WO2013104249A1 - 一种高铅离子能极板及其电池 - Google Patents

一种高铅离子能极板及其电池 Download PDF

Info

Publication number
WO2013104249A1
WO2013104249A1 PCT/CN2012/087333 CN2012087333W WO2013104249A1 WO 2013104249 A1 WO2013104249 A1 WO 2013104249A1 CN 2012087333 W CN2012087333 W CN 2012087333W WO 2013104249 A1 WO2013104249 A1 WO 2013104249A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
ion energy
lead ion
battery
grid
Prior art date
Application number
PCT/CN2012/087333
Other languages
English (en)
French (fr)
Inventor
林子进
伊晓波
Original Assignee
Lin Zijin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201210007049.0A external-priority patent/CN102569902B/zh
Priority claimed from CN201210202071.0A external-priority patent/CN102709507B/zh
Application filed by Lin Zijin filed Critical Lin Zijin
Publication of WO2013104249A1 publication Critical patent/WO2013104249A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/22Forming of electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • H01M4/72Grids
    • H01M4/73Grids for lead-acid accumulators, e.g. frame plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of batteries, and relates to a lead-acid battery plate, in particular to a high-lead ion energy plate and a battery thereof. Background technique
  • the plates in the existing battery casing generally include a fence-like grid made of a conductive material, a lead paste, and a metal tab connected to the grid, wherein the lead paste is applied to the surface of the grid and the grid
  • the through holes in the upper layer are treated by leaching acid, solidification and the like to form an active material capable of undergoing redox reaction, and the metal tabs are connected to the positive electrode column or the negative electrode column of the battery through the bus bar.
  • the fence-like grid is energized, and the active material applied to the grid is reacted by the electrolyte to be charged or discharged.
  • This plate has ruled the history of lead-acid batteries for hundreds of years, and this grid has been modified many times and is now quite mature.
  • the grid of the plates is fence-shaped. When energized, current flows from the grid, and the active material in the through holes on the grid Due to the large electrical resistance and the small current flowing through, the reaction utilization rate of the active material at the place is low; 2. Since the electrode plate needs to be subjected to a process such as leaching acid and solidification when the active material is filled, the existing The grid of the plate cannot be made of lead with the best charge and discharge effect. Only the lead alloy with relatively high strength can be used. However, once the lead alloy plate is deeply discharged, the alloy elements of the positive grid are released. It directly affects battery life and capacity, so its service life is extremely short, generally around 200 ⁇ 300 times.
  • a battery is an electrochemical device that converts chemical energy into electrical energy for storage and releases it when appropriate.
  • a battery is one of the batteries. When it is discharged to a certain extent, it can be recharged after being charged. , is currently widely used in 3 ⁇ 4 ⁇ ⁇
  • the battery has a low voltage level, and it is often necessary to use a plurality of batteries in series when using it. If an ordinary external connection method is used, there is a problem that safety and stability are not high.
  • an internal connection square molded case battery was designed and applied for a Chinese patent, [the application number is: 200910043206. 1; its publication number is: CN101587965A], and the battery includes the interior separated by a plastic partition.
  • the positive electrode tab and the negative electrode tab of the unit cell inner core are respectively located on opposite sides of the inner core of the unit cell, and the adjacent two unit cell inner cores can be sealed and connected to the plastic separator through a sealed conductive connection
  • the series is completed in a plastic housing to ensure the safety and stability of the battery series.
  • the pores on the electrode plate are small, the electrolyte tension is large, and the pressure in the inner core chamber is low, so that the electrolyte cannot penetrate into the plate, and the active material on the plate is between
  • the reaction only stays on the surface of the plate, and the reaction efficiency is low, which in turn causes the energy density (wh/kg) of the battery to be small.
  • the battery is arranged on the two sides of the inner core of the single cell by the positive electrode tab and the negative electrode tab respectively, the current distribution on the electrode plate is more uniform, and the reaction rate is improved, but the tabs are all plate-shaped.
  • the overall quality is also large, which leads to an increase in the energy density of the battery, but it is limited.
  • Some of the plates in the core are unable to react effectively due to the large distance between the positive and negative plates, resulting in a decrease in the capacity of the battery.
  • the object of the present invention is to provide a high-lead ion energy plate and a battery thereof, which have the characteristics of high reaction rate and long service life of the active material, and the battery has high energy density. And long life characteristics.
  • a high-lead ion energy plate comprising a plate-shaped body and a tab connected to the body for connecting with a positive pole or a negative pole of the battery, wherein the body comprises a plate a conductive plate and a grid that is closely abutted on a side of the conductive plate, wherein the grid is provided with a plurality of through holes in a direction perpendicular to the conductive plate, and the through hole is provided with the conductive plate
  • An active material for contacting a battery the active material can generate electric energy by a chemical reaction when the battery is discharged and return to the original component material during charging
  • the grid is made of an insulating material
  • the above-mentioned tab is connected with the conductive plate Both are made of a conductive material.
  • the high lead ion energy plate comprises a conductive plate and a grid closely abutting on one side of the conductive plate, wherein the grid is used for filling active material, and is made of insulating material because it does not need to be electrically conductive, since the country of the People's Republic of China
  • the definition of the standard battery terminology shows that the active material used in the battery plate is a plate material that generates electric energy by chemical reaction when the battery is discharged, and returns to the original component when charged. .
  • the conductive plate is entirely in the shape of a plate, when it is connected to the positive electrode or the negative electrode of the battery through the tab, the current flowing through the conductive plate is relatively uniform, and closely abuts against the grid on one side of the conductive plate.
  • the active material in contact with the conductive plate can be fully utilized, and the active material in the battery is greatly improved.
  • the utilization rate can be as high as 70% or more.
  • the conductive plate is made of lead. Since the conductive plate does not need to be filled with an active material, that is, it does not need to undergo leaching, curing, etc., the conductive plate can be made of a lead material having the best charge and discharge performance.
  • the conductive plate is made of a lead alloy.
  • the conductive plate can also be made of lead alloy or other conductive metal, although the charge and discharge performance is different from that of the conductive plate made of lead. The high utilization rate of the active material can also be achieved.
  • the grid is made of plastic.
  • the grid made of plastic not only meets the process requirements for filling the active material, but also has a low weight and cost.
  • the through holes have a circular or regular polygonal shape, and the respective through holes are evenly distributed on the grid.
  • the through hole is used to fill the active material, so the shape thereof may be various shapes such as a circle, a triangle, a rectangle, a diamond, and the like.
  • the through holes are uniformly distributed on the grid in a square shape and vertically and horizontally.
  • the through holes are square and arranged in a vertical and horizontal arrangement so that each of the through holes occupies a larger area to fill more active material.
  • the tab is in the form of a sheet and is connected to one end of the conductive plate, and the tab is integrally connected with the conductive plate.
  • the tab-shaped tabs occupy less space, and the tabs of the positive and negative plates can be disposed on the same side of the battery core and staggered to connect the positive and negative plates to the battery through the bus bar. At the positive and negative columns.
  • the tab is plate-shaped and connected to one end of the conductive plate, and the tab is integrally connected with the conductive plate.
  • the plate-shaped tabs and the conductive plates are made of the same material and are equally wide.
  • the tabs of the positive and negative plates can be disposed on opposite sides, and then connected to the positive and negative columns through a bus bar.
  • the active material is made of a lead paste. After the lead paste is applied to the surface of the grid and the through holes, the active material can be formed by a process of leaching, curing and forming.
  • a high-lead ion energy battery includes a housing having a cavity therein, a battery core and an electrolyte disposed in the cavity, and a positive electrode and a negative electrode respectively connected to the battery inner core at the inner end, and the positive electrode column And the outer end of the negative pole protrudes from the casing, wherein the casing is further provided with an air inlet member, and the air inlet member can communicate with the cavity and the outer side of the casing.
  • the air inlet member on the casing is opened to connect the cavity and the outer side of the casing, and the gas can be injected into the casing through the air inlet member (air, inert gas, carbon dioxide, etc.)
  • the gas that cannot directly participate in the chemical reaction of the battery increases the air pressure in the casing, relieves the tension of the electrolyte, allows the electrolyte to penetrate into the inner core of the battery, and performs a more comprehensive reaction to increase the energy density of the battery.
  • the inner core of the battery body is further provided with an elastic member capable of recovering after the inner core of the battery is deformed.
  • the elastic member can restore the battery core to its original state when it is deformed, avoiding the situation where the distance between the positive electrode plate and the negative electrode plate is too large to fully participate in the reaction.
  • the elastic member comprises a plurality of elastic members 1 which are sleeved on the inner core of the battery.
  • the annular elastic member acts on the side of the inner core of the battery to be deformed, so that it can return to the initial state after deformation.
  • the elastic member can also adopt a single cylindrical structure, and Corresponding grooves or holes are formed in the cylindrical body.
  • the elastic member includes an elastic member 2 disposed at a side surface of the battery inner core that is deformed, and one end of the elastic member 2 is in contact with a side surface of the battery inner core. The other end is in contact with the inner wall of the above casing.
  • the battery core further includes a 3 ⁇ 4 ⁇ ⁇
  • the fixing member disposed outside the inner core of the battery ensures that the battery core is flat and does not deform when it expands and contracts.
  • the inner core of the battery is square, including a plurality of negative plates and positive plates which are alternately stacked one after another, and an insulating material is further disposed between adjacent positive plates and negative plates.
  • a separator, the anode plate and the negative plate have one end of the negative electrode plate, and the tabs of the positive electrode plate and the tab of the negative electrode plate are respectively divided into two sides of the battery inner core, and the plurality of positive electrode plates are The tabs of the tabs and the negative plates are respectively connected to the positive and negative columns by a strip-shaped bus bar.
  • the tabs of the plurality of positive electrode plates are disposed corresponding to each other, and the tabs of the plurality of negative electrode plates are disposed corresponding to each other, and the tab positions of the positive electrode plate and the pole of the negative electrode plate are The ear positions are staggered.
  • the positions of the tabs on the positive and negative plates can reduce the size of the bus bars for connecting them, and the tabs of the positive and negative plates are staggered, that is, the two diagonals disposed on the inner core of the battery can make the poles The current on the board is distributed more evenly.
  • the housing is further provided with a safety valve that can be opened when the air pressure in the internal cavity is greater than a specific value.
  • a safety valve that can be opened when the air pressure in the internal cavity is greater than a specific value.
  • the cavity includes a plurality of mutually independent secondary cavities, each of which is provided with a battery inner core, and corresponding to each of the sub-cavities An air intake member and a safety valve are also provided. Due to the low voltage level of the inner core of the unit battery, a plurality of battery cores are disposed in the high lead ion energy battery, and the battery cores can be connected in series inside or outside the housing to facilitate user's use.
  • the housing includes a main body and a cover body sealed to the upper side of the main body, and the air intake member and the safety valve are disposed on the cover body.
  • the positive electrode plate and the negative electrode plate both include a conductive grid and an active material coated on the conductive grid, and the conductive grid package 3 ⁇ 4 ⁇ ⁇
  • a plurality of ribs connected in a "well" shape are arranged, and a cross-sectional diameter of the rib along the direction in which the tabs of the positive and negative plates are larger than the diameter of the rib in the other direction. Thicker ribs along the direction of the tabs of the positive and negative plates reduce the resistance between the two, thereby reducing the internal resistance of the battery.
  • the active material is made of a lead paste. After the lead paste is applied to the surface of the grid and the through holes, the active material can be formed by a process of leaching, curing and forming.
  • the lead paste used in the positive electrode plate is a positive electrode paste.
  • the lead paste used in the negative electrode plate is a negative electrode paste.
  • the positive electrode plate and the negative electrode plate each include a plate-shaped body, and the body includes a plate-shaped conductive plate and a plate closely abutting the conductive plate side.
  • a plurality of through holes are formed in the grid in a direction perpendicular to the conductive plate, and the through hole is provided with an active material for a battery in contact with the conductive plate, and the active material can be in the battery
  • the electric energy is generated by a chemical reaction during discharge and is restored to the original component material upon charging.
  • the above grid is made of an insulating material, and the above-mentioned tab is connected to the conductive plate and both are made of a conductive material.
  • the conductive plate is made of lead. Since the conductive plate does not need to be coated with an active material, that is, it does not need to undergo leaching, curing, etc., the conductive plate can be made of a lead material having the best charge and discharge performance.
  • the conductive plate is made of a lead alloy.
  • the conductive plate can also be made of lead alloy or other conductive metal, although the charge and discharge performance is different from that of the conductive plate made of lead.
  • the high utilization rate of the active material can also be achieved.
  • the grid is made of plastic.
  • the grid made of plastic not only meets the process requirements for filling the active material, but also has a low weight and cost. 3 ⁇ 4 ⁇ ⁇
  • the through holes are circular or regular polygons, and the respective through holes are evenly distributed on the grid.
  • the through hole is used to fill the active material, so the shape thereof may be various shapes such as a circle, a triangle, a rectangle, a diamond, and the like.
  • the through holes are uniformly distributed on the grid in a square shape and vertically and horizontally.
  • the through holes are square and arranged in a vertical and horizontal arrangement so that the area occupied by each of the through holes is larger to fill more active material.
  • the tab is formed in a sheet shape and connected to one end of the conductive plate, and the tab is integrally connected to the conductive plate.
  • the tab-shaped tabs occupy less space, and the tabs of the positive and negative plates can be disposed on the same side of the battery core and staggered to connect the positive and negative plates to the battery through the bus bar.
  • the tabs are designed into a plate shape as a part of the plate, and the high lead ion battery can design the tabs into a sheet having a small volume and a small mass, which further improves the energy density of the battery (wh /kg ).
  • the tab is plate-shaped and connected to one end of the conductive plate, and the tab is integrally connected with the conductive plate.
  • the active material is made of a lead paste. After the lead paste is applied to the surface of the grid and the through holes, the active material can be formed by a process of leaching, curing and forming.
  • the lead paste used in the positive electrode plate is a positive electrode paste.
  • the lead paste used in the negative electrode plate is a negative electrode paste.
  • the high lead ion energy plate and the battery thereof have the following advantages:
  • the high-lead ion energy plate is energized by a conductive plate, and the active material is filled by a grid disposed on one side of the conductive plate, so that the current distribution on the conductive plate is relatively uniform after the electrode is energized, and the setting is made.
  • the active material on the grid is in contact with the conductive plate, so that it can be fully utilized, and the utilization ratio of the active material is greatly improved.
  • the conductive plate does not need to be filled with the active material, and is not limited to when the active material is filled. 3 ⁇ 4 ⁇ ⁇
  • the process requirements, the best lead material with the best charge and discharge performance, can make its DOD 100% deep discharge cycle service life more than 2000 times, greatly improving its service life.
  • the conductive plate and the structure of the grid disposed on one side of the conductive plate can be combined correspondingly to be applied in the bipolar battery, and the application range is wide.
  • the air inlet member disposed on the battery casing can inflate the casing after the battery is completed, thereby increasing the pressure in the cavity, relieving the tension of the electrolyte, and causing the electrolyte in the cavity to enter the pores of the plate.
  • the reaction rate of the high-lead ion energy battery is high, and the energy density of the battery is large.
  • the fixing member and the elastic member are arranged at the inner core of the battery to ensure that the positive and negative plates are not deformed when the inner core of the battery is expanded and deformed, and the battery core is returned to the initial state after the reaction is completed, so as to ensure the normal operation thereof, the battery is provided.
  • the service life is arranged at the inner core of the battery to ensure that the positive and negative plates are not deformed when the inner core of the battery is expanded and deformed, and the battery core is returned to the initial state after the reaction is completed, so as to ensure the normal operation thereof, the battery is provided. The service life.
  • the tabs of the positive and negative plates of the battery core are in the form of flakes, which reduce the weight and improve the energy density of the battery while ensuring its normal operation.
  • the tabs of the positive and negative plates of the positive plate are The diagonal setting makes the current distribution on the conductive grid more uniform and the chemical reaction is more complete.
  • the ribs in the direction of the tabs of the positive and negative plates are thicker relative to the ribs in the other direction, which can reduce the resistance in this direction, that is, reduce the internal resistance of the battery and reduce unnecessary energy consumption of the battery. .
  • Embodiment 1 is a schematic structural view of Embodiment 1.
  • Embodiment 2 is a schematic structural view of Embodiment 2.
  • FIG. 3 is a schematic structural view of the conductive plate in the first embodiment.
  • FIG. 4 is a schematic structural view of a conductive plate in the second embodiment. 3 ⁇ 4 ⁇ ⁇
  • Fig. 8 is a schematic structural view of a conductive grid.
  • the high lead ion energy plate comprises a plate-shaped body and a tab 94 for connecting with the positive electrode column 3 or the negative electrode column 4 of the battery, and the body comprises a conductive plate.
  • the grid 92 and the conductive plate 91 are the same size and are stacked correspondingly.
  • a plurality of through holes 93 are formed in the grid 92 in a direction perpendicular to the conductive plates 91, and the surface of the grid 92 and the through holes 93 are filled with an active material 95 in contact with the conductive plates 91.
  • the active material 95 is a plate material which generates electric energy by a chemical reaction when the battery is discharged, and returns to the original component upon charging.
  • the conductive plate 91 has a plate shape as a whole, and has a thickness of 0.01 MPa to 1. 0 mm, which is generally formed by stamping or casting a sheet, and the tab 94 is in the form of a sheet and is connected to the conductive plate 9 1 .
  • the conductive plate 91 is made of a lead material having the best charge and discharge performance because it does not need to pass through the process of filling the active material 95.
  • the tab 94 is also made of lead material.
  • the grid 92 is in the shape of a fence and is made of a plastic material having a thickness of 0.05 ⁇ to 2. 0 mm, including a rectangular frame 96 and ribs 97 which are connected to the frame 96 in a crisscross manner.
  • the through hole 93 formed between the adjacent ribs 97 is positive 3 ⁇ 4 ⁇ ⁇
  • the square holes and the respective through holes 93 are vertically and horizontally distributed on the grid 92.
  • the grid paste 92 may be filled with a paste-like positive electrode paste or a negative electrode paste, and after filling, the process of leaching, curing, and chemical formation may be performed. Treatment to form active material 95.
  • the positive electrode lead paste and the negative electrode lead paste are commonly used materials in the prior art batteries, and can be directly purchased from the market, and the main component thereof is lead, and the process of preparing the active material 95 is also the same as the prior art. According to the disclosure of the website ht tp : //bai ke. bai du. com/vi ew/327649.
  • the grid 92 filled with the positive electrode paste can be used as the positive electrode plate 2b in cooperation with the conductive plate 91, and the grid 92 filled with the negative electrode paste can be used as the negative electrode plate 2a in cooperation with the conductive plate 91.
  • the grid 92 filled with the positive electrode paste is referred to as a positive grid
  • the grid 92 filled with the negative lead is referred to as a negative core.
  • the battery core of the high lead ion plate is used, from one end to the other.
  • the order of stacking is: rubber layer (this layer can also be omitted during use), insulating plate, conductive plate 91, negative grid, separator 2 c, positive grid, conductive plate 9 1, positive grid, separator 2c, negative grid, conductive plate 9.1, negative grid, separator 2 c, positive grid, conductive plate 91, positive grid... separator 2 c, negative grid, conductive plate 91, insulating plate, rubber Layer (this layer can also be omitted during use).
  • the conductive plate 91, the negative electrode grid, the separator 2c, the positive grid, the insulating plate and the rubber layer have the same size and correspondingly stacked, the conductive plates 9 1 on both sides of the negative grid and the positive grid on both sides
  • the tabs 94 on the conductive plates 91 are located on the same side of the battery core and are staggered.
  • the stacking manner is a sequence in which the conductive plate 91 and the negative electrode grid are located at both ends.
  • the negative grid and the positive grid in the stacking sequence are stacked. Replace each other.
  • the structure of the high-lead ion energy plate and the above-mentioned stacking method can make the number of the positive grid and the negative grid the same, that is, the amount of the active material 95 applied to the positive grid and the negative grid is the same, relative to the present.
  • the negative electrode plate 2a is one more than the positive electrode plate 2b, and this solution is not only 3 ⁇ 4 ⁇ ⁇
  • the current flowing through the conductive plate 91 is relatively uniform, and closely abuts against the grid 92 on both sides of the conductive plate 91.
  • the active material 95 in contact with the conductive plate 91 can be fully utilized, and the utilization rate of the active material 95 in the battery is greatly improved, and the utilization rate can be as high as 70% or more.
  • the embodiment is substantially the same as the technical solution of the first embodiment, except that the tab 94 integrally connected with the conductive plate 91 has a plate shape, and the width of the tab 94 is different.
  • the conductive plates 91 have the same width.
  • the stacking manner and sequence are the same as those of the first embodiment, but since the tab 94 is plate-shaped, the conductive plate 91 and both sides of the negative grid are both sides.
  • the tabs 94 on the conductive plate 91 of the positive grid are divided into two sides of the battery core.
  • the high lead ion plate can also be used in bipolar batteries.
  • the stacking order of the battery cores of the bipolar battery is: rubber layer (this layer can also be omitted during use), insulating plate, conductive plate 9, 1, positive grid, separator 2c, negative grid , conductive plate 91, positive grid, separator 2 c, negative grid, conductive plate 9, 1, positive grid, separator 2c, negative grid, conductive plate 9, 1, positive grid, separator 2c, negative Grid, conductive plate 9, 1, positive grid, separator 2c, negative Grid, conductive plate 91, insulating plate, rubber layer (this layer can also be omitted during use).
  • the plate having the positive grid and the negative grid on each side can be regarded as one battery cell, and the above stacking method of the bipolar battery is the series connection of a plurality of battery cells, with the number of the plates The number of bipolar batteries is increasing.
  • the application of the bipolar battery is different from the above unipolar battery in that only the conductive plates 9 1 at both ends of the battery core are provided with tabs 94, and other conductive plates 91 between the two conductive plates 91 The tab 94 is not provided at all.
  • the active material 95 on the other grids 92 between the two grids 92 does not react, and A rubber spacer 2c having a thickness larger than that of the conductive plate 91 and the grid 92 is further disposed between the adjacent two plates
  • the materials of the conductive plate 91 and the tabs 94 may be made of other existing conductive materials, such as lead alloys or other alloy materials in the prior art, in addition to the above-mentioned lead materials.
  • the grid 92 may also be used. Other insulating materials that meet the process requirements for filling the active material 95.
  • the shape of the through hole 93 formed in the grid 92 can be changed to other shapes such as a circle, a triangle, a diamond, and the like according to the actual use, and the distribution pattern is also adjusted according to the shape of the actual through hole 93.
  • the present high lead ion energy battery includes a housing 1 having a cavity la inside, a battery inner core 2 and an electrolyte solution, a positive electrode column 3 and a negative electrode column 4, both of which are disposed in the cavity la and
  • the air intake member 5 and the safety valve 11 are disposed on the housing 1.
  • the inner ends of the positive electrode column 3 and the negative electrode column 4 are connected to the battery inner core 2, and the outer ends thereof extend out of the casing 1.
  • the housing 1 includes a main body 1b and a cover lc that is sealingly connected to the main body 1b.
  • the air intake member 5 and the safety valve 11 are disposed on the cover lc.
  • the cavity la in the housing 1 includes six a mutually independent secondary cavity, each of which is provided with a battery inner core 2, and a housing 1 corresponding to each secondary cavity is respectively provided with an air inlet member 5 and a safety valve 1 1 ; 5 is a valve that can be opened and closed, such as check valves and globe valves.
  • 5 is a valve that can be opened and closed, such as check valves and globe valves.
  • the battery core 2 has a square shape, and includes a plurality of negative electrode plates 2a and a positive electrode plate 2b which are alternately stacked.
  • a separator 2c made of an insulating material is further disposed between the adjacent negative electrode plates 2a and 2b.
  • the number of the negative electrode plates 2a is one more than the number of the positive electrode plates 2b, that is, the plates on both sides of the battery inner core 2 are the negative electrode plates 2a.
  • the corresponding positions of the positive electrode plates 2b have a pole 94, and one end of the plurality of negative plates 2a opposite to the positive plate 2b has one tab 94, that is, the positive electrode plate 2b and the tab 94 of the negative electrode plate 2a are separately provided.
  • the tabs 94 of the two partial plates are diagonally disposed on the battery inner core 2.
  • the pole 94 of the positive electrode plate 2b and the pole of the negative electrode plate 2a 3 ⁇ 4 ⁇ ⁇
  • the ears 94 are connected to the inner ends of the positive electrode column 3 and the negative electrode column 4 through a strip bus bar 9, respectively.
  • the positions of the positive electrode plate 2b and the tab 94 on the negative electrode plate 2a are respectively arranged to reduce the size of the bus bar 9 for connecting thereto, and the positive electrode plate 2b and the tab 94 of the negative electrode plate 2a are alternately arranged, that is, disposed in the battery core.
  • the two diagonals of 2 allow the current distribution on the plates to be more evenly distributed.
  • the positive electrode plate 2b includes a body in the form of a plate, and the body includes a plate-shaped conductive plate 91 and a grid 92 closely abutting the side of the conductive plate 91, on the grid 92.
  • a plurality of through holes 93 are formed in a direction perpendicular to the conductive plate 91.
  • the through hole 93 is provided with an active material 95 for contacting the conductive plate 91, and the active material 95 can pass a chemical reaction when the battery is discharged. Generates electrical energy and returns to the original component material upon charging.
  • the active material 95 in the present invention is formed by filling a grid-like positive electrode paste on a grid 92, filling it, and performing a process such as leaching, solidification, and chemical conversion.
  • the negative electrode plate 2a includes a plate-shaped body, and the body includes a plate-shaped conductive plate 91 and a grid 92 closely abutting the conductive plate 91, and the grid 92 is perpendicular to the conductive plate 91.
  • a plurality of through holes 93 are formed in the through hole 93.
  • the active material 95 for contacting the conductive plate 91 is provided in the through hole 93.
  • the active material 95 can generate electric energy by chemical reaction when the battery is discharged and return to the original state during charging. Component substance.
  • the active material 95 in the present invention is formed by applying a paste-like negative electrode lead paste on the grid 92, filling it, and performing a process such as leaching, solidification, and chemical conversion.
  • the positive lead paste and the negative lead paste are commonly used materials in the prior art batteries, and are commercially available directly from the market, and the main component thereof is lead, and the process of preparing the active material 95 is also the same as the prior art.
  • the disclosure of the website ht tp //bai ke. bai du. com/vi ew/327649. htm, it is made by mixing powder of lead powder, water, sulfuric acid and additives and making physical and chemical changes. A plastic paste mixture.
  • the grid 92 filled with the positive lead paste can be used as the positive electrode plate 2b in cooperation with the conductive plate 91, and the grid 92 filled with the negative electrode paste can be used as the negative electrode plate in cooperation with the conductive plate 91.
  • the grid 92 of the present invention is made of an insulating material. 5mn! The thickness of the grid is 0. 05mn! ⁇ 2. Omm, comprising a rectangular frame 96 and ribs 97 that are connected criss-crossally within the frame 96. As shown in FIG. 5, a through hole 93 is formed between the adjacent ribs 97. The through hole 93 can be connected in a square shape by a plurality of ribs 97 "well” and distributed in the vertical and horizontal rows on the grid 92. on.
  • the shape of the through hole 93 formed in the grid 92 can be changed to other shapes such as a circle, a triangle, a diamond, and the like according to actual use, and the distribution manner is also adjusted according to the shape of the actual through hole 93.
  • the conductive plate 91 has a plate shape as a whole, and has a thickness of 0.01 MPa to 1. 0 mm.
  • the plate is stamped or cast rolled, and the tab 94 is connected to the conductive plate 91 and both are connected.
  • Made of conductive material Since the conductive plate 91 does not need to pass through the process of filling the active material 95, the present invention is made of a lead material having the best charge and discharge performance.
  • the tabs may be arranged in a plate shape or in a sheet shape, but preferably, the tabs 94 are made of a lead material and are provided in a sheet form and integrated with the conductive plate 91, which is arranged to ensure normal operation. At the same time, its weight is reduced and the energy density of the battery is increased.
  • the battery core 2 further includes a fixing member 7 made of an insulating material disposed outside the positive electrode plate 2b and the negative electrode plate 2a. The outer side of the fixing member 7 is further provided with an elastic member 6 capable of recovering after the battery inner core 2 is deformed. .
  • the fixing member 7 is made of epoxy resin
  • the elastic member 6 is a plurality of rubber bands which are sleeved on the outer side of the fixing member 7, and the inner side of the rubber band is in close contact with the outer side surface of the fixing member 7.
  • the excess electrolyte in the battery can be poured out, the safety valve 1 is closed, the air inlet member 5 is opened, and the battery is passed through the air inlet member 5 Inflating the gas in the chamber (air, inert gas, carbon dioxide, etc., which cannot directly participate in the chemical reaction of the battery), and improve the gas in the secondary chamber 3 ⁇ 4 ⁇ ⁇
  • the battery core 2 expands and deforms outward against the elastic force of the rubber band.
  • the fixing member 7 can ensure that the electrode plate is flat and does not deform.
  • the safety valve 1 1 When a chemical reaction occurs in the battery, some gas is generated. When the air pressure in the battery is higher than a certain value, the safety valve 1 1 is opened to release the gas; when the air pressure is lower than a specific value, the safety valve 1 1 is closed again.
  • the opening pressure of the safety valve 1 is much larger than that of the ordinary battery, and the national standard is 10 kPa to 49 kPa.
  • the opening pressure of the safety valve 1 1 of the high lead ion energy battery can be much larger than that of the ordinary safety valve 1 1 .
  • the above elastic member 6 can also adopt other technical solutions, such as adopting a single cylindrical structure, and if necessary, opening corresponding slots or holes in the cylindrical body or using a plurality of plastic springs respectively disposed on the battery core. At the side where the deformation occurs on the second side, one end thereof is in contact with the outer side surface of the fixing plate on the battery inner core 2, and the other end is in contact with the inner wall of the casing 1.
  • the positive electrode plate 2b and the negative electrode plate 2a each include a tab 94 made of a conductive material, a conductive grid 10, and a coating.
  • the active material in this example was the same as in Example 3.
  • the tab 94 is in the form of a sheet and is connected to the conductive grid 10, and the conductive grid 10 includes a plurality of ribs 97 connected in a "well" shape, and preferably, as shown in FIG.
  • the cross-sectional diameter of the rib 97 in which the tabs 9b and the tab 94 of the negative electrode plate 2 are disposed is larger than the cross-sectional diameter of the rib 97 in the other direction.
  • the positive electrode plate 2b and the tab 94 of the negative electrode plate 2a are provided 3 ⁇ 4 ⁇ ⁇
  • the ribs 97 in the direction of the direction are thicker relative to the ribs 97 in the other direction, and the resistance can be reduced in this direction, that is, the internal resistance of the battery is reduced, and the unnecessary energy consumption of the battery is reduced.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

一种高铅离子能极板及其电池。该高铅离子能极板包括导电板和紧密抵靠在该导电板一侧用绝缘材料制成的板栅,板栅上设有通孔,通孔内设有与导电板相接触的蓄电池用活性物质。该高铅离子能电池包括内部具有腔体的壳体、设置于腔体内的电池内芯和电解液以及内端分别与电池内芯连接的正极柱和负极柱,电池内芯包括正极板和负极板,正极柱和负极柱的外端均伸出壳体,壳体上还设置有进气件,进气件能连通上述腔体与壳体外侧。上述活性物质能与电解液充分反应,反应效率高,极板和电池的使用寿命长。

Description

一种高铅离子能极板及其电池 技术领域
本发明属于蓄电池技术领域, 涉及一种铅酸蓄电池极板, 尤 其涉及一种高铅离子能极板及其电池。 背景技术
现有蓄电池壳体中的极板一般包括采用导电材料制成的呈栅 栏状的板栅、 铅膏以及与板栅连接的金属极耳, 其中, 铅膏填涂 于板栅的表面以及板栅上的通孔中后经淋酸、 固化等工艺处理形 成可进行氧化还原反应的活性物质, 而金属极耳则通过汇流排与 蓄电池的正极柱或负极柱相连接。当蓄电池连接于电路中使用时, 栅栏状的板栅通电, 填涂于板栅上的活性物质通过电解质进行反 应, 实现充电或放电。这种极板统治了铅酸蓄电池上百年的历史, 且此板栅经多次的修改, 到目前已相当成熟。
然而, 现有的上述极板在使用时仍存在一些问题: 1、 极板的 板栅呈栅栏状, 当通电时, 电流自板栅上流过, 而板栅上的通孔 中的活性物质处因电阻较大, 流经的电流较小, 则该处的活性物 质的反应利用率较低;2、因极板在填涂活性物质时需要进行淋酸、 固化等工艺的处理, 所以现有极板的板栅无法使用充放电效果最 好的铅制成, 只能采用强度相对较高的铅合金, 然而, 铅合金极 板一旦进行深放电, 正极板栅的合金元素就会释放出来, 直接影 响电池寿命及容量, 所以其使用寿命也极其短, 一般在 200〜300 次左右。
电池是一种能将化学能转化为电能进行储存且在适当的时候 予以释放的电气化学设备, 而蓄电池就是电池中的一种, 当其在 放电到一定程度后, 经过充电又能复原续用, 目前被广泛使用于 ¾ ^ ^
各个领域。 但是, 蓄电池的电压等级较低, 在使用时往往需要将 多个蓄电池串联使用, 如使用普通的外接方式, 则存在使用安全 性与稳定性不高的问题。
针对以上问题, 人们设计了一种内连接方形塑壳蓄电池, 并 申请了中国专利, 【其申请号为: 200910043206. 1 ; 其公开号为: CN101587965A ],该蓄电池包括内部通过塑料隔板隔开至少两个内 芯室的方形塑料壳体以及由矩形极板叠片组装而成的单体电池内 芯, 单体电池内芯分别设置于上述内芯室内且内芯室内注入电解 液, 而电池内芯中正负极板之间还叠放有一隔板。 单体电池内芯 的正极极耳和负极极耳分别位于该单体电池内芯的相对两侧, 且 相邻的两个单体电池内芯可通过密封连接于塑料隔板上的密封导 电连接器在塑料壳体内完成串联, 保证了电池串联的安全性与稳 定性。
但是, 该蓄电池仍存在一些不足:
1、该蓄电池在使用过程中因极板上的孔隙较小, 电解液张力 较大, 内芯室内的压力较低, 导致电解液无法深入极板中, 其与 极板上的活性物质之间的反应仅仅停留在极板表面, 反应效率较 低, 进而导致电池的能量密度 (wh/kg ) 偏小。
2、该蓄电池虽然通过将正极极耳以及负极极耳分别设置于单 体电池内芯的两侧来使极板上的电流分布更加均匀, 提高了反应 率, 但其极耳均为板状, 整体质量也较大, 导致电池的能量密度 虽有提升, 但很有限。
3、 蓄电池在放电时, 其负极的金属铅会被氧化为硫酸铅, 其 正极的二氧化铅也被还原为硫酸铅, 蓄电池充电时则反之, 即在 蓄电池的充放电过程中, 极板上物质的体积会发生变化, 当体积 变大时会导致电池内芯发生膨胀形变, 而体积恢复时则需要靠电 池内芯中隔板的弹性来进行恢复, 但隔板弹力有限, 当蓄电池长 期使用时, 容易使得电池内芯形变后无法恢复, 进而导致电池内 ¾ ^ ^
芯中的部分极板因正负极板的距离较大而无法有效反应, 造成蓄 电池容量衰减的情况。
4、 为保证电池内芯膨胀时, 正负极板之间不会发生短路, 现 有蓄电池的隔板往往较厚, 从而导致蓄电池的内阻较大, 能量密 度偏小。 发明内容
本发明的目的是针对现有技术存在的上述问题, 提出了一种 高铅离子能极板及其电池, 该极板具有活性物质反应率高且使用 寿命长的特点, 该电池具有能量密度大且使用寿命长的特点。
本发明的目的可通过下列技术方案来实现:
一种高铅离子能极板, 包括呈板状的本体以及连接于本体上 的用于与蓄电池的正极柱或负极柱相连接的极耳, 其特征在于, 所述的本体包括一呈板状的导电板以及紧密抵靠于该导电板一侧 的板栅, 所述的板栅上沿与导电板相垂直的方向开设有若干个通 孔, 所述的通孔内设有与上述导电板相接触的蓄电池用的活性物 质, 该活性物质能在蓄电池放电时通过化学反应产生电能且在充 电时恢复为原组分物质, 上述板栅采用绝缘材料制成, 上述极耳 与导电板相连接且两者均采用导电材料制成。
本高铅离子能极板包括导电板以及紧密抵靠于导电板一侧的 板栅, 其中, 板栅用于填涂活性物质, 因其无需导电而采用绝缘 材料制成, 自中华人民共和国国家标准蓄电池名词术语 (GB 2900.71—88 ) 的定义中可知, 该应用于蓄电池极板中的活性物质 为当蓄电池放电时通过化学反应产生电能, 而在充电时又恢复为 原组分的极板物质。 因导电板整体呈板状, 当其通过极耳连接至 蓄电池的正极柱或负极柱处进行通电使用时, 导电板上流过的电 流较为均匀, 而紧密抵靠于导电板一侧的板栅上的与导电板相接 触的活性物质则可得到充分利用, 大大提高了蓄电池中的活性物 ¾ ^ ^
质的利用率, 该利用率可高达 70%以上。
在上述的一种高铅离子能极板中,所述的导电板采用铅制成。 因导电板无需填涂活性物质, 即其无需经过淋酸、 固化等工艺, 所以, 导电板可采用充放电性能最佳的铅材料制成。
作为另一种情况, 在上述的一种高铅离子能极板中, 所述的 导电板采用铅合金制成。 在将极板改为上述结构而大大提高蓄电 池内活性物质的利用率后, 导电板也可采用铅合金或其他导电金 属制成, 虽其充放电的性能与铅制成的导电板不同, 但同样能实 现活性物质的高利用率。
在上述的一种高铅离子能极板中,所述的板栅采用塑料制成。 塑料制成的板栅不仅满足填涂活性物质时的工艺需求, 其重量与 成本也较低。
在上述的一种高铅离子能极板中, 所述的通孔呈圆形或正多 边形, 且各个通孔均匀分布于上述板栅上。 通孔处用于填充活性 物质, 所以其形状可为圆形、 三角形、 矩形、 菱形等各种形状。
在上述的一种高铅离子能极板中, 所述的通孔呈正方形且纵 横排列地均匀分布于板栅上。 通孔呈正方形且纵横排列地分布可 使各个通孔所占用的面积更大以填充更多的活性物质。
在上述的一种高铅离子能极板中, 所述的极耳呈片状且连接 于导电板的一端, 该极耳与导电板连为一体。 片状的极耳所占用 的空间较小, 可将若干个正极板与负极板的极耳设于电池内芯的 同一侧且交错开来以便通过汇流排将正极板和负极板分别连接到 蓄电池的正极柱和负极柱处。
作为另一种情况, 在上述的一种高铅离子能极板中, 所述的 极耳呈板状且连接于导电板的一端, 该极耳与导电板连为一体。 板状的极耳与导电板采用相同材料制成且两者等宽, 正极板与负 极板的极耳可设置于相对的两侧, 再分别通过一汇流排连接至正 极柱和负极柱处。 ¾ ^ ^
在上述的一种高铅离子能极板中, 所述的活性物质由铅膏为 原料制成的。 将铅膏填涂于板栅的表面及通孔中后, 通过淋酸、 固化及化成的工艺即可形成活性物质。
一种高铅离子能电池, 包括内部具有腔体的壳体、 设置于腔 体内的电池内芯和电解液以及内端分别与上述电池内芯连接的正 极柱和负极柱, 所述的正极柱和负极柱的外端均伸出壳体, 其特 征在于, 所述的壳体上还设置有进气件, 所述的进气件能连通上 述腔体与壳体外侧。
本高铅离子能电池在生产完成并进行初次充电后, 开启壳体 上的进气件以连通腔体和壳体外侧, 通过进气件可向壳体内注入 气体 (空气、 惰性气体、 二氧化碳等不能直接参与蓄电池化学反 应的气体), 增大壳体内的气压, 缓解电解液的张力, 使电解液能 深入到电池内芯中去, 进行更全面的反应, 提高蓄电池的能量密 度。
在上述的高铅离子能电池中, 所述的腔体内电池内芯处还设 置有一能在电池内芯发生形变后使其恢复的弹性件。 通过弹性件 可在电池内芯发生形变时将其恢复到初始状态, 避免出现因正极 板与负极板之间距离过大而无法完全参与反应的情况出现。
在上述的高铅离子能电池中, 所述的弹性件包括数个套设于 上述电池内芯上的呈环状的弹性件一。 环状的弹性件一作用于电 池内芯上发生形变的侧部, 使其在形变后能恢复到初始状态, 同 理, 这里的弹性件一也可采用单一的筒状结构, 并根据需要在筒 状本体上开设相应的槽或孔。
在上述的高铅离子能电池中, 所述的弹性件包括设置于上述 电池内芯上发生形变的侧面处的弹性件二, 所述的弹性件二的一 端与上述电池内芯的侧面相抵触, 另一端与上述壳体的内壁相抵 触。
在上述的高铅离子能电池中, 所述的电池内芯还包括设置于 ¾ ^ ^
其外侧的采用绝缘材料制成的固定件。 通过设置于电池内芯外侧 的固定件可在电池内芯膨胀及收缩时保证其平整不变形。
在上述的高铅离子能电池中, 所述的电池内芯呈方形, 包括 依次交替叠放的若干块负极板与正极板, 相邻的正极板与负极板 之间还设有一采用绝缘材料制成的隔板, 所述的正极板与负极板 的一端还分别具有一极耳, 且正极板的极耳与负极板的极耳分设 上述电池内芯的两侧, 所述的若干块正极板的极耳和负极板的极 耳分别通过一条状的汇流排连接到上述正极柱与负极柱处。
在上述的高铅离子能电池中, 所述的若干块正极板的极耳相 互对应设置, 所述的若干块负极板的极耳相互对应设置, 且正极 板的极耳位置与负极板的极耳位置为交错设置。 正极板与负极板 上的极耳位置分别对应设置可减少用于连接其的汇流排的大小, 而正极板与负极板的极耳交错设置, 即设置于电池内芯的两对角 可使极板上的电流分布得更加均匀。
在上述的高铅离子能电池中, 所述的壳体上还设置有能在其 内部腔体中气压大于特定值时开启的安全阀。 电池内芯处发生化 学反应时会释放出气体, 当气压过大时, 通过开启安全阀可将多 余的气体放出, 当气压回复到临界值以下时, 安全阀关闭。
在上述的高铅离子能电池中, 所述的腔体包括数个相互独立 的次级腔体, 各个次级腔体中均设置有一电池内芯, 且对应各个 次级腔体的壳体上还各设置有一进气件与安全阀。 因单体电池内 芯的电压等级较低, 本高铅离子能电池中设置多个电池内芯, 各 个电池内芯可在壳体内或外部串联以方便用户的使用。
在上述的高铅离子能电池中, 所述的壳体包括一主体以及密 封连接于主体上侧的盖体, 所述的进气件和安全阀均设置于上述 盖体上。
在上述的高铅离子能电池中, 所述的正极板与负极板均包括 导电板栅以及涂填在导电板栅上的活性物质, 所述的导电板栅包 ¾ ^ ^
括呈 "井" 字型连接的若干筋条, 沿上述正极板与负极板的极耳 设置方向的筋条的截面直径大于另一方向的筋条直径。 沿正极板 与负极板的极耳设置方向的筋条较粗可减少两者之间的电阻, 从 而减少蓄电池的内阻。
在上述的高铅离子能电池中, 所述的活性物质由铅膏为原料 制成的。 将铅膏填涂于板栅的表面及通孔中后, 通过淋酸、 固化 及化成的工艺即可形成活性物质。
在上述的高铅离子能电池中, 所述的正极板所使用的铅膏为 正极铅膏。
在上述的高铅离子能电池中, 所述的负极板所使用的铅膏为 负极铅膏。
在上述的高铅离子能电池中, 所述的正极板与负极板均包括 呈板状的本体, 所述的本体包括一呈板状的导电板以及紧密抵靠 于该导电板一侧的板栅, 所述的板栅上沿与导电板相垂直的方向 开设有若干个通孔, 所述的通孔内设有与上述导电板相接触的蓄 电池用的活性物质, 该活性物质能在蓄电池放电时通过化学反应 产生电能且在充电时恢复为原组分物质, 上述板栅采用绝缘材料 制成, 上述极耳与导电板相连接且两者均采用导电材料制成。
在上述的高铅离子能电池中, 所述的导电板采用铅制成。 因 导电板无需填涂活性物质, 即其无需经过淋酸、 固化等工艺, 所 以, 导电板可采用充放电性能最佳的铅材料制成。
在上述的高铅离子能电池中,所述的导电板采用铅合金制成。 在将极板改为上述结构而大大提高蓄电池内活性物质的利用率 后, 导电板也可采用铅合金或其他导电金属制成, 虽其充放电的 性能与铅制成的导电板不同,但同样能实现活性物质的高利用率。
在上述的高铅离子能电池中, 所述的板栅采用塑料制成。 塑 料制成的板栅不仅满足填涂活性物质时的工艺需求, 其重量与成 本也较低。 ¾ ^ ^
在上述的高铅离子能电池中,所述的通孔呈圆形或正多边形, 且各个通孔均匀分布于上述板栅上。 通孔处用于填充活性物质, 所以其形状可为圆形、 三角形、 矩形、 菱形等各种形状。
在上述的高铅离子能电池中,所述的通孔呈正方形且纵横排列 地均匀分布于板栅上。通孔呈正方形且纵横排列地分布可使各个通 孔所占用的面积更大以填充更多的活性物质。
在上述的高铅离子能电池中, 所述的极耳呈片状且连接于导 电板的一端, 该极耳与导电板连为一体。 片状的极耳所占用的空 间较小, 可将若干个正极板与负极板的极耳设于电池内芯的同一 侧且交错开来以便通过汇流排将正极板和负极板分别连接到蓄电 池的正极柱和负极柱处。 相对于现有技术中将极耳设计成板状以 作为极板的一部分, 本高铅离子能电池将极耳设计为体积与质量 较小的片状, 进一歩提高了电池的能量密度 (wh/kg )。
在上述的高铅离子能电池中, 所述的极耳呈板状且连接于导 电板的一端, 该极耳与导电板连为一体。
在上述的高铅离子能电池中, 所述的活性物质由铅膏为原料 制成的。 将铅膏填涂于板栅的表面及通孔中后, 通过淋酸、 固化 及化成的工艺即可形成活性物质。
在上述的高铅离子能电池中, 所述的正极板所使用的铅膏为 正极铅膏。
在上述的高铅离子能电池中, 所述的负极板所使用的铅膏为 负极铅膏。
与现有技术相比,本高铅离子能极板及其电池具有以下优点:
1、本高铅离子能极板中利用导电板进行通电, 利用设置于导 电板一侧的板栅来填涂活性物质, 使得极板在通电后, 导电板上 的电流分布较为均匀,而设置于板栅上的活性物质与导电板接触, 使其能得到充分的利用,活性物质的利用率得到了大幅度的提高。
2、导电板因无需填涂活性物质, 不必限制于填涂活性物质时 ¾ ^ ^
的工艺要求, 选用充放电性能最好的铅材料, 可使其 DOD 100%深 放电循环使用寿命达 2000次以上, 大大提高了其使用寿命。
3、根据上述导电板以及设置于导电板一侧板栅的结构, 可对 导电板和板栅进行相应地组合, 以应用于双极性蓄电池中, 应用 范围较广。
4、通过设置于电池壳体上的进气件可在电池生产完成后向壳 体内充气, 提升腔体内的压力, 缓解电解液的张力, 促使腔体中 的电解液进入到极板的孔隙中以进行深层的反应, 是本高铅离子 能电池的反应率高, 电池的能量密度大。
5、 电池内芯处设置固定件以及弹性件, 可保证电池内芯膨胀 变形时正负极板不变形且在反应结束后使电池内芯回复到初始状 态, 保证其的正常工作, 提供了电池的使用寿命。
6、 电池内芯处正极板与负极板的极耳呈片状, 在保证其正常 工作的同时降低了其重量, 提高了电池的能量密度, 而正极板的 极耳与负极板的极耳呈对角设置, 可使导电板栅上的电流分布更 加均匀, 化学反应更充分。
7、正极板与负极板的极耳设置方向上的筋条相对于另一方向 的筋条较粗, 可在该方向上减小电阻, 即减少电池的内阻, 减少 电池不必要的能量消耗。 附图说明
图 1是实施例一的结构示意图。
图 2是实施例二的结构示意图。
图 3是导电板在实施例一的结构示意图。
图 4是导电板在实施例二的结构示意图。 ¾ ^ ^
图 8是导电板栅的结构示意图。
图中, 1、 壳体; l a、 腔体; l b、 主体; l c、 盖体; 2、 电池 内芯; 2a、 负极板; 2b、 正极板; 2c、 隔板; 3、 正极柱; 4、 负 极柱; 5、 进气件; 6、 弹性件; 7、 固定件; 9、 汇流排; 10、 导 电板栅; 1 1、 安全阀; 91、 导电板; 92、 板栅; 93、 通孔; 94、 极耳; 95、 活性物质; 96、 框架; 97、 筋条。 具体实施方式
以下是本发明的具体实施例并结合附图, 对本发明的技术方 案作进一歩的描述, 但本发明并不限于这些实施例。
实施例一
如图 1、 图 3、 图 7所示, 本高铅离子能极板包括呈板状的本 体以及用于与蓄电池的正极柱 3或负极柱 4相连接的极耳 94, 本 体包括一导电板 9 1 以及紧密抵靠于该导电板 9 1一侧的板栅 92, 极耳 94连接于导电板 9 1的一端。 其中, 板栅 92和导电板 91大 小相同且对应叠放。 板栅 92上沿与导电板 9 1相垂直的方向开设 有若干个通孔 93,板栅 92表面以及通孔 93中填充有与导电板 91 相接触的活性物质 95。 在本实施例中, 该活性物质 95为当蓄电 池放电时通过化学反应产生电能, 而在充电时又恢复为原组分的 极板物质。
如图 3所示,导电板 91整体呈板状,其厚度为 0. 01匪〜 1. 0mm , 一般为板材冲压或浇铸滚压而成, 极耳 94呈片状且与导电板 9 1 连为一体, 这里, 导电板 9 1因无需经过填充活性物质 95的工艺, 所以选用充放电性能最好的铅材料制成。 同样的, 极耳 94也采用 铅材料制成。
如图 5所示, 板栅 92呈栅栏状且采用塑料材料制成, 其厚度 为 0. 05匪〜 2. 0mm , 包括呈矩形的框架 96以及纵横交错地连接于 框架 96 内的筋条 97, 相邻的筋条 97之间即形成的通孔 93呈正 ¾ ^ ^
方形且各个通孔 93纵横排列地分布于板栅 92上。
将本高铅离子能极板应用于单极性蓄电池中时, 可在板栅 92 上填涂呈膏状的正极铅膏或负极铅膏, 填涂好后进行淋酸、 固化 以及化成等工艺处理以形成活性物质 95。 这里, 正极铅膏和负极 铅膏均为现有技术中蓄电池常用的物质, 可自市场中直接购得, 其主要成分为铅,将其制作成活性物质 95的工艺也与现有技术相 同, 自网站 ht tp : //bai ke. bai du. com/v i ew/327649. htm所公开的 内容可知, 其为由铅粉、 水、 硫酸和添加剂混合搅拌并发生物理、 化学变化而制成的可塑性膏状混合物。 填涂正极铅膏的板栅 92 与导电板 91配合即可作为正极板 2b使用, 填涂负极铅膏的板栅 92与导电板 91配合即可作为负极板 2a使用。 以下将填涂正极铅 膏的板栅 92称为正极板栅, 填涂负极铅膏的板栅 92称为负极板 使用本高铅离子能极板的电池内芯, 自其一端向另一端依次 叠放的顺序为: 橡胶层 (此层在使用过程也可省略), 绝缘板, 导 电板 91, 负极板栅, 隔板 2 c, 正极板栅, 导电板 9 1, 正极板栅, 隔板 2c, 负极板栅, 导电板 9 1, 负极板栅, 隔板 2 c, 正极板栅, 导电板 91, 正极板栅……隔板 2 c, 负极板栅, 导电板 91, 绝缘 板, 橡胶层 (此层在使用过程也可省略)。 其中, 导电板 91、 负 极板栅、 隔板 2c、 正极板栅、 绝缘板以及橡胶层的大小相同且对 应叠放后,两侧为负极板栅的导电板 9 1和两侧为正极板栅的导电 板 9 1上的极耳 94位于电池内芯的同一侧且两者交错开来。
上述叠放方式为导电板 91和负极板栅位于两端的顺序,当设 置于电池内芯两端的为导电板 9 1和正极板栅时,将上述叠放顺序 中的负极板栅与正极板栅互相替换即可。 使用本高铅离子能极板 的结构以及上述叠放方式可使正极板栅与负极板栅的数量相同, 即填涂于正极板栅和负极板栅上的活性物质 95量相同,相对于现 有技术中负极板 2a比正极板 2b多一块的技术方案, 本方案不仅 ¾ ^ ^
节约了成本且提高了活性物质 95的利用率。
当上述极板通过极耳 94连接至蓄电池的正极柱 3或负极柱 4 处进行通电使用时, 导电板 91上流过的电流较为均匀, 而紧密抵 靠于导电板 91两侧的板栅 92上的与导电板 91相接触的活性物质 95则均可得到充分利用, 大大提高了蓄电池中的活性物质 95 的 利用率, 该利用率可高达 70%以上。
实施例二
如图 2和图 4所示, 本实施例与实施例一的技术方案大致相 同, 不同之处在于: 与导电板 91连为一体的极耳 94呈板状, 且 该极耳 94的宽度与导电板 91的宽度相同。 本实施例的极板应用 于单极性蓄电池时, 其叠放方式和顺序与实施例一相同, 但因极 耳 94呈板状, 所以将两侧为负极板栅的导电板 91和两侧为正极 板栅的导电板 9 1上的极耳 94分设电池内芯的两侧。
此外, 本高铅离子能极板还可应用于双极性蓄电池中。 此时, 双极性蓄电池的电池内芯的叠放顺序依次为: 橡胶层 (此层在使 用过程也可省略), 绝缘板, 导电板 9 1, 正极板栅, 隔板 2c, 负 极板栅, 导电板 91, 正极板栅, 隔板 2 c, 负极板栅, 导电板 9 1, 正极板栅, 隔板 2c, 负极板栅, 导电板 9 1, 正极板栅……隔板 2c , 负极板栅, 导电板 91, 绝缘板, 橡胶层 (此层在使用过程也 可省略)。可将每个两侧具有正极板栅和负极板栅的极板视为一个 电池单体, 则双极性蓄电池的上述叠放方式即为多个电池单体的 串联, 随着极板的数量增多, 双极性蓄电池的电压也不断增加。
双极性蓄电池的应用与上述单极性蓄电池的不同之处还在 于: 仅电池内芯两端处的导电板 9 1 设有极耳 94, 这两块导电板 91之间的其他导电板 91处均未设置极耳 94。 为防止极板的负极 板栅与其他不相邻的极板的正极板栅之间发生反应而使两块板栅 92之间的其他板栅 92上的活性物质 95不发生反应, 可在相邻两 极板之间再设置一厚度大于导电板 91 和板栅 92 的橡胶隔板 2c 说 明 书
或采用其他方法进行隔离。
导电板 9 1和极耳 94的材料除上述铅材料外, 也可采用其他 现有的导电材料制成, 如现有技术中的铅合金或其他合金材料; 同样的, 板栅 92也可采用其他能满足填涂活性物质 95时的工艺 需求的绝缘材料。 而开设于板栅 92上的通孔 93的形状可根据实 际使用需要而更改为圆形、 三角形、 菱形等其他形状, 其分布方 式也跟根据实际通孔 93的形状作相应的调整。
实施例三
如图 6和图 7所示, 本高铅离子能电池包括内部具有腔体 l a 的壳体 1、 均设置于腔体 l a内的电池内芯 2与电解液、 正极柱 3 与负极柱 4以及设置于壳体 1上的进气件 5和安全阀 1 1。正极柱 3与负极柱 4的内端均与电池内芯 2相连接, 其外端伸出壳体 1。 在本实施例中, 壳体 1包括主体 l b以及与主体 lb密封连接的盖 体 l c, 进气件 5和安全阀 1 1均设置于盖体 l c上; 壳体 1 内的腔 体 l a包括六个相互独立的次级腔体,各个次级腔体内均设有一电 池内芯 2, 与各个次级腔体对应的壳体 1 上分别设有一进气件 5 与安全阀 1 1 ; 进气件 5为一能开启与截止的阀门, 如止回阀与截 止阀等。 而使用本高铅离子能电池时, 可将各个次级腔体内的电 池内芯 2上伸出壳体 1的正极柱 3与负极柱 4对应串联以满足用 户的使用。
电池内芯 2呈方形,包括数块交替叠放的负极板 2a和正极板 2b , 相邻的负极板 2a与正极板 2b之间还设置有一绝缘材料制成 的隔板 2c。 这里, 负极板 2 a的数量比正极板 2b的数量多一块, 即电池内芯 2两侧的极板均为负极板 2a。 数块正极板 2b—端的 对应位置均具有一极耳 94, 数块负极板 2a上与正极板 2b相反方 向的一端均具有一极耳 94, 即正极板 2b与负极板 2a的极耳 94 分设于上述电池内芯 2的两侧,且两部分极板的极耳 94呈对角地 设置与上述电池内芯 2上。正极板 2b的极耳 94与负极板 2a的极 ¾ ^ ^
耳 94分别通过一条状汇流排 9连接至正极柱 3与负极柱 4的内端。 正极板 2b与负极板 2a上的极耳 94位置分别对应设置可减少用于 连接其的汇流排 9 的大小, 而正极板 2b 与负极板 2a 的极耳 94 交错设置, 即设置于电池内芯 2的两对角可使极板上的电流分布 得更加均匀。
如图 1至 5所示, 正极板 2b包括呈板状的本体, 本体包括一 呈板状的导电板 9 1 以及紧密抵靠于该导电板 9 1一侧的板栅 92, 板栅 92上沿与导电板 91相垂直的方向开设有若干个通孔 93, 通 孔 93内设有与上述导电板 91相接触的蓄电池用的活性物质 95, 该活性物质 95 能在蓄电池放电时通过化学反应产生电能且在充 电时恢复为原组分物质。 本发明中的活性物质 95通过在板栅 92 上填涂呈膏状的正极铅膏, 填涂好后进行淋酸、 固化以及化成等 工艺处理以形成。
负极板 2a 包括呈板状的本体, 本体包括一呈板状的导电板 91 以及紧密抵靠于该导电板 9 1一侧的板栅 92,板栅 92上沿与导 电板 91相垂直的方向开设有若干个通孔 93, 通孔 93内设有与上 述导电板 91相接触的蓄电池用的活性物质 95, 该活性物质 95能 在蓄电池放电时通过化学反应产生电能且在充电时恢复为原组分 物质。 本发明中的活性物质 95通过在板栅 92上填涂呈膏状的负 极铅膏, 填涂好后进行淋酸、 固化以及化成等工艺处理以形成。
这里, 正极铅膏和负极铅膏均为现有技术中蓄电池常用的物 质, 可自市场中直接购得, 其主要成分为铅, 将其制作成活性物 质 95 的 工 艺 也 与 现 有 技 术 相 同 , 自 网 站 ht tp : //bai ke. bai du. com/v i ew/327649. htm所公开的内容可知, 其为由铅粉、 水、 硫酸和添加剂混合搅拌并发生物理、 化学变化 而制成的可塑性膏状混合物。
填涂正极铅膏的板栅 92与导电板 91配合即可作为正极板 2b 使用, 填涂负极铅膏的板栅 92与导电板 91配合即可作为负极板 ¾ ^ ^
2a使用。
如图 5所示, 本发明中的板栅 92采用绝缘材料制成。 作为优 选, 板栅 92呈栅栏状且采用塑料材料制成, 其厚度为 0. 05mn!〜 2. Omm,包括呈矩形的框架 96以及纵横交错地连接于框架 96内的 筋条 97。 如图 5所示, 相邻的筋条 97之间即形成一通孔 93, 该 通孔 93可以通过若干筋条 97 "井" 字型连接后呈正方形的形状 且纵横排列地分布于板栅 92上。 当然, 开设于板栅 92上的通孔 93的形状可根据实际使用需要而更改为圆形、 三角形、 菱形等其 他形状, 其分布方式也跟根据实际通孔 93的形状作相应的调整。
如图 3所示,导电板 91整体呈板状,其厚度为 0. 01匪〜 1. 0mm , 一般为板材冲压或浇铸滚压而成, 极耳 94与导电板 91相连接且 两者均采用导电材料制成。因为导电板 91无需经过填充活性物质 95的工艺, 所以本发明选用充放电性能最好的铅材料制成。 极耳 可以设置成板状也可以设置成片状, 但作为优选, 极耳 94采用铅 材料制成并设成片状与导电板 9 1连为一体的结构,此设置在保证 其正常工作的同时降低了其重量, 提高了电池的能量密度。
当然, 导电板 91和极耳 94的材料除上述铅材料外, 也可采 用其他现有的导电材料制成, 如现有技术中的铅合金或其他合金 材料; 同样的, 板栅 92也可采用其他能满足填涂活性物质 95时 的工艺需求的绝缘材料。电池内芯 2还包括设置于正极板 2b与负 极板 2a外侧的采用绝缘材料制成的固定件 7, 固定件 7外侧还设 置有一能在电池内芯 2发生形变后使其恢复的弹性件 6。 这里, 固定件 7采用环氧树脂制成, 弹性件 6则为数个套设于固定件 7 外侧的橡皮筋,该橡皮筋的内侧面与固定件 7的外侧面紧密抵触。
本高铅离子能电池在生产完成并进行初次充电后, 可将电池 内多余的电解液倒出, 盖上安全阀 1 1, 再开启进气件 5, 通过进 气件 5向电池的各个次级腔体内充气 (空气、 惰性气体、 二氧化 碳等不能直接参与蓄电池化学反应的气体),提升次级腔体内的气 ¾ ^ ^
压, 缓解电解液的张力, 使其深入到极板的孔隙中, 进行充分的 反应。
当电池内进行化学反应而使其内部反应物质的体积增大时, 电池内芯 2克服橡皮筋的弹力向外膨胀变形, 此时, 固定件 7能 保证极板平整不变形。 当电池进行反向反应而使其内部的反应物 质体积恢复时, 电池内芯 2受到橡皮筋的作用力而恢复到初始状 态, 从而保证了其正常工作状态。
在电池内进行化学反应时, 会产生一些气体, 当电池内的气 压高于特定值时, 安全阀 1 1开启, 释放气体; 当气压低于特定值 时, 安全阀 1 1重新关闭。 这里, 因本高铅离子能电池内通过进气 件 5充气, 气压相对于现有的蓄电池较高, 所以, 安全阀 1 1的开 启压力比普通蓄电池的压力大很多, 国家标准为 10kPa〜49kPa, 本高铅离子能电池的安全阀 1 1 的开启压力可远大于普通的安全 阀 1 1。
此外, 上述的弹性件 6也可采用其他技术方案, 如采用单一 的筒状结构, 并根据需要在筒状本体上开设相应的槽或孔或者采 用数个塑料弹簧, 分别设置于上述电池内芯 2上发生形变的侧面 处, 其一端与电池内芯 2上固定板的外侧面相抵触, 另一端与壳 体 1的内壁相抵触。
实施例四
本实施例与实施例三的技术方案大致相同, 不同之处在于: 如图 8所示, 正极板 2b与负极板 2a均包括由导电材料制成的极 耳 94、导电板栅 10以及涂填在导电板栅 10上的活性物质 95。本 实施例中的活性物质与实施例三中的相同。 作为优先, 极耳 94 呈片状并与导电板栅 10连接, 导电板栅 10则包括呈 "井" 字型 连接的若干条筋条 97, 且作为优选, 如图 8所示, 将沿正极板 2b 与负极板 2a的极耳 94设置方向的筋条 97的截面直径大于另一方 向的筋条 97的截面直径。 将正极板 2b与负极板 2a的极耳 94设 ¾ ^ ^
置方向上的筋条 97相对于另一方向的筋条 97较粗, 可在该方向 上减小电阻, 即减少电池的内阻, 减少电池不必要的能量消耗。
本文中所描述的具体实施例仅仅是对本发明精神作举例说 明。 本发明所属技术领域的技术人员可以对所描述的具体实施例 做各种各样的修改或补充或采用类似的方式替代, 但并不会偏离 本发明的精神或者超越所附权利要求书所定义的范围。

Claims

权 利 要 求 书
1、一种高铅离子能极板, 包括呈板状的本体以及连接于本体 上的用于与蓄电池的正极柱(3)或负极柱(4)相连接的极耳(94), 其特征在于, 所述的本体包括一呈板状的导电板 (91) 以及紧密 抵靠于该导电板 (91) 一侧的板栅 (92), 所述的板栅 (92) 上沿 与导电板(91) 相垂直的方向开设有若干个通孔 (93), 所述的通 孔 (93) 内设有与上述导电板 (91) 相接触的蓄电池用的活性物 质(95), 该活性物质 (95) 能在蓄电池放电时通过化学反应产生 电能且在充电时恢复为原组分物质, 上述板栅 (92) 采用绝缘材 料制成, 上述极耳 (94) 与导电板 (91) 相连接且两者均采用导 电材料制成。
2、根据权利要求 1所述的一种高铅离子能极板,其特征在于, 所述的导电板 (91) 采用铅制成。
3、根据权利要求 1所述的一种高铅离子能极板,其特征在于, 所述的导电板 (91) 采用铅合金制成。
4、根据权利要求 1或 2或 3所述的一种高铅离子能极板, 其 特征在于, 所述的板栅 (92) 采用塑料制成。
5、根据权利要求 1或 2或 3所述的一种高铅离子能极板, 其 特征在于,所述的通孔(93)呈圆形或正多边形,且各个通孔(93) 均匀分布于上述板栅 (92) 上。
6、 根据权利要求 5所述的一种高铅离子能极板, 其特征在于, 所述的通孔(93)呈正方形且纵横排列地均匀分布于板栅(92)上。
7、根据权利要求 1或 2或 3所述的一种高铅离子能极板, 其 特征在于, 所述的极耳 (94) 呈片状且连接于导电板 (91) 的一 端, 该极耳 (94) 与导电板 (91) 连为一体。
8、根据权利要求 1或 2或 3所述的一种高铅离子能极板, 其 特征在于, 所述的极耳 (94) 呈板状且连接于导电板 (91) 的一 端, 该极耳 (94) 与导电板 (91) 连为一体。
9、根据权利要求 1或 2或 3所述的一种高铅离子能极板, 其 权 利 要 求 书
特征在于, 所述的活性物质 (95) 由铅膏为原料制成的。
10、 一种高铅离子能电池, 包括内部具有腔体 (la) 的壳体
( 1)、 设置于腔体 (la) 内的电池内芯 (2) 和电解液以及内端分 别与上述电池内芯 (2) 连接的正极柱 (3) 和负极柱 (4), 所述 的正极柱 (3) 和负极柱 (4) 的外端均伸出壳体 (1), 其特征在 于, 所述的壳体 (1) 上还设置有进气件 (5), 所述的进气件 (5) 能连通上述腔体 (la) 与壳体 (1) 外侧。
11、根据权利要求 10所述的一种高铅离子能电池, 其特征在 于, 所述的腔体 (la) 内电池内芯 (2) 处还设置有一能在电池内 芯 (2) 发生形变后使其恢复的弹性件 (6)。
12、根据权利要求 11所述的一种高铅离子能电池, 其特征在 于, 所述的弹性件 (6) 包括数个套设于上述电池内芯 (2) 上的 呈环状的弹性件一。
13、根据权利要求 11所述的一种高铅离子能电池, 其特征在 于, 所述的弹性件 (6) 包括设置于上述电池内芯 (2) 上发生形 变的侧面处的弹性件二, 所述的弹性件二的一端与上述电池内芯
(2) 的侧面相抵触, 另一端与上述壳体 (1) 的内壁相抵触。
14、 根据权利要求 10或 11或 12或 13所述的一种高铅离子 能电池, 其特征在于, 所述的电池内芯 (2)还包括设置于其外侧 的采用绝缘材料制成的固定件 (7)。
15、 根据权利要求 10或 11或 12或 13所述的一种高铅离子 能电池, 其特征在于, 所述的电池内芯 (2) 呈方形, 包括依次交 替叠放的若干块负极板(2a)与正极板(2b), 相邻的正极板(2b) 与负极板(2a) 之间还设有一采用绝缘材料制成的隔板 (2c), 所 述的正极板 (2b) 与负极板 (2a) 的一端还分别具有一极耳 (8), 且正极板 (2b) 的极耳 (8) 与负极板 (2a) 的极耳 (8) 分设上 述电池内芯 (2) 的两侧, 所述的若干块正极板 (2b) 的极耳 (8) 和负极板 (2a) 的极耳 (8) 分别通过一条状的汇流排 (9) 连接 权 利 要 求 书
到上述正极柱 (3) 与负极柱 (4) 处。
16、根据权利要求 15所述的一种高铅离子能电池, 其特征在 于, 所述的若干块正极板 (2b) 的极耳 (8) 相互对应设置, 所述 的若干块负极板(2a) 的极耳(8)相互对应设置, 且正极板(2b) 的极耳 (8) 位置与负极板 (2a) 的极耳 (8) 位置为交错设置。
17、 根据权利要求 10或 11或 12或 13所述的一种高铅离子 能电池, 其特征在于, 所述的壳体 (1) 上还设置有能在其内部腔 体 (la) 中气压大于特定值时开启的安全阀 (11)。
18、根据权利要求 17所述的一种高铅离子能电池, 其特征在 于, 所述的壳体(1)包括一主体(lb) 以及密封连接于主体(lb) 上侧的盖体 (lc), 所述的进气件 (5) 和安全阀 (11) 均设置于 上述盖体 (lc) 上。
19、 根据权利要求 16所述的高铅离子能电池, 其特征在于, 所述的正极板 (2b) 与负极板 (2a) 均包括导电板栅 (10) 以及 涂填在导电板栅(10)上的活性物质(95), 所述的导电板栅(10) 包括呈 "井"字型连接的若干筋条 (97), 沿上述正极板 (2b) 与 负极板 (2a) 的极耳 (94) 设置方向的筋条 (97) 的截面直径大 于另一方向的筋条 (97) 直径。
20、根据权利要求 16所述的一种高铅离子能电池, 其特征在 于, 所述的正极板 (2b) 与负极板(2a)均包括呈板状的本体, 所 述的本体包括一呈板状的导电板 (91) 以及紧密抵靠于该导电板
(91) 一侧的板栅 (92), 所述的板栅 (92) 上沿与导电板 (91) 相垂直的方向开设有若干个通孔 (93), 所述的通孔 (93) 内设有 与上述导电板(91) 相接触的蓄电池用的活性物质 (95), 该活性 物质 (95) 能在蓄电池放电时通过化学反应产生电能且在充电时 恢复为原组分物质, 上述板栅 (92) 采用绝缘材料制成, 上述极 耳 (94) 与导电板 (91) 相连接且两者均采用导电材料制成。
21、根据权利要求 20所述的一种高铅离子能电池, 其特征在 权 利 要 求 书
于, 所述的导电板 (91) 采用铅制成。
22、根据权利要求 20所述的一种高铅离子能电池, 其特征在 于, 所述的导电板 (91) 采用铅合金制成。
23、根据权利要求 20所述的一种高铅离子能电池, 其特征在 于, 所述的板栅 (92) 采用塑料制成。
24、根据权利要求 20所述的一种高铅离子能电池, 其特征在 于, 所述的通孔 (93) 呈圆形或正多边形, 且各个通孔 (93) 均 匀分布于上述板栅 (92) 上。
25、根据权利要求 24所述的一种高铅离子能电池,其特征在于, 所述的通孔(93)呈正方形且纵横排列地均匀分布于板栅(92)上。
26、根据权利要求 20所述的一种高铅离子能电池, 其特征在 于, 所述的极耳 (94) 呈片状且连接于导电板 (91) 的一端, 该 极耳 (94) 与导电板 (91) 连为一体。
27、根据权利要求 20所述的一种高铅离子能电池, 其特征在 于, 所述的极耳 (94) 呈板状且连接于导电板 (91) 的一端, 该 极耳 (94) 与导电板 (91) 连为一体。
28、根据权利要求 20所述的一种高铅离子能电池, 其特征在 于, 所述的活性物质 (95) 由铅膏为原料制成的。
29、根据权利要求 28所述的一种高铅离子能电池, 其特征在 于, 所述的正极板 (2b) 所使用的铅膏为正极铅膏。
30、根据权利要求 28所述的一种高铅离子能电池, 其特征在 于, 所述的负极板 (2a) 所使用的铅膏为负极铅膏。
31、根据权利要求 19所述的一种高铅离子能电池, 其特征在 于, 所述的活性物质 (95) 由铅膏为原料制成的。
32、根据权利要求 31所述的一种高铅离子能电池, 其特征在 于, 所述的正极板 (2b) 所使用的铅膏为正极铅膏。
33、根据权利要求 31所述的一种高铅离子能电池, 其特征在 于, 所述的负极板 (2a) 所使用的铅膏为负极铅膏。
PCT/CN2012/087333 2012-01-11 2012-12-24 一种高铅离子能极板及其电池 WO2013104249A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201210007049.0A CN102569902B (zh) 2012-01-11 2012-01-11 高铅离子能电池
CN201210007049.0 2012-01-11
CN201210202071.0 2012-06-18
CN201210202071.0A CN102709507B (zh) 2012-06-18 2012-06-18 一种高铅离子能极板

Publications (1)

Publication Number Publication Date
WO2013104249A1 true WO2013104249A1 (zh) 2013-07-18

Family

ID=48781053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/087333 WO2013104249A1 (zh) 2012-01-11 2012-12-24 一种高铅离子能极板及其电池

Country Status (1)

Country Link
WO (1) WO2013104249A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144574A (zh) * 1994-03-22 1997-03-05 动力系统公司 铅蓄电池
CN102013492A (zh) * 2010-05-10 2011-04-13 王小刚 铅酸电池电流收集器及铅酸电池
CN102044708A (zh) * 2009-10-21 2011-05-04 张爱成 双孔铅酸易维密闭电池
CN102569902A (zh) * 2012-01-11 2012-07-11 林子进 高铅离子能电池
CN202423490U (zh) * 2012-01-11 2012-09-05 林子进 高铅离子能电池
CN102709507A (zh) * 2012-06-18 2012-10-03 林子进 一种高铅离子能极板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1144574A (zh) * 1994-03-22 1997-03-05 动力系统公司 铅蓄电池
CN102044708A (zh) * 2009-10-21 2011-05-04 张爱成 双孔铅酸易维密闭电池
CN102013492A (zh) * 2010-05-10 2011-04-13 王小刚 铅酸电池电流收集器及铅酸电池
CN102569902A (zh) * 2012-01-11 2012-07-11 林子进 高铅离子能电池
CN202423490U (zh) * 2012-01-11 2012-09-05 林子进 高铅离子能电池
CN102709507A (zh) * 2012-06-18 2012-10-03 林子进 一种高铅离子能极板

Similar Documents

Publication Publication Date Title
CN103647105A (zh) 一种动力电池
CN103606658B (zh) 一种含有再生铅的高储能环保铅酸蓄电池铅膏
JP6725386B2 (ja) 鉛蓄電池用正極板及び鉛蓄電池
CN104752643B (zh) 铅蓄电池
WO2013104249A1 (zh) 一种高铅离子能极板及其电池
CN200990395Y (zh) 一种用于卷绕式铅蓄电池的壳体和内部连接结构
CN102569902B (zh) 高铅离子能电池
CN201181715Y (zh) 一种铅蓄电池的壳体和内部连接结构
CN204189881U (zh) 一种多气室多极柱平衡电极极板压力的储能装置
CN104835940B (zh) 电动车电池极板
CN201294238Y (zh) 柱型铅蓄电池
CN202996920U (zh) 一种扣式电池正极钢壳及扣式电池
CN202839848U (zh) 卷绕式双端汇流铅酸蓄电池芯
CN111029665A (zh) 一种平板卷绕式铅蓄电池及其制备方法
CN111211258A (zh) 一种极腔式石墨烯铅酸蓄电池
CN104319411B (zh) 一种多气室多极柱平衡电极极板压力的储能装置
CN105633306B (zh) 一种散热型锂离子电池
CN202423490U (zh) 高铅离子能电池
CN111224107B (zh) 一种石墨烯极板式铅酸蓄电池
CN220400725U (zh) 动力电池
CN219811542U (zh) 一种高性能储能铅碳蓄电池
CN212412118U (zh) 酸蓄电池充电放电装置
CN202996945U (zh) 一种扣式电池
CN208797130U (zh) 长寿命上下式结构蓄电池
CN201623217U (zh) 电动助力车用密封铅酸蓄电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864905

Country of ref document: EP

Kind code of ref document: A1