32の割合が20%である冷媒ボンベのみが、混合冷媒として市場に流通している場合には、以下のようにして、第1熱源側冷媒及び第2熱源側冷媒を空気調和装置100に充填するとよい。
 たとえば、R32の割合が20%である冷媒ボンベのみが、混合冷媒として市場に流通している場合には、その冷媒を第1熱源側冷媒として現地で第1の冷凍サイクルに充填することになる。ここで、R32の割合が24%である冷媒を、第2の冷媒として、第2の冷凍サイクルに充填したいものとする。
 このとき、工場で、HFO1234yfの冷媒ボンベとR32の冷媒ボンベを用い、第2の冷凍サイクルに、まず、規定冷媒量の0.76倍の量のHFO1234yfを充填し、その後、規定冷媒量の0.24倍のR32冷媒を充填してから、出荷するようにするとよい。
 また、工場で、第2熱源側冷媒に含まれる2種類の冷媒を充填するのが製造工程上、難しい場合がある。このような場合には、後から冷媒が追加充填できるように、第2の冷凍サイクルを構成する配管などに充填口を設置しておくとよい。これにより、第2の冷凍サイクルに、冷媒ボンベによって規定冷媒量の0.76倍の量のHFO1234yfを工場で充填して出荷し、後から、R32の冷媒ボンベによって規定冷媒量の0.24倍のR32冷媒を追加充填することが可能となる。
 このように、空気調和装置100は、第2熱源側冷媒を構成する複数の単一冷媒が所定の混合割合となるように、第2の冷凍サイクルに第2熱源側冷媒を充填するの冷媒充填方法を採用することで、第1の温度差と前記第2の温度差との差を所定値以下に収めることができ、加熱用熱交換器15cに流入する第1熱源側冷媒と第2熱源側冷媒との熱交換効率を向上させることができる。
[冷媒配管4]
 以上説明したように、本実施の形態1に係る空気調和装置100は、幾つかの運転モードを具備している。これらの運転モードにおいては、室外機1と熱媒体変換機3とを接続する配管4には熱源側冷媒が流れている。
[熱媒体配管5]
 本実施の形態1に係る空気調和装置100が実行する幾つかの運転モードにおいては、熱媒体変換機3と室内機2を接続する熱媒体配管5には水や不凍液などの熱媒体が流れている。
[実施の形態1のまとめ]
 実施の形態1に係る空気調和装置100は、第2熱源側冷媒を構成する複数の単一冷媒が所定の混合割合となるように、第2の冷凍サイクルに第2熱源側冷媒を充填する冷媒充填方法を採用しているので、第1の温度差と前記第2の温度差との差を所定値以下に収めることができ、加熱用熱交換器15cに流入する第1熱源側冷媒と第2熱源側冷媒との熱交換効率を向上させることができる。そして、このように熱交換効率を向上させることができる分、省エネルギー化を図ることができる。
実施の形態2.
 図11は、実施の形態2に係る空気調和装置200の回路構成例である。なお、本実施の形態2では、実施の形態1と同一部分には同一符号とし、実施の形態1との相違点を中心に説明するものとする。
 たとえば、実施の形態1に係る空気調和装置100の場合には、凝縮温度の変化や冷媒循環量の変化、給湯装置14の貯湯タンク24へ供給する第2熱媒体の出口温度(出湯温度)の目標値、第2熱媒体の循環流量の変化などに応じて、第2の冷凍サイクルの圧縮機10bの周波数が変化し、加熱用熱交換器15cへ流入する第2熱源側冷媒の入口乾き度が変化する場合がある。
 このように、第2熱源側冷媒の入口乾き度が変化すると、入口側の第2熱源側冷媒温度が変化してしまう場合がある。すなわち、加熱用熱交換器15cにおける出口側の第2熱源側冷媒温度と入口側の第2熱源側冷媒温度との温度差が変化、すなわち第2の温度差が変化してしまう場合があるということである。そして、この第2の温度差が変化することで第1熱源側冷媒の温度差とずれてしまい、加熱用熱交換器15cでの熱交換効率の悪化につながる。
 そこで、本実施の形態2に係る空気調和装置200は、第2熱源側冷媒の入口乾き度が変化しても、加熱用熱交換器15cの熱交換効率を向上させることができ、給湯装置14の運転効率を向上させることを可能にしたものである。
 空気調和装置200は、図11に示すように、第2の冷凍サイクルの圧縮機10bの吸入側と、加熱用熱交換器15cとの間にアキュムレーター19aが設置されている。このアキュムレーター19aは、貯留する第2熱源側冷媒の量を変化させることが可能であり、これにより、第2の冷凍サイクルを循環する第2熱源側冷媒の循環組成を変化させることを可能としている。
 HFO1234yfの沸点は-29℃、R32の沸点は-53.2℃であるため、R32の方が先に蒸発する。したがって、充填時の組成割合を基準としたとき、気液二相状態においては冷媒ガス中にR32が多く含まれ、冷媒液中にHFO1234yfが多く含まれる。したがって、気液二相状態の第2熱源側冷媒がアキュムレーター19aに流入すると、液冷媒が貯留されるため、沸点が高いHFO1234yfの方が、R32よりも多くアキュムレーター19a内に貯留されることなる。すなわち、充填時の組成割合を基準としたとき、第2の冷凍サイクル内を循環する第2熱源側冷媒の循環組成は、R32が多い状態になる。
 したがって、たとえば第1の冷凍サイクルの第1熱源側冷媒のR32の割合が20%である場合に、第2の冷凍サイクルの第2熱源冷媒を、R32の割合が8%となるように充填したときには、アキュムレーター19aに溜まる冷媒量を、絞り装置16dの開度を調整することにより、「第2熱源側冷媒の飽和ガス側温度」と「第2熱源側冷媒の入口側の二相冷媒温度」との温度差である第2の温度差を大きく調整することができる。
 また、第2の冷凍サイクルの第2熱源冷媒を、R32の割合が24%となるように充填したときには、アキュムレーター19aに溜まる冷媒量を、絞り装置16dの開度を調整することにより、第2の温度差を小さく調整することができる。
 すなわち、アキュムレーター19aにより、第2の温度差を大きく調整することや、第2の温度差を小さく調整することが可能であるので、第2熱源側冷媒の乾き度が変化してしたとしても、第1の温度差に対して第2の温度差を1℃以内に収めることができる。
 本実施の形態2では、第2圧力センサー37の検出圧力から算出した飽和ガス温度及び飽和液温度と、第4温度センサー38の検出温度とを用い、絞り装置16dの開度を変化させることにより、アキュムレーター19aに流入する第2熱源側冷媒の乾き度を制御し、循環組成を制御する。
 このとき、第2熱源側冷媒の飽和ガス温度と飽和液温度との温度差から、加熱用熱交換器15cの第2熱源側冷媒の入口冷媒の乾き度を仮定して、加熱用熱交換器15cの飽和ガスと第2熱源側冷媒の入口冷媒の温度との温度差を推測するようにしてもよい。
 また、加熱用熱交換器15cに流入する第2熱源側冷媒の乾き度の演算結果を利用した方が、循環組成を精度よく制御することができる。
 そこで、図11に示すように、熱媒体間熱交換器15dから流出する第2熱源側冷媒の圧力を検出する第4圧力センサー42、熱媒体間熱交換器15dから流出する第2熱源側冷媒の温度を検出する第7温度センサー43を設置するとよい。そして、第4圧力センサー42及び第7温度センサー43の検出結果から、熱媒体間熱交換器15dから流出する第2熱源側冷媒のエンタルピーを演算し、これから、加熱用熱交換器15cの第2熱源側冷媒の入口冷媒の乾き度を演算し、循環組成の制御に利用する。
 実施の形態2のここまでの説明では、第2の冷凍サイクルを循環する第2熱源側冷媒の入口乾き度の変化により、第1の温度差と第2の温度差との差がずれてしまい、加熱用熱交換器15cでの熱交換効率が悪化する場合について述べた。
 一方、第1の冷凍サイクルを循環する第1熱源側冷媒が原因で、加熱用熱交換器15cでの熱交換効率が悪化する場合もあるのでそれについて述べる。
 第1の冷凍サイクルにおいて、全冷房運転と全暖房運転とでは、冷凍サイクルで必要となる冷媒量が異なる。すなわち、全冷房運転の時の方が多くの冷媒量が必要となる。したがって、全暖房運転時には余剰冷媒が発生するため、アキュムレーター19に、その余剰の第1熱源側冷媒が貯留されることとなる。
 すると、アキュムレーター19への貯留量に応じて、循環している第1熱源側冷媒に含まれるR32の組成が変化する。すなわち、加熱用熱交換器15cにおける出口側の第1熱源側冷媒温度と入口側の第1熱源側冷媒温度との差である第1の温度差が変化する結果として、第1の温度差と第2の温度差との差がずれてしまい、加熱用熱交換器15cでの熱交換効率が悪化する可能性がある。
 そこで、絞り装置16dの開度を制御して、アキュムレーター19aの第2熱源側冷媒の貯留量を変化させるとよい。これにより、第2の冷凍サイクルを循環している第2熱源側冷媒のR32とHFO1234yfとの割合が変化し、第1の温度差と第2の温度差との差のずれを低減させ、加熱用熱交換器15cの熱交換効率を向上させることができ、給湯装置14の運転効率を向上させることができる。
