WO2013108623A1 - Method for manufacturing integrated solar cell - Google Patents

Method for manufacturing integrated solar cell Download PDF

Info

Publication number
WO2013108623A1
WO2013108623A1 PCT/JP2013/000190 JP2013000190W WO2013108623A1 WO 2013108623 A1 WO2013108623 A1 WO 2013108623A1 JP 2013000190 W JP2013000190 W JP 2013000190W WO 2013108623 A1 WO2013108623 A1 WO 2013108623A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layer
layer
groove
solar cell
photoelectric conversion
Prior art date
Application number
PCT/JP2013/000190
Other languages
French (fr)
Japanese (ja)
Inventor
栄郎 矢後
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013108623A1 publication Critical patent/WO2013108623A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • H01L31/046PV modules composed of a plurality of thin film solar cells deposited on the same substrate
    • H01L31/0465PV modules composed of a plurality of thin film solar cells deposited on the same substrate comprising particular structures for the electrical interconnection of adjacent PV cells in the module
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a thin-film solar cell having an integrated structure, and in particular, an integrated solar cell that can form an integrated structure that is excellent from the viewpoint of power generation efficiency and production efficiency in a small number of steps and that has excellent production efficiency Regarding the method.
  • a photoelectric conversion element having a laminated structure of a lower electrode (back surface electrode), a photoelectric conversion semiconductor layer that generates charges by light absorption, and an upper electrode is used for applications such as solar cells.
  • Compound semiconductor solar cells include CIS (Cu-In-Se) or CIGS (Cu-In-Ga-Se), which is composed of a bulk system such as a GaAs system, and a group IB element, group IIIB element and group VIB element. And other thin film systems are known.
  • the CIS system or CIGS system is reported to have a high light absorption rate and high energy conversion efficiency.
  • a method for integrating compound semiconductor solar cells As a method for integrating compound semiconductor solar cells, a method of performing a three-stage scribe process is well known.
  • the electrode layer 112 is scribed to form the first separation groove P1, and as shown in FIG. 16B.
  • a photoelectric conversion layer 113, a buffer layer 114, and a window layer 115 are sequentially formed to form a separation groove P2 penetrating therethrough and reaching the surface of the electrode layer 112.
  • a layer (upper electrode) 116 is formed, and a separation groove P3 extending from the upper electrode 116 to the surface of the lower electrode layer is formed. In this way, an integrated structure is formed in which adjacent cells are separated by the separation groove P3 and adjacent cells are connected in series by the light-transmitting conductive layer material embedded in the separation groove P2.
  • Patent Document 1 discloses a method for manufacturing an integrated photoelectric conversion device in which a base electrode, a photoelectric conversion layer, and a transparent electrode are collectively formed on a substrate, and three scribing operations each having a different depth are collectively performed. ing. This Patent Document 1 describes that batch film formation and batch scribing are simpler than the method of performing scribing for each layer, and the number of steps can be reduced, so that the time required for manufacturing can be shortened. Has been.
  • Patent Document 2 discloses a method in which a base electrode, a photoelectric conversion layer, and a transparent electrode are collectively formed on a substrate, and then a single scribe process is performed.
  • a base electrode, a photoelectric conversion layer, and a transparent electrode are collectively formed on a substrate, and then a single scribe process is performed.
  • one groove portion having a narrow groove for separating the base electrode is formed at the bottom, and then one side wall of the groove portion and the narrow groove for separating the base electrode are insulated.
  • a method of depositing a body and connecting conductors thereon to electrically connect cells is disclosed. Thus, it is disclosed that the distance between cells necessary for connection can be shortened and the power generation efficiency per unit area can be increased.
  • Patent Document 3 after forming a plurality of transparent electrodes having a predetermined shape on a substrate, a photoelectric conversion layer and an electrode layer are formed, and then a connection groove and an insulation groove are formed by laser beam irradiation.
  • a method of manufacturing an integrated solar cell by filling a conductive paste into a conductive paste and forming a connection portion is disclosed.
  • Patent Document 1 since three grooves are formed, it is difficult to shorten the distance between the cells, and the power generation efficiency cannot be increased. In Patent Document 2, it seems that the distance between the cells can be shortened because there is one groove. However, since the photosensitive polymer (insulating ink) used for forming the insulator is actually widened, the scribe is performed. Need to be wide. For this reason, the area of the cell per unit area becomes small, and sufficient power generation efficiency cannot be improved.
  • the lower electrode layer is scribed after deposition of the photoelectric conversion layer as in 1 and 2, it is necessary to irradiate a high-power laser beam, which may damage the substrate under the lower electrode layer.
  • Patent Document 3 has a structure in which a conductive material is in contact with the cross section of the photoelectric conversion layer and the upper electrode, which causes current leakage in the photoelectric conversion layer and reduces power generation efficiency.
  • This invention is made
  • the present invention is a method for manufacturing an integrated solar cell, wherein a plurality of photoelectric conversion elements are arranged on a substrate and connected in series, Forming a first electrode layer on a substrate having at least an insulating surface; Forming a separation groove in which the surface of the substrate is exposed at the bottom of the first electrode layer to separate the first electrode layer into a plurality of regions; A photoelectric conversion layer and a second electrode layer are sequentially laminated so as to cover the surface of the substrate exposed to the first electrode layer and the separation groove, thereby forming a laminate.
  • a part of the stacked body is an opening groove part having a depth parallel to the separation groove and reaching the surface position of the first electrode layer, and spaced from both walls of the groove part in the groove width direction of the opening groove part.
  • a connecting portion that electrically connects the second electrode layer of one of the photoelectric conversion elements adjacent to each other across the opening groove and the first electrode layer of the other element is connected to the opening groove. It is formed by dropping conductive ink from the part of the laminate to the one element side.
  • connection portion forming step it is preferable that the part of the stacked body is used as a stopper portion that suppresses spreading of the conductive ink to the other element side.
  • an insulating portion extending in the height direction of the wall surface is formed on at least a part of the wall surface on the one element side of the opening groove portion, It is preferable that the connecting portion is formed on the insulating portion.
  • the separation groove is preferably formed by laser scribe.
  • the opening groove is formed by mechanically scribing two grooves at a predetermined interval so that a part of the laminated body remains in a region to be the opening groove.
  • the connecting portion is formed by dropping the conductive ink by an ink jet method.
  • the first electrode layer is divided into a plurality of regions by forming separation grooves. Therefore, even when a material such as a photoelectric conversion layer that is cured by thermal history is used for the first electrode layer, it is relatively small because it is in a state before receiving the thermal history. Separation grooves can be formed with power.
  • the opening groove is formed after the photoelectric conversion layer and the second electrode layer are formed, so that an integrated structure can be manufactured with few steps, and excellent production efficiency can be obtained. Can be realized.
  • FIG. 1 It is typical sectional drawing which shows the integrated solar cell manufactured with the manufacturing method of the 1st Embodiment of this invention. It is a schematic plan view of the principal part of the integrated solar cell shown in FIG. It is a schematic plan view of the principal part of the modification of the integrated solar cell manufactured with the manufacturing method of the 1st Embodiment of this invention. It is typical sectional drawing which shows the manufacturing method of embodiment to process order. It is typical sectional drawing which shows the manufacturing method of the 1st Embodiment of this invention to process order. It is typical sectional drawing which shows the integrated solar cell manufactured with the manufacturing method of the 2nd Embodiment of this invention. It is a schematic plan view of the principal part of the integrated solar cell shown in FIG.
  • FIG. 1 It is a schematic plan view of the principal part of the modification of the integrated solar cell manufactured with the manufacturing method of the 2nd Embodiment of this invention. It is typical sectional drawing which shows the manufacturing method of the 2nd Embodiment of this invention to process order. It is typical sectional drawing which shows the deformability of the manufacturing method of the 2nd Embodiment of this invention. It is typical sectional drawing which shows the integrated solar cell manufactured with the manufacturing method of the 3rd Embodiment of this invention. It is a schematic plan view of the principal part of the integrated solar cell shown in FIG. It is a schematic plan view of the principal part of the modification of the integrated solar cell manufactured with the manufacturing method of the 3rd Embodiment of this invention.
  • FIG. 1 is a schematic cross-sectional view showing an integrated solar cell 1 manufactured by the manufacturing method of the first embodiment of the present invention.
  • FIG. 2 is a schematic plan view of the main part of the integrated solar cell 1 shown in FIG. 1
  • FIG. 3 is a schematic plan view of the main part of a modification of the integrated solar cell of the present embodiment.
  • the integrated solar cell 1 includes a substrate 10 whose surface layer is an insulating layer 10a and an insulating layer 10a of the substrate 10, with a line-shaped opening groove 22 interposed therebetween.
  • the solar cells 20a to 20d are separated by the opening groove 22, and the back electrode layer 12, which is the first electrode layer, the photoelectric conversion layer 13, the buffer layer 14, and the transparent electrode layer 16 which is the second electrode layer.
  • the conductive layer 40 is formed as a connection portion for electrically connecting the transparent electrode of one cell of the cells adjacent to each other with the opening groove 22 interposed therebetween and the back electrode of the other cell.
  • adjacent cells are connected in series and integrated.
  • the transparent electrode layer 16 of the solar battery cell 20a and the back electrode layer 12 of the solar battery cell 20b are electrically connected by the conductive layer 40.
  • a covering insulating portion 42 is formed so as to cover the conductive layer 40.
  • the number of connected solar cells is not particularly limited. Further, in the solar battery cell, it is not necessarily provided depending on the configuration of the buffer layer 14 and the photoelectric conversion layer 13. Further, a window layer (insulating layer) may be provided between the buffer layer 14 and the transparent electrode layer 16.
  • the substrate 10 of the present embodiment has its shape, size, and the like determined as appropriate according to the size of the integrated solar cell 1 to be applied.
  • the length of one side A rectangular shape or a rectangular shape with a length exceeding 1 m.
  • the solar cells 20a to 20d and the first and second conductive members 50 and 52 are formed in a strip shape extending long in the width direction W (extending direction) perpendicular to the longitudinal direction L (arrangement direction) on the substrate 10. Is formed.
  • the back electrode layer 12 is separated from adjacent back electrode layers 12 by a plurality of separation grooves 21 provided in the longitudinal direction L of the substrate 10 at predetermined intervals.
  • the separation groove 21 is a groove reaching the surface of the substrate 10 (insulating layer 10a), and its width is, for example, 50 ⁇ m.
  • the photoelectric conversion layer 13 is embedded in the separation groove 21.
  • the opening groove portion 22 is formed in parallel to the separation groove 21 and at a depth that is substantially the surface position of the back electrode layer 12. Further, in the groove width direction of the opening groove portion 22, both the walls ⁇ and ⁇ of the groove portion are stacked, that is, at positions separated from the wall surface ⁇ of one cell 20a and the wall surface ⁇ of the other cell 20b of the cells adjacent to each other across the groove portion. A part of the body, here, part of the photoelectric conversion layer 13 is left as a stopper part 24 described later. In other words, the opening groove portion 22 includes the stopper portion 24 and two concave portions (grooves) 22a and 22b that sandwich the stopper portion 24.
  • the width of the opening groove is, for example, 50 ⁇ m to 100 ⁇ m.
  • the opening groove 22 is formed at a position where the back electrode of one cell 20a is not exposed to the first groove 22a and the back electrode of the other cell 20b is at least partially exposed to the first groove 22a. ing. At this time, it is preferable that the separation groove 21 at least partially overlaps the position of one wall surface ⁇ of the opening groove portion 22.
  • the separation groove 21 may be located on the one cell 20a side (under one cell 20a) from the wall surface ⁇ , but in order to suppress a loss portion that does not contribute to photoelectric conversion, the separation groove 21 is located near the wall surface ⁇ . It is hoped that
  • the stopper portion 24 is located on the back electrode layer 12 of the other cell 20b to which the conductive layer 40 is connected to the back electrode layer 12, and the back electrode layer 12 has one of the back electrode layers 12 so as to contact the conductive layer 40. It is necessary to be exposed to the bottom part by the side of the recessed part 22a.
  • the conductive layer 40 is formed over the entire width direction W of the substrate 10 of the solar battery cell 20a. Further, the covering insulating portion 42 is also formed over the entire width direction W of the substrate 10 so as to cover the conductive layer 40.
  • the solar cells 20a to 20d need only be electrically connected in series, and the conductive layer 40 may not be formed over the entire width direction W of the substrate 10.
  • the solar cells 20a to 20d are connected at least partially using the conductive layer 40 in the width direction W.
  • three conductive layers 40a may be formed in the width direction W with respect to the cell 20a, and the covering insulating portion 42a may be formed so as to cover each conductive layer 40a.
  • the first conductive member 50 and the second conductive member 52 arranged at both ends of the solar cells connected in series are for taking out the electric power generated in the solar cells to the outside.
  • the first conductive member 50 and the second conductive member 52 are, for example, strip-shaped members that extend substantially linearly in the width direction of the substrate 10 and are connected to the right-side or left-end back electrode layer 12 respectively.
  • the first conductive member 50 and the second conductive member 52 are, for example, copper ribbons 50a and 52a covered with covering materials 50b and 52b of indium copper alloy.
  • the first conductive member 50 and the second conductive member 52 are connected to the back electrode layer 12 by ultrasonic solder, a conductive adhesive, a conductive tape, or the like.
  • the first conductive member 50 and the second conductive member 52 may be tin-plated copper ribbons.
  • the integrated solar cell 1 having this configuration, when light is incident on the solar cells 20a to 20d from the transparent electrode layer 16 side, the light passes through the transparent electrode layer 16 and the buffer layer 14, and the photoelectric conversion layer 13 An electromotive force is generated, and for example, a current from the transparent electrode layer 16 toward the back electrode layer 12 is generated.
  • the electric power generated in the integrated solar cell 1 can be taken out of the solar cell 1 from the first conductive member 50 and the second conductive member 52.
  • the first conductive member 50 is a negative electrode and the second conductive member 52 is a positive electrode.
  • the first conductive member 50 and the second conductive member 52 have opposite polarities. It may be appropriately changed depending on the layer configuration, connection configuration, and the like of the solar cells 20a to 20d.
  • FIGS. 4 and 5 are partial schematic cross-sectional views showing the manufacturing process, and show the main part of the integrated structure including the partial cells 20a and 20b and the opening groove between them.
  • a substrate 10 having a predetermined size and having an insulating surface is prepared.
  • the substrate 10 is, for example, provided with an anodized film 10a on the surface of an aluminum base material.
  • the back surface electrode layer 12 is formed in the surface of the board
  • a separation groove 21 in which the surface of the substrate 10 is exposed at the bottom is formed in the back electrode layer 12, and the back electrode layer 12 is separated into a plurality of regions.
  • the separation groove 21 is preferably formed by laser scribing. Since the separation groove 21 is formed before the back electrode layer 12 receives the thermal history, the scribing can be performed with a relatively low power even when the back electrode layer is made of a material that is cured by a thermal history such as Mo. it can. When a laser is used, there is a problem that the substrate is damaged when a relatively large power is used. However, the manufacturing method of the present invention does not cause a problem that the substrate is damaged.
  • the photoelectric conversion layer 13, the buffer layer 14, and the second electrode layer are transparent so as to cover the surface of the substrate 10 exposed at the bottoms of the back electrode layer 12 and the separation groove 21.
  • the electrode body 16 is sequentially laminated to form a laminate S.
  • an opening groove 22 having a depth parallel to the separation groove 21 and reaching the surface position of the back electrode layer 12 is formed.
  • the opening groove portion 22 is formed so as to leave a part 24 of the stacked body S at a position spaced from both walls ⁇ and ⁇ of the opening groove portion 22 in the groove width direction of the opening groove portion 22.
  • two recesses (grooves) 22a and 22b having a depth reaching the surface position of the back electrode layer 12 from above the stacked body S at a predetermined interval are formed by laser or mechanical scribing at a desired opening groove forming position.
  • the opening groove portion 22 in which a part 24 of the stacked body S is left between the two grooves 22a and 22b can be formed.
  • the back electrode layer 12 is exposed in the first and second grooves 22 a and 22 b sandwiching the part 24 of the laminated body of the formed opening groove 22, and is partially embedded in the separation groove 21.
  • the photoelectric conversion layer 13 is exposed.
  • the opening groove portion formation position is controlled so that the back electrode layer 12 of the cell 20a having the one wall surface ⁇ of the opening groove portion 22 is not exposed to the first groove 22a.
  • the photoelectric conversion layer 13 is left as a part 24 of the laminated body in the opening groove 22, and the buffer layer 14 and the transparent electrode layer are included in the part 24. 16 may remain.
  • the conductive ink (conductive paste) that becomes the conductive layer 40 is first applied from the transparent electrode layer 16 of one solar battery cell 20 a to the first.
  • the droplets are ejected in a range extending to the back electrode layer 12 of the other solar battery cell 20b in the groove 22a.
  • the conductive ink is restrained by the stopper portion 24 and is prevented from spreading toward the second groove 22b. That is, the conductive ink is prevented from contacting the wall surface ⁇ of the other solar battery cell 20b.
  • the back electrode layer 12 of one cell 20a is not exposed in the first groove 22a, a short circuit between the adjacent cells 20a and 20b is prevented.
  • a heat curing process and a light curing process are performed according to the conductive ink.
  • the conductive layer 40 as a conductive connection portion is formed.
  • the coating insulating part 42 is formed so as to cover the conductive layer 40.
  • an insulating ink is ejected onto the conductive layer 40, and a heat curing process or a light curing process according to the insulating ink is performed.
  • the film insulation part 42 is formed.
  • the film insulating part 42 only needs to be formed so as to cover the conductive layer 40, but in the present embodiment, the film insulating part 42 extends beyond the stopper part 24 and part of the second groove 22 b.
  • the coating insulating part 42 may be filled in the entire opening groove part 22.
  • the coating insulating portion 42 is not necessarily provided.
  • the migration of the metal particles can be prevented by covering the conductive layer 40 with the coating insulating portion 42, thereby preventing the efficiency from being lowered due to the migration. Can do.
  • the metal particles are silver (Ag)
  • the occurrence of migration is remarkable, and the effect of preventing the reduction in efficiency is high by preventing migration. Therefore, it is preferable to use an insulating material having an effect of preventing migration.
  • the coating insulating part 42 can more reliably prevent a short circuit between adjacent cells.
  • an integrated solar cell 1 in which a plurality of solar cells 20a to 20d are connected as shown in FIG. 1 can be manufactured.
  • the cells are connected by the opening groove 22, so that the solar cell per unit area is compared with the integrated solar cell having three separation grooves.
  • the power generation efficiency can be improved by increasing the area of the battery cell.
  • the opening groove portion 22 is provided with the stopper portion 24 to suppress the spreading of the conductive ink, the width of the opening groove portion 22 can be shortened, and the power generation efficiency per unit area can be further improved. .
  • the stacked body S having other layers constituting the solar battery cell is continuously formed, and the opening groove portion 22 and the stopper portion 24 are formed.
  • the production efficiency can be increased.
  • the back electrode is scribed before the photoelectric conversion layer is formed, power necessary for scribing the back electrode can be suppressed, and damage to the substrate due to high output power can be prevented. Yield can be improved.
  • FIG. 6 is a schematic cross-sectional view showing an integrated solar cell 2 manufactured by the manufacturing method of the second embodiment of the present invention.
  • FIG. 7 is a schematic plan view of the main part of the integrated solar cell 2 shown in FIG. 6, and
  • FIG. 8 is a schematic plan view of the main part of Modification 2 ′ of the integrated solar cell of the present embodiment. is there.
  • the integrated solar cell 2 includes a substrate 10 whose surface layer is an insulating layer 10 a and an insulating layer 10 a of the substrate 10, with a line-shaped opening groove 22 interposed therebetween.
  • the solar cells 20a to 20d are separated by the opening groove 22, and the back electrode layer 12, which is the first electrode layer, the photoelectric conversion layer 13, the buffer layer 14, and the transparent electrode layer 16 which is the second electrode layer.
  • the conductive layer 40 is formed as a connection portion for electrically connecting the transparent electrode of one cell of the cells adjacent to each other with the opening groove 22 interposed therebetween and the back electrode of the other cell.
  • adjacent cells are connected in series and integrated.
  • the transparent electrode layer 16 of the solar battery cell 20a and the back electrode layer 12 of the solar battery cell 20b are electrically connected by the conductive layer 40.
  • the insulating portion 44 is formed so as to cover one wall surface ⁇ of the opening groove portion 22, and the conductive layer 40 is not in contact with the wall surface ⁇ by the insulating portion 44, and is on the cell side having the wall surface ⁇ . It is formed so as to be connected to the transparent electrode layer 16. In the present embodiment, since the conductive layer 40 does not contact the wall surface ⁇ , generation of internal leakage current of the solar battery cell having the wall surface ⁇ is prevented.
  • the buffer layer 14 is not necessarily provided depending on the configuration of the photoelectric conversion layer 13. Further, a window layer (insulating layer) may be provided between the buffer layer 14 and the transparent electrode layer 16.
  • the substrate 10 of this embodiment has its shape, size, and the like determined as appropriate according to the size of the integrated solar cell 2 to be applied.
  • the length of one side A rectangular shape or a rectangular shape with a length exceeding 1 m.
  • the solar cells 20a to 20d and the first and second conductive members 50 and 52 are formed in a strip shape extending long in the width direction W (extending direction) perpendicular to the longitudinal direction L (arrangement direction) on the substrate 10. Is formed.
  • the back electrode layer 12 is separated from adjacent back electrode layers 12 by a plurality of separation grooves 21 provided in the longitudinal direction L of the substrate 10 at predetermined intervals.
  • the separation groove 21 is a groove reaching the surface of the substrate 10 (insulating layer 10a), and its width is, for example, 50 ⁇ m.
  • the photoelectric conversion layer 13 is embedded in the separation groove 21.
  • the opening groove portion 22 is formed in parallel to the separation groove 21 and at a depth that is substantially the surface position of the back electrode layer 12. Further, in the groove width direction of the opening groove portion 22, both the walls ⁇ and ⁇ of the groove portion are stacked, that is, at positions separated from the wall surface ⁇ of one cell 20a and the wall surface ⁇ of the other cell 20b of the cells adjacent to each other across the groove portion. A part of the body, here, part of the photoelectric conversion layer 13 is left as a stopper part 24 described later. In other words, the opening groove portion 22 includes the stopper portion 24 and two concave portions (grooves) 22a and 22b that sandwich the stopper portion 24.
  • the width of the opening groove is, for example, 50 ⁇ m to 100 ⁇ m.
  • the opening groove portion 22 is preferably formed so that the separation groove 21 is located on the wall surface ⁇ side of the stopper portion 24 from the vicinity of one wall surface ⁇ of the opening groove portion 22.
  • the separation groove 21 may be located on the one cell 20a side (under one cell 20a) from the wall surface ⁇ , but in order to suppress a loss portion that does not contribute to photoelectric conversion, the separation groove 21 is located near the wall surface ⁇ . It is hoped that
  • the stopper part 24 should just be located on the back surface electrode layer 12 of the other cell 20b to which the conductive layer 40 is connected to the back surface electrode layer 12, or on the photoelectric conversion layer embedded in the separation groove 21.
  • the back surface electrode layer 12 of the other cell 20b needs to be exposed in the recess 22b on the other wall surface ⁇ side of the stopper portion 24 in order to bring the conductive layer 40 into contact therewith.
  • the insulating part 44 and the conductive layer 40 are formed over the entire width direction W of the substrate 10 of the solar battery cell 20a.
  • the solar cells 20 a to 20 d can be electrically connected in series, and the conductive layer 40 does not have to be formed over the entire width direction W of the substrate 10.
  • the conductive layer 40 does not have to be formed over the entire width direction W of the substrate 10.
  • three conductive layers 40a may be formed in the width direction W with respect to the cell 20a.
  • the insulating portion 44 may not be continuously formed in the width direction W as long as the conductive layer 40a is formed so as not to contact the wall surface ⁇ .
  • the first conductive member 50 and the second conductive member 52 arranged at both ends of the solar cells connected in series are for taking out the electric power generated in the solar cells to the outside.
  • the first conductive member 50 and the second conductive member 52 are, for example, strip-shaped members that extend substantially linearly in the width direction of the substrate 10 and are connected to the right-side or left-end back electrode layer 12 respectively.
  • the first conductive member 50 and the second conductive member 52 are, for example, copper ribbons 50a and 52a covered with covering materials 50b and 52b of indium copper alloy.
  • the first conductive member 50 and the second conductive member 52 are connected to the back electrode layer 12 by ultrasonic solder, a conductive adhesive, a conductive tape, or the like.
  • the first conductive member 50 and the second conductive member 52 may be tin-plated copper ribbons.
  • the integrated solar cell 2 of this configuration when light is incident on the solar cells 20a to 20d from the transparent electrode layer 16 side, the light passes through the transparent electrode layer 16 and the buffer layer 14, and the photoelectric conversion layer 13 An electromotive force is generated, and for example, a current from the transparent electrode layer 16 toward the back electrode layer 12 is generated. Electric power generated in the integrated solar cell 2 can be taken out of the solar cell 2 from the first conductive member 50 and the second conductive member 52.
  • the first conductive member 50 is a negative electrode and the second conductive member 52 is a positive electrode.
  • the first conductive member 50 and the second conductive member 52 have opposite polarities. It may be appropriately changed depending on the layer configuration, connection configuration, and the like of the solar cells 20a to 20d.
  • FIG. 4 and FIG. 4 and 9 are partial schematic cross-sectional views showing the manufacturing process, and show a portion that becomes an opening groove between some cells 20a and 20b.
  • the manufacturing method of the second embodiment is the same as the manufacturing method of the first embodiment with respect to steps a to c shown in FIG. 4, and the description of the manufacturing method of the first embodiment is incorporated.
  • the manufacturing process after d in FIG. 9 will be described.
  • an opening groove 22 having a depth parallel to the separation groove 21 and reaching the surface position of the back electrode layer 12 is formed.
  • the opening groove portion 22 is formed so that a part 24 of the stacked body S is left in a position spaced from both walls ⁇ and ⁇ of the opening groove portion 22 in the groove width direction of the opening groove portion 22.
  • two recesses (grooves) 22a and 22b are formed at a predetermined interval from above the stacked body S at a desired opening groove forming position by laser or mechanical scribe, so that the gap between the two grooves 22a and 22b is formed.
  • the opening groove part 22 in which a part of the stacked body S is left can be formed.
  • the opening groove 22 is formed so that the second groove 22b is wider than the first groove 22a.
  • the back electrode layer 12 is exposed in the first and second grooves 22 a and 22 b sandwiching the part 24 of the laminated body of the formed opening groove 22, and is partially embedded in the separation groove 21.
  • the photoelectric conversion layer 13 is exposed. Note that an opening groove is formed at the bottom on the first groove 22a side so that the back electrode of one cell 20a is not exposed.
  • the photoelectric conversion layer 13 embedded in the separation groove 21 may be exposed over the entire bottom portion of the first groove 22a. Further, in the present embodiment, the photoelectric conversion layer 13 is left as a part 24 of the laminate, but the buffer layer 14 and the transparent electrode layer 16 remain in this part 24. May be.
  • the insulating ink that becomes the insulating portion 44 is formed in the vicinity of the wall surface ⁇ and the first wall so that the one wall surface ⁇ of the opening groove portion 22 is covered.
  • the droplets are ejected into the groove 22a.
  • the insulating ink is ejected from the stopper portion 24 toward the first groove 22a, it is prevented from being blocked by the stopper portion 24 and spreading toward the second groove 22b.
  • the insulating portion 44 is formed by performing a thermosetting process and a photocuring process according to the ink material.
  • the conductive layer 40 is formed on the insulating portion 44 so as to be in contact with the back electrode layer 12 of the other cell 20b from the transparent electrode layer 16 of the one cell 20a.
  • the other exposed conductive ink conductive paste
  • the droplets are ejected over a range extending to the back electrode 12 of the cell 20b.
  • the conductive layer 40 which electrically connects the transparent electrode 30 of the solar battery cell 20a and the back electrode 12 of the solar battery cell 20b is formed.
  • the conductive layer 40 is connected to the back electrode 12 of the solar battery cell 20 b beyond the stopper portion 24.
  • the conductive layer 40 is formed on the insulating portion 44, the conductive layer 40 is not in contact with the wall surface ⁇ , so that the internal leakage current of the solar battery cell having the wall surface ⁇ is prevented.
  • an integrated solar cell 2 in which a plurality of solar cells 20a to 20d are connected as shown in FIG. 6 can be manufactured.
  • the cells are connected by the opening groove 22, so that the solar cell per unit area is compared with the integrated solar cell having three separation grooves.
  • the power generation efficiency can be improved by increasing the area of the battery cell.
  • the laminated body S having other layers constituting the solar battery cell is continuously formed, and then the opening groove portion 22 and the stopper portion 24 are formed.
  • the back electrode is scribed before the photoelectric conversion layer is formed, power necessary for scribing the back electrode can be suppressed, and damage to the substrate due to high output power can be prevented. Yield can be improved.
  • an integrated solar cell including the coating insulating portion 42 may be formed by forming a coating insulating portion 42 that covers the conductive layer 40.
  • the film insulation part 42 is provided, the same effect as the case of 1st Embodiment can be acquired.
  • FIG. 11 is a schematic cross-sectional view showing an integrated solar cell 3 manufactured by the manufacturing method of the third embodiment of the present invention.
  • FIG. 12 is a schematic plan view of the main part of the integrated solar cell 3 shown in FIG. 11, and
  • FIG. 13 is a schematic plan view of the main part of Modification 3 ′ of the integrated solar cell of the present embodiment. is there.
  • the integrated solar cell 3 includes a substrate 10 whose surface layer is an insulating layer 10a and an insulating layer 10a of the substrate 10, with a line-shaped opening groove 22 interposed therebetween.
  • the solar cells 20a to 20d are separated by the opening groove 22, and the back electrode layer 12, which is the first electrode layer, the photoelectric conversion layer 13, the buffer layer 14, and the transparent electrode layer 16 which is the second electrode layer.
  • the conductive layer 40 is formed as a connection portion for electrically connecting the transparent electrode of one cell of the cells adjacent to each other with the opening groove 22 interposed therebetween and the back electrode of the other cell.
  • adjacent cells are connected in series and integrated.
  • the transparent electrode layer 16 of the solar battery cell 20a and the back electrode layer 12 of the solar battery cell 20b are electrically connected by the conductive layer 40.
  • the insulating portion 44 is formed so as to cover one wall surface ⁇ of the opening groove portion 22, and the conductive layer 40 is not in contact with the wall surface ⁇ by the insulating portion 44, and is on the cell side having the wall surface ⁇ . It is formed so as to be connected to the transparent electrode layer 16. In the present embodiment, since the conductive layer 40 does not contact the wall surface ⁇ , generation of internal leakage current of the solar battery cell having the wall surface ⁇ is prevented.
  • the buffer layer 14 is not necessarily provided depending on the configuration of the photoelectric conversion layer 13. Further, a window layer (insulating layer) may be provided between the buffer layer 14 and the transparent electrode layer 16.
  • the shape, size, etc. of the substrate 10 of this embodiment are appropriately determined according to the size, etc. of the integrated solar cell 3 to be applied.
  • the length of one side A rectangular shape or a rectangular shape with a length exceeding 1 m.
  • the solar cells 20a to 20d and the first and second conductive members 50 and 52 are formed in a strip shape extending long in the width direction W (extending direction) perpendicular to the longitudinal direction L (arrangement direction) on the substrate 10. Is formed.
  • the back electrode layer 12 is separated from adjacent back electrode layers 12 by a plurality of separation grooves 21 provided in the longitudinal direction L of the substrate 10 at predetermined intervals.
  • the separation groove 21 is a groove reaching the surface of the substrate 10 (insulating layer 10a), and its width is, for example, 50 ⁇ m.
  • the photoelectric conversion layer 13 is embedded in the separation groove 21.
  • the opening groove portion 22 is formed in parallel to the separation groove 21 and at a depth that is substantially the surface position of the back electrode layer 12. Further, in the groove width direction of the opening groove portion 22, both the walls ⁇ and ⁇ of the groove portion are stacked, that is, at positions separated from the wall surface ⁇ of one cell 20a and the wall surface ⁇ of the other cell 20b of the cells adjacent to each other across the groove portion. A part of the body, here, part of the photoelectric conversion layer 13 is left as a stopper part 24 described later. In other words, the opening groove portion 22 includes the stopper portion 24 and two concave portions (groove portions) 22a and 22b sandwiching the stopper portion 24.
  • the width of the opening groove is, for example, 50 ⁇ m to 100 ⁇ m.
  • the opening groove 22 is formed at a position where the back electrode of the other cell 20b is at least partially exposed to the first groove 22a.
  • the separation groove 21 is preferably located in the vicinity of one wall surface ⁇ of the opening groove portion 22.
  • the separation groove 21 may be located on the one cell 20a side (under one cell 20a) from the wall surface ⁇ , but in order to suppress a loss portion that does not contribute to photoelectric conversion, the separation groove 21 is located near the wall surface ⁇ . It is hoped that
  • the stopper 24 is located on the back electrode 12 of the other cell 20b to which the conductive layer 40 is connected to the back electrode layer 12, and the back electrode layer 12 has one concave portion so as to contact the conductive layer 40. It must be exposed at the bottom on the 22a side.
  • the insulating part 44 and the conductive layer 40 are formed over the entire width direction W of the substrate 10 of the solar battery cell 20a.
  • the solar cells 20 a to 20 d can be electrically connected in series, and the conductive layer 40 does not have to be formed over the entire width direction W of the substrate 10.
  • the conductive layer 40 in at least a part in the width direction W.
  • three conductive layers 40a may be formed in the width direction W with respect to the cell 20a.
  • the insulating portion 44 may not be continuously formed in the width direction W as long as the conductive layer 40a is formed so as not to contact the wall surface ⁇ .
  • the first conductive member 50 and the second conductive member 52 arranged at both ends of the solar cells connected in series are for taking out the electric power generated in the solar cells to the outside.
  • the first conductive member 50 and the second conductive member 52 are, for example, strip-shaped members that extend substantially linearly in the width direction of the substrate 10 and are connected to the right-side or left-end back electrode layer 12 respectively.
  • the first conductive member 50 and the second conductive member 52 are, for example, copper ribbons 50a and 52a covered with coating materials 50b and 52b of indium copper alloy.
  • the first conductive member 50 and the second conductive member 52 are connected to the back electrode layer 12 by ultrasonic solder, a conductive adhesive, a conductive tape, or the like.
  • the first conductive member 50 and the second conductive member 52 may be tin-plated copper ribbons.
  • the integrated solar cell 3 of this configuration when light is incident on the solar cells 20a to 20d from the transparent electrode layer 16 side, the light passes through the transparent electrode layer 16 and the buffer layer 14, and the photoelectric conversion layer 13 An electromotive force is generated, and for example, a current from the transparent electrode layer 16 toward the back electrode layer 12 is generated.
  • the electric power generated in the integrated solar cell 3 can be taken out of the solar cell 3 from the first conductive member 50 and the second conductive member 52.
  • the first conductive member 50 is a negative electrode and the second conductive member 52 is a positive electrode.
  • the first conductive member 50 and the second conductive member 52 have opposite polarities. It may be appropriately changed depending on the layer configuration, connection configuration, and the like of the solar cells 20a to 20d.
  • FIG. 4 and FIG. 4 and FIG. 14 are partial schematic cross-sectional views showing the manufacturing process, and show a portion that becomes an opening groove between some cells 20a and 20b.
  • the manufacturing method of the third embodiment is the same as the manufacturing method of the first embodiment with respect to steps a to c shown in FIG. 4, and the description of the manufacturing method of the first embodiment is incorporated.
  • the manufacturing process after d in FIG. 14 will be described.
  • an opening groove 22 having a depth parallel to the separation groove 21 and reaching the surface position of the back electrode layer 12 is formed.
  • the opening groove portion 22 is formed so as to leave a part 24 of the stacked body S at a position spaced from both walls ⁇ and ⁇ of the opening groove portion 22 in the groove width direction of the opening groove portion 22.
  • two recesses (grooves) 22a and 22b having a depth reaching the surface position of the back electrode layer 12 from above the stacked body S at a predetermined interval are formed by laser or mechanical scribing at a desired opening groove forming position.
  • the opening groove portion 22 in which a part 24 of the stacked body S is left between the two grooves 22a and 22b can be formed.
  • the opening groove 22 is formed such that the first groove 22a is wider than the second groove 22b.
  • the back electrode layer 12 is exposed in the first and second grooves 22 a and 22 b sandwiching the part 24 of the laminated body of the formed opening groove 22, and is partially embedded in the separation groove 21.
  • the photoelectric conversion layer 13 is exposed.
  • the photoelectric conversion layer 13 is left as a part 24 of the laminate, but the buffer layer 14 and the transparent electrode layer 16 remain in this part 24. Good.
  • the insulating ink that becomes the insulating portion 44 is deposited in the vicinity of the wall surface ⁇ so that one wall surface ⁇ of the opening groove portion 22 is covered. Then, the insulating portion 44 is formed by performing a thermosetting process and a photocuring process according to the ink material.
  • the conductive layer 40 is formed on the insulating portion 44 so as to be in contact with the back electrode layer 12 of the other cell 20 b from the transparent electrode layer 16 of the one cell 20 a.
  • the other cell in which the conductive ink (conductive paste) is exposed in the first groove 22a from the transparent electrode layer 16 of the one cell 20a through the insulating portion 44 by using the inkjet method.
  • the droplets are ejected in a range extending to the back electrode layer 12 of 20b.
  • the conductive paste is ejected into the first groove 22a, the conductive paste is blocked by the stopper portion 24 and is prevented from spreading toward the second groove 22b. That is, it is possible to prevent the conductive ink from contacting the wall surface ⁇ of the other solar battery cell 20b. Thereby, the internal leak of the photovoltaic cell 20b is prevented.
  • the conductive layer 40 which electrically connects the transparent electrode 30 of the solar battery cell 20a and the back electrode 12 of the solar battery cell 20b is formed.
  • the conductive layer 40 is regulated by the stopper portion 24.
  • the conductive layer 40 is formed on the insulating portion 44, the conductive layer 40 is not in contact with the wall surface ⁇ , so that the internal leakage current of the solar battery cell having the wall surface ⁇ is prevented.
  • an integrated solar cell 3 to which a plurality of solar cells 20a to 20d are connected as shown in FIG. 11 can be manufactured.
  • the cells are connected by the opening groove 22, so that the solar cell per unit area is compared with the integrated solar cell having three separation grooves.
  • the power generation efficiency can be improved by increasing the area of the battery cell.
  • the opening groove portion 22 is provided with the stopper portion 24 to suppress the spreading of the conductive ink, the width of the opening groove portion 22 can be shortened, and the power generation efficiency per unit area can be further improved. .
  • the laminated body S having other layers constituting the solar battery cell is continuously formed, and then the opening groove portion 22 and the stopper portion 24 are formed.
  • the back electrode is scribed before the photoelectric conversion layer is formed, power necessary for scribing the back electrode can be suppressed, and damage to the substrate due to high output power can be prevented. Yield can be improved.
  • an integrated solar cell provided with a film insulating part 42 by forming a film insulating part 42 covering the conductive layer 40 may be used.
  • the film insulation part 42 is provided, the same effect as the case of 1st Embodiment can be acquired.
  • the laser beam used for laser scribing is, for example, pulse-oscillated.
  • the pulse width of the laser beam is preferably 100 ns or less, and more preferably 40 ns or less, so that the end of the removal portion does not rise.
  • an Nd: YAG laser or an Nd: YVO 4 laser excited by a laser diode having a wavelength of 1.06 ⁇ m and a pulse width of 40 ns or less can be used.
  • the laser beam used for laser scribing includes laser harmonics (second harmonic (wavelength is about 0.53 ⁇ m), third harmonics) generated by laser diode excitation using Nd: YAG, Nd: YVO 4 for the laser crystal. Harmonics (wavelength is about 0.355 ⁇ m) can also be used.
  • a known device used for mechanical scribing can be used.
  • a scribe groove having a width of 10 to 30 ⁇ m by laser scribe and a scribe groove having a width of 30 to 100 ⁇ m by mechanical scribe.
  • a flexible substrate when used as the substrate 10, it can be formed by combining a roll-to-roll method and a single wafer method.
  • the back electrode layer 12 is formed on the substrate 10, the separation groove 21 is formed, and the photoelectric conversion layer 13 is formed by a roll-to-roll method, then cut into a predetermined size, and the buffer layer 14. And formation of the transparent electrode layer 16 is implemented by a single wafer type.
  • the process of forming the back electrode layer 12 on the substrate 10, forming the separation groove 21, and forming the photoelectric conversion layer 13 and the buffer layer 14 is performed by a roll-to-roll method.
  • the transparent electrode layer 16 is cut and formed in a single wafer mode.
  • the back electrode layer 12 is formed on the substrate 10, the separation groove 21 is formed, the photoelectric conversion layer 13, the buffer layer 14, and the transparent electrode layer 16 are formed by a roll-to-roll method, and then have a predetermined size. Then, the above integration process is performed in a single wafer mode.
  • the substrate 10 is not particularly limited as long as the surface is an insulating layer, such as an insulating substrate such as glass or polyimide, or a metal substrate such as stainless steel having an insulating layer formed on the surface.
  • an insulating layer such as an insulating substrate such as glass or polyimide, or a metal substrate such as stainless steel having an insulating layer formed on the surface.
  • an anodized substrate in which an anodized film (insulating film) mainly composed of Al 2 O 3 is formed on at least one surface side of an Al base material mainly composed of Al, Fe is mainly used.
  • An anodic oxide film mainly composed of Al 2 O 3 was formed on at least one surface side of a composite base material in which an Al material composed mainly of Al was composited on at least one surface side of the Fe material as a component.
  • An anodized substrate on which an anodized film is formed is preferable.
  • a soda lime glass (SLG) layer may be provided on the anodized film.
  • SSG soda lime glass
  • the first electrode layer (back electrode) 12 is preferably made of, for example, Mo, Cr, or W, and a combination thereof, and particularly preferably made of Mo.
  • the back electrode layer 12 may have a single-layer structure or a laminated structure such as a two-layer structure.
  • the formation method in particular of the back surface electrode layer 12 is not restrict
  • the back electrode layer 12 generally has a thickness of about 800 nm, but the back electrode layer 12 preferably has a thickness of 200 nm to 1000 nm (1 ⁇ m).
  • the material cost of the back electrode layer 12 can be reduced, and further, the formation speed of the back electrode layer 12 can be increased.
  • the main component of the photoelectric conversion layer 13 is not particularly limited and is preferably a compound semiconductor having at least one chalcopyrite structure because high photoelectric conversion efficiency can be obtained.
  • the Ib group element, the IIIb group element, and the VIb group More preferably, it is at least one compound semiconductor composed of an element.
  • At least one type Ib group element selected from the group consisting of Cu and Ag, and at least one type IIIb group element selected from the group consisting of Al, Ga, and In It is preferably at least one compound semiconductor comprising at least one VIb group element selected from the group consisting of S, Se, and Te.
  • Examples of the compound semiconductor CuAlS 2, CuGaS 2, CuInS 2, CuAlSe 2, CuGaSe 2, AgAlS 2, AgGaS 2, AgInS 2, AgAlSe 2, AgGaSe 2, AgInSe 2, AgAlTe 2, AgGaTe 2, AgInTe 2, Cu ( in, Al) Se 2, Cu (in, Ga) (S, Se) 2, Cu in 1-z in 1-x Ga x Se 2-y S y ( wherein, 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 1) (CI (G) S), Ag (In, Ga) Se 2 , Ag (In, Ga) (S, Se) 2 and the like.
  • Cu 2 ZnSnS 4, Cu 2 ZnSnSe 4, Cu 2 ZnSn (S, Se) 4, may be.
  • semiconductors other than the I-III-VI group semiconductors include semiconductors composed of IIIb group elements and Vb group elements such as GaAs (III-V semiconductors), IIb group elements such as CdTe, (Cd, Zn) Te, and VIb. And semiconductors composed of group elements (II-VI group semiconductors).
  • the film formation method of the photoelectric conversion layer 13 is not particularly limited, and can be formed by a vacuum deposition method, a sputtering method, an MOCVD method, or the like.
  • a vacuum deposition method a sputtering method, an MOCVD method, or the like.
  • film formation methods for CIGS semiconductor layers multi-source simultaneous vapor deposition, selenization, sputtering, hybrid sputtering, canochemical process, and the like are known. Examples of other CIGS film formation methods include screen printing, proximity sublimation, MOCVD, and spray (wet film formation). Any film forming method may be used.
  • the buffer layer 14 is formed to protect the photoelectric conversion layer 13 when the transparent electrode layer 16 is formed and to transmit light incident on the transparent electrode layer 16 to the photoelectric conversion layer 13.
  • the buffer layer 14 is made of, for example, CdS, ZnS, ZnO, ZnMgO, ZnS (O, OH), or a combination thereof.
  • the buffer layer 14 preferably has a thickness of 10 nm to 2 ⁇ m, more preferably 15 to 200 nm.
  • the buffer layer 26 is formed by, for example, a CBD (chemical bath deposition) method, a solution growth method, or the like.
  • an insulating layer may be provided between the buffer layer 14 and the transparent conductive layer 16.
  • This insulating layer inhibits recombination of photoexcited electrons and holes, and contributes to improvement in power generation efficiency.
  • the composition of the insulating layer is not particularly limited, but i-ZnO, i-AlZnO (AZO), and the like are preferable.
  • the film thickness is not particularly limited, and is preferably 10 nm to 2 ⁇ m, more preferably 15 to 200 nm.
  • the film forming method is not particularly limited, but a sputtering method or an MOCVD method is suitable.
  • the buffer layer 14 is manufactured by the liquid phase method, it is also preferable to use the liquid phase method in order to simplify the manufacturing process.
  • the second electrode layer (transparent electrode layer) 16 may be composed of, for example, ZnO doped with Al, B, Ga, In or the like, ITO (indium tin oxide) or SnO 2 and a combination thereof. it can.
  • the transparent electrode layer 16 may have a single layer structure or a laminated structure such as a two-layer structure.
  • the thickness of the transparent electrode layer 16 is not particularly limited, and is preferably 50 nm to 2 ⁇ m, more preferably 0.3 to 1 ⁇ m.
  • the method for forming the transparent electrode layer 16 is not particularly limited, and can be formed by a vapor deposition method such as an electron beam evaporation method or a sputtering method.
  • An antireflection film such as MgF 2 may be formed on the transparent electrode layer 16.
  • insulating ink examples include insulating ink IJPR (solar ink), inkjet compatible polyimide ink Rixon coat (JNC), inkjet compatible UV curable ink Rixon coat (JNC), and insulating ink DPEI. (Daicel Chemical Industries) can be used.
  • IJPR solar ink
  • JNC inkjet compatible polyimide ink Rixon coat
  • JNC inkjet compatible UV curable ink Rixon coat
  • DPEI insulating ink DPEI.
  • Examples of the conductive ink for forming the conductive layer 40 include silver paste (NPS-J (product number, manufactured by Harima Chemicals)), transparent conductive ink (ClearOhm (registered trademark) (JNC)), silver nano ink (Daicel Chemical) Industrial), Cabot Conductive Ink CCI-300 can be used.
  • the above has mainly described materials and layer configurations suitable for the case where a compound semiconductor is used as a photoelectric conversion layer of a solar battery cell.
  • the present invention may use other than the compound semiconductor system as described above as the photoelectric conversion layer of the solar battery cell.
  • a photoelectric conversion layer an amorphous silicon (a-Si) thin film type photoelectric conversion layer, a tandem structure type thin film type photoelectric conversion layer (a-Si / a-SiGe tandem structure photoelectric conversion layer), a series connection structure (SCAF)
  • a thin film photoelectric conversion layer (a-Si serial connection structure photoelectric conversion layer), a thin film silicon thin film photoelectric conversion layer, a dye-sensitized thin film photoelectric conversion layer, or an organic thin film photoelectric conversion layer may be used.
  • a photoelectric conversion layer an amorphous silicon (a-Si) thin film type photoelectric conversion layer, a tandem structure type thin film type photoelectric conversion layer (a-Si / a-SiGe tandem structure photo
  • the first electrode layer provided on the substrate is made of an opaque material as the back electrode, and the second electrode formed on the photoelectric conversion layer is called a substrate type having a transparent structure.
  • the solar cell having the structure has been described, the present invention can be applied to a super straight type solar cell in which the first electrode layer is a transparent electrode and the second electrode layer is an opaque electrode.
  • the manufacturing method of the present invention is highly effective in manufacturing a solar cell having a substrate type structure in which the first electrode layer is made of metal or the like and is cured by a thermal history. Is.

