WO2013106949A1 - 用于内部稀薄气流模拟验证及压力检测的变结构真空腔室 - Google Patents

用于内部稀薄气流模拟验证及压力检测的变结构真空腔室 Download PDF

Info

Publication number
WO2013106949A1
WO2013106949A1 PCT/CN2012/000091 CN2012000091W WO2013106949A1 WO 2013106949 A1 WO2013106949 A1 WO 2013106949A1 CN 2012000091 W CN2012000091 W CN 2012000091W WO 2013106949 A1 WO2013106949 A1 WO 2013106949A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
air
lining
flow field
vacuum chamber
Prior art date
Application number
PCT/CN2012/000091
Other languages
English (en)
French (fr)
Inventor
程嘉
王人成
季林红
刘伟峰
王春财
林嘉
孙钰淳
郝道欣
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Priority to PCT/CN2012/000091 priority Critical patent/WO2013106949A1/zh
Publication of WO2013106949A1 publication Critical patent/WO2013106949A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge

Definitions

  • the invention belongs to the technical field of semiconductor manufacturing equipment design, and particularly relates to a variable structure true cavity for internal rare airflow simulation verification and pressure detection, which can change the chamber height, the diameter and the inlet/exit mode.
  • Integrated circuit manufacturing technology is a symbol of national economic, scientific, military and other comprehensive national strength. It has extremely important strategic significance in many fields such as national defense security, aerospace and information industry.
  • One of the key processes has very similar characteristics, namely gas phase processing in high clean, low pressure chambers. Mainly include: etching, plasma enhanced/chemical vapor deposition (PE/CVD), physical vapor deposition (PVD), and oxidative diffusion processes. A common feature of these processes is that they need to be carried out in a chamber that is close to absolute vacuum.
  • the present invention proposes a A variable structure vacuum chamber for internal lean gas flow simulation verification and pressure sensing.
  • an object of the present invention is to provide a variable structure vacuum chamber for internal lean gas flow simulation verification and pressure detection, and more particularly to a chamber height, diameter, and diameter for a low pressure gas phase processing process experiment.
  • the chamber in which the intake/exhaust mode is changed.
  • the present invention adopts the following technical solutions:
  • variable structure vacuum chamber of the first configuration includes an upper cover, a gas distribution plate, a cavity, a replaceable inner liner, a liner support, a base, an exhaust device, and a gas pressure detecting lead.
  • the upper end of the cavity is open and connected to the upper cover; the inner bottom edge of the cavity is perforated, and is connected to the exhaust device through a pipe; the inner bottom surface of the cavity is opened at a center position, and the height adjustable base is installed a base is connected to the cavity by the lifting device; a circular inner liner bracket is disposed on the inner bottom surface of the cavity and on the inner side of the hole at the edge; the inner liner bracket is provided with a plurality of centers centered on the cavity, different a lining retaining groove of a radius; the replaceable inner liner is cylindrical and installed in a lining groove of the inner liner support; the base has an annular gap with the replaceable inner liner or the inner liner support; The upper end of the replaceable inner liner is provided with a gas distribution plate connected to the lower surface of the upper cover; the air separation plate is provided with an air outlet; the upper cover is provided with an air inlet passage communicating with the inner cavity of the air distribution plate; A flow field detecting space having a variable structure size
  • the lower bottom surface of the air distribution plate covers the entire area of the top of the flow field detection space, and a plurality of air outlet holes are disposed on the lower bottom surface; or the lower bottom surface of the air distribution plate covers the top portion of the flow field detection space,
  • the lower bottom surface of the air distribution plate is connected to the upper surface thereof through the inner side wall, and a plurality of air outlet holes are arranged on the inner side wall.
  • the air outlet hole on the bottom surface of the air distribution plate is a hole having a wide width at both ends, a narrow middle portion, and an arc of the hole wall, or a conical hole having a width of - t end and a narrow end, or an inverted cone of the upper section and a lower section Cylindrical hole;
  • the hole in the inner side wall is an inclined cylindrical hole, and the center line of the hole has an angle of 30 60° with the vertical direction.
  • the present invention also provides a second variable structure vacuum chamber for internal lean airflow simulation verification and pressure detection, including an upper cover, a cavity, a replaceable lining, a lining bracket, a pedestal, an exhaust device, and air pressure detection. Leading.
  • the upper end of the cavity is open and connected to the upper cover; the inner bottom edge of the cavity is perforated, and is connected to the exhaust device through a pipe; the inner bottom surface of the cavity is open at a center position, and the height adjustable base is installed
  • the base is connected to the cavity by the lifting device: a circular inner lining bracket is arranged on the inner bottom surface of the cavity and on the inner side of the hole at the edge; the lining bracket is provided with a plurality of centers centered on the cavity, different a lining retaining groove of a radius; the replaceable inner liner is cylindrical and installed in a lining groove of the inner liner support; the base has an annular gap with the replaceable inner liner or the inner liner support; The upper end of the replaceable inner liner is closed, and the flow field detecting space with variable structure size is formed between the inner liner and the base; the lower part of the inner liner bracket is provided with a side hole; the upper cover is provided with a plurality of wearing An air inlet hole communicating with an upper
  • a plurality of cylindrical outlet holes are arranged on one side of the side wall of the outlet nozzle.
  • variable structure vacuum chambers of the two structures described above are described above:
  • a sealing ring is mounted at a position where the upper cover is connected to the cavity, where the cavity is connected to the exhaust device, and where the cavity is connected to the lifting device.
  • the lower end of the lifting device is provided with a bellows to further seal the cavity and the lifting device.
  • the exhaust device is provided with an exhaust baffle at the inlet of the chamber, and the change of the exhaust mode is achieved by adjusting the rotation angle of the exhaust baffle.
  • the fixed end of the air pressure detecting lead pipe protrudes from the bottom of the cavity, and a motor is arranged at the end of the fixed end to realize the height and angle adjustment of the air pressure detecting lead pipe, thereby realizing coverage of the air pressure parameter of the entire flow field detecting space.
  • Measuring means are mounted at the intake passage of the upper cover, the outer side wall of the cavity, and the exhaust means for measuring the air pressure parameters at these positions.
  • the chamber can be used for etching, plasma enhanced/chemical vapor deposition (PE/CVD;), physical gas phase deposition (PVD), and oxidative diffusion processes, such as low pressure gas phase processing techniques with the common characteristics of chambers.
  • PE/CVD plasma enhanced/chemical vapor deposition
  • PVD physical gas phase deposition
  • oxidative diffusion processes such as low pressure gas phase processing techniques with the common characteristics of chambers.
  • the invention is combined with the airflow simulation technology, and the experimental data and the simulation results are mutually confirmed, which can greatly improve the credibility of the optimized design.
  • Figure 1 is a schematic view showing the structure of a first structure of the present invention
  • FIGS. 2a, 2b, and 2c are partial views of three types of air outlet holes of the air distribution plate 20;
  • Figure 3 is a perspective view of the inner cylinder bracket
  • Figure 4 is a schematic view showing the structure of the chamber after the first structural replacement of the homogenizing disc
  • Figure 5 is a partial view of the air outlet of the air distribution plate of Figure 4.
  • Figure 6 is a schematic structural view of a second structure of the present invention.
  • Figure 7 is a partial view of the intake nozzle of Figure 6;
  • Figure 8 is an explanatory diagram of a change in the exhaust mode
  • Figure 9 is an explanatory diagram of the detection principle of the detection mode.
  • 30--cavity 31--cavity floor; 32-cavity measuring device; 33 chamber space; 34-chamber space bottom;
  • 60--base 61-lifting device; 62 upper surface of the base; 63-annulus; 64-base bottom space;
  • the present invention provides a variable structure vacuum chamber for internal lean airflow simulation verification and pressure detection.
  • the technical solution of the present invention will be further specifically described below by way of embodiments and with reference to the accompanying drawings.
  • variable structure chamber is composed of an upper cover 10, a conventional air disk 20, a cavity 30, a replaceable inner liner 40, an inner cylinder support 50, a base 60, an exhaust device 70, and a flow field detecting space 80.
  • the bellows 90 and the air pressure detecting lead pipe 100 and the like are composed.
  • the inner wall 42 of the replaceable inner liner, the upper surface 62 of the base, and the "F surface 22" of the air distribution plate collectively constitute the flow field detecting space 80.
  • the bellows 90 is connected between the lifting device 61 of the base 60 and the cavity bottom plate 31.
  • the bellows 90 facilitates vacuum sealing around the lifting device 61, and facilitates vertical movement of the base 60 to realize the flow field detecting space 80. Height changes.
  • the annular inner cylinder bracket 50 is fixed on the cavity bottom plate 31 through the lower support seat 53.
  • the inner liner bracket 50 is provided with a plurality of inner cylinder retaining rings 51 centered on the center of the cavity, different radii, and the inner cylinder retaining ring.
  • a liner lining 52 is formed which places the bottom end 41 of the replaceable liner within the inner cylinder stop 52 to effect a change in the inner diameter of the flow field detection space 80.
  • the edge of the lower surface 22 of the air-trapping disk is supported at the upper portion 43 of the replaceable lining.
  • the air-conditioning disk 20 is connected to the air-conditioning disk inlet 23 of the upper end and the nozzle 11 of the upper cover 10, and the nozzle 11 and the air-conditioning disk are air-intake.
  • the ports 23 collectively form an intake passage 12 of the apparatus, and an intake air measuring device 13 is mounted at the intake passage 12 for measuring parameters such as intake pressure at the intake passage 12.
  • the air inlet port 23 is inserted into the nozzle 11 of the upper cover 10, and then rotated 90° to be fixed at the upper cover 10.
  • the upper cover 10 is fitted and sealed with the cavity 30 to achieve the sealing performance of the chamber space. ⁇
  • the chamber floor 31 is connected to the exhaust unit 70, wherein the exhaust unit 70 is located at both side edges of the chamber floor 31 and can be selectively opened or closed to achieve different amounts of exhaust.
  • the venting device 70 is sealingly coupled to the chamber floor 31 to ensure the sealing performance of the chamber space.
  • An exhaust baffle 72 is attached to the upper end of the exhaust device 70.
  • the exhaust baffle 72 is respectively connected to the shaft 73.
  • the first motor 74 drives the shaft 78 to rotate, and adjusts the opening and closing degree of the exhaust baffle 72 and the exhaust device 70. The adjustment of the exhaust mode is achieved (as shown in Figure 8).
  • the process gas enters the homogenizing disc 20 from the nozzle 11 on the upper cover 10, and passes through the air outlet 21 of the homogenizing disc.
  • the process gas passes through the upper surface 62 of the susceptor and enters the bottom space 64 of the pedestal from the annulus 63 between the pedestal 60 and the replaceable lining 40, through the lining bracket
  • the side hole 54 at the bottom of the 50 enters into the chamber space bottom 34 of the chamber space 33 formed by the outer wall of the replaceable liner 40 and the inner wall of the cavity 30, and is finally discharged through the exhaust device 70 connected to the bottom of the cavity 30.
  • a gas pressure measuring device 71 is installed at the outlet of the gas device 70, and the gas pressure parameter at the outlet can be measured.
  • the lower bottom surface 22 of the air distribution plate covers the entire area of the top of the flow field detecting space 80, and a plurality of air plate outlet holes 21 are disposed on the lower surface; the air plate outlet holes 21 on the lower bottom surface 22 of the air distribution plate It is a conical hole with a wide upper end and a narrow lower end (Fig. 2a), or an upper conical cone, a lower cylindrical hole (Fig. 2b), or a hole with a wide end, a narrow middle section, and a curved wall. Figure 2c).
  • Different ways of distributing the process gases in the process chamber can be achieved by replacing the gas distribution plates with different gas outlets.
  • the airflow detecting and guiding space 100 is provided with a gas pressure detecting and guiding pipe 100.
  • the fixed end of the air pressure detecting and guiding pipe 100 protrudes from the cavity bottom plate 31, and an adjusting motor 101 is disposed at the end of the fixed end to control the rotation angle of the air pressure detecting and guiding pipe 100, such as As shown in FIG. 9, the angle of the air pressure detecting guide tube 100 is adjusted, and the head A of the air pressure detecting guide tube 1.00 can pass through the points B, C, D, etc. of the upper surface of the base 60 along the arc, and the data of these points can represent The data of the point on the circle is measured by a gauge 105 connected to the air pressure detecting lead 100.
  • the adjusting motor 101 is mounted on the fixing base 102, and the fixing base 102 is connected to the second motor 104 through the screw 103.
  • the movement of the screw 103 can be adjusted to realize the adjustment of the height of the air pressure detecting tube 100, which can be detected.
  • the change of the measured parameter with the height change in the device thereby realizing the coverage detection of the air pressure parameter of the entire flow field detection space 80.
  • the remaining structural embodiment 1 is the same.
  • the lower bottom surface 22 of the air distribution plate is connected to the upper surface thereof through the inner side wall 24 of the air distribution plate, and a plurality of air distribution plate air outlet holes 21 are provided on the inner side wall, and the air distribution plate air outlet holes 21 are inclined cylindrical holes. , the angle between the center line and the vertical direction It is 30 60°, as shown in Figure 5.
  • the air-conditioning tray 20 is not provided, and the air-inlet nozzles in the upper cover 10 are changed to change the air intake mode.
  • the rest of the structure is the same as that of the embodiment 1, as shown in FIG.
  • the upper end of the replaceable inner liner 40 is closed, and four upper air inlets 14 are evenly distributed on the upper cover 10, and the air inlet 14 of the upper cover is connected to the nozzle 11 in the replaceable inner liner 40, and the nozzle 11 is mounted.
  • the ventilating nozzle 111 arranged obliquely, different jetting modes can be realized by changing the angle of the outlet nozzle 111.
  • An outlet orifice 112 is disposed on one side of the side wall of the outlet nozzle 111, and different jetting modes can be realized by changing the diameter of the outlet orifice 112 and the spacing of the orifices.
  • the structural strength of the chamber is 1 times the standard atmospheric pressure outside the chamber, and the interior of the chamber is designed and checked for absolute vacuum, so it can be used in low pressure gas phase processing experiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Measuring Volume Flow (AREA)

Abstract

用于内部稀薄气流模拟验证及压力检测的变结构真空腔室属于半导体制造设备设计技术领域。包括上盖、匀气盘、腔体、可替换内衬、内衬支架、基座、排气装置、流场检测空间以及气压检测引管,所述流场检测空间为圆柱形,圆柱体的直径可通过更换所述可替换内衬进行调节,圆柱体的高度可通过基座的升降进行调节,进而改变所述流场检测空间的结构尺寸。该结构可用于进行刻蚀、等离子体增强/化学气相沉积(PE/CVD)、物理气相沉积(PVD)以及氧化扩散工艺等具有腔室类共同特点的低压气相加工工艺试验。可以检测不同结构腔室内部空间及各气路上的压力参数,研究低压气相加工工艺中各项参数的影响规律,并可显著提高IC装备腔室部件优化设计的可信度。

Description

用于内部稀薄气流模拟验证及压力检测的变结构真空腔室 技术领域
本发明属于半导体制造设备设计技术领域, 特别涉及一种可对腔室高度、 直 径、 进 /排气方式进行改变的用于内部稀薄气流模拟验证及压力检测的变结构真 空腔室。
背景技术
集成电路制造技术是一个国家经济、 科技、 军事等综合国力的象征, 在国防 安全、 航空航天、 信息产业等众多领域具有极其重要的战略意义。 其中有一类关 键工艺具有十分相似的特点, 即都是在高洁净度, 低气压的腔室中进行的气相加 工工艺。 主要包括: 刻蚀, 等离子体增强 /化学气相沉积 (PE/CVD), 物理气相 沉积(PVD) 以及氧化扩散工艺。 这些工艺过程的共同特点是需要在接近绝对真 空的腔室内进行。
随着 IC制造工艺越来越接近材料的物理极限, 加工方法的技术指标也越来 越高。 在工程实际中, 往往采用工艺优化的方式提升技术指标, 而忽略了对腔室 结构的优化。 传统 IC装备的研发一般遵循这样的理念: 通过仿真和试制确定腔 室结构, 而腔室结构设计在设备研发中居于次要地位, 工艺性能的提升主要通过 工艺参数优化来实现。 这样做不仅成本高、 周期长, 而且最重要的是腔室结构存 在的设计隐患并未在设计初期就解决掉。这样的设计思路明显不符合现代设计理 念, 在面对更加苛刻的技术需求时将面临严重的技术瓶颈。
通过研究与分析, 影响工艺性能的最关键的腔室结构因素有: 腔室高度、 腔 室半径、 进气方式与结构, 以及抽气方式。 这些结构参数在真实工艺设备上是很 难改变的, 即使改变, 改造成本也会很高。 为解决这一实际问题, 本发明提出一 种用于内部稀薄气流模拟验证及压力检测的变结构真空腔室。
发明内容
针对上述问题,本发明的目的是提出一种用于内部稀薄气流模拟验证及压力 检测的变结构真空腔室, 特别是关于一种用于低压气相加工工艺实验的可对腔室 高度、 直径、 进 /排气方式进行改变的腔室。
为实现上述目的, 本发明采取以下技术方案:
第一种结构的变结构真空腔室包括上盖、 匀气盘、腔体、 可替换内衬、 内衬 支架、 基座、 排气装置以及气压检测引管。
所述腔体的上端敞幵, 与上盖连接; 腔体的内底面边缘处开孔, 并通过管道 与排气装置连接; 腔体的内底面中心位置开孔, 并安装高度可调的基座, 基座通 过升降装置与腔体连接; 腔体的内底面上、 边缘处孔洞的内侧设置圆环形的内衬 支架; 所述内衬支架上设置多个以腔体中心为圆心、 不同半径的内衬挡槽; 所述 可替换内衬为圆筒形, 安装在内衬支架的内衬档槽内; 所述基座与可替换内衬或 内衬支架之间有环隙; 所述可替换内衬的上端设置与上盖的下表面连接的匀气 盘; 匀气盘上设置出气孔; 所述上盖上设置与匀气盘的内腔连通的进气通道; 所 述匀气盘、 可替换内衬与基座之间构成结构尺寸可变的流场检测空间; 所述内衬 支架的下部设置一个侧孔; 所述流场检测空间内设置气压检测引管。
所述匀气盘的下底面覆盖流场检测空间的顶部全部面积,且在所述下底面上 设置若干个出气孔; 或者是匀气盘的下底面覆盖流场检测空间的顶部部分面积, 是匀气盘的下底面通过内侧壁与其上表面连接,且在所述内侧壁上设置若干个出 气孔。
所述匀气盘下底面上的出气孔为两端宽、 中段窄、孔壁为弧形的孔, 或者为 -.. t端宽、 下端窄的圆锥形孔, 或者为上段倒圆锥、 下段圆柱形的孔; 所述匀气盘 的内侧壁上孔为倾斜的圆柱形孔, 该孔的中心线与垂直方向的夹角为 30 60° 。 本发明还提供了第二种用于内部稀薄气流模拟验证及压力检测的变结构真 空腔室, 包括上盖、 腔体、 可替换内衬、 内衬支架、 基座、 排气装置以及气压检 测引管。 , 所述腔体的上端敞开, 与上盖连接; 腔体的内底面边缘处开孔, 并通过管道 与排气装置连接; 腔体的内底面中心位置开孔, 并安装高度可调的基座, 基座通 过升降装置与腔体连接: 腔体的内底面上、 边缘处孔洞的内侧设置圆环形的内衬 支架; 所述内衬支架上设置多个以腔体中心为圆心、 不同半径的内衬挡槽; 所述 可替换内衬为圆筒形, 安装在内衬支架的内衬档槽内; 所述基座与可替换内衬或 内衬支架之间有环隙; 所述可替换内衬的上端封闭, 可替换内衬与基座之间构成 结构尺寸可变的流场检测空间; 所述内衬支架的下部设置一个侧孔; 所述上盖上 设置多个穿过可替换内衬的上表面与流场检测空间的连通的进气孔; 每个所述进 气孔的末端、 伸入流场检测空间的部分设置喷嘴, 且在该喷嘴上设置倾斜布置的 岀气喷管; 所述流场检测空间内设置气压检测引管。
所述出气喷管的侧壁一侧布置有若干个圆柱形的出气小孔。
对于上面所述的两种结构形式的变结构真空腔室:
所述上盖与所述腔体相连处、所述腔体与所述排气装置相连处、以及所述腔 体与所述升降装置相连处安装有密封圈。
所述升降装置的下端套装波纹管, 进一步实现腔体与升降装置间的密封。 所述排气装置位于腔体内的入口处安装有排气挡板,通过调节排气挡板的旋 转角度实现排气方式的改变。
所述气压检测引管的固定端伸出腔体的底部, 并在固定端的末端设置电机, 实现气压捡测引管的高度和角度调节, 实现对整个流场检测空间气压参数的覆盖 2012/000091
捡测。
在所述上盖的进气通道处、 腔体的外侧壁以及排气装置处均安装有测量装 置, 用来测量这些位置的气压参数。
所述腔室可用于进行刻蚀, 等离子体增强 /化学气相沉积(PE/CVD;), 物理气 相沉积 (PVD) 以及氧化扩散工艺等具有腔室类共同特点的低压气相加工工艺试 验。
本发明由于采取以上技术方案, 其具有以下优点-
1、 利用该腔室的 "变结构"功能, 可以构造与真实工艺腔室完全相同的结 构参数, 对研宄真实工艺腔室中的气流特性具有极其重要的实际意义。
2、 通过 "变结构", 可以研究单一参数、 多个参数对气流特性的影响规律, 进而结合试验设计方法, 可以进行析因实验和敏感度分析。
3、 本发明与气流模拟技术相结合, 实验数据与模拟结果相互印证, 可以极 大提高优化设计的可信度。
附图说明
图 1是本发明的第一种结构的结构示意图;
图 2a、 图 2b、 图 2c分别是匀气盘 20的三种出气孔的局部视图;
图 3是内筒支架的立体图;
图 4是第一种结构更换匀气盘后的腔室结构示意图;
图 5是图 4中匀气盘出气孔的局部视图;
图 6是本发明的第二种结构的结构示意图;
图 7是图 6中进气喷嘴的局部视图;
图 8是排气方式的改变说明图;
图 9是检测方式的检测原理说明图; 2012/000091
图中标号:
10- ·上盖: 11 喷嘴; 12 进气通道; 13 进气测量装置; 14 上盖的进气口; 20 匀气盘; 21-匀气盘出气孔; 22-匀气盘的 · F底面; 23-匀气盘进气口; 24 匀气盘的内侧壁
30- -腔体: 31- -腔体底板; 32-腔体测量装置; 33 腔室空间; 34-腔室空间底 部;
40 可替换内衬: 41 -可替换内衬的底端; 42-可替换内衬的内壁; 43-可替换 内衬的上部;
50 内筒支架; 51 内筒挡环; 52-内筒挡槽; 53 -支撑架; 54侧孔;
60- -基座: 61-升降装置; 62 基座的上表面; 63-环隙; 64-基座的底部空间;
70 排气装置; 71-气压测量装置; 72-排气挡板; 73 轴; 74-第一电机;
80 -流场检测空间;
90 -波纹管;
100 气压检测引管; 101-调节电机; 102-固定座; 103 丝杠; 104-第二电机; 105 测量规;
111 -出气喷管; 112 出气小孔。
具体实施方式
本发明提供了一种用于内部稀薄气流模拟验证及压力检测的变结构真空腔 室, 下面通过实施例, 并结合附图, 对本发明的技术方案作进一步具体的说明。
实施例 1:
如图 1所示, 本变结构腔室由上盖 10, 习气盘 20, 腔体 30, 可替换内衬 40, 内筒支架 50, 基座 60, 排气装置 70, 流场检测空间 80, 波纹管 90以及气压检 测引管 100等组成。 可替换内衬的内壁 42、基座的上表面 62以及匀气盘的― F表面 22共同构成了 流场检测空间 80。
波纹管 90连接到基座 60的升降装置 61和腔体底板 31之间, 波纹管 90有 利于升降装置 61周围的真空密封, 同时有利于基座 60的垂直移动, 实现流场检 测空间 80的高度变化。
环形的内筒支架 50通过其下部的支撑座 53固定在腔体底板 31上, 内衬支 架 50上设置多个以腔体中心为圆心、不同半径的内筒挡环 51以及由内筒挡环 51 形成的内衬挡槽 52,将可替换内衬的底端 41放置在内筒挡槽 52内, 以此实现对 流场检测空间 80内径的改变。
勾气盘的下表面 22边缘支撑在可替换内衬的上部 43处, 匀气盘 20通过上 端的匀气盘进气口 23和上盖 10的喷嘴 11连接, 喷嘴 11和匀气盘进气口 23共 同形成装置的进气通道 12, 在进气通道 12处安装有进气测量装置 13, 用来测量 进气通道 12处的进气压力等参数。 将匀气盘进气口 23插入到上盖 10的喷嘴 11 中, 然后旋转 90° 定位固定在上盖 10处。 上盖 10与腔体 30配合并密封, 以实 现腔室空间的密封性能。 ·
腔体底板 31与排气装置 70连接, 其中排气装置 70位于腔体底板 31的两侧 边缘处, 并可选择性幵启或关闭以实现不同的排气量。 排气装置 70与腔体底板 31密封连接, 保证腔室空间的密封性能。 在腔体 30的侧壁上安装有一个或者若 干个腔体测量装置 35 , 用来实现对腔室空间 33内真空度等的测量。 排气装置 70 的上端安装有排气挡板 72, 排气挡板 72分别与轴 73连接, 第一电机 74带动轴 78转动,调节排气挡板 72与排气装置 70的开合程度,实现对排气方式的调节(如 图 8所示)。
工艺气体从上盖 10上的喷嘴 11进入到匀气盘 20内, 通过匀气盘出气口 21 进.入到流场检测空间 80内, 工艺气体经过基座的上表面 62后从基座 60与可替 换内衬 40之间的环隙 63进入到基座的底部空间 64, 通过内衬支架 50底部的侧 孔 54进入到可替换内衬 40外壁与腔体 30内壁形成的腔室空间 33的腔室空间底 部 34中, 最后通过与腔体 30底部相连的排气装置 70排出, 在排气装置 70的出 口处安装有气压测量装置 71 , 可以测量出口处的气体压力参数。
匀气盘的下底面 22覆盖流场检测空间 80的顶部全部面积,且在所述下表面 上设置若干个匀气盘出气孔 21 ;匀气盘的下底面 22上的匀气盘出气孔 21为上端 宽、 下端窄的圆锥形孔 (如图 2a), 或者为上段倒圆锥、 下段圆柱形的孔 (如图 2b), 或者为两端宽、 中段窄、 孔壁为弧形的孔(如图 2c)。 通过替换具有不同出 气口的匀气盘可以实现工艺气体在工艺腔室中的不同分布方式。
流场捡测空间 80内设置气压检测引管 100,气压检测引管 100的固定端伸出 腔体底板 31, 并在固定端的末端设置调节电机 101, 控制气压检测引管 100的旋 转角度, 如图 9所示, 调节气压检测引管 100的角度, 气压检测引管 1.00的头部 A可以沿弧线通过基台 60上表面的点 B、 C, D等, 而这些点的数据可以代表其所 在圆上的点的数据, 通过与气压检测引管 100相连的测量规 105进行测量。 调节 电机 101安装在固定座 102上, 固定座 102通过丝杠 103与第二电机 104连接, 通过控制第二电机 104.可以调节丝杠 103运动实现对气压检测引管 100高度的调 节, 可以检测装置内随高度变化的被测参数的变化情况, 从而实现对整个流场检 测空间 80气压参数的覆盖检测。
实施例 2:
本实施例中除匀气盘 20外, 其余结构 实施例 1相同。 匀气盘的下底面 22 通过匀气盘的内侧壁 24与其上表面连接, 且在所述内侧壁上设置若干个匀气盘 出气孔 21, 该匀气盘出气孔 21为倾斜的圆柱形孔, 其中心线与垂直方向的夹角 为 30 60° , 如图 5所示。
在不改变装置其他部件的前提 F, 更换不同的匀气盘可以实现不同的进气方 式。
实施例 3:
本实施例中不设置匀气盘 20, 并改变上盖 10中进气喷嘴, 以实现进气方式 的改变, 其余结构与实施例 1相同, 如图 6所示。 可替换内衬 40上端封闭, 在 上盖 10上均布有四个上盖的进气口 14, 通过上盖的进气口 14与可替换内衬 40 内的喷嘴 11相连, 喷嘴 11上安装着倾斜布置的出气喷管 111, 可以通过改变出 气喷管 111的角度实现不同的喷气方式。 出气喷管 111的侧壁一侧上分布有出气 小孔 112,还可以通过改变出气小孔 112的直径和小孔间距实现不同的喷气方式。
本腔室的结构强度按照腔室外部为 1倍标准大气压, 腔室内部为绝对真空进 行设计与校核, 因此可用于低压气相加工工艺实验。
以上实施方式仅用于说明本发明, 而并非对本发明的限制, 有关技术领域的 普通技术人员, 在不脱离本发明的精神和范围的情况下, 还可以做出各种变化和 变型, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专利保护范围应 由权利要求限定。
5?

Claims

权 利 要 求 书
1、 种用于内部稀薄气流模拟验证及压力检测的变结构真空腔室, 包括上 盖 ( 10)、 匀气盘 (20)、 腔体 (30)、 可替换内衬 (40)、 内衬支架 ( 50 )、 基座
(60 )、 排气装置 (70) 以及气压检测引管 (100 ), 其特征在于:
所述腔体(30) 的上端敞开, 与上盖(10 )连接: 腔体(30) 的内底面边缘 处幵孔, 并通过管道与排气装置(70)连接; 腔体(30 )的内底面中心位置开孔, 并安装高度可调的基座 (60), 基座 (60) 通过升降装置 (61 ) 与腔体 (30) 连 接; 腔体 (30) 的内底面上、 边缘处孔洞的内侧设置圆环形的内衬支架 (50); 所述内衬支架(50)上设置多个以腔体(30) 中心为圆心、 不同半径的内衬 挡槽; 所述可替换内衬 (40) 为圆筒形, 安装在内衬支架 (50) 的内衬档槽内; 所述基座 (60) 与可替换内衬 (40) 或内衬支架 (50) 之间有环隙; 所述可替换内衬(40)的上端设置与上盖(10)的下表面连接的匀气盘(20); 匀气盘 (20) 上设置出气孔;
所述上盖 (10) 上设置与匀气盘 (20) 的内腔连通的迸气通道;
所述匀气盘 (20)、 可替换内衬 (40) 与基座 (60) 之间构成结构尺寸可变 的流场检测空间 (80);
所述内衬支架 (50) 的下部设置一个侧孔 (54);
所述流场检测空间 (80) 内设置气压检测引管 (100 )。
2、根据权利要求 1所述的一种用于内部稀薄气流模拟验证及压力检测的变结 构真空腔室, 其特征在于: 所述匀气盘 (20) 的下底面覆盖流场检测空间 (80) 的顶部全部面积, 且在所述下底面上设置若干个出气孔; 或者是匀气盘 (20) 的 下底面覆盖流场检测空间 (80) 的顶部部分面积, 是匀气盘 (20) 的下底面通过 内侧壁与其上表面连接, 且在所述内侧壁上设置若干个出气孔。
3、根据权利要求 2所述的一种用于内部稀薄气流模拟验证及压力检测的变结 构真空腔室, 其特征在于: 所述匀气盘 (20) 下底面上的出气孔为两端宽、 中段 窄、 孔壁为弧形的孔, 或者为上端宽、 下端窄的圆锥形孔, 或者为上段倒圆锥、
F段圆柱形的孔; 所述匀气盘 (20) 的内侧壁上孔为倾斜的圆柱形孔, 该孔的中 心线与垂直方向的夹角为 30 60° 。
4、一种基于权利要求 1的用于内部稀薄气流模拟验证及压力检测的变结构真 空腔室, 包括上盖 ( 10 )、 腔体 (30)、 可替换内衬 (40)、 内衬支架 (50)、 基座
(60)、 排气装置 (70) 以及气压检测引管 (100), 其特征在于:
所述腔体 (30 ) 的上端敞开, 与上盖 ( 10)连接; 腔体 ( 30) 的内底面边缘 处开孔, 并通过管道与排气装置(70)连接; 腔体(30)的内底面中心位置幵孔, 并安装高度可调的基座 (60), 基座 (60 ) 通过升降装置 (61 ) 与腔体 (30) 连 接; 腔体 (30) 的内底面上、 边缘处孔洞的内侧设置圆环形的内衬支架 (50); 所述内衬支架(50)上设置多个以腔体(30) 中心为圆心、 不同半径的内衬 挡槽; 所述可替换内衬 (40) 为圆筒形, 安装在内衬支架 (50) 的内衬档槽内; 所述基座 (60 ) 与可替换内衬 (40) 或内衬支架 (50) 之间有环隙; 所述可替换内衬(40) 的上端封闭, 可替换内衬(40 )与基座(60)之间构 成结构尺寸可变的流场检测空间 (80 );
所述内衬支架 (50) 的下部设置一个侧孔 (54);
所述上盖(10 )上设置多个穿过可替换内衬(40)的上表面与流场检测空间 (80) 的连通的进气孔; 每个所述进气孔的末端、 伸入流场检测空间 (80) 的部 分设置喷嘴 (11 ), 且在该喷嘴 (11 ) 上设置倾斜布置的出气喷管;
所述流场检测空间 (80) 内设置气压检测引管 (100)。
5、 根据权利耍求 1或 4所述的用于内部稀薄气流模拟验证及压力检测的变结 构真空腔室, 其特征在于: 所述上盖 (10 ) 与所述腔体 (30 ) 相连处、 所述腔体 ( 30 )与所述排气装置 (70 )相连处、 以及所述腔体 ( 30)与所述升降装置 (61 ) 相连处安装有密封圈。
6、根据权利要求 5所述的用于内部稀薄气流模拟验证及压力捡测的变结构真 空腔室, 其特征在于: 所述升降装置 (61 ) 的下端套装波紋管 (90), 进一步实 现腔体 (30 ) 与升降装置 (61 ) 间的密封。
7、 根据权利要求 1或 4所述的用于内部稀薄气流模拟验证及压力检测的变结 构真空腔室, 其特征在于: 所述排气装置 (70)位于腔体 (30) 内的入口处安装 有排气挡板 (72 ) , 通过调节排气挡板 (72 ) 的旋转角度实现排气方式的改变。
8、 根据权利要求 1或 4所述的用于内部稀薄气流模拟验证及压力检测的变结 构真空腔室, 其特征在于: 所述气压检测引管 (100) 的固定端伸出腔体 (30 ) 的底部, 并在固定端的末端设置电机, 实现气压检测引管 (100) 的高度和角度 调节, 实现对整个流场检测空间 (80) 气压参数的覆盖检测。
9、 根据权利要求 1或 4所述的用于内部稀薄气流模拟验证及压力检测的变结 构真空腔室, 其特征在于: 在所述上盖 (10) 的进气通道处、 腔体 (30) 的外侧 壁以及排气装置 (70) 处均安装有测量装置, 用来测量这些位置的气压参数。
1()、 根据权利要求 4所述的用于内部稀薄气流模拟验证及压力检测的变结构 真空腔室, 其特征在于: 所述出气喷管上的侧壁一侧布置有若干个圆柱形的出气 小孔。
PCT/CN2012/000091 2012-01-18 2012-01-18 用于内部稀薄气流模拟验证及压力检测的变结构真空腔室 WO2013106949A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/000091 WO2013106949A1 (zh) 2012-01-18 2012-01-18 用于内部稀薄气流模拟验证及压力检测的变结构真空腔室

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/000091 WO2013106949A1 (zh) 2012-01-18 2012-01-18 用于内部稀薄气流模拟验证及压力检测的变结构真空腔室

Publications (1)

Publication Number Publication Date
WO2013106949A1 true WO2013106949A1 (zh) 2013-07-25

Family

ID=48798463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/000091 WO2013106949A1 (zh) 2012-01-18 2012-01-18 用于内部稀薄气流模拟验证及压力检测的变结构真空腔室

Country Status (1)

Country Link
WO (1) WO2013106949A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068711A (ja) * 2001-08-23 2003-03-07 Tokyo Electron Ltd 真空処理装置および真空処理方法
CN101339897A (zh) * 2007-06-29 2009-01-07 东京毅力科创株式会社 真空处理装置和真空处理方法和存储介质
CN101660140A (zh) * 2008-08-29 2010-03-03 东京毅力科创株式会社 成膜装置及成膜方法、基板处理装置
CN102610543A (zh) * 2012-01-18 2012-07-25 清华大学 用于内部稀薄气流模拟验证及压力检测的变结构真空腔室

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068711A (ja) * 2001-08-23 2003-03-07 Tokyo Electron Ltd 真空処理装置および真空処理方法
CN101339897A (zh) * 2007-06-29 2009-01-07 东京毅力科创株式会社 真空处理装置和真空处理方法和存储介质
CN101660140A (zh) * 2008-08-29 2010-03-03 东京毅力科创株式会社 成膜装置及成膜方法、基板处理装置
CN102610543A (zh) * 2012-01-18 2012-07-25 清华大学 用于内部稀薄气流模拟验证及压力检测的变结构真空腔室

Similar Documents

Publication Publication Date Title
US10720312B2 (en) Substrate processing apparatus
JP5887469B2 (ja) 保持装置、保持システム、制御方法及び搬送装置
TWI759741B (zh) 用於半導體處理的氣體分配噴頭
CN103035469B (zh) 对称等离子体处理室
JP2012529097A5 (zh)
TWI654650B (zh) 用於處理基材的設備
TWI612174B (zh) 化學氣相沉積設備、設備、以及化學氣相沉積之方法
KR102346038B1 (ko) 플라즈마 처리 장치 및 가스 공급 부재
CN107003202B (zh) 集成有测试气溶胶注射和取样的容纳壳
WO2019015388A1 (zh) 一种等离子体刻蚀系统的喷淋头
WO2023134039A1 (zh) 半导体工艺设备及其承载装置
JP2022518134A (ja) 基板処理チャンバ用のポンピング装置及び方法
JP2011529566A (ja) 管壁の通路を有する調整オリフィス板
CN102610543B (zh) 用于内部稀薄气流模拟验证及压力检测的变结构真空腔室
WO2013106949A1 (zh) 用于内部稀薄气流模拟验证及压力检测的变结构真空腔室
CN206470243U (zh) 包括气相色谱分析炉的气相色谱分析系统
TWI811578B (zh) 等離子體系統
TWI807382B (zh) 氣流調節裝置和方法及應用其之電漿處理裝置
KR20110072351A (ko) 기판처리장치
KR100925061B1 (ko) 화학 기상 증착 장치용 방산노즐
CN108149223B (zh) 一种mpcvd腔体结构及mpcvd设备
CN211366963U (zh) 双气隙臭氧发生单元检测装置
JP6888159B2 (ja) チャンバ内部の流れを拡散させることによる低い粒子数及びより良好なウエハ品質のための効果的で新しい設計
CN103745905A (zh) 一种具有低温电荷检测器的颗粒离子阱质谱仪
WO2024060824A1 (zh) 基板处理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865621

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865621

Country of ref document: EP

Kind code of ref document: A1