JP6374779B2 - Rigid core for tire formation - Google Patents

Rigid core for tire formation Download PDF

Info

Publication number
JP6374779B2
JP6374779B2 JP2014243492A JP2014243492A JP6374779B2 JP 6374779 B2 JP6374779 B2 JP 6374779B2 JP 2014243492 A JP2014243492 A JP 2014243492A JP 2014243492 A JP2014243492 A JP 2014243492A JP 6374779 B2 JP6374779 B2 JP 6374779B2
Authority
JP
Japan
Prior art keywords
tire
coating layer
molding surface
core
tread
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014243492A
Other languages
Japanese (ja)
Other versions
JP2016104549A (en
Inventor
有 野坂
有 野坂
博幸 鬼松
博幸 鬼松
圭 小原
圭 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2014243492A priority Critical patent/JP6374779B2/en
Publication of JP2016104549A publication Critical patent/JP2016104549A/en
Application granted granted Critical
Publication of JP6374779B2 publication Critical patent/JP6374779B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、生タイヤの成形性を維持しながら、加硫後のタイヤからの中子セグメントの引き出し力を減じ、中子本体の分解取り出し作業を迅速化しうるタイヤ形成用の剛性中子に関する。   The present invention relates to a rigid core for forming a tire that can reduce the pulling-out force of a core segment from a vulcanized tire while maintaining the moldability of a green tire, and can expedite the operation of taking out and removing the core body.

近年、タイヤの形成精度を高めるため、剛性中子を用いたタイヤ形成方法(以下「中子工法」という場合がある。)が提案されている(例えば特許文献1、2参照。)。この剛性中子は、加硫済みタイヤのタイヤ内腔面の形状に合った外形形状を有する中子本体を具え、この中子本体上でタイヤ構成部材を順次貼り付けることにより、生タイヤが形成される。そしてこの生タイヤを剛性中子ごと加硫金型内に投入することにより、内型である中子本体と外型である加硫金型との間に挟まれて、生タイヤが加硫成形される。   In recent years, a tire forming method using a rigid core (hereinafter sometimes referred to as “core method”) has been proposed in order to increase the formation accuracy of the tire (see, for example, Patent Documents 1 and 2). This rigid core has a core body having an outer shape that matches the shape of the tire lumen surface of the vulcanized tire, and a tire component is sequentially pasted on the core body to form a raw tire. Is done. The raw tire is inserted into the vulcanization mold together with the rigid core, so that the raw tire is vulcanized and molded between the inner core body and the outer vulcanization mold. Is done.

又図7(A)、(B)に示すように、前記中子工法では、加硫成形後のタイヤT1から中子本体aを取り出すために、前記中子本体aは、周方向に分割された複数の中子セグメントcによって形成されている。そして分割された中子セグメントcは、1つずつ半径方向内側に引き出され、タイヤT1のビード孔T1aから取り出される。   7A and 7B, in the core method, the core body a is divided in the circumferential direction in order to take out the core body a from the tire T1 after vulcanization molding. And a plurality of core segments c. Then, the divided core segment c is pulled out inward in the radial direction one by one and taken out from the bead hole T1a of the tire T1.

しかしながら、加硫後のタイヤT1の内表面Tsは、中子本体aの外表面であるタイヤ成形面asに密着している。そのため、中子セグメントcの引き出しに大きな力Fが必要となり、無理に引き出した場合には、タイヤT1に傷や変形を招きタイヤ品質を損ねる恐れが生じる。そのため、従来においては、中子セグメントcの分割数を増やして、中子セグメントcの1つ当たりの引き出し力Fを減じたり、又ゆっくりと引き出すことが行われている。しかしこの場合、中子本体全体における分解取り出し時間が長くなり、生産効率の低下を招く。   However, the inner surface Ts of the tire T1 after vulcanization is in close contact with the tire molding surface as which is the outer surface of the core body a. Therefore, a large force F is required for pulling out the core segment c. If the core segment c is pulled out forcibly, the tire T1 may be damaged or deformed, and the tire quality may be impaired. For this reason, conventionally, the number of divisions of the core segment c is increased to reduce the drawing force F per core segment c or to slowly draw out. However, in this case, the time required for disassembling and taking out the entire core body is increased, leading to a reduction in production efficiency.

そこで本発明者は、中子本体aのタイヤ成形面asにゴム離型性を有するコーティング層を形成し、加硫後のタイヤT1からの剥離性を高めることを提案した。しかし、ゴム離型性を有するコーティング層は、一般に、未加硫のゴムに対しても高い剥離性を発揮する。従って、タイヤ成形面asにコーティング層を形成した場合、生タイヤ形成時には、タイヤ成形面asに未加硫のタイヤ構成部材を粘着して保持させることが難くなり、生タイヤの成形性を損ねるという新たな問題が発生する。   Therefore, the present inventor has proposed that a coating layer having rubber releasability is formed on the tire molding surface “as” of the core body “a” to improve the releasability from the tire T1 after vulcanization. However, the coating layer having rubber releasability generally exhibits high releasability even for unvulcanized rubber. Therefore, when the coating layer is formed on the tire molding surface as, it becomes difficult to adhere and hold an unvulcanized tire constituent member on the tire molding surface as at the time of raw tire formation, which impairs the moldability of the raw tire. New problems arise.

特開2011−161896号公報JP 2011-161896 A 特開2011−167979号公報JP 2011-167799 A

そこで本発明は、タイヤ成形面のうちのトレッド成形面部とサイド成形面部とで、コーティング層のゴム離型性を違えることを基本として、生タイヤの成形性を維持しながら、加硫後のタイヤから中子本体を迅速に分解して取り出すことが可能となり、タイヤの生産効率を向上しうるタイヤ形成用の剛性中子を提供することを目的としている。   Accordingly, the present invention provides a tire after vulcanization while maintaining the moldability of the raw tire, based on the difference in rubber release properties of the coating layer between the tread molding surface portion and the side molding surface portion of the tire molding surface. It is an object of the present invention to provide a rigid core for forming a tire that can quickly disassemble and take out the core body and improve the production efficiency of the tire.

本発明は、 生タイヤを形成するタイヤ成形面を外表面に有する環状の中子本体を具え、かつ生タイヤごと加硫金型内に投入されることにより、該加硫金型と中子本体との間で前記生タイヤを加硫成形する剛性中子であって、
前記中子本体は、周方向に分割される複数の中子セグメントからなり、
かつ前記タイヤ成形面に、ゴム離型性を有するコーティング層が形成されるとともに、
前記タイヤ成形面は、タイヤのトレッド部の内表面を成形するトレッド成形面部と、その両側に配されるサイド成形面部とを具え、
かつ前記コーティング層は、前記トレッド成形面部に形成されるトレッドコーティング層部と、前記サイド成形面部に形成されるサイドコーティング層部とを具え、
しかも前記トレッドコーティング層部は、前記サイドコーティング層部よりもゴム離型性が大であることを特徴としている。
The present invention includes an annular core body having an outer surface having a tire molding surface for forming a green tire, and the raw tire is put into a vulcanization mold so that the vulcanization mold and the core body are provided. A rigid core for vulcanizing the green tire with
The core body is composed of a plurality of core segments divided in the circumferential direction,
And a coating layer having rubber releasability is formed on the tire molding surface,
The tire molding surface includes a tread molding surface portion that molds an inner surface of a tire tread portion, and side molding surface portions arranged on both sides thereof.
And the coating layer comprises a tread coating layer portion formed on the tread molding surface portion, and a side coating layer portion formed on the side molding surface portion,
In addition, the tread coating layer portion has a rubber release property larger than that of the side coating layer portion.

本発明は叙上の如く、中子本体のタイヤ成形面に、ゴム離型性を有するコーティング層を形成している。しかも前記コーティング層は、タイヤ成形面のうちのトレッド成形面部に形成されるトレッドコーティング層部と、サイド成形面部に形成されるサイドコーティング層部とを具えるとともに、トレッドコーティング層部のゴム離型性を、サイドコーティング層部のゴム離型性よりも大としている。   In the present invention, as described above, a coating layer having rubber releasability is formed on the tire molding surface of the core body. Moreover, the coating layer includes a tread coating layer portion formed on the tread molding surface portion of the tire molding surface and a side coating layer portion formed on the side molding surface portion, and a rubber release of the tread coating layer portion. The property is greater than the rubber releasability of the side coating layer.

トレッド成形面部は、中子セグメントの引き出し方向(半径方向)に対してほぼ直角に向くとともに、タイヤ内表面との接触面積が大きい。従って、中子セグメントの引き出しに対しての影響が大きい。逆に、サイド成形面部は、半径方向線に対して急勾配をなすため、生タイヤを形成する際、未加硫のタイヤ形成部材を粘着して保持させることが難しい。即ち、生タイヤの成形性に対する影響が大きい。   The tread molding surface portion is substantially perpendicular to the drawing direction (radial direction) of the core segment and has a large contact area with the tire inner surface. Therefore, the influence on the extraction of the core segment is large. On the other hand, the side molding surface portion has a steep slope with respect to the radial line, so that it is difficult to adhere and hold an unvulcanized tire forming member when forming a green tire. That is, the influence on the moldability of the green tire is great.

