WO2013108537A1 - Rigid core for tire formation - Google Patents
Rigid core for tire formation Download PDFInfo
- Publication number
- WO2013108537A1 WO2013108537A1 PCT/JP2012/082953 JP2012082953W WO2013108537A1 WO 2013108537 A1 WO2013108537 A1 WO 2013108537A1 JP 2012082953 W JP2012082953 W JP 2012082953W WO 2013108537 A1 WO2013108537 A1 WO 2013108537A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tire
- core
- exhaust groove
- tread
- molding surface
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29D—PRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
- B29D30/00—Producing pneumatic or solid tyres or parts thereof
- B29D30/06—Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
- B29D30/08—Building tyres
- B29D30/10—Building tyres on round cores, i.e. the shape of the core is approximately identical with the shape of the completed tyre
- B29D30/12—Cores
Definitions
- the present invention relates to a rigid core for forming a tire in which exhaust grooves are formed on a mating surface of core segments.
- the rigid core includes a core body having an outer shape that matches a shape of a tire lumen surface of a vulcanized tire. And a raw tire is formed by affixing a tire structural member on this core main body one by one. This green tire is put together with a rigid core into a vulcanization mold, and is thereby sandwiched between an inner core body and an outer vulcanization mold so that the green tire is vulcanized. Molded.
- the core body a in order to disassemble and remove the core body a from the tire after vulcanization, is divided into a plurality of core segments c divided in the circumferential direction. It is configured.
- the core main body a is formed in an annular shape by setting both end surfaces in the circumferential direction of each core segment c as mating surfaces cs and adjoining the mating surfaces cs and cs adjacent in the circumferential direction.
- an exhaust groove d be provided in at least one of the mating surfaces cs of the core segment c as shown in FIG. 7B.
- the exhaust groove d it is desired to reduce the cross-sectional volume as much as possible to suppress the inflow of rubber.
- the exhaust performance is also lowered, and the tire has a sufficiently satisfactory effect such as causing deformation due to air accumulation. I can't get it.
- each core segment is further divided into side segment pieces on both sides in the tire axial direction and intermediate segment pieces therebetween, and an exhaust passage for exhausting air is formed between the divided surfaces. It has been proposed.
- the side segment piece and the intermediate segment piece are integrally connected by a bolt.
- the strength of the connecting portion becomes insufficient and the durability of the core segment is lowered.
- the inflow of rubber into the exhaust passage is still not taken into consideration.
- An object of the present invention is to provide a rigid core for forming a tire.
- the invention of claim 1 of the present application includes an annular core body having a core-side tire molding surface for forming a green tire on the outer surface, and the raw tire is placed in a vulcanization mold.
- the vulcanization mold includes a tread mold that can move in and out of the tire radial direction, and a side mold that can move in and out of the tire axial direction,
- the tread mold has a mold side tread molding surface portion that molds the outer surface of the tire tread by being pressed against the raw tire,
- the side mold has a mold side side molding surface part for molding the side outer surface of the tire by being pressed against the raw tire,
- the core side tire molding surface is a normal line extending in a direction perpendicular to the core side tire molding surface through a boundary position between the mold side tread molding surface portion and the mold side side molding surface portion.
- the core body is composed of a plurality of core segments divided in the circumferential direction, Each of the core segments forms an annular core body by attaching the circumferentially adjacent mating surfaces to each other with the circumferential ends of the core segment as mating surfaces.
- the exhaust groove has an opening end that opens at the core-side tire molding surface, and exhausts air between the core-side tire molding surface and the raw tire from the opening end to the inside of the core body
- the exhaust groove includes a tread exhaust groove whose opening end opens at the core-side tread molding surface portion and / or a side exhaust groove which opens at the core-side side molding surface portion
- the tread exhaust groove has an inclined groove portion extending at an angle ⁇ 1 with respect to the tire radial direction line from the opening end
- the side exhaust groove has an inclined groove portion that extends at an angle ⁇ 2 with respect to the tire axial direction line from the opening end.
- the angle ⁇ 1 of the tread exhaust groove is in the range of 30 to 80 °
- the angle ⁇ 2 of the side exhaust groove is in the range of 30 to 80 °.
- the exhaust groove includes the tread exhaust groove and a side exhaust groove
- the tread exhaust groove includes a tread exhaust groove whose opening end is disposed at a tire equator position
- the exhaust groove includes a side exhaust groove in which the opening end is disposed at the maximum width position in the tire axial direction of the core side side molding surface portion.
- the exhaust groove has a groove cross-sectional area perpendicular to the length direction of 0.03 mm 2 or less.
- an exhaust groove is recessed in at least one of the mating surfaces of the core segments adjacent in the circumferential direction.
- the exhaust groove includes a tread exhaust groove having an open end in the core side tread molding surface portion and / or a side exhaust groove having an open end in the core side side molding surface portion.
- the tread exhaust groove has an inclined groove portion extending from the opening end thereof at an angle ⁇ 1 with respect to the tire radial direction line.
- the side exhaust groove has an inclined groove portion extending from the opening end thereof at an angle ⁇ 2 with respect to the tire axial direction line.
- the vulcanization mold includes a tread mold that can move in and out of the tire radial direction and a side mold that can move in and out of the tire axial direction.
- the rubber of the raw tire is strongly pressed inward in the tire radial direction by the tread mold at a portion where the rubber comes into contact with the tread mold. Therefore, if the opening end side of the tread exhaust groove extends along the tire radial direction, the direction of the strong pressing force by the tread mold matches the direction of the exhaust groove. For this reason, the rubber easily flows into the exhaust groove.
- the rubber of the raw tire is strongly pressed inward in the tire axial direction by the side mold at the portion that comes into contact with the side mold. Therefore, if the opening end side of the side exhaust groove extends along the tire axial direction, the direction of the strong pressing force by the side mold coincides with the direction of the exhaust groove. For this reason, the rubber easily flows into the exhaust groove.
- the opening end side portions of the tread exhaust groove and the side exhaust groove are inclined at the angles ⁇ 1 and ⁇ 2, respectively. That is, the portion on the opening end side extends in a direction different from the strong pressing force. Therefore, it is possible to suppress only the inflow of rubber without hindering the inflow of air. This occurs because the rubber has a much higher viscosity than air.
- the opening end side portion of the exhaust groove different from the direction in which a strong pressing force is applied, the difference in the direction becomes resistance, and the inflow of high viscosity rubber can be suppressed. Moreover, it does not become resistance to air with low viscosity, and the inflow is not hindered. Therefore, the exhaust performance can be exhibited effectively.
- the amount of rubber adhering to the wall surface of the exhaust groove increases with an increase in the number of vulcanizations, and exhaust failure due to the exhaust groove being blocked can be suppressed.
- frequent cleaning of the intermediate segment pieces is not necessary, continuous production for a long time is possible.
- no thick spew is generated on the inner surface of the product tire, the tire quality can be maintained high.
- FIG. 1 It is sectional drawing which shows the use condition of one Example of the rigid core of this invention.
- (A), (B) is the perspective view and side view of a core main body.
- (A), (B) is the perspective view and front view which show the mating surface of a core segment with an exhaust groove.
- (A) to (D) are cross-sectional views illustrating the cross-sectional shape of the exhaust groove.
- (A), (B) is the perspective view which shows the other Example of a core segment, and a front view.
- (A), (B) is the perspective view and front view which show other Example of a core segment.
- (A) is a side view which shows the conventional core main body
- (B) is a perspective view which shows exhaust grooves other than this invention.
- the rigid core 1 of the present embodiment includes an annular core body 2 having a core-side tire molding surface 2S on the outer surface.
- a known tire component such as a carcass ply, a belt ply, sidewall rubber, and tread rubber is sequentially attached onto the core-side tire molding surface 2S, thereby forming a green tire T having substantially the same shape as the finished tire. Is done.
- the raw tire T is put into the vulcanizing mold 20 together with the rigid core 1.
- the green tire T is heated and pressurized between the core body 2 that is the inner mold and the vulcanization mold 20 that is the outer mold, and vulcanized.
- the vulcanizing mold 20 has a conventional well-known structure, and includes a tread mold 21 that can move in and out in the tire radial direction and side molds 22 and 22 that can move in and out in the tire axial direction.
- the tread mold 21 has a mold side tread molding surface portion 21S.
- the tread outer surface Ta of the tire T is molded by pressing the mold side tread molding surface portion 21S toward the inner side in the tire radial direction.
- the side mold 22 has a mold side molding surface portion 22S.
- the side outer surface Tb of the tire T is molded by pressing the mold side molding surface portion 22S inward in the tire axial direction.
- the rigid core 1 includes the annular core body 2 and a cylindrical core 3 inserted into the center hole 2H.
- a conventional well-known structure can be adopted. Therefore, only the core body 2 will be described below.
- the core body 2 includes the core-side tire molding surface 2S on the outer surface thereof, which is substantially the same shape as the inner surface shape of the finished tire.
- the core side tire molding surface 2S is virtually divided into a core side tread molding surface portion 2Sa and a core side side molding surface portion 2Sb by a normal line N.
- the normal line N is defined as a straight line extending in a direction orthogonal to the core-side tire molding surface 2S through a boundary position P between the mold-side tread molding surface portion 21S and the mold-side side molding surface portion 22S.
- the part between the said normal lines N and N among the core side tire molding surfaces 2S is defined as the core side tread molding surface part 2Sa.
- the portion outside the normal line N is defined as the core side side molding surface portion 2Sb.
- the core body 2 has a hollow shape with a lumen 4 extending continuously in the circumferential direction, for example.
- a heating means such as an electric heater for heating the raw tire T inside is disposed in the lumen 4.
- the core body 2 is formed of a plurality of core segments 5 divided in the circumferential direction, as shown in FIGS. 2 (A) and 2 (B).
- Each core segment 5 has both end surfaces in the circumferential direction as mating surfaces 6, and the mating surfaces 6, 6 adjacent in the circumferential direction are attached to each other, whereby the annular core body 2 is formed.
- the core segment 5 is composed of first and second core segments 5A and 5B that are alternately arranged in the circumferential direction.
- the mating surface 6 of the first core segment 5A is inclined in the direction in which the circumferential width decreases toward the inside in the radial direction.
- the mating surface 6 of the second core segment 5B is inclined in a direction in which the circumferential width increases inward in the radial direction. Thereby, it can move to the inner side in the radial direction sequentially from the second core segment 5B, and can be sequentially taken out from the bead hole of the finished tire T after vulcanization molding.
- the core 3 prevents the core segments 5 from moving inward in the radial direction and connects the core segments 5 together.
- At least one exhaust groove 11 is recessed on at least one of the mating surfaces 6 adjacent in the circumferential direction, as shown in FIGS.
- the exhaust groove 11 has an opening end 12 that opens at the core-side tire molding surface 2S.
- the air between the core side tire molding surface 2S and the raw tire T is exhausted from the opening end 12 through the exhaust groove 11 to the inside of the core body 2.
- the other end of the exhaust groove 11 communicates with the lumen portion 4 in this example, and the lumen portion 4 conducts to the outside air.
- the exhaust groove 11 includes a tread exhaust groove 11A whose opening end 12 opens at the core side tread molding surface portion 2Sa and / or a side exhaust groove 11B which opens at the core side side molding surface portion 2Sb.
- the exhaust groove 11 is formed of a tread exhaust groove 11A and a side exhaust groove 11B. More preferably, the tread exhaust groove 11A includes an equatorial tread exhaust groove 11Ac, and the side exhaust groove 11B includes a maximum width position side exhaust groove 11Bq.
- the tread exhaust groove 11Ac at the equator position means the tread exhaust groove 11A in which the opening end 12 is disposed at the position of the tire equator Co.
- the side exhaust groove 11Bq at the maximum width position means the side exhaust groove 11B in which the opening end 12 is disposed at the maximum width position Q in the tire axial direction of the core side side molding surface portion 2Sb.
- the exhaust groove 11 is composed of one tread exhaust groove 11A and two side exhaust grooves 11B, and this one tread exhaust groove 11A is formed as a tread exhaust groove 11Ac at the equator position. Moreover, the case where the two side exhaust grooves 11B are formed as the side exhaust grooves 11Bq at the maximum width position is shown.
- the tread exhaust groove 11A has an inclined groove portion 13 extending from the opening end 12 at an angle ⁇ 1 with respect to the tire radial direction line.
- the side exhaust groove 11B has an inclined groove portion 14 extending from the opening end 12 with an angle ⁇ 2 with respect to the tire axial direction line.
- the tread exhaust groove 11A includes the inclined groove portion 13 on the opening end 12 side, and the inclined groove portion 13 is inclined at an angle ⁇ 1 with respect to the tire radial direction which is a direction of a strong pressing force by the tread mold 21. Therefore, the angle ⁇ 1 becomes a resistance, and the inflow of rubber having a high viscosity can be suppressed.
- the side exhaust groove 11B includes an inclined groove portion 14 on the opening end 12 side, and the inclined groove portion 14 is inclined at an angle ⁇ 2 with respect to the tire axial direction that is a direction of a strong pressing force by the side mold 22. Therefore, the angle ⁇ 2 becomes a resistance, and the inflow of rubber having a high viscosity can be suppressed.
- the angles ⁇ 1 and ⁇ 2 are each preferably in the range of 30 to 80 °. If the angles [theta] 1 and [theta] 2 are less than 30 [deg.], The resistance becomes small and the rubber inflow suppressing effect cannot be sufficiently achieved. Conversely, when it exceeds 80 °, the intersection of the core-side tire molding surface 2S and the exhaust groove 11 has a sword tip shape. As a result, the crossing portion is insufficient in strength, which may lead to a decrease in durability. From such a viewpoint, the lower limit values of the angles ⁇ 1 and ⁇ 2 are more preferably 45 ° or more, and the upper limit value is more preferably 70 ° or less.
- the entire length can be formed only by the inclined groove portion 14 as in the side exhaust groove 11B of this example. Further, like the tread exhaust groove 11 ⁇ / b> A of this example, it can also be formed in a bent groove shape including an inclined groove portion 13 and a joint groove portion 15 connected to the inclined groove portion 13.
- the joint groove portion 15 is formed, it is not particularly restricted, but it is preferably formed at the shortest distance toward the inside of the core body 2 (in this example, the lumen portion 4).
- Examples of the groove cross-sectional shape perpendicular to the length direction of the exhaust groove 11 include, for example, a cross-sectional triangle shape (FIG. 4A), a cross-sectional square shape (FIGS. 4B and 4C), and a semicircular arc shape (FIG. 4 (D)) can be employed.
- the cross-sectional triangle shape is preferable from the viewpoint of workability.
- a triangular cross section an isosceles triangular shape is preferable to an equilateral triangle with less rubber inflow when the cross sectional area is the same.
- the base m1 is the opening side and is shorter than the other oblique sides m2 in order to stably suppress the inflow of rubber.
- a rectangular shape is more suitable than a square when the cross-sectional area is the same. This is preferable.
- the groove cross-sectional area is preferably 0.03 mm 2 .
- the lower limit of the groove cross-sectional area is preferably 0.02 mm 2 or more.
- the exhaust groove 11 may be provided on at least one of the mating surfaces 6 adjacent in the circumferential direction. In addition, when forming the exhaust groove 11 in both the mating surfaces 6, it is preferable to make the position of the opening end 12 mutually different.
- FIGS. 5 and 6 show another embodiment of the core segment 5.
- the end surfaces 18 on both sides in the circumferential direction of the core segment 5 include an edge surface portion 18A along the outer periphery, and a recessed surface portion 18B surrounded by the edge surface portion 18A and recessed from the edge surface portion 18A in a step shape. It is formed as a stepped surface.
- the mating surface 6 is constituted by the edging surface portion 18A.
- the exhaust groove 11 is formed in the edge surface portion 18A.
- the other end of the exhaust groove 11 is electrically connected to the recessed surface portion 18B, and the recessed surface portion 18B is electrically connected to the outside air.
- the core segment 5 has the entire end face 18 on both sides in the circumferential direction as the mating face 6.
- the other end of the exhaust groove 11 communicates with the radially inner end 18e of the end face 18, and the radially inner end 18e is electrically connected to the outside air.
- a core body for forming a pneumatic tire having a tire size of 195 / 65R15 was prototyped based on the specifications shown in Table 1. And when a pneumatic tire is formed using this core body, the rubber flows into the exhaust groove, the seized state in which the rubber that has flowed in adheres to the groove wall surface, and the exhaust performance decreases due to seizure. The state of occurrence of air pockets was evaluated.
- a green tire is formed on the core body at room temperature (20 ° C.).
- the inside of the vulcanization mold is heated to a high temperature of 150 ° C. Except as described in Table 1, the specifications are substantially the same.
- the test method was as follows, and each evaluation was performed in the tread exhaust groove at the equator position.
- Rubber flowing in The amount of spew (rubber amount) generated on the tire side by the inflow of rubber into the exhaust groove is compared. Specifically, vulcanization was carried out 1000 times continuously, and the amounts of spews at the first, 300th, 600th, and 1000th times were quantified and evaluated. A numerical value shows that there are few inflows and it is so favorable that it is large.
- Burn-in condition The amount of seizure of the rubber that has flowed into the exhaust groove and sticks to the groove wall surface is compared. Specifically, vulcanization was performed continuously 1000 times, and the amount of seizure in the first, 300th, 600th, and 1000th times was quantified and evaluated. The larger the numerical value, the smaller the amount of image sticking and the better.
- Air accumulation occurrence state The state of occurrence of air pockets due to the rubber sticking to the groove wall surface due to seizure and lowering the exhaust performance is compared. Specifically, vulcanization was continuously performed 1000 times, and the deformation state of the tire caused by air accumulation was numerically evaluated in each of the first, 300th, 600th, and 1000th times. The larger the numerical value, the better the less air accumulation.
- the rigid core of the example is provided with an inclined groove portion of a predetermined angle in the exhaust groove, so that the rubber can be prevented from flowing into the exhaust groove, and the occurrence of spew on the tire. It can be confirmed that the seizure of rubber in the exhaust groove and the clogging of the exhaust groove due to this can be effectively suppressed. Further, it can be confirmed that the groove cross-sectional shape is excellent in the order of FIG. 4 (A)> FIG. 4 (B)> FIG. 4 (D) ⁇ FIG.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Moulds For Moulding Plastics Or The Like (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
- Tyre Moulding (AREA)
Abstract
In order to suppress inflow of rubber to an exhaust groove, a core body comprises a plurality of core segments divided in the circumferential direction, and an exhaust grooves having an open end opening in a core-side tire molding face are arranged on the mating face of at least one of core segments adjacent in the circumferential direction. The exhaust groove comprises a tread exhaust groove, the open end of which opens in a portion of a core-side tread molding face, and/or a side exhaust groove which opens in a portion of a core-side side molding face. The tread exhaust groove has an inclined groove portion extending at an angle (θ1) in relation to the radial direction of the tire from the open end, and the side exhaust groove has an inclined groove portion extending at an angle (θ2) in relation to the axial direction of the tire from the open end.
Description
本発明は、中子セグメントの合わせ面に排気溝を形成したタイヤ形成用の剛性中子に関する。
The present invention relates to a rigid core for forming a tire in which exhaust grooves are formed on a mating surface of core segments.
近年、タイヤの形成精度を高めるため、剛性中子を用いたタイヤ形成方法(以下、中子工法という場合がある。)が提案されている(例えば特許文献1、2参照。)。前記剛性中子は、加硫済みタイヤのタイヤ内腔面の形状に合った外形形状を有する中子本体を具える。そして、この中子本体上でタイヤ構成部材を順次貼り付けることにより、生タイヤが形成される。この生タイヤは、剛性中子ごと加硫金型内に投入され、これにより内型である中子本体と外型である加硫金型との間に挟まれて、前記生タイヤが加硫成形される。
Recently, a tire forming method using a rigid core (hereinafter sometimes referred to as a core method) has been proposed in order to improve the accuracy of tire formation (see, for example, Patent Documents 1 and 2). The rigid core includes a core body having an outer shape that matches a shape of a tire lumen surface of a vulcanized tire. And a raw tire is formed by affixing a tire structural member on this core main body one by one. This green tire is put together with a rigid core into a vulcanization mold, and is thereby sandwiched between an inner core body and an outer vulcanization mold so that the green tire is vulcanized. Molded.
図7(A)に示すように、加硫成形後、前記中子本体aをタイヤから分解して取り外すために、前記中子本体aは、周方向に分割される複数の中子セグメントcによって構成されている。各中子セグメントcの周方向両端面を合わせ面csとし、周方向で隣り合う合わせ面cs、cs同士を互いに付き合わすことにより、前記中子本体aは、環状に形成される。
As shown in FIG. 7A, in order to disassemble and remove the core body a from the tire after vulcanization, the core body a is divided into a plurality of core segments c divided in the circumferential direction. It is configured. The core main body a is formed in an annular shape by setting both end surfaces in the circumferential direction of each core segment c as mating surfaces cs and adjoining the mating surfaces cs and cs adjacent in the circumferential direction.
前記中子工法では、タイヤ形成精度をより高めるために、加硫成型時に、中子本体aと生タイヤとの間の空気を排出することが望まれる。そのため、本発明者は、図7(B)に示すように、中子セグメントcの前記合わせ面csの少なくとも一方に、排気溝dを凹設することを提案した。
In the core method, it is desired to discharge air between the core body a and the green tire during vulcanization molding in order to further improve the tire formation accuracy. For this reason, the inventor has proposed that an exhaust groove d be provided in at least one of the mating surfaces cs of the core segment c as shown in FIG. 7B.
しかし前記排気溝d内には、空気だけでなくゴムも流入する。例えば排気溝dの断面容積が大きい場合には、流入したゴムは太く丈夫である。そのため、前記ゴムは、排気溝dの壁面と焼け付いても千切れ難い。従って、加硫後、前記ゴムは、排気溝dの壁面には付着しないでタイヤと一体に取り出すことができる。しかし、このゴム(スピュー)は太く大きいため、タイヤ振動の発生原因となりうる。
However, not only air but also rubber flows into the exhaust groove d. For example, when the cross-sectional volume of the exhaust groove d is large, the inflowing rubber is thick and strong. Therefore, the rubber is hardly broken even if it is burned with the wall surface of the exhaust groove d. Therefore, after vulcanization, the rubber can be taken out integrally with the tire without adhering to the wall surface of the exhaust groove d. However, since this rubber (spy) is thick and large, it can cause tire vibration.
逆に、排気溝dの断面容積が小さい場合には、流入したゴムは薄く弱い。そのため、前記ゴムは、排気溝dの壁面に焼け付いて千切れ易くなる。従って、加硫後、千切れたゴムが排気溝dの壁面に付着し、加硫回数の増加とともに付着量が増す。その結果、前記排気溝dが塞がれて排気性能が損なわれる。又千切れたゴム片が、合わせ面cs、cs間に入り込むことによって、中子本体aの真円性が損なわれ、タイヤ形成精度を低下させるという問題も招く。又これを防止するために、前記中子セグメントcの頻繁な清掃が必要になるが、これによってタイヤの生産効率が低下する。
Conversely, when the cross-sectional volume of the exhaust groove d is small, the inflowing rubber is thin and weak. For this reason, the rubber is easily burned by scorching on the wall surface of the exhaust groove d. Accordingly, after the vulcanization, the broken rubber adheres to the wall surface of the exhaust groove d, and the amount of adhesion increases as the number of vulcanizations increases. As a result, the exhaust groove d is blocked and exhaust performance is impaired. Further, when the broken rubber piece enters between the mating surfaces cs and cs, the roundness of the core body a is impaired, and the tire forming accuracy is lowered. Further, in order to prevent this, frequent cleaning of the core segment c is necessary, but this reduces the tire production efficiency.
従って排気溝dでは、断面容積をできるだけ小さくしてゴムの流入を抑えることが望まれるが、その場合、排気性能も低下してしまい、タイヤに空気溜まりによる変形を招くなど、充分満足する効果が得られない。
Therefore, in the exhaust groove d, it is desired to reduce the cross-sectional volume as much as possible to suppress the inflow of rubber. However, in that case, the exhaust performance is also lowered, and the tire has a sufficiently satisfactory effect such as causing deformation due to air accumulation. I can't get it.
なお前記特許文献1には、各中子セグメントを、タイヤ軸方向両側の側セグメント片と、その間の中間セグメント片とにさらに分割するとともに、分割面間に、空気を排気させる排気路を形成することが提案されている。この場合、前記側セグメント片と中間セグメント片との間がボルトによって一体に連結される。しかし大きな熱膨張が繰り返し発生するため、連結部の強度が充分でなくなり、中子セグメントの耐久性を低下させるという問題がある。又排気路内へのゴムの流入については、依然、考慮がなされていない。
In Patent Document 1, each core segment is further divided into side segment pieces on both sides in the tire axial direction and intermediate segment pieces therebetween, and an exhaust passage for exhausting air is formed between the divided surfaces. It has been proposed. In this case, the side segment piece and the intermediate segment piece are integrally connected by a bolt. However, since large thermal expansion repeatedly occurs, there is a problem that the strength of the connecting portion becomes insufficient and the durability of the core segment is lowered. In addition, the inflow of rubber into the exhaust passage is still not taken into consideration.
そこで本発明は、排気溝の断面容積をある程度確保して充分な排気性能を維持しながら、排気溝内へのゴムの流入を抑えることができ、ゴムの流入に起因する前記問題点を解決しうるタイヤ形成用の剛性中子を提供することを目的としている。
Accordingly, the present invention can suppress the inflow of rubber into the exhaust groove while maintaining a sufficient exhaust performance by securing a cross-sectional volume of the exhaust groove to some extent, and solves the above-mentioned problems caused by the inflow of rubber. An object of the present invention is to provide a rigid core for forming a tire.
上記課題を解決するために、本願請求項1の発明は、生タイヤを形成するためのコア側タイヤ成形面を外表面に有する環状の中子本体を具え、生タイヤごと加硫金型内に投入されることにより、該加硫金型と前記中子本体との間で前記生タイヤを加硫成形する剛性中子であって、
前記加硫金型は、タイヤ半径方向内外に移動可能なトレッドモールドと、タイヤ軸方向内外に移動可能なサイドモールドとを具え、
前記トレッドモールドは、生タイヤに押し付けられることによりタイヤのトレッド外表面を成形する金型側トレッド成形面部を有し、
かつ前記サイドモールドは、生タイヤに押し付けられることによりタイヤのサイド外表面を成形する金型側サイド成形面部を有するとともに、
前記コア側タイヤ成形面は、前記金型側トレッド成形面部と金型側サイド成形面部との境界位置を通って前記コア側タイヤ成形面とは直交する向きにのびる法線により、該法線間のコア側トレッド成形面部と、前記法線よりも外側のコア側サイド成形面部とに区分され、
前記中子本体は、周方向に分割される複数の中子セグメントからなり、
各前記中子セグメントは、中子セグメントの周方向両端面を合わせ面として、周方向で隣り合う合わせ面同士を互いに付き合わすことにより環状の前記中子本体を形成するとともに、
前記周方向で隣り合う合わせ面の少なくとも一方の合わせ面上に、この合わせ面上をのびる少なくとも1本の排気溝が配され、
前記排気溝は、前記コア側タイヤ成形面で開口する開口端を有し、前記コア側タイヤ成形面と生タイヤとの間の空気を、前記開口端から中子本体の内側に排気するとともに、
前記排気溝は、前記開口端が前記コア側トレッド成形面部で開口するトレッド排気溝、及び/又はコア側サイド成形面部で開口するサイド排気溝からなるとともに、
前記トレッド排気溝は、前記開口端からタイヤ半径方向線に対して角度θ1で傾斜してのびる傾斜溝部を有し、
又前記サイド排気溝は、前記開口端からタイヤ軸方向線に対して角度θ2で傾斜してのびる傾斜溝部を有することを特徴としている。 In order to solve the above-mentioned problems, the invention ofclaim 1 of the present application includes an annular core body having a core-side tire molding surface for forming a green tire on the outer surface, and the raw tire is placed in a vulcanization mold. A rigid core that vulcanizes and molds the green tire between the vulcanization mold and the core body,
The vulcanization mold includes a tread mold that can move in and out of the tire radial direction, and a side mold that can move in and out of the tire axial direction,
The tread mold has a mold side tread molding surface portion that molds the outer surface of the tire tread by being pressed against the raw tire,
And the side mold has a mold side side molding surface part for molding the side outer surface of the tire by being pressed against the raw tire,
The core side tire molding surface is a normal line extending in a direction perpendicular to the core side tire molding surface through a boundary position between the mold side tread molding surface portion and the mold side side molding surface portion. Of the core side tread molding surface portion and the core side side molding surface portion outside the normal line,
The core body is composed of a plurality of core segments divided in the circumferential direction,
Each of the core segments forms an annular core body by attaching the circumferentially adjacent mating surfaces to each other with the circumferential ends of the core segment as mating surfaces.
On at least one mating surface of the mating surfaces adjacent in the circumferential direction, at least one exhaust groove extending on the mating surface is disposed,
The exhaust groove has an opening end that opens at the core-side tire molding surface, and exhausts air between the core-side tire molding surface and the raw tire from the opening end to the inside of the core body,
The exhaust groove includes a tread exhaust groove whose opening end opens at the core-side tread molding surface portion and / or a side exhaust groove which opens at the core-side side molding surface portion,
The tread exhaust groove has an inclined groove portion extending at an angle θ1 with respect to the tire radial direction line from the opening end,
Further, the side exhaust groove has an inclined groove portion that extends at an angle θ2 with respect to the tire axial direction line from the opening end.
前記加硫金型は、タイヤ半径方向内外に移動可能なトレッドモールドと、タイヤ軸方向内外に移動可能なサイドモールドとを具え、
前記トレッドモールドは、生タイヤに押し付けられることによりタイヤのトレッド外表面を成形する金型側トレッド成形面部を有し、
かつ前記サイドモールドは、生タイヤに押し付けられることによりタイヤのサイド外表面を成形する金型側サイド成形面部を有するとともに、
前記コア側タイヤ成形面は、前記金型側トレッド成形面部と金型側サイド成形面部との境界位置を通って前記コア側タイヤ成形面とは直交する向きにのびる法線により、該法線間のコア側トレッド成形面部と、前記法線よりも外側のコア側サイド成形面部とに区分され、
前記中子本体は、周方向に分割される複数の中子セグメントからなり、
各前記中子セグメントは、中子セグメントの周方向両端面を合わせ面として、周方向で隣り合う合わせ面同士を互いに付き合わすことにより環状の前記中子本体を形成するとともに、
前記周方向で隣り合う合わせ面の少なくとも一方の合わせ面上に、この合わせ面上をのびる少なくとも1本の排気溝が配され、
前記排気溝は、前記コア側タイヤ成形面で開口する開口端を有し、前記コア側タイヤ成形面と生タイヤとの間の空気を、前記開口端から中子本体の内側に排気するとともに、
前記排気溝は、前記開口端が前記コア側トレッド成形面部で開口するトレッド排気溝、及び/又はコア側サイド成形面部で開口するサイド排気溝からなるとともに、
前記トレッド排気溝は、前記開口端からタイヤ半径方向線に対して角度θ1で傾斜してのびる傾斜溝部を有し、
又前記サイド排気溝は、前記開口端からタイヤ軸方向線に対して角度θ2で傾斜してのびる傾斜溝部を有することを特徴としている。 In order to solve the above-mentioned problems, the invention of
The vulcanization mold includes a tread mold that can move in and out of the tire radial direction, and a side mold that can move in and out of the tire axial direction,
The tread mold has a mold side tread molding surface portion that molds the outer surface of the tire tread by being pressed against the raw tire,
And the side mold has a mold side side molding surface part for molding the side outer surface of the tire by being pressed against the raw tire,
The core side tire molding surface is a normal line extending in a direction perpendicular to the core side tire molding surface through a boundary position between the mold side tread molding surface portion and the mold side side molding surface portion. Of the core side tread molding surface portion and the core side side molding surface portion outside the normal line,
The core body is composed of a plurality of core segments divided in the circumferential direction,
Each of the core segments forms an annular core body by attaching the circumferentially adjacent mating surfaces to each other with the circumferential ends of the core segment as mating surfaces.
On at least one mating surface of the mating surfaces adjacent in the circumferential direction, at least one exhaust groove extending on the mating surface is disposed,
The exhaust groove has an opening end that opens at the core-side tire molding surface, and exhausts air between the core-side tire molding surface and the raw tire from the opening end to the inside of the core body,
The exhaust groove includes a tread exhaust groove whose opening end opens at the core-side tread molding surface portion and / or a side exhaust groove which opens at the core-side side molding surface portion,
The tread exhaust groove has an inclined groove portion extending at an angle θ1 with respect to the tire radial direction line from the opening end,
Further, the side exhaust groove has an inclined groove portion that extends at an angle θ2 with respect to the tire axial direction line from the opening end.
また請求項2では、前記トレッド排気溝の角度θ1は30~80°の範囲であり、かつ前記サイド排気溝の角度θ2は30~80°の範囲であることを特徴としている。
Further, in claim 2, the angle θ1 of the tread exhaust groove is in the range of 30 to 80 °, and the angle θ2 of the side exhaust groove is in the range of 30 to 80 °.
また請求項3では、前記排気溝は、前記トレッド排気溝とサイド排気溝とからなり、かつ前記トレッド排気溝は、前記開口端がタイヤ赤道位置に配されるトレッド排気溝を含むとともに、前記サイド排気溝は、前記開口端がコア側サイド成形面部のタイヤ軸方向最大幅位置に配されるサイド排気溝を含むことを特徴としている。
According to a third aspect of the present invention, the exhaust groove includes the tread exhaust groove and a side exhaust groove, and the tread exhaust groove includes a tread exhaust groove whose opening end is disposed at a tire equator position, The exhaust groove includes a side exhaust groove in which the opening end is disposed at the maximum width position in the tire axial direction of the core side side molding surface portion.
また請求項4では、前記排気溝は、その長さ方向と直角な溝断面積が0.03mm2以下であることを特徴としている。
In claim 4, the exhaust groove has a groove cross-sectional area perpendicular to the length direction of 0.03 mm 2 or less.
本発明は叙上の如く、周方向で隣り合う中子セグメントの合わせ面の少なくとも一方に、排気溝が凹設される。この排気溝は、コア側トレッド成形面部に開口端を有するトレッド排気溝、及び/又はコア側サイド成形面部に開口端を有するサイド排気溝からなる。前記トレッド排気溝は、その開口端からタイヤ半径方向線に対して角度θ1で傾斜してのびる傾斜溝部を有する。又前記サイド排気溝は、その開口端からタイヤ軸方向線に対して角度θ2で傾斜してのびる傾斜溝部を有する。
In the present invention, as described above, an exhaust groove is recessed in at least one of the mating surfaces of the core segments adjacent in the circumferential direction. The exhaust groove includes a tread exhaust groove having an open end in the core side tread molding surface portion and / or a side exhaust groove having an open end in the core side side molding surface portion. The tread exhaust groove has an inclined groove portion extending from the opening end thereof at an angle θ1 with respect to the tire radial direction line. The side exhaust groove has an inclined groove portion extending from the opening end thereof at an angle θ2 with respect to the tire axial direction line.
又加硫金型は、タイヤ半径方向内外に移動可能なトレッドモールドと、タイヤ軸方向内外に移動可能なサイドモールドとを含んで構成される。加硫成形時、生タイヤのゴムは、前記トレッドモールドと当接する部分では、このトレッドモールドによってタイヤ半径方向内方に強く押し付けられる。そのため、もし前記トレッド排気溝の開口端側が、タイヤ半径方向に沿ってのびる場合には、前記トレッドモールドによる強い押し付け力の向きと、排気溝との向きが一致する。そのため、ゴムが排気溝内に流入しやすくなる。同様に、生タイヤのゴムは、サイドモールドと当接する部分では、このサイドモールドによってタイヤ軸方向内方に強く押し付けられる。そのため、もし前記サイド排気溝の開口端側が、タイヤ軸方向に沿ってのびる場合には、前記サイドモールドによる強い押し付け力の向きと、排気溝との向きが一致する。そのため、ゴムが排気溝内に流入しやすくなる。
The vulcanization mold includes a tread mold that can move in and out of the tire radial direction and a side mold that can move in and out of the tire axial direction. At the time of vulcanization molding, the rubber of the raw tire is strongly pressed inward in the tire radial direction by the tread mold at a portion where the rubber comes into contact with the tread mold. Therefore, if the opening end side of the tread exhaust groove extends along the tire radial direction, the direction of the strong pressing force by the tread mold matches the direction of the exhaust groove. For this reason, the rubber easily flows into the exhaust groove. Similarly, the rubber of the raw tire is strongly pressed inward in the tire axial direction by the side mold at the portion that comes into contact with the side mold. Therefore, if the opening end side of the side exhaust groove extends along the tire axial direction, the direction of the strong pressing force by the side mold coincides with the direction of the exhaust groove. For this reason, the rubber easily flows into the exhaust groove.
しかし本発明では、前記トレッド排気溝及びサイド排気溝の開口端側の部分は、それぞれ前記角度θ1、θ2で傾斜する。即ち、開口端側の部分は、強い押し付け力とは異なる向きにのびる。そのため、空気の流入を阻害することなく、ゴムの流入のみを抑制することができる。これは、ゴムの粘度が、空気に比してはるかに高いために起こる。前記排気溝の開口端側の部分を、強い押し付け力の加わる向きと相違させることにより、その向きの相違が抵抗となり、粘度の高いゴムの流入を抑制することができる。又粘度の低い空気に対しては抵抗とはならず、その流入は阻害されない。そのため、排気性能を有効に発揮することができる。
However, in the present invention, the opening end side portions of the tread exhaust groove and the side exhaust groove are inclined at the angles θ1 and θ2, respectively. That is, the portion on the opening end side extends in a direction different from the strong pressing force. Therefore, it is possible to suppress only the inflow of rubber without hindering the inflow of air. This occurs because the rubber has a much higher viscosity than air. By making the opening end side portion of the exhaust groove different from the direction in which a strong pressing force is applied, the difference in the direction becomes resistance, and the inflow of high viscosity rubber can be suppressed. Moreover, it does not become resistance to air with low viscosity, and the inflow is not hindered. Therefore, the exhaust performance can be exhibited effectively.
その結果、排気溝の壁面に付着するゴム量が加硫回数の増加とともに増加して排気溝が塞がれることに起因する排気不良を抑制しうる。又前記付着したゴムが千切れて、前記合わせ面間に入り込むことに起因する中子本体の真円性の低下を抑制することができる。又中間セグメント片の頻繁な清掃が不要となるため、長時間の連続生産が可能となる。しかも、製品タイヤの内面に太いスピューも発生しないため、タイヤ品質を高く維持することができる。
As a result, the amount of rubber adhering to the wall surface of the exhaust groove increases with an increase in the number of vulcanizations, and exhaust failure due to the exhaust groove being blocked can be suppressed. In addition, it is possible to suppress a decrease in the roundness of the core body caused by the adhering rubber being broken and entering between the mating surfaces. Moreover, since frequent cleaning of the intermediate segment pieces is not necessary, continuous production for a long time is possible. Moreover, since no thick spew is generated on the inner surface of the product tire, the tire quality can be maintained high.
以下、本発明の実施の形態について、詳細に説明する。
図1に示すように、本実施形態の剛性中子1は、外表面にコア側タイヤ成形面2Sを有する環状の中子本体2を具える。そして、このコア側タイヤ成形面2S上に、カーカスプライ、ベルトプライ、サイドウォールゴム、トレッドゴム等の周知のタイヤ構成部材を順次貼り付けることにより、仕上がりタイヤとほぼ同形状の生タイヤTが形成される。 Hereinafter, embodiments of the present invention will be described in detail.
As shown in FIG. 1, therigid core 1 of the present embodiment includes an annular core body 2 having a core-side tire molding surface 2S on the outer surface. A known tire component such as a carcass ply, a belt ply, sidewall rubber, and tread rubber is sequentially attached onto the core-side tire molding surface 2S, thereby forming a green tire T having substantially the same shape as the finished tire. Is done.
図1に示すように、本実施形態の剛性中子1は、外表面にコア側タイヤ成形面2Sを有する環状の中子本体2を具える。そして、このコア側タイヤ成形面2S上に、カーカスプライ、ベルトプライ、サイドウォールゴム、トレッドゴム等の周知のタイヤ構成部材を順次貼り付けることにより、仕上がりタイヤとほぼ同形状の生タイヤTが形成される。 Hereinafter, embodiments of the present invention will be described in detail.
As shown in FIG. 1, the
前記生タイヤTは、剛性中子1ごと加硫金型20内に投入される。そして、内型である中子本体2と外型である加硫金型20との間で、前記生タイヤTが加熱加圧され、加硫成形される。
The raw tire T is put into the vulcanizing mold 20 together with the rigid core 1. The green tire T is heated and pressurized between the core body 2 that is the inner mold and the vulcanization mold 20 that is the outer mold, and vulcanized.
前記加硫金型20は、従来的な周知構造をなし、タイヤ半径方向内外に移動可能なトレッドモールド21と、タイヤ軸方向内外に移動可能なサイドモールド22、22とを含んで構成される。前記トレッドモールド21は、金型側トレッド成形面部21Sを有する。この金型側トレッド成形面部21Sを、タイヤ半径方向内方に向かって押し付けることにより、タイヤTのトレッド外表面Taが成形される。又前記サイドモールド22は、金型側サイド成形面部22Sを有する、この金型側サイド成形面部22Sをタイヤ軸方向内方に向かって押し付けることにより、タイヤTのサイド外表面Tbが成形される。
The vulcanizing mold 20 has a conventional well-known structure, and includes a tread mold 21 that can move in and out in the tire radial direction and side molds 22 and 22 that can move in and out in the tire axial direction. The tread mold 21 has a mold side tread molding surface portion 21S. The tread outer surface Ta of the tire T is molded by pressing the mold side tread molding surface portion 21S toward the inner side in the tire radial direction. The side mold 22 has a mold side molding surface portion 22S. The side outer surface Tb of the tire T is molded by pressing the mold side molding surface portion 22S inward in the tire axial direction.
次に、前記剛性中子1は、環状の前記中子本体2と、その中心孔2Hに内挿される円筒状のコア3とを含んで構成される。前記中子本体2以外は、従来的な周知構造を採用できる。従って、以下に前記中子本体2のみを説明する。
Next, the rigid core 1 includes the annular core body 2 and a cylindrical core 3 inserted into the center hole 2H. Other than the core body 2, a conventional well-known structure can be adopted. Therefore, only the core body 2 will be described below.
前記中子本体2は、その外表面に、仕上がりタイヤの内面形状とほぼ同形状をなす前記コア側タイヤ成形面2Sを具える。このコア側タイヤ成形面2Sは、図1に示すように、法線Nにより、コア側トレッド成形面部2Saと、コア側サイド成形面部2Sbとに仮想的に区分される。前記法線Nは、前記金型側トレッド成形面部21Sと金型側サイド成形面部22Sとの境界位置Pを通って前記コア側タイヤ成形面2Sと直交する向きにのびる直線として定義される。そしてコア側タイヤ成形面2Sのうちで前記法線N、N間の部分が、コア側トレッド成形面部2Saとして定義される。又法線Nよりも外側の部分が、コア側サイド成形面部2Sbとして定義される。
The core body 2 includes the core-side tire molding surface 2S on the outer surface thereof, which is substantially the same shape as the inner surface shape of the finished tire. As shown in FIG. 1, the core side tire molding surface 2S is virtually divided into a core side tread molding surface portion 2Sa and a core side side molding surface portion 2Sb by a normal line N. The normal line N is defined as a straight line extending in a direction orthogonal to the core-side tire molding surface 2S through a boundary position P between the mold-side tread molding surface portion 21S and the mold-side side molding surface portion 22S. And the part between the said normal lines N and N among the core side tire molding surfaces 2S is defined as the core side tread molding surface part 2Sa. Further, the portion outside the normal line N is defined as the core side side molding surface portion 2Sb.
前記中子本体2は、本例では、その内部に例えば周方向に連続してのびる内腔部4を具えた中空状をなす。前記内腔部4内に、前記生タイヤTを内側加熱する例えば電気ヒータなどの加熱手段(図示しない。)が配置される。
In this example, the core body 2 has a hollow shape with a lumen 4 extending continuously in the circumferential direction, for example. A heating means (not shown) such as an electric heater for heating the raw tire T inside is disposed in the lumen 4.
前記中子本体2は、図2(A)、(B)に示すように、周方向に分割される複数の中子セグメント5から形成される。各中子セグメント5は、その周方向両端面を合わせ面6とし、周方向で隣り合う合わせ面6、6同士を互いに付き合わすことにより、環状の中子本体2が形成される。
The core body 2 is formed of a plurality of core segments 5 divided in the circumferential direction, as shown in FIGS. 2 (A) and 2 (B). Each core segment 5 has both end surfaces in the circumferential direction as mating surfaces 6, and the mating surfaces 6, 6 adjacent in the circumferential direction are attached to each other, whereby the annular core body 2 is formed.
本例では、前記中子セグメント5は、周方向に交互に配される第1、第2の中子セグメント5A、5Bから構成される。前記第1の中子セグメント5Aの合わせ面6は、半径方向内方に向かって周方向巾が減じる向きに傾斜している。これに対して、前記第2の中子セグメント5Bの合わせ面6は、半径方向内方に向かって周方向巾が増す向きに傾斜している。これにより、前記第2の中子セグメント5Bから順に半径方向内側に移動でき、加硫成形後、仕上がりタイヤTのビード孔から順次取り出すことができる。なお前記コア3は、各中子セグメント5の半径方向内側への移動を阻止し、各中子セグメント5を一体連結させる。
In this example, the core segment 5 is composed of first and second core segments 5A and 5B that are alternately arranged in the circumferential direction. The mating surface 6 of the first core segment 5A is inclined in the direction in which the circumferential width decreases toward the inside in the radial direction. On the other hand, the mating surface 6 of the second core segment 5B is inclined in a direction in which the circumferential width increases inward in the radial direction. Thereby, it can move to the inner side in the radial direction sequentially from the second core segment 5B, and can be sequentially taken out from the bead hole of the finished tire T after vulcanization molding. The core 3 prevents the core segments 5 from moving inward in the radial direction and connects the core segments 5 together.
そして本発明では、周方向で隣り合う合わせ面6、6の少なくとも一方の合わせ面6上に、図3(A)、(B)に示すように、少なくとも1本の排気溝11が凹設される。前記排気溝11は、コア側タイヤ成形面2Sで開口する開口端12を有する。そして、前記コア側タイヤ成形面2Sと生タイヤTとの間の空気は、前記開口端12から排気溝11を通って中子本体2の内側に排気される。前記排気溝11の他端は、本例では前記内腔部4に連通し、また前記内腔部4は外気に導通する。
In the present invention, at least one exhaust groove 11 is recessed on at least one of the mating surfaces 6 adjacent in the circumferential direction, as shown in FIGS. The The exhaust groove 11 has an opening end 12 that opens at the core-side tire molding surface 2S. The air between the core side tire molding surface 2S and the raw tire T is exhausted from the opening end 12 through the exhaust groove 11 to the inside of the core body 2. The other end of the exhaust groove 11 communicates with the lumen portion 4 in this example, and the lumen portion 4 conducts to the outside air.
詳しくは、前記排気溝11は、前記開口端12が前記コア側トレッド成形面部2Saで開口するトレッド排気溝11A、及び/又はコア側サイド成形面部2Sbで開口するサイド排気溝11Bから構成される。
Specifically, the exhaust groove 11 includes a tread exhaust groove 11A whose opening end 12 opens at the core side tread molding surface portion 2Sa and / or a side exhaust groove 11B which opens at the core side side molding surface portion 2Sb.
好ましくは、排気溝11は、トレッド排気溝11Aとサイド排気溝11Bとから形成される。さらに好ましくは、前記トレッド排気溝11Aが、赤道位置のトレッド排気溝11Acを含み、又前記サイド排気溝11Bが、最大幅位置のサイド排気溝11Bqを含む。前記赤道位置のトレッド排気溝11Acとは、開口端12がタイヤ赤道Coの位置に配されるトレッド排気溝11Aを意味する。前記最大幅位置のサイド排気溝11Bqとは、開口端12が、コア側サイド成形面部2Sbのタイヤ軸方向最大幅位置Qに配されるサイド排気溝11Bを意味する。
Preferably, the exhaust groove 11 is formed of a tread exhaust groove 11A and a side exhaust groove 11B. More preferably, the tread exhaust groove 11A includes an equatorial tread exhaust groove 11Ac, and the side exhaust groove 11B includes a maximum width position side exhaust groove 11Bq. The tread exhaust groove 11Ac at the equator position means the tread exhaust groove 11A in which the opening end 12 is disposed at the position of the tire equator Co. The side exhaust groove 11Bq at the maximum width position means the side exhaust groove 11B in which the opening end 12 is disposed at the maximum width position Q in the tire axial direction of the core side side molding surface portion 2Sb.
本例では、前記排気溝11が、1本のトレッド排気溝11Aと、2本のサイド排気溝11Bとからなり、しかもこの1本のトレッド排気溝11Aが赤道位置のトレッド排気溝11Acとして形成され、又2本のサイド排気溝11Bがそれぞれ最大幅位置のサイド排気溝11Bqとして形成される場合が示されている。
In this example, the exhaust groove 11 is composed of one tread exhaust groove 11A and two side exhaust grooves 11B, and this one tread exhaust groove 11A is formed as a tread exhaust groove 11Ac at the equator position. Moreover, the case where the two side exhaust grooves 11B are formed as the side exhaust grooves 11Bq at the maximum width position is shown.
前記トレッド排気溝11Aは、前記開口端12からタイヤ半径方向線に対して角度θ1で傾斜してのびる傾斜溝部13を有する。又前記サイド排気溝11Bは、前記開口端12からタイヤ軸方向線に対して角度θ2で傾斜してのびる傾斜溝部14を有する。
The tread exhaust groove 11A has an inclined groove portion 13 extending from the opening end 12 at an angle θ1 with respect to the tire radial direction line. The side exhaust groove 11B has an inclined groove portion 14 extending from the opening end 12 with an angle θ2 with respect to the tire axial direction line.
このように、トレッド排気溝11Aは、その開口端12側に傾斜溝部13を具え、この傾斜溝部13は、トレッドモールド21による強い押し付け力の向きであるタイヤ半径方向に対して角度θ1で傾く。そのため前記角度θ1が抵抗となって、高粘度であるゴムの流入を抑制することができる。同様に、サイド排気溝11Bでは、その開口端12側に、傾斜溝部14を具え、この傾斜溝部14は、サイドモールド22による強い押し付け力の向きであるタイヤ軸方向に対して角度θ2で傾く。そのため前記角度θ2が抵抗となって、高粘度であるゴムの流入を抑制することができる。
As described above, the tread exhaust groove 11A includes the inclined groove portion 13 on the opening end 12 side, and the inclined groove portion 13 is inclined at an angle θ1 with respect to the tire radial direction which is a direction of a strong pressing force by the tread mold 21. Therefore, the angle θ1 becomes a resistance, and the inflow of rubber having a high viscosity can be suppressed. Similarly, the side exhaust groove 11B includes an inclined groove portion 14 on the opening end 12 side, and the inclined groove portion 14 is inclined at an angle θ2 with respect to the tire axial direction that is a direction of a strong pressing force by the side mold 22. Therefore, the angle θ2 becomes a resistance, and the inflow of rubber having a high viscosity can be suppressed.
前記角度θ1、θ2は、それぞれ30~80°の範囲であることが好ましい。もし前記角度θ1、θ2が、30°未満の場合、抵抗が小さくなってゴム流入の抑制効果が充分達成されなくなる。逆に80°を超える場合、コア側タイヤ成形面2Sと排気溝11との交わり部が剣先状となる。その結果、交わり部が強度不足となって耐久性を低下させる恐れを招く。このような観点から、前記角度θ1、θ2の下限値は45°以上がより好ましく、上限値は70°以下がより好ましい。
The angles θ1 and θ2 are each preferably in the range of 30 to 80 °. If the angles [theta] 1 and [theta] 2 are less than 30 [deg.], The resistance becomes small and the rubber inflow suppressing effect cannot be sufficiently achieved. Conversely, when it exceeds 80 °, the intersection of the core-side tire molding surface 2S and the exhaust groove 11 has a sword tip shape. As a result, the crossing portion is insufficient in strength, which may lead to a decrease in durability. From such a viewpoint, the lower limit values of the angles θ1 and θ2 are more preferably 45 ° or more, and the upper limit value is more preferably 70 ° or less.
前記排気溝11としては、本例のサイド排気溝11Bの如く、全長を傾斜溝部14のみで形成することもできる。又本例のトレッド排気溝11Aの如く、傾斜溝部13と、この傾斜溝部13に連なる継ぎ溝部15とからなる屈曲溝状に形成することもできる。前記継ぎ溝部15を形成する場合、特に規制されないが、中子本体2の内部(本例では内腔部4)に向かって最短距離で形成するのが好ましい。
As the exhaust groove 11, the entire length can be formed only by the inclined groove portion 14 as in the side exhaust groove 11B of this example. Further, like the tread exhaust groove 11 </ b> A of this example, it can also be formed in a bent groove shape including an inclined groove portion 13 and a joint groove portion 15 connected to the inclined groove portion 13. When the joint groove portion 15 is formed, it is not particularly restricted, but it is preferably formed at the shortest distance toward the inside of the core body 2 (in this example, the lumen portion 4).
前記排気溝11の長さ方向と直角な溝断面形状としては、例えば、断面三角形状(図4(A))、断面四角形状(図4(B)、(C))、半円弧形状(図4(D))など種々な形状を採用することができる。しかし、加工性の観点から断面三角形状が好ましい。断面三角形状の場合、正三角形よりも二等辺三角形状の方が、断面積同一の時、ゴムの流入が少なく好適である。特に底辺m1を、開口側としかつ他の斜辺m2よりも短くするのがゴムの流入を安定して抑制する上で好ましい。又断面四角形状の場合、正方形よりも長方形の方が、断面積同一の時、ゴムの流入が少なく好適であり、特に短辺n1を開口側とすることが、ゴムの流入を安定して抑制する上で好ましい。
Examples of the groove cross-sectional shape perpendicular to the length direction of the exhaust groove 11 include, for example, a cross-sectional triangle shape (FIG. 4A), a cross-sectional square shape (FIGS. 4B and 4C), and a semicircular arc shape (FIG. 4 (D)) can be employed. However, the cross-sectional triangle shape is preferable from the viewpoint of workability. In the case of a triangular cross section, an isosceles triangular shape is preferable to an equilateral triangle with less rubber inflow when the cross sectional area is the same. In particular, it is preferable that the base m1 is the opening side and is shorter than the other oblique sides m2 in order to stably suppress the inflow of rubber. In addition, in the case of a rectangular cross section, a rectangular shape is more suitable than a square when the cross-sectional area is the same. This is preferable.
前記傾斜溝部13、14によるゴム流入の抑制効果にも限界があり、溝断面積が大きすぎると、前記抑制効果が充分発揮されなくなる。そのため、溝断面積は0.03mm2であるのが好ましい。又溝断面積が小さすぎると、高度な加工技術が必要となるとともに、排気性能の低下を招く。従って、溝断面積の下限は0.02mm2以上が好ましい。この時、断面形状における何れかの一辺の長さ(本例では斜辺m2、長辺n2の長さ)が0.1mm以上であるのが、好ましい。
The effect of suppressing the inflow of rubber by the inclined groove portions 13 and 14 is also limited, and if the groove cross-sectional area is too large, the effect of suppressing the effect is not sufficiently exhibited. Therefore, the groove cross-sectional area is preferably 0.03 mm 2 . On the other hand, if the groove cross-sectional area is too small, an advanced processing technique is required and exhaust performance is reduced. Accordingly, the lower limit of the groove cross-sectional area is preferably 0.02 mm 2 or more. At this time, it is preferable that the length of any one side in the cross-sectional shape (the length of the oblique side m2 and the long side n2 in this example) is 0.1 mm or more.
前記排気溝11は、周方向で隣り合う合わせ面6のうちの少なくとも一方の合わせ面6に設ければよい。なお双方の合わせ面6に、排気溝11をそれぞれ形成する場合には、その開口端12の位置を互いに相違させるのが好ましい。
The exhaust groove 11 may be provided on at least one of the mating surfaces 6 adjacent in the circumferential direction. In addition, when forming the exhaust groove 11 in both the mating surfaces 6, it is preferable to make the position of the opening end 12 mutually different.
図5、6に、中子セグメント5の他の実施例を示す。図5において、中子セグメント5の周方向両側の端面18は、その外周縁に沿う縁取り面部18Aと、この縁取り面部18Aに囲まれかつ該縁取り面部18Aからステップ状に凹む凹み面部18Bとからなる段付き面として形成される。この場合、前記合わせ面6は、前記縁取り面部18Aによって構成される。又この縁取り面部18Aに、前記排気溝11が形成される。前記排気溝11の他端は、本例では凹み面部18Bに導通され、又この凹み面部18Bは外気に導通する。
FIGS. 5 and 6 show another embodiment of the core segment 5. In FIG. 5, the end surfaces 18 on both sides in the circumferential direction of the core segment 5 include an edge surface portion 18A along the outer periphery, and a recessed surface portion 18B surrounded by the edge surface portion 18A and recessed from the edge surface portion 18A in a step shape. It is formed as a stepped surface. In this case, the mating surface 6 is constituted by the edging surface portion 18A. Further, the exhaust groove 11 is formed in the edge surface portion 18A. In the present example, the other end of the exhaust groove 11 is electrically connected to the recessed surface portion 18B, and the recessed surface portion 18B is electrically connected to the outside air.
図6において、中子セグメント5は、その周方向両側の端面18の全面が合わせ面6として形成される。なお排気溝11の他端は、本例では前記端面18の半径方向内側端18eに連通し、又この半径方向内側端18eは外気に導通する。
In FIG. 6, the core segment 5 has the entire end face 18 on both sides in the circumferential direction as the mating face 6. In this example, the other end of the exhaust groove 11 communicates with the radially inner end 18e of the end face 18, and the radially inner end 18e is electrically connected to the outside air.
以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。
As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.
本発明の効果を確認するため、タイヤサイズ195/65R15の空気入りタイヤ形成用の中子本体を、表1の仕様に基づき試作した。そして、この中子本体を用いて空気入りタイヤを形成した時の、排気溝へのゴムの流れ込み状態、流れ込んだゴムが焼き付いて溝壁面に付着する焼き付き状態、焼き付きによる排気性能の低下に起因する空気溜まりの発生状態をそれぞれ評価した。
In order to confirm the effect of the present invention, a core body for forming a pneumatic tire having a tire size of 195 / 65R15 was prototyped based on the specifications shown in Table 1. And when a pneumatic tire is formed using this core body, the rubber flows into the exhaust groove, the seized state in which the rubber that has flowed in adheres to the groove wall surface, and the exhaust performance decreases due to seizure. The state of occurrence of air pockets was evaluated.
各中子本体は、アルミニウム(熱膨張率=23.1×10-6/度)にて形成され、かつ図2に示すように、10個の中子セグメントに分割されている。又常温状態(20℃)の中子本体上に、生タイヤが形成される。又加硫金型内は150℃の高温状態に加熱される。表1に記載以外は、実質的に同仕様である。テスト方法は下記のとおりであり、各評価は、赤道位置のトレッド排気溝にて行われた。
Each core body is made of aluminum (coefficient of thermal expansion = 23.1 × 10 −6 / degree), and is divided into 10 core segments as shown in FIG. A green tire is formed on the core body at room temperature (20 ° C.). The inside of the vulcanization mold is heated to a high temperature of 150 ° C. Except as described in Table 1, the specifications are substantially the same. The test method was as follows, and each evaluation was performed in the tread exhaust groove at the equator position.
(1)ゴムの流れ込み状態:
排気溝内へのゴムの流れ込みによってタイヤ側に生じるスピュー量(ゴム量)が比較される。具体的には、加硫を1000回連続で行い、1回目、300回目、600回目、1000回目におけるスピュー量が、それぞれ数値化され評価された。数値は、大きいほど流れ込みが少なく良好であることを示す。 (1) Rubber flowing in:
The amount of spew (rubber amount) generated on the tire side by the inflow of rubber into the exhaust groove is compared. Specifically, vulcanization was carried out 1000 times continuously, and the amounts of spews at the first, 300th, 600th, and 1000th times were quantified and evaluated. A numerical value shows that there are few inflows and it is so favorable that it is large.
排気溝内へのゴムの流れ込みによってタイヤ側に生じるスピュー量(ゴム量)が比較される。具体的には、加硫を1000回連続で行い、1回目、300回目、600回目、1000回目におけるスピュー量が、それぞれ数値化され評価された。数値は、大きいほど流れ込みが少なく良好であることを示す。 (1) Rubber flowing in:
The amount of spew (rubber amount) generated on the tire side by the inflow of rubber into the exhaust groove is compared. Specifically, vulcanization was carried out 1000 times continuously, and the amounts of spews at the first, 300th, 600th, and 1000th times were quantified and evaluated. A numerical value shows that there are few inflows and it is so favorable that it is large.
(2)焼き付き状態:
排気溝内に流れ込んだゴムが、焼き付いて溝壁面に付着するゴムの焼き付き量が比較される。具体的には、加硫を1000回連続で行い、1回目、300回目、600回目、1000回目における焼き付き量が、それぞれ数値化され評価された。数値は、大きいほど焼き付き量が少なく良好である。 (2) Burn-in condition:
The amount of seizure of the rubber that has flowed into the exhaust groove and sticks to the groove wall surface is compared. Specifically, vulcanization was performed continuously 1000 times, and the amount of seizure in the first, 300th, 600th, and 1000th times was quantified and evaluated. The larger the numerical value, the smaller the amount of image sticking and the better.
排気溝内に流れ込んだゴムが、焼き付いて溝壁面に付着するゴムの焼き付き量が比較される。具体的には、加硫を1000回連続で行い、1回目、300回目、600回目、1000回目における焼き付き量が、それぞれ数値化され評価された。数値は、大きいほど焼き付き量が少なく良好である。 (2) Burn-in condition:
The amount of seizure of the rubber that has flowed into the exhaust groove and sticks to the groove wall surface is compared. Specifically, vulcanization was performed continuously 1000 times, and the amount of seizure in the first, 300th, 600th, and 1000th times was quantified and evaluated. The larger the numerical value, the smaller the amount of image sticking and the better.
(3)空気溜まりの発生状態:
焼き付きによってゴムが溝壁面に付着し、排気性能が低下することに起因する空気溜まりの発生状況が比較される。具体的には、加硫を1000回連続で行い、1回目、300回目、600回目、1000回目において、空気溜まりによって生じるタイヤの変形状態が、それぞれ数値化され評価された。数値は、大きいほど空気溜まりが少なく良好である。 (3) Air accumulation occurrence state:
The state of occurrence of air pockets due to the rubber sticking to the groove wall surface due to seizure and lowering the exhaust performance is compared. Specifically, vulcanization was continuously performed 1000 times, and the deformation state of the tire caused by air accumulation was numerically evaluated in each of the first, 300th, 600th, and 1000th times. The larger the numerical value, the better the less air accumulation.
焼き付きによってゴムが溝壁面に付着し、排気性能が低下することに起因する空気溜まりの発生状況が比較される。具体的には、加硫を1000回連続で行い、1回目、300回目、600回目、1000回目において、空気溜まりによって生じるタイヤの変形状態が、それぞれ数値化され評価された。数値は、大きいほど空気溜まりが少なく良好である。 (3) Air accumulation occurrence state:
The state of occurrence of air pockets due to the rubber sticking to the groove wall surface due to seizure and lowering the exhaust performance is compared. Specifically, vulcanization was continuously performed 1000 times, and the deformation state of the tire caused by air accumulation was numerically evaluated in each of the first, 300th, 600th, and 1000th times. The larger the numerical value, the better the less air accumulation.
表1に示すように、実施例の剛性中子は、排気溝に所定角度の傾斜溝部が設けられるため、排気溝内へのゴムの流れ込みを抑制することができ、タイヤへのスピューの発生、排気溝内でのゴムの焼き付き、及びそれによる排気溝の目詰まりなどを効果的に抑制しうるのが確認できる。又溝断面形状は、断面積が同じ時、図4(A)>図4(B)>図4(D)≧図4(C)の順で優れるのが確認できる。
As shown in Table 1, the rigid core of the example is provided with an inclined groove portion of a predetermined angle in the exhaust groove, so that the rubber can be prevented from flowing into the exhaust groove, and the occurrence of spew on the tire. It can be confirmed that the seizure of rubber in the exhaust groove and the clogging of the exhaust groove due to this can be effectively suppressed. Further, it can be confirmed that the groove cross-sectional shape is excellent in the order of FIG. 4 (A)> FIG. 4 (B)> FIG. 4 (D) ≧ FIG.
1 剛性中子
2 中子本体
2S コア側タイヤ成形面
2Sa コア側トレッド成形面部
2Sb コア側サイド成形面部
5 中子セグメント
6 合わせ面
11 排気溝
11A トレッド排気溝
11Ac 赤道位置のトレッド排気溝
11B サイド排気溝
11Bq 最大幅位置のサイド排気溝
12 開口端
13、14 傾斜溝部
20 加硫金型
21S 金型側トレッド成形面部
21 トレッドモールド
22S 金型側サイド成形面部
22 サイドモールド
N 法線
P 境界位置
T 生タイヤ DESCRIPTION OFSYMBOLS 1 Rigid core 2 Core body 2S Core side tire molding surface 2Sa Core side tread molding surface part 2Sb Core side side molding surface part 5 Core segment 6 Matching surface 11 Exhaust groove 11A Tread exhaust groove 11Ac Tread exhaust groove 11B at the equator position Side exhaust Groove 11Bq Side exhaust groove 12 at maximum width position Open end 13, 14 Inclined groove 20 Vulcanizing mold 21S Mold side tread molding surface 21 Tread mold 22S Mold side side molding surface 22 Side mold N Normal line P Boundary position T tire
2 中子本体
2S コア側タイヤ成形面
2Sa コア側トレッド成形面部
2Sb コア側サイド成形面部
5 中子セグメント
6 合わせ面
11 排気溝
11A トレッド排気溝
11Ac 赤道位置のトレッド排気溝
11B サイド排気溝
11Bq 最大幅位置のサイド排気溝
12 開口端
13、14 傾斜溝部
20 加硫金型
21S 金型側トレッド成形面部
21 トレッドモールド
22S 金型側サイド成形面部
22 サイドモールド
N 法線
P 境界位置
T 生タイヤ DESCRIPTION OF
Claims (4)
- 生タイヤを形成するためのコア側タイヤ成形面を外表面に有する環状の中子本体を具え、生タイヤごと加硫金型内に投入されることにより、該加硫金型と前記中子本体との間で前記生タイヤを加硫成形する剛性中子であって、
前記加硫金型は、タイヤ半径方向内外に移動可能なトレッドモールドと、タイヤ軸方向内外に移動可能なサイドモールドとを具え、
前記トレッドモールドは、生タイヤに押し付けられることによりタイヤのトレッド外表面を成形する金型側トレッド成形面部を有し、
かつ前記サイドモールドは、生タイヤに押し付けられることによりタイヤのサイド外表面を成形する金型側サイド成形面部を有するとともに、
前記コア側タイヤ成形面は、前記金型側トレッド成形面部と金型側サイド成形面部との境界位置を通って前記コア側タイヤ成形面とは直交する向きにのびる法線により、該法線間のコア側トレッド成形面部と、前記法線よりも外側のコア側サイド成形面部とに区分され、
前記中子本体は、周方向に分割される複数の中子セグメントからなり、
各前記中子セグメントは、中子セグメントの周方向両端面を合わせ面として、周方向で隣り合う合わせ面同士を互いに付き合わすことにより環状の前記中子本体を形成するとともに、
前記周方向で隣り合う合わせ面の少なくとも一方の合わせ面上に、この合わせ面上をのびる少なくとも1本の排気溝が配され、
前記排気溝は、前記コア側タイヤ成形面で開口する開口端を有し、前記コア側タイヤ成形面と生タイヤとの間の空気を、前記開口端から中子本体の内側に排気するとともに、
前記排気溝は、前記開口端が前記コア側トレッド成形面部で開口するトレッド排気溝、及び/又はコア側サイド成形面部で開口するサイド排気溝からなるとともに、
前記トレッド排気溝は、前記開口端からタイヤ半径方向線に対して角度θ1で傾斜してのびる傾斜溝部を有し、
又前記サイド排気溝は、前記開口端からタイヤ軸方向線に対して角度θ2で傾斜してのびる傾斜溝部を有することを特徴とするタイヤ形成用の剛性中子。 An annular core body having a core-side tire molding surface for forming a green tire is provided on the outer surface, and the vulcanized mold and the core body are inserted into the vulcanization mold together with the green tire A rigid core that vulcanizes and molds the green tire,
The vulcanization mold includes a tread mold that can move in and out of the tire radial direction, and a side mold that can move in and out of the tire axial direction,
The tread mold has a mold side tread molding surface portion that molds the outer surface of the tire tread by being pressed against the raw tire,
And the side mold has a mold side side molding surface part for molding the side outer surface of the tire by being pressed against the raw tire,
The core side tire molding surface is a normal line extending in a direction perpendicular to the core side tire molding surface through a boundary position between the mold side tread molding surface portion and the mold side side molding surface portion. Of the core side tread molding surface portion and the core side side molding surface portion outside the normal line,
The core body is composed of a plurality of core segments divided in the circumferential direction,
Each of the core segments forms an annular core body by attaching the circumferentially adjacent mating surfaces to each other with the circumferential ends of the core segment as the mating surfaces.
On at least one mating surface of the mating surfaces adjacent in the circumferential direction, at least one exhaust groove extending on the mating surface is disposed,
The exhaust groove has an opening end that opens at the core-side tire molding surface, and exhausts air between the core-side tire molding surface and the raw tire from the opening end to the inside of the core body,
The exhaust groove includes a tread exhaust groove whose opening end opens at the core-side tread molding surface portion and / or a side exhaust groove which opens at the core-side side molding surface portion,
The tread exhaust groove has an inclined groove portion extending at an angle θ1 with respect to the tire radial direction line from the opening end,
The side exhaust groove has an inclined groove portion extending at an angle θ2 with respect to the tire axial line from the opening end, and is a rigid core for tire formation. - 前記トレッド排気溝の角度θ1は30~80°の範囲であり、かつ前記サイド排気溝の角度θ2は30~80°の範囲であることを特徴とする請求項1記載のタイヤ形成用の剛性中子。 The tire forming rigidity according to claim 1, wherein the tread exhaust groove angle θ1 is in a range of 30 to 80 °, and the side exhaust groove angle θ2 is in a range of 30 to 80 °. Child.
- 前記排気溝は、前記トレッド排気溝とサイド排気溝とからなり、かつ
前記トレッド排気溝は、前記開口端がタイヤ赤道位置に配されるトレッド排気溝を含むとともに、
前記サイド排気溝は、前記開口端が、コア側サイド成形面部のタイヤ軸方向最大幅位置に配されるサイド排気溝を含むことを特徴とする請求項1又は2記載のタイヤ形成用の剛性中子。 The exhaust groove includes the tread exhaust groove and a side exhaust groove, and the tread exhaust groove includes a tread exhaust groove whose opening end is disposed at a tire equator position,
The said side exhaust groove contains the side exhaust groove in which the said open end is distribute | arranged to the tire axial direction maximum width position of the core side side molding surface part, The rigidity for tire formation of Claim 1 or 2 characterized by the above-mentioned. Child. - 前記排気溝は、その長さ方向と直角な溝断面積が0.03mm2以下であることを特徴とする請求項1~3の何れかに記載のタイヤ形成用の剛性中子。 The rigid core for forming a tire according to any one of claims 1 to 3, wherein the exhaust groove has a groove cross-sectional area perpendicular to the length direction of 0.03 mm 2 or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201280016953.6A CN103459131B (en) | 2012-01-18 | 2012-12-19 | Tire formation rigid core for building |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012008423A JP5444385B2 (en) | 2012-01-18 | 2012-01-18 | Rigid core for tire formation |
JP2012-008423 | 2012-01-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013108537A1 true WO2013108537A1 (en) | 2013-07-25 |
Family
ID=48798974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/082953 WO2013108537A1 (en) | 2012-01-18 | 2012-12-19 | Rigid core for tire formation |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5444385B2 (en) |
CN (1) | CN103459131B (en) |
WO (1) | WO2013108537A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2823955A4 (en) * | 2012-03-07 | 2016-01-27 | Sumitomo Rubber Ind | Rigid core for forming tire |
EP3308925A4 (en) * | 2015-06-09 | 2018-05-30 | Bridgestone Corporation | Rubber article mold and method for producing rubber article mold |
US11702555B2 (en) | 2014-11-12 | 2023-07-18 | The Yokohama Rubber Co., Ltd. | Pneumatic tire, manufacturing device for pneumatic tire, and method of manufacturing pneumatic tire |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6242146B2 (en) * | 2013-10-10 | 2017-12-06 | 住友ゴム工業株式会社 | Rigid core for forming tire, and tire manufacturing method using the same |
JP6251084B2 (en) * | 2014-03-07 | 2017-12-20 | 住友ゴム工業株式会社 | Rigid core for tire formation |
JP6212413B2 (en) * | 2014-03-07 | 2017-10-11 | 住友ゴム工業株式会社 | Rigid core for tire formation |
JP6586767B2 (en) * | 2015-04-23 | 2019-10-09 | 横浜ゴム株式会社 | Pneumatic tire manufacturing apparatus and manufacturing method |
JP6374779B2 (en) * | 2014-12-01 | 2018-08-15 | 住友ゴム工業株式会社 | Rigid core for tire formation |
JP6721700B2 (en) * | 2016-09-28 | 2020-07-15 | Toyo Tire株式会社 | Tire vulcanization mold |
CN108016058B (en) * | 2017-12-29 | 2020-06-19 | 山东豪迈机械科技股份有限公司 | Tire mold side plate and tire mold |
CN108162256B (en) * | 2017-12-29 | 2020-05-22 | 山东豪迈机械科技股份有限公司 | Tire mold side plate and tire mold |
CN108099235B (en) * | 2017-12-29 | 2020-07-07 | 山东豪迈机械科技股份有限公司 | Tire mold side plate and tire mold |
CN108582828B (en) * | 2018-05-18 | 2020-07-07 | 山东豪迈机械科技股份有限公司 | Tire mold side plate, tire mold and machining method |
JP6741097B1 (en) * | 2019-02-25 | 2020-08-19 | 横浜ゴム株式会社 | Tire vulcanizing apparatus and method |
TWI684539B (en) * | 2019-03-06 | 2020-02-11 | 特耐橡膠工業有限公司 | A tire with a tread venting groove and a molding thereof |
JP7234751B2 (en) * | 2019-04-03 | 2023-03-08 | 住友ゴム工業株式会社 | Tire vulcanizing method and tire vulcanizing apparatus |
CN111361132B (en) * | 2020-03-13 | 2022-02-18 | 淮阴工学院 | Mold for producing automotive carpet and using method thereof |
CN111391278B (en) * | 2020-03-13 | 2022-02-18 | 淮阴工学院 | Die for producing automotive carpet and using method thereof |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003340824A (en) * | 2002-05-27 | 2003-12-02 | Bridgestone Corp | Method for vulcanizing and molding tire, and mold for molding tire |
JP2006117115A (en) * | 2004-10-21 | 2006-05-11 | Toyota Motor Corp | Pneumatic tire |
JP2011161896A (en) * | 2010-02-15 | 2011-08-25 | Sumitomo Rubber Ind Ltd | Manufacturing method of pneumatic tire, and rigid core used for the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE7900203L (en) * | 1978-03-08 | 1979-09-08 | Gen Tire & Rubber Co | SET AND DEVICE FOR MOLDING AND WALLING RUBBER DECK |
JPH10138249A (en) * | 1996-11-11 | 1998-05-26 | Yokohama Rubber Co Ltd:The | Mold for tire vulcanization molding |
JP5080871B2 (en) * | 2007-06-08 | 2012-11-21 | 住友ゴム工業株式会社 | Pneumatic tire and manufacturing method thereof |
WO2010044345A1 (en) * | 2008-10-15 | 2010-04-22 | 株式会社ブリヂストン | Vulcanizing mold and vulcanizing method |
-
2012
- 2012-01-18 JP JP2012008423A patent/JP5444385B2/en not_active Expired - Fee Related
- 2012-12-19 WO PCT/JP2012/082953 patent/WO2013108537A1/en active Application Filing
- 2012-12-19 CN CN201280016953.6A patent/CN103459131B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003340824A (en) * | 2002-05-27 | 2003-12-02 | Bridgestone Corp | Method for vulcanizing and molding tire, and mold for molding tire |
JP2006117115A (en) * | 2004-10-21 | 2006-05-11 | Toyota Motor Corp | Pneumatic tire |
JP2011161896A (en) * | 2010-02-15 | 2011-08-25 | Sumitomo Rubber Ind Ltd | Manufacturing method of pneumatic tire, and rigid core used for the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2823955A4 (en) * | 2012-03-07 | 2016-01-27 | Sumitomo Rubber Ind | Rigid core for forming tire |
US11702555B2 (en) | 2014-11-12 | 2023-07-18 | The Yokohama Rubber Co., Ltd. | Pneumatic tire, manufacturing device for pneumatic tire, and method of manufacturing pneumatic tire |
EP3308925A4 (en) * | 2015-06-09 | 2018-05-30 | Bridgestone Corporation | Rubber article mold and method for producing rubber article mold |
US10486339B2 (en) | 2015-06-09 | 2019-11-26 | Bridgestone Corporation | Rubber article mold and method for manufacturing rubber article mold |
Also Published As
Publication number | Publication date |
---|---|
JP2013146905A (en) | 2013-08-01 |
JP5444385B2 (en) | 2014-03-19 |
CN103459131A (en) | 2013-12-18 |
CN103459131B (en) | 2016-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013108537A1 (en) | Rigid core for tire formation | |
US9492980B2 (en) | Tire mold and tire | |
JP5613198B2 (en) | Tire vulcanization mold | |
JP5698694B2 (en) | Rigid core for tire formation | |
JP2013154660A (en) | Pneumatic tire and method of manufacturing the same | |
JP2008273084A (en) | Tire vulcanization mold and pneumatic tire vulcanized by the same | |
WO2013132884A1 (en) | Rigid core for forming tire | |
WO2020013210A1 (en) | Heavy-duty pneumatic tire and manufacturing method thereof | |
EP3045301B1 (en) | Rigid core for tire forming, and tire manufacturing method using same | |
JP2009101558A (en) | Method for manufacturing pneumatic tire | |
US9144947B2 (en) | Rigid core for forming tire | |
JP2009286177A (en) | Manufacturing method for tire with lug, raw tire, and tire with lug | |
JP6212413B2 (en) | Rigid core for tire formation | |
JP5066220B2 (en) | Pneumatic tire and manufacturing method thereof | |
JP6720700B2 (en) | Vulcanization mold for tire and method for manufacturing pneumatic tire using the same | |
JP7363363B2 (en) | Tire vulcanization mold and tire manufacturing method | |
JP5860949B2 (en) | Tire molding mold and tire | |
WO2014054405A1 (en) | Rigid core and pneumatic tire manufacturing method using same | |
JP2021049765A (en) | Tire-vulcanizing mold, and method for manufacturing tire | |
JP2016107763A (en) | Pneumatic tire and method for production thereof | |
JP2007015278A (en) | Bladder for tire and manufacturing method of tire | |
JP2016101882A (en) | Pneumatic tire and method for production thereof | |
JP2008037156A (en) | Pneumatic tire and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12866035 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12866035 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |