JPH0734296A - Composite film and its production and molding die therefor - Google Patents

Composite film and its production and molding die therefor

Info

Publication number
JPH0734296A
JPH0734296A JP18308693A JP18308693A JPH0734296A JP H0734296 A JPH0734296 A JP H0734296A JP 18308693 A JP18308693 A JP 18308693A JP 18308693 A JP18308693 A JP 18308693A JP H0734296 A JPH0734296 A JP H0734296A
Authority
JP
Japan
Prior art keywords
rubber
film
composite
fluorine
molding die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18308693A
Other languages
Japanese (ja)
Inventor
Satoshi Negishi
悟史 根岸
Hiroshi Nakamura
洋 中村
Kunio Kashiwada
邦夫 柏田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP18308693A priority Critical patent/JPH0734296A/en
Publication of JPH0734296A publication Critical patent/JPH0734296A/en
Pending legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

PURPOSE:To improve the corrosion resistance and the releasing property of a composite film by preparing an eutectoid of a specified water-soluble fluorine- containing org. polymer in the NiSn alloy film which is used at the part of a metal mold in contact with rubber. CONSTITUTION:One or more kinds of water-insoluble fluorine-contained org. polymer selected from among polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, chlorotrifluoroethylene-alkylene copolymer, vinylidene fluoride-pentafluoropropylene copolymer is made into eutectoid in the NiSn alloy film. This composite film is subjected to a vacuum heat treatment at about 270-370 deg.C. The average grain size of the fluorine-containing org. polymer is preferably 2-8mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、エチレン・プロピレン
・ジエン・メチレンゴム(以下EPDMという)、イソ
ブチレン・イソプレンゴム(以下IIRという)、ポリ
イソブチレンゴム、天然ゴム、スチレン・ブタジエンゴ
ム(SBR)、クロロプレンゴム(CR)、ニトリルゴ
ム(NBR)等のゴムの成形に用いられる耐蝕性、離型
性に優れた複合皮膜とその製造方法並びに成形用金型に
関するものである。
BACKGROUND OF THE INVENTION The present invention relates to ethylene / propylene / diene / methylene rubber (hereinafter referred to as EPDM), isobutylene / isoprene rubber (hereinafter referred to as IIR), polyisobutylene rubber, natural rubber, styrene / butadiene rubber (SBR), The present invention relates to a composite film having excellent corrosion resistance and mold releasability used for molding rubber such as chloroprene rubber (CR) and nitrile rubber (NBR), a method for producing the same, and a molding die.

【0002】[0002]

【従来の技術】ゴム類は、主として自動車を対象とした
ホース類、ウェザーストリップ、シール材、ベローズ等
の車両部品、一般のベルト、タイヤ、チューブ等の分野
で広く使用されている。
Rubbers are widely used mainly in the fields of automobiles such as hoses, weather strips, sealing materials, vehicle parts such as bellows, general belts, tires and tubes.

【0003】これらの各種用途における部品を成形する
金型は、鉄、ステンレス等によって造られており、表面
処理には通常工業用クロムメッキが施されている。この
工業用クロムメッキは、鉄、ステンレス等の表面の耐磨
耗性、耐蝕性、耐熱性、離型性等を改良するために施さ
れているものである。
Molds for molding parts for these various uses are made of iron, stainless steel or the like, and the surface treatment is usually performed by industrial chrome plating. This industrial chrome plating is applied to improve the wear resistance, corrosion resistance, heat resistance, releasability, etc. of the surface of iron, stainless steel or the like.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、ゴムを
成形する場合、金型の内面に工業用クロムメッキを施し
たのみでは耐久性が不充分である。特に、EPDMを成
形する場合、耐蝕性、離型性等の面で十分な性能が得ら
れない。耐蝕性が低いと腐食による錆や、かすが発生
し、また、配合薬品、重合体中の非ゴム成分などの堆積
による汚染が原因となって離型性の点で不満足となる。
これらは、ゴム製品の良し悪し、および生産性に直接影
響を与える因子であるので、その解決が強く望まれてい
る。
However, when molding rubber, the durability is insufficient only by applying the industrial chrome plating to the inner surface of the mold. In particular, when molding EPDM, sufficient performance cannot be obtained in terms of corrosion resistance and releasability. If the corrosion resistance is low, rust and dross will be generated due to corrosion, and contamination due to the deposition of compounded chemicals, non-rubber components in the polymer, etc. will cause unsatisfactory release properties.
Since these are factors that directly affect the quality of rubber products and productivity, their solution is strongly desired.

【0005】従来行なわれている金型汚染に対する解決
方法として、一定成形回数毎に、金型内面に付着した薬
剤や重合物中の非ゴム成分等の付着堆積物を溶剤洗浄或
いは機械的に除去したりする煩雑な方法で対処してい
る。また、離型性については、離型剤の使用によって対
処しているが、手間がかかって生産性が低下したり、型
冷やしや不良品の発生などの問題があった。
As a conventional solution to mold contamination, a fixed amount of molding is performed by solvent cleaning or mechanical removal of chemicals adhering to the inner surface of the mold and non-rubber components in the polymer. You are dealing with it in a complicated way. Further, the mold releasability is dealt with by using a mold release agent, but there have been problems that it takes time and labor, productivity is lowered, mold cooling and defective products occur.

【0006】本発明者らは、生産性の低下、不良品の上
昇などから見て、ゴムの成形用金型は、金型の耐蝕性、
離型性の面で改良しなければならない点があると考え
て、鋭意研究を重ねた結果、NiSn合金に水不溶性フ
ッ素系有機高分子化合物を共析させた複合皮膜がゴムに
対する耐蝕性、離型性の点で極めて優れていることを知
見した。本発明は前記知見に基づいてなされたもので、
耐蝕性、離型性等が優れた複合皮膜とその製造方法並び
に成形用金型を提供することを目的とする。
The inventors of the present invention have found that the mold for molding rubber has a corrosion resistance of the mold in view of a decrease in productivity and an increase in defective products.
Considering that there is a point that must be improved in terms of releasability, as a result of intensive studies, a composite coating of a NiSn alloy with a water-insoluble fluorine-based organic polymer compound was found to have corrosion resistance to rubber, It was found that it is extremely excellent in terms of moldability. The present invention is based on the above findings,
An object of the present invention is to provide a composite film having excellent corrosion resistance, releasability, etc., a method for producing the same, and a molding die.

【0007】[0007]

【課題を解決するための手段】請求項1記載の複合皮膜
は、NiSn合金皮膜中に、ポリテトラフルオロエチレ
ン、ポリクロロトリフルオロエチレン、ポリフッ化ビニ
リデン、テトラフルオロエチレン−ヘキサフルオロプロ
ピレン共重合体、テトラフルオロエチレン−エチレン共
重合体、クロロトリフルオロエチレン−アルキレン共重
合体、フッ化ビニリデン−ペンタフルオロプロピレン共
重合体から選ばれる1種又は2種以上の水不溶性フッ素
系有機高分子を共析させてなることを特徴とするもので
ある。
The composite coating according to claim 1 is a NiSn alloy coating containing polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, a tetrafluoroethylene-hexafluoropropylene copolymer, Co-deposit one or more water-insoluble fluorine-based organic polymers selected from tetrafluoroethylene-ethylene copolymer, chlorotrifluoroethylene-alkylene copolymer, vinylidene fluoride-pentafluoropropylene copolymer It is characterized by

【0008】請求項2記載の複合皮膜の製造方法は、請
求項1記載の複合皮膜を270〜370℃の温度で真空
熱処理することを特徴とするものである。請求項3記載
の成形用金型は、請求項1記載の複合皮膜を、少なくと
も成形用金型のゴムが接触する部分に用いてなることを
特徴とするものである。
A method for producing a composite coating according to claim 2 is characterized in that the composite coating according to claim 1 is subjected to vacuum heat treatment at a temperature of 270 to 370 ° C. A molding die according to claim 3 is characterized in that the composite coating film according to claim 1 is used in at least a portion of the molding die which comes into contact with rubber.

【0009】以下、具体的に説明する。NiSn合金の
製造には、複合メッキ液が使用される。この複合メッキ
液は、NiSn合金メッキ液にフッ素系有機高分子を添
加したものである。このNiSn合金メッキ液として、
ピロリン酸液、フッ化物液等を用いることができる。こ
れらピロリン酸液とフッ化物液とのいずれの液を用いた
場合にあっても、これらの液にフッ素系有機高分子を添
加することで、離型性の優れた複合メッキ液を得ること
ができる。なお、これらのメッキ液には、必要に応じ
て、光沢剤、緩衝剤等の添加剤を添加できる。
A detailed description will be given below. A composite plating solution is used for manufacturing the NiSn alloy. This composite plating solution is a NiSn alloy plating solution to which a fluorine-based organic polymer is added. As this NiSn alloy plating solution,
A pyrophosphoric acid solution, a fluoride solution or the like can be used. Regardless of which of these pyrophosphoric acid solutions and fluoride solutions is used, by adding a fluorine-based organic polymer to these solutions, it is possible to obtain a composite plating solution with excellent releasability. it can. If necessary, additives such as a brightener and a buffer may be added to these plating solutions.

【0010】フッ素系有機高分子の平均粒子径は、2〜
8μmとすることが望ましい。フッ素系有機高分子の平
均粒径を2μm以下にすると、離型性は悪化し、複合皮
膜の硬度が低下し、複合皮膜の寿命が短くなる。フッ素
系有機高分子の平均粒径を8μm以上にすると、フッ素
系有機高分子の共析物は重力及びメッキ液の循環流の影
響を受けて不均一となる。
The average particle size of the fluorine-based organic polymer is 2 to
It is desirable to set it to 8 μm. When the average particle diameter of the fluorinated organic polymer is 2 μm or less, the releasability is deteriorated, the hardness of the composite coating is lowered, and the life of the composite coating is shortened. When the average particle size of the fluorine-based organic polymer is 8 μm or more, the eutectoid of the fluorine-based organic polymer becomes non-uniform under the influence of gravity and the circulating flow of the plating solution.

【0011】フッ素系有機高分子としては、ポリテトラ
フルオロエチレン(PTFE)を共析した複合メッキが
良好な離型性を示す。ここで、複合皮膜中への共析量と
しては、0.3〜10wt%、特に1〜7%が望まし
い。このため、複合メッキ液へのフッ素系有機高分子の
添加量としては、50〜400g/l、特に100〜3
00g/lが好ましい。すなわち、フッ素系有機高分子
の添加量を多くすると、離型性は良く、水の接触角が大
きくなり、濡れにくいが、硬度は小さく、表面の明度は
低くなる。一方、フッ素系有機高分子の添加量を少なく
すると、硬度は高く、表面の明度は高いが、離型性は悪
く、水の接触角が小さくなり、濡れやすくなる。
As the fluorine-based organic polymer, polytetrafluoroethylene (PTFE) co-deposited composite plating exhibits good release properties. Here, the amount of eutectoid in the composite coating is preferably 0.3 to 10% by weight, particularly 1 to 7%. Therefore, the amount of the fluorine-based organic polymer added to the composite plating solution is 50 to 400 g / l, particularly 100 to 3
00 g / l is preferred. That is, when the addition amount of the fluorine-based organic polymer is increased, the releasability is good, the contact angle of water is large, and it is difficult to wet, but the hardness is small and the surface brightness is low. On the other hand, when the amount of the fluorine-based organic polymer added is small, the hardness is high and the surface brightness is high, but the releasability is poor, the contact angle of water becomes small, and the surface becomes wet easily.

【0012】複合メッキ液を作成するためには、メッキ
液に分散剤(水不溶性フッ素系有機高分子)を分散する
際に、界面活性剤が添加される。この界面活性剤として
は、分散剤であるフッ素系有機高分子の共析量の増加、
メッキ皮膜の平滑性の観点から、ノニオン性、カチオン
性、アニオン性、両性の4種類の中で、カチオン性の界
面活性剤が用いられる。カチオン性以外の界面活性剤に
あっては、共析量の低下や、メッキ皮膜表面にノジュー
ル(団子状晶)の発生を引き起こし、表面粗度を大きく
する等の弊害があるため、使用は好ましくない。
In order to prepare the composite plating solution, a surfactant is added when the dispersant (water-insoluble fluorine-based organic polymer) is dispersed in the plating solution. As this surfactant, an increase in the amount of eutectoid fluorine-based polymer as a dispersant,
From the viewpoint of the smoothness of the plating film, a cationic surfactant is used among the four types of nonionic, cationic, anionic and amphoteric. It is preferable to use a surfactant other than a cationic one, because it has a harmful effect such as a decrease in the amount of eutectoid and the occurrence of nodules (bundle-like crystals) on the surface of the plating film, increasing the surface roughness. Absent.

【0013】ここで、カチオン性の界面活性剤は、疎水
基の構造によりフッ素系と炭化水素系とに分類される
が、いずれの界面活性剤でも分散剤の共析量を増加さ
せ、メッキ表面を平滑化できる。この界面活性剤の例と
して、コータミン24(花王(株)製)、フロラード1
35(住友3M(株)製)、FT−300(ネオス
(株)製)、S−121(旭硝子(株)製)等が挙げら
れる。
Here, the cationic surfactant is classified into a fluorine type and a hydrocarbon type depending on the structure of the hydrophobic group, and any of the surfactants increases the co-deposition amount of the dispersant to increase the plating surface. Can be smoothed. Examples of this surfactant include Coatamine 24 (manufactured by Kao Corporation), Florard 1
35 (Sumitomo 3M Co., Ltd.), FT-300 (Neos Co., Ltd.), S-121 (Asahi Glass Co., Ltd.) and the like.

【0014】カチオン性の界面活性剤の添加量として
は、分散粒子100g/lに対して純分で1.5〜3.
5g/lとすることが望ましい。そして、界面活性剤は
大部分分散粒子である水不溶性フッ素系有機高分子の表
面に吸着するため、この分散粒子の表面積に比例して界
面活性剤を添加することが望ましい。界面活性剤の添加
量が不足である場合には、複合メッキ液中の分散剤は凝
集し、共析量は低下し、不均一な共析状態になる。ま
た、界面活性剤の添加量が過剰である場合には、複合皮
膜の表面にノジュールが発生し、複合皮膜は脆くなる。
The amount of the cationic surfactant added is 1.5 to 3.
It is preferably 5 g / l. Since the surfactant is mostly adsorbed on the surface of the water-insoluble fluorine-based organic polymer which is the dispersed particles, it is desirable to add the surfactant in proportion to the surface area of the dispersed particles. When the amount of the surfactant added is insufficient, the dispersant in the composite plating solution aggregates, the eutectoid amount decreases, and a non-uniform eutectoid state occurs. Further, when the amount of the surfactant added is excessive, nodules are generated on the surface of the composite coating, and the composite coating becomes brittle.

【0015】複合メッキ液を用いて複合皮膜を形成する
条件は、メッキ液の通常の条件で良いが、電流密度につ
いては、一定値以下の電流密度でメッキを行う。例え
ば、ピロリン酸液の電流密度は3.0A/dm2以下、
フッ化物液の電流密度は4.0A/dm2以下であるの
が好ましい。このような電流密度に設定するのは、メッ
キ表面に吸着したフッ素系有機高分子のために、実際の
電流密度は見かけの電流密度より高くなり、水素が発生
することにより電流効率が低下し、メッキ表面の平滑性
の悪化等が起こるのを防止するためである。
The conditions for forming the composite film using the composite plating solution may be the usual conditions for the plating solution, but the current density is such that the plating is carried out at a current density below a certain value. For example, the current density of the pyrophosphoric acid solution is 3.0 A / dm 2 or less,
The current density of the fluoride solution is preferably 4.0 A / dm 2 or less. The current density is set to such a value, because of the fluorine-based organic polymer adsorbed on the plating surface, the actual current density becomes higher than the apparent current density, and the current efficiency decreases due to the generation of hydrogen, This is to prevent deterioration of the smoothness of the plating surface and the like.

【0016】上記複合メッキ液で製造した複合皮膜を真
空熱処理する。この真空熱処理を、複合皮膜のSn含有
量より異なるが、200〜400℃で行うことにより、
複合皮膜は変態を起こす。これは、NiSn合金皮膜の
準安定層であるNiSnが、平衡層であるNi3Sn2
びNi3Sn4の混合層に変態を起こすからである。ま
た、フッ素系有機高分子は、種類、平均分子量により異
なるが、例えばPTFEでは、約320℃で融点に達
し、それ以上の温度で変形する。これらから、複合皮膜
の真空熱処理の条件を鋭意検討した結果、真空度が1ト
ール以下、熱処理温度が270〜370℃、熱処理時間
を2時間以上に設定することにより、複合皮膜の離型
性、耐磨耗性が向上することがわかった。
The composite coating produced from the composite plating solution is vacuum heat treated. By performing this vacuum heat treatment at a temperature of 200 to 400 ° C., which is different from the Sn content of the composite coating,
The composite film undergoes transformation. This is because NiSn, which is a metastable layer of the NiSn alloy film, transforms into a mixed layer of Ni 3 Sn 2 and Ni 3 Sn 4 which is an equilibrium layer. Further, although the fluorine-based organic polymer varies depending on the type and the average molecular weight, for example, PTFE reaches the melting point at about 320 ° C. and deforms at a temperature higher than that. From these results, as a result of diligent examination of the conditions of the vacuum heat treatment of the composite coating, the mold release property of the composite coating was set by setting the vacuum degree to 1 Torr or less, the heat treatment temperature to 270 to 370 ° C., and the heat treatment time to 2 hours or more. It was found that the wear resistance was improved.

【0017】以上のような複合皮膜を成形用金型に施工
する場合、前処理は通常の脱脂、酸洗でよく、下地母材
への密着性の向上、平滑性の向上、膜厚の均一化、ゴム
等の剥離の簡素化を計るために、以下のように構成する
のが好ましい。ゴム等が接触する部分に三層の膜を積層
形成し、一層目にNi膜、二層目にNiP膜、三層目に
複合皮膜を形成してもよい。このように三層構造とする
ことで、Ni膜によって皮膜全体が下地母材と高い密着
性を保持し、これを被覆するNiP膜はNi膜との密着
性を強くするとともに、三層目に使用され、ゴムに対す
る耐蝕性、離型性を発揮する複合皮膜の硬さを補助する
作用を有する。ここで、各層の膜厚は、Ni膜が約1μ
m、NiP膜は3〜30μm、複合皮膜は5〜50μm
に形成するのが好ましい。なお、成形用金型のゴム等が
接触する部分に複合皮膜を形成したが、成形用金型全体
にわたって複合皮膜を形成してもよい。
When the above-described composite coating is applied to a molding die, the pretreatment may be ordinary degreasing or pickling to improve the adhesion to the base material, the smoothness, and the uniform film thickness. In order to reduce the size of the rubber and the peeling of rubber and the like, it is preferable to configure as follows. It is also possible to form a three-layered film in a layer where rubber or the like contacts, a Ni film as the first layer, a NiP film as the second layer, and a composite film as the third layer. With such a three-layer structure, the entire Ni film maintains high adhesion to the base matrix by the Ni film, and the NiP film that covers the Ni film strengthens the adhesion to the Ni film, and at the same time, forms a third layer. It has the function of assisting the hardness of the composite film that is used and exhibits corrosion resistance to rubber and release properties. Here, the film thickness of each layer is about 1 μm for the Ni film.
m, NiP film 3 to 30 μm, composite film 5 to 50 μm
Is preferably formed. Although the composite film is formed on the portion of the molding die that contacts the rubber or the like, the composite film may be formed on the entire molding die.

【0018】このように成形用金型の少なくともゴム等
が接触する部分に複合皮膜を形成することにより、真空
熱処理の有無に関わらず、従来のクロムメッキ、テフロ
ンコーティング、無電解テフロン複合メッキ(NiP/
PTFE)等の皮膜に対して、離型性、寿命、耐蝕性を
向上できる。
By thus forming a composite film on at least a portion of the molding die which is in contact with rubber or the like, conventional chromium plating, Teflon coating, electroless Teflon composite plating (NiP) regardless of the presence or absence of vacuum heat treatment. /
It is possible to improve releasability, life, and corrosion resistance with respect to a film such as PTFE.

【0019】このような複合皮膜によれば、NiSn合
金皮膜中に、ポリテトラフルオロエチレン、ポリクロロ
トリフルオロエチレン、ポリフッ化ビニリデン、テトラ
フルオロエチレン−ヘキサフルオロプロピレン共重合
体、テトラフルオロエチレン−エチレン共重合体、クロ
ロトリフルオロエチレン−アルキレン共重合体、フッ化
ビニリデン−ペンタフルオロプロピレン共重合体から選
ばれる1種又は2種以上の水不溶性フッ素系有機高分子
を共析させているので、複合皮膜における耐蝕性、離型
性を大幅に向上させることができる。
According to such a composite coating, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, a tetrafluoroethylene-hexafluoropropylene copolymer and a tetrafluoroethylene-ethylene copolymer are contained in the NiSn alloy coating. Since one or more water-insoluble fluorine-based organic polymers selected from polymers, chlorotrifluoroethylene-alkylene copolymers and vinylidene fluoride-pentafluoropropylene copolymers are co-deposited, a composite film It is possible to greatly improve the corrosion resistance and the releasability.

【0020】そして、複合皮膜を270〜370℃の温
度で真空熱処理するので、上記複合皮膜の耐蝕性と離型
性とをさらに向上させることができる。さらに、このよ
うな複合皮膜を、少なくとも成形用金型のゴムが接触す
る部分に用いることで、成形用金型の耐蝕性、離型性が
従来の金型に比して大幅に向上し、ゴム成形品の生産性
を向上でき、ゴム成形品の不良率を低減でき、ゴム成形
の作業性を向上できる。また、離型剤の使用量を大幅に
低減できる。
Since the composite coating is subjected to vacuum heat treatment at a temperature of 270 to 370 ° C., the corrosion resistance and releasability of the composite coating can be further improved. Furthermore, by using such a composite film at least in a portion where the rubber of the molding die comes into contact, the corrosion resistance of the molding die and the releasability are significantly improved as compared with the conventional die, The productivity of rubber molded products can be improved, the defective rate of rubber molded products can be reduced, and the workability of rubber molding can be improved. In addition, the amount of release agent used can be greatly reduced.

【0021】[0021]

【実施例】以下、本発明の複合皮膜とその製造方法並び
に成形用金型の一実施例について説明する。ここで、複
合皮膜の下地母材としては、JIS規格の一般鋼材(S
S41)を用い、この鋼材を、縦の長さ3cm、横の長
さ5cmの板状に形成してテストピースとして用いた。
このテストピースの表面を#400の研磨紙で研磨処理
し、このテストピースの表面に複合皮膜を形成した。こ
の複合皮膜を形成したテストピースと、従来の表面処理
によるテストピースとについて、各種のゴムに対する離
型性、寿命の指標である硬度、耐蝕性の指標である色素
(ΔE)を比較した。
EXAMPLE An example of the composite coating of the present invention, a method for producing the same, and a molding die will be described below. Here, as the base material of the composite coating, a JIS standard general steel material (S
Using S41), this steel material was formed into a plate shape having a vertical length of 3 cm and a horizontal length of 5 cm and used as a test piece.
The surface of this test piece was polished with # 400 abrasive paper to form a composite film on the surface of this test piece. The test piece formed with this composite film and the test piece subjected to the conventional surface treatment were compared with each other for the releasability with respect to various rubbers, the hardness which is an index of life, and the dye (ΔE) which is an index of corrosion resistance.

【0022】離型性を評価する方法として、図1に示す
ように、表面処理した一対のテストピースT1、T2で
ゴムSを挟んで加硫を行う。この加硫条件は、ゴムの種
類により異なるが、例えば、温度は150〜200℃、
保持時間は5〜15分に設定する。加硫後、室温で2分
間ゴムSを冷却し、テストピースT1を作業台等に固定
し、他方のテストピースT2をバネばかり1で引き上げ
る。このときに、ゴムSが剥がれるときの引っ張り力
(kgf)を測定し、この引っ張り力の測定結果をゴム
Sの付着面積(cm3)で割った値をゴムの離型力とす
る。なお、離型性評価方法にゴムを用いたが、樹脂でも
よい。
As a method for evaluating the releasability, as shown in FIG. 1, a rubber S is sandwiched between a pair of surface-treated test pieces T1 and T2 for vulcanization. The vulcanization conditions vary depending on the type of rubber, but for example, the temperature is 150 to 200 ° C,
The holding time is set to 5 to 15 minutes. After vulcanization, the rubber S is cooled at room temperature for 2 minutes, the test piece T1 is fixed to a workbench, and the other test piece T2 is pulled up by the spring 1 only. At this time, the pulling force (kgf) when the rubber S peels off is measured, and the value obtained by dividing the measurement result of this pulling force by the adhesion area (cm 3 ) of the rubber S is the rubber releasing force. Although rubber was used for the method of evaluating releasability, resin may be used.

【0023】一方、色差の評価方法として、加硫前と、
10回の加硫操作後とのテストピースT2の色をカラー
メーターで測定し、加硫前後の変色の程度を次式の色差
式で算出する。ここで、△E*は色差であり、L*は明度
指数であり、a*、b*はクロマティクス指数であり、
X、Y、Zは三刺激値であり、Xn、Yn、Znは標準
光のもと、二度視野における三刺激値である。 △E*=[(△L*2+(△a*2+(△b*21/2*=116(Y/Yn)1/3−16 a*=500{(X/Xn)1/3−(Y/Yn)1/3} b*=200{(Y/Yn)1/3−(X/Xn)1/3
On the other hand, as a color difference evaluation method, before vulcanization,
The color of the test piece T2 after 10 vulcanization operations is measured by a color meter, and the degree of discoloration before and after vulcanization is calculated by the following color difference formula. Here, ΔE * is color difference, L * is lightness index, a * and b * are chromatic index,
X, Y, and Z are tristimulus values, and Xn, Yn, and Zn are tristimulus values in a double visual field under standard light. ΔE * = [(ΔL * ) 2 + (Δa * ) 2 + (Δb * ) 2 ] 1/2 L * = 116 (Y / Yn) 1 / 3-16 a * = 500 {(X / Xn) 1 / 3- (Y / Yn) 1/3 } b * = 200 {(Y / Yn) 1 / 3- (X / Xn) 1/3 }

【0024】硬度の測定方法として、マイクロビッカー
ス硬度計を使用し、複合皮膜を形成したテストピース
を、荷重が50g、保持時間が30秒で測定した。
As a hardness measuring method, a micro Vickers hardness meter was used, and a test piece having a composite coating formed thereon was measured under a load of 50 g and a holding time of 30 seconds.

【0025】実施例1〜2、比較例1〜2 実施例1は、複合皮膜であり、実施例2は、実施例1の
複合皮膜を真空熱処理した複合皮膜であり、比較例1
は、光沢Crメッキであり、比較例2は、無電解複合メ
ッキである。これらの原料となる液の成分を表1に示
し、成膜条件を表2に示す。
Examples 1 and 2 and Comparative Examples 1 and 2 Example 1 is a composite coating, and Example 2 is a composite coating obtained by vacuum heat treating the composite coating of Example 1.
Is a bright Cr plating, and Comparative Example 2 is an electroless composite plating. Table 1 shows the components of these raw materials, and Table 2 shows the film forming conditions.

【0026】[0026]

【表1】 [Table 1]

【0027】[0027]

【表2】 [Table 2]

【0028】実施例1、2 表1に示すように、実施例1、2では、NiSnピロリ
ン酸液を基本液とした。このNiSnピロリン酸液の各
成分(g/l)は、塩化錫が28、塩化ニッケルが3
0、ピロリン酸カリウムが200、グリシンが20、ア
ンモニアが0.005、光沢剤が0.001である。実
施例1、2の基本液に添加される分散剤としてPTFE
を用い、この分散剤の平均粒径は4μmであり、分散剤
の添加濃度は100g/lである。実施例1、2の基本
液に添加される界面活性剤としてコータミン24P(花
王(株)製)を用い、このコータミン24Pの添加濃度
は4g/lである。
Examples 1 and 2 As shown in Table 1, in Examples 1 and 2, NiSn pyrophosphate solution was used as the basic solution. Each component (g / l) of this NiSn pyrophosphate solution contained 28 tin chloride and 3 nickel chloride.
0, potassium pyrophosphate is 200, glycine is 20, ammonia is 0.005, and brightener is 0.001. PTFE as a dispersant added to the basic liquids of Examples 1 and 2
The average particle size of the dispersant is 4 μm, and the concentration of the dispersant added is 100 g / l. Coatamine 24P (manufactured by Kao Corporation) was used as a surfactant added to the basic liquids of Examples 1 and 2, and the addition concentration of this coatamine 24P was 4 g / l.

【0029】成膜条件として、表2に示すように、実施
例1、2では、温度が55℃、膜成長速度が30μm/
時、撹拌はポンプ循環により行い、膜厚を10μmに形
成した。真空熱処理として、実施例2のみ行い、この実
施例2では、10μmの膜厚の複合皮膜を形成した後、
この複合皮膜を、330℃で2時間、真空中で加熱し
た。実施例1では真空熱処理を行わなかった。
As the film forming conditions, as shown in Table 2, in Examples 1 and 2, the temperature was 55 ° C. and the film growth rate was 30 μm /
At this time, stirring was performed by pump circulation to form a film thickness of 10 μm. As the vacuum heat treatment, only Example 2 was performed. In this Example 2, after forming a composite film having a film thickness of 10 μm,
The composite coating was heated at 330 ° C. for 2 hours in vacuum. In Example 1, the vacuum heat treatment was not performed.

【0030】比較例1、2 比較例1では、サージェント液を基本液とし、比較例2
では、無電解NiP液を基本液としている。サージェン
ト液の各成分(g/l)は、クロム酸が250、硫酸ク
ロムが100、硫酸が2である。無電解NiP液の各成
分(g/l)は、塩化ニッケルが30、次亜リン酸ナト
リウムが10、クエン酸ナトリウムが50、硫酸鉛が
0.003である。基本液に添加される分散剤として、
比較例1では分散剤を用いず、比較例2では分散剤とし
てPTFEを用い、この分散剤の平均粒径は0.25μ
mであり、分散剤の添加濃度は5g/lである。比較例
1では界面活性剤を用いず、比較例2では界面活性剤と
してエマルゲン930(花王(株)製)とF−135
(住友3M(株)製)を用い、この界面活性剤の添加濃
度は、エマルゲン930が0.5g/l、F−135が
1g/lである。
Comparative Examples 1 and 2 In Comparative Example 1, the Sargent solution was used as the basic solution, and Comparative Example 2 was used.
Then, the electroless NiP liquid is used as the basic liquid. In each component (g / l) of the Sargent liquid, chromic acid is 250, chromium sulfate is 100, and sulfuric acid is 2. In each component (g / l) of the electroless NiP liquid, nickel chloride is 30, sodium hypophosphite is 10, sodium citrate is 50, and lead sulfate is 0.003. As a dispersant added to the basic liquid,
In Comparative Example 1, no dispersant was used, in Comparative Example 2, PTFE was used as the dispersant, and the average particle size of this dispersant was 0.25 μm.
m, and the added concentration of the dispersant is 5 g / l. In Comparative Example 1, no surfactant was used, and in Comparative Example 2, Emulgen 930 (manufactured by Kao Corporation) and F-135 were used as surfactants.
(Sumitomo 3M Co., Ltd.), the addition concentration of this surfactant is 0.5 g / l for Emulgen 930 and 1 g / l for F-135.

【0031】成膜条件として、比較例1では、温度が5
0℃、膜成長速度が16μm/時、撹拌はポンプ循環に
より行い、膜厚を10μmに形成した。比較例2では、
温度が90℃、膜成長速度が12μm/時、撹拌はポン
プ循環により行い、膜厚を10μmに形成した。比較例
1、2では、真空熱処理を行わなかった。
As a film forming condition, in Comparative Example 1, the temperature was 5
At 0 ° C., the film growth rate was 16 μm / hour, stirring was carried out by pump circulation to form a film thickness of 10 μm. In Comparative Example 2,
The temperature was 90 ° C., the film growth rate was 12 μm / hour, and stirring was performed by pump circulation to form a film thickness of 10 μm. In Comparative Examples 1 and 2, the vacuum heat treatment was not performed.

【0032】硬度の評価として、実施例1、2、比較例
1、2について、マイクロビッカース硬度計で測定し、
その結果を表2に示す。表2に示す結果から、実施例1
より実施例2の方が大きな硬度を示した。また、実施例
1、比較例1、2の結果より、皮膜の組成が硬度に影響
するものと思われる。
For the evaluation of hardness, Examples 1 and 2 and Comparative Examples 1 and 2 were measured with a micro Vickers hardness meter,
The results are shown in Table 2. From the results shown in Table 2, Example 1
In Example 2, the hardness was higher. Further, from the results of Example 1 and Comparative Examples 1 and 2, it is considered that the composition of the coating film affects the hardness.

【0033】離型性と耐蝕性との評価として、EPDM
ゴム、エラストレンゴム、天然ゴム、SBRゴム、エピ
クロロヒドリンゴム、ブチルゴムを実施例1、2、比較
例1、2で使用し、離型力と色差とを測定し、この測定
結果を表3に示す。
EPDM was used as an evaluation of releasability and corrosion resistance.
Rubber, elastrene rubber, natural rubber, SBR rubber, epichlorohydrin rubber, and butyl rubber were used in Examples 1 and 2 and Comparative Examples 1 and 2, and the releasing force and color difference were measured, and the measurement results are shown in Table 3. Shown in.

【0034】[0034]

【表3】 [Table 3]

【0035】表3に示すように、各ゴムについて離型力
を比較すると、比較例1、2に比べ、実施例1、2はい
ずれも低い離型力であった。このため、実施例1、2で
は、比較例1、2に比べ、高い離型性を有することがわ
かる。一方、各ゴムについて色差を比較すると、いずれ
のゴムに関しても比較例1の値が大きく、実施例1、2
は、比較例1、2に比べ、EPDMゴム、SBRゴム、
ブチルゴムの場合に小さな色差であった。このため、実
施例1、2は、EPDMゴム等の場合に、高い耐蝕性を
有することがわかる。さらに、実施例2は、実施例1に
比べ、離型力、色差、いずれも低く、高い離型性と、高
い耐蝕性とを有することがわかる。
As shown in Table 3, when comparing the releasing force of each rubber, the releasing forces of Examples 1 and 2 were lower than those of Comparative Examples 1 and 2. Therefore, it is understood that Examples 1 and 2 have higher releasability than Comparative Examples 1 and 2. On the other hand, comparing the color differences of the rubbers, the values of Comparative Example 1 are large for all the rubbers, and
Compared with Comparative Examples 1 and 2, EPDM rubber, SBR rubber,
In the case of butyl rubber, there was a small color difference. Therefore, it is understood that Examples 1 and 2 have high corrosion resistance in the case of EPDM rubber or the like. Further, it can be seen that Example 2 has lower releasing force and color difference than Example 1, and has high releasability and high corrosion resistance.

【0036】[0036]

【発明の効果】以上説明したように、本発明の複合皮膜
とその製造方法並びに成形用金型によれば、以下の効果
を奏することができる。本発明の複合皮膜は、NiSn
合金皮膜中に、ポリテトラフルオロエチレン、ポリクロ
ロトリフルオロエチレン、ポリフッ化ビニリデン、テト
ラフルオロエチレン−ヘキサフルオロプロピレン共重合
体、テトラフルオロエチレン−エチレン共重合体、クロ
ロトリフルオロエチレン−アルキレン共重合体、フッ化
ビニリデン−ペンタフルオロプロピレン共重合体から選
ばれる1種又は2種以上の水不溶性フッ素系有機高分子
を共析させてなるので、耐蝕性、離型性を大幅に向上さ
せることができる。
As described above, according to the composite film, the method for producing the same, and the molding die of the present invention, the following effects can be obtained. The composite coating of the present invention is made of NiSn.
In the alloy film, polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-ethylene copolymer, chlorotrifluoroethylene-alkylene copolymer, Since one or more kinds of water-insoluble fluorine-based organic polymers selected from vinylidene fluoride-pentafluoropropylene copolymer are co-deposited, corrosion resistance and releasability can be significantly improved.

【0037】一方、本発明の方法によれば、請求項1記
載の複合皮膜を270〜370℃の温度で真空熱処理す
るので、上記複合皮膜の耐蝕性と離型性とをさらに向上
させることができる。さらに、本発明の成形用金型によ
れば、請求項1記載の複合皮膜を、少なくとも成形用金
型のゴムが接触する部分に用いてなるので、耐蝕性、離
型性が従来の金型に比して大幅に向上し、ゴム成形品の
生産性を向上でき、ゴム成形品の不良率を低減でき、ゴ
ム成形の作業性を向上できる。また、離型剤の使用量を
大幅に低減できる。このため、ゴムの成形分野に大きく
貢献することができる。
On the other hand, according to the method of the present invention, since the composite coating according to claim 1 is vacuum heat-treated at a temperature of 270 to 370 ° C., the corrosion resistance and releasability of the composite coating can be further improved. it can. Further, according to the molding die of the present invention, since the composite coating film according to claim 1 is used at least in a portion of the molding die which comes into contact with the rubber, the corrosion resistance and the releasability are the same as those of the conventional mold. Compared with the above, the productivity of rubber molded products can be improved, the defective rate of rubber molded products can be reduced, and the workability of rubber molding can be improved. In addition, the amount of release agent used can be greatly reduced. Therefore, it can greatly contribute to the field of rubber molding.

【図面の簡単な説明】[Brief description of drawings]

【図1】離型性を評価する器具を示す正面図である。FIG. 1 is a front view showing an instrument for evaluating releasability.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 NiSn合金皮膜中に、ポリテトラフル
オロエチレン、ポリクロロトリフルオロエチレン、ポリ
フッ化ビニリデン、テトラフルオロエチレン−ヘキサフ
ルオロプロピレン共重合体、テトラフルオロエチレン−
エチレン共重合体、クロロトリフルオロエチレン−アル
キレン共重合体、フッ化ビニリデン−ペンタフルオロプ
ロピレン共重合体から選ばれる1種又は2種以上の水不
溶性フッ素系有機高分子を共析させてなることを特徴と
する複合皮膜。
1. A NiSn alloy film containing polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropylene copolymer, tetrafluoroethylene-
A co-deposition of one or more water-insoluble fluorine-based organic polymers selected from ethylene copolymers, chlorotrifluoroethylene-alkylene copolymers, vinylidene fluoride-pentafluoropropylene copolymers. Characteristic composite film.
【請求項2】 請求項1記載の複合皮膜を、270〜3
70℃の温度で真空熱処理することを特徴とする複合皮
膜の製造方法。
2. The composite coating according to claim 1,
A method for producing a composite coating, which comprises performing a vacuum heat treatment at a temperature of 70 ° C.
【請求項3】 請求項1記載の複合皮膜を、少なくとも
成形用金型のゴムが接触する部分に用いてなることを特
徴とする成形用金型。
3. A molding die, wherein the composite film according to claim 1 is used at least in a portion of a molding die which comes into contact with rubber.
JP18308693A 1993-07-23 1993-07-23 Composite film and its production and molding die therefor Pending JPH0734296A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18308693A JPH0734296A (en) 1993-07-23 1993-07-23 Composite film and its production and molding die therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18308693A JPH0734296A (en) 1993-07-23 1993-07-23 Composite film and its production and molding die therefor

Publications (1)

Publication Number Publication Date
JPH0734296A true JPH0734296A (en) 1995-02-03

Family

ID=16129521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18308693A Pending JPH0734296A (en) 1993-07-23 1993-07-23 Composite film and its production and molding die therefor

Country Status (1)

Country Link
JP (1) JPH0734296A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133451A1 (en) * 2014-03-07 2015-09-11 住友ゴム工業株式会社 Rigid core for tire forming, and tire manufacturing method using same
JP2016104549A (en) * 2014-12-01 2016-06-09 住友ゴム工業株式会社 Tire molding rigid core
WO2016131916A1 (en) * 2015-02-18 2016-08-25 Dr.-Ing. Max Schlötter Gmbh & Co. Kg Tin-nickel layer having a high hardness value

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053522B2 (en) * 1978-07-05 1985-11-26 三菱電機株式会社 Fault position detection device for opening/closing equipment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6053522B2 (en) * 1978-07-05 1985-11-26 三菱電機株式会社 Fault position detection device for opening/closing equipment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015133451A1 (en) * 2014-03-07 2015-09-11 住友ゴム工業株式会社 Rigid core for tire forming, and tire manufacturing method using same
JP2015168172A (en) * 2014-03-07 2015-09-28 住友ゴム工業株式会社 Rigid core for tire formation
CN106029322A (en) * 2014-03-07 2016-10-12 住友橡胶工业株式会社 Rigid core for tire forming, and tire manufacturing method using same
US20170057187A1 (en) * 2014-03-07 2017-03-02 Sumitomo Rubber Industries, Ltd. Rigid inner mold for forming tire, and method of manufacturing tire using the same
US10500803B2 (en) 2014-03-07 2019-12-10 Sumitomo Rubber Industries, Ltd. Rigid inner mold for forming tire, and method of manufacturing tire using the same
JP2016104549A (en) * 2014-12-01 2016-06-09 住友ゴム工業株式会社 Tire molding rigid core
WO2016131916A1 (en) * 2015-02-18 2016-08-25 Dr.-Ing. Max Schlötter Gmbh & Co. Kg Tin-nickel layer having a high hardness value

Similar Documents

Publication Publication Date Title
EP1719827B2 (en) Method of production of a sliding member having a composite chromium plating film
US20070108060A1 (en) Method of preparing copper plating layer having high adhesion to magnesium alloy using electroplating
JP2000199095A (en) Chromium-plated parts and chromium plating method
FR2518457A1 (en) PROCESS FOR PRODUCING A METAL OFFSET PLATE
US20210317551A1 (en) Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film
GB2076320A (en) Brass-coated metal objects for reinforcing rubber articles
EP0016131A1 (en) RUBBER ADHERENT TERNARY Cu-Zn-Ni ALLOY COATED STEEL WIRES
WO2012039476A1 (en) Method of manufacturing rubber-metal composite, rubber-metal composite, tire, base isolation rubber support body, industrial-use belt, and crawler
US20220235437A1 (en) Aluminum alloy member for forming fluoride film thereon and aluminum alloy member having fluoride film
JPH0734296A (en) Composite film and its production and molding die therefor
JPH11181595A (en) High strength aluminum-zinc-magnesium-copper base alloy alumite(r) member excellent in heating crack resistance and its production
JP2008163362A (en) Plated member and faucet fixture
JP3272061B2 (en) Rubber mold
JPH01177390A (en) Production of metallic wire rod for reinforcing rubber product
US2437612A (en) Process for electrolytically zinc plating magnesium and magnesium base alloys
JP6274556B2 (en) Electrolytic plating method
JP5653679B2 (en) Manufacturing method of steel wire for rubber reinforcement and steel wire for rubber reinforcement
JP5274817B2 (en) Copper-zinc alloy electroplating bath and plating method using the same
KR102232161B1 (en) Electroless Ni-P-TiO2 Alloy Plating Solution Compositions and Plating Methods Using Thereof
US2002262A (en) Rubber coated object
JPH06240490A (en) Corrosion resistant chromium plating
EP0652307A1 (en) Electrolyte for electroplating of chromium-based coating, having improved wear-resistance, corrosion-resistance and plasticity
WO2023042867A1 (en) Rubber composite material, and method for producing rubber composite material
JP2011179099A (en) Method of manufacturing brass plated steel wire, brass plated steel wire and pneumatic tire using the same
JP2784088B2 (en) Manufacturing method of cylinder shaft

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19971028