JP4604783B2 - Manufacturing method of rigid core for tire vulcanization and pneumatic tire - Google Patents

Manufacturing method of rigid core for tire vulcanization and pneumatic tire Download PDF

Info

Publication number
JP4604783B2
JP4604783B2 JP2005083318A JP2005083318A JP4604783B2 JP 4604783 B2 JP4604783 B2 JP 4604783B2 JP 2005083318 A JP2005083318 A JP 2005083318A JP 2005083318 A JP2005083318 A JP 2005083318A JP 4604783 B2 JP4604783 B2 JP 4604783B2
Authority
JP
Japan
Prior art keywords
tire
segment
core
thermal expansion
vulcanization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005083318A
Other languages
Japanese (ja)
Other versions
JP2006264018A (en
Inventor
英一 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2005083318A priority Critical patent/JP4604783B2/en
Publication of JP2006264018A publication Critical patent/JP2006264018A/en
Application granted granted Critical
Publication of JP4604783B2 publication Critical patent/JP4604783B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

本発明は、タイヤ加硫用剛性中子及び空気入りタイヤの製造方法に関し、更に詳しくは、タイヤの均一性を向上するようにしたタイヤ加硫用剛性中子及び該中子を使用した空気入りタイヤの製造方法に関する。   TECHNICAL FIELD The present invention relates to a tire vulcanizing rigid core and a method for manufacturing a pneumatic tire, and more particularly, a tire vulcanizing rigid core that improves tire uniformity and a pneumatic using the core. The present invention relates to a tire manufacturing method.

従来、タイヤの均一性を向上するため、ブラダーに代えて、未加硫タイヤの空洞部内面に対応する形状を備えたタイヤ加硫用剛性中子を内型として用いてタイヤを加硫成形するようにしたタイヤの製造方法が提案されている(例えば、特許文献1参照)。   Conventionally, in order to improve the uniformity of the tire, instead of the bladder, the tire is vulcanized using a rigid core for vulcanizing the tire having a shape corresponding to the inner surface of the hollow portion of the unvulcanized tire as an inner mold. A tire manufacturing method has been proposed (see, for example, Patent Document 1).

このような加硫成形に使用されるタイヤ加硫用剛性中子は、金属材料で構成され、複数のセグメントを環状に配置した構成になっている。この中子上にタイヤ構成部材を順次貼り付けて未加硫タイヤを成形し、これを加硫機の下型にセットした後、上型を閉じ、電磁誘導加熱などの加熱手段を用いて加硫成形する。加硫後、環状に配置したセグメントを1個ずつ除去して中子を分解し、加硫タイヤを得るようにしている。   The rigid core for tire vulcanization used for such vulcanization molding is made of a metal material and has a configuration in which a plurality of segments are arranged in an annular shape. The tire components are sequentially pasted onto the core to form an unvulcanized tire, which is set on the lower mold of the vulcanizer, and then the upper mold is closed and heated using heating means such as electromagnetic induction heating. Sulfur molding. After vulcanization, the annularly arranged segments are removed one by one and the core is disassembled to obtain a vulcanized tire.

上型を徐々に閉める際に、トレッド面に溝を成形する溝成形突条などの突起部分が先ず未加硫タイヤの表面に当たるが、上型が閉じた時に、金型と中子との間の内容積は、未加硫タイヤの体積と実質的に一致する容積を有するように構成されているため、突起部分が未加硫タイヤの表面に当たって押圧する際に、ゴムが逃げる十分なスペースがないので局部的に大きな圧力が生じ、その圧力の影響で加硫時にゴムが意図しない方向に流れると共に、タイヤ構成部材の補強コードも意図しない位置に流れてしまい、剛性中子による意図したタイヤの高い均一性を実現するには至っていない。
特開2000−141380号公報(従来技術、図6)
When the upper mold is gradually closed, the projections such as groove forming ridges that form grooves on the tread surface first hit the surface of the unvulcanized tire, but when the upper mold is closed, there is a gap between the mold and the core. Since the inner volume of the tire is configured to have a volume that substantially matches the volume of the unvulcanized tire, there is sufficient space for the rubber to escape when the protruding portion hits the surface of the unvulcanized tire and presses it. As a result, there is a large pressure locally, and the rubber flows in an unintended direction during vulcanization due to the pressure, and the reinforcing cords of the tire components also flow in unintended positions. It has not yet achieved high uniformity.
JP 2000-141380 A (prior art, FIG. 6)

本発明の目的は、タイヤの高い均一性を実現することが可能なタイヤ加硫用剛性中子及び該中子を使用した空気入りタイヤの製造方法を提供することにある。   An object of the present invention is to provide a rigid core for tire vulcanization capable of realizing high uniformity of a tire and a method for manufacturing a pneumatic tire using the core.

