JP2008163362A - Plated member and faucet fixture - Google Patents

Plated member and faucet fixture Download PDF

Info

Publication number
JP2008163362A
JP2008163362A JP2006350888A JP2006350888A JP2008163362A JP 2008163362 A JP2008163362 A JP 2008163362A JP 2006350888 A JP2006350888 A JP 2006350888A JP 2006350888 A JP2006350888 A JP 2006350888A JP 2008163362 A JP2008163362 A JP 2008163362A
Authority
JP
Japan
Prior art keywords
fine particles
plating
hydrophilic fine
hydrophilic
plating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006350888A
Other languages
Japanese (ja)
Inventor
Masatoshi Shibayama
匡俊 柴山
Toru Uchida
亨 内田
Hideki Harada
英樹 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2006350888A priority Critical patent/JP2008163362A/en
Publication of JP2008163362A publication Critical patent/JP2008163362A/en
Pending legal-status Critical Current

Links

Landscapes

  • Chemically Coating (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Domestic Plumbing Installations (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plated member on which a plating film capable of preventing the dirt caused by water such as water stain and having excellent antifouling property persistence is formed. <P>SOLUTION: The plated member is formed by co-precipitating hydrophilic particles on the surface of the plating film. The surface of the plating film has 0.1-0.2 μm arithmetic average roughness (Ra), 0.5-1.2 μm ten point average roughness (Rz) and 11-33 μm average roughness (m) between projecting parts and recessed parts. Aggregate of the hydrophilic particles is dispersedly formed on the surface of the plated member and the surface of the aggregate has 80-120 nm arithmetic average roughness (Ra) and 100-150 nm square average roughness. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、水垢など水起因の汚れ付着を防止しためっき部材および水栓金具に関する。   The present invention relates to a plating member and faucet fitting that prevent water-related dirt adhesion such as scale.

めっきは、大面積の膜形成が可能であり、製膜速度も速く、複雑形状にも対応できるなど、工業的に非常に優れた特徴を有しており、また比較的硬質で、金属種によっては優れた耐食性を有し、さらには条件により光沢、半光沢、無光沢など外観を変えることもできるため、耐磨耗性や耐食性付与、装飾を目的に様々な部材に利用されている。   Plating is capable of forming a large-area film, has a high film-forming speed, and can handle complex shapes. Since it has excellent corrosion resistance and can change appearance such as gloss, semi-gloss and matte depending on the conditions, it is used for various members for the purpose of imparting wear resistance, corrosion resistance and decoration.

しかし、めっき表面は何も手入れしないと次第に汚れて行き、付着した汚れは時間とともに強固に固着した清掃除去困難な汚れとなる。そのため、装飾目的を兼ねためっきでは、美観を保つために定期的な手入れが必要であった。特にキッチン、洗面、浴室などの水まわりでは、水垢などの汚れ付着が主な汚れの原因となっており、初期の外観を保つためには頻繁な清掃が必要であり、労力を要していた。   However, if the plating surface is not cleaned, it gradually becomes dirty, and the attached stain becomes a stain that is firmly fixed with time and difficult to remove. For this reason, plating that also serves as a decorative purpose requires regular care in order to maintain the beauty. Especially in the kitchen, bathroom, bathroom, etc., dirt such as scale is the main cause of dirt, and frequent cleaning is required to maintain the initial appearance, requiring labor. .

ここで言う汚れとは、水中成分起因のシリカやカルシウム化合物、またタンパク質や皮脂、カビ、微生物、石鹸カス(金属石鹸)である。中でもシリカやカルシウム化合物は洗剤で除去困難な頑固な汚れ成分であり、水道水だけでなく地下水、河川など、ケイ酸やカルシウムイオンを含む水であれば容易に生成、付着する。
ケイ酸やカルシウムイオンを含む水が水滴としてめっき表面に付着すると、乾燥とともにこれら成分が濃縮され、最終的に水垢となる。このサイクルを繰り返すことで水垢は堆積して行き、また時間とともに付着力も強固となる。
The term “dirt” as used herein refers to silica and calcium compounds derived from water components, proteins, sebum, mold, microorganisms, and soap residue (metal soap). Among them, silica and calcium compounds are stubborn dirt components that are difficult to remove with detergents, and are easily generated and adhered to water containing silicic acid and calcium ions, such as groundwater and rivers, as well as tap water.
When water containing silicic acid or calcium ions adheres to the plating surface as water droplets, these components are concentrated with drying and finally become scale. By repeating this cycle, scale builds up and the adhesion becomes stronger with time.

上記した水垢を含む種々の汚れを防ぐ一つの方法として、水滴を形成させないことが有効である。水滴を形成させない方法としてはめっき表面を撥水性表面もしくは親水性表面とすることが考えられる。めっき表面を撥水性表面とする方法としては、PTFE(polytetrafluoroethylene)などの撥水性粒子をめっき皮膜中に分散させる方法が提案されている(例えば、特許文献1参照)。
一方、めっき表面を親水性表面とする方法としては、TiO2などの光触媒親水性粒子をめっき皮膜中に分散させる方法が提案されている(例えば、特許文献2参照)。
It is effective not to form water droplets as one method for preventing various stains including the above-mentioned scale. As a method for preventing the formation of water droplets, it is conceivable to make the plating surface a water repellent surface or a hydrophilic surface. As a method for making the plating surface a water-repellent surface, a method of dispersing water-repellent particles such as PTFE (polytetrafluoroethylene) in the plating film has been proposed (for example, see Patent Document 1).
On the other hand, as a method of making the plating surface hydrophilic, a method of dispersing photocatalytic hydrophilic particles such as TiO2 in the plating film has been proposed (for example, see Patent Document 2).

しかし、従来の以上述べた防汚性めっきには次のような問題がある。
PTFEなどの撥水性粒子を分散させた撥水めっき表面では、微小な汚れでも容易に撥水性能が低下する。特に浴室や洗髪可能な洗面などでは、撥水性粒子がマイナス電荷を有するため、プラス電荷を持つリンスが付着しやすく、早急に撥水性能が低下する。また、撥水めっき表面は、初期表面でも得られる水接触角は130°程度が限界であるため、傾斜の小さい面や平坦部においては水滴残留が避けられない。さらには撥水性粒子を分散させためっきを行った後は、後工程として熱処理が必要となるため、めっき部材の製造コストが高くなる。
一方、TiOなどの光触媒作用のある親水性粒子を分散させた親水めっき表面は、屋内では光触媒性能を発揮させるための紫外線が乏しいため、汚れの分解力や親水性能の持続性に欠け、防汚性を維持するとういう点で改善の余地があった。
However, the conventional antifouling plating described above has the following problems.
On the surface of the water-repellent plating in which water-repellent particles such as PTFE are dispersed, the water-repellent performance is easily lowered even with minute dirt. Particularly in a bathroom or a washable washable surface, the water-repellent particles have a negative charge, so that a positively charged rinse tends to adhere, and the water-repellent performance is quickly deteriorated. In addition, since the water contact angle obtained on the surface of the water-repellent plated surface is limited to about 130 °, it is inevitable that water droplets remain on a surface with a small inclination or a flat portion. Furthermore, after plating with dispersed water-repellent particles, a heat treatment is required as a subsequent step, which increases the manufacturing cost of the plated member.
On the other hand, the hydrophilic plating surface in which hydrophilic particles having photocatalytic action such as TiO 2 are dispersed has poor ultraviolet rays for exerting photocatalytic performance indoors. There was room for improvement in terms of maintaining dirtiness.

特開2002−317298号公報JP 2002-317298 A 特開平11−158694号公報Japanese Patent Laid-Open No. 11-158694

本発明は、上記問題を解決するためになされたもので、本発明の目的は、水垢など水起因の汚れ付着を防止し、持続性に優れた防汚性を持っためっき皮膜を形成しためっき部材を提供することにある。   The present invention has been made to solve the above-mentioned problems, and the object of the present invention is to prevent plating caused by water such as scales and to form a plating film having excellent antifouling properties with excellent durability. It is to provide a member.

上記課題に基づいてなされたものであり、本発明は、めっき被膜に親水性微粒子が分散され、この親水性微粒子の一部がめっき被膜表面から突出しためっき部材であって、前記親水性微粒子が、集合体を形成し、この親水性微粒子の集合体がめっき被膜表面に分散配置されていることを特徴とするめっき部材とした。   The present invention has been made based on the above problems, and the present invention is a plating member in which hydrophilic fine particles are dispersed in a plating film, and a part of the hydrophilic fine particles protrudes from the surface of the plating film, and the hydrophilic fine particles The plated member is characterized in that an aggregate is formed and the aggregate of hydrophilic fine particles is dispersedly arranged on the surface of the plating film.

本発明によれば、親水性微粒子の集合体の表面は、親水性微粒の親水性付与とともに各微粒子の間で形成される微細な凹凸が存在し、その微細な凹凸が保水性を有することから、近接する集合体の間で付着した水滴を引き伸ばすように寄与し、水滴の接触面積が大きくなるように働き、更に、集合体間に存在する微粒子が形成する微細な凹凸が、前記集合体間に付着した水滴を引き伸ばす作用を促進し、効果的な親水性が付与され、水分の濃縮作用による水垢の付着を防止でき、かつ、親水領域と親水性微粒子の存在しないめっき被膜表面が有する撥水性の撥水領域が形成されることにより、水垢を容易に除去できるものと推測される。   According to the present invention, the surface of the aggregate of hydrophilic fine particles has fine irregularities formed between the fine particles together with imparting hydrophilicity of the hydrophilic fine particles, and the fine irregularities have water retention. It contributes to stretch the water droplets adhering between the adjacent aggregates, works to increase the contact area of the water droplets, and fine irregularities formed by the fine particles existing between the aggregates are between the aggregates. Water repellency of the plating film surface that promotes the action of stretching water droplets attached to the surface, provides effective hydrophilicity, prevents adhesion of water scale due to moisture concentration, and does not contain hydrophilic regions and hydrophilic fine particles By forming the water-repellent region, it is presumed that the scale can be easily removed.

また、前記親水性微粒子の集合体の間に親水性微粒子が点在することで、水滴を隣接する集合体への橋渡し的な役割を担うことができ、親水性微粒子集合体間による水滴の引き伸ばしを効果的に行えるものとなる。   In addition, since the hydrophilic fine particles are interspersed between the aggregates of the hydrophilic fine particles, the water droplets can play a bridging role to the adjacent aggregates, and the water droplets stretch between the hydrophilic fine particle aggregates. Can be effectively performed.

また、本発明は、めっき被膜表面に親水性微粒子を分散させためっき部材であって、前記めっき部材表面が算術平均粗さ(Ra)0.1〜0.2μm、十点平均粗さ(Rz)、0.5〜1.2μm、凹凸間平均粗さ(Sm)を11〜33μmであり、かつ、前記めっき部材表面には、前記親水性微粒子の集合体が分散形成され、この集合体の表面の算術平均粗さ(Ra)が80〜120nm、二乗平均粗さ(Rq)が100〜150nmであり、加えて、前記めっき部材表面には、前記親水性微粒子の集合体間に親水性微粒子が分散形成され、この親水性微粒子が形成する部材表面の算術平均粗さ(Ra)が70〜130nm、二乗平均粗さ(Rq)が90〜160nmであることを特徴とするめっき部材とした。   The present invention is also a plating member in which hydrophilic fine particles are dispersed on the surface of the plating film, wherein the surface of the plating member has an arithmetic average roughness (Ra) of 0.1 to 0.2 μm, a ten-point average roughness (Rz). ), 0.5 to 1.2 μm, the average roughness between irregularities (Sm) is 11 to 33 μm, and the hydrophilic fine particle aggregate is dispersedly formed on the surface of the plating member. The arithmetic average roughness (Ra) of the surface is 80 to 120 nm and the root mean square roughness (Rq) is 100 to 150 nm. In addition, the surface of the plating member has hydrophilic fine particles between aggregates of the hydrophilic fine particles. The plating member is characterized in that the surface of the member formed by the hydrophilic fine particles has an arithmetic average roughness (Ra) of 70 to 130 nm and a root mean square roughness (Rq) of 90 to 160 nm.

本発明によれば、めっき被膜表面を算術平均粗さ(Ra)を0.1〜0.2μm、十点平均粗さ(Rz)を、0.5〜1.2μm、凹凸間平均粗さ(Sm)を11〜33μm範囲にし、さらに、親水性微粒子の集合体表面の算術平均粗さ(Ra)を80〜120nm、二乗平均粗さ(Rq)100〜150nmに設定することで、めっき部材表面は、全体視野における比較的大きな凹凸と、微粒子の集合体で構成される特定領域の小さな視野における凹凸とが存在する、いわゆるフラクタル構造が形成される。このフラクタル構造は、保水性を良好にすることから、良好な親水性を発揮することができるようになる。   According to the present invention, the plating film surface has an arithmetic average roughness (Ra) of 0.1 to 0.2 μm, a ten-point average roughness (Rz) of 0.5 to 1.2 μm, and an average roughness between irregularities ( Sm) is in the range of 11 to 33 μm, and the arithmetic mean roughness (Ra) of the surface of the aggregate of hydrophilic fine particles is set to 80 to 120 nm, and the root mean square roughness (Rq) is set to 100 to 150 nm. In this case, a so-called fractal structure is formed in which relatively large unevenness in the entire visual field and unevenness in a small visual field in a specific region constituted by an aggregate of fine particles exist. Since this fractal structure improves water retention, good hydrophilicity can be exhibited.

本発明の好ましい形態として、前記親水性微粒子の集合体は、0.02〜10μmの粒度分布を持つ微粒子であり、かつ、前記集合体の径は、4〜35μmであり、各集合体間の隣接距離が10〜90μmとすることで、集合体はナノオーダーの凹凸を有し、微視的に保水性を保つ一方、集合体間に分布している前記微粒子と共に近接する集合体の間で付着した水滴を引き伸ばすように寄与し、水滴の接触面積が大きくなるように働き、効果的な親水性が付与され、水分の凝縮による水垢の付着を防止でき、かつ、親水領域と親水性微粒子の存在しないめっき被膜表面が有する撥水性の撥水領域が形成されることにより、水垢を容易に除去できるものと推測される。   As a preferred embodiment of the present invention, the aggregate of hydrophilic fine particles is a fine particle having a particle size distribution of 0.02 to 10 μm, and the diameter of the aggregate is 4 to 35 μm. When the adjacent distance is 10 to 90 μm, the aggregate has nano-order irregularities and maintains water retention microscopically, while the aggregates close together with the fine particles distributed between the aggregates. It contributes to stretch the attached water droplets, works to increase the contact area of the water droplets, provides effective hydrophilicity, prevents adhesion of water scale due to moisture condensation, and also prevents hydrophilic regions and hydrophilic fine particles from It is presumed that scale can be easily removed by forming a water-repellent water-repellent region on the surface of the plating film that does not exist.

本発明の好ましい形態として、本発明に係わるめっき被膜を水栓金具用いることにより、水垢付着性を防止でき。清掃の負荷を軽減できる。水栓金具は、平坦面を有するものもあり、水滴が残りやすい状況を作りやすいが、前記めっき被膜を水栓金具に形成することで、そのような水滴が残りやすい形状においても効果的に水垢の付着を防止できる。   As a preferred embodiment of the present invention, scale adhesion can be prevented by using a faucet fitting with the plating film according to the present invention. The cleaning load can be reduced. Some faucet fittings have a flat surface, and it is easy to create a situation in which water droplets are likely to remain. Can be prevented.

本発明によれば、水垢など水起因の汚れ付着を防止し、優れた防汚性を持っためっき部材を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the plating member which prevented the stain | pollution | contamination due to water, such as scale, and was excellent in antifouling property can be provided.

本発明では、めっき被膜中に親水性微粒子を分散させる複合めっきを利用するが、複合めっき被膜の金属マトリックスとなる金属は、めっきが可能な金属であれば特に限定されず、例えば、クロム、ニッケル、銅、亜鉛、鉄や、またそれらの合金などが挙げられる。水栓金具など装飾性を要求されるようなものでは、少なくとも最表面のマトリクスとして、硬度が高く光沢性の良いクロムが頻繁に用いられる。   In the present invention, composite plating in which hydrophilic fine particles are dispersed in the plating film is used. However, the metal serving as the metal matrix of the composite plating film is not particularly limited as long as it can be plated. For example, chromium, nickel , Copper, zinc, iron, and alloys thereof. In the case where decorativeness is required such as a faucet fitting, chromium having high hardness and good gloss is frequently used as at least the outermost surface matrix.

金属マトリックスとなる金属は、めっき液中に溶解し、イオン化して存在可能な塩として提供され、めっき液に添加される。そのような塩としては、無水クロム酸、硫酸ニッケル、塩化ニッケル、スルファミン酸ニッケル、硫酸銅、塩化亜鉛、硫酸亜鉛、塩化鉄(II)、硫酸鉄(II)、ほうふっ化鉄(II)、スルファミン酸鉄(II)などが挙げられる。   The metal that becomes the metal matrix is dissolved in the plating solution, ionized, provided as a salt that can exist, and added to the plating solution. Such salts include chromic anhydride, nickel sulfate, nickel chloride, nickel sulfamate, copper sulfate, zinc chloride, zinc sulfate, iron (II) chloride, iron (II) sulfate, iron (II) borofluoride, Examples thereof include iron (II) sulfamate.

本発明にあって、複合めっき被膜の金属マトリックスに分散される親水性微粒子としては、イオン結合性が強いほど、水との親和性が強く、親水性を示すと言われており、イオン結合性が30%以上の粒子が好適に利用できる。例えば、TiO2、SiO2、ZrO2、Al2O3、MgOなどの金属酸化物が好適に利用できる。粒子は、平均粒子径0.02〜10μm、更に、望ましくは、小径側と大径側の2段階の粒度分布を持たせることで、後述する親水性微粒子の集合体の表面粗さをより微細な凹凸とすることが可能となり、効果的な親水性を付与することができる。特に、数十nm程度の微小径の無機粒子は二次凝集を起こし易くコロニーを形成しやすいので、その範囲の粒径の微粒子の添加は望ましい。   In the present invention, as the hydrophilic fine particles dispersed in the metal matrix of the composite plating film, the stronger the ionic bond, the stronger the affinity with water and the more hydrophilic, the ionic bond Can be suitably used. For example, metal oxides such as TiO2, SiO2, ZrO2, Al2O3, and MgO can be suitably used. The particles have an average particle diameter of 0.02 to 10 μm, and more desirably, by having a two-stage particle size distribution on the small diameter side and the large diameter side, the surface roughness of the aggregate of hydrophilic fine particles described later is made finer. It becomes possible to make it uneven, and effective hydrophilicity can be imparted. In particular, inorganic particles having a minute diameter of about several tens of nm are liable to cause secondary aggregation and form colonies. Therefore, it is desirable to add fine particles having a particle diameter within the range.

さらに、親水性微粒子は等電点が7以上のものを使用することで、汚れ付着防止性ならびに汚れの清掃除去性を飛躍的に高めることができる。親水性微粒子は水中において表面電荷が変化するが、等電点が7以上の微粒子の場合は水道水や井戸水などのpHが7の中性水中においては、表面電荷がプラスとなる。すなわち、等電点が7以上の微粒子をめっき表面に分散させると、めっき表面の電荷をプラス側に大きくすることができ、同じプラス電荷の水垢成分であるシリカやカルシウム化合物、また、リンスを付着し難くする。これより、表面の濡れ性を低下させるリンス付着を防止できるため、長期間めっき表面の濡れ性を維持でき、長期間汚れの付着を防止できる。   Furthermore, the use of hydrophilic fine particles having an isoelectric point of 7 or more can dramatically improve the antifouling property and the cleaning and removing property of dirt. The surface charge of hydrophilic fine particles changes in water. However, in the case of fine particles having an isoelectric point of 7 or more, the surface charge is positive in neutral water having a pH of 7, such as tap water or well water. That is, if fine particles with an isoelectric point of 7 or more are dispersed on the plating surface, the charge on the plating surface can be increased to the plus side, and silica, calcium compounds and rinses that are the same plus charge scale components adhere to the plating surface. Make it difficult. As a result, it is possible to prevent rinsing adhesion that reduces the wettability of the surface, so that the wettability of the plating surface can be maintained for a long period of time, and adhesion of dirt can be prevented for a long period of time.

また、もしリンスなどがめっき表面に付着した場合においても、表面と付着物がプラス同士であるため、表面への付着力が非常に弱く、簡単な清掃で容易に除去することができる。親水性微粒子の表面電荷を利用し、対象とする汚れに応じてめっき表面の電荷を制御することにより、長期間汚れの付着防止性を維持でき、また優れた汚れ清掃除去性も付与することが可能である。   Further, even when rinse or the like adheres to the plating surface, since the surface and the deposit are positive, the adhesion force to the surface is very weak and can be easily removed by simple cleaning. By using the surface charge of the hydrophilic fine particles and controlling the charge on the plating surface according to the target stain, it is possible to maintain the anti-stain property for a long period of time and to provide excellent stain cleaning and removal properties. Is possible.

また、フラクタル構造を形成するためには、例えば、被めっき部材の予め、つや消し調の下地めっき層を施しておくと良い。つや消しめっきの表面粗さ(Ra)としては、0.05〜0.3μmが望ましい。
このように下地めっき層を施しておくことで、親水性微粒子は、下地めっき層の大きな凹凸部分の凸部の周囲に凝集するように親水性微粒子の集合体を形成しやすくなる。
Further, in order to form the fractal structure, for example, a matte base plating layer may be applied in advance to the member to be plated. The surface roughness (Ra) of the matte plating is preferably 0.05 to 0.3 μm.
By providing the base plating layer in this manner, the hydrophilic fine particles can easily form an aggregate of hydrophilic fine particles so as to aggregate around the convex portions of the large uneven portions of the base plating layer.

