WO2013107651A1 - Knickstrebe für ein fahrwerk - Google Patents

Knickstrebe für ein fahrwerk Download PDF

Info

Publication number
WO2013107651A1
WO2013107651A1 PCT/EP2013/000155 EP2013000155W WO2013107651A1 WO 2013107651 A1 WO2013107651 A1 WO 2013107651A1 EP 2013000155 W EP2013000155 W EP 2013000155W WO 2013107651 A1 WO2013107651 A1 WO 2013107651A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
node
node elements
strut according
bending
Prior art date
Application number
PCT/EP2013/000155
Other languages
English (en)
French (fr)
Inventor
Martin Eckart
Anton Straub
Jörg Meyer
Original Assignee
Liebherr-Aerospace Lindenberg Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liebherr-Aerospace Lindenberg Gmbh filed Critical Liebherr-Aerospace Lindenberg Gmbh
Publication of WO2013107651A1 publication Critical patent/WO2013107651A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages

Definitions

  • the invention relates to a bending strut for a chassis.
  • a crease strut is a suspension component which is naturally exposed to high mechanical loads, in some cases high thermal loads.
  • chassis components are usually designed as metal components, for example in the form of steel, titanium or aluminum forgings.
  • fiber composite materials have recently found greater use in aerospace engineering. Compared to metals, fiber composites have higher specific strengths and stiffnesses. In terms of transportation costs and energy savings, they have a significant weight saving potential. In addition to high mechanical strengths and stiffnesses, fiber composites may also have high thermal stability, depending on the choice of fiber and matrix material used.
  • Object of the present invention is to provide a buckling strut, as it is used as a typical highly loaded suspension component in aircraft, in the simplest possible and stable design to the hand, while the manufacturing process should be designed as simple as possible.
  • the buckling strut has node elements of a metallic material, while the connecting elements connecting the node elements consist of fiber composite material.
  • the respective particular advantages of the materials are combined with each other and result in a simple to manufacture and lightweight component. While the nodal elements made of metal can easily absorb the high concentration of force, the only pressurized to train and pressure fasteners are made of fiber composites, which have a higher specific strength and rigidity compared to metals anyway.
  • the metallic materials are selected from the group of the following materials: titanium, aluminum, steel. These materials are usually used in aerospace or aerospace metallic materials.
  • the fiber composites are preferably made of carbon fibers (CFRP). However, other fibers, such as glass fibers (GRP), silicon carbide fibers, mullite fibers, Bohrcarbidmaschinen, aramid fibers or even natural fibers may optionally be used in a suitable mixture.
  • the articulated strut of a chassis is according to a preferred embodiment of the invention of a nearly isosceles triangle, which has a metallic node element in Y-shape and two metallic node elements as corner connectors.
  • the connecting elements connecting the node elements are preferably tubular. They have substantially a circular and / or a substantially rectangular cross-section with rounded corners.
  • the tubes may also have a different cross-sectional shape and wall thickness along their length.
  • the node elements on Aufsteckflansche on which the node elements connecting connecting elements are force, form or material or held in combination thereof.
  • the node elements and the connecting elements connecting the node elements are preferably held by means of a press bush, which is applied with a press fit.
  • a particularly secure connection results when the node elements and the connecting elements connecting the node elements are additionally connected in the region of Aufsteckflansche via securing bolts.
  • FIG. 1 is a schematic plan view (partly in section) of a bending strut according to the present invention
  • FIG. 2 shows a sectional view through part of the articulated strut according to FIG. 1, FIG.
  • FIG. 3 shows a sectional view corresponding to FIG. 2 in an alternative embodiment variant
  • FIG. 4 shows a sectional view corresponding to FIG. 2 in a further alternative embodiment variant
  • FIG. 5 shows a schematic installation situation of the articulated strut according to the invention in an aircraft.
  • a bending strut 10 is shown, which is designed according to the present invention as a hybrid component.
  • the bending strut 10 consists of first node elements 12 and a second node element 14, which are connected to each other via connecting elements 16.
  • the buckling strut is formed in the shape of an isosceles triangle.
  • the equal legs of this triangle which are formed by connecting elements 16, converge in the second node element 14, which has a Y-shape.
  • the two formed in the form of corner connectors first node elements 12 are arranged.
  • the node elements 12 and 14 are made in the embodiment shown here as titanium components. They each have holes 20 and 20 'on. Furthermore, they have, as shown in Figures 2 and 3, respectively Aufsteckflansche 18, which are integrally formed.
  • the connecting elements 16, the only train and Compressive forces must be made of pipes, which are made of fiber composite material.
  • the fiber composites used here can be produced as heavy-duty load-bearing structural components by means of carbon fibers, but also by means of glass fibers, silicon carbide fibers, mullite fibers, Bohrcarbidmaschinen, Aramidfa- fibers or natural fibers and optionally mixtures of these fibers. These fibers are preferably bonded by thermosetting resin systems such as epoxy resins or phenolic resins or by thermoplastic matrix systems.
  • FIGS. 1a and 1b respectively, different cross-sectional shapes along the section line A-A in FIG. 1 are shown. Here are marked with 30 individual fibers, so-called U-D fibers, d. H. unidirectional fibers. These fibers extend in the direction of the force flow and are embedded in the quasi-isotropic material 32.
  • reference numeral 2 denotes the bending axis of the component.
  • the cross-sectional profiles shown here are only examples.
  • connection elements 16 made of fiber composite material are plugged onto the attachment flanges 18.
  • the respective components are dimensioned to each other so that the tubular connecting elements 6 are seated in a press fit on the respective Aufsteckflansch 18.
  • the components can also be glued together in this embodiment.
  • the connecting elements 16 are also plugged onto the Aufsteckflansch 18 in a press fit.
  • bolts 24 are inserted in the manner shown in Figure 3, which connect the Aufsteckflansch 18 each with the connecting element 16.
  • the elements 16, 18 and 22 are particularly advantageously connected by means of bolts 24 '.
  • external bushes 22 are drawn over the connection area between the node element 12 and the connecting pipe 16, which additionally make a press connection.
  • the outer ends of the tubular connecting element 16 between the Aufsteckflansch 18 and the press sleeve 22 are pressed, whereby the connection area is decisively strengthened.
  • the connecting element 16 can have a reinforced wall thickness, in particular in the connection region.
  • the tubular connecting element 16 may have a different cross-sectional shape over its length.
  • the connecting element 16 in the region of the Aufsteckflansches 18, for example, have a circular cross section, while it has a substantially polygonal cross-section with rounded corners in the central region between two node elements.
  • FIG. 5 shows a typical built-in version of an upper bending strut 10 of a nose landing gear, which can be installed in the corresponding aircraft structure 50 via two bolts 40, of which only one bolt 40 is shown in FIG.
  • plug-in pins are shown.
  • plug-in bolts can be provided from the inside even with appropriate design of the buckling strut 10.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Knickstrebe (1) für ein Fahrwerk. Erfindungsgemäß bestehen die Knotenelemente (12, 14) aus einem metallischen Werkstoff und die Knotenelemente verbindenden Verbindungselemente (16) aus einem Faserverbundwerkstoff, vorzugsweise aus CFK.

Description

Knickstrebe für ein Fahrwerk
Die Erfindung betrifft eine Knickstrebe für ein Fahrwerk. Bei einer Knickstrebe handelt es sich um eine Fahrwerkskomponente, welche naturgemäß hohen mechanischen Belastungen, auch teilweise hohen thermischen Belastungen ausgesetzt ist.
Derartige Fahrwerkskomponenten werden üblicherweise als Metallbauteile ausgeführt, beispielsweise in Form von Stahl-, Titan- oder Aluminium-Schmiedeteilen. Entsprechend der Bestrebungen in der Luft- und Raumfahrttechnik Gewicht zu sparen, haben in letzter Zeit Faserverbundwerkstoffe stärkeren Eingang in die Luft- und Raumfahrttechnik gefunden. Gegenüber den Metallen weisen Faserverbundwerkstoffe höhere spezifische Festigkeiten und Steifigkeiten auf. Hinsichtlich von Transportkosten und Energieersparnis weisen sie ein bedeutendes Gewichteinsparungspotential ein. Neben hohen mechanischen Festigkeiten und Steifigkeiten können Faserverbundwerkstoffe je nach Auswahl des verwendeten Faser- und Matrixwerkstoffs auch eine hohe Thermostabilität besitzen.
Allerdings ist aufgrund der Herstellungsweise von Faserverbund-Strukturbauteilen die Ausführung komplexer und insbesondere bei verzweigten, teilweise mit Hohl- räume versehenen Strukturen mit engen Bauraumbegrenzungen, wie sie bei Fahr- werkskomponenten verwendet werden, nur beschränkt möglich.
Erste Ansätze zum Einsatz von Faserverbundwerkstoffen im Bereich der Fahr- werkskomponenten von Luft- und Raumfahrzeugen sind in der DE 10 2008 046 991 A1 beschrieben.
Aufgabe der vorliegenden Erfindung ist es, eine Knickstrebe, wie sie als typische hochbelastete Fahrwerkskomponente bei Luftfahrzeugen verwendet wird, in möglichst leichter und stabiler Ausführung an die Hand zu geben, wobei gleichzeitig das Fertigungsverfahren möglichst einfach gestaltet sein soll.
Erfindungsgemäß wird diese Aufgabe durch die Kombination der Merkmale des Anspruchs 1 erfüllt. Demnach weist die Knickstrebe Knotenelemente aus einem metallischen Werkstoff auf, während die die Knotenelemente verbindenden Verbindungselemente aus Faserverbundwerkstoff bestehen.
Bei diesem Hybridbauteil sind die jeweiligen besonderen Vorteile der Werkstoffe miteinander vereint und führen zu einem in einfacher Weise herstellbaren und leichten Bauteil. Während die Knotenelemente aus Metall problemlos die hohe Kraftkonzentration aufnehmen können, sind die nur noch auf Zug und Druck beaufschlagten Verbindungselemente aus Faserverbundwerkstoffen hergestellt, die gegenüber Metallen ohnehin eine höhere spezifische Festigkeit und Steifigkeit aufweisen.
Bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den sich an den Hauptanspruch anschließenden Unteransprüchen.
Vorzugsweise sind die metallischen Werkstoffe aus der Gruppe der folgenden Werkstoffe ausgewählt: Titan, Aluminium, Stahl. Bei diesen Werkstoffen handelt es sich um in der Luftfahrt bzw. Raumfahrt üblicherweise eingesetzte metallische Werkstoffe. Die Faserverbundwerkstoffe bestehen vorzugsweise aus Kohlenstofffasern (CFK). Aber auch andere Fasern, wie Glasfasern (GFK), Siliciumcarbidfasern, Mullitfasern, Bohrcarbidfasern, Aramidfasern oder sogar Naturfasern können gegebenenfalls in geeigneter Mischung eingesetzt werden.
Die Knickstrebe eines Fahrwerks besteht gemäß einer bevorzugten Ausführungsform der Erfindung aus einem nahezu gleichschenkligen Dreieck, das ein metallisches Knotenelement in Y-Form und zwei metallische Knotenelemente als Eckverbinder aufweist. Die die Knotenelemente verbindenden Verbindungselemente sind vorzugsweise rohrförmig ausgebildet. Sie weisen im Wesentlichen einen kreisrunden und/oder einen im Wesentlichen rechteckigen Querschnitt mit abgerundeten Ecken auf. Die Rohre können auch über ihre Länge eine unterschiedliche Querschnittsform und Wandstärke aufweisen.
Vorzugsweise weisen die Knotenelemente Aufsteckflansche auf, auf denen die Knotenelemente verbindenden Verbindungselemente kraft-, form- oder stoffschlüssig bzw. in Kombination hiervon gehalten sind.
Zur Verstärkung der Verbindung im Anbindungsbereich der Knotenelemente werden vorzugsweise die Knotenelemente und die die Knotenelemente verbindenden Verbindungselemente mittels einer Pressbuchse, die mit Presssitz aufgebracht wird, gehalten.
Eine besonders sichere Anbindung ergibt sich, wenn die Knotenelemente und die die Knotenelemente verbindenden Verbindungselemente im Bereich der Aufsteckflansche zusätzlich über Sicherungsbolzen verbunden sind.
Zur weiteren Verbesserung der Festigkeit können die die Knotenelemente verbindenden Verbindungselemente im Bereich der Aufsteckflansche noch größer dimensioniert werden. Weitere Merkmale, Einzelheiten und Vorteile der Erfindung werden anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
Figur 1 : eine schematisierte Draufsicht (teilweise geschnitten) auf eine Knickstrebe gemäß der vorliegenden Erfindung,
Figur 2: eine Schnittdarstellung durch einen Teil der Knickstrebe gemäß Figur 1 ,
Figur 3: eine Schnittdarstellung entsprechend Figur 2 in einer alternativen Ausführungsvariante,
Figur 4: eine Schnittdarstellung entsprechend Figur 2 in einer weiteren alternativen Ausführungsvariante und
Figur 5: eine schematische Einbausituation der erfindungsgemäßen Knickstrebe in einem Flugzeug.
In der Figur 1 ist eine Knickstrebe 10 dargestellt, die entsprechend der vorliegenden Erfindung als Hybridbauteil ausgeführt ist. Das bedeutet, daß die Knickstrebe 10 aus ersten Knotenelementen 12 und einem zweiten Knotenelement 14 besteht, die jeweils über Verbindungselemente 16 miteinander verbunden sind.
Wie in der Figur 1 dargestellt ist die Knickstrebe in Form eines gleichschenkligen Dreiecks ausgebildet. Die gleich großen Schenkel dieses Dreiecks, die durch Verbindungselemente 16 gebildet werden, laufen im zweiten Knotenelement 14 zusammen, das eine Y-Form aufweist. Gegenüberliegend sind die beiden in Form von Eckverbindern ausgebildeten ersten Knotenelemente 12 angeordnet.
Die Knotenelemente 12 und 14 sind im hier dargestellten Ausführungsbeispiel als Titanbauteile gefertigt. Sie weisen jeweils Bohrungen 20 bzw. 20' auf. Des Weiteren weisen sie, wie in den Figuren 2 und 3 dargestellt, jeweils Aufsteckflansche 18 auf, die einstückig angeformt sind. Die Verbindungselemente 16, die lediglich Zug- und Druckkräfte übertragen müssen, bestehen aus Rohren, die aus Faserverbundwerkstoff hergestellt sind. Die hier verwendeten Faserverbundwerkstoffe können als hochbelastbare lasttragende Strukturbauteile mittels Kohlenstofffasern, aber auch mittels Glasfasern, Siliciumcarbidfasern, Mullitfasern, Bohrcarbidfasern, Aramidfa- sern oder auch Naturfasern und gegebenenfalls Mischungen dieser Fasern hergestellt werden. Diese Fasern werden vorzugsweise über duroplastische Harzsysteme, wie beispielsweise Epoxydharze oder Phenolharze oder aber durch thermoplastische Matrixsysteme gebunden.
In den Figuren 1a bzw. 1b sind jeweils unterschiedliche Querschnittsformen entlang der Schnittlinie A-A in Figur 1 dargestellt. Hier sind mit 30 einzelne Fasern, sogenannte U-D-Fasern gekennzeichnet, d. h. unidirektionale Fasern. Dieser Fasern verlaufen in Richtung des Kraftflusses und sind in das quasi-isotrope Material 32 eingebettet. In der Darstellung gemäß Figur 1 b bezeichnet das Bezugszeichen 2 die Biegeachse des Bauteils. Die hier dargestellten Querschnittsverläufe sind nur beispielhaft.
Aus den Figuren 2 und 3 ist die Verbindung der aus den unterschiedlichen Werkstoffen bestehenden Bauteile dargestellt. In der Ausführungsform gemäß Figur 2 ist gezeigt, daß die Verbindungselemente 16 aus Faserverbundwerkstoff auf die Aufsteckflansche 18 aufgesteckt sind. Dabei sind die jeweiligen Bauteile so zueinander dimensioniert, daß die rohrförmigen Verbindungselemente 6 im Presssitz auf dem jeweiligen Aufsteckflansch 18 aufsitzen. Zusätzlich können die Bauelemente in dieser Ausführungsform auch noch miteinander verklebt werden.
In der alternativen Ausführungsform gemäß Figur 3 sind die Verbindungselemente 16 ebenfalls auf den Aufsteckflansch 18 im Presssitz aufgesteckt. Zur besseren Übertragung von Zug- und Druckkräften sind zusätzlich Bolzen 24 in der in Figur 3 dargestellten Art und Weise gesteckt, wobei diese den Aufsteckflansch 18 jeweils mit dem Verbindungselement 16 verbinden. Besonders vorteilhaft werden gemäß Figur 4 die Elemente 16, 18 und 22 mittels Bolzen 24' verbunden. Zusätzlich sind außen Pressbuchsen 22 über dem Verbindungsbereich zwischen dem Knotenelement 12 und dem Verbindungsrohr 16 gezogen, die zusätzlich eine Pressverbindung herstellen. Somit sind die äußeren Enden des rohrförmigen Verbindungselementes 16 zwischen dem Aufsteckflansch 18 und der Pressbuchse 22 festgepresst, wodurch der Anbindungsbereich entscheidend verstärkt wird.
Wie aus der vergrößerten Detaildarstellung in Figur 3 gezeigt, kann das Verbindungselement 16 insbesondere im Anbindungsbereich eine verstärkte Wanddicke aufweisen.
Das rohrförmige Verbindungselement 16 kann über seine Länge eine unterschiedliche Querschnittsform aufweisen. So kann das Verbindungselement 16 im Bereich des Aufsteckflansches 18 beispielsweise einen kreisrunden Querschnitt aufweisen, während es im mittleren Bereich zwischen zwei Knotenelementen einen im Wesentlichen eckigen Querschnitt mit abgerundeten Ecken aufweist.
Figur 5 zeigt eine typische Einbauversion einer oberen Knickstrebe 10 eines Bugfahrwerks, welches über zwei Bolzen 40, von denen in der Figur 5 nur ein Bolzen 40 dargestellt ist, in die entsprechende Flugzeugstruktur 50 einbaubar ist. Im hier dargestellten Ausführungsbeispiel sind von außen steckbare Bolzen dargestellt. Grundsätzlich können auch bei entsprechender Ausbildung der Knickstrebe 10 von innen steckbare Bolzen vorgesehen sein.

Claims

Patentansprüche
1. Knickstrebe für ein Fahrwerk, dadurch gekennzeichnet, daß die Knotenelemente aus einem metallischen Werkstoff bestehen und daß die die Knotenelemente verbindenden Verbindungselemente aus einem Faserverbundwerkstoff, vorzugsweise aus CFK, bestehen.
2. Knickstrebe nach Anspruch 1 , dadurch gekennzeichnet, daß der metallische Werkstoff aus der Gruppe der folgenden Werkstoffe ausgewählt wird: Titan, Aluminium, Stahl.
3. Knickstrebe nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß sie nahezu die Form eines gleichschenkligen Dreiecks aufweist und ein metallisches Knotenelement in Y-Form und zwei metallische Knotenelement als Eckverbinder aufweist,
4. Knickstrebe nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß die die Knotenelemente verbindenden Verbindungselemente rohrförmig ausgebildet sind.
5. Knickstrebe Anspruch 4, dadurch gekennzeichnet, daß die als gerade Rohre ausgebildeten Verbindungselemente einen im wesentlichen kreisrunden und/oder einen im wesentlichen rechteckigen Querschnitt mit abgerundeten Ecken aufweisen.
6. Knickstrebe nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die Verbindungselemente einen über ihre Länge wechselnden Querschnitt aufweisen.
7. Knickstrebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Knotenelemente Aufsteckflansche aufweisen, auf die die die Knotenelemente verbindenden Verbindungselemente im Preßsitz und/oder Formschluß - wie etwa Rändelung oder Gewinde - und/oder Stoffschluß - wie etwa Klebung - gehalten sind.
8. Knickstrebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß im Anbindungsbereich der Knotenelemente und der die Knotenelemente verbindenden Verbindungselemente eine Preßbuchse mit Preßsitz angeordnet ist.
9. Knickstrebe nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, daß die Knotenelemente und die die die Knotenelemente verbindenden Verbindungselemente im Bereich der Aufsteckflansche zusätzlich über Sicherungsbolzen verbunden sind.
10. Knickstrebe nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die die Knotenelemente verbindenden Verbindungselemente im Bereich der Aufsteckflansche größer dimensioniert sind.
PCT/EP2013/000155 2012-01-20 2013-01-18 Knickstrebe für ein fahrwerk WO2013107651A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012001054.0 2012-01-20
DE201210001054 DE102012001054A1 (de) 2012-01-20 2012-01-20 Knickstrebe für ein Fahrwerk

Publications (1)

Publication Number Publication Date
WO2013107651A1 true WO2013107651A1 (de) 2013-07-25

Family

ID=47666079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/000155 WO2013107651A1 (de) 2012-01-20 2013-01-18 Knickstrebe für ein fahrwerk

Country Status (2)

Country Link
DE (1) DE102012001054A1 (de)
WO (1) WO2013107651A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9776711B2 (en) 2015-08-05 2017-10-03 Goodrich Corporation Landing gear including a composite strut tube and methods for assembling the same
US11104424B2 (en) 2015-07-29 2021-08-31 Liebherr-Aerospace Lindenberg Gmbh Strut for the landing gear of an aircraft

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202015006737U1 (de) 2015-09-29 2015-10-21 Ralph Funck BVlD Monitoringschicht
DE102021102888A1 (de) 2021-02-08 2022-08-11 Bayerische Motoren Werke Aktiengesellschaft Formgebungsvorrichtung, Fachwerkelement und Verfahren zur Herstellung eines Fachwerkelements

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736674A1 (de) * 2005-06-24 2006-12-27 Snecma Mechanisches Teil und Herstellungsverfahren eines solchen Teils
DE102007019052A1 (de) * 2007-03-19 2008-09-25 Liebherr-Aerospace Lindenberg Gmbh Flugzeugfahrwerk
DE102008046991A1 (de) 2008-09-12 2010-03-25 Mt Aerospace Ag Lasttragendes dickwandiges Faserverbundstrukturbauteil und Verfahren zu dessen Herstellung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193221A (en) * 1962-11-13 1965-07-06 Hiller Aircraft Company Inc Aircraft landing gear strut structure
EP1972550B1 (de) * 2007-03-19 2015-04-29 Liebherr-Aerospace Lindenberg GmbH Flugzeugfahrwerk

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1736674A1 (de) * 2005-06-24 2006-12-27 Snecma Mechanisches Teil und Herstellungsverfahren eines solchen Teils
DE102007019052A1 (de) * 2007-03-19 2008-09-25 Liebherr-Aerospace Lindenberg Gmbh Flugzeugfahrwerk
DE102008046991A1 (de) 2008-09-12 2010-03-25 Mt Aerospace Ag Lasttragendes dickwandiges Faserverbundstrukturbauteil und Verfahren zu dessen Herstellung

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11104424B2 (en) 2015-07-29 2021-08-31 Liebherr-Aerospace Lindenberg Gmbh Strut for the landing gear of an aircraft
US9776711B2 (en) 2015-08-05 2017-10-03 Goodrich Corporation Landing gear including a composite strut tube and methods for assembling the same

Also Published As

Publication number Publication date
DE102012001054A1 (de) 2013-07-25

Similar Documents

Publication Publication Date Title
EP2996925B1 (de) Federstütze für ein kraftfahrzeug
EP2038157B1 (de) Fahrwerksrahmen eines schienenfahrzeugs
DE102005003296B4 (de) Rumpfhecksektion eines Flugzeugs
DE102011053480A1 (de) Bauteil zur Aufnahme und/oder Übertragung von mechanischen Kräften und/oder Momenten, ein Verfahren zu dessen Herstellung und dessen Verwendung
EP1714866B1 (de) Als Träger in Schalenbauweise ausgebildeter Tragflügel eines Flugzeugs
DE102011017460A1 (de) Faserverbundbauteil, Flügelspitzenverlängerung und Flugzeug mit einem Faserverbundteil
WO2013107651A1 (de) Knickstrebe für ein fahrwerk
EP2170696A2 (de) Profil mit wenigstens einem hohlprofilabschnitt
DE102012107018A1 (de) Fahrzeugfelge
DE202008008215U1 (de) Krafteinleitungselement für Faserverbundstreben in Flugzeugen
DE102016210123A1 (de) Versteifungsbauteil für eine Struktur eines Luft- oder Raumfahrzeugs, Luft- oder Raumfahrzeug, sowie Verfahren
WO2015086378A1 (de) Trägerkonstruktion in fachwerkbauweise und verfahren zu deren herstellung
DE202010006303U1 (de) Zug-Druck-Stange aus kohlenstofffaserverstärktem Kunststoff
DE102016205916A1 (de) Drehstabfeder
DE102018213321A1 (de) Mehrpunktlenker für ein Fahrwerk eines Kraftfahrzeugs
DE202015005362U1 (de) Strebe für das Fahrwerk eines Flugzeugs
DE102010018932B4 (de) Umfangsversteifung für einen Luftfahrzeugrumpf
DE10358308B4 (de) Holhlkammerrohr
DE102011113742A1 (de) Träger
EP2700554B1 (de) Vorrichtung zur freitragenden Befestigung eines Fahrgastsitzes und Verfahren zur Herstellung einer solchen Vorrichtung sowie Wagenkasten
EP3580052B1 (de) Verbindungselement zur anbindung eines bauteils an eine faserverbundstruktur
EP3374245B1 (de) Wagenkasten für ein passagierschienenfahrzeug
DE10341350B4 (de) Verbindung einer Seitenwand mit einem Untergestell, insbesondere eines Schienenenfahrzeuges
DE102013106660B4 (de) Behälter als Faserverbund-Hohlkörper und Verfahren hierzu
AT515920B1 (de) Rahmenkonstruktion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13702737

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13702737

Country of ref document: EP

Kind code of ref document: A1