JP2007050596A - Tire vulcanizing/molding mold and vulcanizing/molding method - Google Patents

Tire vulcanizing/molding mold and vulcanizing/molding method Download PDF

Info

Publication number
JP2007050596A
JP2007050596A JP2005237185A JP2005237185A JP2007050596A JP 2007050596 A JP2007050596 A JP 2007050596A JP 2005237185 A JP2005237185 A JP 2005237185A JP 2005237185 A JP2005237185 A JP 2005237185A JP 2007050596 A JP2007050596 A JP 2007050596A
Authority
JP
Japan
Prior art keywords
mold
tire
cavity
inner mold
vulcanization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005237185A
Other languages
Japanese (ja)
Inventor
Yuichiro Ogawa
裕一郎 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005237185A priority Critical patent/JP2007050596A/en
Publication of JP2007050596A publication Critical patent/JP2007050596A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the occurrence of a burr by the deformation of an inner mold or the protrusion of rubber by reducing the amount of a reduced cavity volume without making the structure of the inner mold complex during vulcanizing/molding by a core vulcanizing/molding method. <P>SOLUTION: The inner mold 3 regulating the inner surface shape of a tire is formed from a material having a thermal expansion coefficient smaller than that of iron or aluminum of an iron/nickel alloy or the like which can be cast. In this way, the amount of the reduced volume of the cavity 4 formed between the inner surface of an outer mold 2 and the outer surface of the inner mold 3 by a temperature increase is reduced by reducing the amount of the thermal expansion of the inner mold 3 associated with a temperature increase during vulcanizing/molding. The pressure increase of a green tire 5 housed in the cavity 4 is suppressed to reduce a pressure applied to each mold 2 or 3. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、空気入りタイヤの製造装置及び製造方法に関し、特に、コア加硫成型方法による加硫成型時に、内型の変形やゴムのはみ出しを防止するタイヤ加硫成型金型及び加硫成型方法に関する。   TECHNICAL FIELD The present invention relates to a pneumatic tire manufacturing apparatus and manufacturing method, and in particular, a tire vulcanization mold and a vulcanization molding method for preventing deformation of an inner mold and protrusion of rubber during vulcanization molding by a core vulcanization molding method. About.

空気入りタイヤは、一般に、未加硫ゴム等からなる各種のタイヤ構成部材を組み合わせて未加硫のグリーンタイヤ(生タイヤ)を成型し、加硫成型して所定の形状に成型される。従来、寸法精度の高い空気入りタイヤの製造方法として、タイヤの内面形状を規定する剛体の内型(コア)上にグリーンタイヤを形成した後、それらをタイヤの外面形状を規定する剛体の外型内に配置して加硫成型を行う、いわゆるコア加硫成型方法が知られている(特許文献1参照)。   In general, a pneumatic tire is formed into a predetermined shape by molding an unvulcanized green tire (raw tire) by combining various tire constituent members made of unvulcanized rubber or the like, and vulcanizing and molding the tire. Conventionally, as a manufacturing method of a pneumatic tire with high dimensional accuracy, after forming a green tire on a rigid inner mold (core) that defines the inner surface shape of the tire, the outer mold of the rigid body that defines the outer surface shape of the tire. There is known a so-called core vulcanization molding method in which vulcanization molding is carried out (see Patent Document 1).

図6は、このコア加硫成型方法に用いられるタイヤ加硫成型金型の要部断面図である。
この従来の加硫成型金型80は、図示のように、タイヤの内側表面を成型する複数のセグメントからなる内型81と、タイヤの外側表面を成型する複数のセグメント86からなる外型85とを備える。内型81の外面82は、成型するタイヤの内面形状に対応した形状に形成され、その内部83は、加硫成型時に加熱・加硫媒体を封入又は循環させるため中空構造になっている。一方、外型85の内面87は、成型するタイヤのトレッドパターン等の外面形状に対応した形状に形成されており、これら内型81と外型85が組み合わさって、それらの間に製品タイヤの形状と略同一形状の空隙(キャビティ)88が形成される。
FIG. 6 is a cross-sectional view of the main part of a tire vulcanization mold used in this core vulcanization molding method.
As shown in the drawing, this conventional vulcanization mold 80 includes an inner mold 81 composed of a plurality of segments for molding the inner surface of the tire, and an outer mold 85 composed of a plurality of segments 86 for molding the outer surface of the tire. Is provided. The outer surface 82 of the inner mold 81 is formed in a shape corresponding to the shape of the inner surface of the tire to be molded, and the interior 83 has a hollow structure for enclosing or circulating a heating / vulcanizing medium during vulcanization molding. On the other hand, the inner surface 87 of the outer mold 85 is formed in a shape corresponding to the outer surface shape such as a tread pattern of a tire to be molded. The inner mold 81 and the outer mold 85 are combined, and a product tire is interposed between them. A void 88 having substantially the same shape as the shape is formed.

このような加硫成型金型80を用いて製品タイヤを製造する場合には、まず、複数のセグメントを組み立てて内型81を形成し、その外面82上にカーカスプライやベルト、トレッドゴム等のタイヤ構成部材を順次貼り合わせて製品タイヤの最終形状に近いグリーンタイヤを成型する。次に、このグリーンタイヤを内型81とともにゴムの加硫が始まらない所定温度(100℃前後)まで予熱する。この時、外型85は、所定の加硫温度(180℃前後)まで昇温して保持しておく。次に、グリーンタイヤの周りに外型85を構成する各セグメント86を順次配置し、内型81と外型85を合体させて加硫成型金型80を閉止し、キャビティ88内にグリーンタイヤを収納する。その後、内型81の内部83等に加熱・加硫媒体を封入又は循環させて加硫成型し、所定形状の製品タイヤを製造する。   When manufacturing a product tire using such a vulcanization mold 80, first, an inner mold 81 is formed by assembling a plurality of segments, and a carcass ply, a belt, a tread rubber or the like is formed on the outer surface 82 thereof. The tire constituent members are sequentially bonded together to form a green tire close to the final shape of the product tire. Next, the green tire is preheated together with the inner mold 81 to a predetermined temperature (around 100 ° C.) at which rubber vulcanization does not start. At this time, the outer mold 85 is heated to a predetermined vulcanization temperature (around 180 ° C.) and held. Next, the segments 86 constituting the outer mold 85 are sequentially arranged around the green tire, the inner mold 81 and the outer mold 85 are combined, the vulcanization mold 80 is closed, and the green tire is placed in the cavity 88. Store. Thereafter, a heating / vulcanizing medium is sealed or circulated in the interior 83 of the inner mold 81 or the like, and vulcanized and molded to produce a product tire having a predetermined shape.

加硫成型終了後は、各セグメント86を開いて内型81と一体化した加硫済みタイヤを外型85から取り出し、内型81を構成するセグメントを分解して加硫済みタイヤから内型81を分離する。新たにタイヤを成型する場合には、室温付近まで冷却した内型81を再度組み立てて上記した手順を繰り返す。   After completion of the vulcanization molding, each segment 86 is opened and the vulcanized tire integrated with the inner die 81 is taken out from the outer die 85, the segments constituting the inner die 81 are disassembled, and the inner die 81 is removed from the vulcanized tire. Isolate. When a new tire is molded, the inner mold 81 cooled to near room temperature is reassembled and the above procedure is repeated.

以上説明したコア加硫成型方法によれば、タイヤの最終形状を規定する各金型81、85が全て剛体からなるため形状・寸法の精度が高く、膨張可能なブラダー等を用いた従来の方法で製造されるタイヤに比べて、ユニフォーミティに優れた空気入りタイヤを製造することができる。   According to the core vulcanization molding method described above, the conventional methods using an inflatable bladder or the like having high accuracy in shape and dimensions since each of the dies 81 and 85 defining the final shape of the tire is made of a rigid body. Compared with the tire manufactured in (1), a pneumatic tire excellent in uniformity can be manufactured.

しかしながら、この従来の加硫成型金型80では、以下で説明するように、加硫成型時に内型81が変形・破損したり、或いは各金型81、85間や各セグメント86間に大きな隙間が生じたり、その隙間から未加硫ゴムがはみ出してバリが発生したりすることがある。   However, in this conventional vulcanization mold 80, as will be described below, the inner mold 81 is deformed or damaged during vulcanization molding, or a large gap is formed between the molds 81 and 85 or between the segments 86. May occur, or unvulcanized rubber may protrude from the gaps and burrs may occur.

即ち、上記したように加硫成型金型80の閉止時には、内型81とグリーンタイヤの温度は予熱されて100℃前後であるのに対し、外型85の温度は、ほぼ加硫時の温度(180℃前後)である。この状態で加熱媒体を内型81の内部83等に供給すると、内型81は、前記予熱温度から加硫温度まで80℃前後昇温して大きく熱膨張するのに対し、外型85は殆ど温度が変化せず熱膨張も生じない。従って、内型81の温度の上昇に伴いキャビティ88の容積が減少し、かつ、グリーンタイヤも昇温に伴い大きく熱膨張するため、キャビティ88内のゴムの圧力が上昇する。   That is, as described above, when the vulcanization mold 80 is closed, the temperature of the inner mold 81 and the green tire is preheated to around 100 ° C., whereas the temperature of the outer mold 85 is almost the same as that during vulcanization. (Around 180 ° C.). When the heating medium is supplied to the inside 83 of the inner mold 81 in this state, the inner mold 81 is heated to about 80 ° C. from the preheating temperature to the vulcanization temperature, and greatly expands. The temperature does not change and thermal expansion does not occur. Accordingly, the volume of the cavity 88 decreases as the temperature of the inner mold 81 rises, and the green tire expands greatly as the temperature rises, so that the pressure of the rubber in the cavity 88 increases.

加えて、大きく移動させる必要がなく、温度も一定温度に保持されている外型85は、比較的重量があり温度が変化しにくい、即ち、比較的密度が高く熱伝導率が低い鉄製でも良いが、これに対し、内型81は、グリーンタイヤの成型装置と加硫成型装置との間を移動させ、かつ加硫媒体との熱交換により速やかに加硫温度まで昇温させる必要があるため、アルミニウム又はアルミニウム基材料で形成される場合が多い。これは、アルミニウムは、鉄に比べて密度が低い(鉄の約7.8g/cmに対し約2.7g/cm)ため、軽量で運搬等の取り扱いが容易であり、かつ、熱伝導率が高い(100℃において、鉄の72W/m・Kに対し240W/m・K)ため速やかに昇温できるからである。 In addition, the outer mold 85 that does not need to be moved greatly and is maintained at a constant temperature may be made of iron that is relatively heavy and hardly changes in temperature, that is, relatively high in density and low in thermal conductivity. However, the inner mold 81 needs to be moved between the green tire molding device and the vulcanization molding device and heated up to the vulcanization temperature quickly by heat exchange with the vulcanization medium. Often, it is formed of aluminum or an aluminum-based material. This aluminum has a lower density than the iron (about 2.7 g / cm 3 to about 7.8 g / cm 3 of iron) for, is easy to handle such as carrying lightweight, and thermally conductive This is because the rate is high (at 100 ° C., it is 240 W / m · K with respect to 72 W / m · K of iron), so that the temperature can be raised quickly.

しかし、アルミニウムは、鉄に比べて熱膨張係数が高く(20℃〜200℃において、鉄の1.1×10−5に対し2倍の2.2×10−5)、また、キャビティ88内のタイヤ(ゴム)の熱膨張係数は12.0×10−5とさらに高いため、この場合には、上記した温度上昇に伴うキャビティ88の容積の減少量がさらに大きくなり、キャビティ88内の圧力もさらに上昇する。 However, aluminum has a higher coefficient of thermal expansion than iron (2.2 × 10 −5 twice that of iron 1.1 × 10 −5 at 20 ° C. to 200 ° C.). The tire (rubber) has a higher thermal expansion coefficient of 12.0 × 10 −5, and in this case, the amount of decrease in the volume of the cavity 88 due to the temperature rise described above is further increased, and the pressure in the cavity 88 is increased. Will rise further.

従って、この従来の加硫成型金型80では、この加硫成型時のキャビティ88内の過大な圧力により、金型81、85間や各セグメント86間に隙間ができてゴムがそこからはみ出し、又は内型81に変形や破損が生じる恐れがある。ゴムがはみ出してバリが生じた場合には、製品タイヤの外観が損なわれるため、それらを除去する必要があり、また、内型81に変形等が生じた場合には、その修理や再製作、或いは変形の程度によっては成型後のタイヤを廃棄する必要があるため、その分の工数やコスト等が無駄になるという問題が生じる。   Therefore, in this conventional vulcanization mold 80, due to excessive pressure in the cavity 88 at the time of vulcanization molding, gaps are formed between the molds 81, 85 and between the segments 86, and the rubber protrudes from there. Alternatively, the inner mold 81 may be deformed or damaged. When the rubber protrudes and burrs occur, the appearance of the product tire is impaired, so it is necessary to remove them, and when deformation or the like occurs in the inner mold 81, repair or remanufacturing, Alternatively, depending on the degree of deformation, it is necessary to discard the molded tire, which causes a problem that man-hours, costs, and the like are wasted.

以上のような問題を解消するため、温度の上昇に伴って内型81の幅を減少させてキャビティ88の容積を増加させ、キャビティ88内の圧力の上昇を抑制するようにした加硫成型金型が知られている(特許文献2参照)。   In order to solve the above problems, the vulcanization molding metal in which the volume of the cavity 88 is increased by decreasing the width of the inner mold 81 as the temperature rises, and the increase in the pressure in the cavity 88 is suppressed. A type is known (see Patent Document 2).

図7は、この加硫成型金型80の要部拡大断面図である。
この加硫成型金型80の内型81は、図6に示した従来の内型81の構成に加えて、内部83の径方向内側端部の開口部84に、その開口幅を押し広げる弾性手段90を有する。この弾性手段90は、温度の上昇に伴って弾性力を低減するバネ部材91により開口部84の開口幅を広げているため、内型81の幅は加硫時の温度上昇に伴って減少する。従って、キャビティ88の容積も温度上昇に伴って増加するため、各金型81、85が受ける圧力を低下させることができ、上記したゴムのはみ出しや内型81の変形等を抑制することができる。
FIG. 7 is an enlarged cross-sectional view of a main part of the vulcanization mold 80.
In addition to the configuration of the conventional inner mold 81 shown in FIG. 6, the inner mold 81 of the vulcanization mold 80 is an elastic material that pushes the opening width into the opening 84 at the radially inner end of the inner 83. Means 90 are provided. Since the elastic means 90 expands the opening width of the opening 84 by the spring member 91 that reduces the elastic force as the temperature rises, the width of the inner mold 81 decreases as the temperature rises during vulcanization. . Accordingly, since the volume of the cavity 88 also increases as the temperature rises, the pressure received by each of the molds 81 and 85 can be reduced, and the above-described rubber protrusion and deformation of the inner mold 81 can be suppressed. .

しかしながら、この従来の加硫成型金型80では、複数個の弾性手段90を周方向に所定間隔で配置しなければならず、構造が複雑になるという問題がある。   However, this conventional vulcanization mold 80 has a problem that the structure is complicated because a plurality of elastic means 90 must be arranged at predetermined intervals in the circumferential direction.

特開2000−84937号公報JP 2000-84937 A 特開2002−264134号公報JP 2002-264134 A

本発明は、前記従来の問題に鑑みなされたものであって、その目的は、コア加硫成型方法による加硫成型時に、内型の構造を複雑化させることなく、キャビティ容積の減少量を従来よりも少なくし、内型の変形やゴムのはみ出しによるバリの発生を抑制することである。   The present invention has been made in view of the above-described conventional problems, and the object of the present invention is to reduce the amount of cavity volume conventionally without complicating the structure of the inner mold during vulcanization molding by the core vulcanization molding method. It is less to suppress the generation of burrs due to deformation of the inner mold and protrusion of rubber.

請求項1の発明は、タイヤの内面形状を規定する剛体の内型と、前記タイヤの外面形状を規定する剛体の外型とを備え、前記内型の外面と前記外型の内面との間に形成されるキャビティ内にグリーンタイヤを収納して加硫成型するタイヤ加硫成型金型であって、前記内型が、20℃〜200℃における熱膨張係数が0.6×10−6以上5×10−6以下の材料からなることを特徴とする。
請求項2の発明は、請求項1に記載されたタイヤ加硫成型金型において、前記内型は、鋳造可能な鉄・ニッケル系合金からなることを特徴とする。
請求項3の発明は、タイヤの内面形状を規定する剛体の内型と、前記タイヤの外面形状を規定する剛体の外型とを備え、前記内型の外面と前記外型の内面との間に形成されるキャビティ内にグリーンタイヤを収納して加硫成型するタイヤ加硫成型方法であって、前記内型を20℃〜200℃における熱膨張係数が0.6×10−6以上5×10−6以下の材料で形成し、該内型上にグリーンタイヤを形成する工程と、前記外型と前記内型とを組み合わせてキャビティを形成し、前記グリーンタイヤを前記キャビティ内に収納する工程と、前記キャビティ内で前記グリーンタイヤを加硫成型する工程と、を有することを特徴とする。
請求項4の発明は、請求項3に記載されたタイヤ加硫成型方法において、前記内型上に形成したグリーンタイヤを前記内型とともに加硫温度以下の所定温度まで予熱する工程と、前記キャビティに収納した前記グリーンタイヤを所定の加硫温度まで加熱する工程とを有し、前記キャビティを形成する前の前記外型を前記所定の加硫温度に保持しておくことを特徴とする。
The invention according to claim 1 includes a rigid inner mold that defines the inner surface shape of the tire and a rigid outer mold that defines the outer surface shape of the tire, and is provided between the outer surface of the inner mold and the inner surface of the outer mold. A tire vulcanization mold in which a green tire is accommodated in a cavity formed in a vulcanization mold, and the coefficient of thermal expansion at 20 ° C. to 200 ° C. is 0.6 × 10 −6 or more. It consists of a material of 5 × 10 −6 or less.
According to a second aspect of the present invention, in the tire vulcanization mold according to the first aspect, the inner mold is made of a castable iron-nickel alloy.
The invention of claim 3 comprises a rigid inner mold that defines the inner surface shape of the tire, and a rigid outer mold that defines the outer surface shape of the tire, and is provided between the outer surface of the inner mold and the inner surface of the outer mold. A tire vulcanization molding method in which a green tire is accommodated in a cavity formed in a vulcanization molding method, and the coefficient of thermal expansion at 20 ° C. to 200 ° C. is 0.6 × 10 −6 or more and 5 ×. A step of forming a green tire on the inner mold formed of a material of 10 −6 or less, a step of combining the outer mold and the inner mold to form a cavity, and storing the green tire in the cavity And vulcanizing and molding the green tire in the cavity.
According to a fourth aspect of the present invention, in the tire vulcanization molding method according to the third aspect, the step of preheating the green tire formed on the inner mold to a predetermined temperature below the vulcanization temperature together with the inner mold, and the cavity Heating the green tire accommodated in the container to a predetermined vulcanization temperature, and maintaining the outer mold before forming the cavity at the predetermined vulcanization temperature.

本発明によれば、タイヤ加硫成型金型の内型を、従来よりも低い熱膨張係数の材料で形成したため、内型の構造を複雑化させることなく、加硫成型時のキャビティ容積の減少量を従来よりも少なくでき、キャビティ内の圧力の上昇を抑制できる。従って、金型間の隙間や内型の変形の発生を防止でき、未加硫ゴムのはみ出しによるバリの発生を抑制できる。   According to the present invention, since the inner mold of the tire vulcanization molding die is formed of a material having a lower thermal expansion coefficient than the conventional one, the cavity volume during vulcanization molding is reduced without complicating the structure of the inner mold. The amount can be made smaller than before, and the increase in pressure in the cavity can be suppressed. Therefore, it is possible to prevent the occurrence of gaps between the molds and deformation of the inner mold, and it is possible to suppress the occurrence of burrs due to the uncured rubber protruding.

以下、本発明のタイヤ加硫成型金型の一実施形態について、図面を参照して説明する。
図1は、本実施形態の加硫成型金型1の概略構成を示す断面図である。
Hereinafter, an embodiment of a tire vulcanization mold according to the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a schematic configuration of a vulcanization mold 1 of this embodiment.

この加硫成型金型1は、コア加硫成型方法によるタイヤの成型に使用され、図6に示す従来の加硫成型金型80と同様に、タイヤの外面形状を規定する外型2と、外型2の内周部に形成された凹所内に収容されてタイヤの内面形状を規定する内型3とを備える。この加硫成型金型1は、図1に示すように、型を閉じたときに外型2の内面と内型3の外面の間に製品タイヤの形状と略同一形状のキャビティ4を形成し、このキャビティ4内にグリーンタイヤ5を配置して加硫成型を行う。   This vulcanization mold 1 is used for molding a tire by the core vulcanization molding method, and, like the conventional vulcanization mold 80 shown in FIG. 6, an outer mold 2 that defines the outer shape of the tire, And an inner mold 3 which is accommodated in a recess formed in the inner peripheral portion of the outer mold 2 and defines the inner surface shape of the tire. As shown in FIG. 1, the vulcanization mold 1 forms a cavity 4 having substantially the same shape as that of the product tire between the inner surface of the outer mold 2 and the outer surface of the inner mold 3 when the mold is closed. The green tire 5 is placed in the cavity 4 and vulcanization molding is performed.

外型2は、アルミニウムや鉄等の金属の剛体からなり、径方向外側に配置されたトレッド形成用金型21と、その上下に配置された上サイド金型22及び下サイド金型23とを備え、全体として内周部が凹状に形成された環状をなす。   The outer mold 2 is made of a rigid body of metal such as aluminum or iron, and includes a tread forming mold 21 disposed on the radially outer side, and an upper side mold 22 and a lower side mold 23 disposed above and below the mold 21. It has an annular shape in which the inner peripheral portion is formed in a concave shape as a whole.

トレッド形成用金型21は、タイヤのトレッド部の外面形状を形成する成型面が内周面に形成され、その径方向内外へ移動可能な多数のセグメントから構成されている。これら各セグメントが組み合わさって全体として環状をなし、外型2の外周面を構成する。   The tread forming mold 21 is formed of a large number of segments that are formed on the inner peripheral surface of the molding surface that forms the outer shape of the tread portion of the tire and that can move inward and outward in the radial direction. These segments are combined to form an annular shape as a whole and constitute the outer peripheral surface of the outer mold 2.

上下サイド金型22、23は、それぞれ環状をなし、タイヤのサイドウォール部等の側面形状を形成する成型面が内面(上サイド金型22では図の下面、下サイド金型23では図の上面)に形成されている。これら上下サイド金型22、23は、それぞれ外型2の側面を構成し、その少なくとも一方は、キャビティ4内へのグリーンタイヤ5の挿入、及び加硫済みタイヤの取り出しを可能にするため、型開き方向へ移動可能になっている。   The upper and lower side molds 22 and 23 each have an annular shape, and a molding surface forming a side surface shape such as a sidewall portion of a tire is an inner surface (the lower side mold 22 has a lower surface in the figure and the lower side mold 23 has an upper surface in the figure. ). These upper and lower side molds 22 and 23 each constitute a side surface of the outer mold 2, and at least one of the molds is provided to enable insertion of the green tire 5 into the cavity 4 and removal of the vulcanized tire. It can move in the opening direction.

内型3は、タイヤの内面形状を形成する成型面が外面に形成された断面トロイダル状の金属の剛体からなる。
図2は、この内型3の平面図であり、図3は、図2のC―C矢視断面図である。
The inner mold 3 is made of a metal rigid body having a toroidal cross section in which a molding surface forming the inner shape of the tire is formed on the outer surface.
FIG. 2 is a plan view of the inner mold 3, and FIG. 3 is a cross-sectional view taken along the line CC in FIG.

内型3は、図2、3に示すように、外面形状が全体として略ドーナツ状をなし、その径方向に移動可能な複数個(図では10個)の弧状のセグメント31、32から構成されている。このセグメント31、32は、形状の異なる2種類のセグメント(扇形セグメント31と等長セグメント32)からなり、これらが周方向に交互に密着した状態で配置されて内型2を構成している。   As shown in FIGS. 2 and 3, the inner mold 3 is formed of a plurality of (10 in the figure) arc-shaped segments 31 and 32 that can move in the radial direction of the outer shape as a whole. ing. The segments 31 and 32 are composed of two types of segments having different shapes (a sector segment 31 and an equal-length segment 32), and are arranged in a state of being in close contact with each other in the circumferential direction to constitute the inner mold 2.

扇形セグメント31は、平面形状が径方向外側に向けて周長が次第に増加するのに対し、等長セグメント32は、径方向外側に向けて周長が次第に減少、若しくは実質的に変化しない形状に形成されている。このような形状のセグメント31、32からなる内型3を加硫済みタイヤの内側から取り外すには、まず、各等長セグメント32を順次径方向内側へ移動させてタイヤ中央部の円形孔から軸線方向に抜き出し、その後、各扇形セグメント31を同様に順次径方向内側へ移動させて軸線方向に抜き出して行う。   The fan-shaped segment 31 has a shape in which the circumferential shape gradually increases toward the outer side in the radial direction, whereas the equal-length segment 32 has a shape in which the circumferential length gradually decreases toward the outer side in the radial direction or does not substantially change. Is formed. In order to remove the inner mold 3 composed of the segments 31 and 32 having such a shape from the inside of the vulcanized tire, first, the respective equal length segments 32 are sequentially moved inward in the radial direction so that the axis line extends from the circular hole at the center of the tire. Then, each sector segment 31 is sequentially moved inward in the radial direction and extracted in the axial direction.

また、これら各セグメント31、32の内部33は、図3に示すように、中空構造になっており、各セグメント31、32が組み立てられると内部33が連通してリング状の空間を形成する。加硫成型時には、この空間に加熱媒体を封入又は循環させて、内型3を加熱してグリーンタイヤを加硫成型する。   Moreover, as shown in FIG. 3, the interior 33 of each segment 31 and 32 has a hollow structure, and when the segments 31 and 32 are assembled, the interior 33 communicates to form a ring-shaped space. At the time of vulcanization molding, a heating medium is sealed or circulated in this space, and the inner mold 3 is heated to vulcanize and mold the green tire.

ここで、外型2が従来と同様にアルミニウムや鉄等の金属材料からなるのに対し、内型3は、上記した加硫成型時の温度上昇に伴うキャビティ4の容積の減少を抑制するため、それらよりも熱膨張係数の低い金属材料により形成している。なお、内型3は、タイヤの内面形状等に合わせて複雑な曲面形状を有するため、製造の容易性を考慮して鋳造成型することが多く、従って、内型3の材料は鋳造可能な材料であることが好ましい。   Here, the outer mold 2 is made of a metal material such as aluminum or iron as in the conventional case, whereas the inner mold 3 is for suppressing the decrease in the volume of the cavity 4 due to the temperature rise during the vulcanization molding described above. These are formed of a metal material having a lower thermal expansion coefficient than those. Since the inner mold 3 has a complicated curved surface shape in accordance with the inner surface shape of the tire and the like, the inner mold 3 is often cast and molded in consideration of ease of manufacture. Therefore, the material of the inner mold 3 is a material that can be cast. It is preferable that

本実施形態の内型3は、熱膨張係数が20℃〜200℃において0.3×10−5の鋳造可能な鉄・ニッケル系合金からなり、従来材料(例えば鉄の熱膨張係数1.1×10−5やアルミニウムの熱膨張係数2.2×10−5)に比べて熱膨張係数が低く、従って、従来の内型よりも温度上昇に伴う膨張量は少なくなる。なお、この合金の他の物性値は、比熱が0.44J/g・K、密度が7.8g/cm、100℃での熱伝導率が72W/m・Kである。 The inner mold 3 of the present embodiment is made of a castable iron / nickel alloy having a thermal expansion coefficient of 0.3 × 10 −5 at 20 ° C. to 200 ° C., and is made of a conventional material (for example, a thermal expansion coefficient of 1.1 of iron). The coefficient of thermal expansion is lower than that of × 10 −5 or aluminum (2.2 × 10 −5 ). Therefore, the amount of expansion associated with the temperature rise is smaller than that of the conventional inner mold. Other physical properties of this alloy are a specific heat of 0.44 J / g · K, a density of 7.8 g / cm 3 , and a thermal conductivity at 100 ° C. of 72 W / m · K.

以上の構成を有する加硫成型金型1を用いて空気入りタイヤを製造する手順について説明する。まず、冷間(室温程度)で内型3を組み立てて、その外面にカーカスプライやベルト、トレッドゴム等のタイヤ構成部材を順次貼り合わせて製品タイヤの最終形状に近いグリーンタイヤ5を成型する。次に、成型したグリーンタイヤ5を内型3とともに、ゴムが加硫しない所定の温度(約80℃前後)まで昇温して予熱する。   A procedure for manufacturing a pneumatic tire using the vulcanization mold 1 having the above configuration will be described. First, the inner mold 3 is assembled cold (about room temperature), and tire constituent members such as a carcass ply, a belt, and a tread rubber are sequentially bonded to the outer surface of the inner mold 3 to form a green tire 5 close to the final shape of the product tire. Next, the molded green tire 5 is preheated together with the inner mold 3 to a predetermined temperature (about 80 ° C.) at which the rubber is not vulcanized.

次に、内型3とその表面のグリーンタイヤを下サイド金型23の上に配置した後、上サイド金型22とトレッド形成用金型21を閉じて加硫成型金型1を閉止し、キャビティ4内にグリーンタイヤ5を収納する。このとき、外型2を構成する各金型21、22、23の温度は、所定の加硫温度(約150℃前後)に保持しておく。その後、内型3の内部33に加熱媒体を供給して加硫を開始する。加硫媒体の熱は内型3の内面から外面に伝わり、この熱と外型2からの熱でキャビティ4内のグリーンタイヤ5を加熱して加硫成型する。   Next, after the inner mold 3 and the green tire on the surface thereof are arranged on the lower side mold 23, the upper side mold 22 and the tread forming mold 21 are closed to close the vulcanization mold 1. The green tire 5 is accommodated in the cavity 4. At this time, the temperatures of the molds 21, 22, and 23 constituting the outer mold 2 are kept at a predetermined vulcanization temperature (about 150 ° C.). Thereafter, a heating medium is supplied to the inside 33 of the inner mold 3 to start vulcanization. The heat of the vulcanization medium is transmitted from the inner surface of the inner mold 3 to the outer surface, and the green tire 5 in the cavity 4 is heated and vulcanized by this heat and heat from the outer mold 2.

加硫成型が終了したら、外型2の各金型21、22、23を開いて加硫済みのタイヤと内型3を取り出し、内型3を分解して製品タイヤから分離する。新たなタイヤを成型する場合には、内型3を室温付近まで冷却した後、再度組み立てて上記した手順を繰り返す。   When the vulcanization molding is completed, the molds 21, 22, and 23 of the outer mold 2 are opened, the vulcanized tire and the inner mold 3 are taken out, and the inner mold 3 is disassembled and separated from the product tire. When molding a new tire, the inner mold 3 is cooled to near room temperature, then reassembled, and the above-described procedure is repeated.

以上の加硫成型工程において、加硫温度に保持されている外型2は、温度がほぼ変化せず熱膨張しないのに対し、内型3は、予熱温度から加硫温度までの昇温で熱膨張するため、温度上昇に伴いキャビティ4の容積が次第に減少する。同時に、グリーンタイヤ5も温度上昇に伴い大きく熱膨張するため、グリーンタイヤ5が加圧されてキャビティ4内でゴムが流動するとともに、その表面が各金型2、3に押し付けられて製品タイヤの最終形状に成型される。   In the vulcanization molding process described above, the outer mold 2 held at the vulcanization temperature does not change in temperature and does not thermally expand, whereas the inner mold 3 is heated from the preheating temperature to the vulcanization temperature. Due to thermal expansion, the volume of the cavity 4 gradually decreases as the temperature rises. At the same time, the green tire 5 also thermally expands greatly as the temperature rises, so that the green tire 5 is pressurized and the rubber flows in the cavity 4, and its surface is pressed against the molds 2 and 3 to form the product tire. Molded to final shape.

しかし、このキャビティ4内の圧力が過大になると、上記したように内型3の変形や、各金型間の隙間が開いてそこからゴムのはみ出し等が生じるが、本実施形態の内型3は従来よりも熱膨張係数の低い材料からなるため、温度上昇に伴う熱膨張量及び、それに伴うキャビティ4の容積の減少量が従来よりも少なくなる。従って、キャビティ4内の圧力の過大な上昇が抑制されて、上記各問題の発生も抑制される。   However, when the pressure in the cavity 4 becomes excessive, the deformation of the inner mold 3 and the gap between the molds open as described above, and the rubber protrudes from the inner mold 3. Is made of a material having a lower thermal expansion coefficient than that of the prior art, and therefore, the amount of thermal expansion accompanying a rise in temperature and the amount of decrease in the volume of the cavity 4 associated therewith are smaller than before. Therefore, an excessive increase in the pressure in the cavity 4 is suppressed, and the occurrence of the above problems is also suppressed.

図4は、この加硫成型工程でのキャビティ4とタイヤ5の温度に対する容積又は体積(以下、ともに体積という)変化を模式的に示すグラフである。   FIG. 4 is a graph schematically showing a change in volume or volume (hereinafter, both referred to as volume) with respect to the temperature of the cavity 4 and the tire 5 in the vulcanization molding step.

なお、このグラフは、JATMA YEAR BOOK(2004、日本自動車タイヤ協会規格)で定めるタイヤサイズ275/80R22.5のトラック・バス用ラジアルタイヤを加硫成型する場合を例に計算したもので、加硫成型金型1の各寸法は、40℃前後の温度のときにキャビティ4とタイヤ5の体積が一致するように設定した。また、図には、比較のため従来多用されているアルミニウム製(熱膨張係数2.2×10−5)の内型3を使用した場合のキャビティ4の体積変化(図の一点鎖線)についても示す。 This graph is calculated based on an example of vulcanizing and molding a radial tire for trucks and buses with a tire size of 275 / 80R22.5 defined by JATMA YEAR BOOK (2004, Japan Automobile Tire Association Standard). Each dimension of the molding die 1 was set so that the volume of the cavity 4 and the tire 5 coincided when the temperature was around 40 ° C. In addition, the figure also shows the volume change of the cavity 4 when the inner mold 3 made of aluminum (thermal expansion coefficient 2.2 × 10 −5 ), which has been widely used for comparison, is used (the dashed line in the figure). Show.

図示のように、温度上昇に伴って、タイヤの体積は直線的に大きな傾きで増加するのに対し、キャビティ4の体積は直線的に小さな傾きで減少する。しかし、その減少の割合は、従来のアルミニウム製よりも本実施形態の鉄・ニッケル系合金製の内型3を使用した場合の方がより小さく、この内型3を使用することで、キャビティ4の温度上昇に伴う体積の減少を従来よりも少なくできることが分かる。   As shown in the figure, as the temperature rises, the volume of the tire increases linearly with a large inclination, whereas the volume of the cavity 4 decreases linearly with a small inclination. However, the rate of decrease is smaller when the inner mold 3 made of the iron / nickel alloy of the present embodiment is used than when made of the conventional aluminum. It can be seen that the volume reduction accompanying the temperature increase can be reduced as compared with the conventional case.

具体的には、アルミニウム製の内型3の場合には、室温付近の冷間ではキャビティ4の体積がタイヤ5の体積よりも大きく、例えば約20℃ではキャビティ4がタイヤ5よりも約1.0%(約193cc)大きいが、約40℃前後で逆転して、予熱温度(約80℃)ではキャビティ4がタイヤ5よりも約1.5%(約261cc)小さくなり、加硫温度(約150℃)ではキャビティ4がタイヤ5よりも約5.2%(約942cc)小さくなる。   Specifically, in the case of the inner mold 3 made of aluminum, the volume of the cavity 4 is larger than the volume of the tire 5 when it is cold near room temperature, for example, the cavity 4 is about 1. 0% (about 193cc) larger, but reverse at around 40 ° C, and at the preheating temperature (about 80 ° C), the cavity 4 becomes about 1.5% (about 261cc) smaller than the tire 5, and the vulcanization temperature (about 150 ° C.), the cavity 4 is smaller than the tire 5 by about 5.2% (about 942 cc).

これに対し、本実施形態の鉄・ニッケル系合金製の内型3の場合には、予熱温度(約80℃)では同じくキャビティ4がタイヤ5よりも約1.5%(約261cc)小さいが、加硫温度(約150℃)ではキャビティ4がタイヤ5よりも約4.5%(約807cc)小さい。即ち、この内型3により、従来よりも図の斜線で示す領域分だけ体積の差を小さくでき、例えば加硫温度ではキャビティ4の体積をアルミニウム製に比べて約0.7%(約135cc)大きくでき、従ってタイヤとの体積差をその分だけ小さくできる。   On the other hand, in the case of the inner mold 3 made of iron-nickel alloy of the present embodiment, the cavity 4 is also about 1.5% (about 261 cc) smaller than the tire 5 at the preheating temperature (about 80 ° C.). At the vulcanization temperature (about 150 ° C.), the cavity 4 is about 4.5% (about 807 cc) smaller than the tire 5. That is, the inner mold 3 can reduce the volume difference by a region indicated by the oblique lines in the figure than before. For example, at the vulcanization temperature, the volume of the cavity 4 is about 0.7% (about 135 cc) compared to that of aluminum. Therefore, the volume difference from the tire can be reduced accordingly.

なお、図の一点鎖線で示す直線Tは、必要な加硫圧力を得るための最大キャビティ体積を示し、キャビティ4の体積がこの線よりも大きいときには、タイヤ5の体積との差が小さくなってキャビティ4内の圧力が低くなり、必要な加硫圧力が得られない。従って、図示のように、加硫温度(約150℃)において、アルミニウム製の内型3の場合には約500cc程度、余計にゴムが圧縮されて圧力が高くなるが、内型3を鉄・ニッケル系合金にすることで、余分に圧縮するゴム量を約365ccにでき、キャビティ4内の圧力を低くできる。   Note that a straight line T indicated by a one-dot chain line in the figure indicates the maximum cavity volume for obtaining a required vulcanization pressure, and when the volume of the cavity 4 is larger than this line, the difference from the volume of the tire 5 becomes small. The pressure in the cavity 4 becomes low, and a necessary vulcanization pressure cannot be obtained. Therefore, as shown in the drawing, at the vulcanization temperature (about 150 ° C.), in the case of the inner mold 3 made of aluminum, about 500 cc, the rubber is compressed and the pressure is increased, but the inner mold 3 is By using a nickel-based alloy, the amount of extra compressed rubber can be about 365 cc, and the pressure in the cavity 4 can be lowered.

また、図5は、タイヤ加硫成型時の温度変化に対する各部の体積変化を示す他の例であり、比較のため内型3をアルミニウム(熱膨張係数2.2×10−5)と球状黒鉛鋳鉄(FCD)(熱膨張係数1.1×10−5〜1.2×10−5)で制作した場合についても示す。 FIG. 5 is another example showing the volume change of each part with respect to the temperature change at the time of tire vulcanization molding. For comparison, the inner mold 3 is made of aluminum (thermal expansion coefficient 2.2 × 10 −5 ) and spherical graphite. It also shows the case of producing with cast iron (FCD) (coefficient of thermal expansion 1.1 × 10 −5 to 1.2 × 10 −5 ).

なお、この図の各数値は、JATMA YEAR BOOK(2004、日本自動車タイヤ協会規格)で定めるタイヤサイズ275/70R22.5のトラック・バス用ラジアルタイヤを加硫成型する場合を例に計算したもので、加硫成型金型1の各寸法は、冷間(25℃前後)の温度のときにキャビティ4とタイヤ5の体積が一致するように設定した。従って、図示のように、冷間時でのタイヤのゴム体積及びキャビティ4の体積(外型2の内容積から内型3の体積を引いた値)は共に19450ccであり、その差(収支)は0ccである。   The numerical values in this figure are calculated by vulcanizing and molding radial tires for trucks and buses of tire size 275 / 70R22.5 as defined by JATMA YEAR BOOK (2004, Japan Automobile Tire Association Standard). Each dimension of the vulcanization mold 1 was set so that the volume of the cavity 4 and the tire 5 coincided when the temperature was cold (around 25 ° C.). Therefore, as shown in the drawing, the tire rubber volume and the cavity 4 volume (the value obtained by subtracting the volume of the inner mold 3 from the inner volume of the outer mold 2) are both 19450 cc, and the difference (balance) as shown in the figure. Is 0 cc.

また、図の内型予熱時と加硫時の各体積(cc)は、冷間時のそれぞれの体積との差で示し、図には、その値の冷間時のタイヤゴム体積又はキャビティ体積(19450cc)に対する割合(%)も示す。ここで、各値は、冷間時の体積に対しゴム過剰方向への変化、即ちゴムの膨張又はキャビティ4の減少方向への変化はプラス(+)で示し、ゴム不足方向への変化、即ちゴムの縮小又はキャビティ4の膨張方向への変化はマイナス(−)で示す。   Also, each volume (cc) at the time of internal mold preheating and vulcanization in the figure is shown by the difference between the respective volumes at the time of cold, and the figure shows the volume of tire rubber or cavity volume at the time of cold (in the figure) The ratio (%) to 19450 cc) is also shown. Here, each value is indicated by plus (+) for a change in the rubber excess direction with respect to the cold volume, that is, the expansion of the rubber or the decrease direction of the cavity 4, and the change in the rubber shortage direction, The reduction of the rubber or the change in the expansion direction of the cavity 4 is indicated by minus (−).

図示のように、内型予熱時には、内型3とグリーンタイヤ5は予熱温度(80℃)まで昇温されるため、タイヤゴムは490cc(2.52%)膨張する。また、各内型3も膨張するが、その膨張量は、アルミニウムの70cc(0.36%)やFCDの35cc(0.18%)に対し、鉄・ニッケル系合金では13cc(0.07%)と小さくなっている。   As shown in the figure, during the inner mold preheating, the inner mold 3 and the green tire 5 are heated to the preheating temperature (80 ° C.), so that the tire rubber expands by 490 cc (2.52%). Each inner mold 3 also expands, but the expansion amount is 13 cc (0.07%) for the iron-nickel alloy compared to 70 cc (0.36%) for aluminum and 35 cc (0.18%) for FCD. ) And smaller.

これらに対し、外型2は、加硫温度(150℃)に加熱されているため、キャビティ4を大きくする方向に580cc(2.9%)膨張する。従って、それらの収支は、アルミニウム製及びFCD製の内型3ではタイヤゴムよりもキャビティ4が、それぞれ20cc(0.10%)及び55cc(0.28%)大きいのに対し、鉄・ニッケル系合金製の内型3では、タイヤゴムよりもキャビティ4が77cc(0.40%)大きく、最もキャビティ4の体積が大きいことが分かる。   On the other hand, since the outer mold 2 is heated to the vulcanization temperature (150 ° C.), it expands by 580 cc (2.9%) in the direction of increasing the cavity 4. Therefore, in the inner mold 3 made of aluminum and FCD, the cavity 4 is 20 cc (0.10%) and 55 cc (0.28%) larger than the tire rubber, respectively, whereas the iron / nickel alloy It can be seen that the inner mold 3 made of the cavity 4 is 77 cc (0.40%) larger than the tire rubber, and the volume of the cavity 4 is the largest.

また、加硫時には、内型3とグリーンタイヤ5は予熱温度から加硫温度(150℃)まで約70℃昇温されるため、タイヤゴムは冷間時に対し1140cc(5.86%)膨張する。また、各内型3も膨張するが、その膨張量は、アルミニウムの160cc(0.82%)やFCDの80cc(0.41%)に対し、鉄・ニッケル系合金では25cc(0.13%)と小さくなっている。   Further, at the time of vulcanization, the inner mold 3 and the green tire 5 are heated by about 70 ° C. from the preheating temperature to the vulcanization temperature (150 ° C.), so that the tire rubber expands by 1140 cc (5.86%) with respect to the cold time. Each inner mold 3 also expands, but the expansion amount is 25 cc (0.13%) for iron / nickel alloy, compared to 160 cc (0.82%) for aluminum and 80 cc (0.41%) for FCD. ) And smaller.

これらに対し、外型2は、加硫温度(150℃)に保持されているため、冷間時に対する膨張量は580cc(2.9%)と変化しない。従って、それらの収支は、アルミニウム製及びFCD製の内型3ではキャビティ4がタイヤゴムよりも、それぞれ720cc(3.7%)及び640cc(3.3%)小さいのに対し、鉄・ニッケル系合金製の内型3ではキャビティ4がタイヤゴムよりも585cc(3.0%)小さくなっており、キャビティ4とタイヤゴムとの体積差が最も小さいことが分かる。   On the other hand, since the outer mold | type 2 is hold | maintained at the vulcanization temperature (150 degreeC), the expansion amount with respect to the time of cold does not change with 580cc (2.9%). Therefore, in the inner mold 3 made of aluminum and FCD, the cavity 4 is 720 cc (3.7%) and 640 cc (3.3%) smaller than the tire rubber, respectively. In the manufactured inner mold 3, the cavity 4 is 585 cc (3.0%) smaller than the tire rubber, and it can be seen that the volume difference between the cavity 4 and the tire rubber is the smallest.

このように、内型3を本実施形態の鉄・ニッケル系合金製にすることで、従来の内型3に比べて昇温に伴うキャビティ4の体積減少量を小さくでき、キャビティ4内のゴムの圧力上昇を抑制できることが分かる。   Thus, by making the inner mold 3 made of the iron / nickel alloy of the present embodiment, the volume reduction amount of the cavity 4 accompanying the temperature rise can be reduced as compared with the conventional inner mold 3, and the rubber in the cavity 4 can be reduced. It can be seen that an increase in pressure can be suppressed.

なお、内型3の熱膨張係数が小さいほど昇温に伴うキャビティ4の体積減少量をより小さくできる。しかし、使用温度である20℃〜200℃における熱膨張係数が5.0×10−6以下であれば、温度上昇に伴う内型3の体積膨張が従来材料と比べて十分小さくなり、昇温に伴うキャビティ4の体積減少量を有効に抑制して、十分に本発明の効果が得られる。 In addition, the volume reduction amount of the cavity 4 accompanying a temperature rise can be made smaller as the thermal expansion coefficient of the inner mold 3 is smaller. However, if the thermal expansion coefficient at 20 ° C. to 200 ° C., which is the use temperature, is 5.0 × 10 −6 or less, the volume expansion of the inner mold 3 accompanying the temperature rise becomes sufficiently smaller than the conventional material, and the temperature rise Thus, the volume reduction amount of the cavity 4 can be effectively suppressed, and the effects of the present invention can be sufficiently obtained.

表1に、このような熱膨張係数を有する鋳造可能な鉄・ニッケル系合金の他の例を示す。   Table 1 shows other examples of castable iron / nickel alloys having such a thermal expansion coefficient.

Figure 2007050596
Figure 2007050596

内型3の材料には、このような各物性値を有する鉄・ニッケル系合金を使用することもでき、表1に示すように、その熱膨張係数は、最低値が合金1の0.6×10−6であり最高値が合金4、5の3〜4×10−6となっている。従って、内型3の熱膨張係数は、20℃〜200℃において0.6×10−6以上5.0×10−6以下であることが好ましい。
なお、本発明において、鋳造可能な鉄・ニッケル系合金とは、上記した各物性値、又は表1に代表的に表す各物性値を有する合金を言う。
As the material of the inner mold 3, an iron / nickel alloy having such physical properties can also be used. As shown in Table 1, the thermal expansion coefficient has a minimum value of 0.6 of that of the alloy 1. × 10 −6 and the maximum value is 3 to 4 × 10 −6 of alloys 4 and 5. Therefore, the thermal expansion coefficient of the inner mold 3 is preferably 0.6 × 10 −6 or more and 5.0 × 10 −6 or less at 20 ° C. to 200 ° C.
In the present invention, the castable iron / nickel-based alloy refers to an alloy having the above-described physical property values or the respective physical property values representatively shown in Table 1.

以上説明したように、本実施形態の加硫成型金型1は、鋳造可能な鉄・ニッケル系合金等の従来よりも熱膨張係数の小さな材料で形成したため、加硫成型時の温度上昇に伴う内型3の膨張量を従来よりも少なくできる。従って、内型3の構造を複雑化させることなく、加硫成型時のキャビティ4容積の減少量を従来よりも少なくでき、キャビティ4内の圧力の上昇を抑制できる。これにより、各金型2、3が受ける圧力が小さくなり、内型3の変形を抑制できるとともに、金型2、3及び各セグメント間等に隙間が発生するのを防止でき、未加硫ゴムのはみ出しによるバリの発生を抑制できる。   As described above, the vulcanization mold 1 according to the present embodiment is formed of a material having a smaller thermal expansion coefficient than that of a conventional cast iron / nickel alloy or the like. The amount of expansion of the inner mold 3 can be reduced as compared with the prior art. Therefore, without complicating the structure of the inner mold 3, the amount of decrease in the volume of the cavity 4 at the time of vulcanization molding can be reduced as compared with the prior art, and an increase in the pressure in the cavity 4 can be suppressed. As a result, the pressure received by the molds 2 and 3 can be reduced, the deformation of the inner mold 3 can be suppressed, and the formation of gaps between the molds 2 and 3 and the segments can be prevented. It is possible to suppress the generation of burrs due to the protrusion of slag.

本実施形態のタイヤ加硫成型金型の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the tire vulcanization molding metal mold | die of this embodiment. 本実施形態のタイヤ加硫成型金型の内型の平面図である。It is a top view of the inner mold of the tire vulcanization mold of this embodiment. 図2のC―C矢視断面図である。It is CC sectional view taken on the line of FIG. 加硫成型工程でのキャビティとタイヤの温度に対する体積(容積)変化を模式的に示すグラフである。It is a graph which shows typically the volume (volume) change with respect to the temperature of a cavity and a tire in a vulcanization molding process. タイヤ加硫成型時の温度変化に対する体積変化を示す図である。It is a figure which shows the volume change with respect to the temperature change at the time of tire vulcanization molding. コア加硫成型方法に用いられる従来のタイヤ加硫成型金型の要部断面図である。It is principal part sectional drawing of the conventional tire vulcanization molding die used for a core vulcanization molding method. 従来の加硫成型金型の要部の拡大断面図である。It is an expanded sectional view of the principal part of the conventional vulcanization molding die.

符号の説明Explanation of symbols

1・・・加硫成型金型、2・・・外型、3・・・内型、4・・・キャビティ、5・・・グリーンタイヤ、21・・・トレッド形成用金型、22・・・上サイド金型、23・・・下サイド金型、31・・・扇形セグメント、32・・・等長セグメント、33・・・内部。 DESCRIPTION OF SYMBOLS 1 ... Vulcanization molding die, 2 ... Outer die, 3 ... Inner die, 4 ... Cavity, 5 ... Green tire, 21 ... Tread formation die, 22 .... -Upper side mold, 23 ... Lower side mold, 31 ... Fan segment, 32 ... Equal length segment, 33 ... Inside.

Claims (4)

タイヤの内面形状を規定する剛体の内型と、前記タイヤの外面形状を規定する剛体の外型とを備え、前記内型の外面と前記外型の内面との間に形成されるキャビティ内にグリーンタイヤを収納して加硫成型するタイヤ加硫成型金型であって、
前記内型が、20℃〜200℃における熱膨張係数が0.6×10−6以上5×10−6以下の材料からなることを特徴とするタイヤ加硫成型金型。
A rigid inner mold that defines the inner surface shape of the tire and a rigid outer mold that defines the outer surface shape of the tire, and a cavity formed between the outer surface of the inner mold and the inner surface of the outer mold A tire vulcanization mold that houses and vulcanizes green tires,
The tire vulcanization mold, wherein the inner mold is made of a material having a thermal expansion coefficient of 0.6 × 10 −6 or more and 5 × 10 −6 or less at 20 ° C. to 200 ° C.
請求項1に記載されたタイヤ加硫成型金型において、
前記内型は、鋳造可能な鉄・ニッケル系合金からなることを特徴とするタイヤ加硫成型金型。
In the tire vulcanization mold according to claim 1,
The tire vulcanization mold, wherein the inner mold is made of a castable iron-nickel alloy.
タイヤの内面形状を規定する剛体の内型と、前記タイヤの外面形状を規定する剛体の外型とを備え、前記内型の外面と前記外型の内面との間に形成されるキャビティ内にグリーンタイヤを収納して加硫成型するタイヤ加硫成型方法であって、
前記内型を20℃〜200℃における熱膨張係数が0.6×10−6以上5×10−6以下の材料で形成し、
該内型上にグリーンタイヤを形成する工程と、
前記外型と前記内型とを組み合わせてキャビティを形成し、前記グリーンタイヤを前記キャビティ内に収納する工程と、
前記キャビティ内で前記グリーンタイヤを加硫成型する工程と、
を有することを特徴とするタイヤ加硫成型方法。
A rigid inner mold that defines the inner surface shape of the tire and a rigid outer mold that defines the outer surface shape of the tire, and a cavity formed between the outer surface of the inner mold and the inner surface of the outer mold A tire vulcanization molding method for storing and vulcanizing a green tire,
The inner mold is formed of a material having a thermal expansion coefficient at 20 ° C. to 200 ° C. of 0.6 × 10 −6 or more and 5 × 10 −6 or less,
Forming a green tire on the inner mold;
Combining the outer mold and the inner mold to form a cavity, and storing the green tire in the cavity;
Vulcanizing and molding the green tire in the cavity;
A tire vulcanization molding method comprising:
請求項3に記載されたタイヤ加硫成型方法において、
前記内型上に形成したグリーンタイヤを前記内型とともに加硫温度以下の所定温度まで予熱する工程と、
前記キャビティに収納した前記グリーンタイヤを所定の加硫温度まで加熱する工程とを有し、
前記キャビティを形成する前の前記外型を前記所定の加硫温度に保持しておくことを特徴とするタイヤ加硫成型方法。
In the tire vulcanization molding method according to claim 3,
Preheating the green tire formed on the inner mold to a predetermined temperature below the vulcanization temperature together with the inner mold;
Heating the green tire housed in the cavity to a predetermined vulcanization temperature,
A tire vulcanization molding method, wherein the outer mold before forming the cavity is maintained at the predetermined vulcanization temperature.
JP2005237185A 2005-08-18 2005-08-18 Tire vulcanizing/molding mold and vulcanizing/molding method Pending JP2007050596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005237185A JP2007050596A (en) 2005-08-18 2005-08-18 Tire vulcanizing/molding mold and vulcanizing/molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005237185A JP2007050596A (en) 2005-08-18 2005-08-18 Tire vulcanizing/molding mold and vulcanizing/molding method

Publications (1)

Publication Number Publication Date
JP2007050596A true JP2007050596A (en) 2007-03-01

Family

ID=37915368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005237185A Pending JP2007050596A (en) 2005-08-18 2005-08-18 Tire vulcanizing/molding mold and vulcanizing/molding method

Country Status (1)

Country Link
JP (1) JP2007050596A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078618A (en) * 2007-09-25 2009-04-16 Yokohama Rubber Co Ltd:The Production method of tire model, and simulation method of tire
US20110017403A1 (en) * 2007-10-08 2011-01-27 Societe De Tecnologie Michelin Rigid Core for Making Tires
EP2818291A1 (en) * 2012-03-19 2014-12-31 Sumitomo Rubber Industries, Ltd. Rigid core for forming tire

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220313A (en) * 1988-07-08 1990-01-23 Kooki Eng:Kk Metallic mold for injection molding using low-expansivity metal
JPH04167948A (en) * 1990-10-30 1992-06-16 Ngk Insulators Ltd Manufacture of metallic mold for forming tire
JPH0631735A (en) * 1992-07-14 1994-02-08 Apic Yamada Kk Molding equipment
JP2000084937A (en) * 1998-09-16 2000-03-28 Bridgestone Corp Method for vulcanizing/molding tires and heating device for vulcanization mold
JP2003311741A (en) * 2002-04-23 2003-11-05 Bridgestone Corp Tire manufacturing core
JP2003320534A (en) * 2002-04-30 2003-11-11 Bridgestone Corp Method and apparatus for manufacturing pneumatic tire

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0220313A (en) * 1988-07-08 1990-01-23 Kooki Eng:Kk Metallic mold for injection molding using low-expansivity metal
JPH04167948A (en) * 1990-10-30 1992-06-16 Ngk Insulators Ltd Manufacture of metallic mold for forming tire
JPH0631735A (en) * 1992-07-14 1994-02-08 Apic Yamada Kk Molding equipment
JP2000084937A (en) * 1998-09-16 2000-03-28 Bridgestone Corp Method for vulcanizing/molding tires and heating device for vulcanization mold
JP2003311741A (en) * 2002-04-23 2003-11-05 Bridgestone Corp Tire manufacturing core
JP2003320534A (en) * 2002-04-30 2003-11-11 Bridgestone Corp Method and apparatus for manufacturing pneumatic tire

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078618A (en) * 2007-09-25 2009-04-16 Yokohama Rubber Co Ltd:The Production method of tire model, and simulation method of tire
US20110017403A1 (en) * 2007-10-08 2011-01-27 Societe De Tecnologie Michelin Rigid Core for Making Tires
EP2818291A1 (en) * 2012-03-19 2014-12-31 Sumitomo Rubber Industries, Ltd. Rigid core for forming tire
EP2818291A4 (en) * 2012-03-19 2015-11-18 Sumitomo Rubber Ind Rigid core for forming tire

Similar Documents

Publication Publication Date Title
EP1629963B1 (en) Tire curing bladder
JP2009018445A (en) Method of manufacturing pneumatic tire
JP2007050596A (en) Tire vulcanizing/molding mold and vulcanizing/molding method
JP4998987B2 (en) Tire vulcanization molding apparatus and vulcanization molding method
EP1629962B1 (en) Tire curing bladder
JP2003311741A (en) Tire manufacturing core
JP2007230102A (en) Method for vulcanizing pneumatic tire
CN103648756A (en) Rigid core and manufacturing method for tire using same
JP4626334B2 (en) Tire vulcanizing bladder and manufacturing method thereof
JP4604783B2 (en) Manufacturing method of rigid core for tire vulcanization and pneumatic tire
WO2022269940A1 (en) Tire molding die and tire production method
JP2008213289A (en) Inner mold for manufacturing tire and tire manufacturing method using inner mold
EP3115167B1 (en) Rigid core for tire formation and tire production method using the same
JPWO2014073678A1 (en) Tire vulcanizing bladder and method for manufacturing pneumatic tire
WO2014020991A1 (en) Rigid core for forming tire
JP2023002401A (en) Tire molding die and tire production method
JP2007076269A (en) Vulcanizing apparatus for retreaded tire
JP5788213B2 (en) Tire vulcanizing apparatus and tire manufacturing method
JP2011098533A (en) Method for manufacturing pneumatic tire and pneumatic tire
JP6926791B2 (en) Tire vulcanization method and tire vulcanization equipment
JP2000141380A (en) Material for rubber product vulcanizing mold, rubber product vulcanizing mold, manufacture of rubber product vulcanizing mold, and vulcanizing molding method for rubber product
JP2008093983A (en) Method of manufacturing pneumatic tire
JP2010000723A (en) Vulcanizing bladder
JP2022115652A (en) Method for designing tire vulcanization mold
JP3806712B2 (en) Pneumatic tire manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110909