WO2013107744A1 - Silanvernetzende schäumbare mischungen - Google Patents

Silanvernetzende schäumbare mischungen Download PDF

Info

Publication number
WO2013107744A1
WO2013107744A1 PCT/EP2013/050677 EP2013050677W WO2013107744A1 WO 2013107744 A1 WO2013107744 A1 WO 2013107744A1 EP 2013050677 W EP2013050677 W EP 2013050677W WO 2013107744 A1 WO2013107744 A1 WO 2013107744A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
weight
radical
radicals
compositions according
Prior art date
Application number
PCT/EP2013/050677
Other languages
English (en)
French (fr)
Inventor
Volker Stanjek
Lars Zander
Original Assignee
Wacker Chemie Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wacker Chemie Ag filed Critical Wacker Chemie Ag
Priority to EP13701004.7A priority Critical patent/EP2804896A1/de
Publication of WO2013107744A1 publication Critical patent/WO2013107744A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/2805Compounds having only one group containing active hydrogen
    • C08G18/2815Monohydroxy compounds
    • C08G18/282Alkanols, cycloalkanols or arylalkanols including terpenealcohols
    • C08G18/2825Alkanols, cycloalkanols or arylalkanols including terpenealcohols having at least 6 carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2110/00Foam properties
    • C08G2110/0008Foam properties flexible
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2207/00Foams characterised by their intended use
    • C08J2207/04Aerosol, e.g. polyurethane foam spray
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/10Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08J2300/108Polymers characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing hydrolysable silane groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2383/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2383/04Polysiloxanes

Definitions

  • the invention relates to silane-crosslinkable foamable mixtures comprising prepolymers, silicone resins and blowing agents, printing cans containing the foamable and crosslinkable compositions, use of the foamable and crosslinkable compositions as one-component sprayable assembly foams or as a component in sprayable two-component foams and hardened foam body, made from the foamable and cross-linkable materials.
  • Sprayable mounting foams are used to fill cavities, especially in the construction sector.
  • you will u.a. for sealing joints, e.g. used for windows and doors, where they lead to excellent thermal insulation as excellent insulating materials.
  • Other applications include the isolation of pipelines or the foaming of cavities in structures or technical equipment.
  • PU foams polyurethane foams
  • PU foams polyurethane foams
  • isocyanate groups are capable of undergoing addition reactions with suitable reactants even at room temperature, whereby hardening of the spray foam after application is achieved.
  • the foam structure is thereby generated by the incorporation of a volatile blowing agent in the uncrosslinked raw material and / or by carbon dioxide, the latter being formed by a reaction of isocyanates with water.
  • the spreading of the foam is usually done from pressure cans by the autogenous pressure of the propellant.
  • Alcohols having two or more OH groups - especially branched and unbranched polyols - or else water serve as reactants for the isocyanates.
  • the latter reacts with isocyanates under the already mentioned release of carbon dioxide to primary amines, which can then add directly to another, still unused isocyanate group.
  • the result is urethane or urea units, which can form semi-crystalline substructures due to their high polarity and their ability to form hydrogen bonds in the cured material and thus lead to foams having high hardness, compression and tear resistance.
  • the blowing agents used are usually gases which are condensable even at relatively low pressure and can thus be added to the prepolymer mixture in the liquid state without the spray cans having to be exposed to excessively high pressures.
  • the prepolymer blends contain further additives such as e.g. Foam stabilizers, emulsifiers, flame retardants, plasticizers and catalysts.
  • Foam stabilizers e.g. Foam stabilizers, emulsifiers, flame retardants, plasticizers and catalysts.
  • the latter are usually organic tin compounds or tertiary amines.
  • PU spray foams are produced both as so-called one-component (1K) and as two-component (2K) foams.
  • the 1K foams cure exclusively by the contact of the isocyanate-containing prepolymer mixture with the humidity.
  • the carbon dioxide released in the 1K foams during the curing reaction can also promote foaming.
  • 2K foams contain an isocyanate component and a polyol component, which must be mixed together well before foaming and hardened by the reaction of the polyol with the isocyanates.
  • the advantage of the 2K systems is a short curing time of sometimes only a few minutes up to a full curing. However, they have the disadvantage that they require a more complicated pressure cell with two chambers and are also much less comfortable to handle than the 1K systems.
  • the cured PU foams are characterized above all by their excellent mechanical and heat-insulating properties. Furthermore, they have very good adhesion to most substrates and are highly durable under dry and UV-protected conditions. Further advantages are the toxicological safety of the cured foams as soon as all isocyanate units are quantitatively reacted, as well as their rapid curing and their ease of handling. Due to these properties, PU foams have proven very successful in practice.
  • sprayable assembly foams have come on the market in the past 1-2 years, although they still cure via the reactions of isocyanate groups, but contain only a very small proportion of free monomeric isocyanates.
  • the aim of these products is in particular the avoidance of a labeling obligation with regard to a possibly carcinogenic effect.
  • the contents of monomeric isocyanates are therefore below 1%, z.T. even below 0.1%.
  • these low levels relate only to the monomeric isocyanates.
  • the content in isocyanate group is still very high in these products as well.
  • the corresponding foams now contain large amounts of short-chain polymeric isocyanates.
  • these products are toxicologically by no means harmless, especially here is to assume a strong sensitizing effect.
  • silane-crosslinking foams such as e.g. in US 20040072921 A, US 20060189705 A, or US 20110224319 A are described. These are typically around
  • silane-crosslinking foams have the disadvantage of requiring a very high concentration of crosslinkable groups.
  • the amount of aminoalkylalkoxysilanes which must be used in the preparation of the corresponding prepolymers is correspondingly high. Since the aminosilanes usually represent the most expensive raw material types, the resulting products are correspondingly expensive. By contrast, if significantly lower silane contents are used, a foam is obtained which is too soft for many applications.
  • the invention relates to foaming and crosslinkable compositions containing
  • Y denotes an x-valent polymer radical bound via nitrogen, oxygen, sulfur or carbon
  • R can be the same or different and represents a monovalent, ge ⁇ optionally substituted, SiC-bonded hydrocarbon radical
  • R 1 may be identical or different and represents hydrogen atom or a monovalent, optionally substituted hydrocarbon radical which may be attached to the carbon atom via nitrogen, phosphorus, oxygen, sulfur or carbonyl group,
  • R 2 may be identical or different and represents hydrogen atom or a monovalent, optionally substituted hydrocarbon radical
  • x is an integer from 1 to 10, preferably 1, 2 or 3, particularly preferably 1 or 2,
  • a may be the same or different and is 0, 1 or 2, preferably 0 or 1, and
  • b may be identical or different and is an integer from 1 to 10, preferably 1, 3 or 4, particularly preferably 1 or 3, in particular 1,
  • R 3 may be identical or different and is hydrogen, a monovalent, SiC-bonded, optionally substituted aliphatic hydrocarbon radical or a divalent, optionally substituted, aliphatic hydrocarbon radical bridging two units of the formula (II),
  • R 4 may be the same or different and is hydrogen or a monovalent, optionally substituted hydrocarbon radical
  • R 5 may be the same or different and is a monovalent, SiC-bonded, optionally substituted aromatic hydrocarbon radical
  • c 0, 1, 2 or 3
  • d is 0, 1, 2 or 3, preferably 0, 1 or 2, more preferably 0 or 1, and
  • e is 0, 1 or 2, preferably 0 or 1, with the proviso that the sum of c + dse is less than or equal to 3 and in at least 40% of the units of formula (II) the sum c + e is 0 or 1 is, and
  • the foamable and crosslinkable compositions increase the hardness of silane-crosslinking spray foams without having to use prepolymers with an increased density of alkoxysilyl groups.
  • radicals R are alkyl radicals, such as the methyl, ethyl, n-propyl, iso-propyl, 1-n-butyl, 2-n-butyl, iso-butyl, tert. Butyl, n-pentyl, iso-pentyl, neo-pentyl, tert-penyl radical; Hexyl radicals, such as the n-hexyl radical; Heptyl radicals, such as the n-heptyl radical; Octyl radicals, such as the n-octyl radical, iso-octyl radicals and the 2, 2, 4-trimethylpentyl radical; Nonyl radicals, such as the n-nonyl radical; Decyl radicals, such as the n-decyl radical; Dodecyl radicals, such as the n-dodecyl radical; Octadecyl radicals, such as the n-
  • substituted radicals R are haloalkyl radicals, such as the 3, 3, 3-trifluoro-n-propyl radical, the 2, 2, 2 ", 2", 2'-hexafluoroisopropyl radical and the heptafluoroisopropyl radical, and haloaryl radicals, such as the o-, m- and p-chlorophenyl.
  • the radicals R are preferably monovalent hydrocarbon radicals having 1 to 6 carbon atoms which are optionally substituted by halogen atoms, more preferably alkyl radicals having 1 or 2 carbon atoms, in particular the methyl radical.
  • radicals R 1 are hydrogen atom, the radicals indicated for R and optionally substituted hydrocarbon radicals bonded to the carbon atom via nitrogen, phosphorus, oxygen, sulfur, carbon or carbonyl group.
  • Radical R 1 is preferably hydrogen atom and hydrocarbon radicals having 1 to 20 carbon atoms, in particular hydrogen atom.
  • radical R 2 are hydrogen atom or the examples given for radical R.
  • the radicals R 2 are preferably hydrogen atoms or alkyl radicals having 1 to 10 carbon atoms optionally substituted by halogen atoms, more preferably alkyl radicals having 1 to 4 carbon atoms, in particular the methyl and ethyl radical.
  • radicals R ' are cyclohexyl, cyclopentyl, n- and iso-propyl, n-, iso- and t-butyl, the various steroid isomers of the pentyl radical, hexyl radical or heptyl radical and also the phenyl radical.
  • the radical R ' is preferably a group
  • radicals R are preferably alkyl groups having 1 to 10 carbon atoms, particularly preferably methyl, ethyl or propyl radicals.
  • radical Y in formula (I) is polyurethane radicals and polyoxyalkylene radicals, in particular polyoxyalkylene or polyester-containing polyurethane radicals or polyoxyalkylene radicals.
  • the compound (A) may be the connected in the manner described groups - have [(CR) b ⁇ SiR a (OR 2) 3-a] at any point in the polymer, such as chain positions and / or terminal, preferably chain positions and terminally , especially terminal.
  • the average molecular weights M n (number average) of the compounds (A) are preferably at least 400 g / mol, more preferably at least 600 g / mol, and preferably at most 20,000 g / mol, more preferably at most 10,000 g / mol, in particular at most 5 000 g / mol.
  • the viscosity of the compounds (A) is preferably at least 30 Pas, preferably at least 100 Pas, more preferably at least 300 Pas, and preferably at most 5000 Pas, preferably at most 2000 Pas, each measured at 20 ° C.
  • the compounds (A) used according to the invention are commercially available products or can be prepared by methods customary in chemistry.
  • the preparation of the compounds (A) can be carried out by various known processes, such as addition reactions such as hydrosilylation, Michael addition, Diels-Alder addition or reactions between isocyanate-functional compounds with compounds having isocyanate-reactive groups.
  • the compound (A) contains polymer radicals Y as linear or branched polyurethane radicals, the preparation of which is preferably based on polyether and / or polyester polyols Yl having an average molar mass of from 200 to 20,000 daltons.
  • polyether polyols in particular polypropylene glycols, having an average molecular weight M n of from 300 to 6,000 daltons, in particular from 350 to 4,500 daltons, are particularly preferably used.
  • the polyols Y1 are, at least in part, halogenated polyols, for example halogen-containing polyethers.
  • Halogenated polyols have the advantage that they lead to products with better fire properties.
  • the polyols Y1 can be branched or unbranched. Particularly preferred are unbranched polyols or polyols with a branch point. It is also possible to use mixtures of branched and unbranched polyols.
  • Y 2 is di-or polyisocyanates.
  • common diisocyanates are diisocyanatodiphenylmethane (MDI), both in the form of crude or technical MDI and in the form of pure 4,4 'or 2,4' isomers or mixtures thereof, tolylene diisocyanate (TDI) in the form of its various regioisomers, diisocyanato naphthalene (NDI), isophorone diisocyanate (IPDI) or hexamethylene diisocyanate (HDI).
  • polyisocyanates are polymeric MDI (P-MDI), Triphenylmethantriisocanat or Triraerisate
  • the isocyanates Y2 can in this case with respect to the ratio of the isocyanate groups to the hydroxyl groups of the polyol in the deficit (variant 1) or in excess (variant 2) are used.
  • a polyurethane polymer is obtained whose chain ends are terminated with hydroxyl groups
  • a polymer whose chain ends consists of isocyanate groups is then preferred with a silane Y 3 of the general formula
  • variant 2 is particularly preferred.
  • the resulting isocyanate-functional polyurethane polymer is then preferred in a second reaction step with an isocyanate-reactive silane Y3 'of the general formula implemented, where
  • Z represents an isocyanate-reactive group and all other radicals and indices have one of the meanings given above.
  • the isocyanate-reactive group Z is preferably a hydroxyl group or an amino group, particularly preferably an amino group of the formula NHR 'having' 'having one of the abovementioned meaning. This gives a silane-terminated polyurethane having chain ends of the formula (IV).
  • Examples of compounds of the formula (VI) are phenylaminomethyl-methyldimethoxysilane, phenylaminomethyltrimethoxysilane, N-cyclohexylaminomethyl-methyldimethoxysilane, N-cyclohexy-1-aminomethyltrimethoxysilane.
  • alcohols Y4 are used to prepare the compounds (A), they are preferably those of the general formula
  • the radical R 6 is preferably a linear, branched or branched alkyl or alkenyl radical having at least 8 carbon atoms, linear alkyl radicals having at least 8 carbon atoms, in particular linear alkyl radicals having at least 10 carbon atoms, being particularly preferred.
  • R 6 has at most 30, more preferably at most 22, carbon atoms.
  • These alcohols can also react with the di- or polyisocyanates Y2. This results in compounds (A) whose chain ends are not terminated exclusively with chain ends of the formula (IV), but also over a certain proportion, preferably at least 2%, more preferably at least 4% and preferably at most 40%, in particular at most 20% Chain ends of the general formula
  • the alcohols Y4 may have been incorporated into the component (A) in a separate reaction step, for example before or after the reaction of the polyols Yl with the isocyanates Y2. Alternatively, however, the incorporation can also take place simultaneously with another reaction step, for example by reacting a mixture of the polyols Y.sub.1 and the alcohols Y.sub.4 with the isocyanates Y.sub.2.
  • Alcohols Y.sub.4, mixtures of different alcohols Y.sub.4 or else mixtures of polyols Y.sub.1 and alcohols Y.sub.4 are preferably used which are liquid at room temperature and the pressure of the surrounding atmosphere, ie at 900 to 1100 hPa, and are accordingly simply metered into the reaction mixture can.
  • the sequence of the synthesis steps is in principle also exchangeable.
  • the first synthesis step can in principle also consist of a reaction of the isocyanate Y 2 with the silane Y 3 'and the reaction with the polyol Y 1 take place only in the second reaction step. It is also conceivable to carry out both reaction steps simultaneously.
  • Suitable catalysts are, for example, the bismuth-containing catalysts, e.g. of the
  • the preparation of the components (A) is preferably carried out at temperatures of at least 0 ° C, more preferably at least 60 ° C and preferably at most 150 ° C, in particular at most 120 ° C.
  • all components for the preparation of the compounds (A) are used in a quantitative ratio, according to which 1 isocyanate group preferably at least 0.6, more preferably at least 0.8 and preferably at most 1.4, in particular at most 1.2 isocyanate-reactive groups ,
  • the compounds (A) are preferably isocyanate-free.
  • the freedom from isocyanate can also be achieved if a slight excess of NCO groups based on the NCO-reactive groups is used, because the excess NCO groups are e.g. can also react with formed urethane and / or urea units under allophanate or Biureth Struktur.
  • the compound (A) are preferably isocyanate-free.
  • the freedom from isocyanate can also be achieved if a slight excess of NCO groups based on the NCO-reactive groups is used, because the excess NCO groups are e.g. can also react with formed urethane and / or urea units under allophanate or Biureth Struktur.
  • the compound (A) are preferably isocyanate-free.
  • the freedom from isocyanate can also be achieved if a slight excess of NCO groups based on the NCO-reactive groups is used, because the excess NCO groups are e.g. can also react with formed
  • component (A) prepared in the presence of the silicone resin component (B).
  • all reaction steps or only the last or the last reaction steps in the presence of component (B) can be carried out.
  • component (B) already during the production process of component (A) has the advantage that the usually low-viscosity component (B) dilutes the usually very high-viscosity component (A) and thus significantly facilitates its further processing.
  • Such a method would have the advantage that no further transfer or refilling operations with the often comparatively high-viscosity component (A) are necessary.
  • the component (A) used according to the invention may contain only one type of compound of the formula (I) as well as mixtures of different types of compounds of the formula (I).
  • component (A) may contain exclusively compounds of the formula (I) in which more than 90%, preferably more than 95%, particularly preferably more than 98%, of all the silyl groups bound to the polymer radical Y are identical.
  • component (A) which contains, at least in part, compounds of the formula (I) in which different silyl groups are bound to a polymer radical Y.
  • component (A) it is also possible to use mixtures of different compounds of the formula (I) in which a total of at least 2 different types of silyl groups are present, but all of the silyl groups bound to one polymer radical Y are identical.
  • component (A) is a different type of compound of formula (I)
  • polymers as described in the descriptions, but in particular also in the examples of US 20040072921 A, US 20060189705 A, or US 20110224319 A, are suitable as components (A).
  • the foamable and crosslinkable compositions preferably contain compounds (A) in concentrations of at most 90% by weight, more preferably at most 70% by weight, and preferably at least 10% by weight, particularly preferably at least 15% by weight.
  • the foamable and crosslinkable compositions preferably contain at least 10 parts by weight, more preferably at least 30 parts by weight, and preferably at most 1000 parts by weight, more preferably at most 500 parts by weight, especially at most 300 parts by weight, component (B) ,
  • Component (B) is preferably at least 90% by weight of units of the formula (II).
  • Component (B) particularly preferably consists exclusively of units of the formula (II).
  • radicals R 3 are the aliphatic radicals given above for R.
  • radical R 3 may also be divalent aliphatic radicals which connect two silyl groups of the formula (II) with one another, for example alkylene radicals having 1 to 10 carbon atoms, such as methylene, ethylene, propylene or butylene radicals.
  • alkylene radicals having 1 to 10 carbon atoms such as methylene, ethylene, propylene or butylene radicals.
  • a particularly common example of a divalent aliphatic radical is the ethylene radical.
  • radical R 3 is preferably monovalent SiC-bonded aliphatic hydrocarbon radicals having 1 to 18 carbon atoms which are optionally substituted by halogen atoms, particularly preferably aliphatic hydrocarbon radicals. radicals having 1 to 6 carbon atoms, in particular the methyl radical.
  • radical R 4 are hydrogen atom or the examples given for radical R.
  • Radical R 4 is preferably hydrogen or optionally halogen-substituted alkyl radicals having 1 to 10 carbon atoms, more preferably alkyl radicals having 1 to 4 carbon atoms, in particular the methyl, ethyl or butyl radical.
  • radicals R 5 are the aromatic radicals given above for R.
  • Radical R 5 is preferably SiC-bonded aromatic hydrocarbon radicals having 1 to 18 carbon atoms, optionally substituted by halogen atoms, such as, for example, ethylphenyl, toluyl, xylyl, chlorophenyl, naphthyl or styryl radicals, particularly preferably to the phenyl radical.
  • halogen atoms such as, for example, ethylphenyl, toluyl, xylyl, chlorophenyl, naphthyl or styryl radicals, particularly preferably to the phenyl radical.
  • Silicone resins are preferably used as components (B) in which at least 90% of all radicals R 3 is methyl, at least 90% of all radicals R 4 is methyl, ethyl, propyl, Isopro- pyl- or butyl radical and at least 90% of all Radicals R 5 are phenyl.
  • Silicone resins (B) which have at least 20%, particularly preferably at least 40%, in particular at least 60%, of units of the formula (II) in which c is 0, in each case based on the total number of units of the formula, are preferably used (II).
  • silicone resins (B) are used which, based in each case on the total number of units of the formula (II), are at least 10%, particularly preferably at least 20%, and at most 80%, particularly preferably at most 60%. have units of the formula (II) in which c is 2 or greater than 2.
  • silicone resins (B) are used which do not have units of the formula (II) in which c has the value 2 or greater than 2.
  • Silicone resins (B) are preferably used which, based in each case on the total number of units of the formula (II), have at least 80%, particularly preferably at least 95%, of units of the formula (II) in which d is 0 or 1 stands.
  • Silicone resins (B) are preferably used which, based in each case on the total number of units of the formula (II), have at least 60%, particularly preferably at least 70%, preferably at most 99%, particularly preferably at most 97%, units of the formula (II) in which d stands for the value 0.
  • silicone resins as components (B) which, based in each case on the total number of units of the formula (II), have at least 20%, preferably at least 40%, in particular at least 60% of units of the formula (II) in which e is a value is not equal to 0. It is even possible to use silicone resins (B) which contain exclusively units of the formula (II) in which e is not 0. All units of the formula (II) which have an e not equal to 0 preferably have a value of 1 for e.
  • Silicone resins (B) are preferably used which, based in each case on the total number of units of the formula (II), at least 50%, in particular at least 70%, of units of the formula (II) in which the sum c + e is 0 or 1.
  • component (B) used are silicone resins which, based in each case on the total number of units of the formula (II), have at least 20%, particularly preferably at least 40%, in particular at least 60%, units of the formula (II) II), in which e stands for the value 1 and c stands for the value 0.
  • e stands for the value 1
  • c stands for the value 0.
  • at most 70%, particularly preferably at most 40% of all units of the formula (II) have a d not equal to 0.
  • component (B) used are silicone resins which, in each case based on the total number of units of the formula
  • at most 70%, particularly preferably at most 40%, of all units of the formula (II) have a d not equal to 0 and at least 1% of all units of the formula (II) have a d of 0.
  • silicone resins (B) are organopolysiloxane resins which are substantially, preferably exclusively, from (Q) units of the formula Si0 4/2
  • Preferred examples of the inventively used silicone resins (B) are organopolysiloxane resins that are substantially, preferably exclusively, of T units of the formulas PhSi0 3/2, PhSi (OR 4) 0 2/2 and PhSi (OR 4) 2 0i / 2 and D units of the formulas Me 2 Si0 2/2 and Me 2 Si (OR 4 ) Oi / 2 , where Me is a methyl radical, Ph is a phenyl radical and R 4 is hydrogen atom or optionally halogen atoms substituted with 1 to 10 alkyl radicals Carbon atoms, particularly preferably hydrogen atom or alkyl radicals having 1 to 4 carbon atoms, with a molar ratio of (T) to (D) units of 0.5 to 2.0.
  • silicone resins (B) used according to the invention are organopolysiloxane resins which consist essentially, preferably exclusively, of T units of the formulas PhSiO 3/2 , PhSi (OR 4 ) O 2/2 and PhSi (OR 4 ) 2 0i / 2 and T-A ⁇ units of the formulas MeSi0 3/2 MeSi (OR 4) 0 2/2 and MeSi (OR 4) 2O1 / 2, and optionally D units of the formula Me 2 Si0 2/2 and
  • Me 2 Si (OR 4 ) Oi / 2 wherein Me is a methyl radical, Ph is a phenyl radical and R 4 is hydrogen or optionally substituted by halogen atoms substituted alkyl radicals having 1 to 10 carbon atoms, more preferably hydrogen or alkyl radicals having 1 to 4 carbon atoms , with a molar ratio of phenylsilicone to methyl silicone units of 0.5 to 4.0.
  • the content of D units in these silicone resins is preferably less than 10% by weight.
  • inventively used silicone resins (B) are organopolysiloxane resins that are substantially, preferably exclusively, of T units of the formulas PhSi0 3 2 / PhSi (OR 4) 0 2/2 and PhSi (OR 4) 2 0i / 2 where Ph is a phenyl radical and R 4 is hydrogen or optionally substituted by halogen atoms substituted alkyl radicals having 1 to 10 carbon atoms, more preferably hydrogen or alkyl radicals having 1 to 4 carbon atoms.
  • the content of D units in these silicone resins is preferably less than 10% by weight.
  • the silicone resins (B) used in the foamable and crosslinkable compositions preferably have a mean molecular weight (number average) M n of at least 400 g / mol and more preferably of at least 600 g / mol.
  • the average molar mass M n is preferably at most 400 000 g / mol, more preferably at most 100 000 g / mol, in particular at most 50 000 g / mol.
  • the silicone resins (B) used can be both solid and liquid at 23 ° C. and 1000 hPa, silicone resins (B) preferably being liquid.
  • the silicone resins (B) preferably have a viscosity of from 10 to 100,000 mPas, preferably from 50 to 50,000 mPas, in particular from 100 to 20,000 mPas.
  • the silicone resins (B) preferably have a polydispersity (M w / M n ) of not more than 5, preferably not more than 3.
  • the silicone resins (B) can be used both in pure form and in the form of a solution in a suitable solvent.
  • Substances such as ethers can be used as solvent.
  • Esters for example ethyl acetate, butyl acetate, glycol esters
  • hydrocarbons for example pentane, cyclopentane, hexane, cyclohexane, heptane, octane or else long-chain branched and unbranched alkanes
  • ketones for example acetone, methyl ethyl ketone
  • aromatics for example toluene, Xylene, ethylbenzene, chlorobenzene
  • alcohols eg methanol, ethanol, glycol, propanol, isopropanol, glycerol, butanol, isobutanol, t-butanol).
  • silicone resins (B) are used, which are free of organic solvents.
  • the used silicone resins (B) is (0 IC 678 of Messrs. Wacker Chemie AG, Kunststoff, for example SILRES @ SY 231, SILRES ® IC 368 or SILRES) or can be prepared in silicon chemistry methods according to commercial products ,
  • the foamable and crosslinkable materials preferably contain at least 10 parts by weight, more preferably at least 20 parts by weight, of blowing agent (C). Based on 100 parts by weight of component (A), the foamable and crosslinkable compositions preferably contain at most 200 parts by weight, more preferably at most 100 parts by weight, in particular at most 80 parts by weight, component (C).
  • Suitable blowing agents (C) are the same at 20 ° C and 1000 hPa gaseous but especially at relatively low pressures condensable compounds which are also used for the preparation of conventional isocyanate spray foams.
  • Suitable blowing agents are, for example, hydrocarbons having in each case 1-4, in particular 3-4, carbon atoms, fluorohydrocarbons having 1-4 carbon atoms, such as 1, 1, 1, 2-tetracarboxylic fluoroethane, 1, 1-difluoroethane, 1, 1, 1, 2, 3, 3, 3 -heptafluoropropane or dimethyl ether.
  • the blowing agent (C) also consists of a mixture of two or more of said components.
  • carbon dioxide can also be used as blowing agent (C) or
  • Part of the propellant (C) can be used.
  • Hydrocarbons especially propane, butane, isobutane and propane / butane mixtures, preferably represent the main component of the blowing agent (C).
  • the blowing agent (C) is preferably at least 50 vol .-%, in particular at least 80 vol .-% Hydrocarbon blowing agents.
  • the blowing agent mixture (C) may well consist of 100% of hydrocarbon propellants, but may also contain other components.
  • the propellant mixture (C) preferably contains dimethyl ether, preferably 0.1-20% by volume, more preferably 0.5-10% by volume. But other known propellants may be present in the propellant mixture (C). All of the above vol .-% figures always add up to 100%.
  • blowing agents or blowing agent mixtures (C) are preferably used in combination with the types of compound (A) and silicone resins (B) which are described above and which are preferred for use.
  • compositions according to the invention may contain all other substances which were hitherto used in silane-crosslinking compositions and / or PU foams and which differ from components (A). , (B) and (C), such as, for example, basic nitrogen-containing organosilicon compound (D), catalyst (E), organo-silicon silicon compound without basic nitrogen (F), fire retardant (G) and additives (H).
  • D basic nitrogen-containing organosilicon compound
  • E catalyst
  • F fire retardant
  • H additives
  • Component (D) is preferably organosilicon compounds containing units of the formula
  • R 7 may be identical or different and is hydrogen or optionally substituted hydrocarbon radicals
  • D may be identical or different and represents a monovalent, Sic-bonded radical with basic nitrogen
  • R 8 may be the same or different and is a monovalent, optionally substituted Sic-bonded, of basic
  • g is 1, 2 or 3, preferably 2 or 3.
  • the foamable and crosslinkable compositions in addition to the components (A), (B) and (C) also contain at least one further component (D) corresponding to the formula (IX), especially if it is at Component (A) is the silane-terminated urethanes with end groups of the formula (IV) which are preferably to be used. It was surprising that when components (A) and (B) are used which are not or poorly soluble in the preferred proportions, it is possible to obtain substantially homogeneous, preferably completely homogeneous mixtures by adding component (D).
  • component (D) is particularly important because the foam obtained by the evaporation of the blowing agent (C) has a significantly better stability, if the remaining components remaining in the foam matrix form a homogeneous solution form. This stability is crucial so that the fine-celled foam structure is retained until the foam has hardened and the foam structure associated therewith is fixed.
  • optionally substituted hydrocarbon radicals R 7 are the examples given for radical R.
  • the radicals R 7 are preferably hydrogen atom and optionally halogen atoms substituted hydrocarbon radicals having 1 to 18 carbon atoms, more preferably hydrogen and hydrocarbon radicals having 1 to 10 carbon atoms, in particular methyl and ethyl radical.
  • radical R 8 are the examples given for R.
  • the radical R 8 is preferably hydrocarbon radicals optionally substituted by halogen atoms having 1 to 18 carbon atoms, particularly preferably hydrocarbon radicals having 1 to 5 carbon atoms, in particular the methyl radical.
  • radicals D are radicals of the formulas H 2 N (CH 2 ) 3 -,
  • Examples of the optionally used silanes of the formula (IX) are H 2 N (CH 2 ) 3 -Si (OCH 3 ) 3 ,
  • Phenyl-NH (CH 2 ) -Si (OC 2 H 5 ) 3 phenyl-NH (CH 2 ) -Si (OCH 3 ) 2 CH 3 , phenyl-NH (CH 2 ) -Si (OC 2 H 5 ) 2 CH 3 , phenyl-NH (CH 2 ) -Si (OH) 3 and
  • organosilicon compounds (D) can also assume the function of a curing catalyst or cocatalyst in the compositions according to the invention.
  • organosilicon compounds (D) which may optionally be used according to the invention may act as adhesion promoters and / or as reactive diluents.
  • organosilicon compounds (D) which may optionally be used according to the invention are commercially available products or can be prepared by processes customary in chemistry.
  • compositions according to the invention contain component (D), these are amounts of preferably 0.1 to 25 parts by weight, more preferably 0.5 to 10 parts by weight, in each case based on 100 parts by weight of component (A).
  • the compositions of the invention preferably contain component (D).
  • the catalysts (E) optionally used in the compositions according to the invention may be any, hitherto known catalysts for compositions which cure by silane condensation.
  • metal-containing curing catalysts (E) are organic titanium and organic compounds, for example titanium acid esters, such as tetrabutyl titanate, tetrapropyl titanate, tetraisopropyl titanate and titanium tetraacetylacetonate.
  • titanium acid esters such as tetrabutyl titanate, tetrapropyl titanate, tetraisopropyl titanate and titanium tetraacetylacetonate.
  • Tin compounds such as dibutyltin dilaurate, dibutyltin maleate, dibutyltin di 50677
  • metal-free curing catalysts (E) are basic compounds, such as triethylamine, tributylamine, 1,4-diazabicyclo [2,2,2] octane, 1,5-diazabicyclo [.3.0] ⁇ -5-ene, 1 , 8-diazabicyclo [5.4.0] undec-7-ene, N, -bis (N, N-dimethyl-2-aminoethyl) -methylamine, N, N-dimethylcyclohexylamine, N, N-dimethylphenylamine and N- Ethylmorpholinine.
  • guanidines such as e.g. 1,1,3,3-tetramethylguanidine or phosphazenes can be used as catalysts.
  • Corresponding catalysts for silane crosslinking systems are i.a. in EP 1 563 822 A.
  • catalyst (E) it is possible to use acidic compounds, such as phosphoric acid and its esters, toluenesulfonic acid, sulfuric acid, nitric acid or else organic carboxylic acids, e.g. Acetic acid and benzoic acid.
  • acidic compounds such as phosphoric acid and its esters, toluenesulfonic acid, sulfuric acid, nitric acid or else organic carboxylic acids, e.g. Acetic acid and benzoic acid.
  • compositions according to the invention comprise catalysts (E), these are amounts of preferably 0.01 to 20 parts by weight, more preferably 0.05 to 5 parts by weight, in each case based on 100 parts by weight of component (A).
  • compositions according to the invention it is then possible to dispense with metal-containing catalysts (E), in particular catalysts containing tin, if component (A) is wholly or at least partially, ie at least 10% by weight, preferably at least 20% Wt .-%, consists of compounds of formula (I), in which b is 1 and R 1 has the meaning of hydrogen atom.
  • metal-containing catalysts (E) in particular catalysts containing tin
  • Organosiliciuratell without basic nitrogen (F) in principle, all low molecular weight silanes can be used which have reactive alkoxysilyl groups, through which they can be incorporated during the curing of the foam with in the resulting three-dimensional network. These can perform various tasks, eg they can serve as reactive diluents, crosslinkers or as adhesion promoters.
  • epoxysilanes such as glycidoxypropyltrimethoxysilanes, glycidoxypropylmethyldimethoxysilane, glycidoxypropyltriethoxysilane or glycidoxypropylmetyldiethoxysilane, 2- (3-triethoxysilylpropyl) maleic anhydride, N- (3-trimethoxysilylpropyl) urea, N- ( 3-triethoxysilylpropyl) urea, N- (trimethoxysilylmethyl) urea, N- (methyldimethoxysilymethyl) urea, N- (3-triethoxysilylmethyl) urea, N- (3-methyldiethoxysilylmethyl) urea, O-methylcarbamatomethyl methyldimethoxysilane, O-methylcarbamatomethyl-1-trimethoxysilane, O-ethylcarbamat
  • silanes such as vinyl, methyl or phenyltrimethoxysilane, and their partial hydrolysates and, on the other hand, silanes having a polar group, for example the abovementioned O-alkylcarbamatoalkylsilanes, in particular O-methylcarbamatopropyltrimethoxysilane, and
  • Partial hydrolysates which have a particularly good compatibility with component (A).
  • One or more silanes (F) can be used. If the inventive compositions contain silanes (F), they are amounts of preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight, based in each case on 100 parts by weight of component (A ).
  • flame retardant (G) all flame retardants can be used, as they are used in conventional polyurethane foams, such as.
  • Expanded graphite also represents a highly effective flame retardant.
  • compositions according to the invention contain flame retardants (G), these are amounts of preferably 1 to 100 parts by weight, more preferably 5 to 60 parts by weight, in each case based on 100 parts by weight of component (A).
  • compositions according to the invention contain flame retardants (F), these are amounts of preferably 1 to 100 parts by weight, more preferably 5 to 50 parts by weight, in each case based on 100 parts by weight of component (A).
  • the isocyanate-free, foamable mixtures may further contain the usual additives (H), such as, for example, foam stabilizers. gates and cell regulators, thixotropic agents, plasticizers, dyes or solvents.
  • H usual additives
  • foam stabilizers such as, for example, foam stabilizers. gates and cell regulators, thixotropic agents, plasticizers, dyes or solvents.
  • foam stabilizers and cell regulants which can be used are in particular the commercially available silicone oligomers modified by polyether side chains. Foam stabilizers are preferably added to the compositions according to the invention.
  • organic solvents are the compounds already mentioned above as solvents, preferably alcohols. However, preferably no organic solvents are added to the compositions according to the invention.
  • compositions of the invention comprise additives (H), they are amounts of preferably 0.01 to 30 parts by weight, more preferably 0.1 to 10 parts by weight, in each case based on 100 parts by weight of component (A).
  • compositions of the invention are preferably those containing
  • compositions according to the invention preferably contain less than 10 parts by weight of further constituents. Particularly preferably, the compositions according to the invention contain no further constituents.
  • the components used according to the invention may each be one type of such a component as well as a mixture of at least two types of a respective component.
  • a further subject of the invention are pressurized cans containing the foamable and crosslinkable compositions according to the invention.
  • Another object of the invention is the use of the foamable and crosslinkable compositions according to the invention as einkompo- nent sprayable mounting foams in particular for filling joints or cavities.
  • Another object of the invention is the use of the foamable and crosslinkable compositions according to the invention as a component in two-component sprayable mounting foams, in particular for filling joints or cavities.
  • a further subject of the invention is a cured foam body produced from the foamable and crosslinkable compositions according to the invention, e.g. a foamed joint or a foamed cavity.
  • all viscosity data refer to a temperature of 25 ° C. Unless Otherwise stated, the examples below are at a pressure of the surrounding atmosphere, ie at about 1000 hPa, and at room temperature, ie at about 23 ° C, or at a temperature, the mixing of the reactants at room temperature without additional heating or cooling, and performed at a relative humidity of about 50%. Furthermore, all parts and percentages are by weight unless otherwise specified.
  • this mixture is treated with a propellant mixture of 18 ml of a propane / butane mixture (2: 1) and 1.5 ml of dimethyl ether as blowing agent. A vigorous shaking then gives a thin-bodied emulsion which is stable for several hours.
  • the lower phase which becomes completely clear on prolonged standing, contains prepolymer, silicone resin and additives as well as the remaining propellant.
  • both phases are so fluid that they can be easily emulsified by re-shaking briefly again.
  • the emulsion is again stable for several hours before the propellant phase begins to settle again slowly at the top.
  • white foam is obtained, which is tack-free after about 15 minutes.
  • the time until complete curing is about 6 h.
  • the hardened foam is characterized by a very high hardness and has a very good pore structure.

Abstract

Gegenstand der Erfindung sind schäum- und vernetzbare Massen enthaltend (A) 100 Gewichtsteile Verbindungen (A) der Formel Y- [ (CR1 2)b-SiRa(OR2) 3-a]x (I), (B) mehr als 1 Gewichtsteil Siliconharze enthaltend Einheiten der Formel R3 c(R4O)dR5 eSiO(4-c-d-e)/2 (II), und C) mehr als 1 Gewichtsteil eines bei 20°C und 1000 hPa gasförmigen Treibmittels; Druckdose, enthaltend die schäum- und vernetzbaren Massen, Verwendung der schäum- und vernetzbaren Massen als einkomponentige spraybare Montageschäume, Verwendung der schäum- und vernetzbaren Massen als eine Komponente in zweikomponentigen spraybaren Montageschäumen und ausgehärteter Schaumkörper, hergestellt aus den schäum- und vernetzbaren Massen.

Description

Silanvernetzende schäumbare Mischungen
Die Erfindung betrifft silanvernetzende schäumbare Mischungen enthaltend Prepolymere, Siliconharze und Treibmittel, Druckdo- se, enthaltend die schäum- und vernetzbaren Massen, Verwendung der schäum- und vernetzbaren Massen als einkomponentige spraybare Montageschäume oder als eine Komponente in zweikomponenti- gen spraybaren Montageschäumen und ausgehärteter Schaumkörper, hergestellt aus den schäum- und vernetzbaren Massen.
Spraybare Montageschäume dienen zum Ausfüllen von Hohlräumen vor allem im Baubereich. Hier werden sie u.a. zum Abdichten von Fugen, z.B. bei Fenstern und Türen eingesetzt, wobei sie als ausgezeichnet isolierende Materialien zu einer guten Wärmedäm- mung führen. Weitere Anwendungen sind beispielsweise die Isolierung von Rohrleitungen oder das Ausschäumen von Hohlräumen in Bauwerken oder technischen Geräten.
Bei herkömmlichen Montageschäumen handelt es sich um sogenannte Polyurethanschäume (PU-Schäume) , die im unvernetzten Zustand aus Prepolymeren bestehen, die über eine hohe Konzentration an freien Isocyanatgruppen verfügen. Diese Isocyanatgruppen sind in der Lage, mit geeigneten Reaktionspartnern bereits bei Raumtemperatur Additionsreaktionen einzugehen, wodurch eine Aushär- tung des Sprayschaumes nach dem Auftrag erreicht wird. Die Schaumstruktur wird dabei durch das Einmengen eines leichtflüchtigen Treibmittels in das noch unvernetzte Rohmaterial und/oder durch Kohlendioxid erzeugt, wobei letzteres durch eine Reaktion von Isocyanaten mit Wasser gebildet wird. Das Ausbrin- gen des Schaumes geschieht in der Regel aus Druckdosen durch den Eigendruck des Treibmittels . Als Reaktionspartner für die Isocyanate dienen Alkohole mit zwei oder mehr OH-Gruppen - vor allem verzweigte und unverzweigte Polyole - oder aber Wasser. Letzteres reagiert mit Iso- cyanaten unter der bereits erwähnten Freisetzung von Kohlendi- oxid zu primären Aminen, die sich dann direkt an eine weitere, noch unverbrauchte Isocyanatgruppe addieren können. Es entstehen Urethan- bzw. Harnstoffeinheiten, die auf Grund ihrer hohen Polarität und ihrer Fähigkeit zur Ausbildung von Wasserstoffbrückenbindungen im ausgehärteten Material teilkristalline Sub- strukturen ausbilden können und so zu Schäumen mit hoher Härte, Druck- und Reißfestigkeit führen.
Als Treibmittel werden meist Gase verwendet, die bereits bei relativ geringem Druck kondensierbar sind und somit der Prepo- lymermischung in flüssigem Zustand beigemischt werden können, ohne dass die Spraydosen übermäßig hohen Drücken ausgesetzt werden müssen. Des weiteren enthalten die Prepolymerabmischun- gen weitere Additive wie z.B. Schaumstabilisatoren, Emulgato- ren, Flammschutzmittel, Weichmacher und Katalysatoren. Bei den letzteren handelt es sich meist um organische Zinnverbindungen oder tertiäre Amine.
PU-Sprayschäume werden sowohl als sogenannte einkomponentige (1K-) als auch als zweikomponentige (2K-) Schäume hergestellt. Die 1K-Schäume härten dabei ausschließlich durch den Kontakt der isocyanathaltigen Prepolymermischung mit der Luftfeuchtigkeit aus. Durch das bei den 1K-Schäumen während der Härtungsreaktion freigesetzte Kohlendioxid kann zudem die Schaumbildung unterstützt werden. 2K-Schäume enthalten eine Isocyanat- und eine Polyolkomponente, die direkt vor dem Verschäumen gut miteinander vermischt werden müssen und durch die Reaktion des Po- lyols mit den Isocyanaten aushärten. Vorteil der 2K-Systeme ist eine kurze Aushärtdauer von z.T. nur wenigen Minuten bis zu ei- ner vollständigen Härtung. Sie besitzen jedoch den Nachteil, dass sie eine kompliziertere Druckdose mit zwei Kammern benötigen und zudem in der Handhabung deutlich weniger komfortabel sind als die 1K-Systeme.
Die ausgehärteten PU-Schäume zeichnen sich vor allem durch ihre ausgezeichneten mechanischen und wärmedämmenden Eigenschaften aus. Des weiteren besitzen sie eine sehr gute Haftung auf den meisten Untergründen und sind unter trockenen und UV- geschützten Bedingungen von hoher Beständigkeit. Weitere Vorteile liegen in der toxikologischen Unbedenklichkeit der ausgehärteten Schäume sobald sämtliche Isocyanateinheiten quantitativ abreagiert sind, sowie in ihrer zügigen Aushärtung und ihrer leichten Handhabbarkeit. Auf Grund dieser Eigenschaften ha- ben sich PU-Schäume in der Praxis sehr bewährt.
Allerdings besitzen herkömmliche PU-Sprayschäume den kritischen Nachteil, dass sie im unvernetzten Zustand einen relativ großen Gehalt an freien monomeren Isocyanaten aufweisen, welche toxi- kologisch außerordentlich bedenklich sind. Insbesondere das MDI (Diisocyanatodiphenylmethan) , welches in nahezu jedem herkömmlichen PU-Schaum enthalten ist, steht inzwischen im Verdacht, krebserregend zu sein. Schäumbare Mischungen, die mehr als 1% freies MDI enthalten, sind daher mit einem Verweis auf eine mögliche krebserzeugende Wirkung zu kennzeichnen. In einigen
Ländern wie z.B. Frankreich und Deutschland führt dies zudem zu Verkaufsbeschränkungen im DIY-Segment. Des weiteren besitzen sämtliche Isocyanate auch eine sehr starke sensibilisierende Wirkung, u.a. können sie Asthmaanfälle auslösen.
Kritisch ist hier neben dem direkten Kontakt der Prepolymermi - schung mit der Haut vor allem auch eine mögliche Aerosolbildung während des Aufbringens des Schaumes oder das Verdampfen von niedermolekularen Bestandteilen, z.B. von monomeren Isocyana- ten. Dadurch besteht die Gefahr, dass toxikologisch bedenkliche Verbindungen über die Atemluft aufgenommen werden. Verschärft werden diese Risiken noch durch die Tatsache, dass die PU- Sprayschäume oftmals nicht von professionellen Anwendern sondern von ungeübten Heimwerkern verwendet werden, weshalb eine sachgerechte Handhabung nicht immer vorausgesetzt werden kann.
Um diese Nachteile zu überwinden, sind in den letzten 1-2 Jah- ren spraybare Montageschäume auf den Markt gekommen, die zwar nach wie vor über die Reaktionen von Isocyanatgruppen aushärten, jedoch nur noch einen sehr geringen Anteil an freien monomeren Isocyanaten enthalten. Ziel dieser Produkte ist insbesondere die Vermeidung einer Kennzeichnungspflicht bezüglich einer möglicherweise krebserregenden Wirkung. Die Gehalte an monomeren Isocyanaten liegen daher unter 1%, z.T. sogar unterhalb 0,1%. Allerdings beziehen sich diese niedrigen Gehalte nur auf die monomeren Isocyanate. Der Gehalt in Isocyanatgruppe ist auch in diesen Produkten nach wie vor sehr hoch. Anstelle von monomeren Isocyanaten enthalten die entsprechenden Schäume jetzt große Mengen an kurzkettigen polymeren Isocyanaten. Damit sind auch diese Produkte toxikologisch keineswegs unbedenklich, insbesondere ist auch hier von einer starken sensibilisierenden Wirkung auszugehen.
Nochmals günstiger sind her daher Sprayschaumsysteme, die ganz auf eine Isocyanathärtung verzichten. Die wichtigste Produktgruppe stellen hier silanvernetzende Schäume dar, wie sie z.B. in US 20040072921 A, US 20060189705 A, oder US 20110224319 A beschrieben sind. Dabei handelt es sich typischerweise um
Schäume auf Basis von Prepolymeren, die aus Polyetherpolyolen, Diisocyanaten und Aminoalkyl -alkoxysilanen wie z.B. N- Phenylaminomethyl-methyldimethoxysilan hergestellt worden sind. Wenn bei der Herstellung dieser Prepolymere die Stochiometrien so gewählt werden, dass sämtliche Isocyanatgruppen abreagieren, werden isocyanatfreie Prepolymere erhalten, deren Kettenenden mit Alkoxysilylgruppen terminiert sind. Letztere können bei ge- eigneter Katalyse mit der Luftfeuchtigkeit unter Ausbildung von Siloxanbrücken reagieren, wodurch die Schäume letztendlich aushärten. Auch silanvernetzende Sprayschäume sind inzwischen kommerziell erhältlich. Trotz aller toxikologischen Vorteile besitzen silanvernetzende Schäume jedoch den Nachteil, eine sehr hohe Konzentration an vernetzungsfähigen Gruppen zu benötigen. Entsprechend groß ist die Menge an Aminoalkyl-alkoxysilanen, die bei der Herstellung der entsprechenden Prepolymere eingesetzt werden müssen. Da die Aminosilane meist die kostenintensivsten Rohstofftypen darstellen, sind die resultierenden Produkte entsprechend teuer. Werden hingegen deutlich niedrigere Silangehalte eingesetzt, wird ein Schaum erhalten, der für viele Anwendungen zu weich ist.
Gegenstand der Erfindung sind schäum- und vernetzbare Massen enthaltend
(A) 100 Gewichtsteile Verbindungen (A) der Formel Y- [ (CR1 2) b~SiRa (OR2) 3 - a ] x (I), wobei
Y einen x-wertigen, über Stickstoff, Sauerstoff, Schwefel oder Kohlenstoff gebundenen Polymerrest bedeutet,
R gleich oder verschieden sein kann und einen einwertigen, ge¬ gebenenfalls substituierten, Sic-gebundenen Kohlenwasserstoffrest darstellt, R1 gleich oder verschieden sein kann und Wasserstoffatom oder einen einwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest darstellt, der über Stickstoff, Phosphor, Sauerstoff, Schwefel oder Carbonylgruppe an das Kohlenstoffatom angebunden sein kann,
R2 gleich oder verschieden sein kann und Wasserstoffatom oder einen einwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest darstellt,
x eine ganze Zahl von 1 bis 10, bevorzugt 1, 2 oder 3, besonders bevorzugt 1 oder 2, ist,
a gleich oder verschieden sein kann und 0, 1 oder 2, bevorzugt 0 oder 1, ist und
b gleich oder verschieden sein kann und eine ganze Zahl von 1 bis 10, bevorzugt 1, 3 oder 4, besonders bevorzugt 1 oder 3, insbesondere 1, ist,
(B) mehr als 1 Gewichtsteil Siliconharze enthaltend Einheiten der Formel
R3 c(R40)dR5 eSiO(4-c-d-e) /2 (II), wobei
R3 gleich oder verschieden sein kann und Wasserstoffatom, einen einwertigen, SiC-gebundenen, gegebenenfalls substituierten aliphatischen Kohlenwasserstoffrest oder einen zweiwertigen, gegebenenfalls substituierten, aliphatischen Kohlenwasserstoffrest, der zwei Einheiten der Formel (II) verbrückt, bedeutet ,
R4 gleich oder verschieden sein kann und Wasserstoffatom oder einen einwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest bedeutet, R5 gleich oder verschieden sein kann und einen einwertigen, SiC-gebundenen, gegebenenfalls substituierten aromatischen Kohlenwasserstoffrest bedeutet,
c 0, 1, 2 oder 3 ist,
d 0, 1, 2 oder 3, bevorzugt 0, 1 oder 2, besonders bevorzugt 0 oder 1, ist und
e 0, 1 oder 2, bevorzugt 0 oder 1, ist, mit der Maßgabe, dass die Summe aus c+d-s-e kleiner oder gleich 3 ist und in mindestens 40 % der Einheiten der Formel (II) die Summe c+e gleich 0 oder 1 ist, und
C) mehr als 1 Gewichtsteil eines bei 20°C und 1000 hPa gasförmigen Treibmittels.
Die schäum- und vernetzbaren Massen steigern die Härte von silanvernetzenden Sprayschäumen, ohne Prepolymere mit einer erhöhten Dichte an Alkoxysilylgruppen einsetzen zu müssen.
Beispiele für Reste R sind Alkylreste, wie der Methyl-, Ethyl-, n-Propyl-, iso-Propyl-, 1-n-Butyl-, 2-n-Butyl-, iso-Butyl-, tert . -Butyl- , n-Pentyl-, iso-Pentyl-, neo-Pentyl-, tert.-Pen- tylrest; Hexylreste, wie der n-Hexylrest ; Heptylreste, wie der n-Heptylrest ; Octylreste, wie der n-Octylrest, iso-Octylreste und der 2 , 2 , 4 -Trimethylpentylrest ; Nonylreste, wie der n-Nonyl- rest; Decylreste, wie der n-Decylrest ; Dodecylreste , wie der n- Dodecylrest ; Octadecylreste , wie der n-Octadecylrest ; Cycloal- kylreste, wie der Cyclopentyl- , Cyclohexyl-, Cycloheptylrest und Methylcyclohexylreste ; Alkenylreste , wie der Vinyl-, 1-Pro- penyl- und der 2-Propenylrest ; Arylreste, wie der Phenyl-, Naphthyl-, Anthryl- und Phenanthrylrest ; Alkarylreste , wie o-, m- , p-Tolylreste; Xylylreste und Ethylphenylreste ; und Aralkyl- reste, wie der Benzylrest, der - und der ß-Phenylethylrest . Beispiele für substituierte Reste R sind Halogenalkylreste , wie der 3 , 3 , 3 -Trifluor-n-propylrest , der 2 , 2 , 2 , 2 " , 2 " , 2 ' -Hexafluor- isopropylrest und der Heptafluorisopropylrest , und Halogenaryl- reste, wie der o-, m- und p-Chlorphenylrest .
Bevorzugt handelt es sich bei Rest R um gegebenenfalls mit Halogenatomen substituierte, einwertige Kohlenwasserstoffreste mit 1 bis 6 Kohlenstoffatomen, besonders bevorzugt um Alkylres- te mit 1 oder 2 Kohlenstoffatomen, insbesondere um den Methyl - rest.
Beispiele für Reste R1 sind Wasserstoffatom, die für R angegebenen Reste sowie über Stickstoff, Phosphor, Sauerstoff, Schwefel, Kohlenstoff oder Carbonylgruppe an das Kohlenstoffatom ge- bundene, gegebenenfalls substituierte Kohlenwasserstoffreste .
Bevorzugt handelt es sich bei Rest R1 um Wasserstoffatom und Kohlenwasserstoffreste mit 1 bis 20 Kohlenstoffatomen, insbesondere um Wasserstoffatom.
Beispiele für Rest R2 sind Wasserstoffatom oder die für Rest R angegebenen Beispiele.
Bevorzugt handelt es sich bei Rest R2 um Wasserstoffatom oder gegebenenfalls mit Halogenatomen substituierte Alkylreste mit 1 bis 10 Kohlenstoffatomen, besonders bevorzugt um Alkylreste mit 1 bis 4 Kohlenstoffatomen, insbesondere um den Methyl- und Ethylrest . Der Polymerrest Y enthält bevorzugt organische Polymerreste, deren Polymerkette ausgewählt wird aus Polymerkette Polyester, Polyurethane, Polyoxyalkylene, Kohlenwasserstoffpolymere , Polyamide, Polyacrylate, Polymetacrylate , Polycarbonate und deren Gemischen und die vorzugsweise über -O-C (=0) -NH- , -NH-C(=0)0-, -NH-C (=0) -NH- , -NR' -C(=0) -NH-, NH-C (=0) -NR' - , -NH-C(=0)-,
-C(=0) -NH- ,
-C(=0)-0-, -0-C(=0)-, -0-C(=0)-0-, -S - C ( =0) -NH- , -NH-C (=0) -S- , -C(=0)-S-, -S-C(=0)-, -S-C(=0)-S-, -C(=0)-, -S-, -0- und -NR' - an die Gruppe bzw. Gruppen - [ (CR1 2) b-SiRa (OR2) 3-a] gebunden sind, wobei R' gleich oder verschieden sein kann und eine für R angegebene Bedeutung hat oder für eine Gruppe -CH (COOR" ) -CH2-C00R" steht, in der R" gleich oder verschieden sein kann und eine für R angegebene Bedeutung hat .
Beispiele für Reste R' sind Cyclohexyl-, Cyclopentyl- , n- und iso-Propyl-, n- , iso- und t-Butyl-, die diversen Sterioisomere des Pentylrests, Hexylrests oder Heptylrests sowie der Phenyl- rest.
Bei Rest R' handelt es sich vorzugsweise um eine Gruppe
-CH(C00R") -CH2-C00R" oder einen gegebenenfalls substituierten Kohlenwasserstoffrest mit 1 bis 20 Kohlenstoffatomen, besonders bevorzugt um eine lineare, verzweigte oder cyclische Alkylgrup- pe mit 1 bis 20 Kohlenstoffatomen oder um eine gegebenenfalls mit Halogenatomen substituierte Arylgruppe mit 6 bis 20 Kohlenstoffatomen. Bei den Resten R" handelt es sich vorzugsweise um Alkylgruppen mit 1 bis 10 Kohlenstoffatomen, besonders bevorzugt um Methyl-, Ethyl- oder Propylreste.
Besonders bevorzugt handelt es sich bei Rest Y in Formel (I) um Polyurethanreste und Polyoxyalkylenreste , insbesondere um po- lyoxyalylen- oder polyesterhaltige Polyurethanreste oder Polyoxyalkylenreste . Die Verbindung (A) kann dabei die auf die beschriebene Weise angebundenen Gruppen - [ (CR ) b~SiRa (OR2) 3-a] an beliebigen Stellen im Polymer aufweisen, wie etwa kettenständig und/oder endständig, bevorzugt kettenständig und endständig, besonders bevor- zugt endständig.
Bei den Endgruppen der erfindungsgemäß eingesetzten Verbindungen (A) handelt es sich vorzugsweise um solche der allgemeinen Formeln
Figure imgf000011_0001
und -NH-C(=0) -NR' - (CR1 2)b-SiRa(OR2) 3 _ a (IV), wobei die Reste und Indizes eine der oben dafür angegebenen Bedeutungen haben. Die mittleren Molekulargewichte Mn (Zahlenmittel) der Verbindungen (A) betragen vorzugsweise mindestens 400 g/mol, besonders bevorzugt mindestens 600 g/mol, und vorzugsweise höchstens 20 000 g/mol, besonders bevorzugt höchstens 10 000 g/mol, insbesondere höchstens 5 000 g/mol.
Die Viskosität der Verbindungen (A) beträgt vorzugsweise mindestens 30 Pas, bevorzugt mindestens 100 Pas, besonders bevorzugt mindestens 300 Pas, und vorzugsweise höchstens 5000 Pas, bevorzugt höchstens 2000 Pas, jeweils gemessen bei 20°C.
Die erfindungsgemäß eingesetzten Verbindungen (A) sind handelsübliche Produkte oder können nach in der Chemie gängigen Verfahren hergestellt werden. Die Herstellung der Verbindungen (A) kann durch verschiedene, bekannte Verfahren erfolgen, wie Additionsreaktionen, wie z.B. der Hydrosilylierung, Michael -Addition, Diels-Alder-Addition oder Reaktionen zwischen isocyanatfunktionellen Verbindungen mit Verbindungen, die isocyanatreaktive Gruppen aufweisen.
Bei einer besonders bevorzugten Ausführung der Erfindung enthält die Verbindung (A) als Polymerreste Y lineare oder ver- zweigte Polyurethanreste, bei deren Herstellung vorzugsweise von Polyether- und/oder Polyesterpolyolen Yl mit einer mittleren Molmasse von 200 bis 20 000 Dalton ausgegangen wird. Dabei werden Polyetherpolyole , insbesondere Polypropylenglycole , mit einer mittleren Molmasse Mn von 300 bis 6 000 Dalton, insbeson- dere von 350 bis 4 500 Dalton, besonders bevorzugt eingesetzt. In einer besonderen Ausführung der Erfindung handelt es sich bei den Polyolen Yl zumindest in Teilen um halogenierte Polyole, z.B. um halogenhaltige Polyether. Halogenierte Polyole besitzen den Vorteil, dass sie zu Produkten mit besseren Brandei- genschaften führen. Die Polyole Yl können verzweigt oder unverzweigt sein. Besonders bevorzugt werden unverzweigte Polyole oder aber Polyole mit einer Verzweigungsstelle. Es können auch Mischungen aus verzweigten und unverzweigten Polyolen eingesetzt werden.
Vorzugsweise werden die Polyole Yl bei der Herstellung der Komponente (A) mit mindestens einer isocyanatfunktionellen Verbindung Y2 umgesetzt. Vorzugsweise handelt es sich bei Y2 um Dioder Polyisocyanate . Beispiele für gebräuchliche Diisocyanate sind Diisocyanatodiphenylmethan (MDI) , sowohl in Form von rohem oder technischem MDI als auch in Form reiner 4,4' bzw. 2,4' Isomeren oder deren Mischungen, Tolylendiisocyanat (TDI) in Form seiner verschiedenen Regioisomere , Diisocyanatonaphthalin (NDI) , Isophorondiisocyanat (IPDI) oder auch von Hexamethylen- diisocyanat (HDI) . Beispiele für Polyisocyanate sind polymeres MDI (P-MDI) , Triphenylmethantriisocanat oder aber Triraerisate
(Biurethe oder Isocyanurate) der oben genannten Diisocyanate .
Besonders bevorzugt werden p-MDI, MDI oder TDI, insbesondere MDI oder TDI eingesetzt. Die Isocyanate Y2 können dabei bezüglich des Verhältnisses der Isocyanatgruppen zu den Hydroxylgruppen des Polyols im Unterschuss (Variante 1) oder im Überschuss (Variante 2) eingesetzt werden. Bei der Variante 1 wird ein Polyurethanpolymer erhalten, dessen Kettenenden mit Hydroxylgruppen terminiert sind, bei der Variante 2 ein Polymer, dessen Kettenenden aus Isocyanatgruppen besteht. Das bei Variante 1 erhaltene hydroxylgruppen- funktionelle Polyurethanpolymer wird dann bevorzugt mit einem Silan Y3 der allgemeinen Formel
OCN- (CR1 2)b-SiRa(OR2) 3-a (V) umgesetzt, wobei die Reste und Indizes eine der oben dafür angegebenen Bedeutungen haben. Es wird ein Polyurethan mit Kettenenden der Formel (III) erhalten. Beispiele für Verbindungen der Formel (V) sind Isocyanatome- thyl-methyldimethoxysilan, Isocyanatomethyl-trimethoxysilan, Isocyanatomethyltriethoxysilan, 3 -Isocyanatopropyl-trimethoxysilan oder 3- Isocyanatopropyl-triethoxysilan. Isocyanatomethyl- methyldimethoxysilan oder 3 -Isocyanatopropyl-trimethoxysilan sind dabei bevorzugt.
Besonders bevorzugt ist jedoch Variante 2. Das dabei erhaltene isocyanatfunktionelle Polyurethanpolymer wird dann bevorzugt in einem zweiten Reaktionsschritt mit einem isocyanatreaktiven Silan Y3 ' der allgemeinen Formel
Figure imgf000014_0001
umgesetzt, wobei
Z eine isocyanatreaktive Gruppe darstellt und alle sonstigen Reste und Indizes eine der oben dafür angegebenen Bedeutungen haben .
Bei der isocyanatreaktive Gruppe Z handelt es sich vorzugsweise um eine Hydroxylgruppe oder eine Aminogruppe, besonders bevorzugt eine Aminogruppe der Formel NHR' mit ' gleich einer der obengenannten Bedeutung. Es wird ein silanterminiertes Po- lyurethan mit Kettenenden der Formel (IV) erhalten.
Beispiele für Verbindungen der Formel (VI) sind Phenylaminome- thyl-methyldimethoxysilan, Phenylaminomethyl-trimethoxysilan, N-Cyclohexylaminomethy1-methyldimethoxysilan, N-Cyclohexy1 - aminomethyl- trimethoxysilan. W-Butylaminomethy1-methyldi- methoxysilan, N-Butylaminomethyl-trimethoxysilan, 3-Phenyl- aminopropyl-methyldimethoxysilan, 3 -Phenylaminopropyl - trimethoxysilan, 3- (N- Cyclohexylamino) -propyl-methyldimethoxy- silan, 3- (N-Cyclohexylamino) -propyl-trimethoxysilan. 3-(N- Butylamino) -propyl-methyldimethoxysilan, 3 - ( N-Butylamino) - propyl-trimethoxysilan sowie sämtliche Derivate der genannten Silane, bei denen einige oder alle siliciumgebundenen Methoxyg- ruppen durch Ethoxygruppen ersetzt sind. Schließlich können neben den obengenannten Komponenten Yl bis Y3 bzw. Y3' auch noch monomere Alkohole Y4 Komponente bei der Herstellung der Verbindung (A) eingesetzt werden. Die Alkohole Y4 können über eine aber auch über mehrere Hydroxylgruppen ver- fügen. Hinsichtlich der Molmasse und des Verzweigungsgrades der Alkohole Y4 gibt es bevorzugt keinerlei Beschränkungen.
Falls zur Herstellung der Verbindungen (A) Alkohole Y4 einge- setzt werden, handelt es sich bevorzugt um solche der allgemeinen Formel
R6OH (VII) , wobei R6 eine der für den Rest R angegebenen Bedeutungen hat.
Bei Rest R6 handelt es sich vorzugsweise um einen linearen, o- der verzweigten Alkyl- oder Alkenylrest mit mindestens 8 Kohlenstoffatomen, wobei lineare Alkylreste mit mindestens 8 Koh- lenstoffatomen, insbesondere lineare Alkylreste mit mindestens 10 Kohlenstoffatomen, besonders bevorzugt werden. Vorzugsweise weist R6 höchstens 30, besonders bevorzugt höchstens 22, Kohlenstoffatome auf. Diese Alkohole können dabei ebenfalls mit den Di- oder Polyiso- cyanaten Y2 reagieren. Es resultieren Verbindungen (A) , deren Kettenenden nicht ausschließlich mit Kettenenden der Formel (IV) terminiert sind, sondern auch über einen gewissen Anteil, vorzugsweise mindestens 2%, besonders bevorzugt mindestens 4% und vorzugsweise höchstens 40%, insbesondere höchstens 20%, an Kettenenden der allgemeinen Formel
-NH-C(=0) -0-R6 (VIII) verfügen, in der R die oben genannten Bedeutungen aufweist.
Die Alkohole Y4 können dabei in einem separaten Reaktions- schritt in die Komponente (A) eingebaut worden sein, z.B. vor oder nach der Reaktion der Polyole Yl mit den Isocyanaten Y2. Alternativ kann der Einbau aber auch gleichzeitig mit einem anderen Reaktionsschritt erfolgen, z.B. indem eine Mischung aus den Polyolen Yl und den Alkoholen Y4 mit den Isocyanaten Y2 zur Reaktion gebracht wird.
Vorzugsweise werden dabei Alkohole Y4 , Mischungen verschiedener Alkohole Y4 oder aber Mischungen aus Polyolen Yl und Alkoholen Y4 eingesetzt, die bei Raumtemperatur und dem Druck der umge- benden Atmosphäre, also bei 900 bis 1100 hPa, flüssig sind und dementsprechend einfach zu der Reaktionsmischung zudosiert werden können.
Die Reihenfolge der Syntheseschritte ist dabei prinzipiell auch austauschbar. So kann der erste Syntheseschritt prinzipiell auch in einer Reaktion des Isocyanates Y2 mit dem Silan Y3' bestehen und die Reaktion mit dem Polyol Yl erst im zweiten Reaktionsschritt stattfinden. Ebenso ist es denkbar, beide Reaktionsschritte gleichzeitig durchzuführen.
Sämtliche Reaktionen zur Herstellung der Komponente (A) können sowohl diskontinuierlich als auch kontinuierlich durchgeführt werden . Die Herstellung der Komponenten (A) erfolgt gegebenenfalls in Gegenwart eines Katalysators. Geeignete Katalysatoren sind beispielsweise der bismuthaltige Katalysatoren, wie z.B. der
Borchi® Kat 22, Borchi® Kat VP 0243, Borchi® Kat VP 0244 der Fa. Borchers GmbH oder auch diejenigen Verbindungen, die den erfindungsgemäßen vernetzbaren Massen als Härtungskatalysatoren (E) zugesetzt werden können. Die Herstellung der Komponenten (A) wird vorzugsweise bei Temperaturen von mindestens 0°C, besonders bevorzugt mindestens 60°C und vorzugsweise höchstens 150°C, insbesondere höchstens 120 °C durchgeführt.
Vorzugsweise werden alle Komponenten zur Herstellung der Verbindungen (A) in einem Mengenverhältnis eingesetzt, nach dem auf 1 Isocyanatgruppe vorzugsweise mindestens 0,6, besonders bevorzugt mindestens 0,8 und vorzugsweise höchstens 1,4, insbe- sondere höchstens 1,2 isocyanatreaktive Gruppen kommen.
Die Verbindungen (A) sind bevorzugt isocyanatfrei . Die Iso- cyanatfreiheit kann dabei auch erreicht werden, wenn ein geringfügiger Überschuss an NCO-Gruppen bezogen auf die NCO- reaktiven Gruppen eingesetzt wird, weil die überschüssigen NCO- Gruppen z.B. auch mit gebildeten Urethan- und/oder Harnstoffeinheiten unter Allophanat- bzw. Biurethbildung reagieren können . Bei einem besonders bevorzugten Verfahren wird die Verbindung
(A) in Gegenwart der Siliconharzkomponente (B) hergestellt. Dabei können alle Reaktionsschritte oder auch nur der oder die letzten Reaktionsschritte in Gegenwart der Komponente (B) durchgeführt werden. Der Zusatz der Komponente (B) bereits wäh- rend des Herstellprozesses der Komponente (A) hat den Vorteil, dass die meist niederviskose Komponente (B) die meist sehr hochviskose Komponente (A) verdünnt und damit deren Weiterverarbeitung deutlich erleichtert. Des weiteren kann es vorteilhaft sein, die Verbindung (A) nicht in separaten Anlagen sondern direkt in der Schaumdose herzustellen. Dabei können alle Reaktionsschritte oder auch nur der oder die letzten Reaktionsschritte in der Schaumdose durchge- führt werden. Ein derartiges Verfahren hätte den Vorteil, dass keine weiteren Ab- bzw. Umfüllvorgängen mit der oftmals vergleichsweise hochviskosen Komponente (A) notwendig sind.
Selbstverständlich kann bei einer derartigen (Teil- ) Synthese in der Schaumdose auch bereits die Komponenten (B) zugegen sein.
Die erfindungsgemäß eingesetzte Komponente (A) kann nur eine Art von Verbindung der Formel (I) enthalten wie auch Gemische unterschiedlicher Arten von Verbindungen der Formel (I) . Dabei kann die Komponente (A) ausschließlich Verbindungen der Formel (I) enthalten, in denen mehr als 90%, bevorzugt mehr als 95%, besonders bevorzugt mehr als 98%, aller an den Polymerrest Y gebundenen Silylgruppen identisch sind. Es kann dann aber auch eine Komponente (A) eingesetzt werden, die zumindest zum Teil Verbindungen der Formel (I) enthält, bei denen an einen Polymerrest Y unterschiedliche Silylgruppen gebunden sind. Schließlich können als Komponente (A) auch Gemische verschiedener Verbindungen der Formel (I) eingesetzt werden, in denen insgesamt mindestens 2 unterschiedliche Arten an Silylgruppen vorhanden sind, wobei jedoch sämtliche an jeweils einen Polymerrest Y gebundenen Silylgruppen identisch sind.
Falls es sich bei Komponente (A) um verschiedene Arten von Verbindungen der Formel (I) handelt, sind Mischungen, die sowohl Verbindungen (AI) mit Endgruppen der Formel (III) oder (IV) , bei denen b = 1 und R1 = H bedeutet und a = 0 oder 1 ist, enthalten, als auch Verbindungen (A2) mit Endgruppen der Formel (IV) oder (V) , bei denen b = 3 und R1 = H bedeutet und a = 0 ist, bevorzugt und solche besonders bevorzugt, in denen das Ge- wichtsverhältnis von (AI) zu (A2) 0,1 bis 10, vorzugsweise 0,2 bis 5, beträgt. Grundsätzlich sind Polymere wie sie in den Beschreibungen, insbesondere aber auch in den Beispielen von US 20040072921 A, US 20060189705 A, oder US 20110224319 A beschrieben sind, als Komponenten (A) geeignet .
Vorzugsweise enthalten die schäum- und vernetzbaren Massen Verbindungen (A) in Konzentrationen von höchstens 90 Gew.-%, besonders bevorzugt höchstens 70 Gew.-%, und vorzugsweise mindestens 10 Gew.-%, besonders bevorzugt mindestens 15 Gew.-%.
Bezogen auf 100 Gewichtsteile der Komponente (A) enthalten die schäum- und vernetzbaren Massen vorzugsweise mindestens 10 Gewichtsteile, besonders bevorzugt mindestens 30 Gewichtsteile, und vorzugsweise höchstens 1000 Gewichtsteile, besonders bevor- zugt höchstens 500 Gewichtsteile, insbesondere höchstens 300 Gewichtsteile, Komponente (B) .
Komponente (B) besteht vorzugsweise zu mindestens 90 Gew. -% aus Einheiten der Formel (II) . Besonders bevorzugt besteht Kompo- nente (B) ausschließlich aus Einheiten der Formel (II) .
Beispiele für Reste R3 sind die oben für R angegebenen aliphatischen Reste. Es kann sich bei Rest R3 aber auch um zweiwertige aliphatische Reste handeln, die zwei Silylgruppen der Formel (II) miteinander verbinden, wie z.B. Alkylenreste mit 1 bis 10 Kohlenstoffatomen, wie etwa Methylen-, Ethylen- , Propylen- oder Butylenreste . Ein besonders gängiges Beispiel für einen zweiwertigen aliphatischen Rest stellt der Ethylenrest dar. Bevorzugt handelt es sich bei Rest R3 jedoch um gegebenenfalls mit Halogenatomen substituierte, einwertige SiC-gebundene aliphatische Kohlenwasserstoffreste mit 1 bis 18 Kohlenstoffatomen, besonders bevorzugt um aliphatische Kohlenwasserstoff- reste mit 1 bis 6 Kohlenstoffatomen, insbesondere um den Methylrest .
Beispiele für Rest R4 sind Wasserstoffatom oder die für Rest R angegebenen Beispiele.
Bevorzugt handelt es sich bei Rest R4 um Wasserstoffatom oder gegebenenfalls mit Halogenatomen substituierte Alkylreste mit 1 bis 10 Kohlenstoffatomen, besonders bevorzugt um Alkylreste mit 1 bis 4 Kohlenstoffatomen, insbesondere um den Methyl-, Ethyl oder Butylrest.
Beispiele für Reste R5 sind die oben für R angegebenen aromatischen Reste.
Bevorzugt handelt es sich bei Rest R5 um gegebenenfalls mit Halogenatomen substituierte, SiC-gebundene aromatische Kohlenwasserstoffreste mit 1 bis 18 Kohlenstoffatomen, wie z.B. Ethyl - phenyl-, Toluyl-, Xylyl-, Chlorphenyl- , Naphtyl- oder Styryl- reste, besonders bevorzugt um den Phenylrest.
Bevorzugt werden als Komponenten (B) Siliconharze eingesetzt, in denen mindestens 90% aller Reste R3 für Methylrest, mindestens 90% aller Reste R4 für Methyl-, Ethyl-, Propyl-, Isopro- pyl- oder Butylrest und mindestens 90% aller Reste R5 für Phenylrest stehen.
Vorzugsweise werden Siliconharze (B) eingesetzt, die mindestens 20%, besonders bevorzugt mindestens 40%, insbesondere mindes- tens 60%, Einheiten der Formel (II) aufweisen, in denen c gleich 0 ist, jeweils bezogen auf die Gesamtzahl an Einheiten der Formel (II) . In einer Ausführung der Erfindung werden Siliconharze (B) eingesetzt, die, jeweils bezogen auf die Gesaratzahl an Einheiten der Formel (II) , mindestens 10%, besonders bevorzugt mindestens 20%, und höchstens 80%, besonders bevorzugt höchstens 60%, Ein- heiten der Formel (II) aufweisen, in denen c für den Wert 2 o- der größer 2 steht. In einer besonderen Ausführung der Erfindung werden Siliconharze (B) eingesetzt, die keine Einheiten der Formel (II) aufweisen, in denen c für den Wert 2 oder größer 2 aufweist.
Vorzugsweise werden Siliconharze (B) eingesetzt, die, jeweils bezogen auf die Gesamtzahl an Einheiten der Formel (II) , mindestens 80%, besonders bevorzugt mindestens 95%, Einheiten der Formel (II) aufweisen, in denen d für den Wert 0 oder 1 steht.
Vorzugsweise werden Siliconharze (B) eingesetzt, die, jeweils bezogen auf die Gesamtzahl an Einheiten der Formel (II) , mindestens 60%, besonders bevorzugt mindestens 70%, bevorzugt höchstens 99%, besonders bevorzugt höchstens 97%, Einheiten der Formel (II) aufweisen, in denen d für den Wert 0 steht.
Bevorzugt werden als Komponenten (B) Siliconharze eingesetzt, die, jeweils bezogen auf die Gesamtzahl an Einheiten der Formel (II) , mindestens 20%, bevorzugt mindestens 40%, insbesondere mindestens 60% Einheiten der Formel (II) aufweisen, in denen e für einen Wert ungleich 0 steht. Es können sogar Siliconharze (B) eingesetzt werden, die ausschließlich Einheiten der Formel (II) aufweisen, in denen e ungleich 0 ist. Alle Einheiten der Formel (II) , die ein e ungleich 0 aufweisen, weisen vorzugswei- se für e einen Wert von 1 auf .
Vorzugsweise werden Siliconharze (B) eingesetzt, die, jeweils bezogen auf die Gesamtzahl an Einheiten der Formel (II) , min- destens 50%, insbesondere mindestens 70%, Einheiten der Formel (II) aufweisen, in denen die Summe c+e gleich 0 oder 1 ist.
In einer besonders bevorzugten Ausführung der Erfindung werden als Komponente (B) Siliconharze eingesetzt, die, jeweils bezogen auf die Gesamtzahl an Einheiten der Formel (II) , mindestens 20%, besonders bevorzugt mindestens 40%, insbesondere mindestens 60%, Einheiten der Formel (II) aufweisen, in denen e für den Wert 1 und c für den Wert 0 steht. Vorzugsweise weisen da- bei höchstens 70%, besonders bevorzugt höchstens 40% aller Einheiten der Formel (II) ein d ungleich 0 auf.
In einer weiteren besonders bevorzugten Ausführung der Erfindung werden als Komponente (B) Siliconharze eingesetzt, die, jeweils bezogen auf die Gesamtzahl an Einheiten der Formel
(II) , mindestens 20%, besonders bevorzugt mindestens 40%, insbesondere mindestens 60%, Einheiten der Formel (II) aufweisen, in denen e für den Wert 1 und c für den Wert 0 steht und die zudem mindestens 1%, bevorzugt mindestens 10%, an Einheiten der Formel (II) aufweisen, in denen c für 1 oder 2, bevorzugt für 2, und e für 0 steht. Vorzugsweise weisen dabei höchstens 70%, besonders bevorzugt höchstens 40% aller Einheiten der Formel (II) ein d ungleich 0 auf und mindestens 1% aller Einheiten der Formel (II) ein d von 0 auf.
Beispiele für die erfindungsgemäß eingesetzten Siliconharze (B) sind Organopolysiloxanharze , die im Wesentlichen, vorzugsweise ausschließlich, aus (Q) -Einheiten der Formeln Si04/2,
Si(OR4)03 2, Si(OR4) 202/2 und Si (OR4) 301/2 , (T) -Einheiten der For- mein PhSi03/2, PhSi (OR4) 02/2 und PhSi (OR4) 20i/2 , (D) -Einheiten der Formeln Me2Si02/2 und Me2Si (OR4 ) Oi/2 sowie (M) -Einheiten der Formel Me3SiOi/2 bestehen, wobei Me für einen Methylrest, Ph für einen Phenylrest und R4 für Wasserstoffatom oder gegebenenfalls mit Halogenatomeri substituierte Alkylreste mit 1 bis 10 Kohlenstoffatomen, besonders bevorzugt um Wasserstoffatom oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, steht, wobei das Harz pro Mol (T) -Einheiten bevorzugt 0-2 Mol (Q) -Einheiten, 0-2 Mol (D) - Einheiten und 0-2 Mol (M) -Einheiten enthält.
Bevorzugte Beispiele für die erfindungsgemäß eingesetzten Siliconharze (B) sind Organopolysiloxanharze , die im Wesentlichen, vorzugsweise ausschließlich, aus T-Einheiten der Formeln PhSi03/2, PhSi (OR4) 02/2 und PhSi (OR4 ) 20i/2 sowie D-Einheiten der Formeln Me2Si02/2 und Me2Si (OR4) Oi/2 bestehen, wobei Me für einen Methylrest, Ph für einen Phenylrest und R4 für Wasserstoffatom oder gegebenenfalls mit Halogenatomen substituierte Alkylreste mit 1 bis 10 Kohlenstoffatomen, besonders bevorzugt um Wasser- stoffatom oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, steht, mit einem molaren Verhältnis von (T) - zu (D) -Einheiten von 0,5 bis 2,0.
Weitere bevorzugte Beispiele für die erfindungsgemäß eingesetz- ten Siliconharze (B) sind Organopolysiloxanharze, die im Wesentlichen, vorzugsweise ausschließlich, aus T-Einheiten der Formeln PhSi03/2, PhSi (OR4) 02/2 und PhSi (OR4 ) 20i/2 sowie T-Ein¬ heiten der Formeln MeSi03/2, MeSi (OR4) 02/2 und MeSi (OR4) 2O1/2 sowie gegebenenfalls D-Einheiten der Formeln Me2Si02/2 und
Me2Si (OR4) Oi/2 bestehen, wobei Me für einen Methylrest, Ph für einen Phenylrest und R4 für Wasserstoffatom oder gegebenenfalls mit Halogenatomen substituierte Alkylreste mit 1 bis 10 Kohlenstoffatomen, besonders bevorzugt um Wasserstoffatom oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, steht, mit einem molaren Verhältnis von Phenylsilicon- zu Methylsilicon-Einheiten von 0,5 bis 4,0. Der Gehalt an D-Einheiten in diesen Siliconharzen liegt vorzugsweise unter 10 Gew.-%. Zusätzliche bevorzugte Beispiele für die erfindungsgemäß eingesetzten Siliconharze (B) sind Organopolysiloxanharze , die im Wesentlichen, vorzugsweise ausschließlich, aus T-Einheiten der Formeln PhSi03 2/ PhSi (OR4) 02/2 und PhSi (OR4) 20i/2 bestehen, wobei Ph für einen Phenylrest und R4 für Wasserstoffatom oder gegebenenfalls mit Halogenatomen substituierte Alkylreste mit 1 bis 10 Kohlenstoffatomen, besonders bevorzugt um Wasserstoffatom oder Alkylreste mit 1 bis 4 Kohlenstoffatomen, steht. Der Gehalt an D-Einheiten in diesen Siliconharzen liegt vorzugsweise unter 10 Gew.-%.
Vorzugsweise besitzen die in den schäum- und vernetzbaren Massen eingesetzten Siliconharze (B) eine mittlere Molmasse (Zahlenmittel) Mn von mindestens 400 g/mol und besonders bevorzugt von mindestens 600 g/mol. Die mittlere Molmasse Mn liegt vorzugsweise bei höchstens 400 000 g/mol, besonders bevorzugt bei höchstens 100 000 g/mol, insbesondere bei höchstens 50 000 g/mol . Die eingesetzten Siliconharze (B) können bei 23 °C und 1000 hPa sowohl fest als auch flüssig sein, wobei Siliconharze (B) bevorzugt flüssig sind. Vorzugsweise besitzen die Siliconharze (B) eine Viskosität von 10 bis 100 000 mPas, vorzugsweise von 50 bis 50 000 mPas, insbesondere von 100 bis 20 000 mPas . Die Siliconharze (B) besitzen vorzugsweise ein Polydispersität (Mw/Mn) von maximal 5, bevorzugt von maximal 3.
Die Siliconharze (B) können sowohl in reiner Form als auch in Form einer Lösung in einem geeigneten Lösungsmittel eingesetzt werden.
Als Lösungsmittel können dabei Substanzen wie Ether (z.B. Diet- hylether, Methyl- t-butylether, Etherderivate des Glycols, THF) , Ester (z.B. Ethylacetat, Butylacetat, Glycolester) , Kohlenwasserstoffe (z.B. Pentan, Cyclopentan, Hexan, Cyclohexan, Heptan, Octan oder auch langerkettige verzweigte und unverzweigte Alka- ne) , Ketone (z.B. Aceton, Methylethylketon) , Aromaten (z.B. To- luol, Xylol, Ethylbenzol, Chlorbenzol) oder auch Alkohole (z.B. Methanol, Ethanol, Glycol, Propanol, iso-Propanol , Glycerin, Butanol, iso-Butanol, t-Butanol) dienen.
Vorzugsweise werden jedoch Siliconharze (B) eingesetzt, die frei von organischen Lösungsmitteln sind.
Bei den eingesetzten Siliconharzen (B) handelt es sich um handelsübliche Produkte (z.B. SILRES@ SY 231, SILRES® IC 368 oder SILRES0 IC 678 der Fa. Wacker Chemie AG, D-München) oder können nach in der Siliciumchemie gängigen Methoden hergestellt werden.
Bezogen auf 100 Gewichtsteile der Komponente (A) enthalten die schäum- und vernetzbaren Massen vorzugsweise mindestens 10 Ge- wichtsteile, besonders bevorzugt mindestens 20 Gewichtsteile, Treibmittel (C) . Bezogen auf 100 Gewichtsteile der Komponente (A) enthalten die schäum- und vernetzbaren Massen vorzugsweise höchstens 200 Gewichtsteile, besonders bevorzugt höchstens 100 Gewichtsteile, insbesondere höchstens 80 Gewichtsteile, Kompo- nente (C) .
Als Treibmittel (C) sind dieselben bei 20 °C und 1000 hPa gasförmigen aber insbesondere bereits bei relativ geringen Drücken kondensierbaren Verbindungen geeignet, die auch zur Herstellung herkömmlicher isocyanathaltiger Sprayschäume verwendet werden. Geeignete Treibmittel sind beispielsweise Kohlenwasserstoffe mit jeweils 1-4, insbesondere 3-4 Kohlenstoffatomen, Fluorkohlenwasserstoffe mit 1-4 Kohlenstoffatomen, wie 1 , 1 , 1 , 2 -Tetra- fluoroethan, 1 , 1-Difluoroethan, 1 , 1 , 1 , 2 , 3 , 3 , 3 -Heptafluoropropan oder Dimethylether . Oftmals besteht das Treibmittel (C) auch aus einer Mischung aus zwei oder mehr der genannten Komponenten.
Prinzipiell kann auch Kohlendioxid als Treibmittel (C) bzw.
Teil des Treibmittels (C) verwendet werden.
Kohlenwasserstoffe, insbesondere Propan, Butan, Isobutan sowie Propan/Butan-Mischungen, stellen bevorzugt die Hauptkomponente des Treibmittels (C) dar. So besteht das Treibmittel (C) bevorzugt zu mindestens 50 Vol.-%, insbesondere mindestens 80 Vol.-% aus Kohlenwasserstoff -Treibmitteln. Die Treibmittelmischung (C) kann durchaus zu 100 % aus Kohlenwasserstofftreibmitteln beste- hen, kann aber auch weitere Komponenten enthalten. Als weitere typische Treibmittelkompenente enthält die Treibmittelmischung (C) vorzugsweise Dimethylether, bevorzugt 0,1-20 Vol-%, besonders bevorzugt 0,5-10 Vol-%. Aber auch weitere bekannte Treibmittel können in der Treibmittelmischung (C) vorhanden sein. Sämtliche oben genannten Vol .-%-Angaben addieren sich dabei stets auf 100%.
Die letztgenannten Treibmittel bzw. Treibmittelmischungen (C) werden vorzugsweise in Kombination mit den weiter oben be- schriebenen bevorzugt und besonders bevorzugt einzusetzenden Typen der Verbindung (A) und Siliconharze (B) eingesetzt.
Zusätzlich zu den eingesetzten Komponenten (A) , (B) und (C) können die erfindungsgemäßen Massen alle weiteren Stoffe enthal- ten, die auch bisher in silanvernetzenden Massen und/oder PU- Schäumen eingesetzt wurden und die unterschiedlich sind zu Komponenten (A) , (B) und (C) , wie z.B. basischen Stickstoff aufweisende Organosiliciumverbindung (D) , Katalysator (E) , Organo- siliciumverbindung ohne basischen Stickstoff (F) , Brandschutzmittel (G) und Additive (H) .
Bevorzugt handelt es sich bei Komponente (D) um Organosilicium- Verbindungen enthaltend Einheiten der Formel
DSi (OR7)gR8 (3-g) (IX), worin
R7 gleich oder verschieden sein kann und Wasserstoffatom oder gegebenenfalls substituierte Kohlenwasserstoffreste bedeutet, D gleich oder verschieden sein kann und einen einwertigen, Sic-gebundenen Rest mit basischem Stickstoff bedeutet,
R8 gleich oder verschieden sein kann und einen einwertigen, ge- gebenenfalls substituierten Sic-gebundenen, von basischem
Stickstoff freien organischen Rest bedeutet,
g 1, 2 oder 3, bevorzugt 2 oder 3, ist.
In einer bevorzugten Ausführung der Erfindung enthalten die schäum- und vernetzbaren Massen neben den Komponenten (A) , (B) und (C) auch noch mindestens eine weitere Komponente (D) entsprechend der Formel (IX) , insbesondere dann, wenn es sich bei der Komponente (A) um die vorzugsweise einzusetzenden silanter- minierte Urethane mit Endgruppen der Formel (IV) handelt. Es war überraschend, dass bei Einsatz von Komponenten (A) und (B) , die in den bevorzugten Mengenverhältnissen nicht bzw. schlecht ineinander löslich sind, durch Zusatz von Komponente (D) weitgehend homogene, vorzugsweise vollständig homogene Mischungen erzielt werden können. Dieser durch den Einsatz der Komponente (D) erzielbare Vorteil ist insbesondere deshalb wichtig, weil der durch das Verdampfen des Treibmittels (C) erhaltene Schaum eine deutlich bessere Stabilität aufweist, wenn die übrigen in der Schaummatrix verbliebenen Komponenten eine homogene Lösung bilden. Diese Stabilität ist entscheidend, damit die feinzelli- ge Schaumstruktur bis zum Aushärten des Schaumes und der damit verbundenen Fixierung der Schaumstruktur erhalten bleibt. Beispiele für gegebenenfalls substituierte Kohlenwasserstoff- reste R7 sind die für Rest R angegebenen Beispiele.
Bei den Resten R7 handelt es sich vorzugsweise um Wasserstoff - atom und gegebenenfalls mit Halogenatomen substituierte Kohlen- wasserstoffreste mit 1 bis 18 Kohlenstoffatomen, besonders bevorzugt um Wasserstoffatom und Kohlenwasserstoffreste mit 1 bis 10 Kohlenstoffatomen, insbesondere um Methyl- und Ethylrest.
Beispiele für Rest R8 sind die für R angegebenen Beispiele.
Bei Rest R8 handelt es sich vorzugsweise um gegebenenfalls mit Halogenatomen substituierte Kohlenwasserstoffreste mit 1 bis 18 Kohlenstoffatomen, besonders bevorzugt um Kohlenwasserstoffreste mit 1 bis 5 Kohlenstoffatomen, insbesondere um den Methyl- rest.
Beispiele für Reste D sind Reste der Formeln H2N ( CH2 ) 3 - ,
H2N(CH2)2NH(CH2)3-, H2N (CH2) 2NH (CH2) 2NH (CH2) 3- , H3CNH ( CH2 ) 3 - ,
C2H5NH(CH2) 3-, C3H7NH(CH2}3-, C4H9NH ( CH2 ) 3 - , C5Hn H ( CH2 ) 3 - ,
C6H13NH(CH2) 3-, C7H15NH ( CH2 ) 3 - , H2N(CH2)4-, H2 -CH2-CH (CH3 ) - CH2- , H2N(CH2)5-, cyclo-C5H9NH(CH2) 3- , cyclo-C3HuNH (CH2) 3- , Phenyl- NH(CH2)3-, (CH3)2N(CH2)3-, (C2H5) 2N (CH2) 3- , (C3H7) 2NH (CH2) 3- ,
(C4H9)2NH(CH2)3-, (C5H11)2NH(CH2)3-, (CeH13) 2NH (CH2) 3- ,
(C7H15)2NH(CH2)3-, H2N(CH2)-, H2N ( CH2 ) 2NH (CH2 ) - ,
H2N(CH2)2NH(CH2)2NH(CH2) -, H3CNH(CH2)-, C2H5NH (CH2) - , C3H7NH ( CH2 ) - , C4H9NH (CH2) - , C5HnNH(CH2) - , CSHX3NH (CH2) - , C7H15NH ( CH2 ) - , cyclo- C5H9NH(CH2) - , cyclo-C6HnNH(CH2) - , Phenyl-NH (CH2) - , (CH3) 2N (CH2) - ,
(C2H5)2N(CH2) -, (C3H7)2NH(CH2) -, (C4H9) 2NH ( CH2 ) - , ( C5Hn ) 2NH ( CH2 ) - , (C5Hi3)2NH(CH2) -, (C7H15)2NH(CH2) (CH30) 3Si (CH2) 3NH (CH2) 3- ,
(C2H50)3Si(CH2)3NH(CH2)3-, (CH30) 2 (CH3) Si (CH2) 3NH (CH2) 3- und
(C2H50) 2 (CH3) Si (CH2) 3NH (CH2) 3- sowie Umsetzungsprodukte der obengenannten primären Aminogruppen mit Verbindungen, die gegenüber primären Aminogruppen reaktive Doppelbindungen oder Epoxidgrup- pen enthalten.
Beispiele für die gegebenenfalls eingesetzten Silane der Formel (IX) sind H2N(CH2) 3-Si (OCH3) 3,
H2N(CH2) 3-Si (OC2H5)3, H2N (CH2) 3-Si (OCH3) 2CH3 ,
H2N (CH2 ) 3-Si (OC2H5) 2CH3 , H2N (CH2) 2NH (CH2) 3-Si (OCH3) 3 ,
H2N (CH2) 2NH (CH2) 3-Si (OC2H5) 3 , H2N (CH2) 2NH (CH2) 3 -Si (OCH3) 2CH3 ,
H2N (CH2) 2NH (CH2) 3-Si (OC2H5) 2CH3, H2N (CH2) 2NH (CH2) 3-Si (OH) 3,
H2N (CH2 ) 2NH ( CH2) 3-Si (OH) 2CH3 , H2N ( CH2 ) 2NH ( CH2 ) 2NH ( CH2) 3-Si (OCH3 ) 3 , H2N(CH2) 2NH(CH2) 2NH(CH2) 3-Si (OC2H5)3, cyclo-C6Hn H (CH2) 3-Si (OCH3) 3, cyclo-C6Hn H(CH2) 3-Si (OC2H5) 3, cyclo-C6HnNH (CH2) 3-Si (OCH3) 2CH3 , cyclo-C6HnNH(CH2) 3-Si (OC2H5) 2CH3 , cyclo-C6HnNH (CH2) 3-Si (OH) 3, cyclo-C6Hn H(CH2) 3-Si (OH)2CH3, Phenyl-NH (CH2) 3-Si (OCH3) 3, Phenyl- NH(CH2) 3-Si (OC2H5) 3f Phenyl-NH (CH2) 3-Si (OCH3) 2CH3,
Phenyl-NH (CH2) 3-Si (OC2H5) 2CH3, Phenyl-NH (CH2) 3-Si (OH) 3 , Phenyl- NH (CH2 ) 3-Si (OH) 2CH3 , HN( (CH2) 3-Si (OCH3 ) 3 ) 2 ,
HN( (CH2)3-Si(OC2H5)3)2 HN( (CH2) 3-Si (OCH3) 2CH3) 2,
HN ( (CH2 ) 3 -Si (OC2H5 ) 2CH3 ) 2 , cyclo-C6HuNH (CH2) -Si (OCH3) 3 , cyclo- CSH11NH(CH2) -Si (OC2H5) 3, cyclo-C6HnNH (CH2) -Si (OCH3) 2CH3, cyclo- CsHnNH(CH2) -Si (OC2H5) 2CH3, cyclo-CeHxlNH ( CH2)-Si (OH) 3 , cyclo- C6HnNH(CH2) -Si(OH)2CH3, Phenyl-NH (CH2) -Si(OCH3)3,
Phenyl-NH (CH2) -Si (OC2H5) 3, Phenyl-NH (CH2) -Si (OCH3 ) 2CH3 , Phenyl- NH (CH2) -Si (OC2H5) 2CH3 , Phenyl-NH (CH2) -Si (OH) 3 und
Phenyl-NH (CH2) -Si (OH) 2CH3 sowie deren Teilhydrolysate, wobei H2N(CH2)2NH(CH2)3-Si(OCH3 ) 3 , H2N (CH2) 2NH (CH2) 3-Si (OC2H5) 3 ,
H2N ( CH2 ) 2NH ( CH2 ) 3 -Si (OCH3 ) 2CH3 , eyelo-C6HnNH ( CH2) 3-Si (OCH3 ) 3 , cyclo-C3HnNH (CH2) 3-Si (OC2H5) 3 und cyclo-C3HnNH (CH2) 3-Si (OCH3) 2CH3 sowie jeweils deren Teilhydrolysate bevorzugt und EP2013/050677
29
H2N(CH2)2NH(CH2)3-Si (OCH3)3, H2N (CH2) 2NH (CH2) 3-Si (OCH3)2CH3, cyclo- C5HnNH (CH2) 3-Si (OCH3) 3 , cyclo-CgHuNH (CH2) 3-Si (OCH3) 2CH3 sowie jeweils deren Teilhydrolysate besonders bevorzugt sind. Die gegebenenfalls eingesetzten Organosiliciumverbindungen (D) können in den erfindungsgemäßen Massen auch die Funktion eines Härtungskatalysators oder -cokatalysators übernehmen.
Des Weiteren können die erfindungsgemäß gegebenenfalls einge- setzten Organosiliciumverbindungen (D) als Haftvermittler und/oder als Reaktivverdünner wirken.
Die erfindungsgemäß gegebenenfalls eingesetzten Organosiliciumverbindungen (D) sind handelsübliche Produkte bzw. nach in der Chemie gängigen Verfahren herstellbar.
Falls die erfindungsgemäßen Massen Komponente (D) enthalten, handelt es sich um Mengen von bevorzugt 0,1 bis 25 Gewichtsteilen, besonders bevorzugt 0,5 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) . Die erfindungsgemäßen Massen enthalten bevorzugt Komponente (D) .
Bei den in den erfindungsgemäßen Massen gegebenenfalls eingesetzten Katalysatoren (E) kann es sich um beliebige, bisher be- kannte Katalysatoren für durch Silankondensation härtende Massen handeln.
Beispiele für metallhaltige Härtungskatalysatoren (E) sind organische Titan- und innverbindungen, beispielsweise Titansäu- reester, wie Tetrabutyltitanat , Tetrapropyltitanat , Tetraiso- propyltitanat und Titantetraacetylacetonat Zinnverbindungen, wie Dibutylzinndilaurat , Dibutylzinnmaleat , Dibutylzinndi - 50677
30 acetat, Dibutylzinndioctanoat , Dibutylzinnacetylacetonat , Di- butylzinnoxide , und entsprechende Dioctylzinnverbindungen.
Beispiele für metallfreie Härtungskatalysatoren (E) sind basi- sehe Verbindungen, wie Triethylamin, Tributylamin, 1,4-Diazabi- cyclo [2 , 2 , 2] octan, 1 , 5 -Diazabicyclo [ .3.0] ηοη-5-en, 1,8-Diaza- bicyclo [5.4.0] undec-7-en, N, -Bis- (N, N-dimethyl-2-aminoethyl) - methylamin, N, N-Dimethylcyclohexylamin, N, N-Dimethylphenylamin und N-Ethylmorpholinin . Auch Guanidine wie z.B. 1,1,3,3- Tetramethylguanidin oder Phosphazene können als Katalysatoren eingesetzt werden. Entsprechende Katalysatoren für silanvernet- zende Systeme sind u.a. in EP 1 563 822 A beschrieben.
Ebenfalls als Katalysator (E) können saure Verbindungen einge- setzt werden, wie Phosphorsäure and ihre Ester, Toluolsulfon- säure, Schwefelsäure, Salpetersäure oder auch organische Carbonsäuren, z.B. Essigsäure und Benzoesäure.
Falls die erfindungsgemäßen Massen Katalysatoren (E) enthalten, handelt es sich um Mengen von vorzugsweise 0,01 bis 20 Gewichtsteilen, besonders bevorzugt 0,05 bis 5 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Bestandteil (A) .
Bei den erfindungsgemäßen Massen kann vorzugsweise dann auf me- tallhaltige Katalysatoren (E) , und insbesondere auf Zinn enthaltende Katalysatoren, verzichtet werden, wenn die Komponente (A) ganz oder zumindest teilweise, d.h. zu mindestens 10 Gew.- %, vorzugsweise zu mindestens 20 Gew.-%, aus Verbindungen der Formel (I) besteht, in denen b gleich 1 ist und R1 die Bedeu- tung von Wasserstoffatom hat. Diese Ausführungsform der Erfindung ohne metall- und insbesondere ohne zinnhaltige Katalysatoren wird besonders bevorzugt . 13 050677
Als Organosiliciuraverbindung ohne basischen Stickstoff (F) , können prinzipiell sämtliche niedermolekularen Silane eingesetzt werden, die über reaktive Alkoxysilylgruppen verfügen, über die sie während der Aushärtung des Schaumes mit in das entstehende dreidimensionale Netzwerk eingebaut werden können. Diese können verschiedene Aufgaben übernehmen, z.B. können sie als Reaktivverdünner, Vernetzer oder auch als Haftvermittler dienen . Als Komponente (F) können Epoxysilane, wie Glycidoxypropyltri- methoxysilane , Glycidoxypropyl-methyldimethoxysilan, Gly- cidoxypropyltriethoxysilan oder Glycidoxypropyl-metyhldiethoxy- silan, 2- (3 -Triethoxysilylproypl) -maleinsäureanhydrid, N- (3- Trimethoxysilylpropyl) -harnstoff , N- (3-Triethoxysilylpropyl) - harnstoff, N- (Trimethoxysilylmethyl) -harnstoff , N- (Methyldi- methoxysilymethyl) -harnstoff, N- (3 -Triethoxysilylmethyl) -harnstoff, N- (3 -Methyldiethoxysilylmethyl) harnstoff , O-Methylcarba- matomethy1-methyldimethoxysilan, O-Methylcarbamatomethyl-1ri- methoxysilan, O-Ethylcarbamatomethyl-methyldiethoxysilan, 0- Ethylcarbamatomethyl- triethoxysilan, O-Methylcarbamatopropyl- trimethoxysilan, O-Ethylcarbamatopropyl - triethoxysilan, 3- Methacryloxypropyl-trimethoxysilan, Methacryloxymethyl- trimethoxysilan, Methacryloxymethyl-methyldimethoxysilan, Me- thacryloxymethyl-triethoxysilan, Methacryloxymethyl- methyldiethoxysilan, 3-Acryloxypropyl-trimethoxysilan, Acry- loxymethyl-trimethoxysilan, Acryloxymethyl-methyldimethoxy- silane, Acryloxymethyl-triethoxysilan und Acryloxymethyl- methyldiethoxysilan, Vinyltrimethoxysilan, Vinyltriethoxysilan, Vinylmethyldimethoxysilan, Methyltrimethoxysilan, Methyl- triethoxysilan, Methylmethyldimethoxysilan, Phenyltrimethoxy- silan, Phenyltriethoxysilan, Phenylmethyldimethoxysilan, und/oder deren Teilkondensate. Bevorzugt werden dabei einerseits preisgünstige Silane, wie z.B. Vinyl-, Methyl- oder Phenyltrimethoxysilan, und deren Teilhydrolysate sowie andererseits Silane mit einer polaren Gruppe, wie z.B. die o.g. O-Alkylcarbamatoalkylsilane , insbe- sondere O-Methylcarbamatopropyl-trimethoxysilan, und deren
Teilhydrolysate, welche eine besonders gute Verträglichkeit mit der Komponente (A) aufweisen. Es können ein oder mehrere Silane (F) eingesetzt werden Falls die erfindungsgemäßen Massen Silane (F) enthalten, handelt es sich um Mengen von vorzugsweise 0,5 bis 30 Gewichtsteilen, besonders bevorzugt 1 bis 20 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) . Als Brandschutzmittel (G) können sämtliche Flammschutzmittel eingesetzt werden, wie sie auch in herkömmlichen Polyurethanschäumen zum Einsatz kommen, wie z.B. Tris- (chloropropyl) - phosphat, Dimethylpropylphosphonat , Triethylphosphat , Kresylp- hosphat, Diphenylkresylphosphat , Chlorparafine sowie beliebige weitere halogen- und/oder phosphorhaltigen Verbindungen. Auch Blähgraphit stellt ein hochwirksames Flammschutzmittel dar.
Falls die erfindungsgemäßen Massen Flammschutzmittel (G) enthalten, handelt es sich um Mengen von vorzugsweise 1 bis 100 Gewichtsteilen, besonders bevorzugt 5 bis 60 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) .
Falls die erfindungsgemäßen Massen Flammschutzmittel (F) enthalten, handelt es sich um Mengen von vorzugsweise 1 bis 100 Gewichtsteilen, besonders bevorzugt 5 bis 50 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) .
Die isocyanatfreien, schäumbaren Mischungen können des weiteren die üblichen Additive (H) , wie beispielsweise Schaumstabilisa- toren und Zellregulantien, Thixotropiermittel , Weichmacher, Farbstoffe oder auch Lösungsmittel enthalten.
Als Schaumstabilisatoren und Zellregulantien können vor allem die handelsüblichen durch Polyetherseitenketten modifizierten Siliconoligomere eingesetzt werden. Den erfindungsgemäßen Massen werden vorzugsweise Schaumstabilisatoren zugesetzt.
Beispiele für organische Lösungsmittel sind die bereits oben als Lösungsmittel genannten Verbindungen, bevorzugt Alkohole. Den erfindungsgemäßen Massen werden jedoch vorzugsweise keine organischen Lösungsmittel zugesetzt.
Falls die erfindungsgemäßen Massen Additive (H) enthalten, han- delt es sich um Mengen von vorzugsweise 0,01 bis 30 Gewichtsteilen, besonders bevorzugt 0,1 bis 10 Gewichtsteilen, jeweils bezogen auf 100 Gewichtsteile Komponente (A) .
Bei den erfindungsgemäßen Massen handelt es sich bevorzugt um solche enthaltend
(A) 100 Gewichtsteile Verbindungen der Formel (I) ,
(B) 20 bis 300 Gewichtsteile Siliconharze enthaltend Einheiten der Formel (II) ,
(C) 10 bis 100 Gewichtsteile Treibmittel,
gegebenenfalls
(D) basischen Stickstoff aufweisende Organosiliciumverbindun- gen,
gegebenenfalls
(E) Katalysatoren,
gegebenenfalls
(F) Organosiliciumverbindungen ohne basischen Stickstoff, gegebenenfalls
(G) Brandschutzmittel, gegebenenfalls
(H) Additive.
Die erfindungsgemäßen Massen enthalten außer den Komponenten (A) bis (H) vorzugsweise weniger als 10 Gewichtsteile an weiteren Bestandteilen. Besonders bevorzugt enthalten die erfindungsgemäßen Massen keine weiteren Bestandteile.
Bei den erfindungsgemäß eingesetzten Komponenten kann es sich jeweils um eine Art einer solchen Komponente wie auch um ein Gemisch aus mindestens zwei Arten einer jeweiligen Komponente handeln .
Ein weiterer Gegenstand der Erfindung sind Druckdosen enthal- tende die erfindungsgemäßen schäum- und vernetzbaren Massen.
Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen schäum- und vernetzbaren Massen als einkompo- nentige spraybare Montageschäume insbesondere zum Ausfüllen von Fugen oder Hohlräumen.
Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen schäum- und vernetzbaren Massen als eine Komponente in zweikomponentigen spraybaren Montageschäumen insbe- sondere zum Ausfüllen von Fugen oder Hohlräumen.
Ein weiterer Gegenstand der Erfindung ist ein aus den erfindungsgemäßen schäum- und vernetzbaren Massen hergestellter ausgehärteter Schaumkörper, z.B. eine ausgeschäumte Fuge oder ein ausgeschäumter Hohlraum.
In den nachstehend beschriebenen Beispielen beziehen sich alle Viskositätsangaben auf eine Temperatur von 25 °C. Sofern nicht anders angegeben, werden die nachstehenden Beispiele bei einem Druck der umgebenden Atmosphäre, also etwa bei 1000 hPa, und bei Raumtemperatur, also bei etwa 23°C, bzw. bei einer Temperatur, die sich beim Zusammengeben der Reaktanden bei Raumtempe- ratur ohne zusätzliche Heizung oder Kühlung einstellt, sowie bei einer relativen Luftfeuchtigkeit von etwa 50 % durchgeführt. Des Weiteren beziehen sich alle Angaben von Teilen und Prozentsätzen, soweit nichts anderes angegeben ist, auf das Gewicht .
Beispiel 1 :
In einem 500 ml Reaktionsgefäß mit Rühr-, Kühl und Heizmöglichkeiten werden 73,2 g (42,17 mmol) einer 80 : 20-Mischung aus To- luen-2 , 4 -diisocyanat und Toluen-2 , 6 -diisocyanat (TDI) vorgelegt mit 0,06 g Butylphosphat versetzt und auf ca. 50 °C erwärmt. Dann wird eine Mischung aus 83,2 g (195,8 mmol) eines Polypro- pylenglycols mit einer mittleren Molmasse Mn von 425 g/mol und 13,8 g (56,9 mmol) 1 -Hexadecanol zugegeben. Die Temperatur der Reaktionsmischung sollte dabei nicht auf über 80 °C ansteigen. Das Polypropylenglycol war zuvor durch 1-stündiges Erwärmen auf 100 C im Ölpumpenvakuum entwässert worden. Nach Beendigung der Zugabe wird für 15 min bei 80 °C gerührt.
Anschließend kühlt man auf etwa 50 °C ab und gibt 5 g Vinyltri- methoxysilan (GENIOSIL XL 10 der Fa. Wacker-Chemie AG, D- München) als Reaktivverdünner hinzu. Danach werden 0,28 g
Jeffcat DMDLS (Fa. Huntsman, Texas USA-Woodlands) tropft man 160,0 g, 378,6 mmol) Z\7-Phenylaminomethyl-methyldimethoxysilan (GENIOSIL XL 972 der Fa. Wacker-Chemie AG, D-München) hinzu und rührt anschließend für 60 min bei 80 °C. In der resultierenden Prepolymermischung lassen sich IR- spektroskopisch keine Iso- cyanatgruppen mehr nachweisen. Man erhält eine klare, durchsichtige Prepolymermischung, die bei 50 °C eine Viskosität von 17,8 Pas aufweist. Sie lässt sich problemlos gießen und weiterverarbeiten .
Beispiel 2 :
40 g der Prepolymermischung aus Beispiel 1 und 10 g eines lösungsmittelfreien, flüssigen Phenylsiliconharzes , das ausschließlich aus phenylfunktionellen T-Einheiten zusammengesetzt ist, einen Gehalt an Methoxygruppen von 10-30 Gew.-% und eine mittlere Molmasse von 1500-2500 Dalton aufweist (käuflich er- hältlich unter der Bezeichnung SILRES*" IC 678 bei der Wacker Chemie AG, D-München) , werden in ein Druckglas Ventil gefüllt und mit 1,2 g Schaumstabilisator Tegostab 8443 (Fa. Evonik, D- Essen) sowie 1,5 g JV- ( 2 -Aminoethyl) - 3 -aminopropyl-trimethoxy- silan (GENIOSIL GF 91, Fa. Wacker-Chemie AG, D-München) ver- setzt.
Anschließend wird diese Mischung mit einer Treibmittelmischung aus 18 ml eines Propan/Butangemisches (2:1) sowie 1,5 ml Dime- thylether als Treibmittel beaufschlagt. Durch kräftiges Schüt- teln wird anschließend eine dünnflüssige und über mehrere Stunden hinweg stabile Emulsion erhalten.
Bei mehrtägigem Stehen kommt es zu einer Entmischung, wobei sich 8-10 ml physikalisch nicht mehr gelöstes Treibmittel als obere Phase absetzen. Die untere Phase, die bei längerem Stehen vollständig klar wird, enthält neben Prepolymer, Siliconharz und Additiven auch das übrige Treibmittel.
Beide Phasen sind jedoch so dünnflüssig, dass sie sich durch erneutes kurzes Schütteln völlig problemlos wieder emulgieren lassen. Die Emulsion ist wiederum für mehrere Stunden stabil, bevor die Treibmittelphase erneut beginnt, sich am oberen Rand langsam abzusetzen. Beim Ausbringen der durc Schütteln gut emulgierten Mischung wird ein standfester, weißer Schaum erhalten, der nach ca. 15 min klebfrei ist. Die Zeit bis zur vollständigen Härtung be- trägt ungefähr 6 h. Der ausgehärtete Schaum zeichnet sich durch eine sehr hohe Härte aus und besitzt eine sehr gute Porenstruktur .

Claims

Patentansprüche
Schäum- und vernetzbare Massen enthaltend
(A) 100 Gewichtsteile Verbindungen (A) der Formel
Y- [ (CR1 2)b-SiRa (OR2)3-a]x (I) , wobei
einen x-wertigen, über Stickstoff, Sauerstoff, Schwefel oder Kohlenstoff gebundenen Polymerrest bedeutet,
gleich oder verschieden sein kann und einen einwertigen, gegebenenfalls substituierten, Sic-gebundenen Kohlenwasserstoffrest darstellt,
gleich oder verschieden sein kann und Wasserstoffatom oder einen einwertigen, gegebenenfalls substituierten Kohlenwas- serstoffrest darstellt, der über Stickstoff, Phosphor, Sauerstoff, Schwefel oder Carbonylgruppe an das Kohlenstoffatom angebunden sein kann,
gleich oder verschieden sein kann und Wasserstoffatom oder einen einwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest darstellt,
eine ganze Zahl von 1 bis 10 ist,
gleich oder verschieden sein kann und 0, 1 oder 2 ist und gleich oder verschieden sein kann und eine ganze Zahl von 1 bis 10 ist,
)mehr als 1 Gewichtsteil Siliconharze enthaltend Einheiten der Formel
R3 C (R40) dR5 eSiO(4-c-d-e)/2 (II) , wobei R3 gleich oder verschieden sein kann und Wasserstoffatom, einen einwertigen, SiC-gebundenen, gegebenenfalls substituierten aliphatischen Kohlenwasserstoffrest oder einen zweiwertigen, gegebenenfalls substituierten, aliphatischen Kohlenwasserstoffrest, der zwei Einheiten der Formel (II) verbrückt, bedeutet,
R4 gleich oder verschieden sein kann und Wasserstoffatom oder einen einwertigen, gegebenenfalls substituierten Kohlenwasserstoffrest bedeutet,
R5 gleich oder verschieden sein kann und einen einwertigen,
SiC-gebundenen, gegebenenfalls substituierten aromatischen Kohlenwasserstoffrest bedeutet,
c 0, 1, 2 oder 3 ist,
d 0, 1, 2 oder 3, ist und
e 0, 1 oder 2, bevorzugt 0 oder 1, ist, mit der Maßgabe, dass die Summe aus c+d+e kleiner oder gleich 3 ist und in mindestens 40 % der Einheiten der Formel (II) die Summe c+e gleich 0 oder 1 ist, und
C) mehr als 1 Gewichtsteil eines bei 20°C und 1000 hPa gasförmigen Treibmittels.
2. Schäum- und vernetzbare Massen gemäß Anspruch 1, bei denen der Polymerrest Y organische Polymerreste enthält, deren Polymerkette ausgewählt wird aus Polyester, Polyurethane, Po- lyoxyalkylene , Kohlenwasserstoffpolymere , Polyamide, Polyac- rylate, Polymetacrylate , Polycarbonate und deren Gemischen.
3. Schäum- und vernetzbare Massen gemäß Anspruch 1 oder 2, bei denen die Endgruppen der Verbindungen (A) ausgewählt werden aus den allgemeinen Formeln
-C(=0) -NH- (CR b-SiRaiOR2) (HD und
-NH-C(=0) -NR' - (CR1 2)b-SiRa(OR2)3-a (IV) , wobei die Reste und Indizes eine der in Anspruch 1 dafür angegebenen Bedeutungen haben.
4. Schäum- und vernetzbare Massen gemäß Anspruch 1 bis 3, bei denen die Siliconharze (B) eine mittlere Molmasse (Zahlenmittel) Mn von 400 g/mol bis 400 000 g/mol aufweisen.
5. Schäum- und vernetzbare Massen gemäß Anspruch 1 bis 4, bei denen das Treibmittel ausgewählt wird aus Kohlenwasserstoffen mit jeweils 1-4 Kohlenstoffatomen, Fluorkohlenwasserstoffen mit 1-4 Kohlenstoffatomen und Dimethylether sowie deren Mischungen.
6. Schäum- und vernetzbare Massen gemäß Anspruch 1 bis 5, welche enthalten
(A) 100 Gewichtsteile Verbindungen der Formel (I) ,
(B) 20 bis 300 Gewichtsteile Siliconharze enthaltend Einheiten der Formel (II) , und
(C) 10 bis 100 Gewichtsteile Treibmittel.
7 . Druckdose, enthaltend die schäum- und vernetzbaren Massen gemäß Anspruch 1 bis 6.
8. Verwendung der schäum- und vernetzbaren Massen gemäß Anspruch 1 bis 6 als einkomponentige spraybare Montageschäume.
9. Verwendung der schäum- und vernetzbaren Massen gemäß Anspruch 1 bis 6 als eine Komponente in zwexkomponentigen spraybaren Montageschäumen .
10.Ausgehärteter Schaumkörper, hergestellt aus den schäum- und vernetzbaren Massen gemäß Anspruch 1 bis 6.
PCT/EP2013/050677 2012-01-20 2013-01-15 Silanvernetzende schäumbare mischungen WO2013107744A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP13701004.7A EP2804896A1 (de) 2012-01-20 2013-01-15 Silanvernetzende schäumbare mischungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012200790A DE102012200790A1 (de) 2012-01-20 2012-01-20 Silanvernetzende schäumbare Mischungen
DE102012200790.3 2012-01-20

Publications (1)

Publication Number Publication Date
WO2013107744A1 true WO2013107744A1 (de) 2013-07-25

Family

ID=47603641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/050677 WO2013107744A1 (de) 2012-01-20 2013-01-15 Silanvernetzende schäumbare mischungen

Country Status (3)

Country Link
EP (1) EP2804896A1 (de)
DE (1) DE102012200790A1 (de)
WO (1) WO2013107744A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095809A1 (de) 2015-05-21 2016-11-23 HILTI Aktiengesellschaft Schäumbare, dämmschichtbildende mehrkomponenten-zusammensetzung und deren verwendung
EP3327069A1 (de) 2016-11-29 2018-05-30 HILTI Aktiengesellschaft Schäumbare, dämmschichtbildende mehrkomponenten-zusammensetzung mit verbesserter lagerstabilität und deren verwendung
EP3696206A1 (de) 2019-02-12 2020-08-19 Hilti Aktiengesellschaft Schäumbare, dämmschichtbildende mehrkomponenten-zusammensetzung und deren verwendung

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015202278A1 (de) 2015-02-09 2016-08-11 Wacker Chemie Ag Wässrige Dispersionen von Organosiliciumverbindungen
DE102020111278A1 (de) 2020-04-24 2021-10-28 Klebchemie M.G. Becker Gmbh & Co. Kg Reaktive Heißschmelzklebstoffzusammensetzungen basierend auf alpha-Silan-terminierten organischen Polymeren
DE102020128608A1 (de) 2020-10-30 2022-05-05 Klebchemie M.G. Becker GmbH & Co KG Thermobeschleunigte Klebstoffzusammensetzungen auf Basis silanterminierter Polymere

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083271A1 (de) * 2003-03-17 2004-09-30 Consortium für elektrochemische Industrie GmbH Isocyanatfreie schäumbare mischungen
WO2004092259A1 (de) * 2003-04-17 2004-10-28 Consortium für elektrochemische Industrie GmbH Isocyanatfreie schäumbare mischungen mit verbessertem brandverhalten
WO2011113708A2 (de) * 2010-03-15 2011-09-22 Wacker Chemie Ag Siliconhaltiger polyurethanschaum

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE279458T1 (de) 2001-02-20 2004-10-15 Consortium Elektrochem Ind Isocyanatfreie schäumbare mischungen mit hoher härtungsgeschwindigkeit
US20050250871A1 (en) 2004-02-13 2005-11-10 Alexander Bublewitz Dental material based on alkoxysilyl-functional polyethers containing a salt of a strong acid as catalyst
EP2303941B1 (de) 2008-07-22 2013-08-21 Henkel AG & Co. KGaA Schäumbare mischungen mit niedriger viskosität

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083271A1 (de) * 2003-03-17 2004-09-30 Consortium für elektrochemische Industrie GmbH Isocyanatfreie schäumbare mischungen
WO2004092259A1 (de) * 2003-04-17 2004-10-28 Consortium für elektrochemische Industrie GmbH Isocyanatfreie schäumbare mischungen mit verbessertem brandverhalten
WO2011113708A2 (de) * 2010-03-15 2011-09-22 Wacker Chemie Ag Siliconhaltiger polyurethanschaum

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3095809A1 (de) 2015-05-21 2016-11-23 HILTI Aktiengesellschaft Schäumbare, dämmschichtbildende mehrkomponenten-zusammensetzung und deren verwendung
WO2016185007A1 (de) 2015-05-21 2016-11-24 Hilti Aktiengesellschaft Schäumbare, dämmschichtbildende mehrkomponenten-zusammensetzung und deren verwendung
EP3327069A1 (de) 2016-11-29 2018-05-30 HILTI Aktiengesellschaft Schäumbare, dämmschichtbildende mehrkomponenten-zusammensetzung mit verbesserter lagerstabilität und deren verwendung
WO2018099721A1 (de) 2016-11-29 2018-06-07 Hilti Aktiengesellschaft Schäumbare, dämmschichtbildende mehrkomponenten-zusammensetzung mit verbesserter lagerstabilität und deren verwendung
US11319423B2 (en) 2016-11-29 2022-05-03 Hilti Aktiengesellschaft Foamable, insulating-layer-forming multi-component composition having improved storage stability and use of the same
EP3696206A1 (de) 2019-02-12 2020-08-19 Hilti Aktiengesellschaft Schäumbare, dämmschichtbildende mehrkomponenten-zusammensetzung und deren verwendung
WO2020164892A1 (de) 2019-02-12 2020-08-20 Hilti Aktiengesellschaft Schäumbare, dämmschichtbildende mehrkomponenten-zusammensetzung und deren verwendung

Also Published As

Publication number Publication date
DE102012200790A1 (de) 2013-07-25
EP2804896A1 (de) 2014-11-26

Similar Documents

Publication Publication Date Title
EP1363960B1 (de) Isocyanatfreie schäumbare mischungen mit hoher härtungsgeschwindigkeit
EP2744842B1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polymeren
EP3263616B1 (de) Alkoxysilan-funktionalisierte allophanat-haltige beschichtungsmittel
EP2183300B1 (de) Siliconhaltige schaumstoffe
EP2167562B1 (de) Verfahren zur herstellung von polyurethan-schäumen auf basis von speziellen alkoxysilanfunktionellen polymeren
EP2217640B1 (de) Siliconhaltiger polyurethanschaum
EP1485419B1 (de) Siliconhaltige schaumstoffe
EP2804896A1 (de) Silanvernetzende schäumbare mischungen
EP2785755B1 (de) Vernetzbare massen auf basis von organyloxysilanterminierten polyurethanen
EP3263619A1 (de) Alkoxysilan- und allophanat-funktionalisierte beschichtungsmittel
EP2268688A1 (de) Siliconhaltiger polyisocyanuratschaum
EP2158247B1 (de) Siliconhaltiger polyurethanschaum
EP1406950A1 (de) Über alkoxygruppen vernetzende rtv-1-siliconkautschuk-mischungen
EP1590389B1 (de) Isocyanatfreie schäumbare mischungen
WO2004092259A1 (de) Isocyanatfreie schäumbare mischungen mit verbessertem brandverhalten
WO2010010128A2 (de) Schäumbare mischungen mit niedriger viskosität
DE10108038C1 (de) Isocyanatfreie schäumbare Mischungen
DE10108039C1 (de) Isocyanatfreie schäumbare Mischungen
DE10140132A1 (de) Isocyanatfreie schäumbare Mischungen mit hoher Härtungsgeschwindigkeit
DE102009027332A1 (de) Schäumbare Mischungen mit niedriger Viskosität

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13701004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013701004

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE