WO2013105728A1 - 여과막 오염 지수 측정 장치 - Google Patents

여과막 오염 지수 측정 장치 Download PDF

Info

Publication number
WO2013105728A1
WO2013105728A1 PCT/KR2012/009837 KR2012009837W WO2013105728A1 WO 2013105728 A1 WO2013105728 A1 WO 2013105728A1 KR 2012009837 W KR2012009837 W KR 2012009837W WO 2013105728 A1 WO2013105728 A1 WO 2013105728A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration membrane
path
raw water
line
filtration
Prior art date
Application number
PCT/KR2012/009837
Other languages
English (en)
French (fr)
Inventor
홍승관
홍일구
주영길
Original Assignee
두산중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 두산중공업 주식회사 filed Critical 두산중공업 주식회사
Priority to US14/371,122 priority Critical patent/US9579607B2/en
Priority to EP12865284.9A priority patent/EP2803398B1/en
Priority to EP18152235.0A priority patent/EP3338873B1/en
Publication of WO2013105728A1 publication Critical patent/WO2013105728A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/14Safety devices specially adapted for filtration; Devices for indicating clogging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/14Safety devices specially adapted for filtration; Devices for indicating clogging
    • B01D35/147Bypass or safety valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/109Testing of membrane fouling or clogging, e.g. amount or affinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/442Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by nanofiltration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/086Investigating permeability, pore-volume, or surface area of porous materials of films, membranes or pellicules

Definitions

  • the present invention relates to a filtration membrane contamination index measuring apparatus, and more particularly, it is possible to measure in advance the contamination of the filtration membrane caused by particulate matter, colloid and organic matter in the seawater desalination process or nano filtration process using a reverse osmosis method. And a filter membrane contamination index measuring device.
  • Reverse osmosis or nano filtration processes are one of the technical fields that are recently attracting attention in various water treatment fields.
  • the process using the reverse osmosis method in the seawater desalination or sewage use field is expanding.
  • GWI Global Water Intelligence
  • seawater desalination market is currently estimated at 3 million tons / day, and is projected to grow to 6.2 million tons / day in 2015.
  • reverse osmosis and nano filtration processes are receiving high attention in the fields of surface and ground water treatment, industrial wastewater treatment, and zero discharge reuse.
  • Membrane fouling refers to a phenomenon in which various foreign substances present in the inflow water flowing into the filtration membrane are deposited or adsorbed on the surface of the filtration membrane to reduce the water permeability of the filtration membrane.
  • SDI Silicon Density Index measuring method
  • the SDI measurement method is used as a measure of the possibility of fouling in the membrane.
  • Suspended Solid (SS) is made by passing an inflow water at a pressure of 30 psi through a filter having a diameter of 47 mm and a pore of 0.45 ⁇ m. It is a method of measuring the degree of contamination caused by an ingredient.
  • SDI measurement is the most widely used method to predict the membrane fouling trend of influent in reverse osmosis or nano filtration process. In general, if the value measured according to the SDI measurement method, that is, the measured SID value is less than 3, it is determined that the contamination is not severe, and when it is 5 or more, it is determined that severe contamination will occur.
  • the above-described SDI measurement method has a limitation in that it does not use the same phenomenon as that occurring in the RO membrane. That is, the SDI measurement method is an indirect evaluation of the possibility of membrane fouling by suspended particles having a size of 0.45 ⁇ m or more. Therefore, the SDI measurement method is influenced by fine materials such as colloids or organic substances having a size of less than 0.45 ⁇ m. Cannot be evaluated.
  • the cross-flow mode that is, the inflow direction and the permeation direction of the filtration membrane are operated at right angles to each other.
  • the characteristics become impossible to measure with the SDI method. Therefore, many studies have shown that the measured value measured according to the SDI measurement method is different from the operation result in the actual process.
  • a modified fouling index (MFI) measurement method is used, but basically, the MFI measurement method and the SDI measurement method use the same filtration membrane, and thus the membrane can be measured. There is a limit to contaminants.
  • MFI modified fouling index
  • the membrane fouling index measuring device disclosed in the Korean patent is a membrane fouling index measuring device for predicting the fouling phenomenon of the membrane by hydrophilic and hydrophobic particulate matter, colloid, organic matter, etc. in the water treatment process using reverse osmosis membrane or nano filtration membrane, hydrophilic precision Combination of a plurality of different filtration membranes such as filtration membranes, hydrophobic microfiltration membranes and ultrafiltration membranes can be used to quantify the membrane fouling intensity of various kinds of membrane fouling substances present in the influent of reverse osmosis or nanofiltration membrane filtration processes.
  • the Korean patent has an advantage in that the measurement is simple in the parallel manner and the evaluation is possible according to the characteristics of the membrane contaminant, but there is a shortcoming in that it is difficult to separate and evaluate the membrane contaminant.
  • the present applicant has presented a "filtration membrane contamination index prediction device" through the previously published Korean Patent Publication No. 2011-0089710.
  • a plurality of filtration membranes having different filtration characteristics are connected in a series manner to separate and evaluate evaluation according to membrane contaminants.
  • three filtration membranes, a pump, and a tank are required, and the measurement time is relatively long in that they are in series.
  • the present invention has been made to solve the above problems, and in advance, the contamination phenomenon of the filtration membrane by various foreign substances such as particulate matter, colloid and organic matter in seawater desalination process or nanofiltration process using reverse osmosis method more accurately in advance
  • Filter membranes that are predictable and quantify membrane fouling levels of various kinds of membrane fouling substances in seawater through a combination of filtration membranes such as hydrophilic microfiltration membrane (MF), hydrophilic ultrafiltration membrane (UF), and hydrophilic nanofiltration membrane (NF)
  • MF hydrophilic microfiltration membrane
  • UF hydrophilic ultrafiltration membrane
  • NF hydrophilic nanofiltration membrane
  • a filtration membrane contamination index measuring device that is simple in structure and suitable for application to seawater desalination plants or portable measuring equipment, and can reduce the relative measurement time while ensuring the accuracy of the measurement.
  • a raw water supply unit for supplying raw water to be measured;
  • a first filtration membrane for supplying raw water to be measured;
  • a first filtration membrane connecting the raw water supply unit and the first filtration membrane;
  • a first flow rate measuring unit measuring a flow rate;
  • a second path line connected in parallel with the first path line;
  • a second filtration membrane disposed on the second passage line and having a filtration characteristic different from that of the first filtration membrane;
  • Raw water from the raw water supply unit passes through the first filtration membrane and flows to the first flow rate measuring unit, and raw water from the raw water supply unit sequentially passes through the first filtration membrane and the second filtration membrane.
  • a first path selection valve installed on the first path line in parallel with the second filtration membrane such that a second measurement path flowing to the first flow rate measuring part is selectively formed; It may include a pollution index measuring unit for measuring the contamination index of the first filtration membrane and the second filtration membrane based on the flow rate measured by the first flow rate measuring unit for each of the first measurement path and the second measurement path.
  • the pores of the first filtration membrane may be provided larger than the pores of the second filtration membrane.
  • a first pressure regulator installed at an inflow side of the first filtration membrane of the raw water supply line to adjust a pressure of the raw water flowing into the first filtration membrane;
  • a first bypass line connected to the raw water supply line such that the first pressure regulator is bypassed;
  • the display device may further include a first bypass valve installed in the first bypass line and closed when the first measurement path is formed and open when the second measurement path and the third measurement path are formed.
  • the apparatus may further include a second pressure regulator installed at an inflow side of the second filtration membrane of the second passage line to adjust pressure of raw water flowing into the second filtration membrane.
  • the second passage line includes a second inlet passage line forming an inlet side of the second filtration membrane and a second outlet passage line forming an outlet side of the second filtration membrane;
  • a third passage line connected in parallel with the second outlet passage line, a third filtration membrane disposed on the third passage line, the third filtration membrane having a smaller pore size than the second filtration membrane, and the first passage selection valve
  • the third filtration membrane is formed such that a third measuring path is formed in which raw water from the raw water supply unit sequentially passes through the first filtration membrane, the second filtration membrane, and the third filtration membrane and flows to the first flow rate measuring unit.
  • a second path selector valve installed on the second path line in parallel with respect to;
  • the flow rate measuring unit may measure the contamination index of the third filtration membrane based on the flow rate measured by the first flow rate measuring unit with respect to the third measuring path.
  • the second pressure regulator is installed in the second inlet path line for adjusting the pressure of the raw water flowing into the second filtration membrane;
  • a second bypass line connected with the second inflow path line such that the second pressure regulator is bypassed;
  • the display device may further include a second bypass valve installed in the second bypass line, the second bypass valve closed when the first measurement path and the second measurement path are formed and opened when the third measurement path is formed.
  • the apparatus may further include a third pressure regulator installed at an inflow side of the third filtration membrane of the third passage line to adjust pressure of raw water flowing into the third filtration membrane.
  • a first path control valve installed at an input side of the first pressure regulator of the raw water supply line to be connected in parallel with the first bypass valve, the first path intermittent valve being opened and closed backward with the first bypass valve; Installed on an input side of the second pressure regulator of the second path line so as to be connected in parallel with the second bypass valve, closed in the formation of the first measurement path and the third measurement path, the second measurement A second pathway control valve that opens upon formation of the pathway;
  • the apparatus may further include a third path control valve installed at an input side of the third pressure regulator of the third path line and opened when the third measurement path is formed.
  • the contamination index measuring unit may have a pollution index in order of the third filtration membrane according to the formation of the third measurement path, the second filtration membrane according to the formation of the second measurement path, and the first filtration membrane according to the formation of the first measurement path. Can be measured.
  • the contamination index measuring unit the first index filter in accordance with the formation of the first measurement path, the second filter membrane in accordance with the formation of the second measurement path, the third filter membrane in accordance with the formation of the third measurement path pollution index Can be measured.
  • the third passage line which is branched from the inflow side of the second filtration membrane of the second passage line, the third filtration membrane which is provided on the third passage line, and has a smaller pore size than the second filtration membrane
  • An auxiliary filtration membrane provided on the inflow side of the third filtration membrane of the third passage line, the auxiliary filtration membrane having pores having a size corresponding to the second filtration membrane, and the raw water from the raw water supply unit, the first filtration membrane, the auxiliary filtration membrane, and the A second flow rate measuring part installed on an outlet side of the third filtration membrane of the third path line so as to form a third measuring path which sequentially passes through the third filtration membrane;
  • the second measurement path and the third measurement path are formed simultaneously;
  • the contamination index measuring unit may measure the contamination index of the third filtration membrane based on the flow rate measured by the second flow rate measuring unit with respect to the third measuring path.
  • the first pressure regulator is installed in the raw water supply line for adjusting the pressure of the raw water flowing into the first filtration membrane;
  • a second pressure regulator installed at an inflow side of the second filtration membrane of the second passage line to adjust a pressure of raw water flowing into the second filtration membrane;
  • the apparatus may further include a third pressure regulator installed between the auxiliary filtration membrane of the third passage line and the third filtration membrane to adjust the pressure of the raw water flowing into the third filtration membrane.
  • the display device may further include a first bypass valve installed in the first bypass line and closed when the first measurement path is formed and open when the second measurement path and the third measurement path are formed.
  • a first path control valve installed at an input side of the first pressure regulator of the raw water supply line to be connected in parallel with the first bypass valve, the first path intermittent valve being opened and closed backward with the first bypass valve;
  • a fourth path intermittent valve installed on the second path line to intercept the inflow of raw water into the second path line, closed when the first measurement path is formed and open when the second measurement path is formed It may include.
  • the raw water supply unit for supplying the raw water to be measured; A plurality of filtration membranes having different filtration characteristics from each other; A path line connecting the plurality of filtration membranes in parallel to the raw water supply unit; A plurality of flow rate measuring units which are provided on the outflow side of each of the filtration membranes in correspondence with the plurality of filtration membranes, respectively and measure the flow rate of the raw water passing through the filtration membranes; At least one auxiliary filtration membrane installed on at least one inflow side of the plurality of filtration membranes and having a different filtration characteristic from the filtration membrane; It may include a pollution index measuring unit for measuring the contamination index of each filtration membrane based on the flow rate measured by each of the flow rate measuring unit.
  • the plurality of filtration membranes have different pore sizes from each other;
  • the pore size of the auxiliary filtration membrane may be greater than the pore size of the corresponding filtration membrane.
  • the apparatus may further include a pressure regulator installed at an inflow side of each filtration membrane to control pressure of raw water flowing into the filtration membrane.
  • the simple structure is suitable for applying to seawater desalination plant or portable measuring equipment, there is provided a filtration membrane contamination index measuring device that can reduce the relative measurement time while ensuring the accuracy of the measurement .
  • FIG. 1 is a view showing the configuration of a filtration membrane contamination index measuring apparatus according to a first embodiment of the present invention
  • FIG. 2 is a view showing the configuration of a filtration membrane contamination index measuring apparatus according to a second embodiment of the present invention
  • FIG. 3 is a view for explaining the permeation characteristics of the first filtration membrane, the second filtration membrane and the third filtration membrane in the filtration membrane contamination index measuring apparatus according to a second embodiment of the present invention
  • FIG. 4 is a view showing the configuration of a filtration membrane contamination index measuring apparatus according to a third embodiment of the present invention.
  • FIG. 5 is a view showing the configuration of the filter membrane contamination index measuring apparatus according to a fourth embodiment of the present invention.
  • first pressure regulator 62 second pressure regulator
  • third pressure regulator 71 first bypass line
  • first filtration membrane 120 second filtration membrane
  • first flow rate measuring unit 320 second flow rate measuring unit
  • Filter membrane contamination index measuring apparatus comprises: a raw water supply unit for supplying the raw water to be measured; A first filtration membrane; A raw water supply line connecting the raw water supply unit and the first filtration membrane; A first flow rate measuring unit measuring a flow rate; A first path line connecting the first filtration membrane and the first flow rate measuring part; A second path line connected in parallel with the first path line; A second filtration membrane disposed on the second passage line and having a filtration characteristic different from that of the first filtration membrane; Raw water from the raw water supply unit passes through the first filtration membrane and flows to the first flow rate measuring unit, and raw water from the raw water supply unit sequentially passes through the first filtration membrane and the second filtration membrane.
  • a first path selection valve installed on the first path line in parallel with the second filtration membrane such that a second measurement path flowing to the first flow rate measuring part is selectively formed;
  • a pollution index measuring unit configured to measure the contamination indexes of the first filtration membrane and the second filtration membrane based on the flow rates measured by the first flow rate measuring unit for each of the first measurement path and the second measurement path.
  • the filtration membrane contamination index measuring apparatus includes a raw water supply unit 200, a first filtration membrane 110, a second filtration membrane 120, and a first flow rate measurement unit 310. ), A first path line 21, a second path line 22, a first path selection valve 41, and a pollution index measuring unit 400.
  • the raw water supply unit 200 supplies raw water to be measured.
  • the raw water supply unit 200 is configured to supply raw water in a pressurized state, a method using compressed air, a method using a pump, and the like may be applied, and in the case of a seawater desalination plant, a compressed state by a high pressure pump of the plant itself. Can be supplied.
  • the first filtration membrane 110 and the second filtration membrane 120 have different filtration characteristics from each other.
  • the pores of the first filtration membrane 110 and the second filtration membrane 120 are different from each other, and the pores of the first filtration membrane 110 are larger than the pores of the second filtration membrane 120.
  • the hydrophilic ultrafiltration membrane UF or the hydrophilic nanofiltration membrane NF having a smaller pore size than the hydrophilic microfiltration membrane MF is the second filtration membrane. 120 may be applied.
  • the hydrophilic ultrafiltration membrane UF is used as the first filtration membrane 110
  • the hydrophilic nanofiltration membrane NF may be used as the second filtration membrane 120.
  • the raw water supply line 10 connects the raw water supply unit 200 and the first filtration membrane 110 to allow the raw water from the raw water supply unit 200 to flow into the first filtration membrane 110 through the source supply line.
  • the supply side pressure regulator 500 for adjusting the pressure of the raw water supplied from the raw water supply unit 200 on the raw water supply line 10 may be installed.
  • the first flow rate measuring unit 310 measures the flow rate, the flow rate of the raw water passing through the first filtration membrane 110 through the first measurement path to be described later, and the second filtration membrane 120 through the second measurement path to be described later. The flow rate of the raw water that has passed through each is measured, which will be described later.
  • the first path line 21 connects the first filtration membrane 110 and the first flow rate measuring unit 310 to allow the raw water that has passed through the first filtration membrane 110 to flow to the first flow rate measuring unit 310.
  • the second path line 22 is connected to the first path line 21 in parallel.
  • the first path selection valve 41 is installed on the first path line 21 to be connected in parallel with the second filtration membrane 120.
  • the first path selection valve 41 is opened to form the first measurement path and closed to form the second measurement path.
  • the raw water from the raw water supply unit 200 is connected to the raw water supply line 10, the first filtration membrane 110, and the first path line 21.
  • a first measuring path flowing through the first flow rate measuring part 310 is formed.
  • the first path selection valve 41 when the first path selection valve 41 is closed, the raw water from the raw water supply unit 200 through the raw water supply line 10, the first filtration membrane 110, the second passage line 22, the second filtration membrane After passing through 120, the first flow rate measuring part 310 flows.
  • the pollution index measuring unit 400 is based on the flow rate measured by the first flow rate measuring unit 310 for each of the first and second measurement paths, the first filtration membrane 110 and the first agent.
  • the contamination index of the two filtration membranes 120 is respectively measured.
  • the pollution index measuring unit 400 may measure the flow rate of the first flow path passing through only the first filtration membrane 110 through the first measurement path while the first path selection valve 41 is open. By measuring through 310, the contamination index of the first filtration membrane 110 is measured. Then, the contamination index measuring unit 400 measures the flow rate through the first filtration membrane 110 and the second filtration membrane 120 sequentially through the second flow path through the first flow rate measurement unit 310, The contamination index of the second filtration membrane 120 is measured.
  • the first filtration membrane 110 and the second filtration membrane 120 having different filtration characteristics are respectively measured separately, and in the case of the second filtration membrane 120 having a smaller pore size than the first filtration membrane 110.
  • 1 Raw water that has passed through the filtration membrane 110 penetrates the first large foreign particles through the first filtration membrane 110 and more accurately measures the effect of the particles affecting the membrane contamination of the second filtration membrane 120 You can do it.
  • the hydrophilic microfiltration membrane MF when used as the first filtration membrane 110, common suspended particles are deposited or adsorbed on the surface of the first filtration membrane 110.
  • the hydrophilic ultrafiltration membrane UF is used as the second filtration membrane 120, colloidal particles are deposited or adsorbed on the surface of the second filtration membrane 120. Therefore, when the raw water permeates only the second filtration membrane 120 to measure membrane contamination of the second filtration membrane 120, membrane contamination by deposition or adsorption of ordinary suspended particles and membrane contamination by colloidal particles can be distinguished and evaluated. do.
  • the measurement of the first filtration membrane 110 and the measurement of the second filtration membrane 120 are separated through the first path selection valve 41, and one raw water supply part 200 and one first flow rate measurement part.
  • membrane contamination of the first filtration membrane 110 and the second filtration membrane 120 can be accurately measured.
  • the filtration membrane contamination index measuring apparatus as shown in Figure 1, the first pressure regulator 61, the first bypass line 71 and the first bypass valve 51 ) May be included.
  • the first pressure regulator 61 is installed on the inlet side of the first filtration membrane 110 of the raw water supply line 10 to adjust the pressure of the raw water flowing into the first filtration membrane 110.
  • the first bypass line 71 is connected in parallel with the raw water supply line 10 so that the first pressure regulator 61 is bypassed.
  • the first bypass valve 51 is installed in the first bypass line 71, which is closed when the first measurement path is formed, that is, when the first path selection valve 41 is opened, to close the raw water supply line.
  • the raw water supplied through 10 is introduced into the first filtration membrane 110 through the first pressure regulator 61.
  • the first bypass valve 51 is opened when the second measuring path is formed, that is, when the first path selection valve 41 is closed, and the raw water supplied through the raw water supply line 10 is first bypassed. It passes through the pass line 71 to the first filtration membrane 110.
  • the filtration membrane contamination index measuring apparatus is installed on the inlet side of the second filtration membrane 120 of the second passage line 22, the second filtration membrane ( It may include a second pressure regulator 62 for adjusting the pressure of the raw water flowing into the 120.
  • the first pressure regulator 61 and the second pressure regulator 62 are respectively installed on the inflow side of the first filtration membrane 110 and the second filtration membrane 120, respectively, and the first filtration membrane 110 and the first filtration membrane 110 are formed.
  • the second measurement path for measuring the fouling of the second filtration membrane 120 when the second measurement path for measuring the fouling of the second filtration membrane 120 is formed, raw water is bypassed through the first bypass line 71 without passing through the first pressure regulator 61 and thus the first filtration membrane.
  • the measurement pressure at the time of membrane fouling measurement of the second filtration membrane 120 by the first pressure regulator 61 can be set higher than the measurement pressure of the first filtration membrane (110).
  • the filtration membrane contamination index measuring apparatus may include a first path control valve 81 and a second path control valve 82.
  • the first path control valve 81 is installed at the input side of the first pressure regulator 61 of the raw water supply line 10 to be connected in parallel with the first bypass valve 51.
  • the 2nd path control valve 82 is provided in the input side of the 2nd pressure regulator 62 of the 2nd path line 22. As shown in FIG.
  • the first path control valve 81 is opened or closed in reverse with the first bypass valve 51. That is, when the first measurement path is formed, the first bypass valve 51 is closed and the first path control valve 81 is opened, whereby the raw water is passed through the first pressure regulator 61 to the first filtration membrane 110. To flow. On the other hand, when the second measurement path is formed, the first bypass valve 51 is opened and the first path control valve 81 is closed, so that the raw water passes through the first bypass line 71 and the first filtration membrane 110. Will flow). And, the second path control valve 81 is closed when the first measurement path is formed and opens when the second measurement path is formed.
  • the flow of raw water to the second pressure regulator 62 is completely blocked when the first measurement path is formed, and likewise, the raw water to the first pressure regulator 61 is completely blocked when the second measurement path is formed.
  • the first measurement path and the second measurement path can be formed more stably than when the flow of raw water is blocked only by the first pressure regulator 61 and the second pressure regulator 62 itself.
  • the filter membrane contamination index measuring apparatus according to the second embodiment of the present invention is an embodiment in which three filtration membranes having different pore characteristics are applied, and has an extended configuration characteristic based on the first embodiment. Configurations corresponding to examples use the same reference numerals, and descriptions thereof may be omitted.
  • the hydrophilic microfiltration membrane MF is the first filtration membrane 110
  • the hydrophilic ultrafiltration membrane UF is the second filtration membrane 120
  • the hydrophilic nanofiltration membrane NF is the third filtration membrane. It will be described with an example that is applied to (130).
  • the filtration membrane contamination index measuring apparatus includes a raw water supply unit 200, a raw water supply line 10, a first filtration membrane 110, a second filtration membrane 120,
  • the third filtration membrane 130, the first path line 21, the second path line 22, the third path line 23, the first path selection valve 41, the second path selection valve 42, 1 may include a flow rate measuring unit 310 and the contamination index measuring unit 400.
  • the basic configuration of the raw water supply unit 200 and the first flow rate measuring unit 310 corresponds to the first embodiment, and a detailed description thereof will be omitted.
  • the first path line 21 connects the first filtration membrane 110 and the first flow rate measuring unit 310 to allow the raw water that has passed through the first filtration membrane 110 to flow to the first flow rate measuring unit 310.
  • the second path line 22 is connected in parallel with the first path line 21.
  • the first path selection valve 41 is installed on the first path line 21 to be connected in parallel with the second filtration membrane 120.
  • the first path selection valve 41 is opened to form a first measurement path, and closed to form a second measurement path and a third measurement path, which will be described later.
  • the second passage line 22 has a second inflow passage line forming an inflow side of the second filtration membrane 120 around the second filtration membrane 120 and an outlet side of the second filtration membrane 120. It may be divided into a second outflow path line to form.
  • the third path line 23 is connected in parallel with the second outflow path line, as shown in FIG. 2.
  • the third filtration membrane 130 is installed on the third passage line 23, and as described above, the hydrophilic nano filtration membrane NF having a smaller pore size than the first filtration membrane 110 and the second filtration membrane 120. This applies to an example.
  • the second path selector valve 42 is installed on the second path line 22 in parallel to the third filtration membrane 130.
  • the second path selection valve 42 includes the first filtration membrane 110, the second filtration membrane 120, and the third raw water from the raw water supply unit 200 in a state where the first path selection valve 41 is closed. Passed through the filtration membrane 130 in order to be closed to flow into the first flow rate measuring unit 310.
  • the filtration membrane contamination index measuring apparatus may include a first pressure regulator 61, a first bypass line 71, and a first bypass valve 51.
  • the filtration membrane contamination index measuring apparatus according to the second embodiment of the present invention, the second pressure regulator 62, the second bypass line 72 and the second bypass valve 52, and the third pressure regulator 63 ) May be included.
  • the first pressure regulator 61 is installed on the inlet side of the first filtration membrane 110 of the raw water supply line 10 to adjust the pressure of the raw water flowing into the first filtration membrane 110.
  • the first bypass line 71 is connected in parallel with the raw water supply line 10 so that the first pressure regulator 61 is bypassed.
  • the first bypass valve 51 is provided on the first bypass line 71.
  • the second pressure regulator 62 is installed on the second inflow path line of the second path line 22 to adjust the pressure of the raw water flowing into the second filtration membrane 120.
  • the second bypass line 72 is connected to the second alliance path line such that the second pressure regulator 62 is bypassed, and the second bypass valve 52 is on the second bypass line 72. Is installed.
  • a third pressure regulator 63 is installed at the inflow side of the third filtration membrane 130 of the third passage line 23 to adjust the pressure of the raw water flowing into the third filtration membrane 130.
  • the contamination index is measured in order of the third filtration membrane 130, the second filtration membrane 120, and the first filtration membrane 110.
  • both the first path selection valve 41 and the second path selection valve 42 are closed, and both the first bypass valve 51 and the second bypass valve 52 are opened to open the third measuring path.
  • the third measurement path is the raw water supply unit 200, the first bypass line 71, the first filtration membrane 110, the second passage line 22, the second bypass line 72, the second filtration membrane ( 120, a third path line 23, and a third filtration membrane 130 may be formed as a path flowing into the first flow rate measuring part 310.
  • the raw water from the raw water supply unit 200 sequentially passes through the first filtration membrane 110, the second filtration membrane 120, and the third filtration membrane 130, and then flows into the first flow rate measuring unit 310.
  • the contamination index measurer 400 measures the contamination index of the third filtration membrane 130 based on the flow rate introduced into the first flow rate measurer 310.
  • the pore size of the first filtration membrane 110 is a hydrophilic microfiltration membrane (MF) having a size of 0.45 ⁇ m
  • the fractional molecular weight of the second filtration membrane 120 is a 100 kDa hydrophilic ultrafiltration membrane (UF)
  • the third filtration membrane The hydrophilic nanofiltration membrane (NF) whose fraction molecular weight of 130) is 10 kDa is taken as an example.
  • the second path selection is performed.
  • the valve 42 is opened and the second bypass valve 52 is closed to form a second measurement path.
  • the second measurement path is the raw water supply unit 200, the raw water supply line 10, the first bypass line 71, the first filtration membrane 110, the second passage line 22, the second filtration membrane 120 It is formed as a path flowing into the first flow rate measuring unit 310 through.
  • the raw water from the raw water supply unit 200 sequentially passes through the first filtration membrane 110 and the second filtration membrane 120, and then flows into the first flow rate measurement unit 310, and the contamination index measurement unit 400.
  • the contamination index of the second filtration membrane 120 is measured based on the flow rate introduced into the first flow rate measuring unit 310.
  • colloids particles are deposited or adsorbed on the second filtration membrane 120 in a state in which particles are filtered through the first filtration membrane 110 to contaminate the second filtration membrane 120.
  • the small organic material does not affect the contamination of the second filtration membrane 120 by passing through the second filtration membrane 120.
  • the second bypass valve 52 is closed and the first path selection valve 41 is opened to open the first measurement path.
  • the first measuring path is formed as a path flowing into the first flow rate measuring part 310 through the raw water supply part 200, the raw water supply line 10, the first filtration membrane 110, and the first path line 21. do.
  • the suspended matter affecting the contamination index of the first filtration membrane 110, the second filtration membrane 120, and the third filtration membrane 130 is the first filtration membrane 110, the second filtration membrane 120, and the third filtration membrane. In this case, it is possible to predict membrane fouling more accurately.
  • the contamination index is measured in order of the third filtration membrane 130, the second filtration membrane 120, and the first filtration membrane 110, but the first filtration membrane 110 and the second filtration membrane have been described as an example.
  • the contamination index can be measured in order of the filtration membrane 120 and the third filtration membrane 130.
  • the opening and closing states of the first path selection valve 41, the second path selection valve 42, the first bypass valve 51 and the second bypass valve 52 for forming the path are as described above. .
  • the filtration membrane contamination index measuring apparatus may include a first path control valve 81, a second path control valve 82, and a third path control valve 83.
  • the first path control valve 81 is installed at the input side of the first pressure regulator 61 of the raw water supply line 10 to be connected in parallel with the first bypass valve 51.
  • the second path control valve 82 is installed at the input side of the second pressure regulator 62 of the second path line 22 to be connected in parallel with the second bypass valve 52.
  • the 3rd path control valve 82 is provided in the input side of the 3rd pressure regulator 63 of the 3rd path line 23. As shown in FIG.
  • the first path control valve 81 is opened or closed in reverse with the first bypass valve 51. That is, when the first measurement path is formed, the first bypass valve 51 is closed and the first path control valve 81 is opened, whereby the raw water is passed through the first pressure regulator 61 to the first filtration membrane 110. To flow. On the other hand, when the second measurement path and the third measurement path are formed, the first bypass valve 51 is opened and the first path control valve 81 is closed, so that the raw water passes through the first bypass line 71. It flows to the first filtration membrane 110.
  • the second path control valve 82 is closed when the first measurement path and the third measurement path are formed and opens when the second measurement path is formed. Accordingly, when the first measuring path is formed, the raw water is blocked from flowing to the second pressure regulator 62, so that the first flow rate is measured immediately after the raw water passes through the first filtration membrane 110 when the first measuring path is formed. It can flow to the side 310.
  • the second path control valve 82 is opened when the second measurement path is formed to allow the raw water to pass through the second filtration membrane 120 through the second pressure regulator 62. Then, when the third measurement path is formed, the second path control valve 82 is closed to allow the raw water to pass through the second filtration membrane 120 through the second bypass line 72.
  • the third path control valve 83 is closed at the formation of the first measurement path and the second measurement path, and is opened at the formation of the third measurement path.
  • the first pressure regulator 61, the second pressure regulator 62, and the second pressure regulator 62 itself is more stable than the case where the flow of raw water is blocked only by the first. It is possible to form the measuring path, the second measuring path and the third measuring path.
  • the filter membrane contamination index measuring apparatus is an embodiment in which three filtration membranes having different pore characteristics are applied, and has an extended configuration characteristic based on the first embodiment. Configurations corresponding to examples use the same reference numerals, and descriptions thereof may be omitted.
  • the hydrophilic microfiltration membrane MF is the first filtration membrane 110
  • the hydrophilic ultrafiltration membrane UF is the second filtration membrane 120
  • the hydrophilic nanofiltration membrane NF is the third filtration membrane. It will be described with an example that is applied to (130).
  • the filtration membrane contamination index measuring apparatus includes a raw water supply unit 200, a raw water supply line 10, a first filtration membrane 110, a second filtration membrane 120, Third filtration membrane 130, first path line 21, second path line 22, third path line 23, first path selection valve 41, auxiliary filtration membrane 140, first flow rate measurement
  • the unit 310 may include a second flow rate measuring unit 320 and a pollution index measuring unit 400.
  • the basic configurations of the raw water supply unit 200, the raw water supply line 10, and the first flow rate measuring unit 310 correspond to the first embodiment, and a detailed description thereof may be omitted.
  • the first path line 21 connects the first filtration membrane 110 and the first flow rate measuring unit 310 to allow the raw water that has passed through the first filtration membrane 110 to flow to the first flow rate measuring unit 310.
  • the second path line 22 is connected in parallel with the first path line 21.
  • the first path selection valve 41 is installed on the first path line 21 to be connected in parallel with the second filtration membrane 120.
  • the first path selection valve 41 is opened to form a first measurement path, and closed to form a second measurement path and a third measurement path, which will be described later.
  • the third passage line 23 branches off from the inflow side of the second filtration membrane 120 of the second passage line 22.
  • the auxiliary filtration membrane 140 and the third filtration membrane 130 are sequentially installed on the third passage line 23. That is, the third filtration membrane 130 is installed on the third passage line 23, and the auxiliary filtration membrane 140 is installed on the inflow side of the third filtration membrane 130 of the third passage line 23.
  • the auxiliary filtration membrane 140 has pores having a size corresponding to the second filtration membrane 120.
  • the auxiliary filtration membrane 140 may also be provided with a hydrophilic ultrafiltration membrane UF.
  • the second flow rate measuring unit 320 is provided on the outlet side of the third filtration membrane 130 of the third passage line 23 to measure the flow rate of the raw water passing through the third filtration membrane 130.
  • the filtration membrane contamination index measuring apparatus as shown in Figure 4, the first pressure regulator 61, the first bypass line 71 and the first bypass valve 51 ) May be included.
  • the filtration membrane contamination index measuring device may include a second pressure regulator 62 and a third pressure regulator (63).
  • the first pressure regulator 61 is installed on the inlet side of the first filtration membrane 110 of the raw water supply line 10 to adjust the pressure of the raw water flowing into the first filtration membrane 110.
  • the first bypass line 71 is connected in parallel with the raw water supply line 10 so that the first pressure regulator 61 is bypassed.
  • the first bypass valve 51 is installed in the first bypass line 71, which is closed when the first measurement path is formed, that is, when the first path selection valve 41 is opened, to close the raw water supply line.
  • the raw water supplied through 10 is introduced into the first filtration membrane 110 through the first pressure regulator 61.
  • the first bypass valve 51 is opened and supplied through the raw water supply line 10 when the second measurement path and the third measurement path are formed, that is, when the first path selection valve 41 is closed.
  • Raw water is introduced into the first filtration membrane 110 through the first bypass line 71.
  • the second pressure regulator 62 is installed at the inflow side of the second filtration membrane 120 of the second passage line 22 to adjust the pressure of the raw water flowing into the second filtration membrane 120.
  • the third pressure regulator 63 is installed between the auxiliary filtration membrane 140 and the third filtration membrane 130 of the third passage line 23 to adjust the pressure of the raw water flowing into the third filtration membrane 130.
  • the contamination index measuring unit 400 forms a first measurement path to measure the contamination index of the first filtration membrane 110, and simultaneously forms a second measurement path and a third measurement path to form the second filtration membrane.
  • the process of simultaneously measuring the contamination index of the 120 and the third filtration membrane 130 will be described in detail.
  • the first bypass valve 51 is closed, and the first path forming valve is opened to form a first measuring path.
  • the first measuring path is formed as a path flowing into the first flow rate measuring part 310 via the raw water supply part 200, the first filter, and the second path line 22.
  • the contamination index measuring unit 400 measures the contamination index of the first filtration membrane 110 based on the flow rate measured by the first flow rate measuring unit 310.
  • the first bypass valve 51 is opened and the first path selection valve 41 is opened to simultaneously form the second measurement path and the third measurement path.
  • the second measurement path is the raw water supply unit 200, the raw water supply line 10, the first bypass line 71, the first filtration membrane 110, the second passage line 22, the second filtration membrane 120 It is formed as a path flowing into the first flow rate measuring unit 310
  • the third measuring path is the raw water supply unit 200, the raw water supply line 10, the first bypass line 71, the first filtration membrane 110 ), Second path line 22. It is formed as a path flowing into the second flow rate measuring unit 320 through the third path line 23, the auxiliary filtration membrane 140, the third filtration membrane 130.
  • the second path line 22 and the third path line 23 are formed at the same time, the flow rate of the raw water passing through the second filtration membrane 120 is measured by the first flow rate measuring unit 310, Since the flow rate of the raw water that has passed through the three filtration membranes 130 is measured by the second flow rate measuring unit 320, the process of measuring the contamination index of the second filtration membrane 120 and the third filtration membrane 130 may be simultaneously performed.
  • the filtration membrane contamination index measuring apparatus may include a first path control valve 81 and a fourth path control valve 84.
  • the first path control valve 81 is installed at the input side of the first pressure regulator 61 of the raw water supply line 10 to be connected in parallel with the first bypass valve 51.
  • the 4th path control valve 82 is provided in the 2nd path line 22. As shown in FIG.
  • the first path control valve 81 is opened or closed in reverse with the first bypass valve 51. That is, when the first measurement path is formed, the first bypass valve 51 is closed and the first path control valve 81 is opened, whereby the raw water is passed through the first pressure regulator 61 to the first filtration membrane 110. To flow. On the other hand, when the second measurement path is formed, the first bypass valve 51 is opened and the first path control valve 81 is closed, so that the raw water passes through the first bypass line 71 and the first filtration membrane 110. Will flow).
  • a fourth path control valve 84 is installed in the second path line to control the inflow of raw water into the second path line 22, and is closed when the first measurement path is formed, and the second measurement path is closed. Open when formed.
  • the flow of raw water to the second path line 22 is completely blocked when the first measuring path is formed, and likewise, the raw water to the first pressure regulator 61 is completely blocked when the second measuring path is formed.
  • the first and second measurement paths can be more stably formed when the flow of raw water is blocked only by the first pressure regulator 61, the second pressure regulator 62, and the third pressure regulator 63 itself. Done.
  • the second embodiment and the third embodiment have an extended structure using the first embodiment as a basic structure, and have been described as an example.
  • the technical idea of the present invention is not limited to only three filtration membranes 110, 120, and 130 as in the second and third embodiments, and those skilled in the art will understand that the second embodiment and the third embodiment are based on the first embodiment.
  • the first embodiment may be extended to four or more filtration membranes.
  • Filter membrane contamination index measuring apparatus is a raw water supply unit 200, a plurality of filtration membranes (110, 120, 130), path lines (21a, 22a, 23a), a plurality of flow rate measuring unit (310a, 310b, 310c) , At least one auxiliary filtration membrane (140a, 140b), and the contamination index measuring unit 400.
  • the raw water supply unit 200 supplies raw water to be measured.
  • the raw water supply unit 200 is configured to supply raw water in a pressurized state, a method using compressed air, a method using a pump, and the like may be applied, and in the case of a seawater desalination plant, a compressed state by a high pressure pump of the plant itself. Can be supplied.
  • the plurality of filtration membranes 110, 120, and 130 have different filtration characteristics from each other.
  • the plurality of filtration membranes (110, 120, 130) according to the present invention is provided to have a different pore size from each other, it is an example that three filtration membranes (110, 120, 130) is applied.
  • the sizes of the pores are increased in the order of the first filtration membrane 110, the second filtration membrane 120, and the third filtration membrane 130, and the hydrophilic microfiltration membrane MF is the first filtration membrane 110.
  • An example in which the filtration membrane UF is applied to the second filtration membrane 120 and the hydrophilic nano filtration membrane NF is applied to the third filtration membrane 130 will be described.
  • the path lines 21a, 22a, and 23a mutually connect the first filtration membrane 110, the second filtration membrane 120, and the third filtration membrane 130 with respect to the raw water supply unit 200. Connect in parallel.
  • the path line 21a provided with the first filtration membrane 110 is referred to as the first path line 21a
  • the path line 22a provided with the second filtration membrane 120 is referred to as the second path line 22a
  • the path line 23a provided with the third filtration membrane 130 will be described as a third path line 23a.
  • the auxiliary filtration membranes 140a and 140b are provided at the inflow side of each of the second filtration membrane 120 and the third filtration membrane 130. More specifically, the first auxiliary filtration membrane 140a is installed at the inflow side of the second filtration membrane 120 of the second passage line 22a, and the second auxiliary filtration membrane 140b is the third passage line 23a. On the inflow side of the third filtration membrane 130.
  • the first auxiliary filtration membrane 140a has different filtration characteristics from the second filtration membrane 120, and is provided larger than the size of the pores of the second filtration membrane 120.
  • the size of the pore of the first auxiliary filtration membrane 140a is provided corresponding to the size of the pore of the first filtration membrane 110, so that the raw water flowing into the second filtration membrane 120 passes through the first filtration membrane 110. Can be in the same state.
  • the second auxiliary filtration membrane 140b has different filtration characteristics from the third filtration membrane 130, and is provided larger than the size of the pores of the third filtration membrane 130.
  • the size of the pore of the second auxiliary filtration membrane 140b is provided corresponding to the size of the pore of the second filtration membrane 120, so that the raw water flowing into the third filtration membrane 130 passes through the second filtration membrane 120. Can be in the same state.
  • the inlet side of the first filtration membrane 110, the second filtration membrane 120 and the third filtration membrane 130 of the raw water flowing into the first filtration membrane 110, the second filtration membrane 120 and the third filtration membrane 130 Pressure regulators 61a, 62a, 63a for adjusting the pressure may be installed.
  • the first flow rate measuring unit 310a is installed at the outlet side of the first filtration membrane 110 to measure the flow rate of the raw water passing through the first filtration membrane 110
  • the second flow rate measuring unit 310b is the second It is installed on the outflow side of the filtration membrane 120 to measure the flow rate of the raw water passing through the second filtration membrane 120
  • the third flow rate measuring unit 310c is installed on the outflow side of the third filtration membrane 130 and the third filtration membrane Measure the flow rate of the raw water passed through (130).
  • the raw water supplied from the raw water supply unit 200 is the first filtration membrane 110, the third filtration membrane 130 and the third filtration membrane 130 connected in parallel by the path line (21a, 22a, 23a) After passing through), respectively, flows into the first flow rate measuring unit 310a, the second flow rate measuring unit 310b, and the third flow rate measuring unit 310c, and the contamination index measuring unit 400 is the first flow rate measuring unit.
  • the first filtration membrane 110, the second filtration membrane 120, and the third filtration membrane 130 based on the flow rates measured by the 310a, the second flow rate measuring unit 310b, and the third flow rate measuring unit 310c. Each pollution index will be measured.
  • the present invention can be used to measure the contamination index of the filtration membranes in various water treatment fields and in seawater desalination and sewage reuse.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Fluid Mechanics (AREA)
  • Dispersion Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

본 발명은 여과막 오염 지수 측정 장치에 관한 것으로서, 측정 대상 원수를 공급하는 원수 공급부와; 제1 여과막과; 상기 원수 공급부와 상기 제1 여과막을 연결하는 원수 공급 라인과; 유량을 측정하는 제1 유량 측정부와; 상기 제1 여과막과 상기 제1 유량 측정부를 연결하는 제1 경로 라인과; 상기 제1 경로 라인과 병렬로 연결되는 제2 경로 라인과; 상기 제2 경로 라인 상에 설치되고, 상기 제1 여과막과 상이한 여과 특성을 갖는 제2 여과막과; 상기 원수 공급부로부터의 원수가 상기 제1 여과막을 통과하여 상기 제1 유량 측정부로 유동하는 제1 측정 경로와, 상기 원수 공급부로부터의 원수가 상기 제1 여과막 및 상기 제2 여과막을 순차적으로 통과하여 상기 제1 유량 측정부로 유동하는 제2 측정 경로가 선택적으로 형성되도록 상기 제2 여과막에 대해 병렬로 상기 제1 경로 라인 상에 설치되는 제1 경로 선택 밸브와; 상기 제1 측정 경로와 상기 제2 측정 경로 각각에 대해 상기 제1 유량 측정부에 의해 측정된 유량에 기초하여 상기 제1 여과막 및 상기 제2 여과막의 오염 지수를 측정하는 오염 지수 측정부를 포함하는 것을 특징으로 한다.

Description

여과막 오염 지수 측정 장치
본 발명은 여과막 오염 지수 측정 장치에 관한 것으로서, 보다 상세하게는 역삼투 방식을 이용한 해수담수화 공정이나 나노 여과공정 등에서 입자물질, 콜로이드 및 유기물 등에 의해 발생하는 여과막의 오염 현상을 보다 정확하게 사전에 측정 가능할 수 있는 여과막 오염 지수 측정 장치에 관한 것이다.
역삼투 방식 또는 나노 여과공정은 최근 다양한 수처리 분야에서 주목받고 있는 기술 분야 중 하나이다. 특히, 근래에는 해수담수화나 하수재 이용분야에서 역삼투 방식을 이용한 공정이 확대되고 있는 추세이다.
GWI(Global Water Intelligence)의 "Water Reuse Markets 2005-2015 : A Global Assessment & Forecast"에 따르면 물의 재이용 시장은 세계적으로 볼 때, 현재 200 만톤/일 규모이고, 2015년에는 540 만톤/일 규모로 성장할 것으로 전망하고 있다. 또한, 해수담수화 시장은 현재 300 만톤/일 규모이며 2015년에는 620 만톤/일 규모로 성장할 것으로 전망하고 있다. 이외에도 지표수 및 지하수의 처리, 산업 폐수의 처리 및 무방류 재이용 등의 분야에서 역삼투 방식이나 나노 여과공정은 주목받고 있는 고도한 기술의 수처리 방법이다.
그런데, 역삼투 방식이나 나노 여과공정의 기술을 상용화하거나 현장에 설치하여 운영하기에 장애로 작용하는 것이 여과막의 오염 문제, 즉 막오염 문제이다. 막오염이란 여과막에 유입되는 유입수 중에 존재하는 여러 가지 이물질들이 여과막의 표면에 침착되거나 흡착되어 여과막의 물투과도를 감소시키는 현상을 의미한다.
이와 같은 막오염을 유발하는 이물질의 종류로는 부유성 입자, 콜로이드, 유기물, 미생물, 칼슘염 등의 무기염 등 다양한 종류가 있다. 이처럼 막오염을 유발하는 다양한 이물질 때문에 막오염 현상을 미리 예측한다는 것은 상당히 어려운 일이다.
일반적으로 역삼투 방식 또는 나노 여과공정에서의 막오염 현상을 미리 예측하기 위한 방법으로는 SDI(Silt Density Index) 측정방법이 사용되고 있다. SDI 측정방법은 분리막에 오염(fouling)이 일어날 수 있는 가능성을 나타내는 척도로 이용되는데, 직경이 47 mm, 공극이 0.45 ㎛의 필터에 30 psi의 압력으로 유입수를 통과시켜 부유물(SS; Suspended Solid) 성분에 의해 일어나는 오염의 정도를 측정하는 방법이다.
이 때, 처음 500 ml의 물이 흐르는데 걸리는 시간(T0)을 측정하고, 15분(T)이 지난 후 다시 500 ml의 물이 흐르는데 걸리는 시간(T1)을 측정하여, 측정된 두 시간의 비율을 막오염의 척도로 사용하고 있다.
SDI 측정방법은 현재 역삼투 방식 또는 나노 여과공정에서 유입수의 막오염 경향을 예측하기 위해 가장 널리 사용되는 방법이다. 일반적으로 SDI 측정방법에 따라 측정된 값, 즉 측정된 SID 값이 3 미만이면 오염은 심하지 않은 것으로 판단하고, 5 이상이 될 경우 심한 오염이 발생될 것으로 판단하게 된다.
그런데, 상술한 SDI 측정방법은 역삼투 여과막(RO membrane)에서 일어나는 것과 동일한 현상을 이용하는 것이 아니라는 데 한계점이 있다. 즉, SDI 측정방법은 0.45 ㎛ 이상의 크기를 가지는 부유성 입자에 의한 막오염 가능성을 간접적으로 평가하는 방법이므로, SDI 측정방법으로는 0.45 ㎛ 미만의 크기를 가지는 콜로이드나 유기물 등과 같은 미세물질에 의한 영향을 평가할 수 없게 된다.
또한, 역삼투 방식이나 나노 여과공정에서는 크로스-플로우(Cross-flow) 모드, 즉 유입수가 흐르는 방향과 여과막의 투과 방향이 서로 직교하는 방향으로 운전되기 때문에, 막오염의 주요 특성인 유발 물질의 표면특성들은 SDI 측정방법으로는 측정이 불가능하게 된다. 따라서, SDI 측정방법에 따라 측정된 측정값과 실제 공정에서의 운전결과는 상이하다는 것이 많은 연구에서 밝혀졌다.
이와 같은 문제점을 갖고 있는 SDI 측정방법을 보완하기 위한 방법으로 MFI(Modified fouling index) 측정방법 등이 사용되지만, 기본적으로 MFI 측정방법과 SDI 측정방법은 동일한 여과막을 이용하기 때문에, 측정할 수 있는 막오염 물질에 대한 한계를 가지게 된다.
이를 극복하기 위해서 MFI-UF (Modified fouling index - Ultrafilter)나 MFI-NF (Modified fouling index - Nanofilter) 등의 방법이 제안되었으나, 이러한 방법 또한, 한 개의 막을 사용하기 때문에 여과막에서 발생될 수 있는 다양한 종류의 막오염 경향을 모두 예측할 수는 없다.
이에, 본 출원인은 기출원되어 등록된 한국등록특허 제106901호에서 "막오염 지수 측정장치"를 제안하였다. 상기 한국등록특허에 개시된 막오염 지수 측정장치는 역삼투막 또는 나노 여과막을 이용하는 수처리 공정에서 친수성 및 소수성 입자물질 및 콜로이드, 유기물 등에 의한 막의 오염현상을 사전에 예측하기 위한 막오염 지수 측정장치로, 친수성 정밀 여과막과 소수성 정밀 여과막 및 한외 여과막 등 다수 개의 다른 여과막을 조합하여 역삼투 또는 나노 여과막 여과공정의 유입수 내에 존재하는 다양한 종류의 막오염 물질의 막오염 세기를 정량화할 수 있게 구성한데 특징이 있다.
상기 한국등록특허는 병렬 방식이라는 점에서 측정이 간단하고 막 오염원의 특성에 따른 평가가 가능하다는 점에서 장점이 있으나, 막 오염원에 따른 분리와 그에 따른 평가가 어렵다는 점에서 부족한 부분이 있다.
또한, 본 출원인은 기출원되어 공개된 한국공개특허 제2011-0089710호를 통해 "여과막 오염 지수 예측 장치"를 제시하였다. 상기 한국공개특허에서는 상호 상이한 여과 특성을 갖는 복수의 여과막을 직렬 방식으로 연결하여, 막 오염원별로 분리와 그에 따른 평가를 구현하였다. 그런데, 여과막, 펌프, 탱크가 3개가 필요하고, 직렬 구조라는 점에서 측정 시간이 상대적으로 긴 단점이 있다.
이에, 본 발명은 상기와 같은 문제점을 해결하기 위해 안출된 것으로서, 역삼투 방식을 이용한 해수담수화 공정이나 나노 여과공정 등에서 입자물질, 콜로이드 및 유기물 등 다양한 이물질에 의한 여과막의 오염현상을 보다 정확하게 사전에 예측 가능하고, 친수성 정밀 여과막(MF), 친수성 한외 여과막(UF) 및 친수성 나노 여과막(NF) 등의 여과막 조합을 통하여 해수 내에 존재하는 다양한 종류의 막오염 물질의 막오염 정도를 정량화할 수 있는 여과막 오염 지수 측정 장치를 제공하는데 그 목적이 있다.
또한, 구조가 단순하여 해수 담수화 플랜트에 적용하거나 휴대용 측정 장비에 적용하기 적합하고, 측정의 정확성을 보장하면서도 상대적인 측정 시간을 단축할 수 있는 여과막 오염 지수 측정 장치를 제공하는데 또 다른 목적이 있다.
상기 목적은 본 발명에 따라, 측정 대상 원수를 공급하는 원수 공급부와; 제1 여과막과; 상기 원수 공급부와 상기 제1 여과막을 연결하는 원수 공급 라인과; 유량을 측정하는 제1 유량 측정부와; 상기 제1 여과막과 상기 제1 유량 측정부를 연결하는 제1 경로 라인과; 상기 제1 경로 라인과 병렬로 연결되는 제2 경로 라인과; 상기 제2 경로 라인 상에 설치되고, 상기 제1 여과막과 상이한 여과 특성을 갖는 제2 여과막과; 상기 원수 공급부로부터의 원수가 상기 제1 여과막을 통과하여 상기 제1 유량 측정부로 유동하는 제1 측정 경로와, 상기 원수 공급부로부터의 원수가 상기 제1 여과막 및 상기 제2 여과막을 순차적으로 통과하여 상기 제1 유량 측정부로 유동하는 제2 측정 경로가 선택적으로 형성되도록 상기 제2 여과막에 대해 병렬로 상기 제1 경로 라인 상에 설치되는 제1 경로 선택 밸브와; 상기 제1 측정 경로와 상기 제2 측정 경로 각각에 대해 상기 제1 유량 측정부에 의해 측정된 유량에 기초하여 상기 제1 여과막 및 상기 제2 여과막의 오염 지수를 측정하는 오염 지수 측정부를 포함할 수 있다.
여기서, 상기 제1 여과막의 공극은 상기 제2 여과막의 공극보다 크게 마련될 수 있다.
그리고, 상기 원수 공급 라인의 상기 제1 여과막의 유입 측에 설치되어 상기 제1 여과막으로 유입되는 원수의 압력을 조절하는 제1 압력 조절기와; 상기 제1 압력 조절기가 바이패스되도록 상기 원수 공급 라인과 연결되는 제1 바이패스 라인과; 상기 제1 바이패스 라인에 설치되고, 상기 제1 측정 경로의 형성시 폐쇄되고, 상기 제2 측정 경로 및 상기 제3 측정 경로의 형성시 개방되는 제1 바이패스 밸브를 더 포함할 수 있다.
그리고, 상기 제2 경로 라인의 상기 제2 여과막의 유입 측에 설치되어 상기 제2 여과막으로 유입되는 원수의 압력을 조절하는 제2 압력 조절기를 더 포함할 수 있다.
또한, 상기 제2 경로 라인은 상기 제2 여과막의 유입 측을 형성하는 제2 유입 경로 라인과, 상기 제2 여과막의 유출 측을 형성하는 제2 유출 경로 라인을 포함하며; 상기 제2 유출 경로 라인과 병렬로 연결되는 제3 경로 라인과, 상기 제3 경로 라인 상에 설치되고, 상기 제2 여과막보다 작은 크기의 공극을 갖는 제3 여과막과, 상기 제1 경로 선택 밸브가 폐쇄된 상태에서, 상기 원수 공급부로부터의 원수가 상기 제1 여과막, 상기 제2 여과막 및 상기 제3 여과막을 순차적으로 통과하여 상기 제1 유량 측정부로 유동하는 제3 측정 경로가 형성되도록 상기 제3 여과막에 대해 병렬로 상기 제2 경로 라인 상에 설치되는 제2 경로 선택 밸브를 더 포함하며; 상기 유량 측정부는 상기 제3 측정 경로에 대해 상기 제1 유량 측정부에 의해 측정된 유량에 기초하여 상기 제3 여과막의 오염 지수를 측정할 수 있다.
그리고, 상기 제2 유입 경로 라인에 설치되어 상기 제2 여과막으로 유입되는 원수의 압력을 조절하는 제2 압력 조절기와; 상기 제2 압력 조절기가 바이패스되도록 상기 제2 유입 경로 라인과 연결되는 제2 바이패스 라인과; 상기 제2 바이패스 라인에 설치되고, 상기 제1 측정 경로 및 상기 제2 측정 경로 형성시 폐쇄되고, 상기 제3 측정 경로의 형성시 개방되는 제2 바이패스 밸브를 더 포함할 수 있다.
그리고, 상기 제3 경로 라인의 상기 제3 여과막의 유입 측에 설치되어 상기 제3 여과막으로 유입되는 원수의 압력을 조절하는 제3 압력 조절기를 더 포함할 수 있다.
여기서, 상기 제1 바이패스 밸브와 병렬로 연결되도록 상기 원수 공급 라인의 상기 제1 압력 조절기의 입력 측에 설치되어, 상기 제1 바이패스 밸브와 역으로 개방 및 폐쇄되는 제1 경로 단속 밸브와; 상기 제2 바이패스 밸브와 병렬로 연결되도록 상기 제2 경로 라인의 상기 제2 압력 조절기의 입력 측에 설치되어, 상기 제1 측정 경로 및 상기 제3 측정 경로의 형성시 폐쇄되고, 상기 제2 측정 경로의 형성시 개방되는 제2 경로 단속 밸브와; 상기 제3 경로 라인의 상기 제3 압력 조절기의 입력 측에 설치되어 상기 제3 측정 경로의 형성시 개방되는 제3 경로 단속 밸브를 더 포함할 수 있다.
여기서, 상기 오염 지수 측정부는 상기 제3 측정 경로의 형성에 따른 상기 제3 여과막, 상기 제2 측정 경로의 형성에 따른 제2 여과막, 상기 제1 측정 경로의 형성에 따른 제1 여과막 순으로 오염 지수를 측정할 수 있다.
또한, 상기 오염 지수 측정부는 상기 제1 측정 경로의 형성에 따른 제1 여과막, 상기 제2 측정 경로의 형성에 따른 상기 제2 여과막, 상기 제3 측정 경로의 형성에 따른 제3 여과막 순으로 오염 지수를 측정할 수 있다.
여기서, 상기 제2 경로 라인의 상기 제2 여과막의 유입 측으로부터 분기되는 제3 경로 라인과, 상기 제3 경로 라인 상에 설치되고, 상기 제2 여과막보다 작은 크기의 공극을 갖는 제3 여과막과, 상기 제3 경로 라인의 상기 제3 여과막의 유입 측에 설치되고, 상기 제2 여과막에 대응하는 크기의 공극을 갖는 보조 여과막과, 상기 원수 공급부로부터의 원수가 상기 제1 여과막, 상기 보조 여과막 및 상기 제3 여과막을 순차적으로 통과하여 유입되는 제3 측정 경로가 형성되도록 상기 제3 경로 라인의 상기 제3 여과막의 유출 측에 설치되는 제2 유량 측정부를 더 포함하며; 상기 제2 측정 경로 및 상기 제3 측정 경로는 동시에 형성되며; 상기 오염 지수 측정부는 상기 제3 측정 경로에 대해 상기 제2 유량 측정부에 의해 측정된 유량에 기초하여 상기 제3 여과막의 오염 지수를 측정할 수도 있다.
그리고, 상기 원수 공급 라인에 설치되어 상기 제1 여과막으로 유입되는 원수의 압력을 조절하는 제1 압력 조절기와; 상기 제2 경로 라인의 상기 제2 여과막의 유입 측에 설치되어 상기 제2 여과막으로 유입되는 원수의 압력을 조절하는 제2 압력 조절기와; 상기 제3 경로 라인의 상기 보조 여과막과 상기 제3 여과막 사이에 설치되어 상기 제3 여과막으로 유입되는 원수의 압력을 조절하는 제3 압력 조절기를 더 포함할 수 있다.
여기서, 상기 제1 압력 조절기가 바이패스되도록 상기 원수 공급 라인과 연결되는 제1 바이패스 라인과; 상기 제1 바이패스 라인에 설치되고, 상기 제1 측정 경로의 형성시 폐쇄되고, 상기 제2 측정 경로 및 상기 제3 측정 경로의 형성시 개방되는 제1 바이패스 밸브를 더 포함할 수 있다.
여기서, 상기 제1 바이패스 밸브와 병렬로 연결되도록 상기 원수 공급 라인의 상기 제1 압력 조절기의 입력 측에 설치되어, 상기 제1 바이패스 밸브와 역으로 개방 및 폐쇄되는 제1 경로 단속 밸브와; 원수의 상기 제2 경로 라인으로의 유입을 단속하도록 상기 제2 경로 라인에 설치되어, 제1 측정 경로가 형성될 때 폐쇄되고, 제2 측정 경로가 형성될 때 개방되는 제4 경로 단속 밸브를 더 포함할 수 있다.
한편, 상기 목적은 본 발명의 다른 실시 형태에 따라, 측정 대상 원수를 공급하는 원수 공급부와; 상호 상이한 여과 특성을 갖는 복수의 여과막과; 상기 원수 공급부에 대해 상기 복수의 여과막을 상호 병렬로 연결하는 경로 라인과; 상기 복수의 여과막에 각각 대응하여 상기 각 여과막의 유출 측에 설치되어, 상기 각 여과막을 통과한 원수의 유량을 측정하는 복수의 유량 측정부와; 상기 복수의 여과막 중 적어도 어느 하나의 유입 측에 설치되며, 해당 여과막과 상이한 여과 특성을 갖는 적어도 하나의 보조 여과막과; 상기 각 유량 측정부에 의해 측정된 유량에 기초하여 상기 각 여과막의 오염 지수를 측정하는 오염 지수 측정부를 포함할 수 있다.
여기서, 상기 복수의 여과막은 상호 상이한 공극 크기를 가지며; 상기 보조 여과막의 공극 크기는 해당 여과막의 공극 크기보다 크게 마련될 수 있다.
그리고, 상기 각 여과막의 유입 측에 설치되어 해당 여과막으로 유입되는 원수의 압력을 조절하는 압력 조절기를 더 포함할 수 있다.
상기 구성에 따라 본 발명에 따르면, 구조가 단순하여 해수 담수화 플랜트에 적용하거나 휴대용 측정 장비에 적용하기 적합하고, 측정의 정확성을 보장하면서도 상대적인 측정 시간을 단축할 수 있는 여과막 오염 지수 측정 장치가 제공된다.
도 1은 본 발명의 제1 실시예에 따른 여과막 오염 지수 측정 장치의 구성을 도시한 도면이고,
도 2는 본 발명의 제2 실시예에 따른 여과막 오염 지수 측정 장치의 구성을 도시한 도면이고,
도 3은 본 발명의 제2 실시예에 따른 여과막 오염 지수 측정 장치에서 제1 여과막, 제2 여과막 및 제3 여과막의 투과 특성을 설명하기 위한 도면이고,
도 4는 본 발명의 제3 실시예에 따른 여과막 오염 지수 측정 장치의 구성을 도시한 도면이고,
도 5는 본 발명의 제4 실시예에 따른 여과막 오염 지수 측정 장치의 구성을 도시한 도면이다.
[부호의 설명]
10 : 원수 공급 라인 21 : 제1 경로 라인
22 : 제2 경로 라인 23 : 제3 경로 라인
41 : 제1 경로 선택 밸브 42 : 제2 경로 선택 밸브
51 : 제1 바이패스 밸브 52 : 제2 바이패스 밸브
61 : 제1 압력 조절기 62 : 제2 압력 조절기
63 : 제3 압력 조절기 71 : 제1 바이패스 라인
72 : 제2 바이패스 라인 81 : 제1 경로 단속 밸브
82 : 제2 경로 단속 밸브 83 : 제3 경로 단속 밸브
110 : 제1 여과막 120 : 제2 여과막
130 : 제3 여과막 200 : 원수 공급부
310 : 제1 유량 측정부 320 : 제2 유량 측정부
400 : 오염 지수 측정부
본 발명에 따른 여과막 오염 지수 측정 장치는 측정 대상 원수를 공급하는 원수 공급부와; 제1 여과막과; 상기 원수 공급부와 상기 제1 여과막을 연결하는 원수 공급 라인과; 유량을 측정하는 제1 유량 측정부와; 상기 제1 여과막과 상기 제1 유량 측정부를 연결하는 제1 경로 라인과; 상기 제1 경로 라인과 병렬로 연결되는 제2 경로 라인과; 상기 제2 경로 라인 상에 설치되고, 상기 제1 여과막과 상이한 여과 특성을 갖는 제2 여과막과; 상기 원수 공급부로부터의 원수가 상기 제1 여과막을 통과하여 상기 제1 유량 측정부로 유동하는 제1 측정 경로와, 상기 원수 공급부로부터의 원수가 상기 제1 여과막 및 상기 제2 여과막을 순차적으로 통과하여 상기 제1 유량 측정부로 유동하는 제2 측정 경로가 선택적으로 형성되도록 상기 제2 여과막에 대해 병렬로 상기 제1 경로 라인 상에 설치되는 제1 경로 선택 밸브와; 상기 제1 측정 경로와 상기 제2 측정 경로 각각에 대해 상기 제1 유량 측정부에 의해 측정된 유량에 기초하여 상기 제1 여과막 및 상기 제2 여과막의 오염 지수를 측정하는 오염 지수 측정부를 포함한다.
이하에서는 첨부된 도면들을 참조하여 본 발명에 따른 실시예들에 대해 상세히 설명한다. 여기서, 본 발명에 따른 실시예들을 설명하는데 있어, 상호 대응하는 구성에 대해서는 동일한 참조번호를 사용하여 설명하며, 필요에 따라 그 설명은 생략할 수 있다.
제1 실시예
도 1은 본 발명의 제1 실시예에 따른 여과막 오염 지수 측정 장치의 구성을 도시한 도면이다. 도 1을 참조하여 설명하면, 본 발명의 제1 실시예에 따른 여과막 오염 지수 측정 장치는 원수 공급부(200), 제1 여과막(110), 제2 여과막(120), 제1 유량 측정부(310), 제1 경로 라인(21), 제2 경로 라인(22), 제1 경로 선택 밸브(41), 및 오염 지수 측정부(400)를 포함한다.
원수 공급부(200)는 측정 대상이 되는 원수를 공급한다. 여기서, 원수 공급부(200)는 원수가 가압된 상태로 공급되도록 구성되는데, 압축 공기를 이용하는 방식, 펌프를 이용하는 방식 등이 적용될 수 있으며, 해수 담수화 플랜트의 경우 플랜트 자체의 고압 펌프에 의해 압축된 상태로 공급될 수 있다.
제1 여과막(110)과 제2 여과막(120)은 상호 상이한 여과 특성을 갖는다. 본 발명에서는 제1 여과막(110)과 제2 여과막(120)의 공극이 상호 상이한 것을 예로 하며, 제1 여과막(110)의 공극이 제2 여과막(120)의 공극보다 크게 마련된다.
예를 들어, 친수성 정밀 여과막(MF)이 제1 여과막(110)으로 사용되는 경우, 친수성 정밀 여과막(MF)보다 공극 크기가 작은 친수성 한외 여과막(UF) 또는 친수성 나노 여과막(NF)가 제2 여과막(120)으로 적용될 수 있다. 또한, 친수성 한외 여과막(UF)이 제1 여과막(110)으로 사용되는 경우, 친수성 나노 여과막(NF)이 제2 여과막(120)으로 사용될 수 있다.
원수 공급 라인(10)은 원수 공급부(200)와 제1 여과막(110)을 연결하여, 원수 공급부(200)로부터의 원수가 원구 공급 라인을 통해 제1 여과막(110)으로 유동 가능하게 한다. 여기서, 원수 공급 라인(10) 상에는 원수 공급부(200)로부터 공급되는 원수의 압력을 조절하기 위한 공급측 압력 조절기(500)가 설치될 수 있다.
제1 유량 측정부(310)는 유량을 측정하는데, 후술할 제1 측정 경로를 통해 제1 여과막(110)을 투과한 원수의 유량과, 후술할 제2 측정 경로를 통해 제2 여과막(120)을 투과한 원수의 유량을 각각 측정하는데, 이에 대한 상세한 설명은 후술한다.
제1 경로 라인(21)은 제1 여과막(110)과 제1 유량 측정부(310)를 연결하여, 제1 여과막(110)을 투과한 원수가 제1 유량 측정부(310)로 유동하도록 한다. 그리고, 제2 경로 라인(22)은, 도 1에 도시된 바와 같이, 제1 경로 라인(21)과 병렬로 연결된다.
제1 경로 선택 밸브(41)는 제2 여과막(120)에 대해 병렬로 연결되도록 제1 경로 라인(21) 상에 설치된다. 여기서, 제1 경로 선택 밸브(41)는 제1 측정 경로가 형성되도록 개방되고, 제2 측정 경로가 형성되도록 폐쇄된다. 보다 구체적으로 설명하면, 제1 경로 선택 밸브(41)가 개방되는 경우, 원수 공급부(200)로부터의 원수가 원수 공급 라인(10), 제1 여과막(110), 제1 경로 라인(21)을 거쳐 제1 유량 측정부(310)로 유동하는 제1 측정 경로가 형성된다.
반면, 제1 경로 선택 밸브(41)가 폐쇄되는 경우, 원수 공급부(200)로부터의 원수가 원수 공급 라인(10), 제1 여과막(110), 제2 경로 라인(22)을 통해 제2 여과막(120)을 투과한 후 제1 유량 측정부(310)로 유동하게 된다.
상기 구성에 따라, 오염 지수 측정부(400)는 제1 측정 경로와 제2 측정 경로 각각에 대해 제1 유량 측정부(310)에 의해 측정된 유량에 기초하여, 제1 여과막(110)과 제2 여과막(120)의 오염 지수를 각각 측정하게 된다.
보다 구체적으로 설명하면, 오염 지수 측정부(400)는 제1 경로 선택 밸브(41)가 개방된 상태에서, 제1 측정 경로를 통해 제1 여과막(110) 만을 투과한 유량을 제1 유량 측정부(310)를 통해 측정하여, 제1 여과막(110)의 오염 지수를 측정한다. 그런 다음, 오염 지수 측정부(400)는 제2 측정 경로를 통해 제1 여과막(110)과 제2 여과막(120)을 순차적으로 투과한 유량을 제1 유량 측정부(310)를 통해 측정하여, 제2 여과막(120)의 오염 지수를 측정한다.
이에 따라, 서로 다른 여과 특성을 갖는 제1 여과막(110)과 제2 여과막(120)이 각각 개별적으로 측정되는데, 제1 여과막(110)보다 공극의 크기가 작은 제2 여과막(120)의 경우 제1 여과막(110)을 거친 원수가 투과되어 1차적으로 입자가 큰 이물질이 제1 여과막(110)을 통해 걸려저 제2 여과막(120)의 막 오염에 영향을 미치는 입자에 의한 영향을 보다 정확히 측정할 수 있게 된다.
예를 들어, 친수성 정밀 여과막(MF)을 제1 여과막(110)으로 사용하는 경우 일반적인 부유입자가 제1 여과막(110)의 표면에 침착되거나 흡착된다. 그리고, 친수성 한외 여과막(UF)을 제2 여과막(120)으로 사용하는 경우 콜로이드 입자가 제2 여과막(120)의 표면에 침착되거나 흡착된다. 따라서, 제2 여과막(120)에만 원수를 투과시켜 제2 여과막(120)의 막오염을 측정할 때 일반적인 부유입자의 침착이나 흡착에 의한 막 오염과 콜로이드 입자에 의한 막 오염을 구분하여 평가할 수 있게 된다.
또한, 제1 여과막(110)에 대한 측정과 제2 여과막(120)에 대한 측정을 제1 경로 선택 밸브(41)를 통해 분리하고, 하나의 원수 공급부(200)와 하나의 제1 유량 측정부(310)로 제1 여과막(110)과 제2 여과막(120)의 막오염을 정확히 측정 가능하게 된다.
한편, 본 발명의 제1 실시예에 따른 여과막 오염 지수 측정 장치는, 도 1에 도시된 바와 같이, 제1 압력 조절기(61), 제1 바이패스 라인(71) 및 제1 바이패스 밸브(51)를 포함할 수 있다.
제1 압력 조절기(61)는 원수 공급 라인(10)의 제1 여과막(110)의 유입 측에 설치되어 제1 여과막(110)으로 유입되는 원수의 압력을 조절한다. 그리고, 제1 바이패스 라인(71)은 제1 압력 조절기(61)가 바이패스 되도록 원수 공급 라인(10)과 병렬로 연결된다.
여기서, 제1 바이패스 밸브(51)는 제1 바이패스 라인(71)에 설치되는데, 제1 측정 경로의 형성시, 즉 제1 경로 선택 밸브(41)가 개방될 때, 폐쇄되어 원수 공급 라인(10)을 통해 공급되는 원수가 제1 압력 조절기(61)를 거쳐 제1 여과막(110)으로 유입되도록 한다.
반면, 제1 바이패스 밸브(51)는 제2 측정 경로의 형성시, 즉 제1 경로 선택 밸브(41)가 폐쇄될 때, 개방되어 원수 공급 라인(10)을 통해 공급되는 원수가 제1 바이패스 라인(71)을 통해 제1 여과막(110)으로 유입되도록 한다.
여기서, 본 발명의 제1 실시예에 따른 여과막 오염 지수 측정 장치는, 도 1에 도시된 바와 같이, 제2 경로 라인(22)의 제2 여과막(120)의 유입측에 설치되어 제2 여과막(120)으로 유입되는 원수의 압력을 조절하는 제2 압력 조절기(62)를 포함할 수 있다.
상기와 같이, 제1 여과막(110) 및 제2 여과막(120)의 유입 측에 각각 제1 압력 조절기(61)와 제2 압력 조절기(62)를 각각 설치하고, 제1 여과막(110)과 제2 여과막(120)을 통과하는 원수의 유압을 일정하게 유지시킴으로써, 보다 정확한 측정이 가능하게 된다.
또한, 제2 여과막(120)의 막오염 측정을 위한 제2 측정 경로의 형성시 원수가 제1 압력 조절기(61)를 통과하지 않고 제1 바이패스 라인(71)을 통해 바이패스되어 제1 여과막(110)을 통과하도록 함으로써, 제1 압력 조절기(61)에 의한 제2 여과막(120)의 막오염 측정시 측정 압력을 제1 여과막(110) 측정 압력보다 높게 설정할 수 있게 된다.
한편, 본 발명의 제1 실시예에 따른 여과막 오염 지수 측정 장치는 제1 경로 단속 밸브(81) 및 제2 경로 단속 밸브(82)를 포함할 수 있다. 제1 경로 단속 밸브(81)는 제1 바이패스 밸브(51)와 병렬로 연결되도록 원수 공급 라인(10)의 제1 압력 조절기(61)의 입력 측에 설치된다. 그리고, 제2 경로 단속 밸브(82)는 제2 경로 라인(22)의 제2 압력 조절기(62)의 입력 측에 설치된다.
여기서, 제1 경로 단속 밸브(81)는 제1 바이패스 밸브(51)와 역으로 개방 또는 폐쇄된다. 즉, 제1 측정 경로가 형성될 때 제1 바이패스 밸브(51)가 폐쇄되고 제1 경로 단속 밸브(81)가 개방됨으로써, 제1 압력 조절기(61)를 통해 원수가 제1 여과막(110)으로 흐르게 된다. 반면, 제2 측정 경로가 형성될 때 제1 바이패스 밸브(51)가 개방되고 제1 경로 단속 밸브(81)가 폐쇄됨으로써, 원수가 제1 바이패스 라인(71)을 통해 제1 여과막(110)으로 흐르게 된다. 그리고, 제2 경로 단속 밸브(81)는 제1 측정 경로가 형성될 때 폐쇄되고, 제2 측정 경로가 형성될 때 개방된다.
이에 따라, 제1 측정 경로의 형성시 원수가 제2 압력 조절기(62)로 흐르는 것이 완벽하게 차단되고, 마찬가지로 제2 측정 경로의 형성시 원수가 제1 압력 조절기(61)로 흐르는 것이 완벽하게 차단됨으로써, 제1 압력 조절기(61) 및 제2 압력 조절기(62) 자체만으로 원수의 흐름을 차단하는 경우보다 안정적으로 제1 측정 경로 및 제2 측정 경로의 형성이 가능하게 된다.
제2 실시예
이하에서는, 도 2를 참조하여 본 발명의 제2 실시예에 따른 여과막 오염 지수 측정 장치의 구성에 대해 상세히 설명한다. 본 발명의 제2 실시예에 따른 여과막 오염 지수 측정 장치는 상호 상이한 공극 특성을 갖는 3개의 여과막이 적용되는 실시예로, 제1 실시예를 기본 구성으로 하는 확장된 구성 특성을 가지며, 제1 실시예에 대응하는 구성은 동일한 참조번호를 사용하며, 그 설명은 생략될 수 있다.
여기서, 본 발명의 제2 실시예에서는 친수성 정밀 여과막(MF)이 제1 여과막(110)으로, 친수성 한외 여과막(UF)이 제2 여과막(120)으로, 친수성 나노 여과막(NF)이 제3 여과막(130)으로 적용되는 것을 예로 하여 설명한다.
도 2을 참조하여 설명하면, 본 발명의 제2 실시예에 따른 여과막 오염 지수 측정 장치는 원수 공급부(200), 원수 공급 라인(10), 제1 여과막(110), 제2 여과막(120), 제3 여과막(130), 제1 경로 라인(21), 제2 경로 라인(22), 제3 경로 라인(23), 제1 경로 선택 밸브(41), 제2 경로 선택 밸브(42), 제1 유량 측정부(310) 및 오염 지수 측정부(400)를 포함할 수 있다. 여기서, 원수 공급부(200)와 제1 유량 측정부(310)의 기본적인 구성은 제1 실시예에 대응하는 바, 그 상세한 설명은 생략한다.
제1 경로 라인(21)은 제1 여과막(110)과 제1 유량 측정부(310)를 연결하여, 제1 여과막(110)을 투과한 원수가 제1 유량 측정부(310)로 유동하도록 한다. 그리고, 제2 경로 라인(22)은, 제1 실시예에서와 마찬가지로, 제1 경로 라인(21)과 병렬로 연결된다.
제1 경로 선택 밸브(41)는 제2 여과막(120)에 대해 병렬로 연결되도록 제1 경로 라인(21) 상에 설치된다. 여기서, 제1 경로 선택 밸브(41)는 제1 측정 경로가 형성되도록 개방되고, 제2 측정 경로 및 제3 측정 경로가 형성되도록 폐쇄되는데, 이에 대한 상세한 설명은 후술한다.
한편, 제2 경로 라인(22)은, 제2 여과막(120)을 중심으로, 제2 여과막(120)의 유입 측을 형성하는 제2 유입 경로 라인과, 제2 여과막(120)의 유출 측을 형성하는 제2 유출 경로 라인으로 구분될 수 있다. 여기서, 제3 경로 라인(23)은, 도 2에 도시된 바와 같이, 제2 유출 경로 라인과 병렬로 연결된다.
제3 여과막(130)은 제3 경로 라인(23)상에 설치되며, 상술한 바와 같이, 제1 여과막(110) 및 제2 여과막(120)보다 작은 크기의 공극을 갖는 친수성 나노 여과막(NF)이 적용되는 것을 예로 한다.
제2 경로 선택 밸브(42)는 제3 여과막(130)에 대해 병렬로 제2 경로 라인(22) 상에 설치된다. 그리고, 제2 경로 선택 밸브(42)는 제1 경로 선택 밸브(41)가 폐쇄된 상태에서, 원수 공급부(200)로부터의 원수가 제1 여과막(110), 제2 여과막(120), 제3 여과막(130)을 순차적으로 통과하여 제1 유량 측정부(310)로 유입되도록 폐쇄된다.
한편, 본 발명의 제2 실시예에 따른 여과막 오염 지수 측정 장치는 제1 압력 조절기(61), 제1 바이패스 라인(71) 및 제1 바이패스 밸브(51)를 포함할 수 있다. 또한, 본 발명의 제2 실시예에 따른 여과막 오염 지수 측정 장치는 제2 압력 조절기(62), 제2 바이패스 라인(72) 및 제2 바이패스 밸브(52)와, 제3 압력 조절기(63)를 포함할 수 있다.
제1 압력 조절기(61)는 원수 공급 라인(10)의 제1 여과막(110)의 유입 측에 설치되어 제1 여과막(110)으로 유입되는 원수의 압력을 조절한다. 그리고, 제1 바이패스 라인(71)은 제1 압력 조절기(61)가 바이패스 되도록 원수 공급 라인(10)과 병렬로 연결된다. 그리고, 제1 바이패스 밸브(51)는 제1 바이패스 라인(71) 상에 설치된다.
마찬가지로, 제2 압력 조절기(62)는 제2 경로 라인(22)의 제2 유입 경로 라인 상에 설치되어 제2 여과막(120)으로 유입되는 원수의 압력을 조절한다. 그리고, 제2 바이패스 라인(72)은 제2 압력 조절기(62)가 바이패스 되도록 제2 유립 경로 라인과 연결되고, 제2 바이패스 밸브(52)는 제2 바이패스 라인(72) 상에 설치된다. 그리고, 제3 경로 라인(23)의 제3 여과막(130)의 유입 측에는 제3 압력 조절기(63)가 설치되어 제3 여과막(130)으로 유입되는 원수의 압력을 조절한다.
상기 구성에 따라, 제1 여과막(110), 제2 여과막(120) 및 제3 여과막(130) 각각의 오염 지수를 제1 유량 측정부(310)에 의해 측정된 유량에 기초하여 측정하는 과정에 대해 상세히 설명한다.
본 발명의 제2 실시예에 따른 여과막 오염 지수 측정 장치에서는 제3 여과막(130), 제2 여과막(120), 제1 여과막(110) 순으로 오염 지수를 측정하는 것을 일 예로 한다.
먼저, 제1 경로 선택 밸브(41)와 제2 경로 선택 밸브(42)가 모두 폐쇄되고, 제1 바이패스 밸브(51)와 제2 바이패스 밸브(52)가 모두 개방되어, 제3 측정 경로가 형성된다. 여기서, 제3 측정 경로는 원수 공급부(200), 제1 바이패스 라인(71), 제1 여과막(110), 제2 경로 라인(22), 제2 바이패스 라인(72), 제2 여과막(120), 제3 경로 라인(23), 제3 여과막(130)을 거쳐 제1 유량 측정부(310)로 유입되는 경로로 형성된다.
이와 같이, 원수 공급부(200)로부터의 원수가 제1 여과막(110), 제2 여과막(120) 및 제3 여과막(130)을 순차적으로 통과한 후 제1 유량 측정부(310)로 유입되고, 오염 지수 측정부(400)가 제1 유량 측정부(310)에 유입된 유량에 기초하여 제3 여과막(130)의 오염 지수를 측정하게 된다.
도 3은 본 발명의 제2 실시예에 따른 여과막 오염 지수 측정 장치에 제1 여과막(110), 제2 여과막(120) 및 제3 여과막(130)에서 통과되는 이물질과 평가되어지는 이물질을 개념적으로 도시한 도면이다. 도 3에서는 제1 여과막(110)의 공극의 크기가 0.45 ㎛인 친수성 정밀 여과막(MF)이고, 제2 여과막(120)의 분획 분자량이 100 kDa인 친수성 한외 여과막(UF)이고, 제3 여과막(130)의 분획 분자량이 10 kDa인 친수성 나노 여과막(NF)인 것을 예로 하고 있다.
도 3에서는, 제1 여과막(110)에는 원수에 포함된 이물질 중 일반적인 부유입자(Particles)가 여과되고, 제2 여과막(120)에서는 원수에 포함된 이물질 중 콜로이드(Colloids) 입자가 여과되고, 제3 여과막(130)에서는 원수에 포함된 이물질 중 유기물질(Organic)이 여과되는 것을 개념적으로 도시하고 있다.
도 3에 도시된 바와 같이, 제3 여과막(130)의 오염을 평가하는데 있어 일반적인 부유입자(Particles)와, 콜로이드(Colloids) 입자가 제1 여과막(110)과 제2 여과막(120)에서 걸러져, 제3 여과막(130)의 오염 지수를 평가하는데 필요한 유기물질(Organic) 만이 제3 여과막(130)의 오염 지수 측정에 반영될 수 있다.
상기와 같이, 제3 여과막(130)의 오염 지수의 측정이 완료되면, 제1 경로 선택 밸브(41)의 폐쇄와 제1 바이패스 밸브(51)의 개방이 유지된 상태에서, 제2 경로 선택 밸브(42)가 개방되고, 제2 바이패스 밸브(52)가 폐쇄되어, 제2 측정 경로가 형성된다.
여기서, 제2 측정 경로는 원수 공급부(200), 원수 공급 라인(10), 제1 바이패스 라인(71), 제1 여과막(110), 제2 경로 라인(22), 제2 여과막(120)을 거쳐 제1 유량 측정부(310)로 유입되는 경로로 형성된다.
이와 같이, 원수 공급부(200)로부터의 원수가 제1 여과막(110)과 제2 여과막(120)을 순차적으로 통과한 후 제1 유량 측정부(310)로 유입되고, 오염 지수 측정부(400)가 제1 유량 측정부(310)에 유입된 유량에 기초하여 제2 여과막(120)의 오염 지수를 측정하게 된다. 도 3을 참조하여 설명하면, 제1 여과막(110)을 통해 부유입자(Particles)가 걸러진 상태에서 제2 여과막(120)에 콜로이드(Colloids) 입자가 침착되거나 흡착되어 제2 여과막(120)을 오염시키게 되는데, 크기가 작은 유기물질(Organic)은 제2 여과막(120)을 통과하여 제2 여과막(120)의 오염에 영향을 미치지 않게 된다.
그리고, 제2 측정 경로를 통해 제2 여과막(120)의 오염 지수의 측정이 완료되면, 제2 바이패스 밸브(52)를 폐쇄하고, 제1 경로 선택 밸브(41)를 개방하여 제1 측정 경로를 형성한다. 여기서, 제1 측정 경로는 원수 공급부(200), 원수 공급 라인(10), 제1 여과막(110), 제1 경로 라인(21)을 거쳐 제1 유량 측정부(310)로 유입되는 경로로 형성된다.
상기와 같이, 제1 여과막(110), 제2 여과막(120) 및 제3 여과막(130)의 오염 지수에 영향을 미치는 부유물 만이 제1 여과막(110), 제2 여과막(120) 및 제3 여과막(130)에 걸러지도록 하여, 보다 정확한 막오염의 예측이 가능하게 된다.
한편, 전술한 예에서는 제3 여과막(130), 제2 여과막(120), 제1 여과막(110) 순으로 오염 지수의 측정이 진행되는 것을 예로 하여 설명하였으나, 제1 여과막(110), 제2 여과막(120), 제3 여과막(130) 순으로 오염 지수의 측정이 가능함은 물론이다. 여기서, 제1 여과막(110)의 측정을 위한 제1 측정 경로의 형성, 제2 여과막(120)의 측정을 위한 제2 측정 경로의 형성, 그리고 제3 여과막(130)의 측정을 위한 제3 측정 경로의 형성을 위한 제1 경로 선택 밸브(41), 제2 경로 선택 밸브(42), 제1 바이패스 밸브(51) 및 제2 바이패스 밸브(52)의 개방 및 폐쇄 상태는 상술한 바와 같다.
한편, 본 발명의 제2 실시예에 따른 여과막 오염 지수 측정 장치는 제1 경로 단속 밸브(81), 제2 경로 단속 밸브(82) 및 제3 경로 단속 밸브(83)를 포함할 수 있다. 제1 경로 단속 밸브(81)는 제1 바이패스 밸브(51)와 병렬로 연결되도록 원수 공급 라인(10)의 제1 압력 조절기(61)의 입력 측에 설치된다. 그리고, 제2 경로 단속 밸브(82)는 제2 바이패스 밸브(52)와 병렬로 연결되도록 제2 경로 라인(22)의 제2 압력 조절기(62)의 입력 측에 설치된다. 그리고, 제3 경로 단속 밸브(82)는 제3 경로 라인(23)의 제3 압력 조절기(63)의 입력 측에 설치된다.
여기서, 제1 경로 단속 밸브(81)는 제1 바이패스 밸브(51)와 역으로 개방 또는 폐쇄된다. 즉, 제1 측정 경로가 형성될 때 제1 바이패스 밸브(51)가 폐쇄되고 제1 경로 단속 밸브(81)가 개방됨으로써, 제1 압력 조절기(61)를 통해 원수가 제1 여과막(110)으로 흐르게 된다. 반면, 제2 측정 경로 및 제3 측정 경로가 형성될 때 제1 바이패스 밸브(51)가 개방되고 제1 경로 단속 밸브(81)가 폐쇄됨으로써, 원수가 제1 바이패스 라인(71)을 통해 제1 여과막(110)으로 흐르게 된다.
제2 경로 단속 밸브(82)는 제1 측정 경로 및 제3 측정 경로가 형성될 때 폐쇄되고, 제2 측정 경로가 형성될 때 개방된다. 이에 따라, 제1 측정 경로가 형성될 때에는 원수가 제2 압력 조절기(62) 측으로 흐르는 것이 차단됨으로써, 제1 측정 경로의 형성시 원수가 제1 여과막(110)을 통과한 후 바로 제1 유량 측정부(310) 측으로 흐를 수 있게 된다.
또한, 제2 경로 단속 밸브(82)는 제2 측정 경로 형성될 때 개방되어 원수가 제2 압력 조절기(62)를 통해 제2 여과막(120)을 통과하도록 한다. 그리고, 제3 측정 경로가 형성될 때, 제2 경로 단속 밸브(82)는 폐쇄되어 원수가 제2 바이패스 라인(72)을 통해 제2 여과막(120)을 통과하도록 한다.
그리고, 제3 경로 단속 밸브(83)은 제1 측정 경로 및 제2 측정 경로의 형성시 폐쇄되고, 제3 측정 경로의 형성시 개방된다.
이에 따라, 상술한 제1 실시예에서와 마찬가지로, 제1 압력 조절기(61), 제2 압력 조절기(62) 및 제2 압력 조절기(62) 자체만으로 원수의 흐름을 차단하는 경우보다 안정적으로 제1 측정 경로, 제2 측정 경로 및 제3 측정 경로의 형성이 가능하게 된다.
제3 실시예
이하에서는, 도 4를 참조하여 본 발명의 제3 실시예에 따른 여과막 오염 지수 측정 장치의 구성에 대해 상세히 설명한다. 본 발명의 제3 실시예에 따른 여과막 오염 지수 측정 장치는 상호 상이한 공극 특성을 갖는 3개의 여과막이 적용되는 실시예로, 제1 실시예를 기본 구성으로 하는 확장된 구성 특성을 가지며, 제1 실시예에 대응하는 구성은 동일한 참조번호를 사용하며, 그 설명은 생략될 수 있다.
여기서, 본 발명의 제3 실시예에서는 친수성 정밀 여과막(MF)이 제1 여과막(110)으로, 친수성 한외 여과막(UF)이 제2 여과막(120)으로, 친수성 나노 여과막(NF)이 제3 여과막(130)으로 적용되는 것을 예로 하여 설명한다.
도 4를 참조하여 설명하면, 본 발명의 제3 실시예에 따른 여과막 오염 지수 측정 장치는 원수 공급부(200), 원수 공급 라인(10), 제1 여과막(110), 제2 여과막(120), 제3 여과막(130), 제1 경로 라인(21), 제2 경로 라인(22), 제3 경로 라인(23), 제1 경로 선택 밸브(41), 보조 여과막(140), 제1 유량 측정부(310), 제2 유량 측정부(320) 및 오염 지수 측정부(400)를 포함할 수 있다. 여기서, 원수 공급부(200)와, 원수 공급 라인(10), 제1 유량 측정부(310)의 기본적인 구성은 제1 실시예에 대응하는 바, 그 상세한 설명은 생략할 수 있다.
제1 경로 라인(21)은 제1 여과막(110)과 제1 유량 측정부(310)를 연결하여, 제1 여과막(110)을 투과한 원수가 제1 유량 측정부(310)로 유동하도록 한다. 그리고, 제2 경로 라인(22)은, 제1 실시예에서와 마찬가지로, 제1 경로 라인(21)과 병렬로 연결된다.
제1 경로 선택 밸브(41)는 제2 여과막(120)에 대해 병렬로 연결되도록 제1 경로 라인(21) 상에 설치된다. 여기서, 제1 경로 선택 밸브(41)는 제1 측정 경로가 형성되도록 개방되고, 제2 측정 경로 및 제3 측정 경로가 형성되도록 폐쇄되는데, 이에 대한 상세한 설명은 후술한다.
제3 경로 라인(23)은 제2 경로 라인(22)의 제2 여과막(120)의 유입 측으로부터 분기된다. 그리고, 보조 여과막(140)과 제3 여과막(130)이 제3 경로 라인(23) 상에 순차적으로 설치된다. 즉, 제3 여과막(130)은 제3 경로 라인(23) 상에 설치되고, 보조 여과막(140)은 제3 경로 라인(23)의 제3 여과막(130)의 유입 측에 설치된다.
여기서, 보조 여과막(140)은 제2 여과막(120)에 대응하는 크기의 공극을 갖는다. 예를 들어, 제2 여과막(120)이 친수성 한외 여과막(UF)으로 마련된 경우, 보조 여과막(140)도 친수성 한외 여과막(UF)으로 마련될 수 있다. 그리고, 제2 유량 측정부(320)는 제3 경로 라인(23)의 제3 여과막(130)의 유출 측에 설치되어 제3 여과막(130)을 투과한 원수의 유량을 측정하도록 마련된다.
한편, 본 발명의 제3 실시예에 따른 여과막 오염 지수 측정 장치는, 도 4에 도시된 바와 같이, 제1 압력 조절기(61), 제1 바이패스 라인(71) 및 제1 바이패스 밸브(51)를 포함할 수 있다. 또한, 여과막 오염 지수 측정 장치는 제2 압력 조절기(62) 및 제3 압력 조절기(63)를 포함할 수 있다.
제1 압력 조절기(61)는 원수 공급 라인(10)의 제1 여과막(110)의 유입 측에 설치되어 제1 여과막(110)으로 유입되는 원수의 압력을 조절한다. 그리고, 제1 바이패스 라인(71)은 제1 압력 조절기(61)가 바이패스 되도록 원수 공급 라인(10)과 병렬로 연결된다.
여기서, 제1 바이패스 밸브(51)는 제1 바이패스 라인(71)에 설치되는데, 제1 측정 경로의 형성시, 즉 제1 경로 선택 밸브(41)가 개방될 때, 폐쇄되어 원수 공급 라인(10)을 통해 공급되는 원수가 제1 압력 조절기(61)를 거쳐 제1 여과막(110)으로 유입되도록 한다.
반면, 제1 바이패스 밸브(51)는 제2 측정 경로 및 제3 측정 경로의 형성시, 즉 제1 경로 선택 밸브(41)가 폐쇄될 때, 개방되어 원수 공급 라인(10)을 통해 공급되는 원수가 제1 바이패스 라인(71)을 통해 제1 여과막(110)으로 유입되도록 한다.
제2 압력 조절기(62)는 제2 경로 라인(22)의 제2 여과막(120)의 유입측에 설치되어 제2 여과막(120)으로 유입되는 원수의 압력을 조절한다. 그리고, 제3 압력 조절기(63)는 제3 경로 라인(23)의 보조 여과막(140)와 제3 여과막(130) 사이에 설치되어 제3 여과막(130)으로 유입되는 원수의 압력을 조절한다.
상기와 같은 구성에 따라 오염 지수 측정부(400)가 제1 측정 경로를 형성하여 제1 여과막(110)의 오염 지수를 측정하고, 제2 측정 경로 및 제3 측정 경로를 동시에 형성하여 제2 여과막(120)과 제3 여과막(130)의 오염 지수를 동시에 측정하는 과정에 대해 상세히 설명한다.
먼저, 제1 바이패스 밸브(51)가 폐쇄되고, 제1 경로 형성 밸브가 개방되어 제1 측정 경로가 형성된다. 여기서, 제1 측정 경로는 원수 공급부(200), 제1 여과기, 제2 경로 라인(22)을 거쳐 제1 유량 측정부(310)로 유입되는 경로로 형성된다. 이 때, 오염 지수 측정부(400)는 제1 유량 측정부(310)에 의해 측정된 유량에 기초하여 제1 여과막(110)의 오염 지수를 측정하게 된다.
제1 여과막(110)의 오염 지수의 측정이 완료되면, 제1 바이패스 밸브(51)를 개방하고, 제1 경로 선택 밸브(41)를 개방하여 제2 측정 경로와 제3 측정 경로를 동시에 형성된다. 여기서, 제2 측정 경로는 원수 공급부(200), 원수 공급 라인(10), 제1 바이패스 라인(71), 제1 여과막(110), 제2 경로 라인(22), 제2 여과막(120)을 거쳐 제1 유량 측정부(310)로 유입되는 경로로 형성되고, 제3 측정 경로는 원수 공급부(200), 원수 공급 라인(10), 제1 바이패스 라인(71), 제1 여과막(110), 제2 경로 라인(22). 제3 경로 라인(23), 보조 여과막(140), 제3 여과막(130)을 거쳐 제2 유량 측정부(320)로 유입되는 경로로 형성된다.
상기와 같이, 제2 경로 라인(22)과 제3 경로 라인(23)이 동시에 형성되고, 제2 여과막(120)을 투과한 원수의 유량이 제1 유량 측정부(310)에 측정되고, 제3 여과막(130)을 투과한 원수의 유량이 제2 유량 측정부(320)에 의해 측정됨으로써, 제2 여과막(120)과 제3 여과막(130)의 오염 지수의 측정 과정이 동시에 진행될 수 있다.
한편, 본 발명의 제3 실시예에 따른 여과막 오염 지수 측정 장치는 제1 경로 단속 밸브(81) 및 제4 경로 단속 밸브(84)를 포함할 수 있다. 제1 경로 단속 밸브(81)는 제1 바이패스 밸브(51)와 병렬로 연결되도록 원수 공급 라인(10)의 제1 압력 조절기(61)의 입력 측에 설치된다. 그리고, 제4 경로 단속 밸브(82)는 제2 경로 라인(22)에 설치된다.
여기서, 제1 경로 단속 밸브(81)는 제1 바이패스 밸브(51)와 역으로 개방 또는 폐쇄된다. 즉, 제1 측정 경로가 형성될 때 제1 바이패스 밸브(51)가 폐쇄되고 제1 경로 단속 밸브(81)가 개방됨으로써, 제1 압력 조절기(61)를 통해 원수가 제1 여과막(110)으로 흐르게 된다. 반면, 제2 측정 경로가 형성될 때 제1 바이패스 밸브(51)가 개방되고 제1 경로 단속 밸브(81)가 폐쇄됨으로써, 원수가 제1 바이패스 라인(71)을 통해 제1 여과막(110)으로 흐르게 된다.
그리고, 제4 경로 단속 밸브(84)는 원수의 제2 경로 라인(22)으로의 유입을 단속하도록 제2 경로 라인에 설치되어, 제1 측정 경로가 형성될 때 폐쇄되고, 제2 측정 경로가 형성될 때 개방된다.
이에 따라, 제1 측정 경로의 형성시 원수가 제2 경로 라인(22)으로 흐르는 것이 완벽하게 차단되고, 마찬가지로 제2 측정 경로의 형성시 원수가 제1 압력 조절기(61)로 흐르는 것이 완벽하게 차단됨으로써, 제1 압력 조절기(61), 제2 압력 조절기(62) 및 제3 압력 조절기(63) 자체만으로 원수의 흐름을 차단하는 경우보다 안정적으로 제1 측정 경로 및 제2 측정 경로의 형성이 가능하게 된다.
전술한 실시예에서는 제1 실시예를 기본 구조로 하여 제2 실시예 및 제3 실시예가 확장된 구조를 갖는 것을 예로 하여 설명하였다. 여기서, 본 발명의 기술적 사상이 제2 실시예 및 제3 실시예와 같이 3개의 여과막(110,120,130)까지만 국한되지 않으며, 당업자라면 제1 실시예를 기본으로 하여 제2 실시예 및 제3 실시예에서와 같이, 4개의 이상의 여과막으로 제1 실시예를 확장할 수 있을 것이다.
제4 실시예
이하에서는, 도 5를 참조하여 본 발명의 제4 실시예에 따른 여과막 오염 지수 측정 장치에 대해 상세히 설명한다. 본 발명의 제4 실시예에 따른 여과막 오염 지수 측정 장치는 원수 공급부(200), 복수의 여과막(110,120,130), 경로 라인(21a,22a,23a), 복수의 유량 측정부(310a,310b,310c), 적어도 하나의 보조 여과막(140a,140b), 그리고 오염 지수 측정부(400)를 포함한다.
원수 공급부(200)는 측정 대상이 되는 원수를 공급한다. 여기서, 원수 공급부(200)는 원수가 가압된 상태로 공급되도록 구성되는데, 압축 공기를 이용하는 방식, 펌프를 이용하는 방식 등이 적용될 수 있으며, 해수 담수화 플랜트의 경우 플랜트 자체의 고압 펌프에 의해 압축된 상태로 공급될 수 있다.
복수의 여과막(110,120,130)은 상호 상이한 여과 특성을 갖는다. 여기서, 본 발명에 따른 복수의 여과막(110,120,130)은 상호 상이한 공극 크기를 가지도록 마련되는 것을 예로 하며, 3개의 여과막(110,120,130)이 적용되는 것을 예로 한다. 그리고, 제1 여과막(110), 제2 여과막(120) 및 제3 여과막(130)의 순으로 공극의 크기가 크게 마련되는데, 친수성 정밀 여과막(MF)이 제1 여과막(110)으로, 친수성 한외 여과막(UF)이 제2 여과막(120)으로, 친수성 나노 여과막(NF)이 제3 여과막(130)으로 적용되는 것을 예로 하여 설명한다.
한편, 경로 라인(21a,22a,23a)은, 도 5에 도시된 바와 같이, 원수 공급부(200)에 대해 제1 여과막(110), 제2 여과막(120) 및 제3 여과막(130)을 상호 병렬로 연결시킨다. 여기서, 제1 여과막(110)이 설치된 경로 라인(21a)을 제1 경로 라인(21a)이라 하고, 제2 여과막(120)이 설치된 경로 라인(22a)을 제2 경로 라인(22a)이라 하며, 제3 여과막(130)이 설치된 경로 라인(23a)을 제3 경로 라인(23a)이라 정의하여 설명한다.
보조 여과막(140a,140b)은 제2 여과막(120) 및 제3 여과막(130) 각각의 유입 측에 설치된다. 보다 구체적으로 설명하면, 제1 보조 여과막(140a)은 제2 경로 라인(22a)의 제2 여과막(120)의 유입 측에 설치되고, 제2 보조 여과막(140b)은 제3 경로 라인(23a)의 제3 여과막(130)의 유입 측에 설치된다.
여기서, 제1 보조 여과막(140a)은 제2 여과막(120)과 상이한 여과 특성을 갖는데, 제2 여과막(120)의 공극의 크기보다 크게 마련된다. 예컨대, 제1 보조 여과막(140a)의 공극의 크기는 제1 여과막(110)의 공극의 크기에 대응하여 마련됨으로써, 제2 여과막(120)으로 유입되는 원수는 제1 여과막(110)을 통과한 것과 동일한 상태가 될 수 있다.
마찬가지로, 제2 보조 여과막(140b)은 제3 여과막(130)과 상이한 여과 특성을 갖는데, 제3 여과막(130)의 공극의 크기보다 크게 마련된다. 예컨대, 제2 보조 여과막(140b)의 공극의 크기는 제2 여과막(120)의 공극의 크기에 대응하여 마련됨으로써, 제3 여과막(130)으로 유입되는 원수는 제2 여과막(120)을 통과한 것과 동일한 상태가 될 수 있다.
여기서, 제1 여과막(110), 제2 여과막(120) 및 제3 여과막(130)의 유입 측에는 제1 여과막(110), 제2 여과막(120) 및 제3 여과막(130)으로 유입되는 원수의 압력을 조절하기 위한 압력 조절기(61a,62a,63a)가 설치될 수 있다.
그리고, 제1 유량 측정부(310a)는 제1 여과막(110)의 유출 측에 설치되어 제1 여과막(110)을 통과한 원수의 유량을 측정하고, 제2 유량 측정부(310b)는 제2 여과막(120)의 유출 측에 설치되어 제2 여과막(120)을 통과한 원수의 유량을 측정하며, 제3 유량 측정부(310c)는 제3 여과막(130)의 유출 측에 설치되어 제3 여과막(130)을 통과한 원수의 유량을 측정한다.
상기와 같은 구성에 따라, 원수 공급부(200)로부터 공급되는 원수는 경로 라인(21a,22a,23a)에 의해 병렬로 연결된 제1 여과막(110), 제3 여과막(130) 및 제3 여과막(130)을 각각 통과한 후, 제1 유량 측정부(310a), 제2 유량 측정부(310b) 및 제3 유량 측정부(310c)에 유입되고, 오염 지수 측정부(400)가 제1 유량 측정부(310a), 제2 유량 측정부(310b) 및 제3 유량 측정부(310c)에 의해 측정된 유량에 기초하여, 제1 여과막(110), 제2 여과막(120) 및 제3 여과막(130) 각각의 오염 지수를 측정하게 된다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
본 발명은 다양한 수처리 분야와, 해수담수화나 하수 재이용 분야에서 여과막의 오염 지수를 측정하는데 이용 가능하다.

Claims (17)

  1. 측정 대상 원수를 공급하는 원수 공급부와;
    제1 여과막과;
    상기 원수 공급부와 상기 제1 여과막을 연결하는 원수 공급 라인과;
    유량을 측정하는 제1 유량 측정부와;
    상기 제1 여과막과 상기 제1 유량 측정부를 연결하는 제1 경로 라인과;
    상기 제1 경로 라인과 병렬로 연결되는 제2 경로 라인과;
    상기 제2 경로 라인 상에 설치되고, 상기 제1 여과막과 상이한 여과 특성을 갖는 제2 여과막과;
    상기 원수 공급부로부터의 원수가 상기 제1 여과막을 통과하여 상기 제1 유량 측정부로 유동하는 제1 측정 경로와, 상기 원수 공급부로부터의 원수가 상기 제1 여과막 및 상기 제2 여과막을 순차적으로 통과하여 상기 제1 유량 측정부로 유동하는 제2 측정 경로가 선택적으로 형성되도록 상기 제2 여과막에 대해 병렬로 상기 제1 경로 라인 상에 설치되는 제1 경로 선택 밸브와;
    상기 제1 측정 경로와 상기 제2 측정 경로 각각에 대해 상기 제1 유량 측정부에 의해 측정된 유량에 기초하여 상기 제1 여과막 및 상기 제2 여과막의 오염 지수를 측정하는 오염 지수 측정부를 포함하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  2. 제1항에 있어서,
    상기 제1 여과막의 공극은 상기 제2 여과막의 공극보다 큰 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  3. 제2항에 있어서,
    상기 원수 공급 라인의 상기 제1 여과막의 유입 측에 설치되어 상기 제1 여과막으로 유입되는 원수의 압력을 조절하는 제1 압력 조절기와;
    상기 제1 압력 조절기가 바이패스되도록 상기 원수 공급 라인과 연결되는 제1 바이패스 라인과;
    상기 제1 바이패스 라인에 설치되고, 상기 제1 측정 경로의 형성시 폐쇄되고, 상기 제2 측정 경로 및 상기 제3 측정 경로의 형성시 개방되는 제1 바이패스 밸브를 더 포함하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  4. 제3항에 있어서,
    상기 제2 경로 라인의 상기 제2 여과막의 유입 측에 설치되어 상기 제2 여과막으로 유입되는 원수의 압력을 조절하는 제2 압력 조절기를 더 포함하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  5. 제3항에 있어서,
    상기 제2 경로 라인은 상기 제2 여과막의 유입 측을 형성하는 제2 유입 경로 라인과, 상기 제2 여과막의 유출 측을 형성하는 제2 유출 경로 라인을 포함하며;
    상기 제2 유출 경로 라인과 병렬로 연결되는 제3 경로 라인과,
    상기 제3 경로 라인 상에 설치되고, 상기 제2 여과막보다 작은 크기의 공극을 갖는 제3 여과막과,
    상기 제1 경로 선택 밸브가 폐쇄된 상태에서, 상기 원수 공급부로부터의 원수가 상기 제1 여과막, 상기 제2 여과막 및 상기 제3 여과막을 순차적으로 통과하여 상기 제1 유량 측정부로 유동하는 제3 측정 경로가 형성되도록 상기 제3 여과막에 대해 병렬로 상기 제2 경로 라인 상에 설치되는 제2 경로 선택 밸브를 더 포함하며;
    상기 유량 측정부는 상기 제3 측정 경로에 대해 상기 제1 유량 측정부에 의해 측정된 유량에 기초하여 상기 제3 여과막의 오염 지수를 측정하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  6. 제5항에 있어서,
    상기 제2 유입 경로 라인에 설치되어 상기 제2 여과막으로 유입되는 원수의 압력을 조절하는 제2 압력 조절기와;
    상기 제2 압력 조절기가 바이패스되도록 상기 제2 유입 경로 라인과 연결되는 제2 바이패스 라인과;
    상기 제2 바이패스 라인에 설치되고, 상기 제1 측정 경로 및 상기 제2 측정 경로 형성시 폐쇄되고, 상기 제3 측정 경로의 형성시 개방되는 제2 바이패스 밸브를 더 포함하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  7. 제6항에 있어서,
    상기 제3 경로 라인의 상기 제3 여과막의 유입 측에 설치되어 상기 제3 여과막으로 유입되는 원수의 압력을 조절하는 제3 압력 조절기를 더 포함하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  8. 제7항에 있어서,
    상기 제1 바이패스 밸브와 병렬로 연결되도록 상기 원수 공급 라인의 상기 제1 압력 조절기의 입력 측에 설치되어, 상기 제1 바이패스 밸브와 역으로 개방 및 폐쇄되는 제1 경로 단속 밸브와;
    상기 제2 바이패스 밸브와 병렬로 연결되도록 상기 제2 경로 라인의 상기 제2 압력 조절기의 입력 측에 설치되어, 상기 제1 측정 경로 및 상기 제3 측정 경로의 형성시 폐쇄되고, 상기 제2 측정 경로의 형성시 개방되는 제2 경로 단속 밸브와;
    상기 제3 경로 라인의 상기 제3 압력 조절기의 입력 측에 설치되어 상기 제3 측정 경로의 형성시 개방되는 제3 경로 단속 밸브를 더 포함하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  9. 제5항 내지 제8항 중 어느 한 항에 있어서,
    상기 오염 지수 측정부는 상기 제3 측정 경로의 형성에 따른 상기 제3 여과막, 상기 제2 측정 경로의 형성에 따른 제2 여과막, 상기 제1 측정 경로의 형성에 따른 제1 여과막 순으로 오염 지수를 측정하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  10. 제5항 내지 제8항 중 어느 한 항에 있어서,
    상기 오염 지수 측정부는 상기 제1 측정 경로의 형성에 따른 제1 여과막, 상기 제2 측정 경로의 형성에 따른 상기 제2 여과막, 상기 제3 측정 경로의 형성에 따른 제3 여과막 순으로 오염 지수를 측정하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  11. 제2항에 있어서,
    상기 제2 경로 라인의 상기 제2 여과막의 유입 측으로부터 분기되는 제3 경로 라인과,
    상기 제3 경로 라인 상에 설치되고, 상기 제2 여과막보다 작은 크기의 공극을 갖는 제3 여과막과,
    상기 제3 경로 라인의 상기 제3 여과막의 유입 측에 설치되고, 상기 제2 여과막에 대응하는 크기의 공극을 갖는 보조 여과막과,
    상기 원수 공급부로부터의 원수가 상기 제1 여과막, 상기 보조 여과막 및 상기 제3 여과막을 순차적으로 통과하여 유입되는 제3 측정 경로가 형성되도록 상기 제3 경로 라인의 상기 제3 여과막의 유출 측에 설치되는 제2 유량 측정부를 더 포함하며;
    상기 제2 측정 경로 및 상기 제3 측정 경로는 동시에 형성되며;
    상기 오염 지수 측정부는 상기 제3 측정 경로에 대해 상기 제2 유량 측정부에 의해 측정된 유량에 기초하여 상기 제3 여과막의 오염 지수를 측정하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  12. 제11항에 있어서,
    상기 원수 공급 라인에 설치되어 상기 제1 여과막으로 유입되는 원수의 압력을 조절하는 제1 압력 조절기와;
    상기 제2 경로 라인의 상기 제2 여과막의 유입 측에 설치되어 상기 제2 여과막으로 유입되는 원수의 압력을 조절하는 제2 압력 조절기와;
    상기 제3 경로 라인의 상기 보조 여과막과 상기 제3 여과막 사이에 설치되어 상기 제3 여과막으로 유입되는 원수의 압력을 조절하는 제3 압력 조절기를 더 포함하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  13. 제12항에 있어서,
    상기 제1 압력 조절기가 바이패스되도록 상기 원수 공급 라인과 연결되는 제1 바이패스 라인과;
    상기 제1 바이패스 라인에 설치되고, 상기 제1 측정 경로의 형성시 폐쇄되고, 상기 제2 측정 경로 및 상기 제3 측정 경로의 형성시 개방되는 제1 바이패스 밸브를 더 포함하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  14. 제13항에 있어서,
    상기 제1 바이패스 밸브와 병렬로 연결되도록 상기 원수 공급 라인의 상기 제1 압력 조절기의 입력 측에 설치되어, 상기 제1 바이패스 밸브와 역으로 개방 및 폐쇄되는 제1 경로 단속 밸브와;
    원수의 상기 제2 경로 라인으로의 유입을 단속하도록 상기 제2 경로 라인에 설치되어, 제1 측정 경로가 형성될 때 폐쇄되고, 제2 측정 경로가 형성될 때 개방되는 제4 경로 단속 밸브를 더 포함하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  15. 측정 대상 원수를 공급하는 원수 공급부와;
    상호 상이한 여과 특성을 갖는 복수의 여과막과;
    상기 원수 공급부에 대해 상기 복수의 여과막을 상호 병렬로 연결하는 경로 라인과;
    상기 복수의 여과막에 각각 대응하여 상기 각 여과막의 유출 측에 설치되어, 상기 각 여과막을 통과한 원수의 유량을 측정하는 복수의 유량 측정부와;
    상기 복수의 여과막 중 적어도 어느 하나의 유입 측에 설치되며, 해당 여과막과 상이한 여과 특성을 갖는 적어도 하나의 보조 여과막과;
    상기 각 유량 측정부에 의해 측정된 유량에 기초하여 상기 각 여과막의 오염 지수를 측정하는 오염 지수 측정부를 포함하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  16. 제15항에 있어서,
    상기 복수의 여과막은 상호 상이한 공극 크기를 가지며;
    상기 보조 여과막의 공극 크기는 해당 여과막의 공극 크기보다 크게 마련되는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
  17. 제15항 또는 제16항에 있어서,
    상기 각 여과막의 유입 측에 설치되어 해당 여과막으로 유입되는 원수의 압력을 조절하는 압력 조절기를 더 포함하는 것을 특징으로 하는 여과막 오염 지수 측정 장치.
PCT/KR2012/009837 2012-01-09 2012-11-20 여과막 오염 지수 측정 장치 WO2013105728A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US14/371,122 US9579607B2 (en) 2012-01-09 2012-11-20 Device for measuring pollution index of filtration membrane
EP12865284.9A EP2803398B1 (en) 2012-01-09 2012-11-20 Device for measuring pollution index of filtration membrane
EP18152235.0A EP3338873B1 (en) 2012-01-09 2012-11-20 Device for measuring pollution index of a filtration membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120002412A KR101367155B1 (ko) 2012-01-09 2012-01-09 여과막 오염 지수 측정 장치
KR10-2012-0002412 2012-01-09

Publications (1)

Publication Number Publication Date
WO2013105728A1 true WO2013105728A1 (ko) 2013-07-18

Family

ID=48781646

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/009837 WO2013105728A1 (ko) 2012-01-09 2012-11-20 여과막 오염 지수 측정 장치

Country Status (4)

Country Link
US (1) US9579607B2 (ko)
EP (2) EP2803398B1 (ko)
KR (1) KR101367155B1 (ko)
WO (1) WO2013105728A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101417917B1 (ko) * 2012-12-12 2014-07-09 두산중공업 주식회사 여과막 오염 지수 측정 방법
KR101766457B1 (ko) 2015-02-12 2017-08-08 두산중공업 주식회사 막오염 지수 측정 장치
DE102016005049B4 (de) * 2016-04-26 2020-06-18 Sartorius Stedim Biotech Gmbh Verfahren zur Bestimmung des logarithmischen Reduktionswertes LRV eines Größenausschlussfilters
KR20180100011A (ko) 2017-02-28 2018-09-06 성균관대학교산학협력단 정삼투-역삼투 처리 공정에서 삼투압 역세정을 이용한 물리 세정 방법
KR20180100010A (ko) 2017-02-28 2018-09-06 성균관대학교산학협력단 정삼투-역삼투 처리 공정에서 분말활성탄을 이용한 물리 세정 방법
KR20180100009A (ko) 2017-02-28 2018-09-06 성균관대학교산학협력단 정삼투-역삼투 처리 공정에서 나노 마이크로버블을 이용한 물리 세정 방법
WO2019216895A1 (en) * 2018-05-10 2019-11-14 Halliburton Energy Services, Inc. Filters with dynamic pore sizes
CN109723025B (zh) * 2018-12-28 2021-05-11 青岛理工大学 一种地下结构边界渗流试验装置及其使用方法
CN109607685A (zh) * 2019-01-21 2019-04-12 西安热工研究院有限公司 一种反渗透进水特征污染指数测定装置和方法
CN111595747B (zh) * 2020-05-13 2021-03-02 东南大学 一种测试土工膜复合竖向屏障渗漏的模型装置及其使用方法与应用
CN113863444A (zh) * 2020-06-30 2021-12-31 科勒(中国)投资有限公司 灰水回收及再利用系统和方法
EP3981500B1 (en) * 2020-10-09 2023-06-21 12M Invent GmbH A gas seperation system and gas seperation method comprising a membrane system having a control valve
CN113654964B (zh) * 2021-07-28 2023-03-24 中广核研究院有限公司 水滤芯性能测试系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621728U (ja) * 1992-08-26 1994-03-22 水道機工株式会社 透過膜によるろ過装置
JPH10156156A (ja) * 1996-11-28 1998-06-16 Kurita Water Ind Ltd 膜モジュール性能測定装置
JPH10180047A (ja) * 1996-12-25 1998-07-07 Kurita Water Ind Ltd 膜分離装置
JP2009072756A (ja) * 2007-08-27 2009-04-09 Hitachi Ltd 膜ろ過装置及び膜ろ過装置の膜損傷検知方法
KR20100057262A (ko) * 2008-11-21 2010-05-31 한국건설기술연구원 막오염 지수 측정장치
KR20110089719A (ko) 2010-02-01 2011-08-09 주식회사 벤텍 빗물유입방지 가변형 환기창
KR20110089710A (ko) * 2010-02-01 2011-08-09 고려대학교 산학협력단 여과막 오염 지수 예측 장치

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970069086A (ko) * 1996-04-24 1997-11-07 김광호 정수기의 물오염도 표시장치
US6306291B1 (en) * 1998-11-24 2001-10-23 Stanley R. Lueck Automatic silt density index apparatus
JP2005195499A (ja) * 2004-01-08 2005-07-21 Nitto Denko Corp Sdi測定方法、sdi測定装置、及び逆浸透膜を用いた造水方法
US20080093277A1 (en) * 2006-06-13 2008-04-24 John Armour Cadence detection in a sequence of video fields
KR101675749B1 (ko) * 2010-12-30 2016-11-16 코웨이 주식회사 수처리 장치 및 이를 이용한 수처리 방법
CA2864134C (en) * 2011-02-14 2021-02-09 The Administrators Of The Tulane Educational Fund A device and method for monitoring the presence, onset and evolution of particulates in chemically or physically reacting systems
US9249038B2 (en) * 2011-03-03 2016-02-02 Lg Electronics Inc. Water purifier
JP6027474B2 (ja) * 2013-03-27 2016-11-16 株式会社クボタ 有機性排水処理装置の運転方法及び有機性排水処理装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0621728U (ja) * 1992-08-26 1994-03-22 水道機工株式会社 透過膜によるろ過装置
JPH10156156A (ja) * 1996-11-28 1998-06-16 Kurita Water Ind Ltd 膜モジュール性能測定装置
JPH10180047A (ja) * 1996-12-25 1998-07-07 Kurita Water Ind Ltd 膜分離装置
JP2009072756A (ja) * 2007-08-27 2009-04-09 Hitachi Ltd 膜ろ過装置及び膜ろ過装置の膜損傷検知方法
KR20100057262A (ko) * 2008-11-21 2010-05-31 한국건설기술연구원 막오염 지수 측정장치
KR101006901B1 (ko) 2008-11-21 2011-01-13 고려대학교 산학협력단 막오염 지수 측정장치
KR20110089719A (ko) 2010-02-01 2011-08-09 주식회사 벤텍 빗물유입방지 가변형 환기창
KR20110089710A (ko) * 2010-02-01 2011-08-09 고려대학교 산학협력단 여과막 오염 지수 예측 장치

Also Published As

Publication number Publication date
EP3338873B1 (en) 2021-08-25
US9579607B2 (en) 2017-02-28
EP2803398A4 (en) 2015-09-16
KR101367155B1 (ko) 2014-02-26
KR20130081436A (ko) 2013-07-17
EP2803398A1 (en) 2014-11-19
EP2803398B1 (en) 2018-07-18
US20150013434A1 (en) 2015-01-15
EP3338873A1 (en) 2018-06-27

Similar Documents

Publication Publication Date Title
WO2013105728A1 (ko) 여과막 오염 지수 측정 장치
WO2016140411A1 (ko) 역삼투막 베셀 내 실시간 막오염 감시 장치 및 방법
KR101441493B1 (ko) 여과막 오염 지수 측정 방법
CN101646482B (zh) 膜分离方法和膜分离装置
WO2014092383A1 (ko) 여과막 오염 지수 측정 방법
TWI708741B (zh) 用於即時膜表面監控之方法及設備
JP4576428B2 (ja) ろ過水監視装置及びろ過水監視システム
WO2016140412A1 (ko) 정삼투막 베셀 내 실시간 막오염 감시 장치 및 방법
WO2014148651A1 (ko) 중앙 배플과 이를 포함하는 가압식 중공사 분리막 모듈 및 이의 세정방법
MX2008009544A (es) Metodo y sistema para supervisar membranas de osmosis inversa.
WO2017164540A1 (ko) 정삼투 막오염 예측 장치 및 정삼투 막오염 예측 방법
JP3028447B2 (ja) 浄水処理装置
KR20110089710A (ko) 여과막 오염 지수 예측 장치
WO2020116884A1 (en) Water purifier and control method of the same
WO2018012786A1 (ko) 정수기
Fratila-Apachitei et al. Influence of membrane morphology on the flux decline during dead-end ultrafiltration of refinery and petrochemical waste water
JP2010082587A (ja) 中空糸膜モジュールのリーク検出方法およびリーク検出装置
KR20180100011A (ko) 정삼투-역삼투 처리 공정에서 삼투압 역세정을 이용한 물리 세정 방법
WO2014081109A1 (ko) 자유지지형 나노박막의 기계적 특성 측정 장치 및 방법
KR101766457B1 (ko) 막오염 지수 측정 장치
KR20110127011A (ko) 표면장력 저감을 이용한 막의 완결성 시험방법
JPH07248290A (ja) 膜濾過装置における膜破損時のリーク検出器
KR20020087802A (ko) 수질과 대기질의 모니터링 및 분석시스템
JPH0760073A (ja) 膜分離装置
WO2023153605A1 (ko) 필터 어셈블리

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865284

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14371122

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012865284

Country of ref document: EP