本願発明の防汚性複合めっきに使用するめっき浴は特に限定されるものでないが、NiもしくはNi合金めっき浴を用いれば容易に防汚性を持っためっき皮膜を形成できる。
前記親水性微粒子をめっき皮膜に取り込むめっき方法においては、親水性微粒子の表面電荷がめっき皮膜への親水性微粒子分散量に大きく影響する。すなわち、めっきは陰極に形成されるが、このとき、親水性微粒子の表面電化がプラスであれば、陰極に親水性微粒子が吸着してめっき皮膜の形成と同時にめっき皮膜中に取り込まれていく。このとき、表面電化がよりプラス側に大きい程、陰極に引き付けられる粒子数は多くなり、結果的にめっき表面に分散させることができる親水性微粒子の量も多くなる。このことにより、親水性微粒子の等電点に応じて、めっき浴のpHを選択すれば、めっき浴中における親水性微粒子の表面電化を変化させることができるため、めっき皮膜への親水性微粒子分散量を制御することが可能となる。
The plating bath used for the antifouling composite plating of the present invention is not particularly limited, but a plating film having antifouling properties can be easily formed by using a Ni or Ni alloy plating bath.
In the plating method for incorporating the hydrophilic fine particles into the plating film, the surface charge of the hydrophilic fine particles greatly affects the amount of hydrophilic fine particles dispersed in the plating film. That is, the plating is formed on the cathode. At this time, if the surface electrification of the hydrophilic fine particles is positive, the hydrophilic fine particles are adsorbed on the cathode and taken into the plating film simultaneously with the formation of the plating film. At this time, the greater the surface electrification, the greater the number of particles attracted to the cathode, resulting in an increase in the amount of hydrophilic fine particles that can be dispersed on the plating surface. As a result, if the pH of the plating bath is selected according to the isoelectric point of the hydrophilic fine particles, the surface electrification of the hydrophilic fine particles in the plating bath can be changed. The amount can be controlled.

Niめっき浴には、無光沢Ni浴、ワット浴、スルファミン酸Ni浴、硫酸Ni浴、塩化Ni浴、無電解Ni浴などがあり、更にこれらを基本浴としたNi合金めっき浴があり多種多様である。これらNiめっき及びNi合金めっきを利用すれば、めっき浴の種類によって、めっき浴のpHを酸性からアルカリ性まで変えることができる。
使用する親水性微粒子の等電点にあわせたNiまたはNi合金めっき浴を選定すれば、親水性微粒子の分散共析量を制御することができ、目標とする親水性微粒子の量を分散させためっき皮膜を容易に形成させることが可能である。
Ni plating baths include matte Ni bath, Watt bath, sulfamic acid Ni bath, sulfuric acid Ni bath, chlorinated Ni bath, electroless Ni bath, etc. Furthermore, there are Ni alloy plating baths with these as basic baths. It is. If these Ni plating and Ni alloy plating are used, the pH of the plating bath can be changed from acidic to alkaline depending on the type of the plating bath.
By selecting a Ni or Ni alloy plating bath that matches the isoelectric point of the hydrophilic fine particles to be used, the amount of hydrophilic fine particles dispersed and co-deposited can be controlled, and the target amount of hydrophilic fine particles was dispersed. It is possible to easily form a plating film.

上記NiまたはNi合金めっき浴を用いて、防汚性めっきを形成させる場合は、主成分であるNiイオンを0.5〜2.2mol/L含み、かつ親水性微粒子を5〜500g/L混入させためっき浴にすることで、目標とする親水性微粒子の分散量のめっき皮膜を得ることが可能である。
めっき浴への親水性微粒子の添加量は、5g/L未満でも、めっき表面に親水性微粒子が分散しためっき皮膜を形成させることは可能であるが、Niめっきの電析速度を極端に遅くする必要性が生じるため、生産性が著しく低下する。そのため、めっき浴への親水性微粒子の添加量は、5g/L以上とすることが好ましい。また、500g/L以上ではめっき皮膜中に取り込まれる親水性微粒子の量は飽和状態に達するため、それ以上混入させてもめっき皮膜に取り込まれる親水性微粒子の分散量は向上しない。
When antifouling plating is formed using the Ni or Ni alloy plating bath, it contains 0.5 to 2.2 mol / L of Ni ions as the main component and 5 to 500 g / L of hydrophilic fine particles. By using the plated bath, it is possible to obtain a plating film having a target dispersion amount of hydrophilic fine particles.
Even if the amount of hydrophilic fine particles added to the plating bath is less than 5 g / L, it is possible to form a plating film in which hydrophilic fine particles are dispersed on the plating surface, but the electrodeposition rate of Ni plating is extremely slowed down. Productivity is significantly reduced due to the need. Therefore, the amount of hydrophilic fine particles added to the plating bath is preferably 5 g / L or more. Moreover, since the amount of the hydrophilic fine particles taken into the plating film reaches a saturated state at 500 g / L or more, the dispersion amount of the hydrophilic fine particles taken into the plating film is not improved even if mixed more than 500 g / L.

電解Niまたは電解Ni合金めっきの場合においては、電流密度はより低い方が多くの親水性微粒子を取り込むことが可能である。
電流密度が2mA/cm未満であると、Ni電析速度が極端に遅くなり製膜に時間を要するため生産性が著しく低下する。従って電流密度は2mA/cm以上にすることが望ましい。一方、電流密度が60mA/cmを超えると、Niの電析速度は速くなり、短時間で厚膜のめっき皮膜を得ることができるが、親水性微粒子がめっき皮膜に取り込まれる時間的余裕なく、目標とする親水性微粒子分散量のめっき皮膜を得ることが難しくなる。
In the case of electrolytic Ni or electrolytic Ni alloy plating, it is possible to incorporate more hydrophilic fine particles when the current density is lower.
When the current density is less than 2 mA / cm 2 , the Ni electrodeposition rate becomes extremely slow, and it takes time to form a film, so that the productivity is remarkably lowered. Therefore, the current density is desirably 2 mA / cm 2 or more. On the other hand, when the current density exceeds 60 mA / cm 2 , the electrodeposition rate of Ni increases, and a thick plating film can be obtained in a short time, but there is no time for the hydrophilic fine particles to be taken into the plating film. It is difficult to obtain a plating film having a target amount of dispersed hydrophilic fine particles.

Ni及びNi合金めっきは、通常、添加剤を使用して無光沢、半光沢、光沢など目的に応じて様々な外観とすることができる。但し、添加剤を使用すると、添加剤成分がめっき皮膜中に取り込まれ、耐食性が大きく低下する問題が生じる。
本願発明の親水性微粒子を分散させた防汚性めっき皮膜の外観はつや消し調となるが、親水性微粒子の粒径、分散量、めっき浴の種類により無光沢から半光沢まで外観を制御することが可能である。すなわち、防汚性めっきの外観は、添加する親水性微粒子の粒子径をより小さくするほど、または親水性微粒子分散量を少なくするほど半光沢に近づき、添加する親水性微粒子の粒子径を大きくするほど、または親水性微粒子分散量を多くするほど無光沢化する。従って、梨地形成剤といった添加剤の必要性がなく、耐食性を更に高める場合は使用を止めることができる。
Ni and Ni alloy plating can usually have various appearances depending on the purpose, such as matte, semi-gloss, and gloss, using additives. However, when an additive is used, the additive component is taken into the plating film, resulting in a problem that the corrosion resistance is greatly reduced.
The appearance of the antifouling plating film in which the hydrophilic fine particles of the present invention are dispersed is matte, but the appearance should be controlled from matte to semi-glossy depending on the particle size of the hydrophilic fine particles, the amount of dispersion, and the type of plating bath. Is possible. That is, the appearance of the antifouling plating becomes closer to semi-gloss as the particle size of the hydrophilic fine particles to be added is reduced or the amount of hydrophilic fine particles dispersed is reduced, and the particle size of the hydrophilic fine particles to be added is increased. As the amount of hydrophilic fine particles dispersed increases, the surface becomes dull. Therefore, there is no need for an additive such as a satin forming agent, and the use can be stopped when the corrosion resistance is further increased.

また、図1に示すようにベース材A上の親水性の無機粒子Cを表面に分散させた第一めっき皮膜B1の上に、更に無機粒子の表面露出を妨げない厚みで撥水性の高い第二めっき皮膜B2を施すと、更に防汚性を向上させることができる。
すなわち、撥水性の高いめっき皮膜を表面に施せば、めっき表面では微視的に撥水性部分と親水性微粒子の親水性部分から構成されることになる。このような構造では親水性付着物も撥水性付着物もめっき表面の各々撥水性部分と親水性部分に固着できなくなるため、高い防汚性を有するめっき皮膜を形成することができる。このとき、最上面に施すめっき厚みは、分散させた親水性微粒子の平均粒径の1/2以下とすれば、最上面のめっき表面に親水性微粒子を十分に露出させることができる。
最上面に施すめっきとしては、Crめっきが効果的である。Crめっきは耐食性及び皮膜硬度に優れ、機械部品や装飾品などに広く使われるめっきであると共に、撥水傾向を示すため、上記最上面めっきとして有効である。
Further, as shown in FIG. 1, on the first plating film B1 in which hydrophilic inorganic particles C on the base material A are dispersed on the surface, there is further provided a highly water repellent film having a thickness that does not prevent the surface exposure of the inorganic particles. When the dip plating film B2 is applied, the antifouling property can be further improved.
That is, if a plating film with high water repellency is applied to the surface, the plating surface is microscopically composed of a water-repellent part and a hydrophilic part of hydrophilic fine particles. In such a structure, both the hydrophilic deposit and the water-repellent deposit cannot be fixed to the water-repellent portion and the hydrophilic portion of the plating surface, so that a plating film having high antifouling properties can be formed. At this time, if the plating thickness applied to the uppermost surface is 1/2 or less of the average particle diameter of the dispersed hydrophilic fine particles, the hydrophilic fine particles can be sufficiently exposed on the uppermost plating surface.
Cr plating is effective as the plating applied to the uppermost surface. Cr plating is excellent in corrosion resistance and film hardness, is a plating widely used for machine parts and decorative products, and exhibits a water-repellent tendency, and is therefore effective as the top plating.

上記複合めっき膜の製造法において用いられるめっき液は、上述の金属マトリックスとなる金属の塩と、親水性微粒子とを少なくとも含む以外は、めっき液として通常の組成とされてよい。   The plating solution used in the method for producing the composite plating film may have a normal composition as the plating solution, except that it includes at least the metal salt serving as the metal matrix and hydrophilic fine particles.

上記のように形成しためっき被膜表面に効果的に親水性を付与するためには、めっき被膜表面を算術平均粗さ(Ra)を0.1〜0.2μm、十点平均粗さ(Rz)を、0.5〜1.2μm、凹凸間平均粗さ(Sm)を11〜33μm範囲にし、さらに、親水性微粒子の集合体表面の算術平均粗さ(Ra)を80〜120nm、二乗平均粗さ(Rq)100〜150nmにし、加えて、前記めっき部材表面には、前記親水性微粒子の集合体間に親水性微粒子が分散形成され、この親水性微粒子が形成する部材表面の算術平均粗さ(Ra)が70〜130nm、二乗平均粗さ(Rq)が90〜160nmとすることが望ましい。このようにしためっき部材表面は、全体視野における比較的大きな凹凸と、親水性微粒子の集合体で構成される特定領域の小さな視野における凹凸とが存在する、いわゆるフラクタル構造が形成され、このフラクタル構造は、保水性を良好にすることから、良好な親水性を発揮することができるようになる。
上記数値の下限値より小さいと保水性が低下し、親水性が低下し、上限値より大きいと凹凸に水が滞留することで、その部分に水垢が付着し、その水垢の除去がし難くなる。
In order to effectively impart hydrophilicity to the plating film surface formed as described above, the plating film surface has an arithmetic average roughness (Ra) of 0.1 to 0.2 μm and a ten-point average roughness (Rz). Is 0.5 to 1.2 μm, the average roughness between irregularities (Sm) is in the range of 11 to 33 μm, and the arithmetic average roughness (Ra) of the surface of the aggregate of hydrophilic fine particles is 80 to 120 nm, the root mean square roughness (Rq) of 100 to 150 nm. In addition, on the surface of the plated member, hydrophilic fine particles are dispersed and formed between aggregates of the hydrophilic fine particles, and the arithmetic average roughness of the member surface formed by the hydrophilic fine particles It is desirable that (Ra) is 70 to 130 nm and root mean square roughness (Rq) is 90 to 160 nm. The plated member surface thus formed has a so-called fractal structure in which there are relatively large unevenness in the entire visual field and unevenness in a small visual field of a specific region composed of an aggregate of hydrophilic fine particles. Since the water retention property is improved, good hydrophilicity can be exhibited.
If it is smaller than the lower limit of the above numerical value, the water retention will be lowered and the hydrophilicity will be lowered, and if it is larger than the upper limit, water will stay in the irregularities, so that the scale will adhere to the part and it will be difficult to remove the scale. .

また、上記のように形成しためっき被膜表面に効果的に親水性を付与するためには、前記親水性微粒子の集合体は、0.02〜12μmの粒度分布を持つ親水性微粒子で、前記集合体の径は、4〜35μmとし、各集合体間の隣接距離を10〜90μmとし、集合体はナノオーダーの凹凸を有し、微視的に保水性を保つ一方近接する集合体の間で付着した水滴を引き伸ばすように寄与し、水滴の接触角が大きくなるように働き、効果的な親水性が付与され、水垢の付着を防止できるものものと推測される。加えて、前記集合体間に親水性微粒子が分散形成する表面の算術平均粗さ(Ra)を70〜130nm、二乗平均粗さ(Rq)を90〜160nmとすることで、集合体間に分布している前記親水性微粒子と共に近接する集合体の間で付着した水滴を引き伸ばすように寄与し、水滴の接触角が大きくなるように働き、効果的な親水性が付与され、水分の凝縮による水垢の付着を防止でき、かつ、親水領域と親水性微粒子の存在しないめっき被膜表面が有する撥水性の撥水領域が形成されることにより、水垢を容易に除去できるものと推測される。
ここで、集合体の径(D)は、集合体の長軸(D1)と短軸(D2)とを加えて2で割ったもの(D=(D1+D2)/2)とした。
In order to effectively impart hydrophilicity to the surface of the plating film formed as described above, the aggregate of hydrophilic fine particles is hydrophilic fine particles having a particle size distribution of 0.02 to 12 μm, and the aggregate The diameter of the body is 4 to 35 μm, the adjacent distance between each aggregate is 10 to 90 μm, and the aggregate has nano-order irregularities, while maintaining microscopic water retention, while between adjacent aggregates It is presumed that it contributes to stretch the attached water droplets, works to increase the contact angle of the water droplets, provides effective hydrophilicity, and prevents the adhesion of scales. In addition, the arithmetic average roughness (Ra) of the surface on which the hydrophilic fine particles are dispersed and formed between the aggregates is set to 70 to 130 nm, and the root mean square roughness (Rq) is set to 90 to 160 nm. It contributes to stretch the water droplets adhering between the neighboring fine particles together with the hydrophilic fine particles, works to increase the contact angle of the water droplets, imparts effective hydrophilicity, and scales due to moisture condensation It is presumed that the formation of water-repellent water-repellent regions on the surface of the plating film in which the hydrophilic region and the hydrophilic fine particles do not exist can be easily removed.
Here, the diameter (D) of the aggregate is obtained by adding the major axis (D 1 ) and minor axis (D 2 ) of the aggregate and dividing by two (D = (D 1 + D 2 ) / 2) did.

めっき液の調整
めっき浴組成を硫酸Ni0.3〜2.2mol/L、塩化Ni0〜0.5mol/L、ホウ酸0.3〜1mol/Lとし、炭酸Niと10%硫酸水溶液でpH4.0または4.5に調製して、浴温度を50℃とした電気Niめっき浴を準備し、それを基本めっき浴とした。前記電気Niめっき浴においては、めっき浴中のNiイオン総和が0.5〜2.2mol/Lとなるように硫酸Niと塩化Niの量を調整した。この基本めっき浴に親水性微粒子として平均粒子径0.02〜10μmのZrO2微粒子を250g/L混入させて実施例1および2のめっき浴とした。
Preparation of plating solution The plating bath composition is 0.3 to 2.2 mol / L of sulfuric acid, Ni 0 to 0.5 mol / L of chloride, 0.3 to 1 mol / L of boric acid, pH 4.0 with Ni carbonate and 10% sulfuric acid aqueous solution. Alternatively, an electric Ni plating bath having a bath temperature of 50 ° C. was prepared to 4.5, which was used as a basic plating bath. In the electric Ni plating bath, the amounts of Ni sulfate and Ni chloride were adjusted so that the total Ni ion in the plating bath was 0.5 to 2.2 mol / L. The basic plating bath was mixed with 250 g / L of ZrO2 fine particles having an average particle size of 0.02 to 10 [mu] m as hydrophilic fine particles to obtain the plating baths of Examples 1 and 2.

複合めっき膜の形成
(1)下地めっき
複合めっきを行うのにあたり、下地めっきとしてつや消し調ニッケルめっきを行った。ニッケルめっき皮膜を形成させる電極材には金属銅版(50×50×0.3mm)を使用し、ワット浴を用いてめっき厚み7μmのつや消し調ニッケルめっき板(陰極)を作製した。なお、ニッケルめっき皮膜を形成する際は、電流密度40mA/cm2、浴温60℃とし、対極にはニッケル板(50mm×501×1mm)を使用して、スターラーで攪拌しながらめっきを行った。なお、下地めっきの表面粗さ(Ra)は、0.15μmであった。
(2)複合めっき(第一めっき皮膜形成)
上記めっき液とつや消し調ニッケル板を使い、電流密度2〜60mA/cm2、浴温は50℃で複合めっき膜を形成させた。得られためっき被膜は、実施例1および実施例2の何れにも、微粒子の集合体が観察された。なお、複合めっきする際の対極としてはNi板を使用し、スターラーによる攪拌を行った。
(3)後処理(第二めっき皮膜形成)
上記複合めっきを行ったのち、第二めっき皮膜として、無水クロム酸を120〜260g/l、硫酸を無水クロム酸に対して1/100g/l含んでなるサージェント浴にてめっきを形成した光沢のクロムめっきを施した。
Formation of composite plating film (1) Base plating In performing composite plating, matte-tone nickel plating was performed as the base plating. A metal copper plate (50 × 50 × 0.3 mm) was used as the electrode material for forming the nickel plating film, and a matte nickel plating plate (cathode) having a plating thickness of 7 μm was prepared using a Watt bath. When forming the nickel plating film, the current density was 40 mA / cm @ 2, the bath temperature was 60 DEG C., and a nickel plate (50 mm.times.501.times.1 mm) was used as the counter electrode, and plating was performed while stirring with a stirrer. The surface roughness (Ra) of the base plating was 0.15 μm.
(2) Composite plating (formation of first plating film)
Using the above plating solution and a matt nickel plate, a composite plating film was formed at a current density of 2 to 60 mA / cm 2 and a bath temperature of 50 ° C. In the obtained plating film, aggregates of fine particles were observed in both Example 1 and Example 2. Note that a Ni plate was used as a counter electrode when performing composite plating, and stirring was performed with a stirrer.
(3) Post-treatment (second plating film formation)
After performing the above composite plating, the second plating film was formed by plating in a Sargent bath containing 120 to 260 g / l of chromic anhydride and 1/100 g / l of sulfuric acid to chromic anhydride. Chrome plating was applied.

比較例1
実施例1のめっき液を用いて同じ条件で、光沢ニッケルめっき板(50×50×0.3mm)上に複合めっき被膜を形成したものを比較例1とした。得られためっき被膜は、微粒子が一様に分散しており、微粒子の集合体は、観察されなかった。
比較例2
無水クロム酸を120〜260g/l、硫酸を無水クロム酸に対して1/100g/l含んでなるサージェント浴にてめっきを形成した光沢のクロムめっき板(50×50×0.3mm)を比較例2とした。
比較例3
ベロアニッケルめっき板(界面活性剤を使用状態で曇点以上のものを添加し、乳化した懸濁物を共析させ、ビロード状外観を与えたもの)(50×50×0.3mm)上に無水クロム酸を120〜260g/l、硫酸を無水クロム酸に対して1/100g/l含んでなるサージェント浴にてめっきを形成したつや消し調クロムめっき板(50×50×0.3mm)を比較例3とした。
Comparative Example 1
Comparative Example 1 was obtained by forming a composite plating film on a bright nickel plating plate (50 × 50 × 0.3 mm) under the same conditions using the plating solution of Example 1. In the obtained plating film, fine particles were uniformly dispersed, and aggregates of fine particles were not observed.
Comparative Example 2
Comparison of bright chrome plated plates (50 x 50 x 0.3 mm) formed by plating in a Sargent bath containing 120 to 260 g / l of chromic anhydride and 1/100 g / l of sulfuric acid to chromic anhydride Example 2 was adopted.
Comparative Example 3
On a velor nickel-plated plate (with a surfactant added in excess of the cloud point in the state of use, co-deposited the emulsified suspension to give a velvety appearance) (50 x 50 x 0.3 mm) Comparison of matte chrome plated plates (50 x 50 x 0.3 mm) formed by plating in a Sargent bath containing 120-260 g / l of chromic anhydride and 1/100 g / l of sulfuric acid relative to chromic anhydride Example 3 was used.

めっき膜の評価
表面状態
(1)全体視野の粗さ(大きな凹凸):図3に示す参照符合1のめっき被膜表面の凹凸
得られためっき被膜について、走査型電子顕微鏡(SEM)によって、観察した写真を図1に示す。また、レーザー顕微鏡によりめっき表面の全体視野の粗さの測定を行った。得られた粗さパラメーターに関して、Ra(算術平均粗さ)、Rz(十点平均粗さ)およびSm(凹凸間の平均粗さ)の 比較を行った。
(2)微粒子が構成する粗さ(小さな凹凸) :図3に示す参照符合2の親水性微粒子の集合体の凹凸
得られためっき膜について、原子間力顕微鏡(AFM)によりめっき表面における親水性微粒子が構成する粗さの測定を行い、Ra(算術平均粗さ)およびRq(二乗平均粗さ)について比較を行った。
(3)表面親水性微粒子の分布状態
得られためっき膜について、走査型電子顕微鏡(SEM)によりめっき表面の親水性微粒子の分布状態を観察し、画像解析ソフトを用いて以下の項目について測定を行った。
なお、各測定寸法については、図2、図3によって説明する。図1のSEM写真において、白い点は、めっき被膜表面に共析した微粒子を示し、それ以外の部分は、めっきのマトリクスを構成する金属めっき表面を示すものであり、図2は、図1の一部分を模式的に表現した上面から見た図であり、図3は、図2のA−A線断面に相当する図を模式的に表現した図である。
図2における丸印、図3における三角印は、めっき表面に共析した微粒子を示すものであり、それ以外の部分は、めっきのマトリクスを構成する金属めっき表面を示すものである。また、図3の参照符合3は、集合体間に単独で分散している親水性微粒子を示すものである。
各測定寸法を以下のように定義する。
(a) 親水性微粒子の集合体を形成している隣接する粒子の平均中心間距離
(b) 親水性微粒子の集合体を形成している粒子の平均粒径
(c) 親水性微粒子の集合体としての平均径
(d) 隣接する微粒子の集合体間の平均中心間距離
(e) 親水性微粒子の集合体を形成していない隣接する粒子の平均中心間距離
(f) 親水性微粒子の集合体を形成していない粒子の平均粒径
(4)親水性微粒子の面積比率
得られためっき膜について、走査型電子顕微鏡(SEM)によりめっき表面の親水性微粒子の分布状態を観察し、画像解析ソフトを用いて、試料表面1.2mm×1.2mm四方内における親水性微粒子の面積比率ついて測定した。
Evaluation of plating film Surface state (1) Roughness of entire visual field (large unevenness): unevenness of plating film surface of reference numeral 1 shown in FIG. 3 The obtained plating film was observed by a scanning electron microscope (SEM). A photograph is shown in FIG. Moreover, the roughness of the whole visual field of the plating surface was measured with the laser microscope. For the obtained roughness parameters, Ra (arithmetic average roughness), Rz (ten-point average roughness), and Sm (average roughness between irregularities) were compared.
(2) Roughness constituted by fine particles (small irregularities): Concavities and convexities of aggregates of hydrophilic fine particles with reference numeral 2 shown in FIG. 3 With respect to the obtained plating film, the hydrophilicity on the plating surface by atomic force microscope (AFM) The roughness of the fine particles was measured, and Ra (arithmetic mean roughness) and Rq (root mean square roughness) were compared.
(3) Distribution state of surface hydrophilic fine particles About the obtained plating film, observe the distribution state of hydrophilic fine particles on the plating surface with a scanning electron microscope (SEM), and measure the following items using image analysis software. went.
Each measurement dimension will be described with reference to FIGS. In the SEM photograph of FIG. 1, the white dots indicate fine particles that have co-deposited on the surface of the plating film, and the other portions indicate the metal plating surface constituting the plating matrix. FIG. It is the figure seen from the upper surface which represented a part typically, and FIG. 3 is the figure which represented typically the figure corresponded in the AA line cross section of FIG.
The circle marks in FIG. 2 and the triangle marks in FIG. 3 indicate fine particles that have co-deposited on the plating surface, and the other portions indicate the metal plating surface constituting the plating matrix. Further, reference numeral 3 in FIG. 3 indicates hydrophilic fine particles dispersed alone among the aggregates.
Each measurement dimension is defined as follows.
(a) The average center distance between adjacent particles forming an aggregate of hydrophilic fine particles
(b) Average particle diameter of particles forming an aggregate of hydrophilic fine particles
(c) Average diameter as aggregate of hydrophilic fine particles
(d) Average center-to-center distance between aggregates of adjacent particles
(e) Average center-to-center distance between adjacent particles that do not form an aggregate of hydrophilic fine particles
(f) Average particle diameter of particles that do not form an aggregate of hydrophilic fine particles (4) Area ratio of hydrophilic fine particles The obtained plating film was analyzed for hydrophilic fine particles on the plating surface by a scanning electron microscope (SEM). The distribution state was observed, and the area ratio of the hydrophilic fine particles in the 1.2 mm × 1.2 mm square of the sample surface was measured using image analysis software.

性能試験
(1)水垢付着防止性
得られためっき膜について水垢汚れ付着防止性を以下の通り評価した。上記の通り得られた試験片を、実使用の浴室の水栓金具の位置に、清掃無しの条件で1ヶ月間設置し、水あか汚れ付着防止具合を評価した結果を表1に示す。評価基準は以下の通りとした。
評価基準
水垢が全く目立たない。:◎
水垢がほとんど目立たない。:○
水垢が若干目立つ。:△
水垢が目立つ。:×
(2)水垢除去性
得られためっき膜について、水垢汚れ付着防止性評価の後に、ウォッシャビリティーテスターを用いて、汚れの清掃除去性を評価した。摺動子として、蒸留水を十分含ませた軟質の食器洗い用スポンジを用い、押し付け荷重を人が清掃する際の力の入れ具合に相当する100g/cm2、摺動回数を20回として評価を行った結果を表1に示す。評価基準は以下の通りとした。
評価基準
清掃除去後、汚れが除去でき、初期表面に回復した。:◎
若干汚れはあるが、ほぼ初期に近い状態まで回復した。:○
水垢は残っているが、明らかに通常のめっきよりも汚れを除去できている。:△
水垢があまり除去できず、通常めっきと大差がない。:×
Performance test (1) Scale adhesion prevention property The obtained plating film was evaluated for scale stain adhesion prevention property as follows. The test piece obtained as described above was installed at the position of the faucet fitting in the bathroom in actual use for one month under the condition of no cleaning, and the results of evaluating the degree of prevention of water stain adhesion are shown in Table 1. The evaluation criteria were as follows.
Evaluation criteria Water scale is inconspicuous. : ◎
Scale is hardly noticeable. : ○
Some scale is noticeable. : △
Water scale is noticeable. : ×
(2) Scale removal property About the obtained plating film, the stain removal removal property was evaluated using the washerability tester after the scale stain adhesion prevention evaluation. Using a soft dishwashing sponge sufficiently containing distilled water as the slider, the pressing load was evaluated as 100 g / cm2 equivalent to the force applied when a person cleans, and the number of sliding times as 20 times. The results are shown in Table 1. The evaluation criteria were as follows.
Evaluation Criteria After cleaning and removal, dirt was removed and the initial surface was recovered. : ◎
Although there was some dirt, it recovered to almost the initial state. : ○
Although scale remains, it is clear that dirt can be removed more than normal plating. : △
Scaling can not be removed so much and it is not much different from normal plating. : ×

表1の結果から水垢の汚れ付着防止性、清掃性とも微粒子の集合体の存在が効果的に働いていることが判る。   From the results shown in Table 1, it can be seen that the presence of fine particle aggregates works effectively for both dirt prevention and cleaning of scale.

本願発明の実施形態であるめっき部材の構造を示す断面模式図。The cross-sectional schematic diagram which shows the structure of the plating member which is embodiment of this invention. 図1の上面からの親水性微粒子の状態を模式的に表現した図である。FIG. 2 is a diagram schematically representing the state of hydrophilic fine particles from the upper surface of FIG. 図2のD-D線断面を模式的に表現した図である。It is the figure which expressed typically the DD sectional view of FIG.

符号の説明Explanation of symbols

A…ベース材
B1…第一めっき皮膜
B2…第二めっき皮膜
C…親水性微粒子
1…めっき被膜表面の凹凸
2…親水性微粒子の集合体の凹凸
3…集合体間に存在する親水性微粒子
A ... Base material
B1 ... First plating film
B2 ... Second plating film
C: hydrophilic fine particles 1 ... irregularities on the surface of the plating film 2 ... irregularities of aggregates of hydrophilic fine particles
3… Hydrophilic fine particles existing between aggregates

Claims (5)

めっき被膜に親水性微粒子が分散され、この親水性微粒子の一部がめっき被膜表面から突出しためっき部材であって、前記親水性微粒子が、集合体を形成し、この親水性微粒子の集合体がめっき被膜表面に分散配置されていることを特徴とするめっき部材。   A plating member in which hydrophilic fine particles are dispersed in a plating film, and a part of the hydrophilic fine particles protrudes from the surface of the plating film. The hydrophilic fine particles form an aggregate, and the aggregate of the hydrophilic fine particles is A plating member characterized by being distributed on the surface of a plating film. 前記親水性微粒子の集合体間には、親水性微粒子が点在していることを特徴とする請求項1に記載のめっき部材。   The plated member according to claim 1, wherein hydrophilic fine particles are interspersed between aggregates of the hydrophilic fine particles. めっき被膜に親水性微粒子が分散され、この親水性微粒子の一部がめっき被膜表面から突出しためっき部材であって、前記めっき部材表面が算術平均粗さ(Ra)0.1〜0.2μm、十点平均粗さ(Rz)0.5〜1.2μm、凹凸間平均粗さ(Sm)11〜33μmであり、かつ、前記めっき部材表面には、前記親水性微粒子の集合体が分散形成され、この集合体の表面の算術平均粗さ(Ra)が80〜120nm、二乗平均粗さ(Rq)が100〜150nmであり、加えて、前記めっき部材表面には、前記親水性微粒子の集合体間に親水性微粒子が分散形成され、この親水性微粒子が形成する部材表面の算術平均粗さ(Ra)が70〜130nm、二乗平均粗さ(Rq)が90〜160nmであることを特徴とするめっき部材。   Hydrophilic fine particles are dispersed in the plating film, and a part of the hydrophilic fine particles protrudes from the surface of the plating film, and the plating member surface has an arithmetic average roughness (Ra) of 0.1 to 0.2 μm, The ten-point average roughness (Rz) is 0.5 to 1.2 μm, the average roughness between irregularities (Sm) is 11 to 33 μm, and the aggregates of the hydrophilic fine particles are dispersedly formed on the surface of the plated member. The surface of the aggregate has an arithmetic average roughness (Ra) of 80 to 120 nm and a root mean square roughness (Rq) of 100 to 150 nm. In addition, the surface of the plated member has an aggregate of the hydrophilic fine particles. Hydrophilic fine particles are dispersed between them, and the arithmetic mean roughness (Ra) of the surface of the member formed by the hydrophilic fine particles is 70 to 130 nm, and the root mean square roughness (Rq) is 90 to 160 nm. Plating member. 前記親水性微粒子の集合体は、0.02〜10μmの粒度分布を持つ微粒子であり、かつ、前記集合体の径は、4〜35μmであり、各集合体間の隣接距離が10〜90μmであり、更に、前記集合体間の親水性微粒子は0.1〜10μmの粒度分布を持つ微粒子であり、各微粒子間の隣接距離が0.5〜10μmであることを特徴とするめっき請求項1乃至3の何れかに記載のめっき部材。   The aggregate of hydrophilic fine particles is a fine particle having a particle size distribution of 0.02 to 10 μm, the diameter of the aggregate is 4 to 35 μm, and the adjacent distance between the aggregates is 10 to 90 μm. Furthermore, the hydrophilic fine particles between the aggregates are fine particles having a particle size distribution of 0.1 to 10 μm, and the adjacent distance between the fine particles is 0.5 to 10 μm. 4. The plating member according to any one of items 3 to 3. 前記請求項1乃至4の何れかに記載のめっき被膜を水栓金具表面に用いたことを特徴する水栓金具。   A faucet fitting characterized by using the plated coating according to any one of claims 1 to 4 on a faucet fitting surface.
JP2006350888A 2006-12-27 2006-12-27 Plated member and faucet fixture Pending JP2008163362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006350888A JP2008163362A (en) 2006-12-27 2006-12-27 Plated member and faucet fixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350888A JP2008163362A (en) 2006-12-27 2006-12-27 Plated member and faucet fixture

Publications (1)

Publication Number Publication Date
JP2008163362A true JP2008163362A (en) 2008-07-17

Family

ID=39693216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350888A Pending JP2008163362A (en) 2006-12-27 2006-12-27 Plated member and faucet fixture

Country Status (1)

Country Link
JP (1) JP2008163362A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195983A (en) * 2010-03-18 2011-10-06 Duplo Seiko Corp Apparatus for producing recycled pulp and apparatus for recycling-treatment of waste paper
EP3059330A1 (en) 2015-02-23 2016-08-24 Toto Ltd. Wet area member
CN112873057A (en) * 2019-11-29 2021-06-01 Toto株式会社 Water-using appliance and method for manufacturing water-using appliance
KR20210113818A (en) 2020-03-09 2021-09-17 엘지전자 주식회사 Liquid container, water purifier, and household appliance
JPWO2021199832A1 (en) * 2020-03-31 2021-10-07

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011195983A (en) * 2010-03-18 2011-10-06 Duplo Seiko Corp Apparatus for producing recycled pulp and apparatus for recycling-treatment of waste paper
EP3059330A1 (en) 2015-02-23 2016-08-24 Toto Ltd. Wet area member
CN112873057A (en) * 2019-11-29 2021-06-01 Toto株式会社 Water-using appliance and method for manufacturing water-using appliance
CN112873057B (en) * 2019-11-29 2023-09-29 Toto株式会社 Water-using device and method for manufacturing water-using device
KR20210113818A (en) 2020-03-09 2021-09-17 엘지전자 주식회사 Liquid container, water purifier, and household appliance
KR20220035061A (en) 2020-03-09 2022-03-21 엘지전자 주식회사 Liquid container, anc water purifier
CN113767186A (en) * 2020-03-31 2021-12-07 Toto株式会社 Sanitary fitting part
WO2021199832A1 (en) * 2020-03-31 2021-10-07 Toto株式会社 Sanitary facility member
JP7092262B2 (en) 2020-03-31 2022-06-28 Toto株式会社 Sanitary equipment parts
JP2022118099A (en) * 2020-03-31 2022-08-12 Toto株式会社 Sanitary facility member
JP7351378B2 (en) 2020-03-31 2023-09-27 Toto株式会社 sanitary equipment parts
JPWO2021199832A1 (en) * 2020-03-31 2021-10-07
CN113767186B (en) * 2020-03-31 2023-10-03 Toto株式会社 Sanitary equipment component

Similar Documents

Publication Publication Date Title
Saha et al. Effect of applied current on the electrodeposited Ni–Al2O3 composite coatings
US8192607B2 (en) Electrolyte and process for depositing a matt metal layer
Aghdam et al. Corrosion and tribological behavior of Ni–Cr alloy coatings electrodeposited on low carbon steel in Cr (III)–Ni (II) bath
Sadiku-Agboola et al. Influence of operation parameters on metal deposition in bright nickel-plating process
JP2008163362A (en) Plated member and faucet fixture
CN102943292A (en) Method for electroplating micro-crack nickel on plastic surface
Su et al. Characterizations of nanocrystalline Co and Co/MWCNT coatings produced by different electrodeposition techniques
CN102216536B (en) Stainless steel plumbing fixtures with resistant coatings
WO2019194229A1 (en) Electrogalvanized steel sheet
Sheu et al. Effects of alumina addition and heat treatment on the behavior of Cr coatings electroplated from a trivalent chromium bath
JPWO2019074102A1 (en) Zinc-based electroplated steel sheet
Larson et al. Recent advances in pulsed current electrodeposition: a brief review
Antihovich et al. Electrodeposition of nickel and composite nickel-fullerenol coatings from low-temperature sulphate-chloride-isobutyrate electrolyte
JP2008106487A (en) Faucet fitting
Deqing et al. Composite plating of hard chromium on aluminum substrate
CN109440152A (en) A kind of iron embryo electroplating technology
JP2006188758A (en) Plating member
JP2002317298A (en) Water repellent satin plated product and method of manufacturing the same
Li et al. Microstructure of Ni–polytetrafluoroethylene composite coating prepared by brush electroplating
JP6313122B2 (en) Plating resin products
KR102254372B1 (en) Method for bright electroplating without brightener
JPH06240490A (en) Corrosion resistant chromium plating
JP2009209419A (en) Electrogalvanized steel having excellent color tone and method of manufacturing the same
JP7338849B2 (en) Black plating film
KR101103844B1 (en) A plating solution of nickel-cobalt-silicon carbide and a surface treatment method of copper mould for continuous casting of steel using the same