Abstract

[Problem] To provide a method for manufacturing a thin-type solar cell with higher production efficiency, which is capable of producing an integrated structure having higher power generation efficiency via less processes. [Solution] A first electrode layer (12) is formed on a substrate (10) and a separation groove (21) exposing the surface of the substrate (10) at the bottom portion thereof is formed through the first electrode layer (12). A laminated body (S) is formed by sequentially laminating a photoelectric conversion layer (13) and a second electrode layer (16) so as to cover the first electrode layer (12) and the surface of the substrate (10) exposed through the separation groove (21). An opened groove (22) having a depth of reaching the surface position of the first electrode layer (12) is formed parallel to the separation groove (21). The opened groove (22) is formed in such a manner that a portion (24) of the laminated body (S) remains separated from both walls (α,β). A connection portion (40) is formed to electrically connect mutually adjoining photoelectric conversion elements across the opened groove (22).

Description

集積化太陽電池の製造方法Manufacturing method of integrated solar cell
 本発明は、集積化構造を有する薄膜太陽電池の製造方法に関し、特に、発電効率および生産効率の観点から優れた集積化構造を少ない工程で形成でき、生産効率が優れた集積化太陽電池の製造方法に関する。 The present invention relates to a method for manufacturing a thin-film solar cell having an integrated structure, and in particular, an integrated solar cell that can form an integrated structure that is excellent from the viewpoint of power generation efficiency and production efficiency in a small number of steps and that has excellent production efficiency Regarding the method.
 下部電極(裏面電極)と光吸収により電荷を発生する光電変換半導体層と上部電極との積層構造を有する光電変換素子が、太陽電池等の用途に使用されている。 A photoelectric conversion element having a laminated structure of a lower electrode (back surface electrode), a photoelectric conversion semiconductor layer that generates charges by light absorption, and an upper electrode is used for applications such as solar cells.
 従来、バルクの単結晶Siまたは多結晶Si、あるいは薄膜のアモルファスSiを用いたSi系太陽電池が主流であったが、Siに依存しない化合物半導体系太陽電池の研究開発がなされている。化合物半導体系太陽電池としては、GaAs系等のバルク系と、IB族元素とIIIB族元素とVIB族元素とからなるCIS(Cu-In-Se)系あるいはCIGS(Cu-In-Ga-Se)系等の薄膜系とが知られている。CIS系あるいはCIGS系は、光吸収率が高く、高エネルギー変換効率であることが報告されている。 Conventionally, Si-based solar cells using bulk single-crystal Si or polycrystalline Si, or thin-film amorphous Si have been mainstream, but research and development of compound semiconductor solar cells that do not depend on Si have been made. Compound semiconductor solar cells include CIS (Cu-In-Se) or CIGS (Cu-In-Ga-Se), which is composed of a bulk system such as a GaAs system, and a group IB element, group IIIB element and group VIB element. And other thin film systems are known. The CIS system or CIGS system is reported to have a high light absorption rate and high energy conversion efficiency.
 太陽電池の高出力化を図るためには、1枚の基板上に複数の光電変換素子(太陽電池セル)を多数直列接続して配列する集積化が必要である。 In order to increase the output of the solar cell, it is necessary to integrate a plurality of photoelectric conversion elements (solar cell) connected in series on a single substrate.
 化合物半導体系太陽電池の集積化方法としては、三段階のスクライブ処理を行う方法がよく知られている。この方法は図16のaに示すように、絶縁基板110上に電極層112を成膜した後、電極層112をスクライブして第1の分離溝P1を形成し、図16のbに示すように光電変換層113、バッファ層114および窓層115を順次成膜してこれらを貫通して電極層112表面に至る分離溝P2を形成し、図16のcに示すように、透光性導電層(上部電極)116を形成し、上部電極116から下部電極層表面に至る分離溝P3を形成するものである。このようにして、隣接セル間は分離溝P3により分離され、隣接セル間は分離溝P2に埋め込まれた透光性導電層材料により直列接続された集積化構造が形成される。 As a method for integrating compound semiconductor solar cells, a method of performing a three-stage scribe process is well known. In this method, as shown in FIG. 16A, after the electrode layer 112 is formed on the insulating substrate 110, the electrode layer 112 is scribed to form the first separation groove P1, and as shown in FIG. 16B. Then, a photoelectric conversion layer 113, a buffer layer 114, and a window layer 115 are sequentially formed to form a separation groove P2 penetrating therethrough and reaching the surface of the electrode layer 112. As shown in FIG. A layer (upper electrode) 116 is formed, and a separation groove P3 extending from the upper electrode 116 to the surface of the lower electrode layer is formed. In this way, an integrated structure is formed in which adjacent cells are separated by the separation groove P3 and adjacent cells are connected in series by the light-transmitting conductive layer material embedded in the separation groove P2.
 このような集積化構造では、第1の分離溝P1~第3の分離溝P3が必要であるため、太陽電池セルの接続に必要なセル間の距離を長くしなければならず、単位面積当たりの発電効率が低下するという問題点がある。そこで、他の集積化方法が提案されている(例えば、特許文献1、2および3)。 In such an integrated structure, since the first separation groove P1 to the third separation groove P3 are necessary, it is necessary to increase the distance between the cells necessary for connecting the solar battery cells. There is a problem that the power generation efficiency of the system is reduced. Therefore, other integration methods have been proposed (for example, Patent Documents 1, 2, and 3).
 特許文献1には、基板上に下地電極、光電変換層、透明電極を一括して成膜し、それぞれ深さの異なる3つのスクライビングを一括して行う集積化光電変換装置の製造方法が開示されている。この特許文献1には、一括成膜および一括スクライビングが一層ごとにスクライビングを行う方法に比べて簡単であり、工程数が少なくてすみ、従って、製造に要する時間を短縮することが出来ることが記載されている。 Patent Document 1 discloses a method for manufacturing an integrated photoelectric conversion device in which a base electrode, a photoelectric conversion layer, and a transparent electrode are collectively formed on a substrate, and three scribing operations each having a different depth are collectively performed. ing. This Patent Document 1 describes that batch film formation and batch scribing are simpler than the method of performing scribing for each layer, and the number of steps can be reduced, so that the time required for manufacturing can be shortened. Has been.
 特許文献2には、基板上に下地電極、光電変換層、透明電極を一括して成膜し、その後、単一のスクライブ処理を行う方法が開示されている。特許文献2では、スクライブ処理において、底部に下地電極を分離する細幅の溝を有する一本の溝部を形成し、その後、その溝部の一方の側壁および下地電極を分離する細幅の溝に絶縁体を堆積させ、その上に導体を接続してセル間を電気的に接続させる方法が開示されている。これにより、接続に必要なセル間の距離を短くすることができ、単位面積当たりの発電効率を高くすることができることが開示されている。 Patent Document 2 discloses a method in which a base electrode, a photoelectric conversion layer, and a transparent electrode are collectively formed on a substrate, and then a single scribe process is performed. In Patent Document 2, in the scribing process, one groove portion having a narrow groove for separating the base electrode is formed at the bottom, and then one side wall of the groove portion and the narrow groove for separating the base electrode are insulated. A method of depositing a body and connecting conductors thereon to electrically connect cells is disclosed. Thus, it is disclosed that the distance between cells necessary for connection can be shortened and the power generation efficiency per unit area can be increased.
 また、特許文献3では、基板上に所定形状の複数の透明電極を形成した後、光電変換層および電極層を形成し、その後、レーザビームの照射により接続溝および絶縁溝を形成し、接続溝に導電性ペーストを充填して接続部を形成することにより集積化太陽電池を製造する方法が開示されている。 In Patent Document 3, after forming a plurality of transparent electrodes having a predetermined shape on a substrate, a photoelectric conversion layer and an electrode layer are formed, and then a connection groove and an insulation groove are formed by laser beam irradiation. A method of manufacturing an integrated solar cell by filling a conductive paste into a conductive paste and forming a connection portion is disclosed.
特開2001-7359号公報JP 2001-7359 A 特表2009-512197号公報Special table 2009-512197 特開昭61-50381号公報JP 61-50381 A
 しかしながら、特許文献1においては、溝を3つ形成するためセル間の距離を短縮させることは難しく、発電効率を増加させることはできない。
 特許文献2においては、溝が1つであるため、セル間の距離を短縮できるように思われるが、実際には絶縁体の形成に用いられる感光性ポリマー(絶縁性インク)が広がるため、スクライブの幅を広くする必要がある。このため、単位面積当たりのセルの面積が小さくなり、十分な発電効率の向上はできない。
However, in Patent Document 1, since three grooves are formed, it is difficult to shorten the distance between the cells, and the power generation efficiency cannot be increased.
In Patent Document 2, it seems that the distance between the cells can be shortened because there is one groove. However, since the photosensitive polymer (insulating ink) used for forming the insulator is actually widened, the scribe is performed. Need to be wide. For this reason, the area of the cell per unit area becomes small, and sufficient power generation efficiency cannot be improved.
 また、CIGS系のように、下部電極層としてMo等の金属電極が用いられ、光電変換層の堆積が高温下でなされる場合には、下部電極が熱履歴により硬度が増加するため、特許文献1、2のように光電変換層の堆積後に下部電極層をスクライブする場合、パワーの大きなレーザビームを照射する必要があり、下部電極層下の基板を傷めてしまう恐れがある。 In addition, when a metal electrode such as Mo is used as the lower electrode layer as in the CIGS system, and the deposition of the photoelectric conversion layer is performed at a high temperature, the hardness of the lower electrode increases due to thermal history. When the lower electrode layer is scribed after deposition of the photoelectric conversion layer as in 1 and 2, it is necessary to irradiate a high-power laser beam, which may damage the substrate under the lower electrode layer.
 特許文献3記載の集積化構造では、光電変換層と上部電極の断面に導電性材料が接する構造になるため、光電変換層内での電流リークの原因となり、発電効率が低下する。 The integrated structure described in Patent Document 3 has a structure in which a conductive material is in contact with the cross section of the photoelectric conversion layer and the upper electrode, which causes current leakage in the photoelectric conversion layer and reduces power generation efficiency.
 本発明は、上記事情に鑑みてなされたものであり、発電効率の優れた集積化構造を少ない工程で形成できる、生産効率が優れた集積化太陽電池の製造方法を提供することを目的とするものである。 This invention is made | formed in view of the said situation, and it aims at providing the manufacturing method of the integrated solar cell excellent in production efficiency which can form the integrated structure excellent in power generation efficiency with few processes. Is.
 本発明は集積化太陽電池の製造方法であって、基板上に複数の光電変換素子が配列され直列接続されてなる集積化太陽電池の製造方法であって、
 少なくとも表面が絶縁性である基板上に第1の電極層を形成し、
 該第1の電極層に前記基板の表面が底部に露出した分離溝を形成して該第1の電極層を複数の領域に分離し、
 前記第1の電極層および前記分離溝に露出された前記基板の表面を覆うように、光電変換層および第2の電極層を順次積層して積層体を形成し、
 前記分離溝に平行かつ前記第1の電極層表面位置に至る深さの開口溝部であって、該開口溝部の溝幅方向において該溝部の両壁から離間した位置に前記積層体の一部が残置された開口溝部を形成し、
 前記開口溝部を隔てて互いに隣接する光電変換素子のうち一方の素子の第2の電極層と、他方の素子の第1の電極層とを電気的に接続する接続部を、前記開口溝部の前記積層体の前記一部より前記一方の素子側に導電性インクを滴下することにより形成することを特徴とする。
The present invention is a method for manufacturing an integrated solar cell, wherein a plurality of photoelectric conversion elements are arranged on a substrate and connected in series,
Forming a first electrode layer on a substrate having at least an insulating surface;
Forming a separation groove in which the surface of the substrate is exposed at the bottom of the first electrode layer to separate the first electrode layer into a plurality of regions;
A photoelectric conversion layer and a second electrode layer are sequentially laminated so as to cover the surface of the substrate exposed to the first electrode layer and the separation groove, thereby forming a laminate.
A part of the stacked body is an opening groove part having a depth parallel to the separation groove and reaching the surface position of the first electrode layer, and spaced from both walls of the groove part in the groove width direction of the opening groove part. Forming the remaining open groove,
A connecting portion that electrically connects the second electrode layer of one of the photoelectric conversion elements adjacent to each other across the opening groove and the first electrode layer of the other element is connected to the opening groove. It is formed by dropping conductive ink from the part of the laminate to the one element side.
 さらに、前記接続部を覆う被覆絶縁部を形成することが好ましい。 Furthermore, it is preferable to form a covering insulating portion that covers the connecting portion.
 前記接続部の形成工程において、前記積層体の前記一部を、前記導電性インクの前記他方の素子側への拡がりを抑制するストッパ部として用いることが好ましい。 In the connection portion forming step, it is preferable that the part of the stacked body is used as a stopper portion that suppresses spreading of the conductive ink to the other element side.
 前記接続部を形成する前に、前記開口溝部の前記一方の素子側の壁面の少なくとも一部に、該壁面の高さ方向に亘る絶縁部を形成し、
 前記接続部を前記絶縁部上に形成することが好ましい。
Before forming the connecting portion, an insulating portion extending in the height direction of the wall surface is formed on at least a part of the wall surface on the one element side of the opening groove portion,
It is preferable that the connecting portion is formed on the insulating portion.
 前記分離溝をレーザスクライブにより形成することが好ましい。 The separation groove is preferably formed by laser scribe.
 前記開口溝部を、該開口溝部となる領域に、前記積層体の一部が残るように所定の間隔で2本の溝をメカニカルスクライブにより形成することにより形成することが好ましい。 It is preferable that the opening groove is formed by mechanically scribing two grooves at a predetermined interval so that a part of the laminated body remains in a region to be the opening groove.
 前記接続部を、インクジェット法により前記導電性インクを滴下することにより形成することが好ましい。 It is preferable that the connecting portion is formed by dropping the conductive ink by an ink jet method.
 本発明の集積化太陽電池の製造方法によれば、第1の電極層形成後、光電変換層等を積層する前に、第1の電極層に分離溝を形成して複数の領域に分割するようにしているため、光電変換層等の積層工程において熱履歴により硬化するような材料を第1の電極層に用いた場合であっても、熱履歴を受ける前の状態であるため比較的小さいパワーで分離溝を形成することができる。 According to the method for manufacturing an integrated solar cell of the present invention, after forming the first electrode layer and before laminating the photoelectric conversion layer or the like, the first electrode layer is divided into a plurality of regions by forming separation grooves. Therefore, even when a material such as a photoelectric conversion layer that is cured by thermal history is used for the first electrode layer, it is relatively small because it is in a state before receiving the thermal history. Separation grooves can be formed with power.
 第1の電極層を分離した後は、光電変換層、第2の電極層を形成した後に、開口溝部を形成するので、集積化構造を少ない工程で作製することができ、優れた生産効率を実現することができる。 After the first electrode layer is separated, the opening groove is formed after the photoelectric conversion layer and the second electrode layer are formed, so that an integrated structure can be manufactured with few steps, and excellent production efficiency can be obtained. Can be realized.
本発明の第1の実施形態の製造方法で製造される集積化太陽電池を示す模式的断面図である。It is typical sectional drawing which shows the integrated solar cell manufactured with the manufacturing method of the 1st Embodiment of this invention. 図1に示す集積化太陽電池の要部の模式的平面図である。It is a schematic plan view of the principal part of the integrated solar cell shown in FIG. 本発明の第1の実施形態の製造方法で製造される集積化太陽電池の変形例の要部の模式的平面図である。It is a schematic plan view of the principal part of the modification of the integrated solar cell manufactured with the manufacturing method of the 1st Embodiment of this invention. 実施形態の製造方法を工程順に示す模式的断面図である。It is typical sectional drawing which shows the manufacturing method of embodiment to process order. 本発明の第1の実施形態の製造方法を工程順に示す模式的断面図である。It is typical sectional drawing which shows the manufacturing method of the 1st Embodiment of this invention to process order. 本発明の第2の実施形態の製造方法で製造される集積化太陽電池を示す模式的断面図である。It is typical sectional drawing which shows the integrated solar cell manufactured with the manufacturing method of the 2nd Embodiment of this invention. 図6に示す集積化太陽電池の要部の模式的平面図である。It is a schematic plan view of the principal part of the integrated solar cell shown in FIG. 本発明の第2の実施形態の製造方法で製造される集積化太陽電池の変形例の要部の模式的平面図である。It is a schematic plan view of the principal part of the modification of the integrated solar cell manufactured with the manufacturing method of the 2nd Embodiment of this invention. 本発明の第2の実施形態の製造方法を工程順に示す模式的断面図である。It is typical sectional drawing which shows the manufacturing method of the 2nd Embodiment of this invention to process order. 本発明の第2の実施形態の製造方法の変形性を示す模式的断面図である。It is typical sectional drawing which shows the deformability of the manufacturing method of the 2nd Embodiment of this invention. 本発明の第3の実施形態の製造方法で製造される集積化太陽電池を示す模式的断面図である。It is typical sectional drawing which shows the integrated solar cell manufactured with the manufacturing method of the 3rd Embodiment of this invention. 図11に示す集積化太陽電池の要部の模式的平面図である。It is a schematic plan view of the principal part of the integrated solar cell shown in FIG. 本発明の第3の実施形態の製造方法で製造される集積化太陽電池の変形例の要部の模式的平面図である。It is a schematic plan view of the principal part of the modification of the integrated solar cell manufactured with the manufacturing method of the 3rd Embodiment of this invention. 本発明の第3の実施形態の製造方法を工程順に示す模式的断面図である。It is typical sectional drawing which shows the manufacturing method of the 3rd Embodiment of this invention to process order. 本発明の第3の実施形態の製造方法の変形性を示す模式的断面図である。It is typical sectional drawing which shows the deformability of the manufacturing method of the 3rd Embodiment of this invention. 従来の集積化太陽電池の製造方法を工程順に示す模式的断面図である。It is typical sectional drawing which shows the manufacturing method of the conventional integrated solar cell in order of a process.
 以下、図面を参照して本発明の実施の形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
「第1の実施形態」
 図1は、本発明の第1の実施形態の製造方法により製造される集積化太陽電池1を示す模式的断面図である。図2は、図1に示す集積化太陽電池1の要部の模式的平面図であり、図3は、本実施形態の集積化太陽電池の変形例の要部の模式的平面図である。
“First Embodiment”
FIG. 1 is a schematic cross-sectional view showing an integrated solar cell 1 manufactured by the manufacturing method of the first embodiment of the present invention. FIG. 2 is a schematic plan view of the main part of the integrated solar cell 1 shown in FIG. 1, and FIG. 3 is a schematic plan view of the main part of a modification of the integrated solar cell of the present embodiment.
 図1および図2に示すように、集積化太陽電池1は、表層が絶縁層10aである基板10と、基板10の絶縁層10a上に形成され、ライン状の開口溝部22を挟んで、基板10の長手方向Lに電気的に直列に接続された複数の太陽電池セル(光電変換素子)20a~20dと、一方の端部の太陽電池セル20aに接続される第1の導電部材50と、他方の端部の太陽電池セル20dに接続される第2の導電部材52とを有している。 As shown in FIG. 1 and FIG. 2, the integrated solar cell 1 includes a substrate 10 whose surface layer is an insulating layer 10a and an insulating layer 10a of the substrate 10, with a line-shaped opening groove 22 interposed therebetween. A plurality of solar cells (photoelectric conversion elements) 20a to 20d electrically connected in series in the longitudinal direction L of the tenth, a first conductive member 50 connected to the solar cell 20a at one end, And a second conductive member 52 connected to the solar battery cell 20d at the other end.
 太陽電池セル20a~20dは、開口溝部22により分離されており、第1の電極層である裏面電極層12、光電変換層13、バッファ層14および第2の電極層である透明電極層16を有する。太陽電池セル20a~20bは、開口溝部22を挟んで互いに隣接するセルの一方のセルの透明電極と他方のセルの裏面電極とを電気的に接続する接続部として導電層40が形成されることにより、隣接するセル間が直列接続されて集積化されている。例えば、太陽電池セル20aと太陽電池セル20bとでは、太陽電池セル20aの透明電極層16と太陽電池セル20bの裏面電極層12とが導電層40により電気的に接続されている。
 また、導電層40を覆うように被覆絶縁部42が形成されている。
The solar cells 20a to 20d are separated by the opening groove 22, and the back electrode layer 12, which is the first electrode layer, the photoelectric conversion layer 13, the buffer layer 14, and the transparent electrode layer 16 which is the second electrode layer. Have. In each of the solar cells 20a to 20b, the conductive layer 40 is formed as a connection portion for electrically connecting the transparent electrode of one cell of the cells adjacent to each other with the opening groove 22 interposed therebetween and the back electrode of the other cell. Thus, adjacent cells are connected in series and integrated. For example, in the solar battery cell 20a and the solar battery cell 20b, the transparent electrode layer 16 of the solar battery cell 20a and the back electrode layer 12 of the solar battery cell 20b are electrically connected by the conductive layer 40.
A covering insulating portion 42 is formed so as to cover the conductive layer 40.
 なお、本実施形態では、便宜的に4つの太陽電池セル20a~20dが直列接続されたものを例にして説明するが、太陽電池セルの接続数は、特に限定されるものではない。また、太陽電池セルにおいて、バッファ層14、光電変換層13の構成によっては、必ずしも設ける必要はない。また、バッファ層14と透明電極層16との間に窓層(絶縁層)が備えられていてもよい。 In the present embodiment, for convenience, four solar cells 20a to 20d are described as an example connected in series, but the number of connected solar cells is not particularly limited. Further, in the solar battery cell, it is not necessarily provided depending on the configuration of the buffer layer 14 and the photoelectric conversion layer 13. Further, a window layer (insulating layer) may be provided between the buffer layer 14 and the transparent electrode layer 16.
 図2に示すように、本実施形態の基板10は、その形状および大きさ等は適用される集積化太陽電池1の大きさ等に応じて適宜決定されるものであり、例えば、一辺の長さが1mを超える四角形状または矩形状である。
 太陽電池セル20a~20dおよび第1、第2の導電部材50、52は、基板10上において、長手方向L(配列方向)と直交する幅方向W(延在方向)に長く伸びた短冊状に形成されている。
As shown in FIG. 2, the substrate 10 of the present embodiment has its shape, size, and the like determined as appropriate according to the size of the integrated solar cell 1 to be applied. For example, the length of one side A rectangular shape or a rectangular shape with a length exceeding 1 m.
The solar cells 20a to 20d and the first and second conductive members 50 and 52 are formed in a strip shape extending long in the width direction W (extending direction) perpendicular to the longitudinal direction L (arrangement direction) on the substrate 10. Is formed.
 裏面電極層12は、基板10の長手方向Lに、所定の間隔に複数設けられた分離溝21により、隣り合う裏面電極層12と互いに分離されている。なお、分離溝21は、基板10の表面(絶縁層10a)に達する溝であり、その幅は、例えば、50μmである。この分離溝21には光電変換層13が埋め込まれている。 The back electrode layer 12 is separated from adjacent back electrode layers 12 by a plurality of separation grooves 21 provided in the longitudinal direction L of the substrate 10 at predetermined intervals. The separation groove 21 is a groove reaching the surface of the substrate 10 (insulating layer 10a), and its width is, for example, 50 μm. The photoelectric conversion layer 13 is embedded in the separation groove 21.
 開口溝部22は、分離溝21に平行にかつ、ほぼ裏面電極層12の表面位置となる深さに形成されている。また、開口溝部22の溝幅方向において溝部の両壁α、β、すなわち、溝部を隔てて互いに隣接するセルの一方のセル20aの壁面αおよび他方のセル20bの壁面βから離間した位置に積層体の一部、ここでは光電変換層13の一部が後述するストッパ部24として残置されている。換言すると、開口溝部22はストッパ部24およびストッパ部24を挟む2つの凹部(溝)22aおよび22bからなるものである。開口溝部の幅は例えば、50μmから100μmである。 The opening groove portion 22 is formed in parallel to the separation groove 21 and at a depth that is substantially the surface position of the back electrode layer 12. Further, in the groove width direction of the opening groove portion 22, both the walls α and β of the groove portion are stacked, that is, at positions separated from the wall surface α of one cell 20a and the wall surface β of the other cell 20b of the cells adjacent to each other across the groove portion. A part of the body, here, part of the photoelectric conversion layer 13 is left as a stopper part 24 described later. In other words, the opening groove portion 22 includes the stopper portion 24 and two concave portions (grooves) 22a and 22b that sandwich the stopper portion 24. The width of the opening groove is, for example, 50 μm to 100 μm.
 なお、開口溝部22は、一方のセル20aの裏面電極が第1の溝22aに露出せず、かつ、他方のセル20bの裏面電極が第1の溝22aに少なくとも一部露出する位置に形成されている。このとき、分離溝21が開口溝部22の一方の壁面αの位置に少なくとも一部重なっていることが好ましい。分離溝21は、壁面αよりも一方のセル20a側(一方のセル20aの下)に位置していてもよいが、光電変換に寄与しないロス部分を抑制するためには壁面α近傍に位置していることが望まれる。 The opening groove 22 is formed at a position where the back electrode of one cell 20a is not exposed to the first groove 22a and the back electrode of the other cell 20b is at least partially exposed to the first groove 22a. ing. At this time, it is preferable that the separation groove 21 at least partially overlaps the position of one wall surface α of the opening groove portion 22. The separation groove 21 may be located on the one cell 20a side (under one cell 20a) from the wall surface α, but in order to suppress a loss portion that does not contribute to photoelectric conversion, the separation groove 21 is located near the wall surface α. It is hoped that
 ストッパ部24は、裏面電極層12に導電層40が接続される他方のセル20bの裏面電極層12上に位置しており、導電層40を接触させるように、この裏面電極層12は一方の凹部22a側の底部に露出していることを要する。 The stopper portion 24 is located on the back electrode layer 12 of the other cell 20b to which the conductive layer 40 is connected to the back electrode layer 12, and the back electrode layer 12 has one of the back electrode layers 12 so as to contact the conductive layer 40. It is necessary to be exposed to the bottom part by the side of the recessed part 22a.
 図2に示すように、導電層40は、太陽電池セル20aの基板10の幅方向W全域に亘り形成されている。また、この導電層40を覆うようにして被覆絶縁部42も、基板10の幅方向W全域に亘り形成されている。 As shown in FIG. 2, the conductive layer 40 is formed over the entire width direction W of the substrate 10 of the solar battery cell 20a. Further, the covering insulating portion 42 is also formed over the entire width direction W of the substrate 10 so as to cover the conductive layer 40.
 なお、太陽電池セル20a~20dを電気的に直列に接続することができればよく、導電層40は、基板10の幅方向W全域に亘り形成されていなくてもよい。太陽電池セル20a~20dを電気的に直列に接続するには、幅方向Wにおいて少なくとも一部で導電層40を用いて接続されていればよいため、例えば、図3に示すように、太陽電池セル20aに対して、幅方向Wで、例えば、3箇所導電層40aを形成し、各導電層40aを覆うように被覆絶縁部42aが形成されるものであってもよい。 Note that the solar cells 20a to 20d need only be electrically connected in series, and the conductive layer 40 may not be formed over the entire width direction W of the substrate 10. In order to electrically connect the solar cells 20a to 20d in series, it is sufficient that the solar cells 20a to 20d are connected at least partially using the conductive layer 40 in the width direction W. For example, as shown in FIG. For example, three conductive layers 40a may be formed in the width direction W with respect to the cell 20a, and the covering insulating portion 42a may be formed so as to cover each conductive layer 40a.
 直列接続された太陽電池セルの両端に配置されている第1の導電部材50および第2の導電部材52は、太陽電池セルで発生した電力を外部に取り出すためのものである。 The first conductive member 50 and the second conductive member 52 arranged at both ends of the solar cells connected in series are for taking out the electric power generated in the solar cells to the outside.
 第1の導電部材50および第2の導電部材52は、例えば、細長い帯状の部材であり、基板10の幅方向に略直線状に伸びて、それぞれ右端、あるいは左端の裏面電極層12上に接続されている。また、図1に示すように、第1の導電部材50および第2の導電部材52は、例えば、銅リボン50a、52aがインジウム銅合金の被覆材50b、52bで被覆されたものである。第1の導電部材50および第2の導電部材52は、超音波半田、導電性接着剤、あるいは導電性テープ等により裏面電極層12に接続されている。
 第1の導電部材50と第2の導電部材52とは、錫メッキ銅リボンでもよい。
The first conductive member 50 and the second conductive member 52 are, for example, strip-shaped members that extend substantially linearly in the width direction of the substrate 10 and are connected to the right-side or left-end back electrode layer 12 respectively. Has been. As shown in FIG. 1, the first conductive member 50 and the second conductive member 52 are, for example, copper ribbons 50a and 52a covered with covering materials 50b and 52b of indium copper alloy. The first conductive member 50 and the second conductive member 52 are connected to the back electrode layer 12 by ultrasonic solder, a conductive adhesive, a conductive tape, or the like.
The first conductive member 50 and the second conductive member 52 may be tin-plated copper ribbons.
 本構成の集積化太陽電池1では、太陽電池セル20a~20dに、透明電極層16側から光が入射されると、この光が透明電極層16およびバッファ層14を通過し、光電変換層13で起電力が発生し、例えば、透明電極層16から裏面電極層12に向かう電流が発生する。集積化太陽電池1で発生した電力を、第1の導電部材50と第2の導電部材52から、太陽電池1の外部に取り出すことができる。なお、本実施形態において、第1の導電部材50が負極であり、第2の導電部材52が正極であるが、第1の導電部材50と第2の導電部材52とは極性が逆であってもよく、太陽電池セル20a~20dの層構成、接続構成等に応じて適宜変わるものである。 In the integrated solar cell 1 having this configuration, when light is incident on the solar cells 20a to 20d from the transparent electrode layer 16 side, the light passes through the transparent electrode layer 16 and the buffer layer 14, and the photoelectric conversion layer 13 An electromotive force is generated, and for example, a current from the transparent electrode layer 16 toward the back electrode layer 12 is generated. The electric power generated in the integrated solar cell 1 can be taken out of the solar cell 1 from the first conductive member 50 and the second conductive member 52. In the present embodiment, the first conductive member 50 is a negative electrode and the second conductive member 52 is a positive electrode. However, the first conductive member 50 and the second conductive member 52 have opposite polarities. It may be appropriately changed depending on the layer configuration, connection configuration, and the like of the solar cells 20a to 20d.
 以下に、第1の実施形態の製造方法を図4および図5に基づいて説明する。図4および図5は製造工程を示す一部の模式断面図であり、一部セル20a、20bおよびその間の開口溝部を含む集積化構造の要部を示している。 Hereinafter, the manufacturing method according to the first embodiment will be described with reference to FIGS. 4 and 5 are partial schematic cross-sectional views showing the manufacturing process, and show the main part of the integrated structure including the partial cells 20a and 20b and the opening groove between them.
 まず、所定の大きさの少なくとも表面が絶縁性である基板10を用意する。この基板10は、例えば、アルミニウム基材の表面に陽極酸化膜10aを備えたものである。 First, a substrate 10 having a predetermined size and having an insulating surface is prepared. The substrate 10 is, for example, provided with an anodized film 10a on the surface of an aluminum base material.
 図4のaに示すように、基板10の表面に第1の電極層として裏面電極層12を形成する。
 次に図4のbに示すように、裏面電極層12に基板10の表面が底部に露出する分離溝21を形成し、裏面電極層12を複数の領域に分離する。この分離溝21の形成はレーザスクライブにより行うことが好ましい。
 裏面電極層12が熱履歴を受ける前に分離溝21を形成するので、裏面電極層がMo等の熱履歴により硬化する材料からなる場合であっても、比較的低いパワーでスクライブを行うことができる。レーザを用いた場合には、比較的大きいパワーを用いる場合には基板を損傷させてしまうという問題があるが、本発明の製造方法では基板を損傷させるという問題は生じない。
As shown to a of FIG. 4, the back surface electrode layer 12 is formed in the surface of the board | substrate 10 as a 1st electrode layer.
Next, as shown in FIG. 4b, a separation groove 21 in which the surface of the substrate 10 is exposed at the bottom is formed in the back electrode layer 12, and the back electrode layer 12 is separated into a plurality of regions. The separation groove 21 is preferably formed by laser scribing.
Since the separation groove 21 is formed before the back electrode layer 12 receives the thermal history, the scribing can be performed with a relatively low power even when the back electrode layer is made of a material that is cured by a thermal history such as Mo. it can. When a laser is used, there is a problem that the substrate is damaged when a relatively large power is used. However, the manufacturing method of the present invention does not cause a problem that the substrate is damaged.
 次に図4のcに示すように、裏面電極層12および分離溝21の底部に露出した基板10の表面を覆うように、光電変換層13、バッファ層14および第2の電極層としての透明電極層16を順次積層して積層体Sを形成する。
 このように、光電変換層13から透明電極層16の積層工程中にスクライブ工程が不要であることから、製造工程を煩雑化させることなく、生産効率を向上させることができる。
Next, as shown in FIG. 4 c, the photoelectric conversion layer 13, the buffer layer 14, and the second electrode layer are transparent so as to cover the surface of the substrate 10 exposed at the bottoms of the back electrode layer 12 and the separation groove 21. The electrode body 16 is sequentially laminated to form a laminate S.
Thus, since a scribe process is unnecessary during the lamination process of the photoelectric conversion layer 13 to the transparent electrode layer 16, production efficiency can be improved without complicating the manufacturing process.
 次に、図5のdに示すように、分離溝21に平行かつ裏面電極層12の表面位置に至る深さの開口溝部22を形成する。このとき、開口溝部22の溝幅方向においてこの開口溝部22の両壁α、βから離間した位置に積層体Sの一部24を残すように開口溝部22を形成する。例えば、所望の開口溝部形成位置に、積層体S上方から所定の間隔で裏面電極層12の表面位置に至る深さの2本の凹部(溝)22a、22bをレーザもしくはメカニカルスクライブにより形成することにより、この2本の溝22a、22b間に積層体Sの一部24が残置された開口溝部22を形成することができる。なお、形成された開口溝部22の積層体の一部24を挟む第1及び第2の溝22a、22bには、裏面電極層12が露出しており、部分的に分離溝21に埋め込まれた光電変換層13が露出している。ここでは、開口溝部22の一方の壁面αを有するセル20aの裏面電極層12が第1の溝22aに露出しないように開口溝部形成位置を制御する。 Next, as shown in FIG. 5d, an opening groove 22 having a depth parallel to the separation groove 21 and reaching the surface position of the back electrode layer 12 is formed. At this time, the opening groove portion 22 is formed so as to leave a part 24 of the stacked body S at a position spaced from both walls α and β of the opening groove portion 22 in the groove width direction of the opening groove portion 22. For example, two recesses (grooves) 22a and 22b having a depth reaching the surface position of the back electrode layer 12 from above the stacked body S at a predetermined interval are formed by laser or mechanical scribing at a desired opening groove forming position. Thus, the opening groove portion 22 in which a part 24 of the stacked body S is left between the two grooves 22a and 22b can be formed. The back electrode layer 12 is exposed in the first and second grooves 22 a and 22 b sandwiching the part 24 of the laminated body of the formed opening groove 22, and is partially embedded in the separation groove 21. The photoelectric conversion layer 13 is exposed. Here, the opening groove portion formation position is controlled so that the back electrode layer 12 of the cell 20a having the one wall surface α of the opening groove portion 22 is not exposed to the first groove 22a.
 なお、本実施形態においては、開口溝部22に積層体の一部24として光電変換層13の部分が残されたものとなっているが、この一部24には、バッファ層14、透明電極層16が残っていてもよい。 In the present embodiment, the photoelectric conversion layer 13 is left as a part 24 of the laminated body in the opening groove 22, and the buffer layer 14 and the transparent electrode layer are included in the part 24. 16 may remain.
 次に、図5のeに示すように、例えば、インクジェット法を用いて、導電層40となる導電性インク(導電性ペースト)を、一方の太陽電池セル20aの透明電極層16から、第1の溝22a内にある他方の太陽電池セル20bの裏面電極層12に及ぶ範囲に打滴する。この場合、導電性インクは、第1の溝22a内に打滴されるため、ストッパ部24により堰きとめられて第2の溝22b側に広がることが抑制される。すなわち、導電性インクが他方の太陽電池セル20bの壁面βに接触するのを防止する。また、第1の溝22aには一方のセル20aの裏面電極層12は露出していないので、隣接するセル20a、20b間の短絡(ショート)は防止されている。
 導電性インクを打滴した後、導電性インクに応じた熱硬化処理、光硬化処理を施す。これにより導電接続部としての導電層40が形成される。
Next, as illustrated in e of FIG. 5, for example, by using an inkjet method, the conductive ink (conductive paste) that becomes the conductive layer 40 is first applied from the transparent electrode layer 16 of one solar battery cell 20 a to the first. The droplets are ejected in a range extending to the back electrode layer 12 of the other solar battery cell 20b in the groove 22a. In this case, since the conductive ink is ejected into the first groove 22a, the conductive ink is restrained by the stopper portion 24 and is prevented from spreading toward the second groove 22b. That is, the conductive ink is prevented from contacting the wall surface β of the other solar battery cell 20b. In addition, since the back electrode layer 12 of one cell 20a is not exposed in the first groove 22a, a short circuit between the adjacent cells 20a and 20b is prevented.
After the conductive ink is ejected, a heat curing process and a light curing process are performed according to the conductive ink. Thereby, the conductive layer 40 as a conductive connection portion is formed.
 次に、導電層40を覆うように被膜絶縁部42を形成する。例えば、インクジェット法を用いて、絶縁性インクを導電層40上に打滴し、絶縁性インクに応じた熱硬化処理、光硬化処理を施す。これにより被膜絶縁部42が形成される。
 被膜絶縁部42は導電層40を覆うように形成されていればよいが、本実施形態においては、ストッパ部24を超えて第2の溝22bの一部に広がって形成されている。さらには、被膜絶縁部42が開口溝部22全体に充填されていてもよい。
Next, the coating insulating part 42 is formed so as to cover the conductive layer 40. For example, using an ink jet method, an insulating ink is ejected onto the conductive layer 40, and a heat curing process or a light curing process according to the insulating ink is performed. Thereby, the film insulation part 42 is formed.
The film insulating part 42 only needs to be formed so as to cover the conductive layer 40, but in the present embodiment, the film insulating part 42 extends beyond the stopper part 24 and part of the second groove 22 b. Furthermore, the coating insulating part 42 may be filled in the entire opening groove part 22.
 なお、この被膜絶縁部42は必ずしも備えられていなくてもよい。しかしながら、導電性インクとして金属粒子を含むペーストを用いた場合には、導電層40を被膜絶縁部42で覆うことにより金属粒子のマイグレーションを防止することができ、マイグレーションによる効率の低下を防止することができる。特に金属粒子が銀(Ag)である場合、マイグレーションの発生が顕著であり、マイグレーションを防止することにより効率低下防止の効果は高い。そのため、絶縁材としては、マイグレーション防止効果を有するものを用いることが好ましい。
 また、被膜絶縁部42により、隣接するセル間の短絡をより確実に防止することが可能となる。
Note that the coating insulating portion 42 is not necessarily provided. However, when a paste containing metal particles is used as the conductive ink, the migration of the metal particles can be prevented by covering the conductive layer 40 with the coating insulating portion 42, thereby preventing the efficiency from being lowered due to the migration. Can do. In particular, when the metal particles are silver (Ag), the occurrence of migration is remarkable, and the effect of preventing the reduction in efficiency is high by preventing migration. Therefore, it is preferable to use an insulating material having an effect of preventing migration.
In addition, the coating insulating part 42 can more reliably prevent a short circuit between adjacent cells.
 以上のようにして、図1に示すように複数の太陽電池セル20a~20dが接続された集積化太陽電池1を製造することができる。 As described above, an integrated solar cell 1 in which a plurality of solar cells 20a to 20d are connected as shown in FIG. 1 can be manufactured.
 本実施形態の製造方法により製造された集積化太陽電池1は、開口溝部22によりセル間が接続されるので、3つの分離溝を備えた集積化太陽電池と比較して、単位面積当たりの太陽電池セルの面積を大きくして発電効率を向上させることができる。特に、開口溝部22に、ストッパ部24を設けて導電性インクの広がりを抑制しているので、開口溝部22の幅を短縮させることができ、単位面積当たりの発電効率をより向上させることができる。 In the integrated solar cell 1 manufactured by the manufacturing method of the present embodiment, the cells are connected by the opening groove 22, so that the solar cell per unit area is compared with the integrated solar cell having three separation grooves. The power generation efficiency can be improved by increasing the area of the battery cell. In particular, since the opening groove portion 22 is provided with the stopper portion 24 to suppress the spreading of the conductive ink, the width of the opening groove portion 22 can be shortened, and the power generation efficiency per unit area can be further improved. .
 また、本実施形態の製造方法においては、裏面電極のスクライブ工程後、太陽電池セルを構成する他の層を有する積層体Sを連続的に形成し、開口溝部22およびストッパ部24を形成して太陽電池セルに分離して、各太陽電池セルを電気的に接続することにより、比較的少ない工程で集積化構造を実現することができ、図16に示した3つのスクライブ工程を要する場合と比較して、生産効率を高くすることができる。また、光電変換層の形成前に裏面電極のスクライブを行うようにしたことから、裏面電極のスクライブに必要なパワーを抑制することができ、高出力パワーによる基板の損傷を防止することができるため、歩留まりを向上させることができる。 Further, in the manufacturing method of the present embodiment, after the scribing process of the back electrode, the stacked body S having other layers constituting the solar battery cell is continuously formed, and the opening groove portion 22 and the stopper portion 24 are formed. By separating the solar cells and electrically connecting the solar cells, an integrated structure can be realized in a relatively small number of steps, compared with the case where the three scribe steps shown in FIG. 16 are required. Thus, the production efficiency can be increased. In addition, since the back electrode is scribed before the photoelectric conversion layer is formed, power necessary for scribing the back electrode can be suppressed, and damage to the substrate due to high output power can be prevented. Yield can be improved.
「第2の実施形態」
 図6は、本発明の第2の実施形態の製造方法により製造される集積化太陽電池2を示す模式的断面図である。図7は、図6に示す集積化太陽電池2の要部の模式的平面図であり、図8は、本実施形態の集積化太陽電池の変形例2’の要部の模式的平面図である。
“Second Embodiment”
FIG. 6 is a schematic cross-sectional view showing an integrated solar cell 2 manufactured by the manufacturing method of the second embodiment of the present invention. FIG. 7 is a schematic plan view of the main part of the integrated solar cell 2 shown in FIG. 6, and FIG. 8 is a schematic plan view of the main part of Modification 2 ′ of the integrated solar cell of the present embodiment. is there.
 図6および図7に示すように、集積化太陽電池2は、表層が絶縁層10aである基板10と、基板10の絶縁層10a上に形成され、ライン状の開口溝部22を挟んで、基板10の長手方向Lに電気的に直列に接続された複数の太陽電池セル(光電変換素子)20a~20dと、一方の端部の太陽電池セル20aに接続される第1の導電部材50と、他方の端部の太陽電池セル20dに接続される第2の導電部材52とを有している。 As shown in FIG. 6 and FIG. 7, the integrated solar cell 2 includes a substrate 10 whose surface layer is an insulating layer 10 a and an insulating layer 10 a of the substrate 10, with a line-shaped opening groove 22 interposed therebetween. A plurality of solar cells (photoelectric conversion elements) 20a to 20d electrically connected in series in the longitudinal direction L of the tenth, a first conductive member 50 connected to the solar cell 20a at one end, And a second conductive member 52 connected to the solar battery cell 20d at the other end.
 太陽電池セル20a~20dは、開口溝部22により分離されており、第1の電極層である裏面電極層12、光電変換層13、バッファ層14および第2の電極層である透明電極層16を有する。太陽電池セル20a~20bは、開口溝部22を挟んで互いに隣接するセルの一方のセルの透明電極と他方のセルの裏面電極とを電気的に接続する接続部として導電層40が形成されることにより、隣接するセル間が直列接続されて集積化されている。例えば、太陽電池セル20aと太陽電池セル20bとでは、太陽電池セル20aの透明電極層16と太陽電池セル20bの裏面電極層12とが導電層40により電気的に接続されている。 The solar cells 20a to 20d are separated by the opening groove 22, and the back electrode layer 12, which is the first electrode layer, the photoelectric conversion layer 13, the buffer layer 14, and the transparent electrode layer 16 which is the second electrode layer. Have. In each of the solar cells 20a to 20b, the conductive layer 40 is formed as a connection portion for electrically connecting the transparent electrode of one cell of the cells adjacent to each other with the opening groove 22 interposed therebetween and the back electrode of the other cell. Thus, adjacent cells are connected in series and integrated. For example, in the solar battery cell 20a and the solar battery cell 20b, the transparent electrode layer 16 of the solar battery cell 20a and the back electrode layer 12 of the solar battery cell 20b are electrically connected by the conductive layer 40.
 本実施形態においては、開口溝部22の一方の壁面αを覆うように絶縁部44が形成されており、導電層40は絶縁部44により壁面αに接触することなくその壁面αを有するセル側の透明電極層16に接続するように形成されている。本実施形態では導電層40が壁面αに接触しないので、その壁面αを有する太陽電池セルの内部リーク電流の発生が防止される。 In the present embodiment, the insulating portion 44 is formed so as to cover one wall surface α of the opening groove portion 22, and the conductive layer 40 is not in contact with the wall surface α by the insulating portion 44, and is on the cell side having the wall surface α. It is formed so as to be connected to the transparent electrode layer 16. In the present embodiment, since the conductive layer 40 does not contact the wall surface α, generation of internal leakage current of the solar battery cell having the wall surface α is prevented.
 なお、本実施形態では、便宜的に4つの太陽電池セル20a~20dが直列接続されたものを例にして説明するが、太陽電池セルの接続数は、特に限定されるものではない。また、太陽電池セルにおいて、バッファ層14は、光電変換層13の構成によっては、必ずしも設ける必要はない。また、バッファ層14と透明電極層16との間に窓層(絶縁層)が備えられていてもよい。 In the present embodiment, for convenience, four solar cells 20a to 20d are described as an example connected in series, but the number of connected solar cells is not particularly limited. In the solar battery cell, the buffer layer 14 is not necessarily provided depending on the configuration of the photoelectric conversion layer 13. Further, a window layer (insulating layer) may be provided between the buffer layer 14 and the transparent electrode layer 16.
 図7に示すように、本実施形態の基板10は、その形状および大きさ等は適用される集積化太陽電池2の大きさ等に応じて適宜決定されるものであり、例えば、一辺の長さが1mを超える四角形状または矩形状である。
 太陽電池セル20a~20dおよび第1、第2の導電部材50、52は、基板10上において、長手方向L(配列方向)と直交する幅方向W(延在方向)に長く伸びた短冊状に形成されている。
As shown in FIG. 7, the substrate 10 of this embodiment has its shape, size, and the like determined as appropriate according to the size of the integrated solar cell 2 to be applied. For example, the length of one side A rectangular shape or a rectangular shape with a length exceeding 1 m.
The solar cells 20a to 20d and the first and second conductive members 50 and 52 are formed in a strip shape extending long in the width direction W (extending direction) perpendicular to the longitudinal direction L (arrangement direction) on the substrate 10. Is formed.
 裏面電極層12は、基板10の長手方向Lに、所定の間隔に複数設けられた分離溝21により、隣り合う裏面電極層12と互いに分離されている。なお、分離溝21は、基板10の表面(絶縁層10a)に達する溝であり、その幅は、例えば、50μmである。この分離溝21には光電変換層13が埋め込まれている。 The back electrode layer 12 is separated from adjacent back electrode layers 12 by a plurality of separation grooves 21 provided in the longitudinal direction L of the substrate 10 at predetermined intervals. The separation groove 21 is a groove reaching the surface of the substrate 10 (insulating layer 10a), and its width is, for example, 50 μm. The photoelectric conversion layer 13 is embedded in the separation groove 21.
 開口溝部22は、分離溝21に平行にかつ、ほぼ裏面電極層12の表面位置となる深さに形成されている。また、開口溝部22の溝幅方向において溝部の両壁α、β、すなわち、溝部を隔てて互いに隣接するセルの一方のセル20aの壁面αおよび他方のセル20bの壁面βから離間した位置に積層体の一部、ここでは光電変換層13の一部が後述するストッパ部24として残置されている。換言すると、開口溝部22はストッパ部24およびストッパ部24を挟む2つの凹部(溝)22aおよび22bからなるものである。開口溝部の幅は例えば、50μmから100μmである。 The opening groove portion 22 is formed in parallel to the separation groove 21 and at a depth that is substantially the surface position of the back electrode layer 12. Further, in the groove width direction of the opening groove portion 22, both the walls α and β of the groove portion are stacked, that is, at positions separated from the wall surface α of one cell 20a and the wall surface β of the other cell 20b of the cells adjacent to each other across the groove portion. A part of the body, here, part of the photoelectric conversion layer 13 is left as a stopper part 24 described later. In other words, the opening groove portion 22 includes the stopper portion 24 and two concave portions (grooves) 22a and 22b that sandwich the stopper portion 24. The width of the opening groove is, for example, 50 μm to 100 μm.
 なお、開口溝部22は、図6に示すように、分離溝21が開口溝部22の一方の壁面α近傍からストッパ部24の壁面α側に位置するように形成されていることが好ましい。分離溝21は、壁面αよりも一方のセル20a側(一方のセル20aの下)に位置していてもよいが、光電変換に寄与しないロス部分を抑制するためには壁面α近傍に位置していることが望まれる。 As shown in FIG. 6, the opening groove portion 22 is preferably formed so that the separation groove 21 is located on the wall surface α side of the stopper portion 24 from the vicinity of one wall surface α of the opening groove portion 22. The separation groove 21 may be located on the one cell 20a side (under one cell 20a) from the wall surface α, but in order to suppress a loss portion that does not contribute to photoelectric conversion, the separation groove 21 is located near the wall surface α. It is hoped that
 ストッパ部24は、裏面電極層12に導電層40が接続される他方のセル20bの裏面電極層12上もしくは分離溝21に埋め込まれている光電変換層上に位置していればよい。ただし、ストッパ部24の他方の壁面β側の凹部22bには、導電層40を接触させるため他方のセル20bの裏面電極層12が露出していることを要する。 The stopper part 24 should just be located on the back surface electrode layer 12 of the other cell 20b to which the conductive layer 40 is connected to the back surface electrode layer 12, or on the photoelectric conversion layer embedded in the separation groove 21. However, the back surface electrode layer 12 of the other cell 20b needs to be exposed in the recess 22b on the other wall surface β side of the stopper portion 24 in order to bring the conductive layer 40 into contact therewith.
 図7に示すように、絶縁部44および導電層40は、太陽電池セル20aの基板10の幅方向W全域に亘り形成されている。 As shown in FIG. 7, the insulating part 44 and the conductive layer 40 are formed over the entire width direction W of the substrate 10 of the solar battery cell 20a.
 なお、太陽電池セル20a~20dを電気的に直列に接続することができればよく、導電層40は、基板10の幅方向W全域に亘り形成されていなくてもよい。太陽電池セル20a~20dを電気的に直列に接続するには、幅方向Wにおいて少なくとも一部で導電層40を用いて接続されていればよいため、例えば、図8に示すように、太陽電池セル20aに対して、幅方向Wで、例えば、3箇所導電層40aが形成されたものであってもよい。
 なお、絶縁部44についても導電層40aが壁面αに接触しないように形成されていれば、幅方向Wに連続的に形成されていなくても構わない。
Note that it is only necessary that the solar cells 20 a to 20 d can be electrically connected in series, and the conductive layer 40 does not have to be formed over the entire width direction W of the substrate 10. In order to electrically connect the solar cells 20a to 20d in series, it is only necessary to connect at least part of the solar cells 20a to 20d using the conductive layer 40 in the width direction W. For example, as shown in FIG. For example, three conductive layers 40a may be formed in the width direction W with respect to the cell 20a.
Note that the insulating portion 44 may not be continuously formed in the width direction W as long as the conductive layer 40a is formed so as not to contact the wall surface α.
 直列接続された太陽電池セルの両端に配置されている第1の導電部材50および第2の導電部材52は、太陽電池セルで発生した電力を外部に取り出すためのものである。 The first conductive member 50 and the second conductive member 52 arranged at both ends of the solar cells connected in series are for taking out the electric power generated in the solar cells to the outside.
 第1の導電部材50および第2の導電部材52は、例えば、細長い帯状の部材であり、基板10の幅方向に略直線状に伸びて、それぞれ右端、あるいは左端の裏面電極層12上に接続されている。また、図6に示すように、第1の導電部材50および第2の導電部材52は、例えば、銅リボン50a、52aがインジウム銅合金の被覆材50b、52bで被覆されたものである。第1の導電部材50および第2の導電部材52は、超音波半田、導電性接着剤、あるいは導電性テープ等により裏面電極層12に接続されている。
 第1の導電部材50と第2の導電部材52とは、錫メッキ銅リボンでもよい。
The first conductive member 50 and the second conductive member 52 are, for example, strip-shaped members that extend substantially linearly in the width direction of the substrate 10 and are connected to the right-side or left-end back electrode layer 12 respectively. Has been. As shown in FIG. 6, the first conductive member 50 and the second conductive member 52 are, for example, copper ribbons 50a and 52a covered with covering materials 50b and 52b of indium copper alloy. The first conductive member 50 and the second conductive member 52 are connected to the back electrode layer 12 by ultrasonic solder, a conductive adhesive, a conductive tape, or the like.
The first conductive member 50 and the second conductive member 52 may be tin-plated copper ribbons.
 本構成の集積化太陽電池2では、太陽電池セル20a~20dに、透明電極層16側から光が入射されると、この光が透明電極層16およびバッファ層14を通過し、光電変換層13で起電力が発生し、例えば、透明電極層16から裏面電極層12に向かう電流が発生する。集積化太陽電池2で発生した電力を、第1の導電部材50と第2の導電部材52から、太陽電池2の外部に取り出すことができる。なお、本実施形態において、第1の導電部材50が負極であり、第2の導電部材52が正極であるが、第1の導電部材50と第2の導電部材52とは極性が逆であってもよく、太陽電池セル20a~20dの層構成、接続構成等に応じて適宜変わるものである。 In the integrated solar cell 2 of this configuration, when light is incident on the solar cells 20a to 20d from the transparent electrode layer 16 side, the light passes through the transparent electrode layer 16 and the buffer layer 14, and the photoelectric conversion layer 13 An electromotive force is generated, and for example, a current from the transparent electrode layer 16 toward the back electrode layer 12 is generated. Electric power generated in the integrated solar cell 2 can be taken out of the solar cell 2 from the first conductive member 50 and the second conductive member 52. In the present embodiment, the first conductive member 50 is a negative electrode and the second conductive member 52 is a positive electrode. However, the first conductive member 50 and the second conductive member 52 have opposite polarities. It may be appropriately changed depending on the layer configuration, connection configuration, and the like of the solar cells 20a to 20d.
 以下に、第2の実施形態の製造方法を図4および図9に基づいて説明する。図4および図9は製造工程を示す一部の模式断面図であり、一部セル20a、20b間の開口溝部となる部分を示している。
 第2の実施形態の製造方法は、図4に示すステップaからcについては第1の実施形態の製造方法と同一であり、上記第1の実施形態の製造方法についての説明を援用するものとし、ここでは、図9のd以降の製造工程について説明する。
Below, the manufacturing method of 2nd Embodiment is demonstrated based on FIG. 4 and FIG. 4 and 9 are partial schematic cross-sectional views showing the manufacturing process, and show a portion that becomes an opening groove between some cells 20a and 20b.
The manufacturing method of the second embodiment is the same as the manufacturing method of the first embodiment with respect to steps a to c shown in FIG. 4, and the description of the manufacturing method of the first embodiment is incorporated. Here, the manufacturing process after d in FIG. 9 will be described.
 図4のaからcのステップの後、図9のdに示すように、分離溝21に平行かつ裏面電極層12の表面位置に至る深さの開口溝部22を形成する。このとき、開口溝部22の溝幅方向においてこの開口溝部22の両壁α、βから離間した位置に積層体Sの一部24が残置されるように開口溝部22を形成する。例えば、所望の開口溝部形成位置に、積層体S上方から所定の間隔で2本の凹部(溝)22a、22bをレーザもしくはメカニカルスクライブにより形成することにより、この2本の溝22a、22b間に積層体Sの一部が残置された開口溝部22を形成することができる。本実施形態では、開口溝部22は、第2の溝22bが第1の溝22aよりも幅広となるように形成する。 After the steps a to c in FIG. 4, as shown in FIG. 9d, an opening groove 22 having a depth parallel to the separation groove 21 and reaching the surface position of the back electrode layer 12 is formed. At this time, the opening groove portion 22 is formed so that a part 24 of the stacked body S is left in a position spaced from both walls α and β of the opening groove portion 22 in the groove width direction of the opening groove portion 22. For example, two recesses (grooves) 22a and 22b are formed at a predetermined interval from above the stacked body S at a desired opening groove forming position by laser or mechanical scribe, so that the gap between the two grooves 22a and 22b is formed. The opening groove part 22 in which a part of the stacked body S is left can be formed. In the present embodiment, the opening groove 22 is formed so that the second groove 22b is wider than the first groove 22a.
 なお、形成された開口溝部22の積層体の一部24を挟む第1及び第2の溝22a、22bには、裏面電極層12が露出しており、部分的に分離溝21に埋め込まれた光電変換層13が露出している。なお、第1の溝22a側の底部には一方のセル20aの裏面電極が露出しないように開口溝部を形成している。なお、第1の溝22aの底部全域にわたって分離溝21に埋め込まれた光電変換層13が露出する構成であってもよい。また、本実施形態においては、積層体の一部24として光電変換層13の部分が残置されたものとなっているが、この一部24には、バッファ層14、透明電極層16が残っていてもよい。 The back electrode layer 12 is exposed in the first and second grooves 22 a and 22 b sandwiching the part 24 of the laminated body of the formed opening groove 22, and is partially embedded in the separation groove 21. The photoelectric conversion layer 13 is exposed. Note that an opening groove is formed at the bottom on the first groove 22a side so that the back electrode of one cell 20a is not exposed. The photoelectric conversion layer 13 embedded in the separation groove 21 may be exposed over the entire bottom portion of the first groove 22a. Further, in the present embodiment, the photoelectric conversion layer 13 is left as a part 24 of the laminate, but the buffer layer 14 and the transparent electrode layer 16 remain in this part 24. May be.
 次に、図9のeに示すように、例えば、インクジェット法を用いて、絶縁部44となる絶縁性インクを、開口溝部22の一方の壁面αが覆われるように、壁面α近傍および第1の溝22a内に打滴する。この場合、絶縁性インクは、ストッパ部24より第1の溝22a側に打滴されるため、ストッパ部24により堰きとめられて第2の溝22b側に広がることが抑制される。
 絶縁性インクを打滴した後、インク材料に応じた熱硬化処理、光硬化処理を施すことにより絶縁部44を形成する。
Next, as illustrated in e of FIG. 9, for example, by using an ink jet method, the insulating ink that becomes the insulating portion 44 is formed in the vicinity of the wall surface α and the first wall so that the one wall surface α of the opening groove portion 22 is covered. The droplets are ejected into the groove 22a. In this case, since the insulating ink is ejected from the stopper portion 24 toward the first groove 22a, it is prevented from being blocked by the stopper portion 24 and spreading toward the second groove 22b.
After depositing the insulating ink, the insulating portion 44 is formed by performing a thermosetting process and a photocuring process according to the ink material.
 次に、図9のfに示すように、一方のセル20aの透明電極層16から他方のセル20bの裏面電極層12に接触するように絶縁部44上に導電層40を形成する。例えば、インクジェット法を用いて、導電性インク(導電性ペースト)を一方のセル20aの透明電極層16から絶縁部44上およびストッパ部24を超えて第2の溝22b内に露出されている他方のセル20bの裏面電極12に及ぶ範囲に打滴する。この場合、第2の溝22bは第1の溝22aよりも広いため、導電性インクは太陽電池セル20bの壁面βまで広がることが抑制され、太陽電池セル20bの壁面βに接触することはない。これにより、太陽電池セル20bの内部リークが防止される。 Next, as shown in FIG. 9f, the conductive layer 40 is formed on the insulating portion 44 so as to be in contact with the back electrode layer 12 of the other cell 20b from the transparent electrode layer 16 of the one cell 20a. For example, the other exposed conductive ink (conductive paste) from the transparent electrode layer 16 of one cell 20a onto the insulating portion 44 and beyond the stopper portion 24 into the second groove 22b by using the inkjet method. The droplets are ejected over a range extending to the back electrode 12 of the cell 20b. In this case, since the 2nd groove | channel 22b is wider than the 1st groove | channel 22a, it is suppressed that conductive ink spreads to the wall surface (beta) of the photovoltaic cell 20b, and does not contact the wall surface (beta) of the photovoltaic cell 20b. . Thereby, the internal leak of the photovoltaic cell 20b is prevented.
 その後、導電性インクに応じた熱硬化処理、光硬化処理を施す。これにより、太陽電池セル20aの透明電極30と太陽電池セル20bの裏面電極12とを電気的に接続する導電層40が形成される。導電層40はストッパ部24を超えて太陽電池セル20bの裏面電極12に接続されている。 Then, heat curing treatment and photocuring treatment according to the conductive ink are performed. Thereby, the conductive layer 40 which electrically connects the transparent electrode 30 of the solar battery cell 20a and the back electrode 12 of the solar battery cell 20b is formed. The conductive layer 40 is connected to the back electrode 12 of the solar battery cell 20 b beyond the stopper portion 24.
 本実施形態では導電層40を絶縁部44上に形成するため、導電層40が壁面αに接触しないので、その壁面αを有する太陽電池セルの内部リーク電流の発生が防止される。 In this embodiment, since the conductive layer 40 is formed on the insulating portion 44, the conductive layer 40 is not in contact with the wall surface α, so that the internal leakage current of the solar battery cell having the wall surface α is prevented.
 以上のようにして、図6に示すように複数の太陽電池セル20a~20dが接続された集積化太陽電池2を製造することができる。 As described above, an integrated solar cell 2 in which a plurality of solar cells 20a to 20d are connected as shown in FIG. 6 can be manufactured.
 本実施形態の製造方法により製造された集積化太陽電池2は、開口溝部22によりセル間が接続されるので、3つの分離溝を備えた集積化太陽電池と比較して、単位面積当たりの太陽電池セルの面積を大きくして発電効率を向上させることができる。 In the integrated solar cell 2 manufactured by the manufacturing method according to the present embodiment, the cells are connected by the opening groove 22, so that the solar cell per unit area is compared with the integrated solar cell having three separation grooves. The power generation efficiency can be improved by increasing the area of the battery cell.
 また、本実施形態の製造方法においては、裏面電極のスクライブ工程後、太陽電池セルを構成する他の層を有する積層体Sを連続的に形成した後、開口溝部22およびストッパ部24を形成して、太陽電池セルに分離し、各太陽電池セルを接続することにより、集積化構造を比較的少ない工程で実現することができ、これにより、生産効率を高くすることができる。また、光電変換層の形成前に裏面電極のスクライブを行うようにしたことから、裏面電極のスクライブに必要なパワーを抑制することができ、高出力パワーによる基板の損傷を防止することができるため、歩留まりを向上させることができる。 Further, in the manufacturing method of the present embodiment, after the back electrode scribing step, the laminated body S having other layers constituting the solar battery cell is continuously formed, and then the opening groove portion 22 and the stopper portion 24 are formed. Thus, by separating the solar battery cells and connecting the solar battery cells, an integrated structure can be realized with a relatively small number of steps, thereby increasing the production efficiency. In addition, since the back electrode is scribed before the photoelectric conversion layer is formed, power necessary for scribing the back electrode can be suppressed, and damage to the substrate due to high output power can be prevented. Yield can be improved.
 さらに、図10のgに示すように、導電層40を覆う被膜絶縁部42を形成し、被膜絶縁部42を備えた集積化太陽電池としてもよい。被膜絶縁部42を備えた場合、第1の実施形態の場合と同様の効果を得ることができる。 Furthermore, as shown in g of FIG. 10, an integrated solar cell including the coating insulating portion 42 may be formed by forming a coating insulating portion 42 that covers the conductive layer 40. When the film insulation part 42 is provided, the same effect as the case of 1st Embodiment can be acquired.
「第3の実施形態」
 図11は、本発明の第3の実施形態の製造方法により製造される集積化太陽電池3を示す模式的断面図である。図12は、図11に示す集積化太陽電池3の要部の模式的平面図であり、図13は、本実施形態の集積化太陽電池の変形例3’の要部の模式的平面図である。
“Third Embodiment”
FIG. 11 is a schematic cross-sectional view showing an integrated solar cell 3 manufactured by the manufacturing method of the third embodiment of the present invention. FIG. 12 is a schematic plan view of the main part of the integrated solar cell 3 shown in FIG. 11, and FIG. 13 is a schematic plan view of the main part of Modification 3 ′ of the integrated solar cell of the present embodiment. is there.
 図11および図12に示すように、集積化太陽電池3は、表層が絶縁層10aである基板10と、基板10の絶縁層10a上に形成され、ライン状の開口溝部22を挟んで、基板10の長手方向Lに電気的に直列に接続された複数の太陽電池セル(光電変換素子)20a~20dと、一方の端部の太陽電池セル20aに接続される第1の導電部材50と、他方の端部の太陽電池セル20dに接続される第2の導電部材52とを有している。 As shown in FIG. 11 and FIG. 12, the integrated solar cell 3 includes a substrate 10 whose surface layer is an insulating layer 10a and an insulating layer 10a of the substrate 10, with a line-shaped opening groove 22 interposed therebetween. A plurality of solar cells (photoelectric conversion elements) 20a to 20d electrically connected in series in the longitudinal direction L of the tenth, a first conductive member 50 connected to the solar cell 20a at one end, And a second conductive member 52 connected to the solar battery cell 20d at the other end.
 太陽電池セル20a~20dは、開口溝部22により分離されており、第1の電極層である裏面電極層12、光電変換層13、バッファ層14および第2の電極層である透明電極層16を有する。太陽電池セル20a~20bは、開口溝部22を挟んで互いに隣接するセルの一方のセルの透明電極と他方のセルの裏面電極とを電気的に接続する接続部として導電層40が形成されることにより、隣接するセル間が直列接続されて集積化されている。例えば、太陽電池セル20aと太陽電池セル20bとでは、太陽電池セル20aの透明電極層16と太陽電池セル20bの裏面電極層12とが導電層40により電気的に接続されている。 The solar cells 20a to 20d are separated by the opening groove 22, and the back electrode layer 12, which is the first electrode layer, the photoelectric conversion layer 13, the buffer layer 14, and the transparent electrode layer 16 which is the second electrode layer. Have. In each of the solar cells 20a to 20b, the conductive layer 40 is formed as a connection portion for electrically connecting the transparent electrode of one cell of the cells adjacent to each other with the opening groove 22 interposed therebetween and the back electrode of the other cell. Thus, adjacent cells are connected in series and integrated. For example, in the solar battery cell 20a and the solar battery cell 20b, the transparent electrode layer 16 of the solar battery cell 20a and the back electrode layer 12 of the solar battery cell 20b are electrically connected by the conductive layer 40.
 本実施形態においては、開口溝部22の一方の壁面αを覆うように絶縁部44が形成されており、導電層40は絶縁部44により壁面αに接触することなくその壁面αを有するセル側の透明電極層16に接続するように形成されている。本実施形態では導電層40が壁面αに接触しないので、その壁面αを有する太陽電池セルの内部リーク電流の発生が防止される。 In the present embodiment, the insulating portion 44 is formed so as to cover one wall surface α of the opening groove portion 22, and the conductive layer 40 is not in contact with the wall surface α by the insulating portion 44, and is on the cell side having the wall surface α. It is formed so as to be connected to the transparent electrode layer 16. In the present embodiment, since the conductive layer 40 does not contact the wall surface α, generation of internal leakage current of the solar battery cell having the wall surface α is prevented.
 なお、本実施形態では、便宜的に4つの太陽電池セル20a~20dが直列接続されたものを例にして説明するが、太陽電池セルの接続数は、特に限定されるものではない。また、太陽電池セルにおいて、バッファ層14は、光電変換層13の構成によっては、必ずしも設ける必要はない。また、バッファ層14と透明電極層16との間に窓層(絶縁層)が備えられていてもよい。 In the present embodiment, for convenience, four solar cells 20a to 20d are described as an example connected in series, but the number of connected solar cells is not particularly limited. In the solar battery cell, the buffer layer 14 is not necessarily provided depending on the configuration of the photoelectric conversion layer 13. Further, a window layer (insulating layer) may be provided between the buffer layer 14 and the transparent electrode layer 16.
 図12に示すように、本実施形態の基板10は、その形状および大きさ等は適用される集積化太陽電池3の大きさ等に応じて適宜決定されるものであり、例えば、一辺の長さが1mを超える四角形状または矩形状である。
 太陽電池セル20a~20dおよび第1、第2の導電部材50、52は、基板10上において、長手方向L(配列方向)と直交する幅方向W(延在方向)に長く伸びた短冊状に形成されている。
As shown in FIG. 12, the shape, size, etc. of the substrate 10 of this embodiment are appropriately determined according to the size, etc. of the integrated solar cell 3 to be applied. For example, the length of one side A rectangular shape or a rectangular shape with a length exceeding 1 m.
The solar cells 20a to 20d and the first and second conductive members 50 and 52 are formed in a strip shape extending long in the width direction W (extending direction) perpendicular to the longitudinal direction L (arrangement direction) on the substrate 10. Is formed.
 裏面電極層12は、基板10の長手方向Lに、所定の間隔に複数設けられた分離溝21により、隣り合う裏面電極層12と互いに分離されている。なお、分離溝21は、基板10の表面(絶縁層10a)に達する溝であり、その幅は、例えば、50μmである。この分離溝21には光電変換層13が埋め込まれている。 The back electrode layer 12 is separated from adjacent back electrode layers 12 by a plurality of separation grooves 21 provided in the longitudinal direction L of the substrate 10 at predetermined intervals. The separation groove 21 is a groove reaching the surface of the substrate 10 (insulating layer 10a), and its width is, for example, 50 μm. The photoelectric conversion layer 13 is embedded in the separation groove 21.
 開口溝部22は、分離溝21に平行にかつ、ほぼ裏面電極層12の表面位置となる深さに形成されている。また、開口溝部22の溝幅方向において溝部の両壁α、β、すなわち、溝部を隔てて互いに隣接するセルの一方のセル20aの壁面αおよび他方のセル20bの壁面βから離間した位置に積層体の一部、ここでは光電変換層13の一部が後述するストッパ部24として残置されている。換言すると、開口溝部22はストッパ部24およびストッパ部24を挟む2つの凹部(溝部)22aおよび22bからなるものである。開口溝部の幅は例えば、50μmから100μmである。 The opening groove portion 22 is formed in parallel to the separation groove 21 and at a depth that is substantially the surface position of the back electrode layer 12. Further, in the groove width direction of the opening groove portion 22, both the walls α and β of the groove portion are stacked, that is, at positions separated from the wall surface α of one cell 20a and the wall surface β of the other cell 20b of the cells adjacent to each other across the groove portion. A part of the body, here, part of the photoelectric conversion layer 13 is left as a stopper part 24 described later. In other words, the opening groove portion 22 includes the stopper portion 24 and two concave portions (groove portions) 22a and 22b sandwiching the stopper portion 24. The width of the opening groove is, for example, 50 μm to 100 μm.
 なお、開口溝部22は、他方のセル20bの裏面電極が少なくとも一部第1の溝22aに露出する位置に形成されている。このとき、分離溝21が開口溝部22の一方の壁面α近傍に位置していることが好ましい。分離溝21は、壁面αよりも一方のセル20a側(一方のセル20aの下)に位置していてもよいが、光電変換に寄与しないロス部分を抑制するためには壁面α近傍に位置していることが望まれる。 The opening groove 22 is formed at a position where the back electrode of the other cell 20b is at least partially exposed to the first groove 22a. At this time, the separation groove 21 is preferably located in the vicinity of one wall surface α of the opening groove portion 22. The separation groove 21 may be located on the one cell 20a side (under one cell 20a) from the wall surface α, but in order to suppress a loss portion that does not contribute to photoelectric conversion, the separation groove 21 is located near the wall surface α. It is hoped that
 ストッパ部24は、裏面電極層12に導電層40が接続される他方のセル20bの裏面電極12上に位置しており、導電層40を接触させるように、この裏面電極層12は一方の凹部22a側の底部に露出していることを要する。 The stopper 24 is located on the back electrode 12 of the other cell 20b to which the conductive layer 40 is connected to the back electrode layer 12, and the back electrode layer 12 has one concave portion so as to contact the conductive layer 40. It must be exposed at the bottom on the 22a side.
 図12に示すように、絶縁部44および導電層40は、太陽電池セル20aの基板10の幅方向W全域に亘り形成されている。 As shown in FIG. 12, the insulating part 44 and the conductive layer 40 are formed over the entire width direction W of the substrate 10 of the solar battery cell 20a.
 なお、太陽電池セル20a~20dを電気的に直列に接続することができればよく、導電層40は、基板10の幅方向W全域に亘り形成されていなくてもよい。太陽電池セル20a~20dを電気的に直列に接続するには、幅方向Wにおいて少なくとも一部で導電層40を用いて接続されていればよいため、例えば、図13に示すように、太陽電池セル20aに対して、幅方向Wで、例えば、3箇所導電層40aが形成されたものであってもよい。
 なお、絶縁部44についても導電層40aが壁面αに接触しないように形成されていれば、幅方向Wに連続的に形成されていなくても構わない。
Note that it is only necessary that the solar cells 20 a to 20 d can be electrically connected in series, and the conductive layer 40 does not have to be formed over the entire width direction W of the substrate 10. In order to electrically connect the solar cells 20a to 20d in series, it is only necessary to connect the solar cells 20a to 20d by using the conductive layer 40 in at least a part in the width direction W. For example, as shown in FIG. For example, three conductive layers 40a may be formed in the width direction W with respect to the cell 20a.
Note that the insulating portion 44 may not be continuously formed in the width direction W as long as the conductive layer 40a is formed so as not to contact the wall surface α.
 直列接続された太陽電池セルの両端に配置されている第1の導電部材50および第2の導電部材52は、太陽電池セルで発生した電力を外部に取り出すためのものである。 The first conductive member 50 and the second conductive member 52 arranged at both ends of the solar cells connected in series are for taking out the electric power generated in the solar cells to the outside.
 第1の導電部材50および第2の導電部材52は、例えば、細長い帯状の部材であり、基板10の幅方向に略直線状に伸びて、それぞれ右端、あるいは左端の裏面電極層12上に接続されている。また、図11に示すように、第1の導電部材50および第2の導電部材52は、例えば、銅リボン50a、52aがインジウム銅合金の被覆材50b、52bで被覆されたものである。第1の導電部材50および第2の導電部材52は、超音波半田、導電性接着剤、あるいは導電性テープ等により裏面電極層12に接続されている。
 第1の導電部材50と第2の導電部材52とは、錫メッキ銅リボンでもよい。
The first conductive member 50 and the second conductive member 52 are, for example, strip-shaped members that extend substantially linearly in the width direction of the substrate 10 and are connected to the right-side or left-end back electrode layer 12 respectively. Has been. As shown in FIG. 11, the first conductive member 50 and the second conductive member 52 are, for example, copper ribbons 50a and 52a covered with coating materials 50b and 52b of indium copper alloy. The first conductive member 50 and the second conductive member 52 are connected to the back electrode layer 12 by ultrasonic solder, a conductive adhesive, a conductive tape, or the like.
The first conductive member 50 and the second conductive member 52 may be tin-plated copper ribbons.
 本構成の集積化太陽電池3では、太陽電池セル20a~20dに、透明電極層16側から光が入射されると、この光が透明電極層16およびバッファ層14を通過し、光電変換層13で起電力が発生し、例えば、透明電極層16から裏面電極層12に向かう電流が発生する。集積化太陽電池3で発生した電力を、第1の導電部材50と第2の導電部材52から、太陽電池3の外部に取り出すことができる。なお、本実施形態において、第1の導電部材50が負極であり、第2の導電部材52が正極であるが、第1の導電部材50と第2の導電部材52とは極性が逆であってもよく、太陽電池セル20a~20dの層構成、接続構成等に応じて適宜変わるものである。 In the integrated solar cell 3 of this configuration, when light is incident on the solar cells 20a to 20d from the transparent electrode layer 16 side, the light passes through the transparent electrode layer 16 and the buffer layer 14, and the photoelectric conversion layer 13 An electromotive force is generated, and for example, a current from the transparent electrode layer 16 toward the back electrode layer 12 is generated. The electric power generated in the integrated solar cell 3 can be taken out of the solar cell 3 from the first conductive member 50 and the second conductive member 52. In the present embodiment, the first conductive member 50 is a negative electrode and the second conductive member 52 is a positive electrode. However, the first conductive member 50 and the second conductive member 52 have opposite polarities. It may be appropriately changed depending on the layer configuration, connection configuration, and the like of the solar cells 20a to 20d.
 以下に、第3の実施形態の製造方法を図4および図14に基づいて説明する。図4および図14は製造工程を示す一部の模式断面図であり、一部セル20a、20b間の開口溝部となる部分を示している。
 第3の実施形態の製造方法は、図4に示すステップaからcについては第1の実施形態の製造方法と同一であり、上記第1の実施形態の製造方法についての説明を援用するものとし、ここでは、図14のd以降の製造工程について説明する。
Below, the manufacturing method of 3rd Embodiment is demonstrated based on FIG. 4 and FIG. FIG. 4 and FIG. 14 are partial schematic cross-sectional views showing the manufacturing process, and show a portion that becomes an opening groove between some cells 20a and 20b.
The manufacturing method of the third embodiment is the same as the manufacturing method of the first embodiment with respect to steps a to c shown in FIG. 4, and the description of the manufacturing method of the first embodiment is incorporated. Here, the manufacturing process after d in FIG. 14 will be described.
 図4のaからcのステップの後、図14のdに示すように、分離溝21に平行かつ裏面電極層12の表面位置に至る深さの開口溝部22を形成する。このとき、開口溝部22の溝幅方向においてこの開口溝部22の両壁α、βから離間した位置に積層体Sの一部24を残すように開口溝部22を形成する。例えば、所望の開口溝部形成位置に、積層体S上方から所定の間隔で裏面電極層12の表面位置に至る深さの2本の凹部(溝)22a、22bをレーザもしくはメカニカルスクライブにより形成することにより、この2本の溝22a、22b間に積層体Sの一部24が残置された開口溝部22を形成することができる。本実施形態では、開口溝部22は、第1の溝22aが第2の溝22bよりも幅広となるように形成する。 After the steps from a to c in FIG. 4, as shown in d in FIG. 14, an opening groove 22 having a depth parallel to the separation groove 21 and reaching the surface position of the back electrode layer 12 is formed. At this time, the opening groove portion 22 is formed so as to leave a part 24 of the stacked body S at a position spaced from both walls α and β of the opening groove portion 22 in the groove width direction of the opening groove portion 22. For example, two recesses (grooves) 22a and 22b having a depth reaching the surface position of the back electrode layer 12 from above the stacked body S at a predetermined interval are formed by laser or mechanical scribing at a desired opening groove forming position. Thus, the opening groove portion 22 in which a part 24 of the stacked body S is left between the two grooves 22a and 22b can be formed. In the present embodiment, the opening groove 22 is formed such that the first groove 22a is wider than the second groove 22b.
 なお、形成された開口溝部22の積層体の一部24を挟む第1及び第2の溝22a、22bには、裏面電極層12が露出しており、部分的に分離溝21に埋め込まれた光電変換層13が露出している。本実施形態においては、積層体の一部24として光電変換層13の部分が残置されたものとなっているが、この一部24には、バッファ層14、透明電極層16が残っていてもよい。 The back electrode layer 12 is exposed in the first and second grooves 22 a and 22 b sandwiching the part 24 of the laminated body of the formed opening groove 22, and is partially embedded in the separation groove 21. The photoelectric conversion layer 13 is exposed. In the present embodiment, the photoelectric conversion layer 13 is left as a part 24 of the laminate, but the buffer layer 14 and the transparent electrode layer 16 remain in this part 24. Good.
 次に、図14のeに示すように、例えば、インクジェット法を用いて、絶縁部44となる絶縁性インクを、開口溝部22の一方の壁面αが覆われるように、壁面α近傍に打滴し、インク材料に応じた熱硬化処理、光硬化処理を施すことにより絶縁部44を形成する。 Next, as shown in FIG. 14e, for example, using an ink jet method, the insulating ink that becomes the insulating portion 44 is deposited in the vicinity of the wall surface α so that one wall surface α of the opening groove portion 22 is covered. Then, the insulating portion 44 is formed by performing a thermosetting process and a photocuring process according to the ink material.
 次に、図14のfに示すように、一方のセル20aの透明電極層16から他方のセル20bの裏面電極層12に接触するように絶縁部44上に導電層40を形成する。例えば、インクジェット法を用いて、導電性インク(導電性ペースト)を、絶縁部44上を介して一方のセル20aの透明電極層16から第1の溝22a内に露出している、他方のセル20bの裏面電極層12に及ぶ範囲に打滴する。この場合、導電性ペーストは、第1の溝22a内に打滴されるため、ストッパ部24により堰きとめられて第2の溝22b側に広がることが抑制される。すなわち、導電性インクが他方の太陽電池セル20bの壁面βに接触することを防止することができる。これにより太陽電池セル20bの内部リークが防止される。 Next, as shown in FIG. 14 f, the conductive layer 40 is formed on the insulating portion 44 so as to be in contact with the back electrode layer 12 of the other cell 20 b from the transparent electrode layer 16 of the one cell 20 a. For example, the other cell in which the conductive ink (conductive paste) is exposed in the first groove 22a from the transparent electrode layer 16 of the one cell 20a through the insulating portion 44 by using the inkjet method. The droplets are ejected in a range extending to the back electrode layer 12 of 20b. In this case, since the conductive paste is ejected into the first groove 22a, the conductive paste is blocked by the stopper portion 24 and is prevented from spreading toward the second groove 22b. That is, it is possible to prevent the conductive ink from contacting the wall surface β of the other solar battery cell 20b. Thereby, the internal leak of the photovoltaic cell 20b is prevented.
 その後、導電性インクに応じた熱硬化処理、光硬化処理を施す。これにより、太陽電池セル20aの透明電極30と太陽電池セル20bの裏面電極12とを電気的に接続する導電層40が形成される。本実施形態においては、導電層40はストッパ部24により規制されている。 Then, heat curing treatment and photocuring treatment according to the conductive ink are performed. Thereby, the conductive layer 40 which electrically connects the transparent electrode 30 of the solar battery cell 20a and the back electrode 12 of the solar battery cell 20b is formed. In the present embodiment, the conductive layer 40 is regulated by the stopper portion 24.
 本実施形態では導電層40を絶縁部44上に形成するため、導電層40が壁面αに接触しないので、その壁面αを有する太陽電池セルの内部リーク電流の発生が防止される。 In this embodiment, since the conductive layer 40 is formed on the insulating portion 44, the conductive layer 40 is not in contact with the wall surface α, so that the internal leakage current of the solar battery cell having the wall surface α is prevented.
 以上のようにして、図11に示すように複数の太陽電池セル20a~20dが接続された集積化太陽電池3を製造することができる。 As described above, an integrated solar cell 3 to which a plurality of solar cells 20a to 20d are connected as shown in FIG. 11 can be manufactured.
 本実施形態の製造方法により製造された集積化太陽電池3は、開口溝部22によりセル間が接続されるので、3つの分離溝を備えた集積化太陽電池と比較して、単位面積当たりの太陽電池セルの面積を大きくして発電効率を向上させることができる。特に、開口溝部22に、ストッパ部24を設けて導電性インクの広がりを抑制しているので、開口溝部22の幅を短縮させることができ、単位面積当たりの発電効率をより向上させることができる。 In the integrated solar cell 3 manufactured by the manufacturing method of the present embodiment, the cells are connected by the opening groove 22, so that the solar cell per unit area is compared with the integrated solar cell having three separation grooves. The power generation efficiency can be improved by increasing the area of the battery cell. In particular, since the opening groove portion 22 is provided with the stopper portion 24 to suppress the spreading of the conductive ink, the width of the opening groove portion 22 can be shortened, and the power generation efficiency per unit area can be further improved. .
 また、本実施形態の製造方法においては、裏面電極のスクライブ工程後、太陽電池セルを構成する他の層を有する積層体Sを連続的に形成した後、開口溝部22およびストッパ部24を形成して、太陽電池セルに分離し、各太陽電池セルを接続することにより、集積化構造を比較的少ない工程で実現することができ、これにより、生産効率を高くすることができる。また、光電変換層の形成前に裏面電極のスクライブを行うようにしたことから、裏面電極のスクライブに必要なパワーを抑制することができ、高出力パワーによる基板の損傷を防止することができるため、歩留まりを向上させることができる。 Further, in the manufacturing method of the present embodiment, after the back electrode scribing step, the laminated body S having other layers constituting the solar battery cell is continuously formed, and then the opening groove portion 22 and the stopper portion 24 are formed. Thus, by separating the solar battery cells and connecting the solar battery cells, an integrated structure can be realized with a relatively small number of steps, thereby increasing the production efficiency. In addition, since the back electrode is scribed before the photoelectric conversion layer is formed, power necessary for scribing the back electrode can be suppressed, and damage to the substrate due to high output power can be prevented. Yield can be improved.
 さらに、図15のgに示すように、導電層40を覆う被膜絶縁部42を形成し、被膜絶縁部42を備えた集積化太陽電池としてもよい。被膜絶縁部42を備えた場合、第1の実施形態の場合と同様の効果を得ることができる。 Further, as shown in FIG. 15g, an integrated solar cell provided with a film insulating part 42 by forming a film insulating part 42 covering the conductive layer 40 may be used. When the film insulation part 42 is provided, the same effect as the case of 1st Embodiment can be acquired.
 上記各実施形態において、レーザスクライビングに用いられるレーザビームは、例えば、パルス発振されたものである。このとき、除去部端が盛り上がらないために、レーザビームのパルス幅は100ns以下が好ましく、より好ましくは40ns以下である。レーザスクライビングに用いられるレーザビームは、波長が1.06μmでパルス幅が40ns以下のレーザダイオード励起によるNd:YAGレーザまたはNd:YVOレーザを用いることができる。
 更に、レーザスクライビングに用いられるレーザビームには、レーザ結晶にNd:YAG、Nd:YVOを用いたレーザダイオード励起によるレーザの高調波(第2高調波(波長が約0.53μm)、第3高調波(波長が約0.355μm))を用いることもできる。
In each of the above embodiments, the laser beam used for laser scribing is, for example, pulse-oscillated. At this time, the pulse width of the laser beam is preferably 100 ns or less, and more preferably 40 ns or less, so that the end of the removal portion does not rise. As a laser beam used for laser scribing, an Nd: YAG laser or an Nd: YVO 4 laser excited by a laser diode having a wavelength of 1.06 μm and a pulse width of 40 ns or less can be used.
Further, the laser beam used for laser scribing includes laser harmonics (second harmonic (wavelength is about 0.53 μm), third harmonics) generated by laser diode excitation using Nd: YAG, Nd: YVO 4 for the laser crystal. Harmonics (wavelength is about 0.355 μm) can also be used.
 なお、メカニカルスクライビングには、メカニカルスクライビングに用いられる公知の装置を利用することができる。 For mechanical scribing, a known device used for mechanical scribing can be used.
 レーザスクライブにより10~30μm幅のスクライブ溝、メカニカルスクライブにより30~100μm幅のスクライブ溝を好適に形成することができる。 It is possible to suitably form a scribe groove having a width of 10 to 30 μm by laser scribe and a scribe groove having a width of 30 to 100 μm by mechanical scribe.
 なお、基板10としてフレキシブル基板を用いた場合、ロールトゥーロール方式および枚葉式を組み合わせて形成することができる。 In addition, when a flexible substrate is used as the substrate 10, it can be formed by combining a roll-to-roll method and a single wafer method.
 例えば、基板10上に裏面電極層12を形成し、分離溝21を形成し、光電変換層13を形成する工程をロールトゥーロール方式で行い、その後、所定の大きさに切断し、バッファ層14および透明電極層16の形成を枚葉式で実施する。
 また、例えば、基板10上に裏面電極層12を形成し、分離溝21を形成し、光電変換層13およびバッファ層14を形成する工程をロールトゥーロール方式で行い、その後、所定の大きさに切断し透明電極層16の形成を枚葉式で実施する。
 さらには、例えば、基板10上に裏面電極層12を形成し、分離溝21を形成し、光電変換層13、バッファ層14および透明電極層16をロールトゥーロール方式で形成した後、所定の大きさに切断し、上述の集積化工程を枚葉式で実施する。
For example, the back electrode layer 12 is formed on the substrate 10, the separation groove 21 is formed, and the photoelectric conversion layer 13 is formed by a roll-to-roll method, then cut into a predetermined size, and the buffer layer 14. And formation of the transparent electrode layer 16 is implemented by a single wafer type.
In addition, for example, the process of forming the back electrode layer 12 on the substrate 10, forming the separation groove 21, and forming the photoelectric conversion layer 13 and the buffer layer 14 is performed by a roll-to-roll method. The transparent electrode layer 16 is cut and formed in a single wafer mode.
Further, for example, the back electrode layer 12 is formed on the substrate 10, the separation groove 21 is formed, the photoelectric conversion layer 13, the buffer layer 14, and the transparent electrode layer 16 are formed by a roll-to-roll method, and then have a predetermined size. Then, the above integration process is performed in a single wafer mode.
 なお、基板10としてフレキシブル基板を使用しない場合、すべての工程は枚葉式で行う。 In addition, when not using a flexible substrate as the board | substrate 10, all processes are performed by a single wafer type.
 以下に上述の各実施形態に好適な基板および各層の具体例について説明する。 Hereinafter, specific examples of the substrate and each layer suitable for each of the above-described embodiments will be described.
(基板)
 基板10としては、ガラス、ポリイミド等の絶縁基板、表面に絶縁層が形成されたステンレス等の金属基板など、少なくとも表面が絶縁層であれば特に制限されない。
 可撓性基板としては、Alを主成分とするAl基材の少なくとも一方の面側にAlを主成分とする陽極酸化膜(絶縁膜)が形成された陽極酸化基板、Feを主成分とするFe材の少なくとも一方の面側にAlを主成分とするAl材が複合された複合基材の少なくとも一方の面側にAlを主成分とする陽極酸化膜が形成された陽極酸化基板、Feを主成分とするFe材の少なくとも一方の面側にAlを主成分とするAl膜が成膜された基材の少なくとも一方の面側にAlを主成分とする陽極酸化膜が形成された陽極酸化基板などが好ましい。さらに、陽極酸化膜上に、ソーダライムガラス(SLG)層が設けられたものであってもよい。ソーダライムガラス層を備えることにより、光電変換層にNaを拡散させることができる。光電変換層がNaを含むことにより、光電変換効率をさらに向上させることができる。
(substrate)
The substrate 10 is not particularly limited as long as the surface is an insulating layer, such as an insulating substrate such as glass or polyimide, or a metal substrate such as stainless steel having an insulating layer formed on the surface.
As the flexible substrate, an anodized substrate in which an anodized film (insulating film) mainly composed of Al 2 O 3 is formed on at least one surface side of an Al base material mainly composed of Al, Fe is mainly used. An anodic oxide film mainly composed of Al 2 O 3 was formed on at least one surface side of a composite base material in which an Al material composed mainly of Al was composited on at least one surface side of the Fe material as a component. Anodized substrate, Al 2 O 3 as a main component on at least one surface side of a base material on which an Al film whose main component is Al is formed on at least one surface side of an Fe material containing Fe as a main component An anodized substrate on which an anodized film is formed is preferable. Further, a soda lime glass (SLG) layer may be provided on the anodized film. By providing the soda lime glass layer, Na can be diffused in the photoelectric conversion layer. When the photoelectric conversion layer contains Na, the photoelectric conversion efficiency can be further improved.
(第1の電極層)
 第1の電極層(裏面電極)12は、例えば、Mo、Cr、またはW、およびこれらを組み合わせたものにより構成されることが好ましく、特にMoで構成されることが好ましい。この裏面電極層12は、単層構造でもよいし、2層構造等の積層構造でもよい。
 また、裏面電極層12の形成方法は、特に制限されるものではなく、例えば、電子ビーム蒸着法、スパッタ法等の気相成膜法により形成することができる。
(First electrode layer)
The first electrode layer (back electrode) 12 is preferably made of, for example, Mo, Cr, or W, and a combination thereof, and particularly preferably made of Mo. The back electrode layer 12 may have a single-layer structure or a laminated structure such as a two-layer structure.
Moreover, the formation method in particular of the back surface electrode layer 12 is not restrict | limited, For example, it can form by vapor phase film-forming methods, such as an electron beam vapor deposition method and a sputtering method.
 裏面電極層12は、一般的に厚さが800nm程度であるが、裏面電極層12は、厚さが200nm~1000nm(1μm)であることが好ましい。このように裏面電極層12の膜厚を一般的なものよりも薄くすることにより、裏面電極層12の材料費を削減でき、さらには裏面電極層12の形成速度も速くすることができる。 The back electrode layer 12 generally has a thickness of about 800 nm, but the back electrode layer 12 preferably has a thickness of 200 nm to 1000 nm (1 μm). Thus, by making the film thickness of the back electrode layer 12 thinner than a general film, the material cost of the back electrode layer 12 can be reduced, and further, the formation speed of the back electrode layer 12 can be increased.
(光電変換層)
 光電変換層13の主成分としては特に制限されず、高い光電変換効率が得られることから、少なくとも1種のカルコパイライト構造の化合物半導体であることが好ましく、Ib族元素とIIIb族元素とVIb族元素とからなる少なくとも1種の化合物半導体であることがより好ましい。
(Photoelectric conversion layer)
The main component of the photoelectric conversion layer 13 is not particularly limited and is preferably a compound semiconductor having at least one chalcopyrite structure because high photoelectric conversion efficiency can be obtained. The Ib group element, the IIIb group element, and the VIb group More preferably, it is at least one compound semiconductor composed of an element.
 光電変換層13の主成分としては、CuおよびAgからなる群より選択された少なくとも1種のIb族元素と、Al,GaおよびInからなる群より選択された少なくとも1種のIIIb族元素と、S,Se,およびTeからなる群から選択された少なくとも1種のVIb族元素とからなる少なくとも1種の化合物半導体であることが好ましい。 As the main component of the photoelectric conversion layer 13, at least one type Ib group element selected from the group consisting of Cu and Ag, and at least one type IIIb group element selected from the group consisting of Al, Ga, and In, It is preferably at least one compound semiconductor comprising at least one VIb group element selected from the group consisting of S, Se, and Te.
 上記化合物半導体としては、CuAlS2,CuGaS2,CuInS2,CuAlSe2,CuGaSe2,AgAlS2,AgGaS2,AgInS2,AgAlSe2,AgGaSe2,AgInSe2,AgAlTe2,AgGaTe2,AgInTe2,Cu(In,Al)Se2,Cu(In,Ga)(S,Se)2,Cu1-zIn1-xGaxSe2-yy(式中、0≦x≦1,0≦y≦2,0≦z≦1)(CI(G)S),Ag(In,Ga)Se2,およびAg(In,Ga)(S,Se)2等が挙げられる。 Examples of the compound semiconductor, CuAlS 2, CuGaS 2, CuInS 2, CuAlSe 2, CuGaSe 2, AgAlS 2, AgGaS 2, AgInS 2, AgAlSe 2, AgGaSe 2, AgInSe 2, AgAlTe 2, AgGaTe 2, AgInTe 2, Cu ( in, Al) Se 2, Cu (in, Ga) (S, Se) 2, Cu in 1-z in 1-x Ga x Se 2-y S y ( wherein, 0 ≦ x ≦ 1,0 ≦ y ≦ 2, 0 ≦ z ≦ 1) (CI (G) S), Ag (In, Ga) Se 2 , Ag (In, Ga) (S, Se) 2 and the like.
 また、CuZnSnS,CuZnSnSe,CuZnSn(S,Se),であってもよい。
 I-III-VI族半導体以外の半導体としては、GaAs等のIIIb族元素およびVb族元素からなる半導体(III-V族半導体)、およびCdTe,(Cd,Zn)Te等のIIb族元素およびVIb族元素からなる半導体(II-VI族半導体)等が挙げられる。
Further, Cu 2 ZnSnS 4, Cu 2 ZnSnSe 4, Cu 2 ZnSn (S, Se) 4, may be.
Examples of semiconductors other than the I-III-VI group semiconductors include semiconductors composed of IIIb group elements and Vb group elements such as GaAs (III-V semiconductors), IIb group elements such as CdTe, (Cd, Zn) Te, and VIb. And semiconductors composed of group elements (II-VI group semiconductors).
 光電変換層13の成膜方法も特に制限はなく、真空蒸着法、スパッタ法、MOCVD法等により成膜することができる。CIGS系半導体層の成膜方法としては、多源同時蒸着法、セレン化法、スパッタ法、ハイブリッドスパッタ法、カノケミカルプロセス法等が知られている。その他のCIGS成膜法としては、スクリーン印刷法、近接昇華法、MOCVD法、及びスプレー法(ウェット成膜法)などが挙げられる。いかなる成膜方法を用いてもよい。 The film formation method of the photoelectric conversion layer 13 is not particularly limited, and can be formed by a vacuum deposition method, a sputtering method, an MOCVD method, or the like. As film formation methods for CIGS semiconductor layers, multi-source simultaneous vapor deposition, selenization, sputtering, hybrid sputtering, canochemical process, and the like are known. Examples of other CIGS film formation methods include screen printing, proximity sublimation, MOCVD, and spray (wet film formation). Any film forming method may be used.
(バッファ層)
 バッファ層14は、透明電極層16の形成時の光電変換層13を保護すること、透明電極層16に入射した光を光電変換層13まで透過させるために形成されたものである。
バッファ層14は、例えば、CdS、ZnS、ZnO、ZnMgO、又はZnS(O、OH)およびこれらの組み合わせたものにより構成される。
 バッファ層14は、その厚さが、10nm~2μmであることが好ましく、15~200nmがより好ましい。このバッファ層26は、例えば、CBD(ケミカルバスデポジション)法、溶液成長法等により形成される。
(Buffer layer)
The buffer layer 14 is formed to protect the photoelectric conversion layer 13 when the transparent electrode layer 16 is formed and to transmit light incident on the transparent electrode layer 16 to the photoelectric conversion layer 13.
The buffer layer 14 is made of, for example, CdS, ZnS, ZnO, ZnMgO, ZnS (O, OH), or a combination thereof.
The buffer layer 14 preferably has a thickness of 10 nm to 2 μm, more preferably 15 to 200 nm. The buffer layer 26 is formed by, for example, a CBD (chemical bath deposition) method, a solution growth method, or the like.
(絶縁層(窓層))
 既述の通り、上記実施形態においては、バッファ層14と透明導電層16との間に絶縁層(所謂、窓層)を備えていてもよい。この絶縁層は、光励起された電子、ホールの再結合を阻害し、発電効率向上に寄与するものである。絶縁層の組成も特に制限ないが、i-ZnO、i-AlZnO(AZO)等が好ましい。膜厚は特に制限されず、10nm~2μmが好ましく、15~200nmがより好ましい。成膜方法は、特に制限されないが、スパッタ法やMOCVD法が適している。一方で、バッファ層14を液相法により製造する場合、製造プロセスを簡易にするためには液相法を用いることも好ましい。
(Insulating layer (window layer))
As described above, in the above embodiment, an insulating layer (so-called window layer) may be provided between the buffer layer 14 and the transparent conductive layer 16. This insulating layer inhibits recombination of photoexcited electrons and holes, and contributes to improvement in power generation efficiency. The composition of the insulating layer is not particularly limited, but i-ZnO, i-AlZnO (AZO), and the like are preferable. The film thickness is not particularly limited, and is preferably 10 nm to 2 μm, more preferably 15 to 200 nm. The film forming method is not particularly limited, but a sputtering method or an MOCVD method is suitable. On the other hand, when the buffer layer 14 is manufactured by the liquid phase method, it is also preferable to use the liquid phase method in order to simplify the manufacturing process.
(第2の電極層)
 第2の電極層(透明電極層)16は、例えば、Al、B、Ga、In等がドープされたZnO、ITO(インジウム錫酸化物)またはSnOおよびこれらを組み合わせたものにより構成することができる。透明電極層16は、単層構造でもよいし、2層構造等の積層構造でもよい。また、透明電極層16の厚さは、特に制限されるものではなく、50nm~2μm、さらには0.3~1μmが好ましい。
 また、透明電極層16の形成方法は、特に制限されるものではなく、電子ビーム蒸着法、スパッタ法等の気相成膜法により形成することができる。
 なお、透明電極層16上に、MgF等の反射防止膜が形成されていても良い。
(Second electrode layer)
The second electrode layer (transparent electrode layer) 16 may be composed of, for example, ZnO doped with Al, B, Ga, In or the like, ITO (indium tin oxide) or SnO 2 and a combination thereof. it can. The transparent electrode layer 16 may have a single layer structure or a laminated structure such as a two-layer structure. The thickness of the transparent electrode layer 16 is not particularly limited, and is preferably 50 nm to 2 μm, more preferably 0.3 to 1 μm.
The method for forming the transparent electrode layer 16 is not particularly limited, and can be formed by a vapor deposition method such as an electron beam evaporation method or a sputtering method.
An antireflection film such as MgF 2 may be formed on the transparent electrode layer 16.
(絶縁性インク)
 絶縁部42および44を形成するための絶縁性インクとしては、例えば、絶縁インクIJPR(太陽インキ)、インクジェット対応ポリイミドインク リクソンコート(JNC)、インクジェット対応UV硬化インク リクソンコート(JNC)、絶縁インクDPEI(ダイセル化学工業)を用いることができる。
(Insulating ink)
Examples of the insulating ink for forming the insulating portions 42 and 44 include insulating ink IJPR (solar ink), inkjet compatible polyimide ink Rixon coat (JNC), inkjet compatible UV curable ink Rixon coat (JNC), and insulating ink DPEI. (Daicel Chemical Industries) can be used.
(導電性インク)
 導電層40を形成するための導電性インクとしては、例えば、銀ペースト(NPS-J(品番、ハリマ化成社製)、透明導電性インク(ClearOhm(登録商標)(JNC)、銀ナノインク(ダイセル化学工業)、Cabot Conductive Ink CCI-300を用いることができる。
(Conductive ink)
Examples of the conductive ink for forming the conductive layer 40 include silver paste (NPS-J (product number, manufactured by Harima Chemicals)), transparent conductive ink (ClearOhm (registered trademark) (JNC)), silver nano ink (Daicel Chemical) Industrial), Cabot Conductive Ink CCI-300 can be used.
 以上は、主として太陽電池セルの光電変換層として、化合物半導体を用いた場合に適する材料および層構成について説明した。
 本発明は、太陽電池セルの光電変換層として、上述のような化合物半導体系以外を用いてもよい。例えば、光電変換層として、アモルファスシリコン(a-Si)系薄膜型光電変換層、タンデム構造系薄膜型光電変換層(a-Si/a-SiGeタンデム構造光電変換層)、直列接続構造(SCAF)系薄膜型光電変換層(a-Si直列接続構造光電変換層)、薄膜シリコン系薄膜型光電変換層、色素増感系薄膜型光電変換層、または有機系薄膜型光電変換層を用いてもよい。そして、光電変換層の種類に応じた層構成の太陽電池セルを構成すればよい。
The above has mainly described materials and layer configurations suitable for the case where a compound semiconductor is used as a photoelectric conversion layer of a solar battery cell.
The present invention may use other than the compound semiconductor system as described above as the photoelectric conversion layer of the solar battery cell. For example, as a photoelectric conversion layer, an amorphous silicon (a-Si) thin film type photoelectric conversion layer, a tandem structure type thin film type photoelectric conversion layer (a-Si / a-SiGe tandem structure photoelectric conversion layer), a series connection structure (SCAF) A thin film photoelectric conversion layer (a-Si serial connection structure photoelectric conversion layer), a thin film silicon thin film photoelectric conversion layer, a dye-sensitized thin film photoelectric conversion layer, or an organic thin film photoelectric conversion layer may be used. . And what is necessary is just to comprise the photovoltaic cell of the layer structure according to the kind of photoelectric converting layer.
 上記実施形態においては、基板上に設けられる第1の電極層を裏面電極として不透明な材料から構成し、光電変換層の上に形成される第2の電極が透明な構造のサブサブストレート型と呼ばれる構造の太陽電池について説明したが、第1の電極層を透明電極とし、第2の電極層を不透明な電極で構成するスーパーストレート型の太陽電池に対しても本発明は適用可能である。
 但し、本発明の製造方法は、第1の電極層が金属等からなり、熱履歴により硬化するようなものである構成のサブストレート型の構造の太陽電池の製造の際に、高い効果を奏するものである。
In the above embodiment, the first electrode layer provided on the substrate is made of an opaque material as the back electrode, and the second electrode formed on the photoelectric conversion layer is called a substrate type having a transparent structure. Although the solar cell having the structure has been described, the present invention can be applied to a super straight type solar cell in which the first electrode layer is a transparent electrode and the second electrode layer is an opaque electrode.
However, the manufacturing method of the present invention is highly effective in manufacturing a solar cell having a substrate type structure in which the first electrode layer is made of metal or the like and is cured by a thermal history. Is.

Claims (7)

  1.  基板上に複数の光電変換素子が配列され直列接続されてなる集積化太陽電池の製造方法であって、
     少なくとも表面が絶縁性である基板上に第1の電極層を形成し、
     該第1の電極層に前記基板の表面が底部に露出した分離溝を形成して該第1の電極層を複数の領域に分離し、
     前記第1の電極層および前記分離溝に露出された前記基板の表面を覆うように、光電変換層および第2の電極層を順次積層して積層体を形成し、
     前記分離溝に平行かつ前記第1の電極層表面位置に至る深さの開口溝部であって、該開口溝部の溝幅方向において該溝部の両壁から離間した位置に前記積層体の一部が残置された開口溝部を形成し、
     前記開口溝部を隔てて互いに隣接する光電変換素子のうち一方の素子の第2の電極層と、他方の素子の第1の電極層とを電気的に接続する接続部を、前記開口溝部の前記積層体の前記一部より前記一方の素子側に導電性インクを滴下することにより形成することを特徴とする集積化太陽電池の製造方法。
    A method of manufacturing an integrated solar cell in which a plurality of photoelectric conversion elements are arranged and connected in series on a substrate,
    Forming a first electrode layer on a substrate having at least an insulating surface;
    Forming a separation groove in which the surface of the substrate is exposed at the bottom of the first electrode layer to separate the first electrode layer into a plurality of regions;
    A photoelectric conversion layer and a second electrode layer are sequentially laminated so as to cover the surface of the substrate exposed to the first electrode layer and the separation groove, thereby forming a laminate.
    A part of the stacked body is an opening groove part having a depth parallel to the separation groove and reaching the surface position of the first electrode layer, and spaced from both walls of the groove part in the groove width direction of the opening groove part. Forming the remaining open groove,
    A connecting portion that electrically connects the second electrode layer of one of the photoelectric conversion elements adjacent to each other across the opening groove and the first electrode layer of the other element is connected to the opening groove. A method for producing an integrated solar cell, comprising forming a conductive ink by dropping from one part of the laminate to the one element side.
  2.  前記接続部を覆う被覆絶縁部を形成することを特徴とする請求項1項記載の集積化太陽電池の製造方法。 The method for manufacturing an integrated solar cell according to claim 1, wherein a covering insulating portion that covers the connecting portion is formed.
  3.  前記接続部の形成工程において、前記積層体の前記一部を、前記導電性インクの前記他方の素子側への拡がりを抑制するストッパ部として用いることを特徴とする請求項1または2記載の集積化太陽電池の製造方法。 3. The integration according to claim 1, wherein, in the forming step of the connection portion, the part of the stacked body is used as a stopper portion that suppresses spreading of the conductive ink to the other element side. A manufacturing method of a solar cell.
  4.  前記接続部を形成する前に、前記開口溝部の前記一方の素子側の壁面の少なくとも一部に、該壁面の高さ方向に亘る絶縁部を形成し、
     前記接続部を前記絶縁部上に形成することを特徴とする請求項1から3いずれか1項記載の集積化太陽電池の製造方法。
    Before forming the connecting portion, an insulating portion extending in the height direction of the wall surface is formed on at least a part of the wall surface on the one element side of the opening groove portion,
    The method for manufacturing an integrated solar cell according to claim 1, wherein the connecting portion is formed on the insulating portion.
  5.  前記分離溝をレーザスクライブにより形成することを特徴とする請求項1から4いずれか1項記載の集積化太陽電池の製造方法。 The method for manufacturing an integrated solar cell according to any one of claims 1 to 4, wherein the separation groove is formed by laser scribing.
  6.  前記開口溝部を、該開口溝部となる領域に、前記積層体の一部が残るように所定の間隔で2本の溝をメカニカルスクライブにより形成することにより形成することを特徴とする請求項1から5いずれか1項記載の集積化太陽電池の製造方法。 The opening groove is formed by forming two grooves by mechanical scribing at a predetermined interval so that a part of the stacked body remains in a region to be the opening groove. 5. The method for producing an integrated solar cell according to any one of 5 above.
  7.  前記接続部を、インクジェット法により前記導電性インクを滴下することにより形成することを特徴とする請求項1から6いずれか1項記載の集積化太陽電池の製造方法。 The method for manufacturing an integrated solar cell according to any one of claims 1 to 6, wherein the connection portion is formed by dropping the conductive ink by an inkjet method.
PCT/JP2013/000190 2012-01-18 2013-01-17 Method for manufacturing integrated solar cell WO2013108623A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012007665A JP2013149697A (en) 2012-01-18 2012-01-18 Integrated soar cell manufacturing method
JP2012-007665 2012-01-18

Publications (1)

Publication Number Publication Date
WO2013108623A1 true WO2013108623A1 (en) 2013-07-25

Family

ID=48799054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/000190 WO2013108623A1 (en) 2012-01-18 2013-01-17 Method for manufacturing integrated solar cell

Country Status (3)

Country Link
JP (1) JP2013149697A (en)
TW (1) TW201340364A (en)
WO (1) WO2013108623A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336904A1 (en) * 2016-12-16 2018-06-20 Armor Method for manufacturing a photovoltaic module and photovoltaic module thus obtained

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112014006695T5 (en) 2014-05-22 2017-02-16 Toshiba Mitsubishi-Electric Industrial Systems Corporation Buffer layer film forming method and buffer layer
EP3599648A1 (en) 2018-07-25 2020-01-29 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Photovoltaic device and method of manufacturing the same
TWI798951B (en) * 2021-11-22 2023-04-11 凌巨科技股份有限公司 Semi transmissive solar cell

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234082A (en) * 1985-01-30 1986-10-18 エナージー・コンバーション・デバイセス・インコーポレーテッド Super lightweight flexible semiconductor device array and manufacture thereof
JPH04116986A (en) * 1990-09-07 1992-04-17 Canon Inc Integrated solar cell and manufacture of the same
JPH0555612A (en) * 1991-08-28 1993-03-05 Sanyo Electric Co Ltd Manufacture of integrated amorphous solar battery
JP2000315809A (en) * 1999-03-04 2000-11-14 Matsushita Electric Ind Co Ltd Fabrication of integrated thin film solar cell and patterning system
JP2001007359A (en) * 1999-06-25 2001-01-12 Kanegafuchi Chem Ind Co Ltd Integrated optoelectronic transducer device and manufacture thereof
JP2007227577A (en) * 2006-02-23 2007-09-06 Sanyo Electric Co Ltd Photovoltaic device and its manufacturing method
JP2010502002A (en) * 2006-08-22 2010-01-21 ティモシー マイケル ウォルシュ Thin film solar module
JP2013026339A (en) * 2011-07-19 2013-02-04 Fujifilm Corp Thin-film solar cell and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234082A (en) * 1985-01-30 1986-10-18 エナージー・コンバーション・デバイセス・インコーポレーテッド Super lightweight flexible semiconductor device array and manufacture thereof
JPH04116986A (en) * 1990-09-07 1992-04-17 Canon Inc Integrated solar cell and manufacture of the same
JPH0555612A (en) * 1991-08-28 1993-03-05 Sanyo Electric Co Ltd Manufacture of integrated amorphous solar battery
JP2000315809A (en) * 1999-03-04 2000-11-14 Matsushita Electric Ind Co Ltd Fabrication of integrated thin film solar cell and patterning system
JP2001007359A (en) * 1999-06-25 2001-01-12 Kanegafuchi Chem Ind Co Ltd Integrated optoelectronic transducer device and manufacture thereof
JP2007227577A (en) * 2006-02-23 2007-09-06 Sanyo Electric Co Ltd Photovoltaic device and its manufacturing method
JP2010502002A (en) * 2006-08-22 2010-01-21 ティモシー マイケル ウォルシュ Thin film solar module
JP2013026339A (en) * 2011-07-19 2013-02-04 Fujifilm Corp Thin-film solar cell and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3336904A1 (en) * 2016-12-16 2018-06-20 Armor Method for manufacturing a photovoltaic module and photovoltaic module thus obtained
FR3060854A1 (en) * 2016-12-16 2018-06-22 Armor METHOD FOR MANUFACTURING A PHOTOVOLTAIC MODULE AND PHOTOVOLTAIC MODULE THUS OBTAINED
US10651330B2 (en) 2016-12-16 2020-05-12 Armor Method for manufacturing a photovoltaic module and photovoltaic module thus obtained

Also Published As

Publication number Publication date
JP2013149697A (en) 2013-08-01
TW201340364A (en) 2013-10-01

Similar Documents

Publication Publication Date Title
EP2416377B1 (en) Solar cell and manufacturing method thereof
WO2007086522A1 (en) Solar cell and manufacturing method thereof
KR101172132B1 (en) Solar cell and method of fabricating the same
KR101072089B1 (en) Solar cell and method of fabircating the same
EP2485272A2 (en) Solar power generation apparatus and manufacturing method thereof
JP2013507766A (en) Photovoltaic power generation apparatus and manufacturing method thereof
KR20110048730A (en) Solar cell and method of fabircating the same
WO2013108623A1 (en) Method for manufacturing integrated solar cell
JP2012532442A (en) Solar cell and manufacturing method thereof
US10134932B2 (en) Solar cell and method of fabricating the same
WO2011039951A1 (en) Solar cell module
KR101283072B1 (en) Solar cell apparatus and method of fabricating the same
WO2013108621A1 (en) Method for manufacturing integrated solar cell
WO2011039933A1 (en) Photoelectric converter
KR101550927B1 (en) Solar cell and method of fabircating the same
JP6185840B2 (en) Photovoltaic power generation apparatus and manufacturing method thereof
KR101055019B1 (en) Photovoltaic device and its manufacturing method
JP2013149699A (en) Integrated soar cell manufacturing method
KR20130136739A (en) Solar cell and method of fabricating the same
JP2014504038A (en) Solar cell and manufacturing method thereof
KR101349429B1 (en) Photovoltaic apparatus
KR101338549B1 (en) Solar cell and method of fabricating the same
KR101063721B1 (en) Solar cell and manufacturing method thereof
KR101034146B1 (en) Solar cell and method of fabricating the same
KR20110001792A (en) Solar cell and mehtod of fabricating the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13739001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13739001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE