WO2013107304A1 - LTE-TDD网络和WiMAX网络同步的方法、基站及系统 - Google Patents

LTE-TDD网络和WiMAX网络同步的方法、基站及系统 Download PDF

Info

Publication number
WO2013107304A1
WO2013107304A1 PCT/CN2013/070092 CN2013070092W WO2013107304A1 WO 2013107304 A1 WO2013107304 A1 WO 2013107304A1 CN 2013070092 W CN2013070092 W CN 2013070092W WO 2013107304 A1 WO2013107304 A1 WO 2013107304A1
Authority
WO
WIPO (PCT)
Prior art keywords
network
lte
tdd
wimax
subframe
Prior art date
Application number
PCT/CN2013/070092
Other languages
English (en)
French (fr)
Inventor
王钢
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to KR1020147021082A priority Critical patent/KR101621292B1/ko
Priority to EP13738877.3A priority patent/EP2790448A4/en
Priority to JP2014552493A priority patent/JP5814477B2/ja
Publication of WO2013107304A1 publication Critical patent/WO2013107304A1/zh
Priority to US14/335,336 priority patent/US20140328227A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L69/00Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
    • H04L69/22Parsing or analysis of headers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1438Negotiation of transmission parameters prior to communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/002Mutual synchronization
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/02Inter-networking arrangements

Definitions

  • WiMAX Worldwide Interoperability for Microwave Access
  • LTE Long
  • LTE-TDD Time Division Duplexing
  • WiMAX networks and LTE-TDD networks use TDD's time division duplex system
  • the coexistence performance between the two networks must be considered, especially when two When the same TDD frequency is used by the network, if there is no good synchronization, mutual interference between the networks will occur, resulting in deterioration of network performance.
  • Embodiments of the present invention provide a method for synchronizing a LTD-TDD network and a WiMAX network, and a base station, which is used to implement synchronization between an LTE-TDD network and a WiMAX network on a base station, to avoid mutual interference between networks, and improve the system. Performance.
  • the method for synchronizing an LTE-TDD network and a WiMAX network in the embodiment of the present invention includes: synchronizing an LTE-TDD network and a WiMAX network with the same clock source; determining a frame structure of the WiMAX network;
  • the delay time of the header includes: a ratio of 35:12, determining that a configuration ratio of the number of subframes of the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network is 3:1, and the LTE-
  • the frame header of the frame structure of the TDD network is delayed by 2 ms with respect to the frame header of the frame structure of the WiMAX network, and the length of the downlink pilot time slot DWPTS of the special subframe in the field structure of the LTE-TDD network is smaller than Or equal to 9 symbols;
  • the ratio is 32:15, determining that the configuration ratio of the number of subframes of the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network is 3:1, and
  • the ratio is 2:2, determining that the frame header of the frame structure of the LTE-TDD network is delayed by 1 ms with respect to the frame header of the half frame structure of the WiMAX network, and the radio channel end position of the downlink subframe of the WiMAX network is determined.
  • the ratio of the subframes of the LTE-TDD network to the subframe number of the uplink subframe is 2:2, and the subframe structure of the LTE-TDD network is determined.
  • the frame header has a frame header delay of 1003.16us ⁇ 1020.31us with respect to the half frame structure of the WiMAX network, and
  • a first synchronization unit configured to synchronize the LTE-TDD network and the WiMAX network with the same clock source
  • a determining unit configured to determine a frame structure of the WiMAX network
  • a second synchronization unit configured to determine a field structure of the LTE-TDD network according to a frame structure of the WiMAX network, and determine a frame structure of a frame header of the LTE-TDD network with respect to the WiMAX network
  • the delay time of the frame header is such that the field of the LTE-TDD network is synchronized with the frame of the WiMAX network.
  • the second synchronization unit comprises:
  • a first processing unit configured to determine a downlink subframe in a field structure of the LTE-TDD network if a configuration ratio of a number of symbols of the downlink subframe and the uplink subframe in the frame structure of the WiMAX network is 35:12
  • the configuration ratio of the number of subframes of the uplink subframe is 3:1, and the frame header of the subframe structure of the LTE-TDD network is delayed by 2 ms with respect to the frame header of the frame structure of the WiMAX network, and is also used for setting
  • the length of the downlink pilot time slot DWPTS of the special subframe in the field structure of the LTE-TDD network is less than or equal to 9 symbols;
  • a second processing unit configured to determine a downlink subframe in a field structure of the LTE-TDD network if a configuration ratio of a number of symbols of the downlink subframe and the uplink subframe in the frame structure of the WiMAX network is 32:15
  • the configuration ratio of the number of subframes of the uplink subframe is 3:1, and the frame header of the subframe structure of the LTE-TDD network is delayed by 2 ms with respect to the frame header of the frame structure of the WiMAX network, and is also used to determine
  • the length of the DWPTS of the special subframe in the field structure of the LTE-TDD network is less than or equal to 5 symbols;
  • a third processing unit configured to determine a downlink subframe in a field structure of the LTE-TDD network if a configuration ratio of a number of symbols of the downlink subframe and the uplink subframe in the frame structure of the WiMAX network is 29:18
  • the configuration ratio of the number of subframes of the uplink subframe
  • a fourth processing unit configured to determine a downlink subframe in a field structure of the LTE-TDD network if a configuration ratio of a number of symbols of the downlink subframe and the uplink subframe in the frame structure of the WiMAX network is 29:18
  • the configuration ratio of the number of subframes of the uplink subframe is 2:2
  • the frame header of the frame structure of the LTE-TDD network is determined to be 1003.16us ⁇ 1020.31us with respect to the frame structure of the WiMAX network.
  • setting the number of symbols of the uplink pilot time slot of the special subframe in the field structure of the LTE-TDD network to 0.
  • the communication system in the embodiment of the present invention includes: a base station.
  • the embodiments of the present invention have the following advantages:
  • the frame structure of the WiMAX network and determining the field structure of the LTE-TDD network according to the frame structure of the WiMAX network, and determining the frame header of the frame structure of the LTE-TDD network with respect to the frame structure of the WiMAX network frame structure
  • the delay time makes the synchronization between the LTE-TDD network and the WiMAX network, which effectively improves the performance of the system.
  • FIG. 1 is a frame structure of a WiMAX network according to an embodiment of the present invention
  • 2 is a frame structure of an LTE-TDD network in an embodiment of the present invention
  • 3 is a schematic diagram of a method for synchronizing an LTE-TDD network and a WiMAX network according to an embodiment of the present invention
  • 4 is another schematic diagram of a method for synchronizing an LTE-TDD network and a WiMAX network according to an embodiment of the present invention
  • FIG. 5-a is a frame structure diagram of a WiMAX network and a half frame structure diagram of an LTE-TDD network according to an embodiment of the present invention
  • FIG. 5-b is a structural diagram of a frame when a WiMAX network and an LTE-TDD network are synchronized according to an embodiment of the present invention
  • FIG. 6 is another schematic diagram of a method for synchronizing an LTE-TDD network and a WiMAX network according to an embodiment of the present invention
  • 7-a is a frame structure diagram of a WiMAX network and a half frame structure diagram of an LTE-TDD network according to an embodiment of the present invention
  • 7-b is a structural diagram of a frame when a WiMAX network and an LTE-TDD network are synchronized according to an embodiment of the present invention
  • FIG. 8 is another schematic diagram of a method for synchronizing an LTE-TDD network and a WiMAX network according to an embodiment of the present invention.
  • 9-a is a frame structure diagram of a WiMAX network and a half frame structure diagram of an LTE-TDD network according to an embodiment of the present invention
  • 9-b is a structural diagram of a frame when a WiMAX network and an LTE-TDD network are synchronized according to an embodiment of the present invention
  • 9-c is a structural diagram of another frame when the WiMAX network and the LTE-TDD network are synchronized in the embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a base station according to an embodiment of the present invention.
  • FIG. 11 is another schematic diagram of a base station according to an embodiment of the present invention.
  • Embodiments of the present invention provide a method for synchronizing an LTE-TDD network and a WiMAX network.
  • the base station and the system are used to implement synchronization between the LTE-TDD network and the WiMAX network to improve system performance.
  • the method for synchronizing the LTE-TDD network and the WiMAX network in the embodiment of the present invention is applicable to network synchronization of a dual-mode base station supporting both the LTE-TDD network and the WiMAX network, and is also applicable to supporting the LTE-TDD network respectively.
  • the network synchronization between the two independent base stations of the WiMAX network is described in the embodiment of the present invention by taking the synchronization of the LTE-TDD network of the dual-mode base station and the WiMAX network as an example.
  • FIG. 1 is a structural diagram of a frame of a WiMAX network
  • FIG. 2 is a structural diagram of a frame of an LTE-TDD network, which is required to be described.
  • FIG. 2 is an example of a frame structure of an LTE-TDD network with a 5 ms switching period.
  • the WiMAX network has a frame length of 5 ms and is divided into a downlink (DL, Downlink) subframe and an uplink (UL, Uplink) subframe.
  • the protection slot between the downlink subframe and the uplink subframe is called transmission/reception.
  • the transition interval (TTG), the protection slot between the uplink subframe and the downlink subframe of the next frame is called the reception/transmission transition interval (RTG), and the TTG time is 105.7us, and the RTG time is 60us.
  • TTG transition interval
  • RTG reception/transmission transition interval
  • a 5ms frame can be divided into 48 symbols in the time domain, where TTG and RTG form one symbol, and the other 47 symbols can be configured for uplink subframe and downlink subframe.
  • the data is transmitted, and each of the 47 symbols has a length of approximately 102.9 us.
  • the configuration ratio of the number of symbols of the downlink subframe and the uplink subframe is usually 35:12, 32:15, 29:18. Therefore, the frame structure in the WiMAX network is that the ratio of the number of symbols of the downlink subframe to the uplink subframe is 35:12, or 32:15, or 29:18.
  • the frame length of the LTE-TDD network is 10 ms, which is composed of two half frames of length 5 ms, each half frame includes 5 lms subframes, and 4 of the 5 subframes have ordinary children.
  • the normal subframe consists of two 0.5ms time slots.
  • the special subframe consists of three special areas, namely the downlink pilot time slot (DwPTS), the protection time slot (GP) and the uplink.
  • Guide Frequency slot (UpPTS) the DwPTS area is used to transmit downlink data
  • the GP area is used to complete downlink to uplink conversion
  • the UpTPS area is used to complete uplink random access or to transmit sounding signals with uplink measurement function. .
  • subframes in the frame of the LTE-TDD network may be configured, that is, the positions of the uplink subframe, the downlink subframe, and the special subframe are set.
  • Table 1 For a feasible configuration scheme, refer to Table 1, as follows:
  • D represents a downlink subframe
  • U represents an uplink subframe
  • S represents a special subframe
  • the length of each subframe is lms.
  • the uplink and downlink transition point switching period of the frame in the LTE-TDD network may be 5ms and 10ms, and when the switching period is 5ms, the configuration of the two fields constituting the frame of the LTE-TDD network is completely the same.
  • the slot length configuration of DwPTS, GP, and UpPTS also has various feasible schemes. Please refer to Table 2, as follows:
  • the special subframe has a frame length of 1 ms, including 2 slots, each slot includes 7 symbols, and the lengths of the 7 symbols in one slot are not exactly the same, and the length of the first symbol For 71.88us, the length of each of the remaining 6 symbols is about 71.35 us.
  • 14 symbols of the special subframe can be allocated to DwPTS, GP and UpPTS.
  • a part of the length of the GP may be set at a position after the end of the uplink subframe of the field.
  • the length is 20.31us, that is, in a field, the length of the special subframe between the downlink subframe and the uplink subframe is 979.69us.
  • the field structure of the LTE-TDD network can be determined according to the frame structure of the WiMAX network, and the delay of the frame header of the frame structure of the LTE-TDD network relative to the frame header of the WiMAX network can be effective.
  • the method for synchronizing the LTE-TDD network and the WiMAX network is specifically shown in FIG. 3, which is the synchronization between the LTE-TDD network and the WiMAX network in the embodiment of the present invention.
  • An embodiment of the method includes:
  • the base station Synchronize the LTE-TDD network and the WiMAX network with the same clock source.
  • the base station synchronizes the LTE-TDD network and the WiMAX network with the same clock source, where the clock source may be global positioning.
  • the system GPS, Global Positioning System
  • RGPS Remote Global Positioning System
  • the base station determines the frame structure of the WiMAX network, where WiMAX 32:15, or 29:18.
  • the base station determines the subframe structure of the LTE-TDD network according to the frame structure of the WiMAX network, and determines the frame header delay of the frame structure of the subframe structure of the LTE-TDD network relative to the frame structure of the WiMAX network.
  • the LTE-TDD network domain WiMAX network is synchronized, which can effectively avoid interference between the two networks and improve system performance.
  • the ratio of the frame structure downlink subframe to the uplink subframe symbol number of the WiMAX network may be any one of 35:12, 32:15, 29:18, and the following is specifically introduced according to the WiMAX network.
  • the frame structure of the WiMAX network is the ratio of the number of symbols of the downlink subframe to the uplink subframe, the ratio is 35:12.
  • An embodiment of a method for synchronizing a WiMAX network and an LTE-TDD network includes:
  • the base station Synchronize the LTE-TDD network and the WiMAX network with the same clock source.
  • the base station synchronizes the LTE-TDD network and the WiMAX network with the same clock source, where the clock source may be global positioning.
  • the system GPS, Global Positioning System
  • RGPS Remote Global Positioning System
  • the base station will determine the frame structure of the WiMAX network, where WiMAX is 32:15, or 29:18.
  • WiMAX is 32:15, or 29:18.
  • the ratio of the subframes of the downlink subframe to the uplink subframe in the frame structure of the LTE-TDD network is 3:1, and the frame header of the subframe structure of the LTE-TDD network is relative to WiMAX
  • the frame header of the network frame structure is delayed by 2 ms.
  • the ratio of the number of symbols of the downlink subframe to the uplink subframe in the frame structure of the WiMAX network is 35:12
  • the ratio of the configuration of the WiMAX network to the LTE-TDD network is 3:1
  • the frame header of the field structure of the LTE-TDD network is delayed by 2 ms with respect to the frame header of the frame structure of the WiMAX network.
  • the frame length is 5ms and the switching period is 5ms.
  • the frame switching period of the LTE-TDD network should be 5ms, and the uplink subframe in the frame structure of the WiMAX network.
  • the ratio of the number of symbols of the frame to the downlink subframe is 35:12
  • the length of the downlink subframe is 3600us
  • the length of the uplink subframe is 1234.3us
  • the TGG time is 105.7us
  • the length of the RTG is 60us.
  • the length of the downlink subframe must be greater than 3 ms, and the configuration ratio of the number of subframes of the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network is determined to be 3:1, that is, the selection table 1 is selected.
  • the configuration scheme numbered 2 is in. After selecting the configuration scheme numbered 2, the WiMAX network and the LTE-TDD network cannot be fully synchronized.
  • Figure 5-a the frame structure of the WiMAX network and the frame structure of the LTE-TDD network. 5-a shows that there is still interference between the WiMAX network and the LTE-TDD network. Therefore, it is also necessary to determine the delay time of the configuration side of the special subframe in the field structure of the LTE-TDD network to synchronize the WiMAX network and the LTE-TDD network.
  • the frame header of the LTE-TDD network is also necessary to frame the frame header of the LTE-TDD network with respect to the frame structure of the WiMAX network.
  • the header delay is 2ms, and at the same time, because the length of the downlink subframe plus the TTG time of the WiMAX network is 3705.7us, in order to avoid interference between the DwPTS and the UpPTS and the WiMAX network in the special subframe, the field structure of the LTE-TDD network is also needed.
  • the special subframe in the configuration is configured, that is, after the delay of 2 ms, the frame header of the field structure of the LTE-TDD network needs to be made.
  • the length of the DwPTS in the first and special subframes does not exceed 1705.7us, and the length of the DwPTS does not exceed 705.7us to ensure that interference does not occur.
  • each slot includes 7 symbols, and the lengths of 7 symbols in one slot are not completely the same, and the first symbol is The length is 71.88us, and the length of each of the remaining 6 symbols is about 71.35us. Therefore, in order to ensure synchronization between the WiMAX network and the LTE network, the number of symbols of the DwPTS should be less than or equal to 9, see Table 2, Special For the configuration of the sub-frame, any one of the numbers 0, 1, 5, and 6 may be selected. For details, refer to FIG. 5-b. In the embodiment of the present invention, after performing step 403, the WiMAX network and the LTE-TDD network are used. Frame structure diagram at the time of synchronization.
  • the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network may be determined.
  • the configuration ratio of the number of subframes of the frame is 3:1, and the frame header of the frame structure of the LTE-TDD network is delayed by 2 ms with respect to the frame structure of the frame structure of the WiMAX network, and the special frame structure of the LTE-TDD network is special.
  • the length of the DwPTS of the subframe is less than or equal to 9 symbols, which can effectively ensure synchronization between the WiMAX network and the LTE-TDD network, and avoid interference.
  • a frame structure of a WiMAX network is a ratio of a symbol number of a downlink subframe to an uplink subframe of 32:15
  • an implementation of a method for synchronizing a WiMAX network and an LTE-TDD network is performed. For example, including:
  • the base station Synchronize the LTE-TDD network and the WiMAX network with the same clock source.
  • the base station synchronizes the LTE-TDD network and the WiMAX network with the same clock source, where the clock source may be global positioning.
  • the system GPS, Global Positioning System
  • RGPS Remote Global Positioning System
  • the base station determines the frame structure of the WiMAX network, where WiMAX 32:15, or 29:18.
  • the ratio of the subframes of the downlink subframe to the uplink subframe in the frame structure of the LTE-TDD network is 3:1, and the frame header of the subframe structure of the LTE-TDD network is relative to
  • the frame structure of the WiMAX network has a frame header delay of 2 ms, and the length of the DWPTS of the special subframe in the field structure of the LTE-TDD network is less than or equal to 5 symbols.
  • the configuration ratio of the number of symbols of the downlink subframe and the uplink subframe in the frame structure of the WiMAX network is 32:15
  • the configuration ratio of the WiMAX network and the LTE-TDD network 3:1 in order to make the configuration ratio of the WiMAX network and the LTE-TDD network 3:1, and
  • the frame header of the subframe structure of the LTE-TDD network is delayed by 2 ms with respect to the frame header of the frame structure of the WiMAX network, and the length of the DwPTS of the special subframe in the field structure of the LTE-TDD network is less than or equal to 5 symbols.
  • the last symbol in the downlink subframe has no transmission power, and at this time, there is actually The length of the downlink subframe of the transmit power is 3188.6us, the length of the uplink subframe is 1542.9us, the RTG time is 60us, and the TTG time is 208.6us.
  • the TGG time is originally 105.7us, because one symbol is not sent. Power, therefore, in this case, the TTG time is 208.6us.
  • the configuration ratio of the number of subframes of the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network can be determined to be 3:1, please refer to FIG. 7-a.
  • the frame structure of the WiMAX network and the frame structure of the LTE-TDD network As can be seen from Figure 7-a, there is still interference in the WiMAX network domain LTE-TDD network. Therefore, it is necessary to determine the field structure of the LTE-TDD network.
  • the header delay is 2ms.
  • the half frame structure of the LTE-TDD network needs to be
  • the special subframe is configured, that is, after the delay of 2 ms, the length of the DwPTS in the first subframe in which the frame header of the LTE-TDD network is located and the DwPTS in the special subframe does not exceed 1397.2 us, and the length of the DwPTS No more than 397.2us to ensure no interference.
  • each slot includes 7 symbols, and the lengths of 7 symbols in one slot are not completely the same, and the first symbol is The length is 71.88us, and the length of each of the remaining 6 symbols is about 71.35us. Therefore, in order to ensure synchronization between the WiMAX network and the LTE network, the number of symbols of the DwPTS should be less than or equal to 5, see Table 2, Special The configuration scheme of the subframe may be selected as the configuration scheme of the number 0 or 5. For details, refer to FIG. 7-b, which is a frame structure diagram when the WiMAX network and the LTE-TDD network are synchronized after being executed according to step 603 in the embodiment of the present invention.
  • a frame structure of a WiMAX network is a ratio of a number of symbols of a downlink subframe to an uplink subframe of 29:18
  • an implementation of a method for synchronizing a WiMAX network and an LTE-TDD network is performed. For example, including:
  • the base station Synchronize the LTE-TDD network and the WiMAX network with the same clock source.
  • the base station synchronizes the LTE-TDD network and the WiMAX network with the same clock source, where the clock source may be global positioning.
  • the system GPS, Global Positioning System
  • RGPS Remote Global Positioning System
  • the base station determines the frame structure of the WiMAX network, where WiMAX 32:15, or 29:18.
  • the ratio is 29:18, and the ratio of the number of subframes of the downlink subframe to the uplink subframe in the subframe structure of the LTE-TDD network is determined to be 2:2, and the frame header of the frame structure of the LTE-TDD network is determined relative to WiMAX.
  • the frame header of the network frame structure is delayed by 1 ms, and the radio channel end position of the downlink subframe of the WiMAX network is set to the 27th symbol of the downlink subframe;
  • the ratio of the number of symbols of the downlink subframe to the uplink subframe in the frame structure of the WiMAX network is 29:18
  • the ratio of the WiMAX network to the LTE-TDD network is 2:2.
  • the frame header of the frame structure of the LTE-TDD network is determined to be delayed by 1 ms with respect to the frame header of the half frame structure of the WiMAX network, and the radio channel end position of the downlink subframe of the WiMAX network is set to the 27th symbol of the downlink subframe.
  • the configuration ratio of the downlink subframe to the uplink subframe in the subframe structure of the LTE-TDD network should be 2: 2, that is, the configuration scheme numbered 1 in Table 1 is selected.
  • the WiMAX network cannot be completely synchronized with the LTE network.
  • FIG-a the frame of the WiMAX network.
  • the structure diagram and the frame structure diagram of the LTE-TDD network as can be seen from Figure 9-a, there is still interference between the WiMAX network and the LTE-TDD network. Therefore, further adjustments and configurations are needed.
  • the head delay is lmssuppl
  • the downlink subframe of the frame structure of the WiMAX network includes 29 symbols.
  • the number is 2982.86us, and every two symbols form a time slot, and the time slot is the smallest unit of resource allocation.
  • the special subframe is configured anyway. Both of them will also interfere with the WiMAX network.
  • the end of the radio channel of the downlink subframe of the WiMAX network can be set to the 27th symbol of the downlink subframe to synchronize the WiMAX network and the LTE network.
  • the radio channel end position of the downlink subframe of the WiMAX network is set to the 27th symbol of the downlink subframe, the downlink subframe actually includes 27 symbols, and the length is 2771.14us, and the LTE UpPTS The maximum is 2 symbols.
  • the LTE-TDD network's field structure delay lms the synchronization of the WiMAX network and the LTE network can be supported regardless of the configuration of the special subframe.
  • FIG. 9-b is a frame structure diagram of the LTE-TDD network and the WiMAX network after synchronization according to step 803.
  • the ratio of the frame number of the downlink subframe to the uplink subframe in the frame structure of the LTE-TDD network is determined to be 2:2, and the frame header of the subframe structure of the LTE-TDD network is determined relative to
  • the frame header of the WiMAX network has a frame header delay of 1003.16us ⁇ 1020.31us, and the half of the LTE-TDD network is in the embodiment of the present invention.
  • the frame structure of the WiMAX network is configured, the number of symbols of the downlink subframe and the uplink subframe is configured.
  • the ratio is 29:18, in order to realize the synchronization of the LTE network and the WiMAX network, the ratio is 2:2, and the frame header of the frame structure of the LTE-TDD network is determined to be 1003.16us with respect to the frame structure of the WiMAX network. : I020.31us, and the number of symbols of the uplink pilot time slot of the special subframe in the field structure of the LTE-TDD network is set to zero.
  • the ratio of the number of symbols of the downlink subframe to the uplink subframe in the frame structure of the WiMAX network is 18:29
  • the length of the downlink subframe is 2982.6us
  • the length of the uplink subframe is 1854.44us, TGG.
  • the time is 105.7us and the RTG time is 60us
  • the ratio of the number of subframes in the subframe structure of the LTE-TDD network to the number of subframes in the uplink subframe should be 2:2, that is, the configuration scheme numbered 1 in Table 1 is selected.
  • the configuration scheme numbered 1 it does not completely synchronize the WiMAX network with the LTE network.
  • FIG. 9-a the frame structure diagram of the WiMAX network and the half-frame structure diagram of the LTE-TDD network. As can be seen in Figure 9-a, there is still interference between the WiMAX network and the LTE-TDD network. Therefore, it is also necessary to further adjust and configure the field structure of the LTE-TDD.
  • the uplink subframe of the LTE-TDD still has an area of 3.16 us.
  • the impact of the downlink subframe of the WiMAX network is due to the 20.31 us uplink/downlink reception for the LTE-TDD network between the uplink subframe in the LTE-TDD and the downlink subframe in the next subframe structure.
  • the time of the channel switching is sent.
  • the frame header of the LTE-TDD network can be delayed by 3.16us ⁇ 20.31us based on the delay lms, that is, the frame header of the LTE-TDD network is compared with the WiMAX network.
  • the frame header delay time is 1003.16us ⁇ : I020.31us.
  • the LTE-TDD network can be used.
  • the UpPTS area of the special subframe in the field structure of the LTE-TDD network mainly has two functions, and one is a preamble sequence (Preamble) of the bearer format 4, which is mainly used for the cell radius.
  • Preamble a preamble sequence
  • the other is to carry sounding reference information for uplink signal measurement, channel estimation, frame synchronization timing, etc.
  • these two functions of the UpPTS area are not required. Because the short Preamble is only used when the cell radius is small, it can save a part of the uplink resources, but A more common scenario is to use a normal Preamble.
  • Such a normal Preamble can implement a short Preamble function without transmitting on the UpPTS.
  • the sounding reference signal is not only transmitted on the UpPTS, but also in the normal uplink subframe. It can also be transmitted with a symbol so that the sounding reference signal can be set on the symbol of the non-UpPTS by the processing of the base station. Therefore, the UpPTS area does not have to exist, can be removed, and after being removed, it does not affect the random access and uplink service execution of the LTE-TDD network, and the half of the LTE-TDD network can be
  • 9-c is a frame structure diagram when the LTE-TDD network and the WiMAX network are synchronized after performing in step 804 according to the embodiment of the present invention. It should be noted that, in FIG. 9-c, the LTE-TDD subframe is used.
  • the frame header of the half frame structure has a delay time of 1003.16 us with respect to the frame header of the WiMAX network.
  • the base station determines the subframe structure of the LTE network according to the frame structure of the WiMAX network, and the delay time of the frame header of the frame structure of the LTE-TDD network relative to the frame structure of the frame structure of the WiMAX network, Effectively synchronize the LTE-TDD network with the WiMAX network.
  • an embodiment of a base station according to an embodiment of the present invention includes:
  • a first synchronization unit 1001 configured to synchronize the LTE-TDD network and the WiMAX network with the same clock source;
  • a determining unit 1002 configured to determine a frame structure of the WiMAX network
  • a second synchronization unit 1003 configured to determine a field structure of the LTE-TDD network according to a frame structure of the WiMAX network, and determine a frame header delay of a frame structure of the LTE-TDD network with respect to a frame structure of the WiMAX network Time, which makes the field of the LTE-TDD network synchronized with the frame of the WiMAX network.
  • the first synchronization unit 1001 synchronizes the LTE-TDD network and the WiMAX network with the same clock source, and then determines the frame structure of the WiMAX network by the determining unit 1002, and according to the WiMAX network by the second synchronization unit 1003.
  • Frame structure determines the field structure of the LTE-TDD network, and determines the frame header of the LTE-TDD network
  • the delay of the frame header of the frame structure of the WiMAX network makes the field of the LTE-TDD network synchronized with the frame of the WiMAX network.
  • FIG. 11 is an embodiment of a base station according to an embodiment of the present invention, including:
  • the first synchronization unit 1001, the determination unit 1002, and the second synchronization unit 1003 in the embodiment shown in FIG. 10 are similar to those described in the embodiment shown in FIG. 10, and details are not described herein again.
  • the second synchronization unit 1003 includes:
  • the first processing unit 1101 is configured to determine, when the configuration ratio of the number of symbols of the downlink subframe and the uplink subframe in the frame structure of the WiMAX network is 35:12, determine the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network.
  • the configuration ratio of the number of subframes of the frame is 3:1, and the frame header of the frame structure of the LTE-TDD network is delayed by 2 ms with respect to the frame structure of the frame structure of the WiMAX network, and is also used for setting LTE-TDD symbols;
  • the second processing unit 1102 is configured to determine, when the configuration ratio of the number of symbols of the downlink subframe and the uplink subframe in the frame structure of the WiMAX network is 32:15, determine the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network.
  • the configuration ratio of the number of subframes of the frame is 3:1, and the frame header of the frame structure of the LTE-TDD network is delayed by 2 ms with respect to the frame structure of the frame structure of the WiMAX network, and is also used to determine the field structure of the LTE-TDD network.
  • the length of the DWPTS of the special subframe is less than or equal to 5 symbols;
  • the third processing unit 1103 is configured to: if the configuration ratio of the number of symbols of the downlink subframe and the uplink subframe in the frame structure of the WiMAX network is 29:18, Determining that the configuration ratio of the number of subframes of the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network is 2:2, and determining the frame header of the frame structure of the LTE-TDD network relative to the frame of the half frame structure of the WiMAX network The header is delayed by 1 ms, and the radio channel end position of the downlink subframe of the WiMAX network is set to the 27th symbol of the downlink subframe;
  • the fourth processing unit 1104 is configured to determine, when the configuration ratio of the number of symbols of the downlink subframe and the uplink subframe in the frame structure of the WiMAX network is 29:18, determine the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network.
  • the configuration ratio of the number of subframes of the frame is 2:2, and the field structure of the LTE-TDD network is determined.
  • the frame header has a frame header delay of 1003.16us ⁇ 1020.31us relative to the half frame structure of the WiMAX network, which is 0.
  • the first synchronization unit 1001 synchronizes the LTE-TDD network and the WiMAX network with the same clock source, and then the determining unit 1002 determines the frame structure of the WiMAX network, if the downlink subframe of the frame structure of the WiMAX network
  • the configuration ratio of the number of symbols of the uplink subframe is 35:12
  • the first processing unit 1101 in the second synchronization unit 1003 determines the number of subframes of the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network.
  • the configuration ratio is 3:1, and the frame header of the frame structure of the LTE-TDD network is delayed by 2 ms with respect to the frame structure of the frame structure of the WiMAX network, and is also used to set the special subframe in the field structure of the LTE-TDD network.
  • the length of the downlink pilot time slot DWPTS is less than or equal to 9 symbols; if the configuration ratio of the number of symbols of the downlink subframe and the uplink subframe in the frame structure of the WiMAX network is 32:15, the second in the second synchronization unit 1003
  • the processing unit 1102 determines that the configuration ratio of the number of subframes of the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network is 3:1, and the frame header of the subframe structure of the LTE-TDD network is compared with the frame of the WiMAX network.
  • the frame header of the structure is delayed by 2ms and is also used to determine the LTE-TDD network.
  • the length of the DWPTS of the special subframe in the frame structure is less than or equal to 5 symbols; if the ratio of the number of symbols of the downlink subframe to the uplink subframe in the frame structure of the WiMAX network is 29:18, the second synchronization unit
  • the third processing unit 1103 of 1003 determines that the configuration ratio of the number of subframes of the downlink subframe and the uplink subframe in the subframe structure of the LTE-TDD network is 2:2, and determines the frame header of the frame structure of the LTE-TDD network.
  • the frame header of the half frame structure of the WiMAX network is delayed by 1 ms, and the radio channel end position of the downlink subframe of the WiMAX network is set to the 27th symbol of the downlink subframe; if the frame structure of the WiMAX network is the downlink subframe and the uplink subframe
  • the configuration ratio of the number of symbols is 29:18
  • the fourth processing unit 1104 in the second synchronization unit 1003 determines that the configuration ratio of the number of subframes of the downlink subframe and the uplink subframe in the field structure of the LTE-TDD network is 2 :2, determining that the frame header of the frame structure of the LTE-TDD network has a frame header delay of 1003.16us ⁇ 1020.31us relative to the frame structure of the WiMAX network, and Through the synchronization processing of the second synchronization unit 1003, the synchronization of the LTE-TDD network and the WiMAX network can be effectively realized.
  • the embodiment of the present invention further relates to a communication system including a base station as shown in FIG. 10 or 11.
  • the medium can be a read only memory, a magnetic disk or a compact disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本发明实施例公开了一种LTE-TDD网络和 WiMAX网络同步的方法、基站及系统,用于实现LTE-TDD网络和WiMAX网络之间的同步,本发明实施例方法包括:将LTE-TDD网络和WiMAX网络与相同的时钟源进行同步;确定WiMAX网络的帧结构;根据WiMAX网络的帧结构确定LTE-TDD网络的的半帧结构,及确定LTE-TDD网络的半帧结构的帧头相对于WiMAX网络的帧结构的帧头的延迟时间,使得LTE-TDD网络与WiMAX网络达到同步。

Description

LTE-TDD网络和 WiMAX网络同步的方法、 基站及系统 本申请要求于 2012 年 1 月 18 日提交中国专利局、 申请号为 201210016140.9、 发明名称为" LTE-TDD网络和 WiMAX网络同步的方法、 基站及系统"的中国专利申请的优先权, 其全部内容通过引用结合在本申请 中。 技术领域 本发明涉及无线通信系统,尤其涉及 LTE-TDD网络和 WiMAX网络同 步的方法、 基站及系统。
背景技术 随着通信技术的发展, 全球微波互联接入 ( WiMAX , Worldwide Interoperability for Microwave Access )作为一种移动 TDD带宽技术, 在全 球已经得到了广泛的部署和应用, 同时, 长期演进 ( LTE , Long Term Evolution ) 系统支持时分双工 ( TDD, Time Division Duplexing )技术, 随 着 LTE-TDD技术的成熟 , LTE-TDD网络也会逐渐部署和应用。
但是, 由于 WiMAX网络和 LTE-TDD网络都釆用 TDD的时分双工系 统, 当在同一地区同时部署 WiMAX网络和 LTE-MAX网络时 , 必须考虑 两个网络之间的共存性能, 特别是当两个网络使用相同的 TDD频率时, 如 果没有良好的同步, 将会产生网络之间的相互干扰, 导致网络性能的恶化。
发明内容 本发明实施例提供了一种 LTD-TDD网络和 WiMAX网络同步的方法及 基站, 用于实现基站上的 LTE-TDD网络和 WiMAX网络的同步, 以避免网 络之间的相互干扰, 改善系统的性能。 本发明实施例中的 LTE-TDD网络和 WiMAX网络同步的方法包括: 将 LTE-TDD网络和 WiMAX网络与相同的时钟源进行同步; 确定 WiMAX网络的帧结构;
根据所述 WiMAX网络的帧结构确定 LTE-TDD网络的的半帧结构,及 构的帧头的延迟时间,使得所述 LTE-TDD网络与所述 WiMAX网络达到同 步。
优选的,所述根据所述 WiMAX网络的帧结构确定 LTE-TDD网络的的 半帧结构, 及确定所述 LTE-TDD 网络的半帧结构的帧头相对于所述 WiMAX网络的帧结构的帧头的延迟时间具体包括: 比为 35:12, 则确定所述 LTE-TDD网络的半帧结构中下行子帧与上行子帧 的子帧数的配置比为 3:1 , 且所述 LTE-TDD网络的半帧结构的帧头相对于 所述 WiMAX网络的帧结构的帧头延迟 2ms , 且所述 LTE-TDD网络的半帧 结构中的特殊子帧的下行导频时隙 DWPTS的长度小于或等于 9个符号; 比为 32:15, 则确定所述 LTE-TDD网络的半帧结构中下行子帧与上行子帧 的子帧数的配置比为 3:1 , 且所述 LTE-TDD网络的半帧结构的帧头相对于 所述 WiMAX网络的帧结构的帧头延迟 2ms , 且所述 LTE-TDD网络的半帧 结构中的特殊子帧的 DWPTS的长度小于或等于 5个符号; 比为 29:18, 则确定所述 LTE-TDD网络的半帧结构中下行子帧与上行子帧 的子帧数的配置比为 2:2, 确定所述 LTE-TDD网络的帧结构的帧头相对于 所述 WiMAX网络的半帧结构的帧头延迟 1ms, 且将所述 WiMAX网络的 下行子帧的射频通道结束位置设置在下行子帧的第 27个符号; 比为 29:18, 则确定所述 LTE-TDD网络的半帧结构中下行子帧与上行子帧 的子帧数的配置比为 2:2, 确定所述 LTE-TDD网络的半帧结构的帧头相对 于所述 WiMAX网络的半帧结构的帧头延迟 1003.16us~1020.31us, 且将所
0。
本发明实施例中的基站包括:
第一同步单元,用于将 LTE-TDD网络和 WiMAX网络与相同的时钟源 进行同步;
确定单元, 用于确定 WiMAX网络的帧结构;
第二同步单元,用于根据所述 WiMAX网络的帧结构确定 LTE-TDD网 络的的半帧结构,及确定所述 LTE-TDD网络的半帧结构的帧头相对于所述 WiMAX网络的帧结构的帧头的延迟时间, 使得所述 LTE-TDD网络的半帧 与所述 WiMAX网络的帧达到同步。
优选的, 所述第二同步单元包括:
第一处理单元, 用于若所述 WiMAX 网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 35:12, 则确定所述 LTE-TDD网络的半帧结构中 下行子帧与上行子帧的子帧数的配置比为 3:1 , 且所述 LTE-TDD网络的半 帧结构的帧头相对于所述 WiMAX 网络的帧结构的帧头延迟 2ms, 还用于 设置所述 LTE-TDD网络的半帧结构中的特殊子帧的下行导频时隙 DWPTS 的长度小于或等于 9个符号;
第二处理单元, 用于若所述 WiMAX 网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 32:15, 则确定所述 LTE-TDD网络的半帧结构中 下行子帧与上行子帧的子帧数的配置比为 3:1 , 且所述 LTE-TDD网络的半 帧结构的帧头相对于所述 WiMAX 网络的帧结构的帧头延迟 2ms, 还用于 确定所述 LTE-TDD网络的半帧结构中的特殊子帧的 DWPTS的长度小于或 等于 5个符号; 第三处理单元, 用于若所述 WiMAX 网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 29: 18, 则确定所述 LTE-TDD网络的半帧结构中 下行子帧与上行子帧的子帧数的配置比为 2:2 , 确定所述 LTE-TDD网络的 帧结构的帧头相对于所述 WiMAX 网络的半帧结构的帧头延迟 1ms, 且将 所述 WiMAX网络的下行子帧的射频通道结束位置设置在下行子帧的第 27 个符号;
第四处理单元, 用于若所述 WiMAX 网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 29: 18, 则确定所述 LTE-TDD网络的半帧结构中 下行子帧与上行子帧的子帧数的配置比为 2:2 , 确定所述 LTE-TDD网络的 半帧结构的帧头相对于所述 WiMAX 网络的半帧结构的帧头延迟 1003.16us~1020.31us, 且将所述 LTE-TDD网络的半帧结构中的特殊子帧的 上行导频时隙的符号数设置为 0。
本发明实施例中的通信系统包括: 基站。
从以上技术方案可以看出, 本发明实施例具有以下优点:
基站的 LTE-TDD网络和 WiMAX网络与相同的时钟源同步后 ,确定该
WiMAX网络的帧结构 , 并才艮据该 WiMAX网络的帧结构确定 LTE-TDD网 络的半帧结构,及确定 LTE-TDD网络的半帧结构的帧头相对于 WiMAX网 络的帧结构的帧头的延迟时间,使得 LTE-TDD网络和 WiMAX网络之间达 到同步, 有效的改善了系统的性能。
附图说明 图 1为本发明实施例中 WiMAX网络的帧结构;
图 2为本发明实施例中 LTE-TDD网络的帧结构;
图 3为本发明实施例中 LTE-TDD网络和 WiMAX网络同步的方法的一 个示意图; 图 4为本发明实施例中 LTE-TDD网络和 WiMAX网络同步的方法的另 一示意图;
图 5-a为本发明实施例中 WiMAX网络的帧结构图及 LTE-TDD网络的 半帧结构图;
图 5-b为本发明实施例中 WiMAX网络和 LTE-TDD网络同步时的帧结 构图;
图 6为本发明实施例中 LTE-TDD网络和 WiMAX网络同步的方法的另 一示意图;
图 7-a为本发明实施例中 WiMAX网络的帧结构图及 LTE-TDD网络的 半帧结构图;
图 7-b为本发明实施例中 WiMAX网络和 LTE-TDD网络同步时的帧结 构图;
图 8为本发明实施例中 LTE-TDD网络和 WiMAX网络同步的方法的另 一示意图;
图 9-a为本发明实施例中 WiMAX网络的帧结构图及 LTE-TDD网络的 半帧结构图;
图 9-b为本发明实施例中 WiMAX网络和 LTE-TDD网络同步时的帧结 构图;
图 9-c 为本发明实施例中 WiMAX网络和 LTE-TDD网络同步时的另一 帧结构图;
图 10为本发明实施例中基站的一个示意图;
图 11为本发明实施例中基站的另一示意图。
具体实施方式 本发明实施例提供了一种 LTE-TDD网络和 WiMAX网络同步的方法、 基站及系统, 用于实现 LTE-TDD网络和 WiMAX网络之间的同步, 改善系 统性能。
需要说明的是,本发明实施例中的 LTE-TDD网络和 WiMAX网络同步 的方法,适用于同时支持 LTE-TDD网络和 WiMAX网络的双模基站的网络 同步,也适用于分别支持 LTE-TDD网络和 WiMAX网络的两个独立的基站 之间的网络同步, 本发明实施例中以双模基站的 LTE-TDD网络和 WiMAX 网络的同步为例进行说明。
为了更好的理解本发明实施例中的技术方案, 请参阅图 1和图 2, 图 1 为 WiMAX网络的帧的结构图, 图 2为 LTE-TDD网络的帧的结构图, 需要 说明的是,图 2是以 5ms切换周期的 LTE-TDD网络的帧结构为例进行说明。
请参阅图 1 , WiMAX网络的帧长为 5ms, 分为下行(DL, Downlink ) 子帧和上行(UL, Uplink )子帧, 下行子帧和上行子帧之间的保护时隙叫 做传输 /接收转换间隔(TTG ), 上行子帧与下一个帧的下行子帧之间的保护 时隙叫做接收 /传输转换间隔(RTG ), 且 TTG时间为 105.7us, RTG时间为 60us。 对于 5M和 10M带宽的 WiMAX网络, 一个 5ms的帧在时域上可分 为 48个符号,其中 TTG和 RTG构成一个符号,其他的 47个符号可用于配 置为上行子帧和下行子帧, 用于传输数据, 且这 47个符号中的每个符号的 长度约为 102.9us。
WiMAX网络的一个帧中有 47个符号用于配置下行子帧和上行子帧, 通常较为常见的下行子帧和上行子帧的符号数的配置比为 35:12 , 32: 15 , 29:18, 因此, 在 WiMAX网络中的帧结构为下行子帧与上行子帧的符号数 的配置比为 35:12, 或者 32:15 , 或者 29:18。
请参阅图 2, LTE-TDD网络的帧长是 10ms, 由两个长度为 5ms的半帧 组成, 每个半帧包含 5个 lms的子帧, 且这 5个子帧中有 4的普通的子帧 和 1个特殊子帧, 普通子帧由两个 0.5ms的时隙组成, 特殊子帧由 3个特 殊区域组成, 分别为下行导频时隙 (DwPTS ), 保护时隙 (GP )和上行导 频时隙 (UpPTS ), DwPTS区域用于传输下行数据, GP区域用于完成下行 到上行的转换, UpTPS 区域则用于完成上行随机接入或用于传送具有上行 测量功能的探测 (sounding )信号。
需要说明的是, 可对 LTE-TDD网络的帧中的子帧进行配置, 即设置上 行子帧、 下行子帧及特殊子帧的位置, 可行的配置方案请参阅表 1 , 如下:
Figure imgf000008_0001
表 1
在表 1中, D代表下行子帧, U代表上行子帧, S代表特殊子帧, 且每 个子帧的长度为 lms, 此外, LTE-TDD网络中的帧的上下行转换点切换周 期可以为 5ms和 10ms, 且当切换周期为 5ms时, 构成 LTE-TDD网络的帧 的两个半帧的配置完全相同,
对于 LTE-TDD网络的帧中的特殊子帧, DwPTS, GP, UpPTS的时隙 长度配置也有多种可行的方案, 请参阅表 2, 如下:
配置方案编号 名称及其对应的符号数
DwPTS GP UpPTS
0 3 10 1
1 9 4 1
2 10 3 1
3 11 2 1
4 12 1 1 6 9 3 2
7 10 2 2
8 11 1 2
表 2
在表 2中, 特殊子帧的帧长为 1ms, 包括 2个时隙, 每个时隙包括 7 个符号, 且一个时隙中的 7个符号的长度不完全相同, 第 1个符号的长度 为 71.88us, 剩下的 6个符号中的每个符号的长度约为 71.35us,在本发明实 施例中, 特殊子帧的 14个符号可分配给 DwPTS, GP和 UpPTS。
需要说明的是, 在本发明实施例中, 为了确保半帧与半帧之间有一个 切换的保护时隙,可将 GP中的一部分长度设置在半帧的上行子帧结束后的 位置, 该长度为 20.31us, 即在半帧中, 处于下行子帧与上行子帧之间的特 殊子帧的长度为 979.69us。
在本发明实施例中 ,可根据 WiMAX网络的帧结构确定 LTE-TDD网络 的半帧结构,及 LTE-TDD网络的半帧结构的帧头相对于 WiMAX网络的帧 头的延迟时间,能够有效的避免 WiMAX网络与 LTE-TDD网络之间的干扰, 改善系统性能,具体的实现 LTE-TDD网络和 WiMAX网络同步的方法请参 阅图 3 , 为本发明实施例中 LTE-TDD网络和 WiMAX网络同步的方法的一 个实施例, 包括:
301、 将 LTE-TDD网络和 WiMAX网络与相同的时钟源进行同步; 在本发明实施例中 , 基站将 LTE-TDD网络和 WiMAX网络与相同的 时钟源进行同步,其中,时钟源可以是全球定位系统( GPS , Global Positioning System ) 时钟源, 或者是 1588时钟源, 或者是远程全球定位系统( RGPS, Remote Global Positioning System ) 时钟源。
302、 确定 WiMAX网络的帧结构;
在本发明实施例中 ,基站将确定 WiMAX网络的帧结构,其中, WiMAX 者 32:15, 或者 29:18。
303、 根据 WiMAX网络的帧结构确定 LTE-TDD网络的的半帧结构, 头的延迟时间, 使得 LTE-TDD网络与 WiMAX网络达到同步。
在本发明实施例中 , 基站将根据 WiMAX网络的帧结构确定 LTE-TDD 网络的半帧结构, 及确定 LTE-TDD网络的半帧结构的帧头相对于 WiMAX 网络的帧结构的帧头的延迟时间,使得 LTE-TDD网络域 WiMAX网络达到 同步, 能够有效避免两个网络之间的干扰, 改善系统的性能。
在本发明实施例中, WiMAX网络的帧结构下行子帧与上行子帧的符号 数的比值可以为 35:12, 32:15, 29:18中任意一项, 下面将具体的介绍根据 WiMAX网络的帧结构确定 LTE-TDD网络的半帧结构的方法,请参阅图 4, 为本发明实施例中, 当 WiMAX 网络的帧结构为下行子帧与上行子帧的符 号数的比值为 35:12时, WiMAX网络和 LTE-TDD网络同步的方法的一个 实施例, 包括:
401、 将 LTE-TDD网络和 WiMAX网络与相同的时钟源进行同步; 在本发明实施例中 , 基站将 LTE-TDD网络和 WiMAX网络与相同的 时钟源进行同步,其中,时钟源可以是全球定位系统( GPS , Global Positioning System ) 时钟源, 或者是 1588时钟源, 或者是远程全球定位系统( RGPS, Remote Global Positioning System ) 时钟源。
402、 确定 WiMAX网络的帧结构;
在本发明实施例中 ,基站将确定 WiMAX网络的帧结构,其中, WiMAX 者 32:15, 或者 29:18。 比为 35:12, 则确定 LTE-TDD网络的半帧结构中下行子帧与上行子帧的子 帧数的配置比为 3:1 , 且 LTE-TDD网络的半帧结构的帧头相对于 WiMAX 网络的帧结构的帧头延迟 2ms。
在本发明实施例中, 若 WiMAX 网络的帧结构中下行子帧与上行子帧 的符号数的配置比为 35: 12, 为了使得 WiMAX网络能够与 LTE-TDD网络 配置比为 3: 1 , 且 LTE-TDD网络的半帧结构的帧头相对于 WiMAX网络的 帧结构的帧头延迟 2ms。
下面将进行具体的分析:
WiMAX网络中的帧长为 5ms ,切换周期为 5ms ,为了能够使得 WiMAX 网络与 LTE-TDD 网络能够同步, LTE-TDD 网络的帧的切换周期应该为 5ms,且当 WiMAX网络的帧结构中上行子帧与下行子帧的符号数的配置比 为 35:12时, 下行子帧的长度为 3600us, 上行子帧长度为 1234.3us, TGG 时间为 105.7us, RTG长度为 60us, 因此, 在 LTE-TDD网络的半帧结构中, 下行子帧的长度必须大于 3ms, 可确定 LTE-TDD网络的半帧结构中下行子 帧与上行子帧的子帧数的配置比为 3:1 , 即选择表 1中的编号为 2的配置方 案。在选择了编号为 2的配置方案后,并不能使得 WiMAX网络和 LTE-TDD 网络完全同步, 请参阅图 5-a, WiMAX网络的帧结构图及 LTE-TDD网络 的半帧结构图, 从图 5-a可以看出, WiMAX网络与 LTE-TDD网络仍存在 干扰。 因此, 还需要确定 LTE-TDD网络的半帧结构中的特殊子帧的配置方 的延迟时间, 以实现 WiMAX网络和 LTE-TDD网络的同步。
从图 5-a所示的结构图中可以看出,为了使得 WiMAX网络和 LTE-TDD 网络能够同步, 还需要将 LTE-TDD网络的半帧结构的帧头相对于 WiMAX 网络的帧结构的帧头延迟 2ms, ,同时,因为 WiMAX网络的下行子帧加 TTG 时间的长度为 3705.7us , 为了避免特殊子帧中的 DwPTS 及 UpPTS 与 WiMAX网络产生干扰, 还需要对 LTE-TDD网络的半帧结构中的特殊子帧 进行配置, 即在延迟 2ms之后, 需使得 LTE-TDD网络的半帧结构的帧头所 在的第一个子帧与特殊子帧中的 DwPTS 的长度不超过 1705.7us, DwPTS 的长度不超过 705.7us, 以确保不会发生干扰。
在本发明实施例中, 由于特殊子帧长为 1ms, 包括 2个时隙, 每个时 隙包括 7个符号, 且一个时隙中的 7个符号的长度不完全相同, 第 1个符 号的长度为 71.88us, 剩下的 6个符号中每一个符号的长度约为 71.35us, 因 此, 为了确保 WiMAX网络和 LTE网络的同步, DwPTS的符号数目应该小 于或等于 9, 请参阅表 2, 特殊子帧的配置方案可选择编号为 0, 1 , 5, 6 中的任意一种, 具体请参阅图 5-b, 为本发明实施例中, 按步骤 403执行 之后 , WiMAX网络和 LTE-TDD网络同步时的帧结构图。
在本发明实施例中, 若 WiMAX 网络的帧结构中下行子帧与上行子帧 的符号数的配置比为 35:12, 则可确定 LTE-TDD网络的半帧结构中下行子 帧与上行子帧的子帧数的配置比为 3:1 , 且 LTE-TDD网络的半帧结构的帧 头相对于 WiMAX网络的帧结构的帧头延迟 2ms , 且 LTE-TDD网络的半帧 结构中的特殊子帧的 DwPTS的长度小于或等于 9个符号,能够有效的保证 WiMAX网络和 LTE-TDD网络之间的同步, 避免干扰的产生。
请参阅图 6, 为本发明实施例中, 当 WiMAX网络的帧结构为下行子帧 与上行子帧的符号数的比值为 32:15时, WiMAX网络和 LTE-TDD网络同 步的方法的一个实施例, 包括:
601、 将 LTE-TDD网络和 WiMAX网络与相同的时钟源进行同步; 在本发明实施例中 , 基站将 LTE-TDD网络和 WiMAX网络与相同的 时钟源进行同步,其中,时钟源可以是全球定位系统( GPS , Global Positioning System ) 时钟源, 或者是 1588时钟源, 或者是远程全球定位系统( RGPS, Remote Global Positioning System ) 时钟源。
602、 确定 WiMAX网络的帧结构;
在本发明实施例中 ,基站将确定 WiMAX网络的帧结构,其中, WiMAX 者 32:15, 或者 29:18。 比为 32:15, 则确定 LTE-TDD网络的半帧结构中下行子帧与上行子帧的子 帧数的配置比为 3:1 , 且 LTE-TDD网络的半帧结构的帧头相对于 WiMAX 网络的帧结构的帧头延迟 2ms, 且 LTE-TDD网络的半帧结构中的特殊子帧 的 DWPTS的长度小于或等于 5个符号。
在本发明实施例中, 若 WiMAX 网络的帧结构中下行子帧与上行子帧 的符号数的配置比为 32:15, 为了使得 WiMAX网络和 LTE-TDD网络能够 配置比为 3: 1 , 且 LTE-TDD网络的半帧结构的帧头相对于 WiMAX网络的 帧结构的帧头延迟 2ms , 且 LTE-TDD 网络的半帧结构中的特殊子帧的 DwPTS的长度小于或等于 5个符号。
下面将进行具体的分析:
在本发明实施例中, 当 WiMAX 网络的帧结构中下行子帧与上行子帧 的符号数的配置比为 32:15时, 下行子帧中的最后一个符号没有发送功率, 此时, 真正有发送功率的下行子帧的长度为 3188.6us, 上行子帧的长度为 1542.9us, RTG时间为 60us, TTG时间为 208.6us, 需要说明的是, TGG时 间原本为 105.7us, 由于有一个符号没有发送功率, 因此, 在这种情况下, TTG时间为 208.6us。
为了使得 LTE-TDD网络能够与 WiMAX网络同步, LTE-TDD网络的 半帧结构中下行子帧与上行子帧的子帧数的配置比可确定为 3:1 , 请参阅图 7-a。 WiMAX网络的帧结构图及 LTE-TDD网络的半帧结构图, 从图 7-a可 以看出, WiMAX 网络域 LTE-TDD 网络仍存在干扰, 因此, 还需要确定 LTE-TDD网络的半帧结构中的特殊子帧的配置方式以及 LTE-TDD 网络的 半帧结构的帧头相对于 WiMAX 网络的帧结构的帧头的延迟时间, 以实现 WiMAX网络和 LTE-TDD网络的同步。 从图 7-a所示的结构图中可以看出,为了使得 WiMAX网络和 LTE-TDD 网络能够同步, 还需要将 LTE-TDD网络的半帧结构的帧头相对于 WiMAX 网络的帧结构的帧头延迟 2ms ,同时,因为 WiMAX网络的下行子帧加 TTG 时间的长度为 3397.2us , 为了避免特殊子帧中的 DwPTS 及 UpPTS 与 WiMAX网络产生干扰, 还需要对 LTE-TDD网络的半帧结构中的特殊子帧 进行配置, 即在延迟 2ms之后, 需使得 LTE-TDD网络的半帧结构的帧头所 在的第一个子帧与特殊子帧中的 DwPTS 的长度不超过 1397.2us, DwPTS 的长度不超过 397.2us, 以确保不会发生干扰。
在本发明实施例中, 由于特殊子帧长为 1ms, 包括 2个时隙, 每个时 隙包括 7个符号, 且一个时隙中的 7个符号的长度不完全相同, 第 1个符 号的长度为 71.88us, 剩下的 6个符号中每一个符号的长度约为 71.35us, 因 此, 为了确保 WiMAX网络和 LTE网络的同步, DwPTS的符号数目应该小 于或等于 5, 请参阅表 2, 特殊子帧的配置方案可选择编号为 0或 5的配置 方案,具体请参阅图 7-b,为本发明实施例中按步骤 603执行之后, WiMAX 网络和 LTE-TDD网络同步时的帧结构图。
请参阅图 8, 为本发明实施例中, 当 WiMAX网络的帧结构为下行子帧 与上行子帧的符号数的比值为 29:18时, WiMAX网络和 LTE-TDD网络同 步的方法的一个实施例, 包括:
801、 将 LTE-TDD网络和 WiMAX网络与相同的时钟源进行同步; 在本发明实施例中 , 基站将 LTE-TDD网络和 WiMAX网络与相同的 时钟源进行同步,其中,时钟源可以是全球定位系统( GPS , Global Positioning System ) 时钟源, 或者是 1588时钟源, 或者是远程全球定位系统( RGPS, Remote Global Positioning System ) 时钟源。
802、 确定 WiMAX网络的帧结构;
在本发明实施例中 ,基站将确定 WiMAX网络的帧结构,其中, WiMAX 者 32:15, 或者 29:18。 比为 29:18, 则确定 LTE-TDD网络的半帧结构中下行子帧与上行子帧的子 帧数的配置比为 2:2, 确定 LTE-TDD网络的帧结构的帧头相对于 WiMAX 网络的半帧结构的帧头延迟 1ms, 且将 WiMAX 网络的下行子帧的射频通 道结束位置设置在下行子帧的第 27个符号;
在本发明实施例中, 若 WiMAX 网络的帧结构中下行子帧与上行子帧 的符号数的配置比为 29: 18 , 则为了使得 WiMAX网络与 LTE-TDD网络同 置比为 2:2, 确定 LTE-TDD网络的帧结构的帧头相对于 WiMAX网络的半 帧结构的帧头延迟 1ms, 且将 WiMAX 网络的下行子帧的射频通道结束位 置设置在下行子帧的第 27个符号。
下面将进行具体的分析:
在本发明实施例中, 当 WiMAX 网络的帧结构中下行子帧与上行子帧 的符号数的配置比为 18:29时, 下行子帧长度为 2982.6us, 上行子帧长度为 1851.44us , TGG时间为 105.7us , RTG时间为 60us , 为使得 WiMAX网络 与 LTE-TDD 网络能够同步, LTE-TDD 网络的半帧结构中的下行子帧与上 行子帧的子帧数的配置比应该为 2:2, 即选择表 1中编号为 1的配置方案, 然而,在选择了编号为 1的配置方案后,并不能使得 WiMAX网络的和 LTE 网络完全同步, 请参阅图 9-a, WiMAX网络的帧结构图及 LTE-TDD网络 的半帧结构图, 从图 9-a中中可以看出, WiMAX网络与 LTE-TDD网络仍 存在干扰。 因此, 还需要进一步进行调整和配置。
从图 9-a中可以看出, 为了使得 WiMAX网络与 LTE-TDD网络同步, 头延迟 lms„
在本发明实施例中, WiMAX网络的帧结构中下行子帧包括 29个符号 数, 长度为 2982.86us, 且每两个符号组成一个时隙, 时隙则是资源分配的 最小单位, 然而, 由于 LTE-TDD网络的半帧结构在延迟 lms之后, 特殊子 帧无论如何配置, 都还将与 WiMAX 网络产生干扰, 为了避免干扰, 可将 WiMAX网络的下行子帧的射频通道结束位置设置在下行子帧的第 27个符 号, 以实现 WiMAX网络和 LTE网络的同步。
在本发明实施例中, 由于 WiMAX 网络的下行子帧的射频通道结束位 置设置在下行子帧的第 27个符号, 则下行子帧的实际包括 27个符号, 长 度为 2777.14us, 而 LTE的 UpPTS最大为 2个符号, 在 LTE-TDD网络的半 帧结构延迟 lms的情况下, 无论特殊子帧如何配置都可以支持 WiMAX网 络和 LTE网络的同步。具体的请参阅图 9-b为本发明实施例中,按步骤 803 执行之后 , LTE-TDD网络和 WiMAX网络同步时的帧结构图。 比为 29: 18, 则确定 LTE-TDD网络的半帧结构中下行子帧与上行子帧的子 帧数的配置比为 2:2,确定 LTE-TDD网络的半帧结构的帧头相对于 WiMAX 网络的半帧结构的帧头延迟 1003.16us~1020.31us,且将 LTE-TDD网络的半 在本发明实施例中, 当 WiMAX 网络的帧结构中下行子帧与上行子帧 的符号数的配置比为 29:18时, 为了实现 LTE网络和 WiMAX网络的同步, 比为 2:2, 确定 LTE-TDD网络的半帧结构的帧头相对于 WiMAX网络的半 帧结构的帧头延迟 1003.16us〜: I020.31us,且将 LTE-TDD网络的半帧结构中 的特殊子帧的上行导频时隙的符号数设置为 0。
下面将进行具体的分析:
在本发明实施例中, 当 WiMAX 网络的帧结构中下行子帧与上行子帧 的符号数的配置比为 18:29时, 下行子帧长度为 2982.6us, 上行子帧长度为 1851.44us , TGG时间为 105.7us , RTG时间为 60us , 为使得 WiMAX网络 与 LTE-TDD 网络能够同步, LTE-TDD 网络的半帧结构中的下行子帧与上 行子帧的子帧数的配置比应该为 2:2, 即选择表 1中编号为 1的配置方案, 然而,在选择了编号为 1的配置方案后,并不能使得 WiMAX网络的和 LTE 网络完全同步, 请参阅图 9-a, WiMAX网络的帧结构图及 LTE-TDD网络 的半帧结构图, 从图 9-a中中可以看出, WiMAX网络与 LTE-TDD网络仍 存在干扰。 因此, 还需要对 LTE-TDD的半帧结构进一步进行调整和配置。
在本发明实施例中, 在 LTE-TDD 网络的半帧结构的帧头相对于 WiMAX网络的帧结构的帧头延迟 lms的情况下, LTE-TDD的上行子帧仍 然有 3.16us 的区域会受到 WiMAX 网络的下行子帧的影响, 又由于 LTE-TDD 的半帧结构中的上行子帧和下一个半帧结构的下行子帧之间有 20.31us的用于 LTE-TDD网络的上下行接收 /发送通道切换的时间, 因此, LTE-TDD 网络的半帧结构的帧头可在延迟 lms 的基础上再延迟 3.16us~20.31us, 即 LTE-TDD网络的半帧结构的帧头相对于 WiMAX网络 的帧头延迟时间为 1003.16us〜: I020.31us。 同时, 为了避免 LTE-TDD的射频 在接收通道打开时受到 WiMAX网络下行信号的干扰,可将 LTE-TDD网络
LTE-TDD网络和 WiMAX网络的同步, 需要说明的是, 若将 LTE-TDD网 网络的射频接收通道的打开时间, 需由原来的 UpPTS的起始位置修改为上 行子帧的起始位置。
在本发明实施例中, LTE-TDD网络的半帧结构中的特殊子帧的 UpPTS 区域主要有两个功能,一个是承载格式( format ) 4的前导序列( Preamble ), 主要用于小区半径较小时, 发送短的 Preamble来完成随机接入过程, 另一 个是承载 sounding参考信息, 用于上行信号的测量、 信道估计、 帧同步定 时等功能, 然而, UpPTS 区域的这两个功能都不是必须的, 因为短的 Preamble 只用于小区半径较小的时候, 可以节省一部分的上行资源, 但是 更普遍的场景是使用正常的 Preamble, 此类正常的 Preamble可以实现短的 Preamble的功能, 又不需要在 UpPTS上发送, 同时, sounding参考信号不 只是在 UpPTS上发送, 在普通上行子帧的最用一个符号上也能发送, 使得 通过基站的处理, 可以把该 sounding参考信号设置在非 UpPTS的符号上。 因此, UpPTS 区域并不是必须存在的, 可以去掉, 且去掉后并不会影响 LTE-TDD网络的随机接入和上行业务的执行, 即可将 LTE-TDD网络的半
9-c , 为本发明实施例中 , 按步骤 804执行之后 , LTE-TDD网络和 WiMAX 网络同步时的帧结构图, 需要说明的是, 图 9-c中, 是以 LTE-TDD子帧的 半帧结构的帧头相对于 WiMAX网络的帧头的延迟时间为 1003.16us为例。
在本发明实施例中, 基站将根据 WiMAX网络的帧结构确定 LTE网络 的半帧结构,及 LTE-TDD网络的半帧结构的帧头相对于 WiMAX网络的帧 结构的帧头的延迟时间, 能够有效的实现 LTE-TDD网络与 WiMAX网络的 同步。
请参阅图 10, 为本发明实施例中基站的实施例, 包括:
第一同步单元 1001 ,用于将 LTE-TDD网络和 WiMAX网络与相同的时 钟源进行同步;
确定单元 1002 , 用于确定 WiMAX网络的帧结构;
第二同步单元 1003 , 用于根据 WiMAX 网络的帧结构确定 LTE-TDD 网络的的半帧结构, 及确定 LTE-TDD 网络的半帧结构的帧头相对于 WiMAX 网络的帧结构的帧头的延迟时间, 使得 LTE-TDD 网络的半帧与 WiMAX网络的帧达到同步。
在本发明实施例中, 第一同步单元 1001将 LTE-TDD网络和 WiMAX 网络与相同的时钟源进行同步, 接着由确定单元 1002确定 WiMAX网络的 帧结构,并由第二同步单元 1003根据 WiMAX网络的帧结构确定 LTE-TDD 网络的的半帧结构, 及确定 LTE-TDD 网络的半帧结构的帧头相对于 WiMAX 网络的帧结构的帧头的延迟时间, 使得 LTE-TDD 网络的半帧与 WiMAX网络的帧达到同步。
为了更好的理解本发明实施例中的装置, 请参阅图 11 , 为本发明实施 例中基站的一个实施例, 包括:
如图 10所示实施例中的第一同步单元 1001 , 确定单元 1002和第二同 步单元 1003 , 且与图 10所示实施例描述的内容相似, 此处不再赘述。
其中, 第二同步单元 1003包括:
第一处理单元 1101 , 用于若 WiMAX网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 35:12, 则确定 LTE-TDD网络的半帧结构中下行 子帧与上行子帧的子帧数的配置比为 3:1 , 且 LTE-TDD网络的半帧结构的 帧头相对于 WiMAX网络的帧结构的帧头延迟 2ms , 还用于设置 LTE-TDD 个符号;
第二处理单元 1102, 用于若 WiMAX网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 32:15, 则确定 LTE-TDD网络的半帧结构中下行 子帧与上行子帧的子帧数的配置比为 3:1 , 且 LTE-TDD网络的半帧结构的 帧头相对于 WiMAX网络的帧结构的帧头延迟 2ms , 还用于确定 LTE-TDD 网络的半帧结构中的特殊子帧的 DWPTS的长度小于或等于 5个符号; 第三处理单元 1103 , 用于若 WiMAX网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 29:18, 则确定 LTE-TDD网络的半帧结构中下行 子帧与上行子帧的子帧数的配置比为 2:2, 确定 LTE-TDD网络的帧结构的 帧头相对于 WiMAX网络的半帧结构的帧头延迟 1ms, 且将 WiMAX网络 的下行子帧的射频通道结束位置设置在下行子帧的第 27个符号;
第四处理单元 1104, 用于若 WiMAX网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 29:18, 则确定 LTE-TDD网络的半帧结构中下行 子帧与上行子帧的子帧数的配置比为 2:2, 确定 LTE-TDD网络的半帧结构 的帧头相对于 WiMAX网络的半帧结构的帧头延迟 1003.16us~1020.31us, 为 0。
在本发明实施例中, 第一同步单元 1001将 LTE-TDD网络和 WiMAX 网络与相同的时钟源进行同步, 接着由确定单元 1002确定 WiMAX网络的 帧结构, 若 WiMAX 网络的帧结构中下行子帧与上行子帧的符号数的配置 比为 35:12, 则第二同步单元 1003中的第一处理单元 1101确定 LTE-TDD 网络的半帧结构中下行子帧与上行子帧的子帧数的配置比为 3:1 , 且 LTE-TDD网络的半帧结构的帧头相对于 WiMAX网络的帧结构的帧头延迟 2ms , 还用于设置 LTE-TDD网络的半帧结构中的特殊子帧的下行导频时隙 DWPTS的长度小于或等于 9个符号; 若 WiMAX网络的帧结构中下行子帧 与上行子帧的符号数的配置比为 32:15 , 则第二同步单元 1003 中的第二处 理单元 1102确定 LTE-TDD网络的半帧结构中下行子帧与上行子帧的子帧 数的配置比为 3: 1 , 且 LTE-TDD网络的半帧结构的帧头相对于 WiMAX网 络的帧结构的帧头延迟 2ms, 还用于确定 LTE-TDD网络的半帧结构中的特 殊子帧的 DWPTS的长度小于或等于 5个符号; 若 WiMAX网络的帧结构 中下行子帧与上行子帧的符号数的配置比为 29:18, 则第二同步单元 1003 中的第三处理单元 1103确定 LTE-TDD网络的半帧结构中下行子帧与上行 子帧的子帧数的配置比为 2:2, 确定 LTE-TDD网络的帧结构的帧头相对于 WiMAX网络的半帧结构的帧头延迟 1ms,且将 WiMAX网络的下行子帧的 射频通道结束位置设置在下行子帧的第 27个符号; 若 WiMAX网络的帧结 构中下行子帧与上行子帧的符号数的配置比为 29:18,则第二同步单元 1003 中的第四处理单元 1104确定 LTE-TDD网络的半帧结构中下行子帧与上行 子帧的子帧数的配置比为 2:2, 确定 LTE-TDD网络的半帧结构的帧头相对 于 WiMAX 网络的半帧结构的帧头延迟 1003.16us~1020.31us , 且将 经过第二同步单元 1003 的同步处理, 能够有效的实现 LTE-TDD 网络和 WiMAX网络的同步。
需要说明的是, 在本发明实施例还涉及一种通信系统, 该通信系统包 含如图 10或 11所示的基站。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步 骤是可以通过程序来指令相关的硬件完成, 所述的程序可以存储于一种计 算机可读存储介质中, 上述提到的存储介质可以是只读存储器, 磁盘或光 盘等。
以上对本发明所提供的一种 LTE-TDD 网络和 WiMAX 网络同步的方 法、 基站及系统进行了详细介绍, 对于本领域的一般技术人员, 依据本发 明实施例的思想, 在具体实施方式及应用范围上均会有改变之处, 综上所 述, 本说明书内容不应理解为对本发明的限制。
+

Claims

1、一种长期演进时分双工 LTE-TDD网络和全球 ϋ波互联接入 WiMAX 网络同步的方法, 其特征在于, 包括:
将 LTE-TDD网络和 WiMAX网络与相同的时钟源进行同步; 确定 WiMAX网络的帧结构;
根据所述 WiMAX网络的帧结构确定 LTE-TDD网络的的半帧结构,及 构的帧头的延迟时间,使得所述 LTE-TDD网络与所述 WiMAX网络达到同 步。
2、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述 WiMAX 网络的帧结构确定 LTE-TDD网络的的半帧结构, 及确定所述 LTE-TDD网 包括:
若所述 WiMAX l»J ^^ TO^^J T r ΛΤΤ TA S-ΛΤΤ TO ti Ό ^ 比为 35:12, 则确定所述 LTE-TDD网络的半帧结构中下行子帧与上行子帧 的子帧数的配置比为 3:1 , 且所述 LTE-TDD网络的半帧结构的帧头相对于 所述 WiMAX网络的帧结构的帧头延迟 2ms , 且所述 LTE-TDD网络的半帧 结构中的特殊子帧的下行导频时隙 DWPTS的长度小于或等于 9个符号。
3、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述 WiMAX 网络的帧结构确定 LTE-TDD网络的的半帧结构, 及确定所述 LTE-TDD网 包括:
若所述 WiMAX η ^^ ΤΑ ^ΆΗ Ύ 卜 ^丁丁 ^工^丁丁 ,
比为 32:15, 则确定所述 LTE-TDD网络的半帧结构中下行子帧与上行子帧 的子帧数的配置比为 3:1 , 且所述 LTE-TDD网络的半帧结构的帧头相对于 所述 WiMAX网络的帧结构的帧头延迟 2ms , 且所述 LTE-TDD网络的半帧 结构中的特殊子帧的 DWPTS的长度小于或等于 5个符号。
4、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述 WiMAX 网络的帧结构确定 LTE-TDD网络的的半帧结构, 及确定所述 LTE-TDD网 络的
包括:
若所述 WiMAX η ^^ ΤΑ ^ΆΗ Ύ 卜 ^丁丁 ^工^丁丁 ,
比为 29:18, 则确定所述 LTE-TDD网络的半帧结构中下行子帧与上行子帧 的子帧数的配置比为 2:2, 确定所述 LTE-TDD网络的帧结构的帧头相对于 所述 WiMAX网络的半帧结构的帧头延迟 1ms, 且将所述 WiMAX网络的 下行子帧的射频通道结束位置设置在下行子帧的第 27个符号。
5、 根据权利要求 1所述的方法, 其特征在于, 所述根据所述 WiMAX 网络的帧结构确定 LTE-TDD网络的的半帧结构, 及确定所述 LTE-TDD网 包括:
若所述 WiMAX η ^^ ΤΑ ^ΆΗ Ύ 卜 ^丁丁 ^工^丁丁 ,
比为 29:18, 则确定所述 LTE-TDD网络的半帧结构中下行子帧与上行子帧 的子帧数的配置比为 2:2, 确定所述 LTE-TDD网络的半帧结构的帧头相对 于所述 WiMAX网络的半帧结构的帧头延迟 1003.16us~1020.31us, 且将所
0。
6、 一种基站, 其特征在于, 所述基站包括:
第一同步单元,用于将 LTE-TDD网络和 WiMAX网络与相同的时钟源 进行同步;
确定单元, 用于确定 WiMAX网络的帧结构;
第二同步单元,用于根据所述 WiMAX网络的帧结构确定 LTE-TDD网 络的的半帧结构,及确定所述 LTE-TDD网络的半帧结构的帧头相对于所述 WiMAX网络的帧结构的帧头的延迟时间, 使得所述 LTE-TDD网络的半帧 与所述 WiMAX网络的帧达到同步。
7、根据权利要求 8所述的基站, 其特征在于, 所述第二同步单元包括: 第一处理单元, 用于若所述 WiMAX 网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 35:12, 则确定所述 LTE-TDD网络的半帧结构中 下行子帧与上行子帧的子帧数的配置比为 3:1 , 且所述 LTE-TDD网络的半 帧结构的帧头相对于所述 WiMAX 网络的帧结构的帧头延迟 2ms, 还用于 设置所述 LTE-TDD网络的半帧结构中的特殊子帧的下行导频时隙 DWPTS 的长度小于或等于 9个符号;
第二处理单元, 用于若所述 WiMAX 网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 32:15, 则确定所述 LTE-TDD网络的半帧结构中 下行子帧与上行子帧的子帧数的配置比为 3:1 , 且所述 LTE-TDD网络的半 帧结构的帧头相对于所述 WiMAX 网络的帧结构的帧头延迟 2ms, 还用于 确定所述 LTE-TDD网络的半帧结构中的特殊子帧的 DWPTS的长度小于或 等于 5个符号;
第三处理单元, 用于若所述 WiMAX 网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 29:18, 则确定所述 LTE-TDD网络的半帧结构中 下行子帧与上行子帧的子帧数的配置比为 2:2, 确定所述 LTE-TDD网络的 帧结构的帧头相对于所述 WiMAX 网络的半帧结构的帧头延迟 1ms, 且将 所述 WiMAX网络的下行子帧的射频通道结束位置设置在下行子帧的第 27 个符号;
第四处理单元, 用于若所述 WiMAX 网络的帧结构中下行子帧与上行 子帧的符号数的配置比为 29:18, 则确定所述 LTE-TDD网络的半帧结构中 下行子帧与上行子帧的子帧数的配置比为 2:2, 确定所述 LTE-TDD网络的 半帧结构的帧头相对于所述 WiMAX 网络的半帧结构的帧头延迟
1003.16us~1020.31us, 且将所述 LTE-TDD网络的半帧结构中的特殊子帧的 上行导频时隙的符号数设置为 0。
8、 一种通信系统, 其特征在于, 包括如权利要求 6或 7所述的基站。
PCT/CN2013/070092 2012-01-18 2013-01-06 LTE-TDD网络和WiMAX网络同步的方法、基站及系统 WO2013107304A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020147021082A KR101621292B1 (ko) 2012-01-18 2013-01-06 Lte-tdd 네트워크와 wimax 네트워크를 동기화하는 방법, 기지국 및 시스템
EP13738877.3A EP2790448A4 (en) 2012-01-18 2013-01-06 METHOD, BASE STATION AND SYSTEM FOR SYNCHRONIZING LTE-TDD NETWORK AND WIMAX NETWORK
JP2014552493A JP5814477B2 (ja) 2012-01-18 2013-01-06 LTE−TDDネットワークとWiMAXネットワークとを同期させるための方法、基地局、およびシステム
US14/335,336 US20140328227A1 (en) 2012-01-18 2014-07-18 Method, base station, and system for synchronizing lte-tdd network and wimax network

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210016140.9 2012-01-18
CN201210016140.9A CN102573045B (zh) 2012-01-18 2012-01-18 LTE-TDD网络和WiMAX网络同步的方法、基站及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/335,336 Continuation US20140328227A1 (en) 2012-01-18 2014-07-18 Method, base station, and system for synchronizing lte-tdd network and wimax network

Publications (1)

Publication Number Publication Date
WO2013107304A1 true WO2013107304A1 (zh) 2013-07-25

Family

ID=46417211

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/070092 WO2013107304A1 (zh) 2012-01-18 2013-01-06 LTE-TDD网络和WiMAX网络同步的方法、基站及系统

Country Status (6)

Country Link
US (1) US20140328227A1 (zh)
EP (1) EP2790448A4 (zh)
JP (1) JP5814477B2 (zh)
KR (1) KR101621292B1 (zh)
CN (1) CN102573045B (zh)
WO (1) WO2013107304A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018019234A (ja) * 2016-07-27 2018-02-01 ソフトバンク株式会社 基地局、通信システム及び同期信号発信装置
JP2018019233A (ja) * 2016-07-27 2018-02-01 ソフトバンク株式会社 基地局、通信システム及び同期信号発信装置
CN111133715A (zh) * 2017-09-28 2020-05-08 瑞典爱立信有限公司 Tdd模式下用于nb-iot传输的nprach格式

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573045B (zh) * 2012-01-18 2014-12-03 华为技术有限公司 LTE-TDD网络和WiMAX网络同步的方法、基站及系统
EP3328139B1 (en) 2015-08-21 2022-03-30 Huawei Technologies Co., Ltd. Wireless communication method, network device, user equipment, and system
KR102145255B1 (ko) 2016-01-08 2020-08-18 후아웨이 테크놀러지 컴퍼니 리미티드 스케줄링 방법, 데이터 송신 방법 및 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646245A (zh) * 2008-06-16 2010-02-10 美国博通公司 通信方法和通信系统
CN101841906A (zh) * 2009-03-19 2010-09-22 华为技术有限公司 帧同步发射的方法和基站
CN102315877A (zh) * 2010-06-30 2012-01-11 中兴通讯股份有限公司 Wimax系统的无线帧发射方法和基站
CN102573045A (zh) * 2012-01-18 2012-07-11 华为技术有限公司 LTE-TDD网络和WiMAX网络同步的方法、基站及系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090312010A1 (en) * 2008-06-16 2009-12-17 Steven Hall Method and system for bluetooth and wimax coexistence
CN101615947B (zh) * 2008-06-24 2016-10-05 华为技术有限公司 配置上下行子帧配比方法、及数据传输的方法、装置
CN101686496A (zh) * 2008-09-27 2010-03-31 中兴通讯股份有限公司 WiMAX演进系统下行子帧分配、信息传输及获取方法
US20100124184A1 (en) * 2008-11-14 2010-05-20 Qualcomm Incorporated Methods and systems with frame structure for improved adjacent channel co-existence
US9107077B2 (en) * 2010-07-23 2015-08-11 Broadcom Corporation Method and system for time synchronization of WiMAX and LTE-TDD networks
US20120147793A1 (en) * 2010-12-09 2012-06-14 Futurewei Technologies, Inc. System and Method for the Coexistence of Multiple Communications Systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101646245A (zh) * 2008-06-16 2010-02-10 美国博通公司 通信方法和通信系统
CN101841906A (zh) * 2009-03-19 2010-09-22 华为技术有限公司 帧同步发射的方法和基站
CN102315877A (zh) * 2010-06-30 2012-01-11 中兴通讯股份有限公司 Wimax系统的无线帧发射方法和基站
CN102573045A (zh) * 2012-01-18 2012-07-11 华为技术有限公司 LTE-TDD网络和WiMAX网络同步的方法、基站及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2790448A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018019234A (ja) * 2016-07-27 2018-02-01 ソフトバンク株式会社 基地局、通信システム及び同期信号発信装置
JP2018019233A (ja) * 2016-07-27 2018-02-01 ソフトバンク株式会社 基地局、通信システム及び同期信号発信装置
CN111133715A (zh) * 2017-09-28 2020-05-08 瑞典爱立信有限公司 Tdd模式下用于nb-iot传输的nprach格式
CN111133715B (zh) * 2017-09-28 2022-05-24 瑞典爱立信有限公司 Tdd模式下传输随机接入前导码的方法和设备
US11357055B2 (en) 2017-09-28 2022-06-07 Telefonaktiebolaget Lm Ericsson (Publ) NPRACH formats for NB-IoT transmission in TDD mode

Also Published As

Publication number Publication date
KR20140111681A (ko) 2014-09-19
US20140328227A1 (en) 2014-11-06
CN102573045B (zh) 2014-12-03
KR101621292B1 (ko) 2016-05-31
CN102573045A (zh) 2012-07-11
EP2790448A1 (en) 2014-10-15
JP5814477B2 (ja) 2015-11-17
EP2790448A4 (en) 2014-12-03
JP2015511423A (ja) 2015-04-16

Similar Documents

Publication Publication Date Title
AU2018222993B2 (en) Scaled symbols for a self-contained time division duplex (tdd) subframe structure
EP3272166B1 (en) Self-contained time division duplex (tdd) subframe structure
KR101971814B1 (ko) 자체 완비형 시간 분할 듀플렉스 (tdd) 서브프레임 구조에서의 미션 크리티컬 데이터 지원
US9107077B2 (en) Method and system for time synchronization of WiMAX and LTE-TDD networks
TWI708495B (zh) 在分時雙工載波中利用共用短脈衝的延遲控制回饋
WO2013107304A1 (zh) LTE-TDD网络和WiMAX网络同步的方法、基站及系统
EP3332501A1 (en) Configurable bi-directional time division duplex (tdd) subframe structure
JP2016519483A (ja) 通信システムにおけるharqタイミングの決定方法及び装置
WO2019024756A1 (zh) 通信方法、网络设备和中继设备
WO2013060156A1 (zh) 异系统间同步的实现方法及设备
WO2011147300A1 (zh) 系统联合组网时的信号传输方法、系统和设备
US20230078313A1 (en) Control using nr tdd
WO2013135144A1 (zh) 时分双工自适应帧结构的重传方法、网络及终端侧设备
CN103874187A (zh) 一种设备对设备传输中的上下行定时确定方法
CN107294680B (zh) 用于tdd系统的通信方法及装置
WO2015139269A1 (zh) 一种信息的传输方法及装置
CN114826513B (zh) 一种终端识别方法及设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13738877

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2013738877

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014552493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147021082

Country of ref document: KR

Kind code of ref document: A