従って、トレッド成形面部には、ゴム離型性が大なコーティング層部を形成し、逆にサイド成形面部には、ゴム離型性が小なコーティング層部を形成することで、生タイヤの成形性を維持しながら、加硫後のタイヤからの中子本体の分解取り出し作業を迅速化することが可能となり、タイヤの生産効率を向上させることができる。   Therefore, forming a coating layer portion having a large rubber release property on the tread molding surface portion, and conversely forming a coating layer portion having a small rubber release property on the side molding surface portion, thereby forming a raw tire. It is possible to expedite the work of disassembling and removing the core body from the vulcanized tire while maintaining the properties, and the tire production efficiency can be improved.

本発明の剛性中子の使用状態を示す断面図である。It is sectional drawing which shows the use condition of the rigid core of this invention. 中子本体の斜視図である。It is a perspective view of a core main body. 中子本体の側面図である。It is a side view of a core main body. タイヤ成形面を説明する断面図である。It is sectional drawing explaining a tire molding surface. 加硫タイヤからの中子セグメントの取出し方法を説明する概念図である。It is a conceptual diagram explaining the extraction method of the core segment from a vulcanized tire. (A)、(B)は、コーティング層のゴム離型性を評価する評価テストを説明する概念図である。(A), (B) is a conceptual diagram explaining the evaluation test which evaluates the rubber release property of a coating layer. (A)、(B)は従来の中子本体の問題点を説明する側面図、及び断面図である。(A), (B) is the side view explaining the problem of the conventional core main body, and sectional drawing.

以下、本発明の実施の形態について、詳細に説明する。
図1に示すように、本実施形態のタイヤ形成用の剛性中子1は、外表面にタイヤ成形面Sを有する環状の中子本体2を具える。そして、このタイヤ成形面S上に、カーカスプライ、ベルトプライ、サイドウォールゴム、トレッドゴム等のタイヤ構成部材を順次貼り付けることにより、仕上がりタイヤとほぼ同形状の生タイヤTが形成される。又前記生タイヤTを、剛性中子1ごと加硫金型B内に投入することにより、内型である中子本体2と外型である加硫金型Bとの間で前記生タイヤTを加硫成形する。前記タイヤ成形面Sは、仕上がりタイヤの内面形状とほぼ同形状に形成されている。
Hereinafter, embodiments of the present invention will be described in detail.
As shown in FIG. 1, the rigid core 1 for forming a tire according to the present embodiment includes an annular core body 2 having a tire molding surface S on the outer surface. Then, tire constituent members such as a carcass ply, a belt ply, a sidewall rubber, and a tread rubber are sequentially attached on the tire molding surface S, thereby forming a green tire T having substantially the same shape as the finished tire. Further, by putting the raw tire T together with the rigid core 1 into the vulcanizing mold B, the raw tire T is interposed between the core body 2 which is the inner mold and the vulcanizing mold B which is the outer mold. Is vulcanized. The tire molding surface S is formed in substantially the same shape as the inner surface shape of the finished tire.

前記剛性中子1は、環状の前記中子本体2と、その中心孔2Hに内挿される円筒状のコア3とを含んで構成されるが、前記中子本体2以外は、従来的な周知構造を採用できる。従って、以下に前記中子本体2のみ説明する。   The rigid core 1 includes an annular core body 2 and a cylindrical core 3 that is inserted into the center hole 2H. Other than the core body 2, the rigid core 1 is conventionally known. The structure can be adopted. Therefore, only the core body 2 will be described below.

本例の中子本体2は、その内部に例えば周方向に連続してのびる内腔部4を具えた中空状をなし、その内腔部4内に前記生タイヤTを内側加熱する例えば電気ヒータなどの加熱手段(図示しない。)を配置している。   The core body 2 of the present example has a hollow shape with a lumen portion 4 extending continuously in the circumferential direction in the inside thereof, for example, an electric heater that heats the raw tire T inside the lumen portion 4. Such heating means (not shown) are arranged.

前記中子本体2は、図2に示すように、周方向に分割される複数の中子セグメント5から形成される。そして、各中子セグメント5は、その周方向両端面を合わせ面6とし、周方向で隣り合う合わせ面6、6同士を互いに付き合わすことにより前記中子本体2が環状に形成される。   As shown in FIG. 2, the core body 2 is formed of a plurality of core segments 5 divided in the circumferential direction. Each core segment 5 has both end surfaces in the circumferential direction as mating surfaces 6, and the mating surfaces 6 adjacent to each other in the circumferential direction are attached to each other to form the core body 2 in an annular shape.

本例では、前記中子セグメント5は、周方向に交互に配される第1、第2の中子セグメント5A、5Bから構成される。前記第1の中子セグメント5Aは、周方向両端の合わせ面6Aが、半径方向内方に向かって周方向巾が増加する向きに傾斜している。これに対して第2の中子セグメント5Bは、周方向両端の合わせ面6Bが、半径方向内方に向かって周方向巾が減じる向きに傾斜している。これにより図3に示すように、前記第1の中子セグメント5Aから順に半径方向内側に移動でき、加硫成形後、加硫タイヤのビード孔から順次分解して取り出すことができる。なお前記コア3は、各中子セグメント5の半径方向内側への移動を阻止し、各中子セグメント5を一体連結させる機能を有する。   In this example, the core segment 5 includes first and second core segments 5A and 5B that are alternately arranged in the circumferential direction. In the first core segment 5A, the mating surfaces 6A at both ends in the circumferential direction are inclined so that the circumferential width increases inward in the radial direction. On the other hand, in the second core segment 5B, the mating surfaces 6B at both ends in the circumferential direction are inclined in such a direction that the circumferential width decreases toward the inside in the radial direction. As a result, as shown in FIG. 3, the first core segment 5A can move inward in the radial direction in order, and after vulcanization molding, it can be sequentially disassembled and taken out from the bead hole of the vulcanized tire. The core 3 has a function of preventing the core segments 5 from moving inward in the radial direction and connecting the core segments 5 together.

そして本発明では、図4に示すように、前記タイヤ成形面Sに、ゴム離型性を有するコーティング層11を形成している。   In the present invention, as shown in FIG. 4, a coating layer 11 having rubber releasability is formed on the tire molding surface S.

前記コーティング層11としては、フッ素系樹脂、シロキサン系樹脂等の離型性に優れた有機系材料が採用しうる。しかし耐摩耗性、硬度、離型性の観点から、前記有機系材料と、金属、セラミックス、化成皮膜といった無機材料とを組み合わせたものが好適に採用しうる。このようなものとして、例えば商品名バイコート((株)吉田SKT)が挙げられる。このバイコートは、ニッケル系金属皮膜、クロム系金属皮膜、アルミナ皮膜、化成皮膜、及び金属やセラミックの溶射皮膜中に、フッ素系樹脂、シロキサン系樹脂等の有機系材料を分散混合させた複合皮膜として形成される。具体的には、ニッケル系金属皮膜にフッ素系樹脂を複合したNYKシリーズ、クロム系金属被膜にフッ素系樹脂を複合したNOOシリーズ、金属基材中の鉄イオンと反応させた化成被膜中にフッ素系樹脂を融合したTYSシリーズ、アルミナ被膜にフッ素系樹脂を複合したNYNシリーズ、金属被膜にシロキサン系樹脂を複合したCTTシリーズが挙げられる。   As the coating layer 11, an organic material having excellent releasability such as a fluorine resin or a siloxane resin can be employed. However, a combination of the organic material and an inorganic material such as a metal, ceramics, or chemical conversion film can be suitably employed from the viewpoint of wear resistance, hardness, and releasability. As such a thing, a brand name Vicoat (Corporation Yoshida SKT) is mentioned, for example. This bicoat is a composite film in which organic materials such as fluorine-based resins and siloxane-based resins are dispersed and mixed in nickel-based metal coatings, chromium-based metal coatings, alumina coatings, chemical conversion coatings, and thermal spray coatings of metals and ceramics. It is formed. Specifically, the NYK series with a fluorine-based resin combined with a nickel-based metal film, the NOO series with a fluorine-based resin combined with a chromium-based metal film, and a fluorine-based film in a chemical conversion film reacted with iron ions in a metal substrate Examples include the TYS series in which a resin is fused, the NYN series in which a fluorine-based resin is combined with an alumina coating, and the CTT series in which a siloxane-based resin is combined with a metal coating.

これ以外にも、例えばニッケル合金層の微細孔にフッ素樹脂を含浸して硬く結合させた複合皮膜である商品名ニダックス(アルバックテクノ(株))、及びニッケル皮膜中に、フッ素樹脂の微粒子を均一に分散共析させた複合皮膜である商品名カニフロン(日本カニゼン(株))等も挙げられる。   In addition to this, for example, Nidax (ULVAC Techno Co., Ltd.), which is a composite film in which fine pores of a nickel alloy layer are impregnated with a fluororesin and bonded firmly, and fine particles of fluororesin are uniformly distributed in the nickel film. The trade name Kaniflon (Nippon Kanisen Co., Ltd.), which is a composite film dispersed and co-deposited in the material, is also included.

前記タイヤ成形面Sは、タイヤTのトレッド部Taの内表面を成形するトレッド成形面部S1と、その両側に配されるサイド成形面部S2、S2とから構成される。前記サイド成形面部S2は、タイヤTのサイドウォール部Tbとビード部Tcとの各内表面を成形する。   The tire molding surface S includes a tread molding surface portion S1 that molds the inner surface of the tread portion Ta of the tire T, and side molding surface portions S2 and S2 disposed on both sides thereof. The side molding surface portion S2 molds the inner surfaces of the sidewall portion Tb and the bead portion Tc of the tire T.

前記トレッド成形面部S1とサイド成形面部S2との境界Q1は、下記に規定するショルダー領域Y1内に位置する。詳しくは、タイヤ成形面Sと直角な法線のうちで、半径方向線に対する角度αが30°となる法線を基準線X1とする。又、タイヤ成形面Sがタイヤ軸方向外側に最も張り出す最大巾点Pmを通るタイヤ軸方向線と、前記基準線X1との交点を基準点P1とする。そして、前記基準点P1を通る直線のうちで前記基準線X1に対してタイヤ軸方向内側に15°の角度傾く内の境界線y1iと、タイヤ軸方向外側に15°の角度傾く外の境界線y1oとの間の領域を、前記ショルダー領域Y1とする。   A boundary Q1 between the tread molding surface portion S1 and the side molding surface portion S2 is located in a shoulder region Y1 defined below. Specifically, among the normal lines perpendicular to the tire molding surface S, the normal line having an angle α with respect to the radial line of 30 ° is defined as the reference line X1. Further, an intersection of the tire axial direction line passing through the maximum width point Pm where the tire molding surface S extends most outward in the tire axial direction and the reference line X1 is defined as a reference point P1. Among the straight lines passing through the reference point P1, an inner boundary line y1i inclined at an angle of 15 ° inward in the tire axial direction with respect to the reference line X1 and an outer boundary line inclined at an angle of 15 ° outward in the tire axial direction A region between y1o is referred to as the shoulder region Y1.

又本例のサイド成形面部S2は、半径方向外側の外サイド面部S2oと、半径方向内側の内サイド面部S2iとに区分されている。又、前記外サイド面部S2oと内サイド面部S2iとの境界Q2は、下記に規定するサイド領域Y2内に位置する。詳しくは、前記最大巾点Pmを通るタイヤ軸方向線を基準線X2とし、前記最大巾点Pmにおけるサイド成形面部S2の曲率半径中心点をP2とする。そして前記曲率半径中心点P2を通る直線のうちで、前記基準線X2に対して半径方向内側に15°の角度傾く内の境界線y2iと、半径方向外側に15°の角度傾く外の境界線y2oとの間の領域を、前記サイド領域Y2とする。   Further, the side molding surface portion S2 of this example is divided into an outer side surface portion S2o on the radially outer side and an inner side surface portion S2i on the radially inner side. The boundary Q2 between the outer side surface portion S2o and the inner side surface portion S2i is located in a side region Y2 defined below. Specifically, a tire axial direction line passing through the maximum width point Pm is defined as a reference line X2, and a center point of curvature radius of the side molding surface portion S2 at the maximum width point Pm is defined as P2. Of the straight lines passing through the radius of curvature center point P2, an inner boundary line y2i inclined at an angle of 15 ° radially inward with respect to the reference line X2 and an outer boundary line inclined at an angle of 15 ° radially outward. A region between y2o is referred to as the side region Y2.

図5に示すように、トレッド成形面部S1は、中子セグメント5の引き出し方向(半径方向)に対してほぼ直角に向くとともに、タイヤ内表面との接触面積が大きい。従って、中子セグメント5の引き出しに対しての影響が大きい。逆に、サイド成形面部S2は、半径方向線に対して急勾配をなすため、生タイヤTを形成する際、未加硫のタイヤ形成部材を粘着して保持させることが難しい。即ち、生タイヤの成形性に対しての影響が大きい。   As shown in FIG. 5, the tread molding surface portion S <b> 1 is substantially perpendicular to the drawing direction (radial direction) of the core segment 5 and has a large contact area with the tire inner surface. Accordingly, the influence on the withdrawal of the core segment 5 is great. On the contrary, since the side molding surface portion S2 has a steep slope with respect to the radial line, it is difficult to adhere and hold the unvulcanized tire forming member when the green tire T is formed. That is, the influence on the moldability of the raw tire is great.

従って本発明では、コーティング層11のうち、トレッド成形面部S1に形成されるトレッドコーティング層部11Aのゴム離型性を、サイド成形面部S2に形成されるサイドコーティング層部11Bのゴム離型性よりも大に設定している。これにより、中子セグメント5の引き出し性と、生タイヤの成形性との両立を図ることが可能となる。即ち、生タイヤの成形性を維持しながら、加硫タイヤT1からの中子セグメントcの引き出し力Fを減じることができ、中子本体の分解取り出し作業を迅速化して、タイヤの生産効率を向上させることができる。   Therefore, in the present invention, the rubber releasability of the tread coating layer portion 11A formed on the tread molding surface portion S1 in the coating layer 11 is determined from the rubber releasability of the side coating layer portion 11B formed on the side molding surface portion S2. Also set to large. This makes it possible to achieve both the drawability of the core segment 5 and the green tire moldability. That is, while maintaining the formability of the green tire, the pulling force F of the core segment c from the vulcanized tire T1 can be reduced, and the work for disassembling and taking out the core body can be expedited to improve tire production efficiency. Can be made.

又同図5に示すように、加硫タイヤT1から中子セグメント5を取り出す際、加硫タイヤT1のビード部Tcをタイヤ軸方向外側に押し広げながら、中子セグメント5は引き出される。そのため前記引き出し時、前記サイドコーティング層部11Bでは、ビード部Tcとの擦れが強くなり、コーティング皮膜に摩耗や剥がれが発生しやすくなる。従って、サイドコーティング層部11Bは、前記トレッドコーティング層部11Aよりも硬度が大なコーティング層部分を含むことが好ましい。   As shown in FIG. 5, when the core segment 5 is taken out from the vulcanized tire T1, the core segment 5 is pulled out while pushing the bead portion Tc of the vulcanized tire T1 outward in the tire axial direction. Therefore, at the time of the drawing, the side coating layer portion 11B is strongly rubbed with the bead portion Tc, and the coating film is likely to be worn or peeled off. Therefore, the side coating layer portion 11B preferably includes a coating layer portion having a hardness higher than that of the tread coating layer portion 11A.

特に、内サイド面部S2iでは、外サイド面部S2oに比してビード部Tcとの擦れが強い。従って、サイドコーティング層部11Bのうち、内サイド面部S2iに形成される内サイドコーティング層部分11Biの硬度を、外サイド面部S2oに形成される外サイドコーティング層部分11Boの硬度よりも大に設定するのが好ましい。   In particular, the inner side surface portion S2i is more rubbed with the bead portion Tc than the outer side surface portion S2o. Therefore, in the side coating layer portion 11B, the hardness of the inner side coating layer portion 11Bi formed on the inner side surface portion S2i is set larger than the hardness of the outer side coating layer portion 11Bo formed on the outer side surface portion S2o. Is preferred.

即ち本例では、コーティング層11を、トレッド成形面部S1に配されるトレッドコーティング層部11Aと、サイド成形面部S2に配されるサイドコーティング層部11Bとに区分するとともに、サイドコーティング層部11Bを、内サイド面部S2iに配される内サイドコーティング層部分11Biと、外サイド面部S2oに配される外サイドコーティング層部分11Boとに区分している。   That is, in this example, the coating layer 11 is divided into a tread coating layer portion 11A disposed on the tread molding surface portion S1 and a side coating layer portion 11B disposed on the side molding surface portion S2, and the side coating layer portion 11B is divided. The inner side coating layer portion 11Bi disposed on the inner side surface portion S2i and the outer side coating layer portion 11Bo disposed on the outer side surface portion S2o are divided.