 実施の形態1、2では、利用側熱交換器26にて暖房負荷又は冷房負荷のみが発生している場合は、対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を中間の開度にし、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方に熱媒体が流れるようにしている。これにより、熱媒体間熱交換器15a及び熱媒体間熱交換器15bの双方を暖房運転又は冷房運転に使用することができるため、伝熱面積が大きくなり、効率のよい暖房運転又は冷房運転を行なうことができる。
 また、利用側熱交換器26にて暖房負荷と冷房負荷とが混在して発生している場合は、暖房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を加熱用の熱媒体間熱交換器15bに接続される流路へ切り替え、冷房運転を行なっている利用側熱交換器26に対応する第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23を冷却用の熱媒体間熱交換器15aに接続される流路へ切り替えることにより、各室内機2にて、暖房運転、冷房運転を自由に行なうことができる。
 なお、実施の形態1、2で説明した第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23は、三方弁などの三方流路を切り替えられるもの、開閉弁などの二方流路の開閉を行なうものを2つ組み合わせるなど、流路を切り替えられるものであればよい。
 また、ステッピングモーター駆動式の混合弁などの三方流路の流量を変化させられるもの、電子式膨張弁などの2方流路の流量を変化させられるものを2つ組み合わせるなどして第1熱媒体流路切替装置22及び第2熱媒体流路切替装置23として用いてもよい。この場合は、流路の突然の開閉によるウォーターハンマーを防ぐこともできる。
 さらに、実施の形態1、2では、熱媒体流量調整装置25が二方弁である場合を例に説明を行なったが、三方流路を持つ制御弁とし利用側熱交換器26をバイパスするバイパス管と共に設置するようにしてもよい。
 また、利用側熱媒体流量制御装置25は、ステッピングモーター駆動式で流路を流れる流量を制御できるものを使用するとよく、二方弁でも三方弁の一端を閉止したものでもよい。また、利用側熱媒体流量制御装置25として、開閉弁等の二法流路の開閉を行うものを用い、ON/OFFを繰り返して平均的な流量を制御するようにしてもよい。
 第2冷媒流路切替装置18が四方弁であるかのように示したが、これに限るものではなく、二方流路切替弁や三方流路切替弁を複数個用い、同じように冷媒が流れるように構成してもよい。
 実施の形態1、2では、利用側熱交換器26と熱媒体流量調整装置25とが1つしか接続されていない場合でも同様のことが成り立つのは言うまでもなく、更に熱媒体間熱交換器15及び絞り装置16として、同じ動きをするものが複数個設置されていても、当然問題ない。さらに、熱媒体流量調整装置25は、熱媒体変換機3に内蔵されている場合を例に説明したが、これに限るものではなく、室内機2に内蔵されていてもよく、熱媒体変換機3と室内機2とは別体に構成されていてもよい。
 第1熱源側冷媒及び第2熱源側冷媒として、R32とHFO1234yfとの混合冷媒を用い、第1熱源側冷媒として、R32が20%、HFO1234yfが80%の混合冷媒を使用する場合を例に説明を行ったが、当然、混合比率はこれに限るものではないし、冷媒種もこれに限るものではなく、R407C(R32:R125:R134a=23%:25%:52%)などの非共沸混合冷媒や、その他の非共沸混合冷媒でもよく、同様の効果を奏する。
 第1熱媒体及び第2熱媒体は、同じ熱媒体を使用しても、異なるものを使用してもよい。なお、熱媒体(第1熱媒体及び第2熱媒体)としては、たとえばブライン(不凍液)や水、ブラインと水の混合液、水と防食効果が高い添加剤の混合液などを用いることができる。したがって、熱媒体が室内機2を介して室内空間7に漏洩したとしても、熱媒体に安全性の高いものを使用しているため安全性の向上に寄与することになる。
 また、一般的に、熱源側熱交換器12及び利用側熱交換器26a~26dには、送風機が取り付けられており、送風により凝縮あるいは蒸発を促進させる場合が多いが、これに限るものではなく、たとえば利用側熱交換器26a~26dとしては放射を利用したパネルヒータのようなものも用いることができるし、熱源側熱交換器12としては、水や不凍液により熱を移動させる水冷式のタイプのものも用いることができ、放熱あるいは吸熱をできる構造のものであればどんなものでも用いることができる。
