WO2013108218A2 - Tube arrangement in a once-through horizontal evaporator - Google Patents
Tube arrangement in a once-through horizontal evaporator Download PDFInfo
- Publication number
- WO2013108218A2 WO2013108218A2 PCT/IB2013/050460 IB2013050460W WO2013108218A2 WO 2013108218 A2 WO2013108218 A2 WO 2013108218A2 IB 2013050460 W IB2013050460 W IB 2013050460W WO 2013108218 A2 WO2013108218 A2 WO 2013108218A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tubes
- tube
- evaporator
- once
- fluid communication
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B29/00—Steam boilers of forced-flow type
- F22B29/06—Steam boilers of forced-flow type of once-through type, i.e. built-up from tubes receiving water at one end and delivering superheated steam at the other end of the tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B15/00—Water-tube boilers of horizontal type, i.e. the water-tube sets being arranged horizontally
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22B—METHODS OF STEAM GENERATION; STEAM BOILERS
- F22B21/00—Water-tube boilers of vertical or steeply-inclined type, i.e. the water-tube sets being arranged vertically or substantially vertically
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F22—STEAM GENERATION
- F22D—PREHEATING, OR ACCUMULATING PREHEATED, FEED-WATER FOR STEAM GENERATION; FEED-WATER SUPPLY FOR STEAM GENERATION; CONTROLLING WATER LEVEL FOR STEAM GENERATION; AUXILIARY DEVICES FOR PROMOTING WATER CIRCULATION WITHIN STEAM BOILERS
- F22D5/00—Controlling water feed or water level; Automatic water feeding or water-level regulators
- F22D5/26—Automatic feed-control systems
- F22D5/34—Applications of valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/08—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag
- F28D7/082—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being otherwise bent, e.g. in a serpentine or zig-zag with serpentine or zig-zag configuration
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F27/00—Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/007—Auxiliary supports for elements
- F28F9/013—Auxiliary supports for elements for tubes or tube-assemblies
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/02—Header boxes; End plates
- F28F9/026—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
- F28F9/027—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes
- F28F9/0275—Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of distribution pipes with multiple branch pipes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/22—Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F9/00—Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
- F28F9/26—Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T137/00—Fluid handling
- Y10T137/0318—Processes
- Y10T137/0324—With control of flow by a condition or characteristic of a fluid
Definitions
- the present disclosure relates generally to a heat recovery steam generator (HRSG), and more particularly, to a tube for controlling flow in an HRSG having inclined tubes for heat exchange.
- HRSG heat recovery steam generator
- HRSG once through evaporator heat recovery steam generator
- the HRSG comprises vertical heating surfaces in the form of a series of vertical parallel flow paths/tubes 104 and 108 (disposed between the duct walls 111) configured to absorb the required heat.
- a working fluid e.g., water
- the working fluid is transported to an inlet manifold 105 from a source 106.
- the working fluid is fed from the inlet manifold 105 to an inlet header 112 and then to a first heat exchanger 104, where it is heated by hot gases from a furnace (not shown) flowing in the horizontal direction.
- the hot gases heat tube sections 104 and 108 disposed between the duct walls 111.
- Figure 7A depicts an elevation end-on view of tubes that are inclined in one direction while being horizontal in another direction; the tubes are arranged in a staggered fashion;
- Figure 8 is a depiction of a plane section taken within the tube stack that depicts an inline configuration
- Figure 9 depicts an end-on view of tubes that are inclined in one direction while being horizontal in another direction; it also shows on tube stack that spans across two once-through sections; and
- the Figure 2 shows a section of a tube that is employed in a tube stack of the once-through evaporator.
- the tube stack shows that the tube is inclined to the vertical in two directions. In one direction, it is inclined at an angle of ⁇ 1 to the vertical, while in a second direction it is inclined at angle of ⁇ 2 to the vertical.
- ⁇ 1 and ⁇ 2 can vary by up to 90 degrees to the vertical. If the angle of inclination ⁇ 1 and ⁇ 2 are equal to 90 degrees, then the tube is stated to be substantially horizontal. If on the other hand only one angle ⁇ 1 is 90 degrees while the other angle ⁇ 2 is less than 90 degrees or greater than 90 degrees, then the tube is said to be horizontal in one direction while being inclined in another direction.
- the section (or plurality of sections) containing the horizontal tubes is also termed a "once-through evaporator", because when operating in subcritical conditions, the working fluid (e.g., water, ammonia, or the like) is converted into vapor gradually during a single passage through the section from an inlet header to an outlet header. Likewise, for supercritical operation, the supercritical working fluid is heated to a higher temperature during a single passage through the section from the inlet header to the outlet header.
- the working fluid e.g., water, ammonia, or the like
- the supercritical working fluid is heated to a higher temperature during a single passage through the section from the inlet header to the outlet header.
- the once-through evaporator (hereinafter “evaporator”) comprises parallel tubes that are disposed non-vertically in at least one direction that is perpendicular to the direction of flow of heated gases emanating from a furnace or boiler.
- the Figures 3, 4(A), 4(B) and 10 depicts an exemplary embodiment of a once- through evaporator.
- the Figure 3 depicts a plurality of vertical tube stacks in a once-through evaporator 200. In one embodiment, the tube stacks are aligned vertically so that each stack is either directly above, directly under, or both directly above and/or directly under another tube stack.
- the Figure 4(A) depicts one exemplary arrangement of the tubes in a tube stack of a once-through evaporator; while the Figure 4(B) depicts an isometric view of an exemplary arrangement of the tubes in a tube stack of a once-through evaporator;
- multiple tube stacks 210(n) are therefore respectively vertically aligned between a plurality of inlet headers 204(n) and outlet headers 206(n).
- Each tube of the tube stack 210(n) is supported in position by a plate 250 (see Figure 4(B)).
- the working fluid upon traversing the tube stack 210(n) is discharged to the outlet manifold 208 from which it is discharged to the superheater.
- the inlet manifold 202 and the outlet manifold 208 can be horizontally disposed or vertically disposed depending upon space requirements for the once-through evaporator.
- the hot gases from a source travel perpendicular to the direction of the flow of the working fluid in the tubes 210.
- a source e.g., a furnace or boiler
- the hot gases travel away from the reader into the plane of the paper, or towards the reader from the plane of the paper.
- the hot gases travel counterflow to the direction of travel of the working fluid in the tube stack. Heat is transferred from the hot gases to the working fluid to increase the temperature of the working fluid and to possibly convert some or all of the working fluid from a liquid to a vapor.
- the inlet header comprises one or more inlet headers 204(n), 204(n+l) and (204(n) (hereinafter represented generically by the term “204(n)”), each of which are in operative communication with an inlet manifold 202.
- each of the one or more inlet headers 204(n) are in fluid communication with an inlet manifold 202.
- the inlet headers 204(n) are in fluid communication with a plurality of horizontal tube stacks 210(n), 210(n+l), 210(n'+2).... and 210(n) respectively ((hereinafter termed "tube stack” represented generically by the term "210(n)").
- Each tube stack 210(n) is in fluid communication with an outlet header 206(n).
- the outlet header thus comprises a plurality of outlet headers 206(n), 206(n+l), 206(n+2) and 206(n), each of which is in fluid communication with a tube stack 210(n), 210(n+l), 210(n+2).... and 210(n) and an inlet header 204(n), 204(n+l), (204(n+2) and 204(n) respectively.
- n is an integer value
- ⁇ ' can be an integer value or a fractional value
- n' can thus be a fractional value such as 1/2, 1/3, and the like.
- valves and control systems having the reference numeral n' do not actually exist in fractional form, but may be downsized if desired to accommodate the smaller volumes that are handled by the fractional evaporator sections.
- the once-through evaporator can comprise 2 or more inlet headers in fluid communication with 2 or more tube stacks which are in fluid communication with 2 or more outlet headers. In one embodiment, the once-through evaporator can comprise 3 or more inlet headers in fluid communication with 3 or more tube stacks which are in fluid communication with 3 or more outlet headers. In another embodiment, the once- through evaporator can comprise 5 or more inlet headers in fluid communication with 5 or more tube stacks which are in fluid communication with 5 or more outlet headers. In yet another embodiment, the once-through evaporator can comprise 10 or more inlet headers in fluid communication with 10 or more tube stacks which are in fluid communication with 10 or more outlet headers. There is no limitation to the number of tube stacks, inlet headers and outlet headers that are in fluid communication with each other and with the inlet manifold and the outlet manifold. Each tube stack is sometimes termed a bundle or a zone.
- the Figure 10 depicts another exemplary assembled once-through evaporator.
- the Figure 10 shows a once-through evaporator of the Figure 3 having 10 vertically aligned tube stacks 210(n) that contain tubes through which hot gases can pass to transfer their heat to the working fluid.
- the tube stacks are mounted in a frame 300 that comprises two parallel vertical support bars 302 and two horizontal support bars 304.
- the support bars 302 and 304 are fixedly attached or detachably attached to each other by welds, bolts, rivets, screw threads and nuts, or the like.
- each rod 306 Disposed on an upper surface of the once-through evaporator are rods 306 that contact the plates 250.
- Each rod 306 supports the plate and the plates hang (i.e., they are suspended) from the rod 306.
- the plates 250 (as detailed above) are locked in position using clevis plates.
- the plates 250 also support and hold in position the respective tube stacks 210(n).
- only the uppermost tube and the lowermost tube of each tube tack 210(n) is shown as part of the tube stack.
- the other tubes in each tube stack are omitted for the convenience of the reader and for clarity's sake.
- each rod 306 holds or supports a plate 250, the number of rods 306 are therefore equal to the number of the plates 250.
- the entire once-through evaporator is supported and held-up by the rods 306 that contact the horizontal rods 304.
- the rods 306 can be tie-rods that contact each of the parallel horizontal rods 304 and support the entire weight of the tube stacks. The weight of the once-through evaporator is therefore supported by the rods 306.
- Each section is mounted onto the respective plates and the respective plates are then held together by tie rods 300 at the periphery of the entire tube stack.
- a number of vertical plates support these horizontal heat exchangers. These plates are designed as the structural support for the module and provide support to the tubes to limit deflection.
- the horizontal heat exchangers are shop assembled into modules and shipped to site. The plates of the horizontal heat exchangers are connected to each other in the field.
- the Figure 5 depicts one possible arrangement of the tubes in a tube stack.
- the Figure 5 is an end-on view that depicts two tube stacks that are vertically aligned.
- the tubes are serpentine i.e., they travel back and forth between the inlet header 204(n) and the outlet header 206(n) in a serpentine manner.
- the working fluid is discharged from the inlet header 204(n) to the tube stack, where it receives heat from the hot gas flow that is perpendicular to the direction of the tubes in the tube stack.
- the Figure 6A is an expanded end-on view of the tube stack 210(n+l) of the Figure 5.
- two tubes 262 and 264 emanate from the inlet header 204(n+l).
- the two tubes 262 and 264 emanate from the header 204(n+l) at each line position 260.
- the tubes in the Figure 6A are inclined from the inlet header 204(n) to the outlet header 206(n), which is away from the reader into the plane of the paper.
- the tube 262 travels through holes in the odd numbered (1, 3, 5, 7,%) columns in odd numbered rows, while the tube 264 travels through even numbered (2, 4, 6, 8, ...) columns in even numbered rows.
- This zig-zag arrangement is produced because the holes in even numbered hole columns of the metal plate are off- set from the holes in the odd numbered hole columns.
- the tubes in one row are off set from the tubes in a preceding or succeeding row.
- the heating circuit can lie in two flow paths so as to avoid low points in the boiler and the subsequent inability to drain pressure parts.
- the Figure 6B is a depiction of a plane section taken within the tube stack.
- the plane is perpendicular to the direction of travel of fluid in the tubes and the Figure 6B shows the cross-sectional areas of the 7 serpentine tubes at the plane.
- the tubes (as viewed by their cross-sectional areas) are in a staggered configuration.
- the heating surface depicts the parallel tube paths in a staggered configuration that supports counterflow fluid flow and consequently counterflow heat transfer.
- counterflow heat transfer it is meant that the flow in a section of a tube in one direction runs counter to the flow in another section of the same tube that is adjacent to it.
- the numbering shown in the Figure 6B denotes a single water/steam circuit.
- the section la contains fluid flowing away from the reader, while the section of tube 1 next to it contains fluid that flows towards the reader.
- the different tube colors in the Figure 6B indicates an opposed flow direction of the working fluid.
- the arrows show the direction of fluid flow in a single pipe.
- the Figure 9 is another end-on elevation view of Figure 7A counterflow and staggered arrangement.
- the tube stack 210(n) spans two sections, i.e., as seen in the figure the tube stack lies on both sides of the baffle 240.
- the tubes shown in the Figure 8 are inclined in one direction, while being horizontal in a direction in a mutually perpendicular direction.
- the tubes are horizontal in a direction that is perpendicular to the gas flow, while being inclined in a direction parallel to the gas flow.
- the inclination of the tubes allows for unoccupied space that is used for controls or for providing fractional tube stacks (heating surface) that are in fluid
- relative terms such as “lower” or “bottom” and “upper” or “top,” may be used herein to describe one element's relationship to another elements as illustrated in the Figures. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation depicted in the Figures. For example, if the device in one of the figures is turned over, elements described as being on the “lower” side of other elements would then be oriented on “upper” sides of the other elements. The exemplary term “lower,” can therefore, encompasses both an orientation of “lower” and “upper,” depending on the particular orientation of the figure.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Details Of Heat-Exchange And Heat-Transfer (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Control Of Steam Boilers And Waste-Gas Boilers (AREA)
Abstract
Description
Claims
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
MX2013008237A MX363995B (en) | 2012-01-17 | 2013-01-17 | Tube arrangement in a once-through horizontal evaporator. |
EP13707444.9A EP2834561B1 (en) | 2012-01-17 | 2013-01-17 | Tube arrangement in a once-through horizontal evaporator |
CN201380000535.2A CN103748414B (en) | 2012-01-17 | 2013-01-17 | Pipe in once-through horizontal evaporator is arranged |
KR1020167015030A KR102049106B1 (en) | 2012-01-17 | 2013-01-17 | Tube arrangement in a once-through horizontal evaporator |
KR20137021224A KR20130132579A (en) | 2012-01-17 | 2013-01-17 | Tube arrangement in a once-through horizontal evaporator |
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261587332P | 2012-01-17 | 2012-01-17 | |
US201261587428P | 2012-01-17 | 2012-01-17 | |
US201261587359P | 2012-01-17 | 2012-01-17 | |
US201261587402P | 2012-01-17 | 2012-01-17 | |
US61/587,359 | 2012-01-17 | ||
US61/587,332 | 2012-01-17 | ||
US61/587,428 | 2012-01-17 | ||
US61/587,402 | 2012-01-17 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2013108218A2 true WO2013108218A2 (en) | 2013-07-25 |
WO2013108218A3 WO2013108218A3 (en) | 2013-11-21 |
Family
ID=47790279
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2013/050460 WO2013108218A2 (en) | 2012-01-17 | 2013-01-17 | Tube arrangement in a once-through horizontal evaporator |
PCT/IB2013/050455 WO2013108215A2 (en) | 2012-01-17 | 2013-01-17 | Start-up system for a once-through horizontal evaporator |
PCT/IB2013/050457 WO2013108216A2 (en) | 2012-01-17 | 2013-01-17 | Flow control devices and methods for a once-through horizontal evaporator |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2013/050455 WO2013108215A2 (en) | 2012-01-17 | 2013-01-17 | Start-up system for a once-through horizontal evaporator |
PCT/IB2013/050457 WO2013108216A2 (en) | 2012-01-17 | 2013-01-17 | Flow control devices and methods for a once-through horizontal evaporator |
Country Status (6)
Country | Link |
---|---|
US (3) | US10274192B2 (en) |
EP (3) | EP2805109B1 (en) |
KR (4) | KR102049106B1 (en) |
CN (3) | CN103917825B (en) |
MX (3) | MX348680B (en) |
WO (3) | WO2013108218A2 (en) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9696098B2 (en) | 2012-01-17 | 2017-07-04 | General Electric Technology Gmbh | Method and apparatus for connecting sections of a once-through horizontal evaporator |
CA2924710C (en) * | 2013-09-19 | 2018-03-27 | Siemens Aktiengesellschaft | Combined cycle gas turbine plant having a waste heat steam generator |
US9739476B2 (en) | 2013-11-21 | 2017-08-22 | General Electric Technology Gmbh | Evaporator apparatus and method of operating the same |
US10260784B2 (en) | 2013-12-23 | 2019-04-16 | General Electric Company | System and method for evaporator outlet temperature control |
JP5874754B2 (en) * | 2014-01-31 | 2016-03-02 | ダイキン工業株式会社 | Refrigeration equipment |
DE102014206043B4 (en) * | 2014-03-31 | 2021-08-12 | Mtu Friedrichshafen Gmbh | Method for operating a system for a thermodynamic cycle with a multi-flow evaporator, control device for a system, system for a thermodynamic cycle with a multi-flow evaporator, and arrangement of an internal combustion engine and a system |
US9874114B2 (en) * | 2014-07-17 | 2018-01-23 | Panasonic Intellectual Property Management Co., Ltd. | Cogenerating system |
EP2980475A1 (en) * | 2014-07-29 | 2016-02-03 | Alstom Technology Ltd | A method for low load operation of a power plant with a once-through boiler |
US9890666B2 (en) | 2015-01-14 | 2018-02-13 | Ford Global Technologies, Llc | Heat exchanger for a rankine cycle in a vehicle |
US9915456B2 (en) * | 2015-06-03 | 2018-03-13 | Mitsubishi Electric Research Laboratories, Inc. | System and method for controlling vapor compression systems |
DK3101339T3 (en) * | 2015-06-03 | 2021-07-26 | Alfa Laval Corp Ab | ASSEMBLY DEVICE FOR A HEAT EXCHANGER SYSTEM, A HEAT EXCHANGER SYSTEM AND A PROCEDURE FOR HEATING A FLUID |
US20170010053A1 (en) * | 2015-07-09 | 2017-01-12 | Alstom Technology Ltd | Tube arrangement in a once-through horizontal evaporator |
EP3121409B1 (en) * | 2015-07-20 | 2020-03-18 | Rolls-Royce Corporation | Sectioned gas turbine engine driven by sco2 cycle |
KR20230004906A (en) | 2016-08-26 | 2023-01-06 | 이너테크 아이피 엘엘씨 | Cooling systems and methods using single-phase fluid and a flat tube heat exchanger with counter-flow circuiting |
US20180094867A1 (en) * | 2016-09-30 | 2018-04-05 | Gilles Savard | Air-liquid heat exchanger |
US10704847B2 (en) * | 2017-09-20 | 2020-07-07 | Hamilton Sunstrand Corporation | Rotating heat exchanger/bypass combo |
EP3686714A1 (en) * | 2019-01-25 | 2020-07-29 | Asetek Danmark A/S | Cooling system including a heat exchanging unit |
US11519597B2 (en) * | 2019-11-08 | 2022-12-06 | General Electric Company | Multiple cooled supports for heat exchange tubes in heat exchanger |
US20230161391A1 (en) * | 2021-11-22 | 2023-05-25 | Google Llc | Modular Liquid Cooling Architecture For Liquid Cooling |
KR20240079684A (en) * | 2022-11-29 | 2024-06-05 | 두산에너빌리티 주식회사 | Connection tube support of waste heat recovery boiler and waste heat recovery boiler including the same |
Family Cites Families (121)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US505735A (en) | 1893-09-26 | Boiler | ||
US343258A (en) | 1886-06-08 | Steam-boiler | ||
US459998A (en) | 1891-09-22 | Sectional steam-boiler | ||
GB191228236A (en) | 1912-12-06 | 1913-12-08 | Justin Erwin Pollak | Improvements in or relating to Boilers or Steam Generators. |
US1256220A (en) | 1914-04-20 | 1918-02-12 | Fulton Co | Radiator-casing. |
GB104356A (en) | 1916-02-22 | 1917-02-22 | John Jonathan Kermode | Improvements in Water-tube Boilers. |
US1521864A (en) | 1922-03-13 | 1925-01-06 | Superheater Co Ltd | Device for increasing heat absorption |
US1569050A (en) | 1923-07-14 | 1926-01-12 | Thomas O Connell Sr | Radiator hanger |
US1814447A (en) | 1923-11-23 | 1931-07-14 | Babcock & Wilcox Co | Water tube steam generator |
US1827946A (en) | 1927-02-26 | 1931-10-20 | Karl A Mayr | Furnace |
US1895220A (en) | 1927-08-15 | 1933-01-24 | Dow Chemical Co | Method of vaporizing |
US1764981A (en) | 1928-01-11 | 1930-06-17 | Louis A Rehfuss | Locomotive boiler and fire box |
US1884778A (en) | 1928-05-16 | 1932-10-25 | Babcock & Wilcox Co | Steam reheater |
CH144501A (en) | 1929-07-31 | 1930-12-31 | Sulzer Ag | Water tube boiler. |
US1924850A (en) | 1930-07-26 | 1933-08-29 | Metropolitan Eng Co | Boiler |
DE612960C (en) | 1931-12-11 | 1935-05-09 | Siemens Schuckertwerke Akt Ges | Pipe steam generator |
US1965427A (en) | 1932-08-12 | 1934-07-03 | Gen Electric | Elastic fluid generator and the like |
GB453323A (en) | 1935-03-28 | 1936-09-09 | Olida Sa | Metal container for meat or other preserves |
GB490457A (en) | 1935-12-18 | 1938-08-16 | Babcock & Wilcox Ltd | Improvements in forced flow steam and other vapour generators |
GB717420A (en) | 1951-09-05 | 1954-10-27 | Babcock & Wilcox Ltd | Improvements in tubulous vapour generating and superheating units |
US2800887A (en) | 1953-02-18 | 1957-07-30 | Sulzer Ag | Control system for forced flow vapor generators |
US2847192A (en) | 1955-09-12 | 1958-08-12 | Acme Ind Inc | Tube supporting and spacing structure for heat exchangers |
BE555535A (en) * | 1956-03-06 | |||
GB865426A (en) | 1957-12-16 | 1961-04-19 | Babcock & Wilcox Ltd | Improvements in power plant and in tubulous boiler units for use therein |
DE1197909B (en) | 1958-10-14 | 1965-08-05 | Vorkauf Heinrich | Heat exchanger with pipe bundles connected to vertical wall pipes of a hot gas flue |
FR1324002A (en) | 1962-05-23 | 1963-04-12 | Sulzer Ag | heated element for heat transmitters |
GB1114441A (en) | 1964-05-27 | 1968-05-22 | Foster Wheeler Corp | Multiple pass arrangements for once-through steam generators |
US3447602A (en) * | 1967-06-22 | 1969-06-03 | David Dalin | Heat exchanger especially adapted for indirect heat transfer by convection |
US3789806A (en) | 1971-12-27 | 1974-02-05 | Foster Wheeler Corp | Furnace circuit for variable pressure once-through generator |
US3896874A (en) | 1972-03-31 | 1975-07-29 | Westinghouse Electric Corp | Support system for serpentine tubes of a heat exchanger |
US3854455A (en) | 1973-12-17 | 1974-12-17 | Universal Oil Prod Co | Heating system providing controlled convective heating |
JPS5187852A (en) | 1974-12-24 | 1976-07-31 | Breda Backer Rueb Maschf | |
US4246872A (en) | 1979-04-30 | 1981-01-27 | General Electric Company | Heat exchanger tube support |
US4290389A (en) | 1979-09-21 | 1981-09-22 | Combustion Engineering, Inc. | Once through sliding pressure steam generator |
JPS5674501A (en) | 1979-11-21 | 1981-06-20 | Mitsubishi Heavy Ind Ltd | Super critical pressure variable operation type forcedly once through boiler |
JPS57188905A (en) * | 1981-05-16 | 1982-11-20 | Babcock Hitachi Kk | Heat exchanger |
US4532985A (en) | 1983-01-20 | 1985-08-06 | Chicago Bridge & Iron Company | Falling film heat exchanger |
JPS59150289A (en) * | 1983-02-16 | 1984-08-28 | Babcock Hitachi Kk | Heat exchanging apparatus |
WO1984004797A1 (en) | 1983-05-23 | 1984-12-06 | Solar Turbines Inc | Steam generator control systems |
FR2565338B1 (en) | 1984-06-05 | 1988-10-07 | Stein Industrie | HEAT EXCHANGE PANEL WITH VERTICAL TUBES, FOR RECOVERY BOILERS SUCH AS BLACK LIQUOR BOILERS, OR ON HOUSEHOLD WASTE INCINERATION FURNACES, AND METHODS OF MAKING SAME |
US4676305A (en) | 1985-02-11 | 1987-06-30 | Doty F David | Microtube-strip heat exchanger |
DE3741882C1 (en) | 1987-12-10 | 1989-02-02 | Gea Luftkuehler Happel Gmbh | Steam generator with once-through forced flow |
JPH0275806A (en) * | 1988-09-12 | 1990-03-15 | Toshiba Corp | Boiler |
DE3840460A1 (en) | 1988-12-01 | 1990-06-07 | Mtu Muenchen Gmbh | HEAT EXCHANGER |
JPH0645154Y2 (en) | 1989-02-28 | 1994-11-16 | 昭和アルミニウム株式会社 | Heat exchanger |
SE501610C2 (en) | 1989-12-21 | 1995-03-27 | Moelnlycke Ab | Process for the manufacture of absorbent article with curved shape wherein absorbent pieces are applied on prestressed flat substrate and disposable absorbent article |
US5097819A (en) | 1991-06-24 | 1992-03-24 | Gas Research Institute | Dispersed bubble condensation |
SE469090B (en) * | 1991-09-13 | 1993-05-10 | Abb Carbon Ab | PROCEDURE AND DEVICE FOR TEMPERATURE SAFETY IN THE OUTPUT OF A DRIVER IN A FLOW PAN |
JPH0645154B2 (en) | 1991-12-27 | 1994-06-15 | 大和化成工業株式会社 | Reactive low pressure mixing casting equipment |
JPH0645154A (en) | 1992-01-24 | 1994-02-18 | Hitachi Ferrite Ltd | Rotary transformer |
DE59300573D1 (en) * | 1992-03-16 | 1995-10-19 | Siemens Ag | Method for operating a steam generation plant and steam generator plant. |
US5265129A (en) | 1992-04-08 | 1993-11-23 | R. Brooks Associates, Inc. | Support plate inspection device |
JPH0663606A (en) | 1992-08-19 | 1994-03-08 | Kobe Steel Ltd | Method for rolling metallic foil |
US5412936A (en) | 1992-12-30 | 1995-05-09 | General Electric Co. | Method of effecting start-up of a cold steam turbine system in a combined cycle plant |
JPH06229503A (en) | 1993-02-01 | 1994-08-16 | Toshiba Corp | Waste heat recovery boiler device |
JP2989425B2 (en) | 1993-05-31 | 1999-12-13 | 三菱重工業株式会社 | Heat transfer tube support device |
US5560322A (en) | 1994-08-11 | 1996-10-01 | Foster Wheeler Energy Corporation | Continuous vertical-to-angular tube transitions |
US5628183A (en) | 1994-10-12 | 1997-05-13 | Rice; Ivan G. | Split stream boiler for combined cycle power plants |
US5540276A (en) | 1995-01-12 | 1996-07-30 | Brazeway, Inc. | Finned tube heat exchanger and method of manufacture |
JPH09243002A (en) | 1996-03-08 | 1997-09-16 | Toshiba Itec Kk | Exhaust heat recovery heat exchanger |
JPH09303701A (en) * | 1996-05-08 | 1997-11-28 | Mitsubishi Heavy Ind Ltd | Exhaust gas boiler evaporator |
DE19651678A1 (en) | 1996-12-12 | 1998-06-25 | Siemens Ag | Steam generator |
JP2002507272A (en) * | 1997-06-30 | 2002-03-05 | シーメンス アクチエンゲゼルシヤフト | Waste heat boiler |
DE59710782D1 (en) | 1997-08-15 | 2003-10-30 | Alstom Switzerland Ltd | Steam generator and operating procedures |
US6055803A (en) | 1997-12-08 | 2000-05-02 | Combustion Engineering, Inc. | Gas turbine heat recovery steam generator and method of operation |
JP3934252B2 (en) * | 1998-05-29 | 2007-06-20 | 株式会社東芝 | Natural circulation water tube boiler |
JP2000018501A (en) | 1998-06-30 | 2000-01-18 | Ishikawajima Harima Heavy Ind Co Ltd | Heat-transfer pipe structure of waste heat recovery boiler |
US6244330B1 (en) | 1998-11-16 | 2001-06-12 | Foster Wheeler Corporation | Anti-vibration ties for tube bundles and related method |
US6019070A (en) * | 1998-12-03 | 2000-02-01 | Duffy; Thomas E. | Circuit assembly for once-through steam generators |
DE19901656A1 (en) | 1999-01-18 | 2000-07-20 | Abb Alstom Power Ch Ag | Regulating temp. at outlet of steam superheater involves spraying water into superheater near steam inlet; water can be sprayed into wet, saturated or superheated steam |
JP2001108203A (en) * | 1999-10-07 | 2001-04-20 | Babcock Hitachi Kk | Heat transfer tube supporting device for waste heat recovery boiler |
DE10014758C2 (en) | 2000-03-24 | 2003-10-09 | Alstom Power Boiler Gmbh | Steam generator and assembly method for this |
CN2429730Y (en) * | 2000-04-26 | 2001-05-09 | 冶金工业部鞍山热能研究院 | Waste heat recovering device for vertical steam generator with rib pipelines |
CN2420739Y (en) | 2000-05-08 | 2001-02-21 | 中国人民解放军武汉后方基地通信站 | Connection clip for communication cable core line |
JP2002206888A (en) | 2001-01-05 | 2002-07-26 | Ebara Shinwa Ltd | Heat-exchanging body for cooling tower, and cooling tower having the same |
DE10127830B4 (en) | 2001-06-08 | 2007-01-11 | Siemens Ag | steam generator |
JP2003014202A (en) * | 2001-07-03 | 2003-01-15 | Kawasaki Thermal Engineering Co Ltd | Vertical type waste heat boiler |
EP1288567A1 (en) | 2001-08-31 | 2003-03-05 | Siemens Aktiengesellschaft | Steam generator and process for starting a steam generator with a heating gas channel through which a heating gas can flow in a substantially horizontal direction |
JP2003090690A (en) | 2001-09-18 | 2003-03-28 | Hitachi Ltd | Lamination type heat exchanger and refrigerating cycle |
US6557500B1 (en) | 2001-12-05 | 2003-05-06 | Nooter/Eriksen, Inc. | Evaporator and evaporative process for generating saturated steam |
JP3653050B2 (en) | 2002-02-14 | 2005-05-25 | 三菱重工業株式会社 | Structure of tube plate unit for heat exchanger and method for replacing tube plate unit |
KR101013324B1 (en) | 2002-07-26 | 2011-02-09 | 킴벌리-클라크 월드와이드, 인크. | Absorbent binder composition, method of making it, and articles incorporating it |
EP1398565A1 (en) | 2002-09-10 | 2004-03-17 | Siemens Aktiengesellschaft | Horizontally positioned steam generator |
CA2501086A1 (en) | 2002-10-04 | 2004-04-22 | Nooter/Eriksen, Inc. | Once-through evaporator for a steam generator |
AU2003900003A0 (en) | 2003-01-02 | 2003-01-16 | Scalzo Automotive Research Pty Ltd | Piston De-activation Mechanism for Internal Combustion Engines |
EP1443268A1 (en) | 2003-01-31 | 2004-08-04 | Siemens Aktiengesellschaft | Steam generator |
WO2005012790A1 (en) | 2003-07-30 | 2005-02-10 | Babcock-Hitachi Kabushiki Kaisha | Heat exchanger tube panel module, and method of constructing exhaust heat recovery boiler using the module |
CN1546191A (en) | 2003-12-08 | 2004-11-17 | 大连理工大学 | Energy conservation multiple-effect gas-carrying film lifting one-pass evaporation apparatus and method |
US6820685B1 (en) | 2004-02-26 | 2004-11-23 | Baltimore Aircoil Company, Inc. | Densified heat transfer tube bundle |
US7600489B2 (en) | 2004-03-04 | 2009-10-13 | H2Gen Innovations, Inc. | Heat exchanger having plural tubular arrays |
KR20070088654A (en) | 2004-11-30 | 2007-08-29 | 마츠시타 덴끼 산교 가부시키가이샤 | Heat exchanger and method of producing the same |
EP1662096A1 (en) | 2004-11-30 | 2006-05-31 | Siemens Aktiengesellschaft | Method of operating a steam power plant, in particular of a steam power plant of a power station for the production of at least electricity and corresponding steam power plant |
US7770544B2 (en) | 2004-12-01 | 2010-08-10 | Victory Energy Operations LLC | Heat recovery steam generator |
EP1701090A1 (en) | 2005-02-16 | 2006-09-13 | Siemens Aktiengesellschaft | Horizontally assembled steam generator |
US6957630B1 (en) * | 2005-03-31 | 2005-10-25 | Alstom Technology Ltd | Flexible assembly of once-through evaporation for horizontal heat recovery steam generator |
EP1710498A1 (en) | 2005-04-05 | 2006-10-11 | Siemens Aktiengesellschaft | Steam generator |
US7017529B1 (en) | 2005-06-16 | 2006-03-28 | H2Gen Innovations, Inc. | Boiler system and method of controlling a boiler system |
US7243618B2 (en) | 2005-10-13 | 2007-07-17 | Gurevich Arkadiy M | Steam generator with hybrid circulation |
EP1820560A1 (en) | 2006-02-16 | 2007-08-22 | Siemens Aktiengesellschaft | Steam Generator with catalytic coating of heat exchanger surfaces for exhaust gas purification |
US7882809B2 (en) | 2006-11-07 | 2011-02-08 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Heat exchanger having a counterflow evaporator |
WO2007133071A2 (en) * | 2007-04-18 | 2007-11-22 | Nem B.V. | Bottom-fed steam generator with separator and downcomer conduit |
US8635976B2 (en) | 2007-05-17 | 2014-01-28 | Babcock & Wilcox Power Generation Group, Inc. | Economizer arrangement for steam generator |
EP2015017A1 (en) | 2007-07-12 | 2009-01-14 | Hexion Specialty Chemicals Research Belgium S.A. | Heat exchanger |
JP2009144948A (en) * | 2007-12-12 | 2009-07-02 | Rinnai Corp | Water heater |
US7963097B2 (en) | 2008-01-07 | 2011-06-21 | Alstom Technology Ltd | Flexible assembly of recuperator for combustion turbine exhaust |
EP2271875B1 (en) | 2008-03-27 | 2016-10-26 | General Electric Technology GmbH | Continuous steam generator with equalizing chamber |
US20110056668A1 (en) | 2008-04-29 | 2011-03-10 | Carrier Corporation | Modular heat exchanger |
EP2204611A1 (en) * | 2008-09-09 | 2010-07-07 | Siemens Aktiengesellschaft | Heat recovery steam generator |
CN201277766Y (en) | 2008-10-08 | 2009-07-22 | 毛振祥 | Evaporator |
DE102008052875A1 (en) | 2008-10-23 | 2010-04-29 | Linde Ag | Soldered aluminum plate-type heat exchanger for exchanging between two fluid streams, has heat exchange section comprising non-flow layer that is arranged between two passages, where reinforcement element is provided in non-flow layer |
EP2224164A1 (en) | 2008-11-13 | 2010-09-01 | Siemens Aktiengesellschaft | Method of operating a waste heat steam generator |
CN201476631U (en) | 2009-09-24 | 2010-05-19 | 梁忠 | Freeze-proof heat exchanger for closed type cooling tower |
NL2003596C2 (en) * | 2009-10-06 | 2011-04-07 | Nem Bv | Cascading once through evaporator. |
US20110174472A1 (en) | 2010-01-15 | 2011-07-21 | Kurochkin Alexander N | Heat exchanger with extruded multi-chamber manifold with machined bypass |
DE102010011644A1 (en) | 2010-03-16 | 2011-09-22 | Babcock Borsig Service Gmbh | Retaining element and spacer plane of a tube bundle |
US9273865B2 (en) | 2010-03-31 | 2016-03-01 | Alstom Technology Ltd | Once-through vertical evaporators for wide range of operating temperatures |
WO2013002869A2 (en) | 2011-04-07 | 2013-01-03 | Schultz-Creehan Holdings, Inc. | System for continuous feeding of filler material for friction stir fabrication and self-reacting friction stir welding tool |
US9696098B2 (en) | 2012-01-17 | 2017-07-04 | General Electric Technology Gmbh | Method and apparatus for connecting sections of a once-through horizontal evaporator |
JP6045154B2 (en) | 2012-02-01 | 2016-12-14 | キヤノン株式会社 | Image blur correction apparatus, optical apparatus including the same, image pickup apparatus, and image blur correction apparatus control method |
US9097418B2 (en) | 2013-02-05 | 2015-08-04 | General Electric Company | System and method for heat recovery steam generators |
CN110843706B (en) * | 2014-04-03 | 2024-07-12 | 松下电器(美国)知识产权公司 | Network communication system, abnormality detection electronic control unit, and abnormality coping method |
-
2013
- 2013-01-17 WO PCT/IB2013/050460 patent/WO2013108218A2/en active Application Filing
- 2013-01-17 CN CN201380000531.4A patent/CN103917825B/en active Active
- 2013-01-17 US US13/744,112 patent/US10274192B2/en active Active
- 2013-01-17 EP EP13707441.5A patent/EP2805109B1/en active Active
- 2013-01-17 CN CN201380000532.9A patent/CN103717969B/en active Active
- 2013-01-17 CN CN201380000535.2A patent/CN103748414B/en active Active
- 2013-01-17 WO PCT/IB2013/050455 patent/WO2013108215A2/en active Application Filing
- 2013-01-17 MX MX2013008025A patent/MX348680B/en active IP Right Grant
- 2013-01-17 MX MX2013008023A patent/MX358076B/en active IP Right Grant
- 2013-01-17 US US13/744,104 patent/US9151488B2/en active Active
- 2013-01-17 EP EP13707444.9A patent/EP2834561B1/en active Active
- 2013-01-17 KR KR1020167015030A patent/KR102049106B1/en active IP Right Grant
- 2013-01-17 US US13/744,121 patent/US9746174B2/en active Active
- 2013-01-17 WO PCT/IB2013/050457 patent/WO2013108216A2/en active Application Filing
- 2013-01-17 MX MX2013008237A patent/MX363995B/en active IP Right Grant
- 2013-01-17 EP EP13707442.3A patent/EP2805107B1/en active Active
- 2013-01-17 KR KR1020137021217A patent/KR101585902B1/en active IP Right Grant
- 2013-01-17 KR KR20137021224A patent/KR20130132579A/en active Application Filing
- 2013-01-17 KR KR1020137019920A patent/KR101536989B1/en active IP Right Grant
Non-Patent Citations (1)
Title |
---|
None |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2834561B1 (en) | Tube arrangement in a once-through horizontal evaporator | |
EP2839213B1 (en) | Tube and baffle arrangement in a once-through horizontal evaporator | |
WO2017005727A1 (en) | Tube arrangement in a once-through horizontal evaporator | |
EP4160091B1 (en) | Heat recovery steam generator with a heat exchanger tube bundle | |
EP4172478A1 (en) | Heat exchanger system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2013707444 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2013/008237 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 20137021224 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1301004808 Country of ref document: TH |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13707444 Country of ref document: EP Kind code of ref document: A2 |