上記目的を達成する本発明のタイヤ加硫用剛性中子は、未加硫タイヤの空洞部内面に対応する形状を有し、複数のセグメントを環状に配置してなるタイヤ加硫用剛性中子であって、各セグメントを中子径方向に分割した熱膨張率の異なる少なくとも2つのセグメント体から構成し、該少なくとも2つのセグメント体の熱膨張率の比(大/小)を3以上にすると共に、熱膨張率が大きい方の前記セグメント体を中子幅方向で左右に位置する左右のセグメント部材を複数有する構成にし、該複数のセグメント部材を熱膨張率が小さい方のセグメント体に係止し、各セグメント部材の係止位置を前記熱膨張率が小さい方のセグメント体の中子幅方向端から内側に5mm以上40mm以下の範囲にし、かつ前記左右のセグメント部材間に幅0.2mm以上の空隙を設けたことを特徴とする。 The rigid core for tire vulcanization according to the present invention that achieves the above object has a shape corresponding to the inner surface of the hollow portion of the unvulcanized tire, and has a plurality of segments arranged in an annular shape. Each segment is composed of at least two segment bodies having different thermal expansion coefficients divided in the core radial direction, and the ratio (large / small) of the thermal expansion coefficients of the at least two segment bodies is set to 3 or more . In addition, the segment body having the larger coefficient of thermal expansion is configured to have a plurality of left and right segment members positioned on the left and right in the core width direction, and the plurality of segment members are locked to the segment body having the smaller coefficient of thermal expansion. Then, the locking position of each segment member is set in a range of 5 mm or more and 40 mm or less inward from the core width direction end of the segment body having the smaller coefficient of thermal expansion, and the width between the left and right segment members is 0.2 mm. Characterized in that a void above.

本発明の空気入りタイヤの製造方法は、タイヤ加硫機の金型内で未加硫タイヤを加硫する際に、上記タイヤ加硫用剛性中子上に配置した未加硫タイヤをタイヤ加硫機の金型内で加硫することを特徴とする。   The method for producing a pneumatic tire according to the present invention is a method for vulcanizing an unvulcanized tire placed on a rigid core for tire vulcanization when the unvulcanized tire is vulcanized in a mold of a tire vulcanizer. It is characterized by vulcanization in a mold of a vulcanizer.

上述した本発明によれば、各セグメントを中子径方向に分割した熱膨張率の異なる少なくとも2つのセグメント体から構成し、その熱膨張率の比(大/小)を3以上にすると共に、熱膨張率が大きい方の前記セグメント体を中子幅方向で左右に位置する左右のセグメント部材を複数有する構成にし、該複数のセグメント部材を熱膨張率が小さい方のセグメント体に係止し、各セグメント部材の係止位置を前記熱膨張率が小さい方のセグメント体の中子幅方向端から内側に5mm以上40mm以下の範囲にし、かつ前記左右のセグメント部材間に幅0.2mm以上の空隙を設けたことにより、タイヤ加硫用剛性中子が膨張する分だけタイヤ加硫用剛性中子を小径に形成し、閉型した金型とタイヤ加硫用剛性中子との間の内容積を、加硫する未加硫タイヤの体積より膨張する分だけ大きな容積にすることができる。 According to the present invention described above, each segment is composed of at least two segment bodies having different thermal expansion coefficients divided in the core radial direction, and the ratio (large / small) of the thermal expansion coefficient is set to 3 or more , The segment body having a larger coefficient of thermal expansion is configured to have a plurality of left and right segment members positioned to the left and right in the core width direction, and the plurality of segment members are locked to the segment body having a smaller coefficient of thermal expansion, The engagement position of each segment member is set in the range of 5 mm to 40 mm inward from the end in the core width direction of the segment body having the smaller coefficient of thermal expansion, and the gap between the left and right segment members is 0.2 mm or more in width. Therefore, the tire vulcanization rigid core is formed with a small diameter so that the tire vulcanization rigid core expands, and the inner volume between the closed mold and the tire vulcanization rigid core is increased. Unvulcanized to vulcanize It can be divided by a large volume of inflation than the volume of the tire.

それにより、上型が徐々に閉じ、金型の突起部分が未加硫タイヤの表面に当たった際に突起部分に押されるゴムが逃げるスペースがあるので、従来のように局部的に大きな圧力が生じることがない。また、タイヤ加硫用剛性中子が膨張して未加硫タイヤの内面を押圧するので、加硫中に局部的に大きな圧力が加硫する未加硫タイヤに作用することもない。そのため、加硫中にゴム流れに大きな偏りが発生したり、タイヤ構成部材の補強コードに大きな偏位が発生するのを抑えて、タイヤの均一性を高めることができる。   As a result, the upper mold gradually closes, and there is a space for the rubber that is pushed by the projection to escape when the projection of the mold hits the surface of the unvulcanized tire. It does not occur. Further, since the tire vulcanization rigid core expands and presses the inner surface of the unvulcanized tire, it does not act on the unvulcanized tire where a large local pressure is vulcanized during vulcanization. Therefore, it is possible to increase the uniformity of the tire by suppressing the occurrence of a large deviation in the rubber flow during vulcanization and the occurrence of a large deviation in the reinforcing cord of the tire constituent member.

以下、本発明の実施の形態について添付の図面を参照しながら詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

図1は、本発明のタイヤ加硫用剛性中子の一実施形態を示し、この中子Xは、複数のセグメント1を環状に配置して構成され、その外表面2が加硫する未加硫タイヤ20(図4参照)の空洞部内面24に対応する形状を有している。   FIG. 1 shows an embodiment of a rigid core for tire vulcanization according to the present invention. The core X is configured by arranging a plurality of segments 1 in an annular shape, and the outer surface 2 is vulcanized. It has a shape corresponding to the hollow portion inner surface 24 of the sulfurized tire 20 (see FIG. 4).

各セグメント1は、図2,3に示すように、中子径方向に分割した3つのセグメント体3,4,5を有し、内周側に位置する第1セグメント体3と外周側に位置する第3セグメント体5は、同じ熱膨張率の剛性材料、例えば、鉄やアルミ合金などの金属から形成されている。第1セグメント体3と第3セグメント体5との間に積層配置される第2セグメント体4は、セグメント体3,5とは熱膨張率が異なり、セグメント体3,5より熱膨張率を大きくした熱膨張材料から構成されている。   As shown in FIGS. 2 and 3, each segment 1 has three segment bodies 3, 4, and 5 divided in the core radial direction, and is located on the outer peripheral side with the first segment body 3 positioned on the inner peripheral side. The third segment body 5 is made of a rigid material having the same thermal expansion coefficient, for example, a metal such as iron or an aluminum alloy. The second segment body 4 disposed between the first segment body 3 and the third segment body 5 is different in thermal expansion coefficient from the segment bodies 3 and 5 and has a larger thermal expansion coefficient than the segment bodies 3 and 5. The thermal expansion material is made of.

熱膨張率が小さい方の第1セグメント体3及び第3セグメント体5は、それぞれ中子幅方向で左右に2分割された2つの第1セグメント部材3A,3Bと第3セグメント部材5A,5Bから構成されている。熱膨張率が大きい方の第2セグメント体4は、中子幅方向で左右に位置する左右の第2セグメント部材4A,4Bを複数有する構成になっている。   The first segment body 3 and the third segment body 5 having a smaller coefficient of thermal expansion are divided into two first segment members 3A and 3B and third segment members 5A and 5B that are divided into left and right in the core width direction. It is configured. The second segment body 4 having a larger coefficient of thermal expansion is configured to have a plurality of left and right second segment members 4A and 4B positioned on the left and right in the core width direction.

左右の第2セグメント部材4A,4Bは、空隙aを介して配置されている。左の各第2セグメント部材4Aは、左の第1セグメント部材3Aと左の第3セグメント部材5Aにピン6により係止しており、右の各第2セグメント部材4Bは、右の第1セグメント部材3Bと右の第3セグメント部材5Bにピン7により係止している。   The left and right second segment members 4A and 4B are arranged via the gap a. Each left second segment member 4A is locked to the left first segment member 3A and the left third segment member 5A by a pin 6, and each right second segment member 4B is a right first segment. The pin 3 is engaged with the member 3B and the right third segment member 5B.

熱膨張率が大きい方の第2セグメント体4と熱膨張率が小さい方の第1,第3セグメント体3,5との熱膨張率の比(大/小)は3以上になっており、タイヤ加硫時の熱により第2セグメント体4がセグメント体3,5より大きく中子径方向に膨張するので、中子Xは加硫後のタイヤの内径よりその膨張する分だけ小さい径を有している。それにより、加硫機の閉型した金型30(図4参照)と中子Xとの間の内容積が、加硫成形する未加硫タイヤの体積より膨張する分だけ大きな容積を有している。   The ratio (large / small) of the thermal expansion coefficient between the second segment body 4 with the larger thermal expansion coefficient and the first and third segment bodies 3 and 5 with the smaller thermal expansion coefficient is 3 or more, Since the second segment body 4 expands larger than the segment bodies 3 and 5 in the core radial direction due to heat during tire vulcanization, the core X has a diameter smaller than the inner diameter of the vulcanized tire by the amount of expansion. is doing. Thereby, the inner volume between the mold 30 (see FIG. 4) and the core X of the vulcanizer is larger than the volume of the unvulcanized tire to be vulcanized and expanded. ing.

空気入りタイヤの製造は、上述した中子Xを用いて以下のように行う。   The pneumatic tire is manufactured as follows using the core X described above.

先ず、内周側に配置される締結リング部材11(図4参照)を用いて複数のセグメント1を環状に配置して中子Xを組み立てる。この中子X上にカーカス層やベルト層、トレッドゴム層などのタイヤ構成部材を順次貼り付けて、未加硫タイヤ20(図4参照)を成形する。   First, the core X is assembled by arranging the plurality of segments 1 in an annular shape by using the fastening ring member 11 (see FIG. 4) arranged on the inner peripheral side. Tire constituent members such as a carcass layer, a belt layer, and a tread rubber layer are sequentially attached onto the core X to form an unvulcanized tire 20 (see FIG. 4).

これをタイヤ加硫機の金型30の下型31にセットした後、上型32を閉じる。その際に、トレッド面に溝を成形する溝成形突条33などの突起部分が先ず未加硫タイヤ20の表面に当たるが、閉型した金型30と中子Xとの間の内容積が加硫成形する未加硫タイヤ20の体積より大きくなっているので、突起部分が未加硫タイヤ20の表面に当たって押圧する際に、タイヤ構成材のゴムが逃げるスペースがあるので、局部的に大きな圧力が生じるのを回避する。   After this is set in the lower mold 31 of the mold 30 of the tire vulcanizer, the upper mold 32 is closed. At that time, a protruding portion such as a groove forming protrusion 33 that forms a groove on the tread surface first hits the surface of the unvulcanized tire 20, but the internal volume between the closed mold 30 and the core X is increased. Since it is larger than the volume of the unvulcanized tire 20 to be vulcanized, there is a space for the rubber of the tire constituent material to escape when the protruding portion hits the surface of the unvulcanized tire 20 and presses, so a locally high pressure To avoid this.

閉型後、加熱手段(例えば、加圧加熱媒体や電磁誘導加熱など)を用いて金型30及び中子Xを昇温させ、未加硫タイヤ20を加硫する。その際に、中子Xも加熱されるので、中子X、特に第2セグメント体4が径方向に大きく膨張し、それにより中子Xが未加硫タイヤ20のトレッド部21側の内面22全体を押圧し、金型30と中子Xとの間の内容積を、加硫後のタイヤの体積と実質的に一致する容積にする(図4の状態)。閉型時の局部的な大きな圧力の発生の回避に加えて、膨張時にも局部的な大きな圧力が作用することがないので、加硫中にゴム流れの偏りやタイヤ構成部材の補強コードの大きな偏位が抑制される。   After closing, the mold 30 and the core X are heated using a heating means (for example, a pressure heating medium or electromagnetic induction heating), and the unvulcanized tire 20 is vulcanized. At this time, since the core X is also heated, the core X, in particular, the second segment body 4 expands greatly in the radial direction, whereby the core X becomes the inner surface 22 on the tread portion 21 side of the unvulcanized tire 20. The whole is pressed so that the internal volume between the mold 30 and the core X substantially matches the volume of the tire after vulcanization (state shown in FIG. 4). In addition to avoiding the generation of a large local pressure when the mold is closed, a large local pressure does not act even during expansion, so there is a bias in the rubber flow during vulcanization and the large reinforcement cords of the tire components. Deviation is suppressed.

加硫終了後、締結リング部材11を取り外し、次いで、各セグメント1を1個ずつ除去して中子Xを分解し、加硫済タイヤを得る。   After the vulcanization is completed, the fastening ring member 11 is removed, and then each segment 1 is removed one by one to disassemble the core X to obtain a vulcanized tire.

上述した本発明によれば、中子Xを構成する各セグメント1を中子径方向に分割した熱膨張率の異なるセグメント体3,4,5から構成し、その熱膨張率の比(大/小)を3以上にすることにより、中子Xを膨張する分だけ小径に形成し、閉型した金型30と中子Xとの間の内容積を、未加硫タイヤ20の体積より膨張する分だけ大きな容積にすることができる。   According to the present invention described above, each segment 1 constituting the core X is composed of the segment bodies 3, 4, 5 having different thermal expansion coefficients divided in the core radial direction, and the ratio of the thermal expansion coefficients (large / (Small) is set to 3 or more, the core X is formed to have a small diameter corresponding to the expansion, and the inner volume between the closed mold 30 and the core X is expanded from the volume of the unvulcanized tire 20. The volume can be increased as much as possible.

そのため、閉型する金型30の突起部分が未加硫タイヤ20の表面に当たって押圧する際に、タイヤ構成部材のゴムが逃げるスペースがあるので、局部的に大きな圧力が生じるのを回避することができる一方、中子Xが膨張して未加硫タイヤの内面を全体的に押圧するので、加硫中に局部的に大きな圧力を未加硫タイヤ20に与えることもない。従って、加硫中にゴム流れに大きな偏りが発生したり、タイヤ構成部材の補強コードに大きな偏位が発生するのを抑制し、従来より高い均一性を実現することができる。   Therefore, when the protruding portion of the mold 30 to be closed hits against the surface of the unvulcanized tire 20, there is a space for the rubber of the tire constituent member to escape, so that it is possible to avoid the generation of a large pressure locally. On the other hand, since the core X expands and presses the entire inner surface of the unvulcanized tire, a large pressure is not locally applied to the unvulcanized tire 20 during vulcanization. Accordingly, it is possible to suppress the occurrence of a large deviation in the rubber flow during vulcanization and the occurrence of a large deviation in the reinforcing cords of the tire constituent members, thereby achieving higher uniformity than before.

熱膨張率の比(大/小)が3より小さいと、第2セグメント体4の膨張量が小さくなる結果、中子Xの径を加硫後のタイヤ内径に近づけた大きさにする必要があるため、閉型時にゴムが逃げるスペースを十分に確保することが難しくなる。熱膨張率の比(大/小)の上限値としては、後述するタイヤ内面の段差抑制と精度維持の点から20以下にするのがよい。熱膨張率の比(大/小)は、好ましくは5以上にするのがよい。   If the ratio (large / small) of the thermal expansion coefficient is smaller than 3, the expansion amount of the second segment body 4 is reduced, and as a result, the diameter of the core X needs to be made close to the tire inner diameter after vulcanization. Therefore, it is difficult to secure a sufficient space for the rubber to escape when the mold is closed. The upper limit of the ratio (large / small) of the thermal expansion coefficient is preferably 20 or less from the viewpoint of suppressing the step on the tire inner surface and maintaining the accuracy, which will be described later. The ratio of thermal expansion (large / small) is preferably 5 or more.

本発明において、第2セグメント体4に使用する熱膨張材料としては、熱膨張率が5×10-4cm/℃以上の材料を好ましく用いることができ、例えば、PTFE(ポリテトラフルオロエチレン)、PCTFE(ポリクロロトリフルオロエチレン)、加硫済のゴムなどを挙げることができる。好ましくは、膨張率と機械強度の点からPTFEがよい。 In the present invention, as the thermal expansion material used for the second segment body 4, a material having a thermal expansion coefficient of 5 × 10 −4 cm / ° C. or more can be preferably used. For example, PTFE (polytetrafluoroethylene), Examples thereof include PCTFE (polychlorotrifluoroethylene), vulcanized rubber, and the like. Preferably, PTFE is preferable in terms of expansion rate and mechanical strength.

第2セグメント体4の熱膨張率が5×10-4cm/℃より低いと、第2セグメント体4の膨張量が小さくなるため、閉型時にゴムが逃げるスペースを十分に確保することが難しくなる。上限値としては、後述するタイヤ内面の段差抑制と精度維持の点から2×10-3cm/℃以下にするのがよい。 If the coefficient of thermal expansion of the second segment body 4 is lower than 5 × 10 −4 cm / ° C., the amount of expansion of the second segment body 4 decreases, making it difficult to secure a sufficient space for the rubber to escape when the mold is closed. Become. The upper limit value is preferably 2 × 10 −3 cm / ° C. or less from the viewpoint of suppressing the step on the inner surface of the tire and maintaining accuracy.

第2セグメント体4の中子径方向厚さtとしては、10mm以上加硫後の金型30内にある状態のタイヤの断面高さSHの30%以下にするのが好ましい。厚さtが10mm未満であると、タイヤ径方向への膨張量が小さくなるため、閉型時にゴムが逃げるスペースを十分に確保することが難しくなる。厚さtが断面高さSHの30%を超えると、中子X自体の機械的強度が不足する。   The thickness t in the core radial direction of the second segment body 4 is preferably set to 30% or less of the sectional height SH of the tire in the mold 30 after vulcanization of 10 mm or more. When the thickness t is less than 10 mm, the amount of expansion in the tire radial direction is small, and it is difficult to secure a sufficient space for the rubber to escape when the mold is closed. When the thickness t exceeds 30% of the cross-sectional height SH, the mechanical strength of the core X itself is insufficient.

ピン6,7による各第2セグメント部材4A,4Bの係止位置としては、第1セグメント体3の中子幅方向端3x(セグメント体3,5の中子幅方向端の内、中子幅方向内側に位置する方の中子幅方向端)から中子幅方向内側に5mm以上40mm以下の範囲Mにする。係止位置が範囲Mより中子幅方向外側に位置すると、ピン6,7などの係止部材により第2セグメント部材4A,4Bを第1,第3セグメント体3,5に確実に係止するのが困難になる。範囲Mより中子幅方向内側に位置すると、第2セグメント部材4A,4Bが中子幅方向内側より外側に大きく膨張し易くなり、それにより第2セグメント部材4A,4Bが第1,第3セグメント体3,5より外側まで膨張し、加硫済のタイヤ内面に顕著な段差を形成する要因となる。 As the locking positions of the second segment members 4A and 4B by the pins 6 and 7, the core width direction end 3x of the first segment body 3 (the core width in the core width direction end of the segment bodies 3 and 5) you from the core width direction end) towards located inward in the range of M 5 mm above 40mm in the core width direction inside. When the locking position is positioned outside the range M in the core width direction, the second segment members 4A and 4B are securely locked to the first and third segment bodies 3 and 5 by the locking members such as the pins 6 and 7. It becomes difficult. When located on the inner side in the core width direction from the range M, the second segment members 4A and 4B are likely to expand greatly outside the inner side in the core width direction, whereby the second segment members 4A and 4B become the first and third segments. It expands to the outside of the bodies 3 and 5 and becomes a factor that forms a significant step on the inner surface of the vulcanized tire.

左右の第2セグメント部材4A,4B間の空隙aの幅b、0.2mm以上にすることで、膨張した際に両者が干渉することを回避する。空隙a幅bの上限値は、金型30を閉型する型締め力に第2セグメント部材4A,4Bが耐えることができる限り、特に限定さず、第2セグメント部材4A,4Bの大きさ、使用する材料などにより適宜設定することができる。 Left and right second segment member 4A, the width b of the gap a between 4B, by more than 0.2 mm, avoid both be interfere when inflated. The upper limit of the gap a width b is not particularly limited as long as the second segment members 4A and 4B can withstand the clamping force for closing the mold 30, and the size of the second segment members 4A and 4B. It can be set appropriately depending on the material used.

上記実施形態では、各セグメント1を中子径方向に3分割したセグメント体3,4,5から構成したが、2分割或いは4分割など、熱膨張率の異なる少なくとも2つのセグメント体3,4から構成し、その少なくとも2つのセグメント体3,4の熱膨張率の比(大/小)を3以上にすればよい。   In the above embodiment, each segment 1 is composed of segment bodies 3, 4, and 5 that are divided into three in the core radial direction. However, the segment 1 is composed of at least two segment bodies 3, 4 that have different coefficients of thermal expansion, such as two or four. The thermal expansion coefficient ratio (large / small) of the at least two segment bodies 3 and 4 may be 3 or more.

また、上記実施形態では、第1,第2,第3セグメント部材3A,3B,4A,4B,5A,5Bの幅方向外側面を同じ曲面上に位置するようにしたが、予め第2セグメント4A,4Bが膨張する量を考慮して、第2セグメント部材4A,4Bの幅方向外側面を第1,第3セグメント部材3A,3B,5A,5Bの幅方向外側面より窪ませるように構成してもよい。   Moreover, in the said embodiment, although the width direction outer side surface of 1st, 2nd, 3rd segment member 3A, 3B, 4A, 4B, 5A, 5B was located on the same curved surface, it is 2nd segment 4A previously. 4B, the width direction outer side surfaces of the second segment members 4A, 4B are configured to be recessed from the width direction outer side surfaces of the first and third segment members 3A, 3B, 5A, 5B. May be.

第2セグメント体と第1,第3セグメント体の熱膨張率の比(大/小)を表1のようにした図1〜3に示す構成の本発明のタイヤ加硫用剛性中子1〜4(実施例1〜4)と、セグメントが分割構造になっていない従来のタイヤ加硫用剛性中子(従来例)をそれぞれ作製した。   The rigid core 1 for tire vulcanization of the present invention having the configuration shown in FIGS. 1 to 3 in which the ratio (large / small) of the thermal expansion coefficient between the second segment body and the first and third segment bodies is as shown in Table 1. 4 (Examples 1 to 4) and a conventional rigid core for tire vulcanization (conventional example) in which the segment is not divided.

本発明のタイヤ加硫用剛性中子の第1,第3セグメント体にはアルミ合金を使用し、また第2セグメント体にはPTFEを使用した。第2セグメント体の中子径方向厚さt、各第2セグメント部材の係止位置(第1セグメント体の中子幅方向端からの距離)、左右の第2セグメント部材間の空隙の幅bは、表1に示す通りである。従来のタイヤ加硫用剛性中子のセグメントにはアルミ合金を使用した。   An aluminum alloy was used for the first and third segment bodies of the rigid core for tire vulcanization of the present invention, and PTFE was used for the second segment body. The thickness t of the second segment body in the core radial direction, the locking position of each second segment member (distance from the end in the core width direction of the first segment body), and the width b of the gap between the left and right second segment members Is as shown in Table 1. Aluminum alloy was used for the segment of the conventional rigid core for tire vulcanization.

これら各試験中子を使用してサイズ175/65R14のタイヤをそれぞれ製造し、以下に示す試験方法により均一性の評価試験を行ったところ、表1に示す結果を得た。
均一性
タイヤユニフォミティ測定試験機を用いて、各試験タイヤのRFV(ラジアル・フォース・バリエーション)を測定し、その測定結果を従来のタイヤ加硫用剛性中子で製造したタイヤのRFVを100とする指数値で示した。この値が大きい程、均一性が優れている。
Each of these test cores was used to manufacture tires of size 175 / 65R14, and the uniformity evaluation test was performed by the test method shown below. The results shown in Table 1 were obtained.
Uniformity Using a tire uniformity measurement tester, the RFV (radial force variation) of each test tire is measured, and the measurement result is defined as 100 for the tire manufactured with a conventional rigid core for tire vulcanization. Expressed as an exponent value. The greater this value, the better the uniformity.

Figure 0004604783
表1から、本発明のタイヤ加硫用剛性中子は、タイヤの均一性を改善できることがわかる。
Figure 0004604783
From Table 1, it can be seen that the rigid core for tire vulcanization of the present invention can improve the uniformity of the tire.

本発明のタイヤ加硫用剛性中子の一実施形態を示す正面図である。It is a front view showing one embodiment of a rigid core for tire vulcanization of the present invention. 図1のセグメントの一つを示す拡大斜視図である。It is an expansion perspective view which shows one of the segments of FIG. 図2のセグメントの拡大断面図である。FIG. 3 is an enlarged cross-sectional view of the segment of FIG. 2. 空気入りタイヤの製造方法における一工程を示す断面説明図である。It is a section explanatory view showing one process in a manufacturing method of a pneumatic tire.

符号の説明Explanation of symbols

1 セグメント
3 第1セグメント体
3A,3B 第1セグメント部材
4 第2セグメント体
4A,4B 第2セグメント部材
5 第3セグメント体
5A,5B 第3セグメント部材
6,7 ピン
20 未加硫タイヤ
24 空洞部内面
30 金型
SH 断面高さ
M 範囲
X タイヤ加硫用剛性中子
a 空隙
b 幅
t 中子径方向厚さ
DESCRIPTION OF SYMBOLS 1 Segment 3 1st segment body 3A, 3B 1st segment member 4 2nd segment body 4A, 4B 2nd segment member 5 3rd segment body 5A, 5B 3rd segment member 6,7 Pin 20 Unvulcanized tire 24 Hollow part Inner surface 30 Mold SH Cross-sectional height M range X Rigid core for tire vulcanization a Gaps b Width t Core radial thickness

Claims (5)

未加硫タイヤの空洞部内面に対応する形状を有し、複数のセグメントを環状に配置してなるタイヤ加硫用剛性中子であって、各セグメントを中子径方向に分割した熱膨張率の異なる少なくとも2つのセグメント体から構成し、該少なくとも2つのセグメント体の熱膨張率の比(大/小)を3以上にすると共に、熱膨張率が大きい方の前記セグメント体を中子幅方向で左右に位置する左右のセグメント部材を複数有する構成にし、該複数のセグメント部材を熱膨張率が小さい方のセグメント体に係止し、各セグメント部材の係止位置を前記熱膨張率が小さい方のセグメント体の中子幅方向端から内側に5mm以上40mm以下の範囲にし、かつ前記左右のセグメント部材間に幅0.2mm以上の空隙を設けたタイヤ加硫用剛性中子。 A rigid core for tire vulcanization having a shape corresponding to the inner surface of a hollow portion of an unvulcanized tire and a plurality of segments arranged in an annular shape, each coefficient being divided in the core radial direction And the ratio (large / small) of the coefficient of thermal expansion of the at least two segment bodies is set to 3 or more, and the segment body having the larger coefficient of thermal expansion is arranged in the core width direction. And having a plurality of left and right segment members positioned on the left and right sides, locking the plurality of segment members to a segment body having a smaller coefficient of thermal expansion, and locking each segment member at a position having the smaller coefficient of thermal expansion. A rigid core for tire vulcanization in which a gap having a width of 0.2 mm or more is provided between the left and right segment members in the range from 5 mm to 40 mm inward from the end of the segment body in the core width direction . 熱膨張率が大きい方のセグメント体の中子径方向厚さtが、10mm以上加硫後のタイヤの断面高さの30%以下である請求項1に記載のタイヤ加硫用剛性中子。   2. The rigid core for tire vulcanization according to claim 1, wherein a thickness t in a core radial direction of a segment body having a larger coefficient of thermal expansion is 30% or less of a sectional height of the tire after vulcanization of 10 mm or more. 前記熱膨張率が大きい方のセグメント体が、5×10−4cm/℃以上の熱膨張率を有する材料からなる請求項1または2に記載のタイヤ加硫用剛性中子。 3. The rigid core for tire vulcanization according to claim 1, wherein the segment body having a larger coefficient of thermal expansion is made of a material having a coefficient of thermal expansion of 5 × 10 −4 cm / ° C. or more. 前記熱膨張率が小さい方のセグメント体が金属からなる請求項1乃至のいずれか1項に記載のタイヤ加硫用剛性中子。 The rigid core for tire vulcanization according to any one of claims 1 to 3 , wherein the segment body having a smaller coefficient of thermal expansion is made of metal. タイヤ加硫機の金型内で未加硫タイヤを加硫する際に、請求項1乃至のいずれか1項に記載のタイヤ加硫用剛性中子上に配置した未加硫タイヤをタイヤ加硫機の金型内で加硫する空気入りタイヤの製造方法。 The unvulcanized tire disposed on the rigid core for tire vulcanization according to any one of claims 1 to 4 when the unvulcanized tire is vulcanized in a mold of a tire vulcanizer. A method for producing a pneumatic tire for vulcanization in a mold of a vulcanizer.
JP2005083318A 2005-03-23 2005-03-23 Manufacturing method of rigid core for tire vulcanization and pneumatic tire Expired - Fee Related JP4604783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005083318A JP4604783B2 (en) 2005-03-23 2005-03-23 Manufacturing method of rigid core for tire vulcanization and pneumatic tire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005083318A JP4604783B2 (en) 2005-03-23 2005-03-23 Manufacturing method of rigid core for tire vulcanization and pneumatic tire

Publications (2)

Publication Number Publication Date
JP2006264018A JP2006264018A (en) 2006-10-05
JP4604783B2 true JP4604783B2 (en) 2011-01-05

Family

ID=37200492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005083318A Expired - Fee Related JP4604783B2 (en) 2005-03-23 2005-03-23 Manufacturing method of rigid core for tire vulcanization and pneumatic tire

Country Status (1)

Country Link
JP (1) JP4604783B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5698694B2 (en) 2012-03-19 2015-04-08 住友ゴム工業株式会社 Rigid core for tire formation
JP6212413B2 (en) * 2014-03-07 2017-10-11 住友ゴム工業株式会社 Rigid core for tire formation
KR101901636B1 (en) 2017-05-31 2018-11-08 주식회사 엠케이테크놀로지 Inside mold have for internal pitch division circumference direction of different gridiron pendulum of tire garyu apparatus and method for manufacturing thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066945A (en) * 2003-08-21 2005-03-17 Bridgestone Corp Tire manufacturing core

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005066945A (en) * 2003-08-21 2005-03-17 Bridgestone Corp Tire manufacturing core

Also Published As

Publication number Publication date
JP2006264018A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
EP1629963B1 (en) Tire curing bladder
CN102159383B (en) Process and apparatus for moulding and curing tyres
JP2013060181A (en) Pneumatic tire and manufacturing method therefor
JP4604783B2 (en) Manufacturing method of rigid core for tire vulcanization and pneumatic tire
JP2009269235A (en) Bladder for vulcanizing tire, method for vulcanization molding tire, and pneumatic tire
JP5681685B2 (en) Rigid core and method for manufacturing pneumatic tire using the same
JP5787732B2 (en) Tire vulcanizing bladder
KR101207638B1 (en) Tire curing bladder
US20140004216A1 (en) Method and apparatus for manufacturing pneumatic tyres
JP4716282B2 (en) Tire mold and tire manufacturing method
WO2014073678A1 (en) Tire vulcanization bladder and pneumatic tire manufacturing method
EP3115167B1 (en) Rigid core for tire formation and tire production method using the same
JP2017042957A (en) Manufacturing method of pneumatic tire
JP2007515310A (en) Method for manufacturing a tire and toroidal support for carrying out said method
JP2007050596A (en) Tire vulcanizing/molding mold and vulcanizing/molding method
JP5786465B2 (en) Tire manufacturing apparatus and tire vulcanization molding bladder used therefor
JP4952925B2 (en) Pneumatic tire vulcanization molding method and apparatus
JP7102764B2 (en) Tire manufacturing method
JP7192341B2 (en) Vulcanizing mold and tire manufacturing method
JP2011098533A (en) Method for manufacturing pneumatic tire and pneumatic tire
JP2012101368A (en) Method of vulcanizing tire
RU2374070C2 (en) Method for tyre production and toroidal support for implementation of method
JP5788213B2 (en) Tire vulcanizing apparatus and tire manufacturing method
JP6331764B2 (en) Pneumatic tire manufacturing method and forming drum
JP2006044339A (en) Pneumatic radial-ply tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131015

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees