WO2013104095A1 - 光伏电磁感应热水器 - Google Patents

光伏电磁感应热水器 Download PDF

Info

Publication number
WO2013104095A1
WO2013104095A1 PCT/CN2012/001681 CN2012001681W WO2013104095A1 WO 2013104095 A1 WO2013104095 A1 WO 2013104095A1 CN 2012001681 W CN2012001681 W CN 2012001681W WO 2013104095 A1 WO2013104095 A1 WO 2013104095A1
Authority
WO
WIPO (PCT)
Prior art keywords
water heater
water storage
water
induction coil
input device
Prior art date
Application number
PCT/CN2012/001681
Other languages
English (en)
French (fr)
Inventor
樊永华
伽略特·斯蒂芬·威廉
Original Assignee
Fan Yonghua
Garrett Stephen Willam
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fan Yonghua, Garrett Stephen Willam filed Critical Fan Yonghua
Publication of WO2013104095A1 publication Critical patent/WO2013104095A1/zh

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/105Induction heating apparatus, other than furnaces, for specific applications using a susceptor
    • H05B6/108Induction heating apparatus, other than furnaces, for specific applications using a susceptor for heating a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • F24H1/185Water-storage heaters using electric energy supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/18Arrangement or mounting of grates or heating means
    • F24H9/1809Arrangement or mounting of grates or heating means for water heaters
    • F24H9/1818Arrangement or mounting of electric heating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/02Photovoltaic energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/08Electric heater
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the invention relates to a water heater, in particular to a photovoltaic electromagnetic induction water heater. Background technique
  • Hot water energy accounts for 25-35% of household energy consumption.
  • the so-called electric heating tube is a kind of electric resistance wire plus insulation layer and stainless steel casing.
  • the electric heating device is prone to electric shock accident when the electric heating tube is broken.
  • the other type is solar glass vacuum tube water heater, which uses solar tube to obtain solar radiant energy, uses self-flow or circulating pump to drive hot water to the water tank for heat preservation, and is equipped with electric heating tube to assist heating.
  • One of them is a vacuum tube and a water tank integrated, arranged on the roof.
  • the disadvantage is that the heat loss is large, especially in the winter, it needs to be insulated by electric heating to prevent icing, and the other is a pressure-separated type, which uses a circulating pump to drive hot water to the ground tank for heat preservation, in addition to the additional energy consumed by the circulation pump, heat Water circulates throughout the pipeline throughout the day, and a large amount of heat is lost in the flow.
  • the third type is a flat-type water heater. The principle is to arrange a black metal tube on one side of the box, cover the glass on the square box, absorb the solar radiation to heat the water, and use a circulating pump to drive the hot water to the water tank on the ground.
  • the above-mentioned solar glass vacuum tube is the same as the pressurized water heater, and often leaks water.
  • the inadequacy can only heat the water temperature to 60 degrees, which does not reach the sterilization temperature required by the sanitary level of 70 degrees or more, and in cold regions due to The outdoor unit is frosted and cannot be used.
  • the present invention provides a photovoltaic electromagnetic induction water heater.
  • the photovoltaic electromagnetic induction water heater comprises a photoelectric conversion system and a water storage tank body with an energy input device, and the photoelectric conversion system is connected with the water storage cylinder body through the energy input device, and the photoelectric conversion system is a column composed of a plurality of solar silicon battery modules.
  • Array, energy input device includes a heat conductive layer, an insulating layer, an induction coil and a control system made of a ferromagnetic metal material, the heat conducting layer side is in contact with the water in the water storage cylinder, and the other side is connected to the insulating layer, the induction coil and the control system, and the insulating layer is disposed on the Between the heat conducting layer and the induction coil, the control system is respectively connected with the photoelectric conversion system and the induction coil to provide the induction coil with the electric energy required for the alternating magnetic field.
  • the heat conducting layer is a water storage tank body of the water heater.
  • the energy input device is disposed at a side or a bottom of the water storage tank body of the water heater. Further, the control system can switch an external power source.
  • the external power source is 50 Hz or 60 Hz AC power supplied by the city power station.
  • the control system includes a power device IGBT.
  • the energy input device comprises a cooling water pipe or a heat conductor, and the two ends of the cooling water pipe are connected to the water storage water storage cylinder body, and the cooling water pipe is located at an outer part of the water storage water storage cylinder body and contacts the IGBT on the control system.
  • the heat conductor is located between the water heater reservoir and the control system IGBT.
  • the connecting surface of the heat conducting layer and the insulating layer and the sensing coil has a curved surface, a flat surface or a spherical surface.
  • the invention has the beneficial effects of: replacing the existing electric heating, solar energy glass vacuum tube, flat water heater and heat pump heating with photovoltaic electromagnetic induction heating, thereby improving safety and reducing heat loss, and heating the water temperature to above 70 degrees of hygienic requirements.
  • the present invention further provides an insulating layer 5 between the water storage cylinder body 6 of the photovoltaic electromagnetic induction water heater and the induction coil 4 to prevent the insulation layer of the induction coil 4 from being accidentally damaged, and the high voltage contacts the water storage cylinder body 6, and even the water, thereby ensuring personal safety.
  • the photovoltaic electromagnetic induction water heater is also provided with a cooling water pipe or a heat conductor 2, which ensures the operating temperature of the IGBT and recovers the heat of the IGBT, thereby improving the thermal energy efficiency.
  • Figure 1 is a schematic view of a first embodiment of the present invention, including a general layout diagram 10, a front enlarged view 11, an exploded view 12, and a right enlarged view 13.
  • FIG. 2 is a schematic view of a second embodiment of the present invention, including a front enlarged view 21, an exploded enlarged view 22, and a right enlarged view.
  • 3 is a schematic view of a third embodiment of the present invention, including a front view 31, an explosion view 32, and a right view 33.
  • Figure 4 is a schematic view of a fourth embodiment of the present invention, including a general layout view 40, a front enlarged view 41, and an exploded enlarged view 42.
  • Fig. 5 is a schematic view showing a fifth embodiment of the present invention, including a front view 51 and an explosion magnified view 52.
  • Figure 6 is a schematic view of a sixth embodiment of the present invention, including a general layout diagram 60, an exploded view of the explosion
  • FIG. 10 is a general layout diagram of a photovoltaic electromagnetic induction water heater including a photoelectric conversion system 1, an external power supply 7 and a heat conduction layer mounted with an energy input device
  • the heat conducting layer is the water storage tank body 6 of the water heater.
  • the photoelectric conversion system 1 can be an array composed of a plurality of solar silicon battery modules, disposed on a roof or a place where sunlight can be irradiated, converts solar energy into required electric energy, and outputs direct current, and the photoelectric conversion system 1 output in this embodiment
  • the voltage is DC 319V ⁇ 1 0°/. , or DC 159V ⁇ 10%.
  • Photovoltaic electromagnetic induction water heaters include common components required for existing water heaters such as inlet and outlet pipes and temperature control (not shown).
  • the photovoltaic electromagnetic induction water heater can be switched through the energy input device and the photoelectric conversion system 1 and the external power supply 7 to obtain the electric energy required for water heating.
  • the external power supply in the embodiment may be a power supply of the city power supply 7, that is, an alternating current of 50 Hz or 60 Hz, and the rectified voltage is equivalent to the direct current voltage output by the photoelectric conversion system 1 of the foregoing embodiment, but not This is limited to this.
  • the photoelectric conversion system 1 generates electrical energy to meet the needs of domestic hot water, while in continuous rainy days, the urban electric auxiliary heating is switched.
  • the photoelectric conversion system 1 used in the invention can carry out long-distance low-loss power transmission, for example, 100 meters without loss, and the solar glass vacuum tube water heater mentioned in the background technology uses a circulating pump to transport water to the water tank for heat preservation, heat The loss is huge.
  • the structure comprises a curved water heater water storage cylinder 6, an insulating layer 5, an induction coil 4 and a control system 3.
  • Control The system 3 includes an input terminal for switching the external power source 7 and a power device IGBT.
  • the induction coil 4 acts as a primary coil to generate an alternating magnetic field
  • the water storage tank body 6 serves as a secondary coil, and the alternating magnetic field is inside the water storage tank body 6
  • the eddy current and hysteresis are converted into heat energy and transmitted to the water.
  • the insulating layer 5 is disposed between the induction coil 4 and the water storage cylinder body 6 for blocking the induction coil 4 and the water storage cylinder body 6 to ensure that the insulation layer of the induction coil 4 is accidentally damaged and the high voltage does not contact the water storage tank body of the water heater. 6, and even water, to ensure personal safety.
  • the direct current provided by the aforementioned photoelectric conversion system 1 is also very advantageous for the operating conditions of the IGBT.
  • the photovoltaic electromagnetic induction water heater further comprises a cooling water pipe 2 for drawing lower temperature water at the bottom of the water storage tank body 6 for cooling the IGBT, and the two ends of the cooling water pipe 2 respectively penetrate into the water storage tank body 6 for guiding Cooling water, and equipped with appropriate sealing device, the cooling water pipe 2 is located in the outer part of the water storage tank body 6 and is in contact with the IGBT.
  • the ideal temperature of the IGBT is below 80 degrees, and the water temperature in the upper part of the water heater is usually 70 degrees, and the bottom water temperature is lower.
  • the cooling water pipe uses the principle of fluid mechanics to self-circulate the water, and no additional equipment is required, and the heat energy can be recovered by 5%. This design can make the IGBT work better.
  • the components of the aforementioned energy input device that is, the water heater storage cylinder 6, the insulating layer 5, the induction coil 4, the control system 3, and the cooling water pipe 2 are sequentially disposed from the inside to the outside.
  • the connecting surface of the water storage tank body 6 and the insulating layer 5 is a part of the outer wall curved surface of the water heater water storage cylinder body 6 and the insulating layer 5, and the other induction coils 4 are also the same curved surface, and are attached to the water heater water storage tank.
  • the insulating layer 5 on the body 6 is further closely attached.
  • a cover (not shown) is disposed outside the energy input device, and the cover is designed to meet the requirements of the International Electrotechnical Association for waterproofing, safety, and electromagnetic interference.
  • FIGS. 21, 22, and 23, and 21, 22, and 23 are respectively a front enlarged view, an exploded enlarged view, and a right enlarged view.
  • an inward cylindrical groove is formed on the outer wall of the lower end of the water storage cylinder body 6.
  • the bottom surface of the cylindrical groove that is, the connection surface of the same insulating layer 5, is a plane, which can be attached to the plane.
  • the insulating layer 5 and the induction coil 4 are the same as in the first embodiment.
  • FIGS. 31, 32, and 33 are respectively a front enlarged view, an exploded enlarged view, and a right enlarged view.
  • an outward column is radially disposed on the outer wall of the lower end of the water storage tank body 6
  • the type of protrusion, the cylindrical end surface, that is, the connection surface with the insulating layer 5, is a flat surface, and the planar insulating layer 5 and the induction coil 4 can be attached, the same as in the first embodiment.
  • FIG. 4 is a schematic view of a fourth embodiment of the present invention
  • FIG. 40 is a general layout diagram of a photovoltaic electromagnetic induction water heater.
  • the energy input device is shown in FIGS. 41 and 42 , and 41 and 42 are respectively enlarged front view and explosion amplification. Figure.
  • the energy input device is disposed at the bottom of the water storage cylinder body 6, and the device comprises a water heater water storage cylinder body 6, a insulating layer 5, and an induction coil 4, wherein the connection surface of the insulating layer 5 is spherical.
  • FIG. 5 is a schematic view showing a fifth embodiment of the present invention.
  • the energy input device is shown in FIGS. 51 and 52, and 51 and 52 are respectively a front enlarged view and an exploded enlarged view.
  • the energy input device is disposed at the bottom of the water storage body 6 of the water heater.
  • the device comprises a hot water storage body 6 with a connecting surface of the insulating layer 5, an insulating layer 5, and an induction coil 4, the same as in the first embodiment.
  • FIG. 6 is a schematic view of a sixth embodiment of the present invention
  • FIG. 60 is a general layout diagram of a photovoltaic electromagnetic induction water heater.
  • the exploded view of the explosion is shown in FIG. 61.
  • the energy input device is disposed outside the water storage cylinder body 6 of the water heater.
  • the device comprises an induction coil 4 surrounding the water storage tank body 6 of the water heater, an insulation layer 5 covering the outside of the wire of the induction coil 4, a control system 3 disposed on the side of the water storage cylinder body 6, and a water heater disposed on the control system 3 and the water heater
  • the additional heat conductor 2' between the water storage cylinders 6 is the same as in the first embodiment.
  • the structure of the induction coil 4 and the insulating layer 5 is as shown in the enlarged detail view.
  • the insulating layer 5 concentrically wraps the outer peripheral surface of the wire of the induction coil 4 to form a coaxial insulated wire, and the insulated wire is wrapped around the water storage body 6 of the water heater to form a final Induction coil 4.
  • the function of the additional heat conductor 2 is similar to that of the cold water pipe, and the two ends are in contact with the IGBT and the water storage cylinder 6 of the water heater, so as to transfer the heat generated by the IGBT to the water storage cylinder body 6, and further use the heat.
  • the water stored in the water storage cylinder 6 is heated.
  • the heat conducting layer may be a heat conducting device externally or embedded in the water storage cylinder body 6 in addition to the water storage water storage cylinder body 6, so as to cut the variable magnetic field as a secondary coil to generate heat, which is transmitted to the water storage tank body of the water heater.
  • the water in 6 is heated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

一种光伏电磁感应热水器,包括光电转换系统(1)、设有能量输入装置的热水器储水筒体(6),光电转换系统(1)通过能量输入装置和热水器储水筒体(6)相连接,光电转换系统(1)为由多个太阳能硅电池模块组成的列阵,能量输入装置包括作为储水筒体(6)的铁磁性金属材料制成的导热层、绝缘层(5)、感应线圈(4)和控制系统(3),该导热层一侧同储水筒体(6)内的水相接触,另一侧连接绝缘层(5)、感应线圈(4)和控制系统(3),绝缘层(5)设置于导热层和感应线圈(4)之间,控制系统(3)分别和光电转换系统(1)、感应线圈(4)连接,为感应线圈(4)提供交变磁场所需电能。

Description

光伏电磁感应热水器 技术领域
本发明涉及一种热水器, 尤其是一种光伏电磁感应热水器。 背景技术
热水能源占家庭能源消耗的 25- 35%, 现有的热水器有四类: 一类是城 市电供电,利用电加热管加热,所谓电加热管是一种电阻丝外加绝缘层和 不锈钢套管的电热器件, 当发生电加热管破裂时, 易出现人员触电事故。 另一类是太阳能玻璃真空管热水器,利用真空管获取太阳辐射能,用自流 或循环泵驱动热水至水箱保温,配以电加热管辅助加热,其中一款是真空 管和水箱一体式, 布置于屋顶, 其缺点是热量损失大, 尤其在冬天需要用 电加热保温, 防止结冰, 还有一款是承压分体式, 用循环泵驱动热水至地 面的水箱保温, 除了循环泵额外消耗电能以外, 热水全天在管路中循环, 大量热能在流动中损失。第三类是平板式热水器,其原理是在一方箱内布 置表面发黑的金属管, 方箱上面覆盖玻璃, 吸收太阳辐射加热水, 并用循 环泵驱动热水保温至地面的水箱,其缺点和上述太阳能玻璃真空管承压分 体式热水器相同, 且经常漏水。还有一类是热泵热水器, 用类似于空调压 缩机, 利用热泵原理制热, 其不足之处只能加热水温至 60度, 达不到卫 生所要求的杀菌温度 70度以上, 且在寒冷地区由于室外机结霜而无法使 用。 发明内容
为弥补上述现有技术中所提到的缺点: 安全性低、 热量损失、 达不到 卫生要求等, 本发明提供了一种光伏电磁感应热水器。
具体技术方案如下:
光伏电磁感应热水器, 包括光电转换系统、设有能量输入装置的热水 器储水筒体, 光电转换系统通过能量输入装置和热水器储水筒体相连接, 光电转换系统为由多个太阳能硅电池模块组成的列阵,能量输入装置包括 铁磁性金属材料制成的导热层、绝缘层、感应线圈和控制系统, 该导热层 一侧同储水筒体内的水相接触,另一侧连接绝缘层、感应线圈和控制系统 , 绝缘层设置于导热层和感应线圈之间,控制系统分别和光电转换系统、感 应线圈连接, 为感应线圈提供交变磁场所需电能。
进一步, 所述导热层为热水器储水筒体。
进一步, 所述能量输入装置设置于热水器储水筒体侧面或底部。 进一步, 所述控制系统可切换一外接电源。
进一步, 所述外接电源为城市电所供 50赫兹或 60赫兹交流电。 进一步, 所述控制系统包括一功率器件 IGBT。
进一步,所述能量输入装置包括一冷却水管或导热体,冷却水管两端 接入热水器储水筒体,冷却水管位于热水器储水筒体外侧部分和控制系统 上的 IGBT接触。 导热体位于热水器储水筒和控制系统 IGBT之间。
进一步, 所述导热层与绝缘层及感应线圏的连接面, 其形状为曲面、 平面或球面。
本发明的有益效果在于: 用光伏电磁感应加热取代现有的电加热、太 阳能玻璃真空管、平板式热水器和热泵加热,提高安全性、减少热量损失, 能使水温加热至卫生要求的 70度以上。 且本发明进一步在光伏电磁感应 热水器储水筒体 6和感应线圈 4间设置一绝缘层 5 ,防止感应线圈 4绝缘 层意外破损后高电压接触到热水器储水筒体 6、 乃至水, 保证人身安全。 除此以外, 光伏电磁感应热水器还设置了一冷却水管或导热体 2 , 该冷却 件 IGBT, 既保证 IGBT的工作温度, 又回收 IGBT的热量, 提高了热能效 率。 附图说明
图 1为本发明第一实施例的示意图, 包括总布置图 10、 前视放大图 11、 爆炸放大图 12及右视放大图 13。
图 2为本发明第二实施例的示意图, 包括前视放大图 21、 爆炸放大 图 22及右¾ ^大图 23。 图 3为本发明第三实施例的示意图, 包括前¾^丈大图 31、 爆炸放大 图 32及右视放大图 33。
图 4为本发明第四实施例的示意图, 包括总布置图 40、 前视放大图 41、 爆炸放大图 42。
图 5为本发明第五实施例的示意图, 包括前 ¾ ^大图 51、 爆炸放大 图 52。
图 6为本发明第六实施例的示意图, 包括总布置图 60、 爆炸放大图
61。 具体实施方式
下面结合附图对本发明作进一步说明。
如图 1所示为本发明第一实施例的示意图, 图 10为光伏电磁感应热 水器的总布置图, 该光伏电磁感应热水器包括光电转换系统 1、 外接电源 7和安装有能量输入装置的导热层,本实施例中导热层即为热水器储水筒 体 6。 光电转换系统 1可为由多个太阳能硅电池模块组成的列阵, 设置于 屋顶或阳光可照射到的地方, 将太阳能转化为所需电能, 并输出直流电, 本实施例中光电转换系统 1输出电压为 DC 319V ± 1 0°/。,或者 DC 159V ± 10%。 光伏电磁感应热水器包括进出水管、温度控制等现有热水器所需的常用部 件(图中未标识)。 光伏电磁感应热水器通过能量输入装置和光电转换系 统 1及外接电源 7可切换连接, 以获取水加热时所需电能。本实施例所述 外接电源可以是城市电 7所供电源, 即, 50赫兹或 60赫兹的交流电, 经 整流后的电压与前述本实施例所述光电转换系统 1 输出的直流电电压相 当, 但不以此为限。 多数气候条件下, 光电转换系统 1产生电能以满足家 庭热水需要, 而在连续阴雨天时, 则切换城市电辅助加热。 本发明采用的 光电转换系统 1可以进行较长距离的低损耗电力输送,譬如 1 00米不会有 损耗,而背景技术中提到的太阳能玻璃真空管热水器用循环泵将水输送至 水箱保温, 热量损失 ί艮大。
如图 11、 12、 13所示, 为前述能量输入装置的具体结构, 该结构包 括一曲面的热水器储水筒体 6、 绝缘层 5、 感应线圈 4和控制系统 3。 控 制系统 3包括一可切换外接电源 7的输入端和功率器件 IGBT,感应线圈 4 作为初级线圈产生交变磁场,热水器储水筒体 6作为次级线圈, 交变磁场 在热水器储水筒体 6内部以涡电流和磁滞方式转化成热能并传递给水。而 绝缘层 5设置于感应线圈 4和热水器储水筒体 6之间,用于阻隔感应线圈 4和热水器储水筒体 6 , 保证感应线圈 4绝缘层意外破损后高电压不会接 触到热水器储水筒体 6 , 乃至水, 确保人身安全。 而前述光电转换系统 1 所提供的直流电对于 IGBT的工况也十分有利。
该光伏电磁感应热水器还进一步设置了一冷却水管 2,以引出热水器 储水筒体 6底部较低温度水, 用以冷却 IGBT, 该冷却水管 2两端分别穿 入热水器储水筒体 6内用以引导冷却水,并配有适当的密封装置,冷却水 管 2位于热水器储水筒体 6外侧部分则和 IGBT接触, IGBT的理想温度在 80度以下, 热水器上部水温通常在 70度、 底部水温则较低, 该冷却水管 利用流体力学原理使水自循环, 无需另添设备, 可回收热能 5%, 这一设 计能使 IGBT处于较佳工作状态。
前述能量输入装置中各部件, 即热水器储水筒体 6、 绝缘层 5、 感应 线圈 4、 控制系统 3和冷却水管 2, 依次由内至外设置。 热水器储水筒体 6和绝缘层 5连接面即为所述热水器储水筒体 6与绝缘层 5贴合接触的一 部分外壁曲面,其余感应线圈 4也为同为曲面,以同贴合于热水器储水筒 体 6上的绝缘层 5进一步紧密贴接。
前述能量输入装置外部设有一罩壳(图中未标识), 罩壳的设计满足 国际电工协会防水, 安全和电磁干扰等要求。
如图 2所示为本发明第二实施例的示意图, 能量输入装置如图 21、 22、 23所示, 21、 22和 23分别为前视放大图、爆炸放大图及右视放大图。
该实施例在热水器储水筒体 6 下端的外壁上沿径向设有一向内的柱 型凹槽, 该柱型凹槽底面, 即同绝缘层 5的连接面, 为一平面, 可以贴接 平面的绝缘层 5和感应线圈 4,余同实施例 1。
如图 3所示为本发明第三实施例的示意图, 能量输入装置如图 31、 32、 33所示, 31、 32和 33分别为前视放大图、爆炸放大图及右视放大图。
该实施例在热水器储水筒体 6 下端的外壁上沿径向设有一向外的柱 型突起, 该柱形端面, 即同绝缘层 5的连接面, 为一平面, 可以贴接平面 的绝缘层 5和感应线圈 4,余同实施例 1。
如图 4所示为本发明第四实施例的示意图, 图 40为光伏电磁感应热 水器的总布置图, 能量输入装置如图 41、 42所示, 41、 42分别为前视放 大图和爆炸放大图。能量输入装置设置于热水器储水筒体 6的底部,该装 置包括一同绝缘层 5的连接面为球面的热水器储水筒体 6、 绝缘层 5、 感 应线圈 4, 余同实施例 1。
如图 5所示为本发明第五实施例的示意图, 能量输入装置如图 51、 52所示, 51、 52分别为前视放大图和爆炸放大图。 能量输入装置设置于 热水器储水筒体 6的底部,该装置包括一同绝缘层 5的连接面为平面的热 水器储水筒体 6、 绝缘层 5、 感应线圈 4 , 余同实施例 1。
如图 6所示为本发明第六实施例的示意图, 图 60为光伏电磁感应热 水器的总布置图, 爆炸放大图如图 61所示, 能量输入装置设置于热水器 储水筒体 6的外侧,该装置包括一外环绕包裹热水器储水筒体 6的感应线 圏 4、 包裹感应线圈 4导线外侧的绝缘层 5、 设置于热水器储水筒体 6— 侧的控制系统 3、及设置于控制系统 3及热水器储水筒体 6之间的附加导 热体 2' , 余同实施例 1。 其中, 感应线圈 4及其绝缘层 5的结构如细节放 大图所示,绝缘层 5同心包裹感应线圈 4的导线外周面,形成同轴绝缘导 线,该绝缘导线缠绕包裹热水器储水筒体 6形成最终的感应线圈 4。其中, 附加导热体 2, 的作用同冷水管近似, 两端本别同 IGBT及热水器储水筒 体 6相接触, 以便将 IGBT产生的热量传导至热水器储水筒体 6, 进一步 将该部分热量用以加热储水筒体 6内存储的水。
本发明中所述导热层除热水器储水筒体 6之外,也可以是外加或内嵌 于热水器储水筒体 6的导热装置,以便作为次级线圈切割变化磁场产生热 量, 传递给热水器储水筒体 6内的水以进行加热。
综上所述仅为发明的实施例而已, 并非用来限定本发明的实施范围。 即凡依本发明申请专利范围的内容所作的等效变化与修饰,都应为本发明 的技术范畴。

Claims

权 利 要 求
1. 光伏电磁感应热水器, 包括光电转换系统、 设有能量输入装置的热水 器储水筒体, 光电转换系统通过能量输入装置和热水器储水筒体相连 接, 其特征在于, 光电转换系统为由多个太阳能硅电池模块组成的列 阵, 能量输入装置包括铁磁性金属材料制成的导热层、 绝缘层、 感应 线圈和控制系统, 该导热层一侧同储水筒体内的水相接触, 另一侧连 接绝缘层、 感应线圈和控制系统, 绝缘层设置于导热层和感应线圈之 间, 控制系统分别和光电转换系统、 感应线圈连接, 为感应线圈提供 交变磁场所需电能。
2. 如权利要求 1所述的光伏电磁感应热水器, 其特征在于, 所述导热层 为热水器储水筒体。
3. 如权利要求 1所述的光伏电磁感应热水器, 其特征在于, 所述能量输 入装置设置于热水器储水筒体侧面或底部。
4. 如权利要求 1所述的光伏电磁感应热水器, 其特征在于, 所述控制系 统可切换一外接电源。
5. 如权利要求 1所述的光伏电磁感应热水器, 其特征在于, 所述外接电 源为城市电所供 50赫兹或 60赫兹交流电。
6. 如权利要求 1所述的光伏电磁感应热水器, 其特征在于, 所述控制系 统包括一功率器件 IGBT。
7. 如权利要求 6所述的光伏电磁感应热水器, 其特征在于, 所述能量输 入装置包括一冷却水管, 冷却水管两端接入热水器储水筒体, 冷却水 管位于热水器储水筒体外侧部分和控制系统上的 IGBT接触。
8. 如权利要求 6所述的光伏电磁感应热水器, 其特征在于, 所述能量输 入装置包括一附加导热体, 该附加导热体设置于热水器储水筒体和控 制系统之间, 和控制系统上的 IGBT接触。
9. 如权利要求 1或 2所述的光伏电磁感应热水器, 其特征在于, 所述导 热层与绝缘层及感应线圈的连接面, 其形状为曲面、 平面或球面。
PCT/CN2012/001681 2012-01-10 2012-12-11 光伏电磁感应热水器 WO2013104095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2012100062598A CN102538179A (zh) 2012-01-10 2012-01-10 光伏电磁感应热水器
CN201210006259.8 2012-01-10

Publications (1)

Publication Number Publication Date
WO2013104095A1 true WO2013104095A1 (zh) 2013-07-18

Family

ID=46345721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001681 WO2013104095A1 (zh) 2012-01-10 2012-12-11 光伏电磁感应热水器

Country Status (2)

Country Link
CN (1) CN102538179A (zh)
WO (1) WO2013104095A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104482648A (zh) * 2014-12-17 2015-04-01 贵州黔唐电器有限责任公司 一种热水器
GB2530259A (en) * 2014-09-16 2016-03-23 Nicholas Julian Jan Francis Macphail Induction to heat thermal storage boilers, hot water cylinders and flow boilers
WO2017158419A3 (es) * 2016-03-15 2018-01-04 Conde Melgar Joan Termoacumulador de agua, calentador de agua eléctrico y método para calentar agua

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102538179A (zh) * 2012-01-10 2012-07-04 樊永华 光伏电磁感应热水器
CN108901095B (zh) * 2018-06-01 2021-12-10 刘志强 一种多级光伏电磁感应控制加热方法及其应用
CN112229067A (zh) * 2020-10-22 2021-01-15 佛山市宏贝电气有限责任公司 一种太阳能电磁热水器加热系统
EP4253893A1 (en) * 2022-03-30 2023-10-04 Uros Ravljen A device for storage of photovoltaic energy and a method for storage of photovoltaic energy using the said device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723747A (en) * 1980-07-18 1982-02-08 Akio Hayama Electromagnetic bathtub
JP2000074487A (ja) * 1998-08-26 2000-03-14 Inax Corp 温水タンク
CN2389318Y (zh) * 1999-08-25 2000-07-26 金德奎 电磁感应热水器
CN2906441Y (zh) * 2006-05-10 2007-05-30 李相文 磁感应加热的电热水器
CN101551157A (zh) * 2008-04-02 2009-10-07 刘金根 电磁感应储水式热水器
CN201844538U (zh) * 2010-09-21 2011-05-25 芜湖市天地电子科技有限公司 一种高频电热热水器
CN102072556A (zh) * 2011-02-18 2011-05-25 刘道明 电磁热水器
CN102538179A (zh) * 2012-01-10 2012-07-04 樊永华 光伏电磁感应热水器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723747A (en) * 1980-07-18 1982-02-08 Akio Hayama Electromagnetic bathtub
JP2000074487A (ja) * 1998-08-26 2000-03-14 Inax Corp 温水タンク
CN2389318Y (zh) * 1999-08-25 2000-07-26 金德奎 电磁感应热水器
CN2906441Y (zh) * 2006-05-10 2007-05-30 李相文 磁感应加热的电热水器
CN101551157A (zh) * 2008-04-02 2009-10-07 刘金根 电磁感应储水式热水器
CN201844538U (zh) * 2010-09-21 2011-05-25 芜湖市天地电子科技有限公司 一种高频电热热水器
CN102072556A (zh) * 2011-02-18 2011-05-25 刘道明 电磁热水器
CN102538179A (zh) * 2012-01-10 2012-07-04 樊永华 光伏电磁感应热水器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2530259A (en) * 2014-09-16 2016-03-23 Nicholas Julian Jan Francis Macphail Induction to heat thermal storage boilers, hot water cylinders and flow boilers
CN104482648A (zh) * 2014-12-17 2015-04-01 贵州黔唐电器有限责任公司 一种热水器
WO2017158419A3 (es) * 2016-03-15 2018-01-04 Conde Melgar Joan Termoacumulador de agua, calentador de agua eléctrico y método para calentar agua

Also Published As

Publication number Publication date
CN102538179A (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
WO2013104095A1 (zh) 光伏电磁感应热水器
CN106123337A (zh) 一种储能电热水器
CN206575382U (zh) 分布式光伏发电系统
CN103968546A (zh) 变频电磁感应油水导热锅炉
CN205878584U (zh) 一种基于电磁加热的热水装置
CN101963371A (zh) 电磁加热取暖器
CN203274229U (zh) 一种足浴盆电加热模块
CN206905266U (zh) 一种光能直流电热水器
CN206269369U (zh) 一种恒温空气能一体机
CN204535059U (zh) 电磁热水器
CN207179779U (zh) 移动式石墨烯加热电暖器
CN106920646A (zh) 一种水冷式变压器及地埋式变电站
CN208365638U (zh) 一种新型电光辐射供热器
CN205943673U (zh) 一种水冷式变压器及地埋式变电站
CN204902258U (zh) 螺旋形光辐射电加热器
CN2572286Y (zh) 电磁热水器
CN205107029U (zh) 床体的加热装置及具有该装置的节能环保电热床
CN204460418U (zh) 一种碳纤维超导电加热器
CN201503074U (zh) 电磁加热取暖器
CN203068805U (zh) 变频电磁感应油水导热锅炉
CN202709419U (zh) 光伏半导体热水器
CN102767863A (zh) 一种太阳能光电热水取暖装置
CN203386570U (zh) 一种变电所变压器的散热系统
CN209653474U (zh) 一种具有调节室温的野营房
CN210241725U (zh) 一种集加热和散热为一体的电磁采暖设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12865427

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12865427

Country of ref document: EP

Kind code of ref document: A1