そして前記トレッドコーティング層部11Aのゴム離型性を、サイドコーティング層部11Bのゴム離型性よりも大としている。又サイドコーティング層部11Bのうち、内サイドコーティング層部分11Biの硬度を、外サイドコーティング層部分11Boの硬度よりも大としている。なお一般に、硬度が大なコーティング皮膜は、硬度が小なコーティング皮膜に比してゴム離型性に劣る傾向がある。従って、本例では、内サイドコーティング層部分11Biのゴム離型性は、外サイドコーティング層部分11Boよりも小となる。このことは、生タイヤ形成時、未加硫のタイヤ形成部材を内サイド面部S2iに粘着、保持させるのにも好適となる。   The rubber release property of the tread coating layer portion 11A is made larger than the rubber release property of the side coating layer portion 11B. In the side coating layer portion 11B, the hardness of the inner side coating layer portion 11Bi is larger than the hardness of the outer side coating layer portion 11Bo. In general, a coating film having a high hardness tends to be inferior in rubber releasability as compared with a coating film having a low hardness. Therefore, in this example, the rubber release property of the inner side coating layer portion 11Bi is smaller than that of the outer side coating layer portion 11Bo. This is also suitable for adhering and holding an unvulcanized tire forming member on the inner side surface portion S2i when forming a raw tire.

なおコーティング層の硬度は、JIS Z2244の「ビッカース硬さ試験−試験法」に記載の「マイクロビッカース硬さ試験」に準拠して測定した値で比較している。   The hardness of the coating layer is compared with a value measured according to “Micro Vickers Hardness Test” described in “Vickers Hardness Test—Test Method” of JIS Z2244.

又コーティング層のゴム剥離性は、下記の剥離テストによって評価することができる。図6(A)に示すように、上下の金型30、31を用いる。下の金型31の上面には、深さ15mm程度の凹部31aが設けられ、上の金型30の下面には、前記凹部31aに嵌り合う凸部30aが設けられる。前記凹部31aの底面には、表面にコーティング層を有する厚さ10mm程度の金属製のサンプル片32が配される。本例ではコーティングの種類を違えた複数のサンプル片32が配される。又サンプル片32の上面には、厚さ2mm程度の未加硫のゴムシート33が敷設される。そして上下の金型30、31間で前記サンプル片32とゴムシート33とを挟み込み、圧接しながら加熱加硫を行う。加硫条件は、例えば温度170℃、時間12分、圧力22kg/cm程度である。 The rubber peelability of the coating layer can be evaluated by the following peel test. As shown in FIG. 6A, upper and lower molds 30 and 31 are used. A concave portion 31a having a depth of about 15 mm is provided on the upper surface of the lower mold 31, and a convex portion 30a that fits into the concave portion 31a is provided on the lower surface of the upper mold 30. A metal sample piece 32 having a coating layer on the surface and having a thickness of about 10 mm is disposed on the bottom surface of the recess 31a. In this example, a plurality of sample pieces 32 having different coating types are arranged. An unvulcanized rubber sheet 33 having a thickness of about 2 mm is laid on the upper surface of the sample piece 32. The sample piece 32 and the rubber sheet 33 are sandwiched between the upper and lower molds 30 and 31, and heat vulcanization is performed while pressing. The vulcanization conditions are, for example, a temperature of 170 ° C., a time of 12 minutes, and a pressure of about 22 kg / cm 2 .

加硫後、図6(B)に示すように、サンプル片32から加硫後のゴムシート33を、手によって引き剥がす際の剥離性を、作業者の官能によって評価する。なおコーティング層において、加硫後のゴムとの剥離性の評価順位と、未加硫のゴムとの剥離性の評価順位とは、ほぼ同じである。   After vulcanization, as shown in FIG. 6B, the peelability when the rubber sheet 33 after vulcanization is peeled off from the sample piece 32 by hand is evaluated by the operator's sense. In the coating layer, the evaluation order of peelability from rubber after vulcanization and the evaluation rank of peelability from unvulcanized rubber are substantially the same.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

1 剛性中子
2 中子本体
5 中子セグメント
11 コーティング層
11A トレッドコーティング層部
11B サイドコーティング層部
B 加硫金型
S タイヤ成形面
S1 トレッド成形面部
S2 サイド成形面部
T 生タイヤ
DESCRIPTION OF SYMBOLS 1 Rigid core 2 Core body 5 Core segment 11 Coating layer 11A Tread coating layer part 11B Side coating layer part B Vulcanization mold S Tire molding surface S1 Tread molding surface part S2 Side molding surface part T Raw tire

Claims (1)

生タイヤを形成するタイヤ成形面を外表面に有する環状の中子本体を具え、かつ生タイヤごと加硫金型内に投入されることにより、該加硫金型と中子本体との間で前記生タイヤを加硫成形する剛性中子であって、
前記中子本体は、周方向に分割される複数の中子セグメントからなり、
かつ前記タイヤ成形面に、ゴム離型性を有するコーティング層が形成されるとともに、
前記タイヤ成形面は、タイヤのトレッド部の内表面を成形するトレッド成形面部と、その両側に配されるサイド成形面部とを具え、
かつ前記コーティング層は、前記トレッド成形面部に形成されるトレッドコーティング層部と、前記サイド成形面部に形成されるサイドコーティング層部とを具え、
しかも前記トレッドコーティング層部は、前記サイドコーティング層部よりもゴム離型性が大であることを特徴とするタイヤ形成用の剛性中子。
An annular core body having a tire molding surface for forming a green tire is provided on the outer surface, and the raw tire is inserted into the vulcanization mold so that the vulcanization mold and the core body A rigid core for vulcanizing the green tire,
The core body is composed of a plurality of core segments divided in the circumferential direction,
And a coating layer having rubber releasability is formed on the tire molding surface,
The tire molding surface includes a tread molding surface portion that molds an inner surface of a tire tread portion, and side molding surface portions arranged on both sides thereof.
And the coating layer comprises a tread coating layer portion formed on the tread molding surface portion, and a side coating layer portion formed on the side molding surface portion,
Moreover, the tire tread coating layer portion has a rubber release property greater than that of the side coating layer portion.
JP2014243492A 2014-12-01 2014-12-01 Rigid core for tire formation Active JP6374779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014243492A JP6374779B2 (en) 2014-12-01 2014-12-01 Rigid core for tire formation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014243492A JP6374779B2 (en) 2014-12-01 2014-12-01 Rigid core for tire formation

Publications (2)

Publication Number Publication Date
JP2016104549A JP2016104549A (en) 2016-06-09
JP6374779B2 true JP6374779B2 (en) 2018-08-15

Family

ID=56102236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014243492A Active JP6374779B2 (en) 2014-12-01 2014-12-01 Rigid core for tire formation

Country Status (1)

Country Link
JP (1) JP6374779B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734296A (en) * 1993-07-23 1995-02-03 Showa Denko Kk Composite film and its production and molding die therefor
BR0211536B1 (en) * 2002-05-31 2011-06-28 process for making a tire and toroidal support for making a raw tire on it.
JP4853577B2 (en) * 2010-03-30 2012-01-11 横浜ゴム株式会社 Pneumatic tire manufacturing method
JP5444385B2 (en) * 2012-01-18 2014-03-19 住友ゴム工業株式会社 Rigid core for tire formation
JP5681685B2 (en) * 2012-09-27 2015-03-11 住友ゴム工業株式会社 Rigid core and method for manufacturing pneumatic tire using the same
JP2014073620A (en) * 2012-10-03 2014-04-24 Sumitomo Rubber Ind Ltd Method of manufacturing rigid core and pneumatic tire
JP2014073619A (en) * 2012-10-03 2014-04-24 Sumitomo Rubber Ind Ltd Method of manufacturing rigid core and pneumatic tire

Also Published As

Publication number Publication date
JP2016104549A (en) 2016-06-09

Similar Documents

Publication Publication Date Title
JP5444385B2 (en) Rigid core for tire formation
JP5808991B2 (en) Tire vulcanizing mold
JP6374779B2 (en) Rigid core for tire formation
JP6251084B2 (en) Rigid core for tire formation
JP5406701B2 (en) Rigid core for tire vulcanization
JP6463102B2 (en) Rigid core for tire formation
WO2013001964A1 (en) Rigid core and manufacturing method for tire using same
EP3115167B1 (en) Rigid core for tire formation and tire production method using the same
JP2014162041A (en) Roller for pressing joint part of rubber member and joint method for rubber member
JP5723348B2 (en) Mold pin, tire mold to which mold pin is attached, and method for manufacturing pneumatic tire using the same
JP4093312B2 (en) Tire vulcanization mold
JP4604783B2 (en) Manufacturing method of rigid core for tire vulcanization and pneumatic tire
EP3117976A1 (en) Rigid core for tire molding and tire manufacturing method
JP5138344B2 (en) Vulcanizing mold and method for producing the same
JP6790599B2 (en) Tire vulcanization bladder and tire manufacturing method using it
JP5574496B2 (en) Transfer molding mold and microstructure manufacturing method
JP2018144467A (en) Rim for post-cure inflator and manufacturing method of the same
JP5788213B2 (en) Tire vulcanizing apparatus and tire manufacturing method
JP6031220B2 (en) Precured tread, method for producing retreaded tire using the precuretread, and retreaded tire
JP2014021163A (en) Manufacturing method for electrophotographic member of endless belt shape
JP2015182268A (en) tire vulcanizing mold and tire manufacturing method
JP2016101882A (en) Pneumatic tire and method for production thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171016

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180720

R150 Certificate of patent or registration of utility model

Ref document number: 6374779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250