 また、ここでは、利用側熱交換器26a~26dが4つである場合を例に説明を行ったが、幾つ接続してもよい。
 また、熱媒体間熱交換器15a、15bが2つである場合を例に説明を行ったが、当然、これに限るものではなく、熱媒体を冷却又は/及び加熱できるように構成すれば、幾つ設置してもよい。
 また、ポンプ21a、21bはそれぞれ一つとは限らず、複数の小容量のポンプを並列に並べてもよい。
 また、第1の冷凍サイクル又は/及び第2の冷凍サイクルに、循環組成を検知できる機能を持たせると、更に精度よく、制御できる。循環組成の検知は、絞り装置16a、16b、16c、16dの入口及び出口の圧力及び温度を測定することにより演算によって、算出することができる。なお、冷媒の循環組成はその他の方法によって、検知してもよい。また、アキュムレーター19又は/及び19aに、冷媒が溜まっていない状態での冷媒の循環組成は、設置時の冷媒の充填組成となどとし、運転状態(各部の温度及び圧力の測定値)から、アキュムレーターに貯留されている冷媒量を推測し、この推測値を元に、循環組成を演算するようにしてもよい。
 また、本実施の形態1、2では、以下のような構成例を説明した。すなわち、圧縮機10、四方弁(第1冷媒流路切替装置)11、熱源側熱交換器12を室外機1に収容している。また、利用側熱交換器26を室内機2に収容し、熱媒体間熱交換器15及び絞り装置16を熱媒体変換機3に収容している。さらに、室外機1と熱媒体変換機3との間を2本一組の配管で接続し、室外機1と熱媒体変換機3との間で第1熱源側冷媒を循環させ、室内機2と熱媒体変換機3との間をそれぞれ2本一組の配管で接続し、室内機2と熱媒体変換機3との間で第1熱媒体を循環させ、熱媒体間熱交換器15で第1熱源側冷媒と第1熱媒体とを熱交換させるシステムを例に説明を行った。しかし、空気調和装置100、200は、それに限るものではない。
 たとえば、圧縮機10、四方弁(第1冷媒流路切替装置)11、熱源側熱交換器12を室外機1に収容し、空調対象空間の空気と第1熱源側冷媒とを熱交換させる負荷側熱交換器及び絞り装置16を室内機2に収容し、室外機1及び室内機2とは別体に形成された中継器を備え、室外機1と中継器との間を2本一組の配管で接続し、室内機2と中継器との間をそれぞれ2本一組の配管で接続し、中継機を介して室外機1と室内機2との間で第1熱源側冷媒を循環させ、全冷房運転、全暖房運転、冷房主体運転、暖房主体運転を行うことができる直膨システムにも適用することができ、同様の効果を奏する。
 また、ここでは、冷房暖房混在運転ができるものとして説明をしてきたが、これに限定するものではない。熱媒体間熱交換器15及び絞り装置16がそれぞれ1つで、それらに複数の利用側熱交換器26と熱媒体流量調整装置25が並列に接続され、冷房運転か暖房運転のいずれかしか行なえない構成であっても同様の効果を奏する。また、室内機まで冷媒を循環させる直膨システムであり、冷房運転か暖房運転のいずれかしか行なえない構成であってもよい。
 1 熱源機(室外機)、2 室内機、2a~2d 室内機、3、3a、3b 熱媒体変換機、4 冷媒配管、4a 第1接続配管、4b 第2接続配管、5 熱媒体配管、6 室外空間、7 室内空間、8 空間、9 建物、10a 圧縮機(第1圧縮機)、10b 圧縮機(第2圧縮機)、11 四方弁(第1冷媒流路切替装置)、12 熱源側熱交換器、13a~13d 逆止弁、14 給湯装置、15a、15b 熱媒体間熱交換器(第1熱媒体間熱交換器)、15c 加熱用熱交換器、15d 熱媒体間熱交換器(第2熱媒体間熱交換器)、16a、16b、16c 絞り装置(第1絞り装置)、16d 絞り装置(第2絞り装置)、17a、17b 開閉装置、18a、18b 第2冷媒流路切替装置、19 アキュムレーター(第1アキュムレーター)、19a アキュムレーター(第2アキュムレーター)、21a~21c ポンプ(熱媒体送出装置)、22a~22d 第1熱媒体流路切替装置、23a~23d 第2熱媒体流路切替装置、24 貯湯タンク、25a~25d 熱媒体流量調整装置、26a~26d 利用側熱交換器、31a、31b 第1温度センサー、34a~34d 第2温度センサー、35a~35d 第3温度センサー、36 圧力センサー、37 第2圧力センサー、38 第4温度センサー、39 第3圧力センサー、40 第5温度センサー、41 第6温度センサー、42 第4圧力センサー、43 第7温度センサー、80 第1制御装置、81 第2制御装置、100、200 空気調和装置、100A 空気調和装置、A 冷媒循環回路、B 熱媒体循環回路。

Claims (5)

  1.  第1圧縮機、熱源側熱交換器、第1絞り装置、第1熱媒体間熱交換器、及び加熱用熱交換器の第1流路を第1冷媒配管で接続して第1の冷凍サイクルを構成し、
     第2圧縮機、前記加熱用熱交換器の第2流路、第2絞り装置、及び第2熱媒体間熱交換器を第2冷媒配管で接続して第2の冷凍サイクルを構成し、
     前記第1の冷凍サイクルに充填する第1冷媒及び第2の冷凍サイクルに充填する第2冷媒を、同一圧力における飽和ガス温度と飽和液温度とが異なる非共沸混合冷媒とし、
     前記第1冷媒と前記第2冷媒とを前記加熱用熱交換器で熱交換させる空気調和装置の冷媒充填方法において、
     前記加熱用熱交換器は、当該加熱用熱交換器の前記第1流路に供給される前記第1冷媒と前記第2流路に供給される前記第2冷媒が、対向流となるように前記第1冷媒配管及び前記第2冷媒配管に接続され、
     前記加熱用熱交換器における前記第1冷媒の入口側の飽和ガス温度と、出口側の飽和液温度との差を第1の温度差とし、
     前記加熱用熱交換器における前記第2冷媒の出口側の飽和ガス温度と、入口側の温度との差を第2の温度差とするとき、
     前記第2冷媒を構成する複数の単一冷媒が所定の混合割合となるように、前記第2の冷凍サイクルに前記第2冷媒を充填して、前記第1の温度差と前記第2の温度差との差を所定値以下に収める
     ことを特徴とする空気調和装置の冷媒充填方法。
  2.  前記第1冷媒が2種類の単一冷媒から構成され、
     前記第2冷媒が前記2種類の単一冷媒から構成され、
     前記第2の冷凍サイクルに一方の前記単一冷媒を充填した後に、
     前記第2の冷凍サイクルに他方の前記単一冷媒を充填して、前記第2冷媒を前記所定の割合にする
     ことを特徴とする請求項1に記載の空気調和装置の冷媒充填方法。
  3.  前記第2の冷凍サイクルに充填する第2冷媒の規定充填量よりも少ない量の前記一方の前記単一冷媒を前記第2の冷凍サイクルに充填して工場から出荷し、
     前記第1の冷凍サイクル及び前記第2の冷凍サイクルを現地に設置した後、前記第2の冷凍サイクル内の前記第2冷媒の冷媒量が規定冷媒量になるように、前記第2の冷凍サイクルに前記他方の前記単一冷媒を追加充填する
     ことを特徴とする請求項2に記載の空気調和装置の冷媒充填方法。
  4.  前記第1冷媒及び前記第2冷媒の前記一方の前記単一冷媒がHFO1234yfであり、前記第1冷媒及び前記第2冷媒の前記他方の前記単一冷媒がR32である、または、前記一方の前記単一冷媒がトランス型のHFO1234zeであり、前記他方の前記単一冷媒がR32である
     ことを特徴とする請求項2又は3に記載の空気調和装置の冷媒充填方法。
  5.  請求項1~4のいずれか一項に記載の冷媒充填方法で冷媒が充填された
     ことを特徴とする空気調和装置。
PCT/JP2012/000419 2012-01-24 2012-01-24 空気調和装置の冷媒充填方法、空気調和装置 WO2013111180A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2012/000419 WO2013111180A1 (ja) 2012-01-24 2012-01-24 空気調和装置の冷媒充填方法、空気調和装置
US14/345,666 US9599380B2 (en) 2012-01-24 2012-01-24 Refrigerant charging method for air-conditioning apparatus and air-conditioning apparatus
EP12866916.5A EP2808625B1 (en) 2012-01-24 2012-01-24 A refrigerant charging method for an air-conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/000419 WO2013111180A1 (ja) 2012-01-24 2012-01-24 空気調和装置の冷媒充填方法、空気調和装置

Publications (1)

Publication Number Publication Date
WO2013111180A1 true WO2013111180A1 (ja) 2013-08-01

Family

ID=48872963

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000419 WO2013111180A1 (ja) 2012-01-24 2012-01-24 空気調和装置の冷媒充填方法、空気調和装置

Country Status (3)

Country Link
US (1) US9599380B2 (ja)
EP (1) EP2808625B1 (ja)
WO (1) WO2013111180A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220003469A1 (en) * 2018-09-28 2022-01-06 Daikin Industries, Ltd. Refrigerant charging method, heat source unit, and renewed refrigeration cycle apparatus

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9865432B1 (en) 2014-01-10 2018-01-09 Reno Technologies, Inc. RF impedance matching network
US10330358B2 (en) * 2014-05-15 2019-06-25 Lennox Industries Inc. System for refrigerant pressure relief in HVAC systems
US9976785B2 (en) 2014-05-15 2018-05-22 Lennox Industries Inc. Liquid line charge compensator
US10663199B2 (en) 2018-04-19 2020-05-26 Lennox Industries Inc. Method and apparatus for common manifold charge compensator
US10830514B2 (en) 2018-06-21 2020-11-10 Lennox Industries Inc. Method and apparatus for charge compensator reheat valve

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277554A (ja) * 1985-09-30 1987-04-09 株式会社東芝 給湯装置
JPH06221699A (ja) * 1993-01-26 1994-08-12 Kubota Corp 吸熱装置、放熱装置、並びに、それら両装置を用いた吸放熱装置
JPH07269964A (ja) 1994-03-30 1995-10-20 Toshiba Corp 空気調和装置
JPH11182951A (ja) 1997-12-25 1999-07-06 Mitsubishi Electric Corp 冷凍装置
JP2004077021A (ja) * 2002-08-19 2004-03-11 Matsushita Electric Ind Co Ltd ガスクーラー
JP2005133999A (ja) * 2003-10-29 2005-05-26 Hitachi Home & Life Solutions Inc ヒートポンプ式給湯機
WO2009098751A1 (ja) 2008-02-04 2009-08-13 Mitsubishi Electric Corporation 空調給湯複合システム
JP2010197033A (ja) * 2009-01-30 2010-09-09 Panasonic Corp 液体循環式暖房システム
JP2011094871A (ja) * 2009-10-29 2011-05-12 Mitsubishi Electric Corp 冷凍・空調装置、冷凍・空調装置の設置方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251349A (ja) 1984-05-25 1985-12-12 ダイキン工業株式会社 冷凍装置
US5651263A (en) * 1993-10-28 1997-07-29 Hitachi, Ltd. Refrigeration cycle and method of controlling the same
JPH08313120A (ja) * 1995-05-15 1996-11-29 Matsushita Electric Ind Co Ltd 3成分混合冷媒充填装置および充填方法
US5954995A (en) * 1996-03-22 1999-09-21 Goble; George H. Drop-in substitutes for 1,1,1,2-tetrafluoroethane (R-134a) refrigerant
KR20050028391A (ko) * 2003-09-17 2005-03-23 엘지전자 주식회사 냉매누설감지시스템 및 방법
JP2007085729A (ja) 2006-11-29 2007-04-05 Nihon Freezer Kk 非共沸冷媒を用いた冷凍機システム
JP2009257655A (ja) * 2008-03-04 2009-11-05 Daikin Ind Ltd 冷凍装置
US20100282434A1 (en) * 2008-03-31 2010-11-11 Mitsubishi Electric Corporation Air conditioning and hot water supply complex system
JP5551882B2 (ja) * 2009-02-24 2014-07-16 ダイキン工業株式会社 ヒートポンプシステム
JP5496217B2 (ja) * 2009-10-27 2014-05-21 三菱電機株式会社 ヒートポンプ

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277554A (ja) * 1985-09-30 1987-04-09 株式会社東芝 給湯装置
JPH06221699A (ja) * 1993-01-26 1994-08-12 Kubota Corp 吸熱装置、放熱装置、並びに、それら両装置を用いた吸放熱装置
JPH07269964A (ja) 1994-03-30 1995-10-20 Toshiba Corp 空気調和装置
JPH11182951A (ja) 1997-12-25 1999-07-06 Mitsubishi Electric Corp 冷凍装置
JP2004077021A (ja) * 2002-08-19 2004-03-11 Matsushita Electric Ind Co Ltd ガスクーラー
JP2005133999A (ja) * 2003-10-29 2005-05-26 Hitachi Home & Life Solutions Inc ヒートポンプ式給湯機
WO2009098751A1 (ja) 2008-02-04 2009-08-13 Mitsubishi Electric Corporation 空調給湯複合システム
JP2010197033A (ja) * 2009-01-30 2010-09-09 Panasonic Corp 液体循環式暖房システム
JP2011094871A (ja) * 2009-10-29 2011-05-12 Mitsubishi Electric Corp 冷凍・空調装置、冷凍・空調装置の設置方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2808625A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220003469A1 (en) * 2018-09-28 2022-01-06 Daikin Industries, Ltd. Refrigerant charging method, heat source unit, and renewed refrigeration cycle apparatus

Also Published As

Publication number Publication date
US9599380B2 (en) 2017-03-21
US20140216076A1 (en) 2014-08-07
EP2808625A1 (en) 2014-12-03
EP2808625B1 (en) 2020-05-20
EP2808625A4 (en) 2016-04-06

Similar Documents

Publication Publication Date Title
JP5837099B2 (ja) 空気調和装置
JP6141454B2 (ja) 空気調和装置及び空気調和装置の制御方法
JP5595508B2 (ja) 空気調和装置
JP5752148B2 (ja) 空気調和装置
JP5528582B2 (ja) 空気調和装置
JP5762427B2 (ja) 空気調和装置
JP6095764B2 (ja) 空気調和装置
JP5784117B2 (ja) 空気調和装置
JP5674822B2 (ja) 空気調和装置
WO2012070083A1 (ja) 空気調和装置
JP5490245B2 (ja) 空気調和装置
JP6000373B2 (ja) 空気調和装置
JPWO2012172597A1 (ja) 空気調和装置
WO2013111180A1 (ja) 空気調和装置の冷媒充填方法、空気調和装置
JP6120943B2 (ja) 空気調和装置
JP5657140B2 (ja) 空気調和装置
JP5972397B2 (ja) 空気調和装置、その設計方法
JP5955409B2 (ja) 空気調和装置
JP6062030B2 (ja) 空気調和装置
JPWO2013111180A1 (ja) 空気調和装置の冷媒充填方法、空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12866916

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14345666

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012866916

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013554986

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE