WO2013103039A1 - 光学素子、光学装置、画像表示装置および励起光の吸収率向上方法 - Google Patents

光学素子、光学装置、画像表示装置および励起光の吸収率向上方法 Download PDF

Info

Publication number
WO2013103039A1
WO2013103039A1 PCT/JP2012/075697 JP2012075697W WO2013103039A1 WO 2013103039 A1 WO2013103039 A1 WO 2013103039A1 JP 2012075697 W JP2012075697 W JP 2012075697W WO 2013103039 A1 WO2013103039 A1 WO 2013103039A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
optical element
light emitting
excitation light
Prior art date
Application number
PCT/JP2012/075697
Other languages
English (en)
French (fr)
Inventor
昌尚 棗田
雅雄 今井
慎 冨永
鈴木 尚文
瑞穂 冨山
友嗣 大野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Publication of WO2013103039A1 publication Critical patent/WO2013103039A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0013Means for improving the coupling-in of light from the light source into the light guide
    • G02B6/0015Means for improving the coupling-in of light from the light source into the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0018Redirecting means on the surface of the light guide
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house

Definitions

  • the present invention relates to an optical element, an optical device, an image display device, and a method of improving the absorptivity of excitation light.
  • Patent Document 1 a light source emitting excitation light such as an LED and a layer including a phosphor is combined.
  • the excitation light is absorbed by the layer containing the phosphor, whereby the phosphor is excited to emit light.
  • An object of the present invention is to provide an optical element, an optical device, an image display device, and a method for improving the absorption rate of excitation light, which can improve the absorption efficiency of excitation light.
  • the optical element of the present invention is Having a light emitting layer and a reflective layer,
  • the light emitting layer has a layer containing a light emitter,
  • the light emitting layer and the reflective layer are laminated,
  • the surface on which the reflective layer is not laminated is a first reflective surface
  • the interface between the light emitting layer and the reflecting layer is a second reflecting surface, It is an optical element which makes the excitation light reflected by the said 1st reflective surface interfere with the excitation light reflected by the said 2nd reflective surface.
  • the optical device of the present invention is The optical element of the present invention, And an excitation light source for irradiating excitation light on the first reflection surface of the optical element.
  • the image display apparatus of the present invention is The optical device of the present invention, And an image display unit capable of displaying an image.
  • the method for improving the absorption rate of excitation light is Having a light emitting layer and a reflective layer,
  • the light emitting layer has a layer containing a light emitter,
  • the light emitting layer and the reflective layer are laminated,
  • the surface on which the reflective layer is not laminated is a first reflective surface
  • the optical element in which the interface between the light emitting layer and the reflecting layer is a second reflecting surface
  • the optical element which can improve the absorption efficiency of excitation light, an optical apparatus, an image display apparatus, and the absorption rate improvement method of excitation light can be provided.
  • FIG. 1 is a schematic perspective view showing the configuration of an example (first embodiment) of the optical element of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the optical element shown in FIG. 1 as viewed in the II direction.
  • FIG. 3 is a schematic cross-sectional view for explaining the operation of the optical element of the first embodiment.
  • FIG. 4 is a schematic perspective view showing the configuration of another example (Embodiment 2) of the optical element of the present invention.
  • FIG. 5 is a schematic cross-sectional view of the optical element shown in FIG. 4 as seen in the II-II direction.
  • FIG. 6 is a schematic perspective view showing the configuration of still another example (embodiment 3) of the optical element of the present invention.
  • FIG. 7 is a schematic cross-sectional view of the optical element shown in FIG. 6 as viewed in the III-III direction.
  • FIG. 8 is a schematic perspective view showing the configuration of still another example (Embodiment 4) of the optical element of the present invention.
  • FIG. 9 is a schematic cross-sectional view of the optical element shown in FIG. 8 as seen in the IV-IV direction.
  • FIG. 10 is a schematic perspective view showing the configuration of still another example (Embodiment 5) of the optical element of the present invention.
  • FIG. 11 is a schematic cross-sectional view of the optical element shown in FIG. 10 as viewed in the VV direction.
  • FIG. 12 is a schematic perspective view showing the configuration of still another example (Embodiment 6) of the optical element of the present invention.
  • FIG. 13 is a schematic cross-sectional view of the optical element shown in FIG. 12 as seen in the VI-VI direction.
  • FIG. 14 is a top view showing the configuration of still another example (Embodiment 7) of the optical element of the present invention.
  • FIG. 15 is a schematic perspective view showing the configuration of an example (Embodiment 8) of the optical device of the present invention.
  • FIG. 16 is a schematic cross-sectional view of the optical device shown in FIG. 15 as viewed in the VII-VII direction.
  • FIG. 17 is a schematic perspective view showing the configuration of an example (Embodiment 9) of the image display device (projection type display device) of the present invention.
  • FIG. 18 is a graph showing the excitation light absorptivity of the optical element in Example 1 of the present invention.
  • FIG. 19 is a graph showing the excitation light reflectance of the optical element in Example 1 of the present invention.
  • FIG. 20 is a graph showing the excitation light absorptivity of the optical element in Example 2 of the present invention.
  • FIG. 21 is a graph showing the excitation light absorptivity of the optical element in Example 3 of the present invention.
  • FIG. 22 is a graph showing the excitation light absorptivity of the optical element in Example 4 of the present invention.
  • FIG. 23 is a graph showing the excitation light absorptivity of the optical element in Example 4 of the present invention.
  • FIG. 24 is a graph showing the excitation light absorptivity of the optical element in Example 5 of the present invention.
  • FIG. 25 is a graph showing the relationship between the refractive index difference at which the absorptivity of light absorption becomes 100% and the thickness of the fluorescent layer in the optical element of Example 6 of the present invention.
  • FIG. 26 is a schematic perspective view showing the configuration of the optical device of the thirteenth embodiment.
  • FIG. 27 is a schematic perspective view showing the configuration of the optical device of the fourteenth embodiment.
  • FIG. 28 is a schematic perspective view showing the configuration of the optical device of the fifteenth embodiment.
  • FIG. 29 is a schematic perspective view showing the configuration of the optical device of the sixteenth embodiment.
  • the optical element of the present embodiment is an example of an optical element in which the light emitting layer is a fluorescent layer containing a fluorescent substance.
  • 1 and 2 show the configuration of the optical element of the present embodiment.
  • FIG. 1 is a schematic perspective view of the optical element of the present embodiment.
  • FIG. 2 is a schematic cross-sectional view in the case of looking in the II direction of FIG. 1 (cut along the xz plane).
  • the optical element 10A of the present embodiment has a rectangular planar shape, and includes a reflective layer 101A and a fluorescent layer 103A as main components.
  • the fluorescent layer 103A is stacked on the reflective layer 101A.
  • the fluorescent layer 103A contains a phosphor which is excited by excitation light (not shown).
  • the fluorescent layer 103A can emit light (e.g., light emission) by converting the wavelength of the excitation light, for example, by the phosphor. The light emission will be described later.
  • the optical element 10A is disposed in the atmosphere 105A.
  • the optical element 10A is configured such that the interface 107A between the atmosphere 105A and the fluorescent layer 103A and the interface 106A between the fluorescent layer 103A and the reflective layer 101A are parallel to each other.
  • the real part of the refractive index of the fluorescent layer 103A is different from the real part of the refractive index of the atmosphere 105A. Therefore, the interface 107A functions as the "first reflection surface" in the present invention.
  • the reflective layer 101A can reflect the excitation light. Therefore, the interface 106A functions as the "second reflecting surface" in the present invention.
  • the “reflection surface” is, for example, a reflection surface having a function of giving a phase difference.
  • the real part of the refractive index is a gas different from the real part of the refractive index of the fluorescent layer 103A, and from the viewpoint of the life of the phosphor contained in the fluorescent layer 103A, the gas containing no water, oxygen, etc. desirable.
  • the atmosphere 105A may be, for example, an inert gas atmosphere such as argon or nitrogen.
  • the optical element 10A is practically disposed, for example, in a housing filled with the atmosphere.
  • the excitation light can be confined in the fluorescent layer 103A by causing the excitation light reflected by the first reflection surface 107A to interfere with the excitation light reflected by the second reflection surface 106A. .
  • the interference effect is obtained by setting the optical distance between the first reflection surface 107A and the second reflection surface 106A to less than the coherence length of the excitation light.
  • the optical distance is the product of the distance in real space and the real part of the refractive index, and the coherent distance is the distance at which the light interference phenomenon appears when the light is divided into two and they are superimposed again.
  • the coherence length is, for example, 3 to 30 ⁇ m in the case of a light emitting diode, a semiconductor laser of longitudinal multi-mode oscillation, and the like. Therefore, in the optical element 10A, the optical distance between the first reflection surface 107A and the second reflection surface 106A, that is, the optical thickness of the fluorescent layer 103A is less than the coherence length of the predetermined excitation light. At least one of the thickness and the refractive index of the fluorescent layer 103A is adjusted.
  • the optical thickness is “the thickness of the layer multiplied by the refractive index of the layer”.
  • a desired absorptivity can be obtained for excitation light of a predetermined wavelength, polarization, and incident angle ⁇ in .
  • the incident angle is, for example, 20 degrees or more, preferably 40 degrees or more, and more preferably 60 degrees or more.
  • the present inventors improve the absorption efficiency of the excitation light by the structure in which the excitation light is confined in the fluorescent layer (light emitting layer) by utilizing the interference effect of the excitation light. It has been found that it is possible to complete the present invention. According to the present invention, an improvement in the absorption efficiency of the excitation light can realize, for example, an optical element having high light emission efficiency and high light output rating.
  • FIG. 3 is a schematic cross-sectional view of the optical element 10A as in FIG. In FIG. 3, for convenience of explanation, illustration of parallel oblique lines in each component is omitted.
  • the excitation light 108A enters the fluorescent layer 103A from the first reflection surface 107A side, the excitation light 108A is separated into two virtual rays at the interface 107A between the atmosphere 105A and the fluorescent layer 103A. Be done.
  • the virtual ray is a virtual ray introduced to explain the interference effect and can not be observed in practice.
  • first virtual ray 109A corresponds to the excitation light reflected at the interface 107A, and is a first virtual reflected ray.
  • the other virtual ray (second virtual ray 110A) is transmitted through the interface 107A, reflected by the interface (second reflective surface) 106A between the fluorescent layer 103A and the reflective layer 101A, and transmitted again through the interface 107A.
  • second virtual reflected ray corresponds to light, it is a second virtual reflected ray.
  • the second virtual ray 110A When transmitting through the interface 107A, the second virtual ray 110A generates a third virtual ray 111A that is reflected light.
  • the third virtual ray 111A again enters the interface 107A along the same path as the second virtual ray 110A.
  • the third virtual ray 111A is transmitted through the interface 107A (third virtual reflected ray) as in the second virtual ray 110A and generates a new virtual ray which is reflected light.
  • the Nth (N is an integer) virtual reflected light beams are generated on the atmosphere 105A side.
  • the virtual rays split from the excitation light 108A interfere with each other within the range of the coherence length of the excitation light 108A. That is, in the range where the difference in the optical distance of the virtual reflected rays is shorter than the coherence length, the virtual reflected rays are strengthened with each other according to the amplitude and the phase difference of the respective virtual reflected rays by interference effect. I feel weak.
  • the amount of absorption of the excitation light 108A in the fluorescent layer 103A is determined, reflecting the result.
  • the absorptivity of the excitation light 108A actually obtained is lower than the absorptivity of the excitation light 108A obtained from the distance that the virtual light beam propagates in the fluorescent layer 103A.
  • the phase of the virtual reflected light beams is shifted, so that the excitation light can be obtained from the distance propagating the fluorescent layer 103A without interference.
  • the absorptivity of the excitation light 108A actually obtained is higher than the absorptivity of the 108A.
  • the absorptivity of the fluorescent layer 103A is controlled by adjusting the optical distance between the virtual reflected light rays.
  • the absorptivity of the excitation light 108A in the phosphor layer 103A is controlled by adjusting at least one of the thickness and the refractive index of the phosphor layer 103A, and the phosphor layer 103A itself functions as absorptivity control structure Do.
  • the condition that the absorptivity of the excitation light 108A actually obtained is higher than the absorptivity of the excitation light 108A obtained from the distance for propagating the fluorescent layer 103A by the absorptivity control structure is the case where the following formula (1) is satisfied. .
  • the reflection amplitude at the interface 107A when the excitation light is incident is r 12 and the reflectance is R And 12
  • the reflection amplitude when the excitation light is incident (transmitted) from the fluorescent layer 103A to the atmosphere 105A is r 21 , and the reflectance is R 21 .
  • the transmission amplitude when the excitation light is incident on the fluorescent layer 103A from the atmosphere 105A is t 12 , and the transmittance is T 12 .
  • the transmission amplitude when the excitation light is incident (transmitted) from the fluorescent layer 103A to the atmosphere 105A is t 21 , and the transmittance is T 21 .
  • the absorption coefficient of the fluorescent layer 103A when the excitation light travels back and forth in the fluorescent layer 103A is A
  • the imaginary unit is i
  • the refractive index of the fluorescent layer 103A is n 2
  • the thickness of the fluorescent layer 103A is d.
  • the angle of refraction when the excitation light is incident from the atmosphere 105A into the fluorescent layer 103A is ⁇ 2
  • the wavelength of the excitation light in vacuum is ⁇ .
  • the left side corresponds to the reflectance of excitation light in which the virtual reflected light beams are affected by the interference effect when the excitation light enters the fluorescent layer 103A from the atmosphere 105A side
  • the right side Corresponds to the reflectance of the excitation light when the virtual reflected light beams do not interfere with each other.
  • the absorptivity of the excitation light 108A determined from the distance propagating through the fluorescent layer 103A without interference.
  • the absorptivity of the excitation light 108A actually obtained is increased.
  • the excitation light can be obtained by adjusting at least one of the thickness and the refractive index of the fluorescent layer 103A such that the left side of the formula (1) gives a desired reflectance (the relationship between the absorptivity and the reverse).
  • An optical element having a desired absorptivity can be realized, for example, with a very small thickness.
  • the wavelength of the excitation light, the incident angle, etc. when there is no particular limitation on the wavelength of the excitation light, the incident angle, etc., it can be examined whether a desired absorptivity can be obtained including these.
  • the optical elements of the second and subsequent embodiments described later are different in the layer configuration from the optical element of the present embodiment. For this reason, although the said Formula (1) can not be used as it is, the view about the said absorption factor control structure is the same.
  • a numerical simulation of the multilayer film reflectance may be used to design conditions under which a desired absorptivity can be obtained.
  • the optical distance between the first reflection surface 107A and the second reflection surface 106A is less than the coherence length of the predetermined excitation light as described above.
  • the optical thickness is preferably as thin as possible, for example, from the viewpoint of cooling of the optical element 10A.
  • the optical thickness is preferably less than 30 ⁇ m, more preferably less than 10 ⁇ m, and still more preferably less than 1 ⁇ m.
  • the optical thickness is preferably as large as possible from the viewpoint of light output rating, for example, preferably 1 nm or more, more preferably 50 nm or more, and still more preferably 100 nm or more.
  • the reason why the optical thickness is set as described above is that the theoretical maximum value of the light output is limited to the light emission lifetime of the phosphor of the phosphor layer 103A. For this reason, in order to obtain higher output, it is desirable that the fluorescent layer 103A contains more phosphors.
  • the optical thickness is an optimum value for achieving both the cooling of the optical element and the high output. Exists.
  • the optical thickness is preferably in the range of 1 nm to less than 30 ⁇ m, more preferably in the range of 50 nm to less than 10 ⁇ m, and still more preferably in the range of 100 nm to 1 ⁇ m.
  • the reflective layer 101A may be any one as long as it can reflect the excitation light, and the constituent material, the structure, and the like are not particularly limited.
  • the reflective layer 101A is, for example, a metal layer, a metal-dielectric multilayer film in which a metal and a dielectric are alternately stacked, and a dielectric multilayer film in which a low refractive index dielectric and a high refractive index dielectric are alternately stacked (distributed Bragg reflectors etc.
  • the constituent material of the metal layer is Ag, Al, Pt, Cu, Au, Pd, Rh, Os, Ru, Ir, Fe, Sn, Zn, Co, Ni, Cr, Ti, Ta, W, In, etc., or Alloys of those are listed.
  • the reflective layer 101A preferably has high thermal conductivity from the viewpoint of cooling the optical element 10A, and preferably has high reflectance from the viewpoint of effective use of the excitation light.
  • the reflective layer 101A is preferably a metal layer from the viewpoint of the cooling, and further preferably a metal layer having a high reflectance to the wavelength of the excitation light from the viewpoint of effective use of the excitation light.
  • the constituent material of the metal layer having a high reflectance to the wavelength of the excitation light may be Ag, Al, or an alloy thereof, and the wavelength of the excitation light is 600 nm. In the above case, Ag, Al, Cu, Au or an alloy of these may be mentioned.
  • the reflectance is preferably 60% or more, more preferably 80% or more, still more preferably 90% or more, and particularly preferably 100%.
  • the thickness of the reflective layer 101A is not particularly limited, and in the case of the metal layer, it is preferable that the thickness with respect to the wavelength of the excitation light does not change depending on the thickness. Specifically, for example, it is in the range of 0.01 to 1000 ⁇ m, preferably in the range of 0.2 to 100 ⁇ m, and more preferably in the range of 0.5 to 10 ⁇ m. In the case of the dielectric film, it is preferable to be as thin as possible. Specifically, it is, for example, in the range of 0.1 to 1000 ⁇ m, preferably in the range of 0.1 to 100 ⁇ m, and more preferably in the range of 0.1 to 10 ⁇ m.
  • a member having a thermal conductivity higher than that of the reflective layer 101A may be disposed on the side of the reflective layer 101A on which the fluorescent layer 103A is not stacked. Thereby, for example, the optical element 10A can be cooled more.
  • the fluorescent layer 103A is a layer that includes the phosphor and the optical thickness falls within the above range, and it is sufficient if at least one of the thickness and the refractive index can be adjusted, and the constituent material, the structure, and the like are not particularly limited.
  • the fluorescent layer 103A may include, for example, a plurality of types of phosphors that emit light of different wavelengths. From the viewpoint of the absorption efficiency of the excitation light, the higher the absorption coefficient of the fluorescent layer 103A, the better.
  • the upper limit of the thickness of the fluorescent layer 103A is preferably less than 30 ⁇ m, more preferably less than 10 ⁇ m, still more preferably less than 1 ⁇ m, and the lower limit is preferably 1 nm or more, more preferably 50 nm or more, still more preferably It is 100 nm or more.
  • the thickness of the fluorescent layer 103A is preferably in the range of 1 nm to less than 30 ⁇ m, more preferably in the range of 50 nm to less than 10 ⁇ m, and still more preferably in the range of 100 nm to less than 1 ⁇ m.
  • the fluorescent layer 103A is, for example, a layer in which the fluorescent substance is dispersed in a light transmitting member.
  • the shape of the phosphor is, for example, in the form of particles. Examples of the phosphor include organic phosphors, inorganic phosphors, semiconductor phosphors and the like.
  • the scattering intensity of the fluorescent layer 103A be low.
  • the particle size of the phosphor is not particularly limited, but the scattering intensity is correlated with the particle size of the phosphor, and the smaller the particle size of the phosphor, the lower the particle size of the phosphor. Is preferred.
  • the particle diameter of the nanophosphor is not particularly limited, and is, for example, in the range of 0.1 to 500 nm, preferably in the range of 0.1 to 100 nm, and more preferably in the range of 0.1 to 10 nm.
  • the phosphor is preferably a semiconductor phosphor from the viewpoint of the absorption efficiency and the light emission efficiency of the excitation light.
  • Examples of the organic fluorescent substance include rhodamine (Rhodamine 6G) and sulforhodamine (Sulforhodamine 101).
  • the inorganic phosphors include yttrium aluminum garnet, Y 2 O 2 S: Eu, La 2 O 2 S: Eu, BaMgAl x O y: Eu, BaMg Al x O y: Mn, (Sr, Ca, Ba) 5 (PO 4 ) 3 : Cl: Eu and the like.
  • the semiconductor phosphor examples include those having a core / shell structure, those having a multi-core shell structure, or those having an organic compound bonded to the surface thereof.
  • the semiconductor phosphor of the multi-core shell structure is, for example, a core / shell of a semiconductor phosphor having a core / shell structure provided with a shell portion made of another material outside the shell portion.
  • Semiconductor phosphors can be mentioned.
  • the material for forming the core portion is, for example, a semiconductor such as a group IV semiconductor, a group IV-IV semiconductor, a group III-V compound semiconductor, a group II-VI compound semiconductor, a group I-VIII compound semiconductor, or a group IV-VI compound semiconductor Ingredients can be mentioned.
  • the material for forming the core portion may be, for example, a semiconductor material such as a single semiconductor in which the mixed crystal is composed of one element, a binary compound semiconductor composed of two elements, and a mixed crystal semiconductor composed of three or more elements. May be.
  • the core portion is preferably made of a direct transition semiconductor material.
  • the semiconductor material constituting the core portion preferably emits visible light.
  • the forming material is preferably a III-V compound semiconductor material in which the bonding force of atoms is high and the chemical stability is high.
  • the core portion is preferably made of the mixed crystal semiconductor material from the viewpoint of easiness of adjustment of the peak wavelength of the emission spectrum of the semiconductor phosphor.
  • the core portion is preferably made of a semiconductor material composed of mixed crystals of four or less.
  • binary compound semiconductor materials capable of forming the core portion include InP, InN, InAs, GaAs, CdSe, CdTe, ZnSe, ZnTe, PbS, PbSe, PbTe, CuCl and the like.
  • InP and InN are preferable from the viewpoint of environmental load and the like.
  • CdSe and CdTe are preferable from the viewpoint of easiness of production.
  • ternary mixed crystal semiconductor materials capable of forming the core portion include InGaP, AlInP, InGaN, AlInN, ZnCdSe, ZnCdTe, PbSSe, PbSTe, PbSeTe and the like.
  • InGaP and InGaN are preferable from the viewpoint of the production of a semiconductor phosphor which is a material harmonized with the environment and less susceptible to the influence of the outside world.
  • the material of the shell portion is, for example, a semiconductor material such as a group IV semiconductor, a group IV-IV semiconductor, a group III-V compound semiconductor, a group II-VI compound semiconductor, a group I-VIII compound semiconductor, or a group IV-VI compound semiconductor Can be mentioned.
  • the material for forming the shell portion is, for example, a semiconductor material such as a single semiconductor in which the mixed crystal is composed of one element, a binary compound semiconductor composed of two elements, and a mixed crystal semiconductor composed of three or more elements. May be. From the viewpoint of improving the light emission efficiency, the material for forming the shell portion is preferably a semiconductor material having a band gap energy higher than the material for forming the core portion.
  • the shell portion is preferably formed of a group III-V compound semiconductor material which has strong atomic bonding force and high chemical stability.
  • the shell portion is preferably made of a semiconductor material composed of mixed crystals of four or less elements.
  • binary compound semiconductor materials capable of forming the shell portion include AlP, GaP, AlN, GaN, AlAs, ZnO, ZnS, ZnSe, ZnTe, MgO, MgS, MgSe, MgTe, CuCl, SiC and the like.
  • AlP, GaP, AlN, GaN, ZnO, ZnS, ZnSe, ZnTe, MgO, MgS, MgSe, MgTe, CuCl, and SiC are preferable from the viewpoint of environmental load and the like.
  • Examples of the ternary mixed crystal semiconductor material capable of forming the shell portion include AlGaN, GaInN, ZnOS, ZnOSe, ZnOTe, ZnSSe, ZnSe, ZnSeTe, and the like.
  • AlGaN, GaInN, ZnOS, ZnOTe, and ZnSTe are preferable from the viewpoint of the production of a semiconductor phosphor which is a material harmonized with the environment and less susceptible to the influence of the outside world.
  • the organic compound bonded to the surface of the semiconductor phosphor is preferably, for example, an organic compound composed of a bonding portion between an alkyl group which is a functional portion and the core portion or the shell portion.
  • organic compound composed of a bonding portion between an alkyl group which is a functional portion and the core portion or the shell portion include amine compounds, phosphine compounds, phosphine oxide compounds, thiol compounds, fatty acids and the like.
  • phosphine compound examples include tributyl phosphine, trihexyl phosphine, trioctyl phosphine and the like.
  • the phosphine oxide compound is, for example, 1-dichlorophosphinor heptane, 1-dichloro phosphinor nonane, t-butyl phosphonic acid, tetradecyl phosphonic acid, dodecyl dimethyl phosphine oxide, dioctyl phosphine oxide, didecyl phosphine oxide, tributyl Phosphine oxide, tripentyl phosphine oxide, trihexyl phosphine oxide, trioctyl phosphine oxide and the like can be mentioned.
  • thiol compound examples include tributyl sulfide, trihexyl sulfide, trioctyl sulfide, 1-heptyl thiol, 1-octyl thiol, 1-nonane thiol, 1-decanethiol, 1-undecanethiol, 1-dodecanethiol, 1- Examples thereof include tridecanethiol, 1-tetradecanethiol, 1-pentadecanethiol, 1-hexadecanethiol, 1-octadecanethiol, dihexyl sulfide, diheptyl sulfide, dioctyl sulfide, dinonyl sulfide and the like.
  • Examples of the amine compound include heptylamine, octylamine, nonylamine, decylamine, undecylamine, dodecylamine, tridecylamine, tetradecylamine, hexadecylamine, octadecylamine, oleylamine, dioctylamine, tributylamine, tripentylamine And trihexylamine, triheptylamine, trioctylamine, torinylamine and the like.
  • fatty acid examples include lauric acid, myristic acid, palmitic acid, stearic acid, oleyl acid and the like.
  • the particle sizes of the semiconductor phosphors be uniform, and in applications where high color rendering properties of light emission are required, the particle sizes of the semiconductor phosphors are uniform. Preferably not. This is because the wavelength of the light emitted from the semiconductor phosphor (emission wavelength, hereinafter the same) depends on the particle diameter of the semiconductor phosphor.
  • the light transmitting member is for sealing the phosphor in a dispersed state in the phosphor layer 103A, and the excitation light 108A incident on the phosphor layer 103A and the light emitted from the phosphor are Those which do not absorb are preferred.
  • the light transmitting member is preferably made of a material that does not transmit moisture, oxygen and the like. According to this structure, for example, the light transmitting member can prevent moisture, oxygen and the like from entering the inside of the fluorescent layer 103A, and the influence of moisture, oxygen and the like on the phosphor can be alleviated. Therefore, the durability of the phosphor can be improved.
  • the forming material of the light transmitting member is, for example, a light transmitting resin material such as silicone resin, epoxy resin, acrylic resin, fluorine resin, polycarbonate resin, polyimide resin, urea resin, etc .; light such as aluminum oxide, silicon oxide, yttria Permeable inorganic materials and the like can be mentioned.
  • a light transmitting resin material such as silicone resin, epoxy resin, acrylic resin, fluorine resin, polycarbonate resin, polyimide resin, urea resin, etc .
  • light such as aluminum oxide, silicon oxide, yttria Permeable inorganic materials and the like can be mentioned.
  • the method for producing the optical element 10A is not particularly limited, and can be produced, for example, by the following method. That is, first, the reflective layer 101A is formed.
  • the reflective layer 101A is the metal layer
  • the reflective layer 101A which is the metal layer
  • the reflective layer 101A may be formed.
  • the reflective layer 101A is the dielectric multilayer film, for example, a low refractive index material and a high refractive index material are alternately laminated by a film forming technique such as sputtering or evaporation to form the reflective layer 101A. .
  • the fluorescent layer 103A is formed on the reflective layer 101A.
  • Examples of a method of forming the fluorescent layer 103A include a spin coating method, a spray method, a self assembly method of the phosphor, and a micro contact print.
  • the self-assembly method and the microcontact print are particularly preferable because the fluorescent layer 103A having a high absorption coefficient can be realized.
  • the self-assembly method for example, by densely arranging the phosphors naturally, the density of the phosphors in the phosphor layer 103A can be increased, so that the excitation light absorption rate of the phosphor layer 103A can be improved.
  • the microcontact printing for example, pressure is applied across the entire fluorescent layer 103A to densely arrange the fluorescent members, so that the density of the phosphors in the fluorescent layer 103A can be increased. Excitation light absorptivity can be improved.
  • the optical element of the present embodiment shown in FIGS. 1 and 2 has a rectangular planar shape
  • the planar shape of the optical element may be, for example, a circle (or an ellipse), a polygon or the like.
  • the light emitting layer is formed of a layer containing a fluorescent substance (fluorescent layer), but the present invention is not limited to this example.
  • the light emitting layer may include a layer containing a light emitter, and the light emitter may be, for example, a phosphor or the like in addition to the phosphor. Examples of the phosphor include conventionally known ones.
  • the interface between the atmosphere and the fluorescent layer and the interface between the fluorescent layer and the reflective layer are parallel and flat, but the present invention is not limited thereto.
  • a form in which a structure is formed on at least one of the both interfaces, a form in which both interfaces are not parallel, and the like can be taken.
  • the minimum value of the optical distance in the optical element of the present embodiment, the optical thickness of the fluorescent layer
  • a substrate may be disposed on the side of the reflective layer on which the fluorescent layer is not stacked.
  • the optical element of the present embodiment is an example of an optical element in which the light emitting layer includes a dielectric layer.
  • 4 and 5 show the configuration of the optical element of the present embodiment.
  • FIG. 4 is a schematic perspective view of the optical element of the present embodiment.
  • FIG. 5 is a schematic cross-sectional view as seen in the II-II direction of FIG. 4 (cut along the xz plane).
  • the optical element of the present embodiment is the same as the optical element of the first embodiment except that the light emitting layer includes two dielectric layers, and the dielectric layer is provided on both sides of the light emitting layer.
  • the optical element 10B of this embodiment has a rectangular planar shape, and mainly includes the reflective layer 101B, the dielectric layer 102B, the fluorescent layer 103B, and the dielectric layer 104B. Include as a component.
  • the reflective layer 101B, the dielectric layer 102B, the fluorescent layer 103B, and the dielectric layer 104B are stacked in this order.
  • the optical element 10B is disposed in the atmosphere 105B.
  • the optical element 10B is configured such that the interface 107B between the atmosphere 105B and the dielectric layer 104B and the interface 106B between the dielectric layer 102B and the reflective layer 101B are parallel to each other.
  • the real part of the refractive index of the dielectric layer 104B is different from the real part of the refractive index of the atmosphere 105B. Therefore, the interface 107B functions as the "first reflection surface" in the present invention.
  • the reflection layer 101B can reflect the excitation light. Therefore, the interface 106B functions as the "second reflecting surface" in the present invention.
  • the excitation light can be confined in the fluorescent layer 103B by causing the excitation light reflected by the first reflection surface 107B to interfere with the excitation light reflected by the second reflection surface 106B. .
  • the interference effect is the optical distance between the first reflective surface 107B and the second reflective surface 106B, ie, the total optical thickness of the dielectric layer 102B, the fluorescent layer 103B and the dielectric layer 104B. It can be obtained by setting the coherence length of the excitation light to less than that.
  • the interference effect in the optical element 10B is the same as the interference effect in the optical element of the first embodiment. Specifically, when the excitation light enters the dielectric layer 104B from the first reflection surface 107B side, a large number of virtual reflections are generated at the interface 107B between the atmosphere 105B and the dielectric layer 104B, as in the first embodiment. Light rays are generated. The amount of absorption of the excitation light by the fluorescent layer 103B is determined by the interference between the virtual reflected light rays.
  • the dielectric layer 102B, the fluorescent layer 103B, and the dielectric layer 104B function as an absorptivity control structure.
  • the durability of the optical element can be improved by providing the dielectric layer 102B and the dielectric layer 104B.
  • the dielectric layer 102B By arranging the dielectric layer 102B on the second reflective surface 106B side of the fluorescent layer 103B, for example, the controllability of the excitation light absorption efficiency of the optical element and the light emission efficiency can be improved.
  • the dielectric layer 102B and the dielectric layer 104B contain a dielectric, and the thickness and the refractive index can be appropriately set in the range that functions as the absorptivity control mechanism.
  • the dielectric layer 102B and the dielectric layer 104B are preferably made of a material that does not transmit moisture, oxygen, and the like. According to this structure, for example, the dielectric layer 102B and the dielectric layer 104B can prevent moisture, oxygen and the like from entering the inside of the fluorescent layer 103B, and the phosphor in the fluorescent layer 103B is affected by the water, oxygen and the like.
  • the material that does not transmit moisture, oxygen, and the like include the same materials as the light transmitting member described above.
  • the material forming the dielectric layer 102B and the dielectric layer 104B is preferably, for example, a material having no absorption at the wavelength of the excitation light and the emission wavelength of the fluorescent layer 103B.
  • the material having no absorption at the wavelength of the excitation light and at the emission wavelength of the fluorescent layer 103B include, for example, the same ones as the above-described light transmitting member.
  • the thickness of the dielectric layer 102B is not particularly limited, and is, for example, in the range of 0.1 to 1000 nm, preferably in the range of 1 to 500 nm, and more preferably in the range of 5 to 300 nm.
  • the thickness is preferably, for example, 5 nm or more. With such a thickness, for example, among the light emitted from the phosphors, the electron-hole pair can be excited in the reflective layer 101B, and the light lost immediately as heat can be reduced. Luminescent efficiency can be improved.
  • the thickness of the dielectric layer 102B is more preferably 50 nm or more.
  • a thickness for example, a ratio of excitation of surface plasmons on the surface of the reflective layer 101B in addition to reduction of loss due to excitation in the electron-hole pair in light emitted from the phosphor.
  • the light emission efficiency of the optical element 10B can be further improved by reducing
  • the optical element of the present embodiment is an example of an optical element having a light guide layer.
  • 6 and 7 show the configuration of the optical element of this embodiment.
  • FIG. 6 is a schematic perspective view of the optical element of the present embodiment.
  • FIG. 7 is a schematic cross-sectional view in the case of looking in the III-III direction of FIG. 6 (cut along the xz plane).
  • the optical element of the present embodiment includes the light guide layer, and the optical element of the first embodiment except that the light guide layer is disposed on the side of the light emitting layer on which the reflective layer is not stacked. It has the same configuration as that of As shown in FIG. 6 and FIG. 7, the optical element 10C of the present embodiment has a rectangular planar shape, and includes a reflective layer 101C, a fluorescent layer 103C, and a light guide layer 205C as main components. In the optical element 10C, the reflective layer 101C, the fluorescent layer 103C, and the light guide layer 205C are stacked in the above order.
  • the optical element 10C is configured such that the interface 107C between the light guide layer 205C and the fluorescent layer 103C and the interface 106C between the fluorescent layer 103C and the reflective layer 101C are parallel to each other.
  • the real part of the refractive index of the fluorescent layer 103C is different from the real part of the refractive index of the light guide layer 205C. Therefore, the interface 107C functions as the "first reflection surface” in the present invention.
  • the reflection layer 101C can reflect the excitation light. Therefore, the interface 106C functions as the "second reflecting surface" in the present invention.
  • the excitation light can be confined within the fluorescent layer 103C by causing the excitation light reflected by the first reflection surface 107C to interfere with the excitation light reflected by the second reflection surface 106C. .
  • This interference effect it is possible to adjust the absorptivity of the excitation light incident from the first reflection surface 107C in the fluorescent layer 103C.
  • the interference effect is obtained by setting the optical distance between the first reflection surface 107C and the second reflection surface 106C, that is, the optical thickness of the fluorescent layer 103C, to less than the coherence length of the excitation light.
  • At least one of the thickness and the refractive index of the fluorescent layer 103C is adjusted such that the optical distance is less than the coherence length of the predetermined excitation light.
  • the interference effect in the optical element 10C is that the excitation light enters from the side surface of the light guide layer 205C and propagates in the light guide layer 205C, and then enters the interface 107C between the light guide layer 205C and the fluorescent layer 103C.
  • the interference effect in the optical element of the first embodiment is the same as that of the first embodiment. Specifically, the excitation light enters from the side surface of the light guide layer 205C, propagates in the light guide layer 205C, and then enters the fluorescent layer 103C from the first reflection surface 107C side, the light guide layer At the interface 107C between the 205C and the fluorescent layer 103C, a large number of virtual reflected light rays are generated as in the first embodiment.
  • the amount of absorption of the excitation light by the fluorescent layer 103C is determined by the interference between the virtual reflected light rays.
  • the optical element 10C by adjusting at least one of the thickness and the refractive index of the phosphor layer 103C, the absorptivity of the excitation light in the phosphor layer 103C is controlled, and the phosphor layer 103C functions as absorptivity control structure .
  • the durability of the optical element and the degree of freedom of the arrangement of the optical element can be improved.
  • the light guide layer 205C is made of a material whose real part of the refractive index is different from that of the real part of the refractive index of the fluorescent layer 103C. From the viewpoint of the life of the fluorescent layer 103C, the light guide layer 205C is preferably made of a material that does not transmit moisture, oxygen, and the like. According to this structure, for example, the light guiding layer 205C can prevent moisture, oxygen and the like from entering the inside of the fluorescent layer 103C, and the phosphor in the fluorescent layer 103C is affected by the water, oxygen and the like. It can be relaxed. Therefore, for example, the durability of the phosphor in the fluorescent layer 103C can be improved, and the life of the optical element 10C can be extended.
  • the material forming the light guide layer 205C preferably has no absorption at the wavelength of the excitation light and at the emission wavelength of the fluorescent layer 103C, for example.
  • the material having no absorption at the wavelength of the excitation light and at the emission wavelength of the fluorescent layer 103C are, for example, the same ones as the above-mentioned light transmitting member.
  • the surface of the light guide layer 205C on which the fluorescent layer 103C is not laminated has a structure for reducing the reflectance with respect to the emission wavelength of the fluorescent layer 103C. Specifically, for example, a periodic structure smaller than the light emission wavelength, that is, a moth-eye structure, a nonreflective coating made of a dielectric multilayer film, and the like can be mentioned.
  • the light guide layer has the same planar size as the fluorescent layer, but the present invention is not limited thereto.
  • the light guide layer may have a planar size larger than that of the fluorescent layer.
  • the optical element of the present embodiment is an example of an optical element having a 1 ⁇ 4 wavelength plate and a reflective polarizer.
  • 8 and 9 show the configuration of the optical element of this embodiment.
  • FIG. 8 is a schematic perspective view of the optical element of the present embodiment.
  • FIG. 9 is a schematic cross-sectional view as seen in the IV-IV direction of FIG. 8 (cut along the xz plane).
  • the optical element of the present embodiment includes a quarter wavelength plate and a reflective polarizer, and the quarter wavelength plate and the reflective polarizer are on the side of the fluorescent layer on which the reflective layer is not laminated. It has the same configuration as the optical element of the first embodiment except that the fluorescent layer is arranged in the above order from the phosphor layer side.
  • the optical element 10D of the present embodiment has a rectangular planar shape, and a reflective layer 101D, a fluorescent layer 103D, a quarter wavelength plate 112D, and a reflective polarizer 113D. As a main component.
  • the fluorescent layer 103D is stacked on the reflective layer 101D.
  • the quarter wavelength plate 112D is disposed on the side of the fluorescent layer 103D where the reflective layer 101D is not stacked, at a distance equal to or larger than the coherence length of the excitation light from the fluorescent layer 103D.
  • the reflective polarizer 113D is disposed on the opposite side of the quarter wavelength plate 112D to the fluorescent layer 103D side.
  • the reflective layer 101D, the fluorescent layer 103D, the 1 ⁇ 4 wavelength plate 112D, and the reflective polarizer 113D are arranged such that their plane directions are parallel.
  • the quarter-wave plate 112D and the reflective polarizer 113D function with respect to the wavelength of light emitted from the fluorescent layer 103D.
  • the optical element 10D is disposed in the atmosphere 105D.
  • the real part of the refractive index of the fluorescent layer 103D is different from the real part of the refractive index of the atmosphere 105D. Therefore, as in the first embodiment, the interface 107D between the atmosphere 105D and the fluorescent layer 103D functions as the "first reflection surface" in the present invention.
  • the interface 106D between the fluorescent layer 103D and the reflective layer 101D functions as the "second reflective surface" in the present invention, as in the first embodiment.
  • the light guide layer may be disposed on the side of the fluorescent layer on which the reflective layer is not stacked.
  • the excitation light reflected by the first reflection surface 107D and the excitation light reflected by the second reflection surface 106D interfere with each other to form the inside of the fluorescent layer 103D.
  • Excitation light can be confined.
  • the interference effect is obtained by setting the optical distance between the first reflection surface 107D and the second reflection surface 106D, that is, the optical thickness of the fluorescent layer 103D, to less than the coherence length of the excitation light.
  • At least one of the thickness and the refractive index of the fluorescent layer 103D is adjusted such that the optical distance is less than the coherent distance of the predetermined excitation light.
  • the excitation light enters the fluorescent layer 103D from between the 1 ⁇ 4 wavelength plate 112D and the fluorescent layer 103D. Thereafter, as in the first embodiment, the excitation light is absorbed by the fluorescent layer 103D with a desired absorptivity by the interference effect. The excitation light absorbed by the fluorescent layer 103D is used to excite the phosphor in the fluorescent layer 103D. The excited phosphor emits, for example, light having a wavelength different from that of the excitation light. The light emitted from the fluorescent layer 103D toward the interface 107D passes through the atmosphere 105D and the 1 ⁇ 4 wavelength plate 112D, and enters the reflective polarizer 113D.
  • the reflective polarizer 113D transmits specific polarized light and reflects polarized light orthogonal to the polarized light. For this reason, light incident on the reflective polarizer 113D is polarized and separated according to its characteristics. Of the polarized and separated light, the light transmitted through the reflective polarizer 113D is directly taken out of the optical element 10D. On the other hand, of the polarized and separated light, the light reflected by the reflective polarizer 113D passes through the 1 ⁇ 4 wavelength plate 112D, the atmosphere 105D, and the fluorescent layer 103D, and is reflected by the reflective layer 101D.
  • the reflected light passes through the fluorescent layer 103D, the atmosphere 105D, and the 1 ⁇ 4 wavelength plate 112D, and enters the reflective polarizer 113D again.
  • This light passes through the 1 ⁇ 4 wavelength plate 112D twice before it is reflected by the reflective polarizer 113D and enters the reflective polarizer 113D again, so it is reflected by the reflective polarizer 113D. It is polarized light orthogonal to the polarized light. For this reason, the said reflected light which injected into reflection type polarizer 113D permeate
  • the light emitted from the fluorescent layer 103D toward the reflective layer 101D is also extracted in the state of being polarized to the outside of the optical element 10D through the same process as described above.
  • polarized light can be extracted from the optical element by including the 1 ⁇ 4 wavelength plate 112D and the reflective polarizer 113D.
  • the excitation light is described as being incident on the fluorescent layer 103D from between the 1 ⁇ 4 wavelength plate 112D and the fluorescent layer 103D, for example, the excitation light passes through the reflective polarizer 113D, for example. It may be incident on the fluorescent layer 103D.
  • the quarter wave plate 112D may be a known one, and examples thereof include a quartz wave plate, a polymer wave plate, and a photonic crystal wave plate.
  • the configuration of the wave plate may be, for example, true zero order, multi order, compound zero order, etc. From the viewpoint of allowable incident angle width, the zero order wave plate is most preferable.
  • the reflective polarizer 113D conventionally known ones can be used, and examples thereof include a wire grid polarizer, a reflective polarizing film, a photonic crystal polarizer, and the like.
  • a reflective polarizing film is preferred from the viewpoint of efficiency and allowable incident angle width, and a wire grid polarizer or a photonic crystal polarizer is preferred from the viewpoint of durability.
  • the distance from the surface on the side of the fluorescent layer 103D of the reflective polarizer 113D to the interface 106D is preferably short.
  • the distance between the 1 ⁇ 4 wavelength plate and the fluorescent layer is equal to or larger than the coherence length of the excitation light.
  • the distance may be less than the coherence length of the excitation light.
  • the 1 ⁇ 4 wavelength plate and the reflective polarizer are disposed apart from each other, the present invention is not limited thereto, and the 1 ⁇ 4 wavelength plate and the reflective polarizer are in contact with each other. It may be arranged.
  • the optical element of the present embodiment is an example of an optical element in which the reflective layer includes a concavo-convex structure.
  • 10 and 11 show the configuration of the optical element of this embodiment.
  • FIG. 10 is a schematic perspective view of the optical element of the present embodiment.
  • FIG. 11 is a schematic cross-sectional view in the case of viewing in the VV direction of FIG. 10 (cut along the xz plane).
  • the optical element of the present embodiment has the same configuration as the optical element of the first embodiment except that the surface of the reflective layer on the fluorescent layer side is provided with a concavo-convex structure.
  • the optical element 10E of this embodiment has a rectangular planar shape, and includes a reflective layer 101E and a fluorescent layer 103E as main components.
  • the reflective layer 101E includes a concavo-convex structure 114E having cylindrical convex portions arranged in a square grid shape.
  • the fluorescent layer 103E is stacked on the side of the reflective layer 101E on which the uneven structure body 114E is provided, and the concave portion of the uneven structure body 114E is partially filled with the fluorescent layer 103E.
  • the surface connecting the bottoms of the concave portions of the concavo-convex structure 114E and the reflective layer 101E and the fluorescent layer 103E are configured such that the respective surface directions are parallel to each other.
  • the optical element 10E is disposed in the atmosphere 105E.
  • the real part of the refractive index of the fluorescent layer 103E is different from the real part of the refractive index of the atmosphere 105E. Therefore, as in the first embodiment, the interface 107E between the atmosphere 105E and the fluorescent layer 103E functions as the "first reflection surface" in the present invention.
  • the interface 106E between the fluorescent layer 103E and the surface connecting the bottom of the concavo-convex structure 114E functions as the "second reflective surface" in the present invention.
  • the light guide layer may be disposed on the side of the fluorescent layer on which the reflective layer is not stacked.
  • the reflective layer 101E is made of metal, and the concavo-convex structure 114E is made of metal or dielectric.
  • the concave portion and the convex portion in the concavo-convex structure 114E are formed in such a size that the scattering intensity of the excitation light becomes low at the wavelength, polarization and incident angle of the excitation light in the fluorescent layer 103E. It has no function as a scatterer.
  • the standard of such a size is, for example, less than 1 ⁇ 4 of the wavelength of the excitation light. Therefore, for example, the height of the unevenness and the diameter of the projections of the concavo-convex structure 114E are less than 1 ⁇ 4 of the wavelength of the excitation light.
  • excitation light can be confined in the fluorescent layer 103E by causing the excitation light reflected by the first reflection surface 107E to interfere with the excitation light reflected by the second reflection surface 106E. .
  • the interference effect is obtained by setting the optical distance between the first reflection surface 107E and the second reflection surface 106E to less than the coherence length of the excitation light.
  • the absorptivity control principle in this embodiment is the same as that in the first embodiment.
  • the excitation light is absorbed by the fluorescent layer 103E with a desired absorptivity by the interference effect, as in the first embodiment.
  • the excitation light absorbed by the fluorescent layer 103E is used to excite the phosphor in the fluorescent layer 103E.
  • the excited phosphor emits, for example, light having a wavelength different from that of the excitation light in various directions.
  • the emitted light light whose wave number parallel to the interface 107E is smaller than the wave number in the atmosphere 105E is emitted to the outside of the optical element 10E through the interface 107E.
  • the emitted light light whose wave number parallel to the interface 107E is larger than the wave number in the atmosphere 105E propagates as a surface wave on the concavo-convex structure 114E because the reflective layer 101E is made of metal.
  • this surface wave include those due to electron-hole pairs and those due to surface plasmons. The surface wave is diffracted by the concavo-convex structure 114E and taken out of the optical element 10E.
  • the surface wave is also extracted as light to the outside of the optical element 10E, so that, for example, the light emission efficiency of the optical element 10E can be improved.
  • the concavo-convex structure 114E is formed of a metal or a dielectric.
  • the shape of the concavo-convex structure 114E is, for example, a surface relief grating, a periodic structure represented by a photonic crystal, a plasmonic crystal, or a quasi-periodic structure, a random structure (that is, a surface structure composed of rough surfaces), a hologram Etc.
  • the quasi-periodic structure indicates, for example, an incomplete periodic structure in which part of the periodic structure is missing.
  • the shape of the concavo-convex structure 114E is preferably the random structure or a plasmonic crystal having a plasmonic band gap at the light emission wavelength.
  • the shape of the concavo-convex structure 114E is preferably a periodic structure or a quasi-periodic structure represented by a photonic crystal or a plasmonic crystal, a microlens array, or the like.
  • a part of the fluorescent layer is filled in the concave part of the concavo-convex structure, but the present invention is not limited to this.
  • the concave portion of the concavo-convex structure may be filled with, for example, a material different from the material for forming the fluorescent layer, or may be hollow.
  • the dielectric layer may be disposed between the concavo-convex structure and the fluorescent layer, and between the fluorescent layer and the atmosphere, as in the second embodiment.
  • the convex part of the said uneven structure body is cylindrical form, this invention is not limited to this example.
  • the shape of the convex portion examples include prismatic columns such as square prisms and hexagonal prisms, and pyramids such as triangular pyramids, square pyramids, and quadrangular pyramids.
  • the convex part of the said uneven structure body is arrange
  • the arrangement may be, for example, a triangular lattice or the like.
  • the uneven structure body may be, for example, one in which the concave portion and the convex portion are reversed.
  • the optical element of the present embodiment is an example of an optical element having a concavo-convex structure.
  • 12 and 13 show the configuration of the optical element of the present embodiment.
  • FIG. 12 is a schematic perspective view of the optical element of the present embodiment.
  • FIG. 13 is a schematic cross-sectional view in the case of looking in the VI-VI direction of FIG. 12 (cut along the xz plane).
  • the second reflection surface is a distributed Bragg reflector, and further, a reflection layer in which a concavo-convex structure is formed is disposed on the side of the reflection layer on which the fluorescent layer is not laminated.
  • the optical element 10F of this embodiment has a rectangular planar shape, and includes a reflective layer 101F, a fluorescent layer 103F, and a reflective layer 201F as main components.
  • the fluorescent layer 103F is stacked on the reflective layer 101F.
  • the reflective layer 201F includes a concavo-convex structure 214F having cylindrical convex portions arranged in a square lattice.
  • the reflective layer 201F is disposed on the side of the reflective layer 101F where the fluorescent layer 103F is not stacked, such that the side provided with the concavo-convex structure 214F is on the side of the reflective layer 101F.
  • the surface of the concave-convex structure 214F which is the bottom surface of the concave portion, is connected to the reflective layer 101F and the fluorescent layer 103F such that their surface directions are parallel to each other.
  • the optical element 10F is disposed in the atmosphere 105F.
  • the real part of the refractive index of the fluorescent layer 103F is different from the real part of the refractive index of the atmosphere 105F. Therefore, as in the first embodiment, the interface 107F between the atmosphere 105F and the fluorescent layer 103F functions as the "first reflection surface" in the present invention.
  • the interface 106F between the fluorescent layer 103F and the reflective layer 101F functions as the "second reflective surface" in the present invention, as in the first embodiment.
  • the light guide layer may be disposed on the side of the fluorescent layer on which the reflective layer is not stacked.
  • the concave portions and the convex portions in the concavo-convex structure 214F are configured to be capable of diffracting, scattering or reflecting the light at the emission wavelength of the fluorescent layer 103F.
  • the standard of the size which exhibits such a function is, for example, 1/4 or more of the light emission wavelength. Therefore, for example, the height of the unevenness and the diameter of the projections of the concavo-convex structure 214F are 1/4 or more of the wavelength of the excitation light.
  • Reflective layer 101F is a dielectric multilayer film designed to have a high reflectance with respect to the wavelength, polarization and incident angle of the excitation light and a low reflectance with respect to the emission wavelength of the fluorescent layer 103F Reflective mirror).
  • the excitation light reflected by the first reflection surface 107F and the excitation light reflected by the second reflection surface 106F interfere with each other to form the inside of the fluorescent layer 103F.
  • Excitation light can be confined.
  • the interference effect is achieved by setting the optical distance between the first reflection surface 107F and the second reflection surface 106F, that is, the optical thickness of the fluorescent layer 103F, to less than the coherence length of the excitation light. can get.
  • the absorptivity control principle in this embodiment is the same as that in the first embodiment.
  • the excitation light is incident on the fluorescent layer 103F
  • the excitation light is absorbed by the fluorescent layer 103F with a desired absorptivity by the interference effect as in the first embodiment.
  • the excitation light absorbed by the fluorescent layer 103F is used to excite the phosphor in the fluorescent layer 103F.
  • the excited phosphor emits, for example, light having a wavelength different from that of the excitation light in various directions. Of the emitted light, light emitted toward the interface 107F is emitted to the outside of the optical element 10F through the interface 107F.
  • the light emitted toward the interface 106F is transmitted through the reflection layer 101F because the reflection layer 101F is designed to transmit the light emitted from the fluorescent layer 103F.
  • the transmitted light is changed in directivity by the concavo-convex structure 214F, and then is reflected by the reflective layer 201F and is incident on the reflective layer 101F again. Then, this light passes through the interface 106F and the interface 107F and is emitted to the outside of the optical element 10F. That is, in the configuration including the concavo-convex structure 214F in this manner, for example, the directivity of emitted light can be controlled as desired.
  • the reflective layer 101F reflects excitation light of preset wavelength, polarization, incident angle, etc., and transmits light emitted from the fluorescent layer 103F.
  • the reflective layer 101F is, for example, a dielectric multilayer film (distributed Bragg reflector) having the above-described function, and may be, for example, a photonic crystal or the like.
  • the reflective layer 201F reflects the light emitted from the fluorescent layer 103F as described above.
  • the reflective layer 201F is, for example, the same as the reflective layer 101A of the first embodiment.
  • the concavo-convex structure 214F diffracts or scatters the light emitted from the fluorescent layer 103F.
  • the shape of the concavo-convex structure 214F may be, for example, a surface relief grating, a periodic structure represented by a photonic crystal, or a quasi-periodic structure, a random structure (that is, a surface structure composed of rough surfaces), a hologram or the like. .
  • the shape of the concavo-convex structure 214F is preferably the above-mentioned random structure or the like.
  • the shape of the concavo-convex structure 214F is preferably a periodic structure represented by the photonic crystal, a quasi-periodic structure, or the like.
  • the concavo-convex structure is disposed apart from the reflection layer, but the present invention is not limited to this.
  • the said uneven structure body may be arrange
  • the convex part of the said uneven structure body is cylindrical shape, this invention is not limited to this example.
  • the shape of the convex portion include prismatic columns such as square prisms and hexagonal prisms, and pyramids such as triangular pyramids, square pyramids, and quadrangular pyramids.
  • the convex part of the said uneven structure body is arrange
  • the arrangement may be, for example, a triangular lattice or the like.
  • the uneven structure body may be, for example, one in which the concave portion and the convex portion are reversed.
  • the dielectric layer may be disposed between the reflective layer and the fluorescent layer, or between the fluorescent layer and the atmosphere, as in the second embodiment.
  • the optical element of this embodiment is an example of the optical element which comprises a color wheel.
  • FIG. 14 shows the configuration of the optical element of this embodiment.
  • FIG. 14 is a top view of the optical element of the present embodiment.
  • the optical element 10G of the present embodiment constitutes a color wheel, and is divided into three in the radial direction.
  • optical elements 10G-1, 10G-2, and 10G-3 having different emission wavelengths are configured.
  • the optical elements 10G-1, 10G-2, and 10G-3 are the optical elements of the present invention exemplified in the first to sixth embodiments.
  • the optical element 10G can be effectively cooled. And can constitute a DLP projector with high efficiency and long life.
  • the optical device of the present embodiment is an example of an optical device provided with an optical element having a light guide layer and an excitation light source.
  • FIG. 15 and FIG. 16 show the configuration of the optical device of this embodiment.
  • FIG. 15 is a schematic perspective view of the optical device of the present embodiment.
  • FIG. 16 is a schematic cross-sectional view in the direction of VII-VII in FIG. 15 (cut along the xz plane).
  • the optical device 20A of the present embodiment includes an optical element 10H and an excitation light source 120A as main components.
  • the optical element 10H includes the reflective layer 101H, the fluorescent layer 103H, and the light guide layer 205H, as in the third embodiment.
  • a reflection structure 301H capable of reflecting excitation light is provided all around the side of the light guide layer 205H.
  • the excitation light source 120A has a position at the bottom of the fluorescent layer 10H (position in the z-axis direction in FIG. 15) and a position at the bottom of the excitation light source 120A (position in the z-axis direction in FIG. 15) around the side of the optical element 10H.
  • the light guide layer 205H has a function of causing the excitation light emitted from the excitation light source 120A to be incident on the fluorescent layer 103H by the reflection structure 301H.
  • the operation of the optical device 20A is the same as that of the third embodiment except that the incident direction of the excitation light to the light guide layer 205H is different. Therefore, only the incidence of the excitation light on the fluorescent layer will be described based on the excitation light 108H emitted from the excitation light source 120A with reference to FIG. In FIG. 16, for convenience of explanation, illustration of parallel oblique lines in each component is omitted. As shown in FIG. 16, the excitation light 108H emitted from the excitation light source 120A is incident on the light guide layer 205H.
  • the excitation light 108H incident on the light guide layer 205H is reflected by the reflection structure 301H at an angle propagating in the light guide layer 205H.
  • the reflected excitation light 108H propagates in the light guide layer 205H, and then enters the interface 107H between the light guide layer 205H and the fluorescent layer 103H.
  • the excitation light incident on the interface 107H generates a virtual reflected ray 110H as in the third embodiment.
  • at least one of the thickness and the refractive index of the fluorescent layer 103H is adjusted to obtain a desired absorptivity of the fluorescent layer 103H by the interference effect of the virtual reflected light 110H.
  • the excitation light 108H incident on the interface 107H is absorbed by the fluorescent layer 103H with a desired absorptivity.
  • the excitation light absorbed by the fluorescent layer 103H is, for example, converted in wavelength, transmitted through the upper portion of the light guide layer 205H, and emitted to the outside of the optical element 10H.
  • the optical device 20A configured as described above has a high luminous efficiency and a high light output rating, and further, since the light emitting layer 10H and the cooling surface of the excitation light source 120A can be formed on the same plane, for example, a cooling mechanism Can be simplified and the volume occupied by the cooling mechanism can be reduced.
  • the light guide layer 205H has a function of causing the excitation light from the excitation light source 120A to be incident on the fluorescent layer 103H.
  • the reflective structure 301H having the function may be, for example, a total reflection structure due to a difference in refractive index, a metal deposition surface with high reflectance, or the like.
  • the excitation light source 120A emits excitation light for exciting the phosphor in the fluorescent layer 103H.
  • the excitation light source 120A for example, a light emitting diode, a semiconductor laser diode element, a super luminescent diode and the like can be mentioned.
  • the wavelength of the excitation light is not particularly limited, and is, for example, in the range of 300 to 800 nm, preferably in the range of 400 to 700 nm, and more preferably in the range of 400 to 500 nm.
  • the coherence length of the excitation light is, for example, 10 ⁇ m or more.
  • the incident angle of the excitation light to the optical element 10H is, for example, 20 degrees or more, preferably 40 degrees or more, and more preferably 60 degrees or more.
  • the excitation light source 120A is preferably a light emitting element having high directivity and polarization.
  • Such light emitting elements are, for example, lasers such as semiconductor laser diode elements and solid state lasers, and super luminescent diodes.
  • the excitation light source 120A is preferably a light emitting diode.
  • the present invention is not limited to the optical device of the present embodiment, and an optical device can be configured by combining the optical element of the present invention exemplified in the first to seventh embodiments with an excitation light source.
  • the image display device of the present embodiment is an example of a three-panel projection display device (projector).
  • FIG. 17 shows the configuration of the projector of this embodiment.
  • FIG. 17 is a schematic perspective view of the projector of the present embodiment.
  • the projector 30 according to this embodiment includes three optical devices 20I-r, 20I-g, and 20I-b according to the eighth embodiment, three liquid crystal display elements 150r, 150g, and 150b, and illumination.
  • Optical systems 140r, 140g, and 140b, a cross dichroic prism 130, and a projection optical system 160 are included as main components.
  • the optical devices 20I-r, 20I-g, and 20I-b respectively emit light of different emission wavelengths for red (R) light, green (G) light, and blue (B) light.
  • the illumination optical systems 140r, 140g, and 140b efficiently cause the light emitted from the optical devices 20I-r, 20I-g, and 20I-b to be incident on the liquid crystal display element.
  • the illumination optical system corresponds to the "illumination unit" in the image display device of the present invention.
  • the liquid crystal display elements 150r, 150g, and 150b modulate the light intensity in accordance with the image to be displayed.
  • the cross dichroic prism 130 combines the light transmitted through the liquid crystal display elements 150r, 150g, and 150b.
  • the projection optical system 160 projects the image formed by the liquid crystal display elements 150r, 150g, and 150b on the screen.
  • the projector 30 modulates the image on the liquid crystal display element for each of the light paths by a control circuit unit (not shown).
  • the projector 30 has high luminous efficiency and high light output rating by including the optical device of the eighth embodiment.
  • the projector of the present embodiment shown in FIG. 17 is a three-plate type liquid crystal projector
  • the present invention is not limited to this example, and may be, for example, a single plate liquid crystal projector, a DLP projector, or the like.
  • the image display device of the present invention may be an image display device combined with a backlight of a liquid crystal display device or a backlight using a MEMS as well as the above-described projector.
  • the optical element of this embodiment has a light emitting layer and a reflecting layer, the light emitting layer has a layer containing a light emitting body, and the light emitting layer and the reflecting layer are laminated, and the light emitting In the layer, the surface on the side where the reflective layer is not laminated is the first reflective surface, the interface between the light emitting layer and the reflective layer is the second reflective surface, and from the first reflective surface side It is possible to shift the phases of virtual reflected light rays generated in the direction emitted from the first reflection surface due to the incident excitation light.
  • the description of the first embodiment and the like can be cited for the respective components and the improvement of the absorptance due to the interference effect in the optical element of the present embodiment.
  • the optical element of this embodiment has a light emitting layer and a reflecting layer, the light emitting layer has a layer containing a light emitting body, and the light emitting layer and the reflecting layer are laminated, and the light emitting In the layer, the surface on the side where the reflective layer is not laminated is the first reflective surface, the interface between the light emitting layer and the reflective layer is the second reflective surface, and the thickness of the layer including the light emitter Is less than 30 ⁇ m.
  • the description of the first embodiment and the like can be cited for the respective components and the improvement of the absorptance due to the interference effect in the optical element of the present embodiment.
  • the optical device includes a light emitting layer and a reflective layer, the light emitting layer includes a layer including a light emitting body, the light emitting layer and the reflective layer are stacked, and the light emitting In the layer, an optical element having a surface on which the reflective layer is not laminated is a first reflective surface, and an interface between the light emitting layer and the reflective layer is a second reflective surface, and the optical element of the optical element
  • An excitation light source for irradiating excitation light on the first reflection surface, and a thickness and a refractive index of the light emitting layer in the optical element, and a coherence length of the excitation light satisfy the following condition (I) It is set to.
  • the above description can be cited for each configuration in the optical device of the present embodiment and improvement of the absorptance due to the interference effect.
  • the optical distance between the first reflection surface and the second reflection surface in the optical element is less than the coherence length.
  • the optical device according to the present embodiment is an example of an optical device using light emission by plasmon excitation.
  • the configuration of the optical device of the present embodiment is shown in the perspective view of FIG.
  • the optical device 1 of the present embodiment includes an excitation light source 11 and a light control unit 3 as main components.
  • the light control unit 3 is stacked on the carrier generation layer 13, the dielectric layer 14 stacked on the carrier generation layer 13, the plasmon excitation layer 15 stacked on the dielectric layer 14, and the plasmon excitation layer 15.
  • a wave number vector conversion layer 17 stacked on the dielectric layer 16.
  • the wave vector conversion layer 17 has a function as an emission layer.
  • the light control unit 3 is stacked on the excitation light source 11 so that the surfaces on the carrier generation layer 13 side face each other.
  • a waveguide is configured by the carrier generation layer 13, the dielectric layer 14, and the plasmon excitation layer 15.
  • the optical device 1 has an effective dielectric constant of an excitation light incident side (hereinafter sometimes referred to as “incident side”) and an effective dielectric constant of a light emission side (hereinafter sometimes referred to as “exit side”). It is configured to be lower than the dielectric constant.
  • the incident side portion includes the entire structure stacked on the excitation light source 11 side of the plasmon excitation layer 15 and an ambient atmosphere medium (hereinafter, may be referred to as a “medium”) in contact with the excitation light source 11.
  • the entire structure includes the dielectric layer 14, the carrier generation layer 13 and the excitation light source 11.
  • the emission side portion includes the entire structure stacked on the side of the wave number vector conversion layer 17 of the plasmon excitation layer 15 and a medium in contact with the wave number vector conversion layer 17.
  • the entire structure includes a dielectric layer 16 and a wave vector conversion layer 17. For example, even if the dielectric layer 14 and the dielectric layer 16 are removed, the dielectric layer 14 and the dielectric can be obtained if the effective dielectric constant of the incident side portion is lower than the effective dielectric constant of the emission side portion.
  • Layer 16 is not necessarily an essential component.
  • the effective dielectric constant ( ⁇ eff ) is a direction parallel to the interface of the plasmon excitation layer 15 as x-axis and y-axis, a direction perpendicular to the interface of the plasmon excitation layer 15 (the surface of the plasmon excitation layer 15 has irregularities When formed, the z axis is the direction perpendicular to the average plane), and when the carrier generation layer 13 alone is excited by excitation light, the angular frequency of light emitted from the carrier generation layer 13 is ⁇ , and plasmon excitation
  • the dielectric constant distribution of the dielectric in the incident side portion or the emission side portion with respect to the layer 15 is ⁇ ( ⁇ , x, y, z), the z component of the wave number of surface plasmon is k spp, z , the imaginary unit is j, Re If [] is a symbol indicating the real part of the numerical value in [], it is represented by the following formula (3).
  • the effective dielectric constant ⁇ eff may be calculated using a formula represented by the following formula (9). However, it is particularly desirable to use the equation (3).
  • the integration range D is a range of three-dimensional coordinates of the incident side portion or the emission side portion with respect to the plasmon excitation layer 15.
  • the range in the x-axis and y-axis directions in the integration range D is a range not including the medium to the outer peripheral surface of the entire structure of the incident side portion or the outer peripheral surface of the entire structure of the output side portion; It is a range up to the outer edge in the plane parallel to the surface on the wave number vector conversion layer 17 side of the plasmon excitation layer 15.
  • the range in the z-axis direction in the integration range D is the range of the incident side portion or the emission side portion.
  • the effective dielectric can be obtained from the equations (3) and (9). The rate is determined.
  • ⁇ ( ⁇ , x, y, z) becomes a vector, which is different for each radial direction perpendicular to the z axis It has a value. That is, for each radial direction perpendicular to the z-axis, there is an effective dielectric constant of the incident side portion and the outgoing side portion.
  • the value of ⁇ ( ⁇ , x, y, z) is a dielectric constant in a direction parallel to the radial direction perpendicular to the z axis. Therefore, all phenomena related to the effective dielectric constant, such as k spp, z , k spp and deff described later, have different values in each radial direction perpendicular to the z axis.
  • the z component k spp, z of the wave number of the surface plasmon and the x and y component k spp of the wave number of the surface plasmon are ⁇ metal of the real part of the dielectric constant of the plasmon excitation layer 15, the wave number of light in vacuum
  • k 0 be the following equation (4) and (5).
  • the distance from the surface on the carrier generation layer 13 side of the plasmon excitation layer 15 to the surface on the plasmon excitation layer 15 side of the carrier generation layer 13 is set shorter than the effective interaction distance d eff of surface plasmons.
  • d eff is a symbol indicating the imaginary part of the numerical value in [] as Im []
  • the effective interaction distance of the surface plasmon is the distance at which the intensity of the surface plasmon is e ⁇ 2
  • the effective dielectric constants of the incident side portion and the emission side portion exist in each radial direction perpendicular to the z axis. Therefore, as described above, all phenomena related to the effective dielectric constant, such as k spp, z , k spp , and d eff described later, have different values in the radial direction perpendicular to the z-axis.
  • the effective permittivity is obtained by repeatedly calculating the equation (3) or the equation (9), the equation (4) and the equation (5) by giving an appropriate initial value as the effective permittivity ⁇ eff. ⁇ eff can be easily obtained.
  • the dielectric constant of the layer in contact with the plasmon excitation layer 15 corresponds to the effective dielectric constant in this case.
  • the effective dielectric constant in the later-described embodiment is also defined in the same manner as the formula (3) or the formula (9).
  • excitation light light (hereinafter sometimes referred to as “excitation light”) emitted from the excitation light source 11 enters the light control unit 3, and the wave number vector conversion layer 17 of the light control unit 3. The operation from which light is emitted is described.
  • the excitation light emitted from the excitation light source 11 enters the light control unit 3.
  • the excitation light is then coupled to the waveguide and confined therein.
  • the confined excitation light excites the carrier generation layer 13 to generate carriers in the carrier generation layer 13.
  • the carrier combines with free electrons in the plasmon excitation layer 15 separated by the dielectric layer 14 to excite surface plasmons at the interface between the dielectric layer 14 and the plasmon excitation layer 15.
  • the excited surface plasmons are emitted as light from the interface between the plasmon excitation layer 15 and the dielectric layer 16 (hereinafter, sometimes referred to as “emission light”).
  • the light emission occurs because the effective dielectric constant of the incident side portion is lower than the effective dielectric constant of the output side portion.
  • the wavelength of the emitted light is equal to the wavelength of light generated when the carrier generation layer 13 is excited alone. Further, assuming that the refractive index of the dielectric layer 16 is n out , the emission angle ⁇ out of the emitted light is expressed by the following equation (7).
  • the wave number of the excited surface plasmon is present only in the vicinity uniquely set in the equation (4).
  • the emitted light is only a wave number vector of the surface plasmon converted. Therefore, the emission angle of the emitted light is uniquely determined, and its polarization state is always p-polarization. That is, the emitted light is p-polarized light having very high directivity.
  • the emitted light enters the wave number vector conversion layer 17, is diffracted or refracted by the wave number vector conversion layer 17, and is extracted outside the optical device 1.
  • the excitation light source 11 emits light (excitation light) of a wavelength that can be absorbed by the carrier generation layer 13.
  • a light emitting diode LED
  • a laser diode a super luminescent diode and the like can be mentioned.
  • the carrier generation layer 13 is a layer that absorbs the excitation light to generate carriers.
  • the carrier generation layer 13 includes, for example, a light emitter.
  • the light emitter is, for example, a phosphor or a phosphor.
  • the phosphor include organic phosphors, inorganic phosphors, quantum dot phosphors, and semiconductor phosphors.
  • the organic fluorescent substance include rhodamine (Rhodamine 6G) and sulforhodamine (Sulforhodamine 101).
  • the inorganic phosphor include Y 2 O 2 S: Eu, BaMgAl x O y : Eu, and BaMgAl x O y : Mn.
  • Examples of the quantum dot phosphor include quantum dots such as CdSe and CdSe / ZnS.
  • Examples of the semiconductor phosphor include phosphors of inorganic material semiconductors and organic material semiconductors.
  • Examples of the inorganic material semiconductor include GaN and GaAs.
  • Examples of the organic material semiconductor include (thiophene / phenylene) co-oligomer, Alq3 (tris (8-quinolinolato) aluminum), and the like.
  • the carrier generation layer 13 may be made of, for example, a plurality of materials that generate light of a plurality of wavelengths having the same or different emission wavelengths.
  • the thickness of the carrier generation layer 13 is not particularly limited, and for example, 1 ⁇ m or less is preferable, and 100 nm or less is particularly preferable.
  • the carrier generation layer 13 may include, for example, metal particles.
  • the metal particle excites surface plasmons on the surface of the metal particle by interaction with the excitation light, and induces an enhanced electric field near 100 times the electric field strength of the excitation light in the vicinity of the surface.
  • an enhanced electric field carriers generated in the carrier generation layer 13 can be increased, and, for example, the utilization efficiency of the excitation light in the light control unit 3 can be improved.
  • the metal constituting the metal particles is, for example, gold, silver, copper, platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, aluminum Or these alloys and the like.
  • gold, silver, copper, platinum, aluminum, or an alloy containing any of these as a main component is preferable, and gold, silver, aluminum, or an alloy containing any of these as a main component is particularly preferable.
  • the metal particle has, for example, a core-shell structure different in metal species in the periphery and in the center; a combined hemispherical combined structure of hemispheres of two metals; a cluster-in-cluster structure in which different clusters assemble to form particles And the like.
  • the resonance wavelength can be controlled without changing the size, shape, etc. of the metal particles.
  • the shape of the metal particle may be a shape having a closed surface, and examples thereof include a rectangular parallelepiped, a cube, an ellipsoid, a sphere, a triangular pyramid, a triangular prism and the like.
  • the metal particles include, for example, those obtained by processing a metal thin film into a structure constituted by a closed surface having a side of less than 10 ⁇ m by fine processing represented by semiconductor lithography technology.
  • the size of the metal particles is, for example, in the range of 1 to 100 nm, preferably in the range of 5 to 70 nm, and more preferably in the range of 10 to 50 nm.
  • the plasmon excitation layer 15 is formed to have a plasma frequency higher than the frequency of light generated in the carrier generation layer 13 (hereinafter sometimes referred to as “light emission frequency”) when the carrier generation layer 13 alone is excited by excitation light. It is a fine particle layer or a thin film layer formed of a material. That is, the plasmon excitation layer 15 has a negative dielectric constant at the light emission frequency. For example, in the range from the interface on the carrier generation layer 13 side of the plasmon excitation layer 15 on the carrier generation layer 13 side of the plasmon excitation layer 15 to the effective interaction distance of the surface plasmon represented by the formula (6), for example A portion of the dielectric layer having anisotropy may be disposed.
  • This dielectric layer has, for example, an optical anisotropy that differs in dielectric constant depending on the direction in the plane perpendicular to the stacking direction of the components of the light control unit 3, in other words, in the plane parallel to the interface of each layer . That is, in the dielectric layer, in a plane perpendicular to the stacking direction of the components of the light control unit 3, there is a magnitude relation between the dielectric constants in a certain direction and a direction perpendicular thereto. Due to this dielectric layer, in a plane perpendicular to the stacking direction of the components of the optical device 1, the effective dielectric constant of the incident side portion is different between a certain direction and a direction perpendicular thereto.
  • the effective dielectric constant of the incident side portion is set high enough to prevent plasmon coupling in a certain direction and low enough to cause plasmon coupling in the direction orthogonal thereto, for example, light incident on the wave number vector conversion layer 17
  • the angle of incidence and polarization of Therefore, for example, the light extraction efficiency of the wave vector conversion layer 17 can be further improved.
  • the carriers generated by the carrier generation layer 13 are surface plasmons in the plasmon excitation layer 15 Excite.
  • the carriers do not excite surface plasmons. That is, the above-mentioned effective dielectric constant high enough not to cause plasmon coupling is a dielectric constant such that the sum of the dielectric constant of the plasmon excitation layer 15 and the effective dielectric constant of the incident side portion is positive.
  • the effective dielectric constant which is low enough to cause coupling is a dielectric constant such that the sum of the dielectric constant of the plasmon excitation layer 15 and the effective dielectric constant of the incident side portion becomes negative or zero.
  • the efficiency with which the carriers generated in the carrier generation layer 13 couple to the surface plasmon is the condition that the sum of the effective dielectric constant of the incident side portion and the dielectric constant of the plasmon excitation layer 15 becomes zero. Therefore, the condition that the sum of the dielectric constant of the plasmon excitation layer 15 and the lowest value of the effective dielectric constant of the incident side portion is 0 is the most preferable in that the directivity with respect to the azimuth angle is enhanced.
  • the directivity of the azimuth angle is not excessively enhanced in practice.
  • azimuth angles 315 degrees to 45 degrees, 135 degrees to 225 degrees High directional radiation is obtained in the range. Therefore, for example, it is possible to simultaneously improve the directivity with respect to the azimuth angle and suppress the decrease in light emission.
  • Examples of the constituent material of the dielectric layer having optical anisotropy include anisotropic crystals such as TiO 2 , YVO 4 , and Ta 2 O 5 .
  • Examples of the structure of the dielectric layer include a diagonal vapor deposition film of a dielectric, a diagonal sputtering film, and the like.
  • the constituent material of the plasmon excitation layer 15 is, for example, gold, silver, copper, platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, aluminum Or these alloys and the like.
  • gold, silver, copper, platinum, aluminum, and a mixture with a dielectric containing these as the main component is preferable, and gold, silver, aluminum, and a dielectric containing these as the main component are preferable. Mixtures with are particularly preferred.
  • the thickness of the plasmon excitation layer 15 is not particularly limited, and is preferably 200 nm or less, and particularly preferably about 10 to 100 nm.
  • the surface on the carrier generation layer 13 side of the plasmon excitation layer 15 may be roughened, for example.
  • the rough surface provides, for example, the scattering of the excitation light and the excitation of localized plasmons at the tip of the rough surface, thereby increasing the number of carriers excited in the carrier generation layer 13. As a result, for example, the utilization efficiency of the excitation light in the light control unit 3 can be improved.
  • the dielectric layer 14 is a layer containing a dielectric, and specifically, for example, SiO 2 nanorod array film; SiO 2 , AlF 3 , MgF 2 , Na 3 AlF 6 , NaF, LiF, CaF 2 , BaF 2 And thin films or porous films such as low dielectric constant plastics.
  • the thickness of the dielectric layer 14 is not particularly limited, and is, for example, in the range of 1 to 100 nm, preferably in the range of 5 to 50 nm, and more preferably in the range of 5 to 20 nm.
  • the constituent material of the dielectric layer 16 is, for example, diamond, TiO 2 , CeO 2 , Ta 2 O 5 , ZrO 2 , Sb 2 O 3 , HfO 2 , La 2 O 3 , NdO 3 , Y 2 O 3 , ZnO, A high dielectric constant material such as Nb 2 O 5 can be mentioned.
  • the thickness of the dielectric layer 16 is not particularly limited.
  • the wave number vector conversion layer 17 is an emission unit that emits light emitted from the interface between the plasmon excitation layer 15 and the dielectric layer 16 from the optical device 1 by converting the wave number vector.
  • the wave vector conversion layer 17 has a function of causing the optical device 1 to emit the outgoing light in a direction substantially orthogonal to the interface between the plasmon excitation layer 15 and the dielectric layer 16.
  • the shape of the wave number vector conversion layer 17 is, for example, a surface relief grating; a periodic structure represented by a photonic crystal, or a quasi-periodic structure; a texture structure whose size is larger than the wavelength of light emitted from the optical device 1 Surface structure constituted by a surface); hologram; microlens array etc.
  • the quasi-periodic structure indicates, for example, an incomplete periodic structure in which part of the periodic structure is missing.
  • the shape is preferably a periodic structure represented by a photonic crystal, or a quasi-periodic structure; a microlens array or the like.
  • the photonic crystal preferably has a triangular lattice structure.
  • the wave number vector conversion layer 17 may have, for example, a structure in which a convex portion is provided on a flat base.
  • the distance from the surface on the carrier generation layer 13 side of the plasmon excitation layer 15 to the surface on the plasmon excitation layer 15 side of the carrier generation layer 13 is set shorter than the effective interaction distance d eff of surface plasmons It is done.
  • the region where the coupling efficiency is high is, for example, the carrier generation layer 13 side surface of the plasmon excitation layer 15 from the position where carriers are generated in the carrier generation layer 13 (for example, the position where the phosphor is present in the carrier generation layer 13).
  • the region is, for example, as narrow as about 200 nm, for example, in the range of 1 to 200 nm or in the range of 10 to 100 nm.
  • the carrier generation layer 13 is preferably disposed in the range of 1 to 200 nm from the plasmon excitation layer 15.
  • the carrier generation layer 13 is preferably arranged in the range of 10 to 100 nm from the plasmon excitation layer 15.
  • the thickness of the dielectric layer 14 is 10 nm, and the thickness of the carrier generation layer 13 is 90 nm. From the viewpoint of light extraction efficiency, it is preferable that the carrier generation layer 13 be thinner.
  • the carrier generation layer 13 be thicker. Therefore, the thickness of the carrier generation layer 13 is determined based on, for example, the required light extraction efficiency and the light output rating.
  • the range of the region changes depending on the dielectric constant of the dielectric layer disposed between the carrier generation layer and the plasmon excitation layer, so that, for example, the dielectric may be selected according to the range of the region under predetermined conditions.
  • the thickness of the layer, the thickness of the carrier generation layer, and the like may be set as appropriate.
  • the plasmon excitation layer is sandwiched between the two dielectric layers, but as described above, the dielectric layer is not essential in the present invention, for example, The plasmon excitation layer may be disposed on the carrier generation layer. The dielectric layer may be laminated only on one side of the plasmon excitation layer.
  • the excitation light source and the light control unit are stacked in contact with each other, but the excitation light source and the light control unit may be separately disposed, for example.
  • the excitation light source may include, for example, a plurality of the excitation light sources.
  • the excitation light may be incident on the light control unit via, for example, a light guide.
  • the shape of the light guide may be, for example, a rectangular parallelepiped or a wedge shape, or a shape having a light emitting portion of the light guide or a light extraction structure inside the light guide. It is preferable that the surface of the light guide excluding the light emitting portion is subjected to a process for preventing the excitation light from being emitted from the surface, using, for example, a reflective material or a dielectric multilayer film.
  • the light control unit may have, for example, an absorptivity control structure as shown in the first to seventh embodiments.
  • the absorption efficiency of the excitation light can be improved, and for example, an optical device having higher light emission efficiency and higher output rating can be realized.
  • the optical device according to the present embodiment is an example of an optical device using light emission by plasmon excitation.
  • the configuration of the optical device of the present embodiment is shown in the perspective view of FIG.
  • the optical device of the present embodiment has the same configuration as the optical device of the thirteenth embodiment except that the light control unit does not include a dielectric layer.
  • the optical device 1a of the present embodiment includes the excitation light source 11 and the light control unit 3a as main components.
  • the light control unit 3 a includes a carrier generation layer 13, a plasmon excitation layer 15 stacked on the carrier generation layer 13, and a wave number vector conversion layer (emission layer) 27 stacked on the plasmon excitation layer 15.
  • the light control unit 3 a is stacked on the excitation light source 11 so that the surfaces on the carrier generation layer 13 side face each other.
  • the optical device 1a is configured such that the effective dielectric constant of the incident side portion is higher than or equal to the effective dielectric constant of the emission side portion.
  • the incident side portion includes the entire structure stacked on the side of the excitation light source 11 of the plasmon excitation layer 15 and a medium in contact with the excitation light source 11.
  • the entire structure includes the carrier generation layer 13 and the excitation light source 11.
  • the emission side portion includes the entire structure stacked on the wave number vector conversion layer 27 side of the plasmon excitation layer 15 and a medium in contact with the wave number vector conversion layer 27.
  • the whole structure includes a wave number vector conversion layer 27.
  • the carrier generation layer 13 is disposed in contact with the plasmon excitation layer 15, but the present invention is not limited to this example. Even if, for example, a dielectric layer having a thickness smaller than the effective interaction distance d eff of the surface plasmon represented by the formula (6) is disposed between the carrier generation layer 15 and the plasmon excitation layer 13 Good.
  • the wave number vector conversion layer 27 is disposed in contact with the plasmon excitation layer 15, but the present invention is not limited to this example.
  • the wave number vector conversion layer 27 is located between the wave number vector conversion layer 27 and the plasmon excitation layer 15.
  • the dielectric layer may have a thickness smaller than the effective interaction distance d eff of the surface plasmon represented by the equation (6).
  • the dielectric layer By arranging the dielectric layer in this manner, carriers generated in the carrier generation layer 13 and free electrons in the plasmon excitation layer 15 can be efficiently coupled, as in the thirteenth embodiment, and as a result, as a result For example, the luminous efficiency can be improved.
  • the excitation light emitted from the excitation light source 11 is incident on the carrier generation layer 13 of the light control unit 3a.
  • a part of the excitation light incident on the carrier generation layer 13 is absorbed by the carrier generation layer 13, and carriers are generated in the carrier generation layer 13.
  • the carriers couple with free electrons in the plasmon excitation layer 15 and excite surface plasmons at the interface between the carrier generation layer 13 and the plasmon excitation layer 15 and at the interface between the plasmon excitation layer 15 and the wave vector conversion layer 27.
  • the surface plasmon excited at the interface between the carrier generation layer 13 and the plasmon excitation layer 15 passes through the plasmon excitation layer 15 and propagates to the interface between the plasmon excitation layer 15 and the wave vector conversion layer 27.
  • the optical device 1a is configured such that the effective dielectric constant of the incident side portion is higher than or equal to the effective dielectric constant of the emission side portion, and the plasmon excitation layer of the wave vector conversion layer 27
  • the distance from the surface of the wave number vector conversion layer 27 of the plasmon excitation layer 15 is arranged within the range of the effective interaction distance of the surface plasmon on the end portion on the 15 side.
  • the wave number vector conversion layer 27 is a flat dielectric layer, surface plasmons at the interface between the plasmon excitation layer 15 and the wave number vector conversion layer 27 are not converted to light at the interface.
  • the surface plasmon at the interface is emitted as light to the outside of the optical device 1a because the wave number vector conversion layer 27 has a function of extracting the surface plasmon as light, for example, a diffractive action.
  • the wavelength of the emitted light is equal to the wavelength of light generated when the carrier generation layer 13 is excited alone.
  • the radiation angle ⁇ rad of the emitted light is the refractive index of the light extraction side of the wave vector conversion layer 27 (that is, the medium in contact with the wave vector conversion layer 27), where the pitch of the periodic structure of the wave vector conversion layer 27 is 27. Is given by the following equation (8).
  • the wave number of the surface plasmon excited at the interface between the carrier generation layer 13 and the plasmon excitation layer 15 exists only in the vicinity uniquely set by the equation (4). The same applies to the wave number of the surface plasmon excited at the interface between the plasmon excitation layer 15 and the wave number vector conversion layer 27. Therefore, the emission angle of the emitted light is uniquely determined, and its polarization state is always p-polarization. That is, the emitted light is p-polarized light having very high directivity.
  • the wave number vector conversion layer 27 extracts surface plasmons excited at the interface between the plasmon excitation layer 15 and the wave number vector conversion layer 27 as light from the interface by converting the wave number vector, and emits the light from the optical device 1a. It is an emitting part. That is, the wave vector conversion layer 27 converts surface plasmons into light of a predetermined radiation angle, and causes the light to be emitted from the optical device 1a. Furthermore, the wave number vector conversion layer 27 has a function of emitting radiation light from the optical device 1a, for example, so as to be substantially orthogonal to the interface between the plasmon excitation layer 15 and the wave number vector conversion layer 27.
  • the wave number vector conversion layer 27 can use, for example, the same one as the wave number vector conversion layer 17 of the thirteenth embodiment.
  • the light control unit may have, for example, an absorptivity control structure as shown in the first to seventh embodiments.
  • the absorption efficiency of the excitation light can be improved, and for example, an optical device having higher light emission efficiency and higher output rating can be realized.
  • the optical device of the present embodiment is an example of an optical device provided with a light guide using light emission by plasmon excitation.
  • the configuration of the optical device of the present embodiment is shown in the perspective view of FIG. In FIG. 28, in order to show all the components, the part which is intercepted and seen by the light guide 38 is shown with a broken line.
  • the optical device 1b of this embodiment includes a light source unit 2b and a light control unit 3b as main components.
  • the light source unit 2 b includes an excitation light source 31 and a light guide 38.
  • the excitation light source 31 is disposed around the side of the light guide 38.
  • the light control unit 3 b includes a carrier generation unit 33, a plasmon excitation layer 35, and a dielectric layer 36.
  • the dielectric layer 36 is stacked on the plasmon excitation layer 35.
  • the carrier generation unit 33 is periodically embedded in the dielectric layer 36, penetrates the dielectric layer 36, and one end thereof is in contact with the plasmon excitation layer 35.
  • the carrier generation unit 33 has a function as an emission layer.
  • the light control unit 3b is stacked on the light source unit 2b such that the surface of the light control unit 3b on the dielectric layer 36 side faces the light guide 38 of the light source unit 2b.
  • the distance from the surface on the carrier generation unit 33 side of the plasmon excitation layer 35 to the surface on the plasmon excitation layer 35 side of the carrier generation unit 33 is an effective interaction of surface plasmons represented by the above equation (6). It is set shorter than the distance d eff .
  • the excitation light from the excitation light source 31 enters the light control unit 3b, and the surface on the opposite side to the surface on the carrier generation unit 33 side of the light guide 38 (light emission surface 39) The operation from which light is emitted is described.
  • the excitation light emitted from the excitation light source 31 enters the light guide 38 and is guided while being multiply reflected between the light guide 38 and the plasmon excitation layer 35.
  • a part of the excitation light that has entered the carrier generation unit 33 is absorbed by the carrier generation unit 33, and carriers are generated in the carrier generation unit 33.
  • a part of the carriers is combined with free electrons in the plasmon excitation layer 35 to excite surface plasmons at the interface between the dielectric layer 36 and the plasmon excitation layer 35.
  • the excited surface plasmons are diffracted by the periodic structure formed by the carrier generation unit 33 and the dielectric layer 36, and are emitted as light through the light emitting surface 39 to the outside of the optical device 1b.
  • the wavelength of the emitted light is equal to the wavelength of light generated when the carrier generator 33 is excited alone. Further, the emission angle ⁇ rad of the emitted light is expressed by the equation (8).
  • the portion including the entire structure stacked on the light guide 38 side of the plasmon excitation layer 35 and the medium in contact with the light guide 38 is the incident side of the excitation light defined in the thirteenth embodiment. It serves both as a part and an emitting side part.
  • the wave number of the surface plasmon excited at the interface between the dielectric layer 36 and the plasmon excitation layer 35 is present only in the vicinity uniquely set by the equation (4). Therefore, the emission angle of the emitted light is uniquely determined, and its polarization state is always p-polarization. That is, the emitted light is p-polarized light having very high directivity.
  • the light distribution distribution of the propagation light by the carriers not coupled with the surface plasmons is superimposed on the light distribution distribution of the emitted light.
  • the same one as the excitation light source 11 of the thirteenth embodiment can be used.
  • the shape of the light guide 38 is, for example, a rectangular parallelepiped or a wedge; a surface on the light emitting surface 39 side of the light guiding member 38, a surface facing the surface on the light emitting surface 39 side, or For example, it may have a structure for light extraction on all of the both sides and the inside.
  • the surface excluding the light emitting surface 39 side of the light guide 38 and the surface opposite thereto is processed not to emit the excitation light from the surface using, for example, a reflective material or a dielectric multilayer film. Is preferred.
  • the carrier generation unit 33 is a layer that absorbs excitation light to generate carriers, and the function, constituent materials, and the like thereof are the same as, for example, the carrier generation layer 13 of the thirteenth embodiment.
  • the constituent material of the dielectric layer 36 is, for example, diamond, TiO 2 , CeO 2 , Ta 2 O 5 , ZrO 2 , Sb 2 O 3 , HfO 2 , La 2 O 3 , NdO 3 , Y 2 O 3 , ZnO, A high dielectric constant material such as Nb 2 O 5 can be mentioned.
  • the thickness of the dielectric layer 36 is not particularly limited, and is, for example, in the range of 1 to 100 nm, preferably in the range of 5 to 50 nm, and more preferably in the range of 5 to 10 nm.
  • the number of carriers coupled to the surface plasmon can be increased, and light having higher directivity and higher degree of polarization can be obtained. Can be emitted from the optical device 1b.
  • the function, constituent material, shape, and the like of the plasmon excitation layer 35 are, for example, the same as those of the plasmon excitation layer 15 of the thirteenth embodiment.
  • a dielectric layer having optical anisotropy may be disposed between the light guide 38 and the plasmon excitation layer 35.
  • the configuration, effects and the like of this dielectric layer are the same as those shown in the thirteenth embodiment.
  • the light source unit and the light control unit are stacked in contact with each other, but the present invention is not limited to this example, and the light source unit and the light control The parts may, for example, be spaced apart.
  • the carrier generation unit is embedded in the dielectric layer, but the present invention is not limited to this example, and, for example, the dielectric layer and the carrier generation
  • the dielectric portion may be periodically embedded in the carrier generation layer by reversing the relationship with the portion. Even with such a configuration, the same effect as described above can be obtained.
  • generation part are set to the same height, this invention is not limited to this example. It is not necessary to have the same height.
  • the carrier generation unit may be connected, for example, over the entire surface of the dielectric layer, or one end of the carrier generation unit may not be in contact with the plasmon excitation layer.
  • the light control unit may have, for example, an absorptivity control structure as shown in the first to seventh embodiments.
  • the absorption efficiency of the excitation light can be improved, and for example, an optical device having higher light emission efficiency and higher output rating can be realized.
  • the optical device of the present embodiment is an example of an optical device provided with a half wave plate as a polarization conversion element.
  • the configuration of the optical device of the present embodiment is shown in the perspective view of FIG.
  • the optical device 1c of the present embodiment includes the optical device 1 and a half wave plate 41 as main components.
  • the optical device 1 is the optical device of the thirteenth embodiment shown in FIG.
  • the half wave plate 41 is disposed on the side of the wave number vector conversion layer 17 of the optical device 1.
  • the half-wave plate 41 is indicated by a two-dot chain line.
  • the light is emitted from the wave number vector conversion layer 17. Since the light is p-polarized as described above, the field pattern of the light has a radial polarization direction. For this reason, the light is axisymmetrically polarized (see, for example, [0104] of WO 2011/040528). Then, the light (axisymmetric polarization) is incident on the half wave plate 41. At this time, the axisymmetric polarization is converted into linearly polarized light by the half wave plate 41. As described above, in the optical device of the present embodiment, the polarization state of the light can be aligned (see, for example, [0105] in the same International Publication).
  • the half-wave plate 41 is not particularly limited, and examples thereof include conventionally known ones. Specifically, for example, the following half-wave plate disclosed in WO 2011/040528 may be mentioned.
  • the half-wave plate disclosed in the above publication includes, for example, a pair of glass substrates each having an alignment film formed thereon, a liquid crystal layer disposed with the alignment films of these substrates facing each other, and the glass substrate, And a spacer provided between the substrates.
  • the liquid crystal layer, n 0 the refractive index for the ordinary light, the refractive index when the n e for extraordinary light, a refractive index greater than n 0 the refractive index n e is.
  • is the wavelength of incident light in vacuum.
  • liquid crystal molecules are arranged concentrically with respect to the center of the half wave plate.
  • the liquid crystal molecule has an angle of ⁇ between the main axis of the liquid crystal molecule and the coordinate axis in the vicinity of the main axis, and the angle between the coordinate axis and the polarization direction is ⁇ . It is oriented in a direction satisfying any of the relational expressions of 2 ⁇ -180.
  • the axisymmetric polarization is converted into linearly polarized light by the 1 ⁇ 2 wavelength plate, but the present invention is not limited to this example.
  • the axisymmetric polarization is circular It may be converted to polarized light.
  • the optical device of the thirteenth embodiment is used in the optical device of the present embodiment, the present invention is not limited to this example, for example, using the optical device of the fourteenth or fifteenth embodiment. It is also good.
  • the light control unit may have, for example, an absorptivity control structure as shown in the first to seventh embodiments.
  • the absorption efficiency of the excitation light can be improved, and for example, an optical device having higher light emission efficiency and higher output rating can be realized.
  • Example 1 For the optical element 10A of the first embodiment, the following conditions were set, and the absorptivity and the reflectance were measured by simulation.
  • the optical thickness (optical distance between the first reflecting surface 107A and the second reflecting surface 106A) of the fluorescent layer 103A in the optical element of this embodiment is 99.71 nm, and the coherence of the excitation light is Less than distance.
  • Atmosphere 105A Air excitation light Wavelength (in vacuum): 460 nm
  • the graph of FIG. 18 shows the relationship between the incident angle of the excitation light and the absorptivity
  • the graph of FIG. 19 shows the relationship between the incident angle of the excitation light and the reflectance.
  • the legends of FIG. 18 and FIG. 19 show the polarization state of excitation light, “p” indicates p polarization, “s” indicates s polarization (the same applies hereinafter).
  • FIG. 18 and FIG. It is shown that the absorptivity and the reflectance are in the opposite relationship. As shown in FIG. 18, in the optical element of the present example, it was confirmed that the absorptivity of the excitation light can be improved by selecting the incident angle and the polarization of the excitation light.
  • the absorptivity When the polarization of the excitation light is s-polarized and the incident angle is 20 degrees or more, the absorptivity is 19% or more, and when the incident angle is 40 degrees or more, the absorptivity is 22% or more. When the incident angle is 60 degrees or more, the absorptivity is 31% or more, and when the incident angle is 80 degrees or more, the absorptivity is 65% or more. In particular, when the polarization of the excitation light is s-polarization and the incident angle is 87.4 degrees, it is confirmed that 100% of the excitation light can be absorbed by the fluorescent layer 103A in one incidence.
  • Example 2 The excitation light absorptivity of the optical element 10A of the first embodiment was measured by simulation under the same conditions as in the first example except that the thickness of the fluorescent layer 103A was set to 100 nm.
  • the optical thickness of the fluorescent layer 103A in the optical element of this embodiment is 169 nm, which is less than the coherence length of the excitation light.
  • the graph of FIG. 20 shows the relationship between the incident angle of the excitation light and the absorptivity.
  • the maximum value of the absorptivity of the excitation light is lower than that of the first embodiment, It was confirmed that the absorptivity of the excitation light can be improved. From this result, it is suggested that in light confinement using the interference of the excitation light, in order to obtain the maximum absorptivity, it is desirable to appropriately control the thickness of the phosphor layer 103A which is one of the absorptivity control structures. It was done.
  • Example 3 The excitation light absorptivity of the optical element 10A of the first embodiment was measured by simulation under the same conditions as in the first example except that the refractive index (real part) of the fluorescent layer 103A was 1.9.
  • the optical thickness of the fluorescent layer 103A in the optical element of the present embodiment is 111.51 nm, which is less than the coherence length of the excitation light.
  • the graph of FIG. 21 shows the relationship between the incident angle of the excitation light and the absorptivity.
  • the maximum value of the absorptivity of the excitation light is lower than that of the first embodiment, It was confirmed that the absorptivity of the excitation light can be improved. From this result, in light confinement using the interference of the excitation light, in order to obtain the maximum absorptivity, it is desirable to appropriately control the refractive index of the fluorescent layer 103A which is one of the absorptivity control structures. It was suggested.
  • Example 4 The excitation light absorptivity of the optical element 10A of Embodiment 1 was measured by simulation under the same conditions as in Example 1 except that the wavelength of the excitation light was changed to 450 nm or 470 nm.
  • the optical thickness of the fluorescent layer 103A in the optical element of this embodiment is 99.71 nm, which is less than the coherence length of the excitation light.
  • the graph of FIG. 22 shows the relationship between the incident angle of the excitation light and the absorptivity when the wavelength of the excitation light is 450 nm
  • the graph of FIG. 23 shows the incidence of the excitation light when the wavelength of the excitation light is 470 nm.
  • the relationship between the angle and the absorptivity is shown.
  • FIGS. 22 and 23 according to the optical element of the present example, it was confirmed that the absorptivity of the excitation light can be improved.
  • the absorptivity of the optical element of this example was slightly lower.
  • the maximum absorption rate can be obtained by appropriately designing the absorptivity control structure according to the wavelength of the excitation light.
  • . 22 and 23 show that the change in absorptance with respect to the wavelength change of the excitation light is small, that is, the wavelength tolerance is high, and the reflected excitation light is used as an optical element such as a folding mirror. Then, by allowing the light to enter the optical element 10A again, the absorptivity can be easily made 96% or more.
  • Such wavelength tolerance is a sufficient range for a semiconductor laser diode.
  • Example 5 The excitation light absorptivity of the optical element 10A of Embodiment 1 was measured by simulation under the same conditions as in Example 1 except that the thickness of the fluorescent layer 103A was changed to 129 nm.
  • the optical thickness of the fluorescent layer 103A in the optical element of this embodiment is 218.01 nm, which is less than the coherence length of the excitation light.
  • the graph of FIG. 24 shows the relationship between the incident angle of the excitation light and the absorptivity.
  • the absorptivity of the excitation light can be improved.
  • the maximum value of the absorption rate was equivalent to the said Example 1.
  • the polarization of the excitation light is p polarization and the incident angle is 20 degrees or more
  • the absorptivity is 11% or more
  • the incident angle is 40 degrees or more
  • the absorptivity is 13% or more.
  • the incident angle is 60 degrees or more
  • the absorptivity is 19% or more
  • the incident angle is 80 degrees or more
  • the absorptivity is 45% or more.
  • the polarization of the excitation light is p polarization and the incident angle is 88.5 degrees, it has been confirmed that 100% of the excitation light can be absorbed by the fluorescent layer 103A in one incident.
  • the condition that the absorptivity of the excitation light becomes particularly high is that the optical distance between the first reflection surface and the second reflection surface (the optical thickness of the fluorescent layer 103A) It was confirmed that the absorption rate can be improved by setting a plurality of conditions within a range that does not exceed the interference distance.
  • Example 6 In the optical elements 10A and 10C of Embodiments 1 and 3, assuming that the incident angle and polarization of the excitation light can be freely set, and the thickness of the fluorescent layers 103A and 103C is as thin as possible, the absorptivity of the excitation light is The condition of 100% was confirmed by simulation.
  • the graph in FIG. 25 shows the relationship between the refractive index difference and the thickness of the fluorescent layer for the excitation light absorptivity to be 100%.
  • the abscissa represents a value (refractive index difference) obtained by subtracting the refractive index (real part) of the atmosphere 105A from the fluorescent layer 103A, or the refractive index (real part) of the light guide 205C from the fluorescent layer 103C.
  • the value (refractive index difference) is shown.
  • the vertical axis indicates the thicknesses of the fluorescent layers 103A and 103C when the optical thicknesses of the fluorescent layers 103A and 103C under the condition that the absorptivity of the excitation light is 100% are normalized by the wavelength of the excitation light.
  • the legend shows, from the left, the wavelength of the excitation light, the constituent material of the reflective layer 101A or 101C, the refractive index (imaginary part) of the fluorescent layer 103A or 103C, the constituent material of the atmosphere 105A or the light guide layer 205C in the above order It shows. As shown in FIG. 25, it was confirmed that the excitation light can be absorbed 100% under any conditions where the fluorescent layer is thinner than the wavelength of the excitation light in the fluorescent layer.
  • an optical device using the optical element of the present invention can be used, for example, as a light source for general displays (image display devices).
  • the image display apparatus of the present invention is not particularly limited, and may be, for example, a projector.
  • the projector may be, for example, a mobile projector, a next-generation rear projection TV, a digital cinema, a retinal scanning display (RSD), a head up display (HUD), or a mobile phone, digital
  • RSD retinal scanning display
  • HUD head up display
  • a mobile phone digital There are a camera, a built-in projector (embedded projector) in a notebook personal computer and the like, and application to a wide range of markets is possible. However, the application is not limited and can be applied to a wide range of fields.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)

Abstract

 励起光の吸収効率を向上可能な光学素子、光学装置、画像表示装置および励起光の吸収率向上方法を提供する。 本発明の光学素子(10A)は、発光層と、反射層(101A)とを有し、前記発光層は、発光体を含む層(103A)を有し、前記発光層と反射層(101A)とは、積層されており、前記発光層において、反射層(101A)が積層されていない側の表面が第1の反射面(107A)であり、前記発光層と反射層(101A)との界面が第2の反射面(106A)であり、第1の反射面(107A)で反射される励起光と、第2の反射面(106A)で反射される励起光とを干渉させる、光学素子である。

Description

光学素子、光学装置、画像表示装置および励起光の吸収率向上方法
 本発明は、光学素子、光学装置、画像表示装置および励起光の吸収率向上方法に関する。
 近年、プロジェクタ等の画像表示装置の光源として、LED等の励起光を発する光源と、蛍光体を含む層とを組み合わせた光学装置が開発されている(特許文献1)。このような光学装置では、蛍光体を含む層に励起光が吸収されることで、蛍光体が励起されて発光する。
特開2006-210887号公報
 前記特許文献1等に記載の光学装置では、発光効率の向上が望まれており、発光効率の向上において、前記励起光の吸収効率の向上は重要な要因である。
 本発明の目的は、励起光の吸収効率を向上可能な光学素子、光学装置、画像表示装置および励起光の吸収率向上方法を提供することにある。
 前記目的を達成するために、本発明の光学素子は、
発光層と、反射層とを有し、
前記発光層は、発光体を含む層を有し、
前記発光層と前記反射層とは、積層されており、
前記発光層において、前記反射層が積層されていない側の表面が第1の反射面であり、
前記発光層と前記反射層との界面が第2の反射面であり、
前記第1の反射面で反射される励起光と、前記第2の反射面で反射される励起光とを干渉させる、光学素子である。
 本発明の光学装置は、
前記本発明の光学素子と、
前記光学素子の前記第1の反射面に励起光を照射する励起光光源とを含む。
 本発明の画像表示装置は、
前記本発明の光学装置と、
画像を表示可能な画像表示部とを含む。
 本発明の励起光の吸収率向上方法は、
発光層と、反射層とを有し、
前記発光層は、発光体を含む層を有し、
前記発光層と前記反射層とは、積層されており、
前記発光層において、前記反射層が積層されていない側の表面が第1の反射面であり、
前記発光層と前記反射層との界面が第2の反射面である光学素子において、
前記第1の反射面で反射される励起光と、前記第2の反射面で反射される励起光とを干渉させることで、前記第1の反射面側から入射される励起光の、前記発光層における吸収率を向上させる、方法である。
 本発明によれば、励起光の吸収効率を向上可能な光学素子、光学装置、画像表示装置および励起光の吸収率向上方法を提供できる。
図1は、本発明の光学素子の一例(実施形態1)の構成を示す概略斜視図である。 図2は、図1に示す光学素子のI-I方向に見た模式断面図である。 図3は、前記実施形態1の光学素子の動作を説明する模式断面図である。 図4は、本発明の光学素子のその他の例(実施形態2)の構成を示す概略斜視図である。 図5は、図4に示す光学素子のII-II方向に見た模式断面図である。 図6は、本発明の光学素子のさらにその他の例(実施形態3)の構成を示す概略斜視図である。 図7は、図6に示す光学素子のIII-III方向に見た模式断面図である。 図8は、本発明の光学素子のさらにその他の例(実施形態4)の構成を示す概略斜視図である。 図9は、図8に示す光学素子のIV-IV方向に見た模式断面図である。 図10は、本発明の光学素子のさらにその他の例(実施形態5)の構成を示す概略斜視図である。 図11は、図10に示す光学素子のV-V方向に見た模式断面図である。 図12は、本発明の光学素子のさらにその他の例(実施形態6)の構成を示す概略斜視図である。 図13は、図12に示す光学素子のVI-VI方向に見た模式断面図である。 図14は、本発明の光学素子のさらにその他の例(実施形態7)の構成を示す上面図である。 図15は、本発明の光学装置の一例(実施形態8)の構成を示す概略斜視図である。 図16は、図15に示す光学装置のVII-VII方向に見た模式断面図である。 図17は、本発明の画像表示装置(投射型表示装置)の一例(実施形態9)の構成を示す概略斜視図である。 図18は、本発明の実施例1における光学素子の励起光吸収率を示すグラフである。 図19は、本発明の実施例1における光学素子の励起光反射率を示すグラフである。 図20は、本発明の実施例2における光学素子の励起光吸収率を示すグラフである。 図21は、本発明の実施例3における光学素子の励起光吸収率を示すグラフである。 図22は、本発明の実施例4における光学素子の励起光吸収率を示すグラフである。 図23は、本発明の実施例4における光学素子の励起光吸収率を示すグラフである。 図24は、本発明の実施例5における光学素子の励起光吸収率を示すグラフである。 図25は、本発明の実施例6の光学素子において、励起光吸収率が100%となる屈折率差と蛍光層の厚みとの関係を示すグラフである。 図26は、実施形態13の光学装置の構成を示す概略斜視図である。 図27は、実施形態14の光学装置の構成を示す概略斜視図である。 図28は、実施形態15の光学装置の構成を示す概略斜視図である。 図29は、実施形態16の光学装置の構成を示す概略斜視図である。
 以下、本発明の光学素子、光学装置、画像表示装置および励起光の吸収率向上方法について、図面を参照して詳細に説明する。ただし、本発明は、以下の実施形態に限定されない。なお、以下の図1から図29において、同一部分には、同一符号を付し、その説明を省略する場合がある。また、図面においては、説明の便宜上、各部の構造は適宜簡略化して示す場合があり、各部の寸法比等は、実際とは異なり、模式的に示す場合がある。
(実施形態1)
 本実施形態の光学素子は、前記発光層が蛍光体を含む蛍光層からなる光学素子の一例である。図1および図2に、本実施形態の光学素子の構成を示す。図1は、本実施形態の光学素子の概略斜視図である。図2は、図1のI-I方向に見た(xz平面に沿って切断した)場合の模式断面図である。
 図1および図2に示すように、本実施形態の光学素子10Aは、平面形状が矩形であり、反射層101Aと蛍光層103Aとを、主要な構成要素として含む。蛍光層103Aは、反射層101Aに積層されている。蛍光層103Aは、励起光により励起される蛍光体を含む(図示せず)。前記蛍光体により、蛍光層103Aは、例えば、励起光の波長を変換して、光を放出(発光)できる。前記発光については、後述する。
 光学素子10Aは、雰囲気105A中に配置されている。光学素子10Aは、雰囲気105Aと蛍光層103Aとの界面107Aと、蛍光層103Aと反射層101Aとの界面106Aとが、平行になるように構成されている。蛍光層103Aの屈折率の実部は、雰囲気105Aの屈折率の実部と異なっている。このため、界面107Aは、本発明における「第1の反射面」として機能する。一方、反射層101Aは、前記励起光を反射可能である。このため、界面106Aは、本発明における「第2の反射面」として機能する。前記「反射面」は、例えば、位相差を与える機能を有する反射面である。
 雰囲気105Aは、その屈折率の実部が蛍光層103Aの屈折率の実部と異なる気体であり、蛍光層103Aに含まれる前記蛍光体の寿命の観点から、水分、酸素等を含まない気体が望ましい。雰囲気105Aは、例えば、アルゴン、窒素等の不活性ガス雰囲気があげられる。光学素子10Aを前記雰囲気下で使用する場合、実用上、例えば、前記雰囲気で満たされた筐体内に、光学素子10Aを配置する。
 光学素子10Aでは、第1の反射面107Aで反射される励起光と、第2の反射面106Aで反射される励起光とを干渉させることにより、蛍光層103A内に励起光を閉じ込めることができる。この干渉効果により、第1の反射面107Aから入射される励起光の、蛍光層103Aにおける吸収率を調整できる。前記干渉効果は、第1の反射面107Aと第2の反射面106Aとの間の光学的距離を、前記励起光の可干渉距離未満とすることにより得られる。前記光学的距離は、実空間における距離と屈折率の実部との積であり、前記可干渉距離は、光を二つに分け、それらを再度重ねるときの、光の干渉現象が現れる距離の上限である。前記可干渉距離は、例えば、発光ダイオード、縦マルチモード発振の半導体レーザ等では、3~30μmである。したがって、光学素子10Aでは、第1の反射面107Aと第2の反射面106Aとの光学的距離、すなわち、蛍光層103Aの光学的厚みが所定の励起光の前記可干渉距離未満となるように、蛍光層103Aの厚みおよび屈折率の少なくとも一方が調整されている。ここで、光学的厚みは、「層の厚みにその層の屈折率を掛け合わせたもの」である。このようにすることで、例えば、所定の波長・偏光・入射角θinの励起光に対して、所望の吸収率を得られる。前記入射角は、例えば、20度以上であり、好ましくは40度以上であり、より好ましくは60度以上である。
 前述のように、前記励起光の吸収効率を向上させるには、例えば、蛍光体を含む層を厚くするなどして、蛍光体の濃度を高めることが想定される。一方、本発明者らは、鋭意研究を重ねた結果、前記励起光の干渉効果を利用して、前記励起光を前記蛍光層(発光層)に閉じ込める構造により、前記励起光の吸収効率を向上できることを見出し、本発明を完成させるに至った。本発明によれば、前記励起光の吸収効率の向上により、例えば、高い発光効率と高い光出力定格を備える光学素子を実現できる。
 つぎに、図3を参照して、前記干渉効果を、光学素子10Aの動作に基づき、詳細に説明する。図3は、図2と同様に、光学素子10Aの模式断面図である。なお、図3では、説明の便宜上、各構成部材における平行斜線の図示を省略している。
 図3に示すように、励起光108Aが、第1の反射面107A側から蛍光層103Aに入射すると、雰囲気105Aと蛍光層103Aとの界面107Aにおいて、励起光108Aは、2つの仮想光線に分離される。なお、前記仮想光線は、前記干渉効果の説明のために導入した仮想的な光線であり、実際には観測できないものである。
 一方の前記仮想光線(第1の仮想光線109A)は、界面107Aで反射された励起光に対応し、第1の仮想反射光線である。他方の前記仮想光線(第2の仮想光線110A)は、界面107Aを透過し、蛍光層103Aと反射層101Aとの界面(第2の反射面)106Aで反射され、再度、界面107Aを透過する光に対応し、第2の仮想反射光線である。第2の仮想光線110Aは、界面107Aを透過する際に、反射光である第3の仮想光線111Aを発生させる。第3の仮想光線111Aは、第2の仮想光線110Aと同様の経路で、再度、界面107Aに入射する。この際、第3の仮想光線111Aは、第2の仮想光線110Aと同様に、界面107Aを透過(第3の仮想反射光線)すると共に、反射光である新たな仮想光線を発生させる。この繰り返しによって、雰囲気105A側に、前記第1の仮想反射光線、前記第2の仮想反射光線、前記第3の仮想反射光線、・・・、第N(Nは整数)の仮想反射光線が発生する。
 励起光108Aから分割された仮想光線は、励起光108Aの可干渉距離未満の範囲内において、それぞれ干渉する。すなわち、前記仮想反射光線の光学的距離の差が可干渉距離よりも短い範囲では、干渉効果により、それぞれの仮想反射光線の振幅および位相差に応じて、前記仮想反射光線同士が強めあったり、弱めあったりする。その結果を反映して、励起光108Aの蛍光層103Aでの吸収量が決定される。
 前記干渉効果により前記仮想反射光線同士が強めあう条件では、前記仮想光線が蛍光層103Aを伝搬する距離から求められる励起光108Aの吸収率よりも、実際得られる励起光108Aの吸収率が低くなる。一方、前記干渉効果により前記仮想反射光線同士が弱めあう条件では、前記仮想反射光線同士の位相がずれることにより、前記仮想光線が干渉を伴わないで蛍光層103Aを伝搬する距離から求められる励起光108Aの吸収率よりも、実際得られる励起光108Aの吸収率が高くなる。すなわち、前記仮想反射光線同士の光学的距離を調整することで、蛍光層103Aによる吸収率を制御している。光学素子10Aでは、蛍光層103Aの厚みおよび屈折率の少なくとも一方が調整されることにより、励起光108Aの蛍光層103Aにおける吸収率が制御されており、蛍光層103A自身が吸収率制御構造として機能する。
 前記吸収率制御構造により蛍光層103Aを伝搬する距離から求められる励起光108Aの吸収率よりも、実際得られる励起光108Aの吸収率が高くなる条件は、下記式(1)を満たす場合である。下記式(1)において、雰囲気105A側から蛍光層103Aに入射角θinで入射した励起光に対して、界面107Aにおいて、前記励起光が入射する際の反射振幅をr12、反射率をR12とする。蛍光層103Aから雰囲気105Aへ前記励起光が入射(透過)する際の反射振幅をr21、反射率をR21とする。雰囲気105Aから蛍光層103Aへ前記励起光が入射する際の透過振幅をt12、透過率をT12とする。蛍光層103Aから雰囲気105Aへ前記励起光が入射(透過)する際の透過振幅をt21、透過率をT21とする。また、界面106Aにおいて、蛍光層103Aから反射層101Aへ前記励起光が入射する際の反射振幅をr23、反射率をR23とする。前記励起光が蛍光層103Aを1往復する際の蛍光層103Aでの吸収率をA、虚数単位をi、蛍光層103Aの屈折率をn、蛍光層103Aの厚みをdとする。雰囲気105Aから蛍光層103A内に前記励起光が入射するときの屈折角をθ、励起光の真空中での波長をλとする。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 前記式(1)において、左辺は、前記励起光が雰囲気105A側から蛍光層103Aに入射する際に、前記仮想反射光線同士が干渉効果の影響を受けた励起光の反射率に対応し、右辺は、前記仮想反射光線同士が干渉しない場合の励起光の反射率に対応している。本発明においては、反射率と吸収率には真逆の関係があるため、前記式(1)を満たす場合、干渉を伴わないで蛍光層103Aを伝搬する距離から求められる励起光108Aの吸収率より、実際得られる励起光108Aの吸収率が高くなる。すなわち、左辺が0に近づくほど、前記励起光が蛍光層103A内に閉じ込められる割合が増加し、蛍光層103Aの前記励起光に対する吸収率が増加する。左辺が0となる条件では、蛍光層103Aに入射した前記励起光の全てが蛍光層103A内に閉じ込められる。したがって、前記式(1)の左辺が所望の反射率(吸収率と真逆の関係)を与えるよう、蛍光層103Aの厚みおよび屈折率の少なくとも一方を調整することにより、前記励起光に対して所望の吸収率を有する光学素子を、例えば、非常に薄い厚みであっても実現できる。
 本発明では、前記励起光の波長、入射角等に対して特に制限がない場合、これらも含めて、所望の吸収率が得られるかを検討できる。後述する実施形態2以降の光学素子は、本実施形態の光学素子とは、層構成が異なる。このため、前記式(1)をそのまま使用できないが、前記吸収率制御構造についての考え方は同様である。前記吸収率制御構造の設計には、例えば、多層膜反射率の数値シミュレーションを使用し、所望の吸収率が得られる条件を設計すればよい。
 光学素子10Aでは、第1の反射面107Aと第2の反射面106Aとの光学的距離、すなわち、蛍光層103Aの光学的厚みは、前述のように、所定の励起光の可干渉距離未満となるように設定される。前記光学的厚みは、例えば、光学素子10Aの冷却の観点から、薄いほど好ましく、具体的には、30μm未満が好ましく、より好ましくは10μm未満、さらに好ましくは1μm未満である。
 前記光学的厚みは、例えば、光出力定格の観点から、厚いほど好ましく、具体的には、1nm以上が好ましく、より好ましくは50nm以上であり、さらに好ましくは100nm以上である。前記光学的厚みを前述のように設定するのは、光出力の理論的な最大値が、蛍光層103Aの蛍光体の発光寿命に制限されるためである。このため、より高出力を得るには、より多くの蛍光体が蛍光層103Aに含まれていることが望ましい。実際には、光学素子として必要な光出力に応じて、蛍光層103Aの光学的厚みを決定するため、前記光学的厚みには、前述の光学素子の冷却と高出力の両立のための最適値が存在する。前記光学的厚みは、1nm以上30μm未満の範囲が好ましく、より好ましくは50nm以上10μm未満の範囲、さらに好ましくは100nm以上1μm未満の範囲である。
 反射層101Aは、前記励起光を反射できるものであればよく、構成材料、構造等は特に制限されない。反射層101Aは、例えば、金属層、金属と誘電体とを交互に積層した金属-誘電体多層膜、低屈折率誘電体と高屈折率誘電体とを交互に積層した誘電体多層膜(分布ブラッグ反射鏡)等があげられる。前記金属層の構成材料は、Ag、Al、Pt、Cu、Au、Pd、Rh、Os、Ru、Ir、Fe、Sn、Zn、Co、Ni、Cr、Ti、Ta、W、In等、またはそれらの合金等があげられる。
 反射層101Aは、光学素子10Aの冷却の観点から、熱伝導率の高いものが好ましく、前記励起光の有効利用の観点から、反射率が高いものが好ましい。具体的には、反射層101Aは、前記冷却の観点から、金属層が好ましく、さらに前記励起光の有効利用の観点から、前記励起光の波長に対する反射率の高い金属層がさらに好ましい。前記励起光の波長に対する反射率の高い金属層の構成材料は、前記励起光の励起波長が600nm未満の場合は、Ag、Alまたは、これらの合金等があげられ、前記励起光の波長が600nm以上の場合は、Ag、Al、Cu、Auまたは、これらの合金等があげられる。前記反射率は、60%以上が好ましく、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは100%である。
 反射層101Aの厚みは、特に制限されず、前記金属層の場合は、前記励起光の波長に対する反射率が厚みによって変化しなくなる程度の厚みであることが好ましい。具体的には、例えば、0.01~1000μmの範囲、好ましくは0.2~100μmの範囲、より好ましくは0.5~10μmの範囲である。前記誘電体膜の場合は、極力薄いことが好ましい。具体的には、例えば、0.1~1000μmの範囲、好ましくは0.1~100μmの範囲、より好ましくは0.1~10μmの範囲である。光学素子10Aでは、例えば、反射層101Aの蛍光層103Aが積層されていない側に、反射層101Aより熱伝導率の高い部材を配置してもよい。これにより、例えば、光学素子10Aを、より冷却できる。
 蛍光層103Aは、前記蛍光体を含み、前記光学的厚みが前述の範囲となる層であり、厚みおよび屈折率の少なくとも一方を調整可能であればよく、構成材料、構造等は特に制限されない。蛍光層103Aは、例えば、異なる波長の光を発する蛍光体を複数種類含んでもよい。前記励起光の吸収効率の観点から、蛍光層103Aの吸収係数は、高いほど好ましい。また、蛍光層103Aの厚みは、その上限が、30μm未満が好ましく、より好ましくは10μm未満、さらに好ましくは1μm未満であり、その下限が、1nm以上が好ましく、より好ましくは50nm以上、さらに好ましくは100nm以上である。蛍光層103Aの厚みは、1nm以上30μm未満の範囲が好ましく、より好ましくは50nm以上10μm未満の範囲、さらに好ましくは100nm以上1μm未満の範囲である。
 蛍光層103Aは、例えば、前記蛍光体を光透過性部材に分散させた層である。前記蛍光体の形状は、例えば、粒子状である。前記蛍光体は、例えば、有機蛍光体、無機蛍光体、半導体蛍光体等があげられる。光学素子10Aでは、前述のように、前記励起光の吸収率の調整に、前記干渉効果を使用するため、蛍光層103Aの散乱強度は、低いことが好ましい。前記蛍光体の粒子径は、特に制限されないが、前記散乱強度は、前記蛍光体の粒子径と相関があり、前記蛍光体の粒子径が小さいほど低くなるため、前記蛍光体は、ナノ蛍光体が好ましい。前記ナノ蛍光体の粒子径は、特に制限されず、例えば、0.1~500nmの範囲であり、好ましくは0.1~100nmの範囲、より好ましくは0.1~10nmの範囲である。前記励起光の吸収効率および発光効率の観点から、前記蛍光体は、半導体蛍光体が好ましい。
 前記有機蛍光体は、例えば、ローダミン(Rhodamine 6G)、スルホローダミン(Sulforhodamine 101)等があげられる。前記無機蛍光体は、イットリウム・アルミニウム・ガーネット、YS:Eu、LaS:Eu、BaMgAlxOy:Eu、BaMgAlxOy:Mn、(Sr、Ca、Ba)(PO:Cl:Eu等があげられる。
 前記半導体蛍光体は、例えば、コア/シェル構造のもの、マルチコアシェル構造のもの、またはそれらの表面に有機化合物が結合したもの等があげられる。前記マルチコアシェル構造の半導体蛍光体は、具体的には、例えば、コア/シェル構造を有する半導体蛍光体の、前記シェル部の外側にさらに他の材料からなるシェル部が設けられたコア/シェル/シェル構造;中央部にシェル部が配置され、このシェル部を覆うようにコア部が設けられ、さらに前記コア部の外側を覆うようにシェル部が設けられたシェル/コア/シェル構造;等の半導体蛍光体があげられる。
 前記コア部の形成材料は、例えば、IV族半導体、IV-IV族半導体、III-V族化合物半導体、II-VI族化合物半導体、I-VIII族化合物半導体、IV-VI族化合物半導体等の半導体材料があげられる。また、前記コア部の形成材料は、例えば、混在する結晶が1種の元素からなる単体半導体、2種の元素からなる2元化合物半導体、3種以上の元素からなる混晶半導体等の半導体材料でもよい。発光効率向上の観点から、前記コア部は、直接遷移型半導体材料から構成されていることが好ましい。また、前記コア部を構成する半導体材料は、可視光を発するものが好ましい。耐久性の観点から、例えば、前記形成材料は、原子の結合力が強く化学的安定性が高い、III-V族化合物半導体材料が好ましい。
 前記半導体蛍光体の発光スペクトルのピーク波長の調整の容易性から、前記コア部は、前記混晶半導体材料から構成されていることが好ましい。一方、製造の容易性の観点から、前記コア部は、4元以下の混晶からなる半導体材料から構成されていることが好ましい。
 前記コア部を構成可能な2元化合物半導体材料は、例えば、InP、InN、InAs、GaAs、CdSe、CdTe、ZnSe、ZnTe、PbS、PbSe、PbTe、CuCl等があげられる。これらの中でも、環境負荷等の観点から、InP、InNが好ましい。製造の容易性の観点から、CdSe、CdTeが好ましい。
 前記コア部を構成可能な3元混晶の半導体材料は、例えば、InGaP、AlInP、InGaN、AlInN、ZnCdSe、ZnCdTe、PbSSe、PbSTe、PbSeTe等があげられる。これらの中でも、環境に調和した材料であり、外界からの影響を受けにくい半導体蛍光体の製造の観点から、InGaP、InGaNが好ましい。
 前記シェル部の材料は、例えば、IV族半導体、IV-IV族半導体、III-V族化合物半導体、II-VI族化合物半導体、I-VIII族化合物半導体、IV-VI族化合物半導体等の半導体材料があげられる。また、前記シェル部の形成材料は、例えば、混在する結晶が1種の元素からなる単体半導体、2種の元素からなる2元化合物半導体、3種以上の元素からなる混晶半導体等の半導体材料でもよい。発光効率向上の観点から、前記シェル部の形成材料は、前記コア部の形成材料より高いバンドギャップエネルギーを有する半導体材料であることが好ましい。
 前記コア部の保護機能の観点から、前記シェル部は、原子の結合力が強く化学的安定性が高いIII-V族化合物半導体材料から形成されていることが好ましい。一方、製造の容易性の観点から、前記シェル部は、4元以下の混晶からなる半導体材料から構成されていることが好ましい。
 前記シェル部を構成可能な2元化合物半導体材料は、例えば、AlP、GaP、AlN、GaN、AlAs、ZnO、ZnS、ZnSe、ZnTe、MgO、MgS、MgSe、MgTe、CuCl、SiC等があげられる。これらの中でも、環境負荷等の観点から、AlP、GaP、AlN、GaN、ZnO、ZnS、ZnSe、ZnTe、MgO、MgS、MgSe、MgTe、CuCl、SiCが好ましい。
 前記シェル部を構成可能な3元混晶の半導体材料は、例えば、AlGaN、GaInN、ZnOS、ZnOSe、ZnOTe、ZnSSe、ZnSTe、ZnSeTe等があげられる。これらの中でも、環境に調和した材料であり、外界からの影響を受けにくい半導体蛍光体の製造の観点から、AlGaN、GaInN、ZnOS、ZnOTe、ZnSTeが好ましい。
 前記半導体蛍光体の表面に結合される有機化合物は、例えば、機能部であるアルキル基と前記コア部または前記シェル部との結合部からなる有機化合物が好ましい。具体的には、例えば、アミン化合物、ホスフィン化合物、ホスフィンオキシド化合物、チオール化合物、脂肪酸等があげられる。
 前記ホスフィン化合物は、例えば、トリブチルホスフィン、トリヘキシルホスフィン、トリオクチルホスフィン等があげられる。
 前記ホスフィンオキシド化合物は、例えば、1-ジクロロホスフィノルヘプタン、1-ジクロロホスフィノルノナン、t-ブチルホスホン酸、テトラデシルホスホン酸、ドデシルジメチルホスフィンオキシド、ジオクチルホスフィンオキシド、ジデシルホスフィンオキシド、トリブチルホスフィンオキシド、トリペンチルホスフィンオキシド、トリヘキシルホスフィンオキシド、トリオクチルホスフィンオキシド等があげられる。
 前記チオール化合物は、例えば、トリブチルサルファイド、トリヘキシルサルファイド、トリオクチルサルファイド、1-ヘプチルチオール、1-オクチルチオール、1-ノナンチオール、1-デカンチオール、1-ウンデカンチオール、1-ドデカンチオール、1-トリデカンチオール、1-テトラデカンチオール、1-ペンタデカンチオール、1-ヘキサデカンチオール、1-オクタデカンチオール、ジヘキシルサルファイド、ジヘプチルサルファイド、ジオクチルサルファイド、ジノニルサルファイド等があげられる。
 前記アミン化合物は、例えば、ヘプチルアミン、オクチルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、トリデシルアミン、テトラデシルアミン、ヘキサデシルアミン、オクタデシルアミン、オレイルアミン、ジオクチルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、トリノニルアミン等があげられる。
 前記脂肪酸は、例えば、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、オレイル酸等があげられる。
 発光の単色性が高いことが求められる用途では、前記半導体蛍光体の粒子径が揃っていることが好ましく、発光の演色性が高いことが求められる用途では、前記半導体蛍光体の粒子径が揃っていないことが好ましい。これは、前記半導体蛍光体から放出される光の波長(発光波長、以下、同様。)が、前記半導体蛍光体の粒子径に依存しているためである。
 前記光透過性部材は、蛍光層103Aに、前記蛍光体を分散配置させた状態で封止するためのものであり、蛍光層103Aに入射された励起光108Aおよび前記蛍光体から発せられる光を吸収しないものが好ましい。前記光透過性部材は、水分、酸素等を透過しない材料で構成されていることが好ましい。このように構成すれば、例えば、前記光透過性部材によって蛍光層103A内部への水分、酸素等の進入を防止でき、前記蛍光体が水分、酸素等により影響を受けるのを緩和できる。このため、前記蛍光体の耐久性を向上できる。前記光透過性部材の形成材料は、例えば、シリコーン樹脂、エポキシ樹脂、アクリル樹脂、フッ素樹脂、ポリカーボネート樹脂、ポリイミド樹脂、尿素樹脂等の光透過性樹脂材料;酸化アルミニウム、酸化ケイ素、イットリア等の光透過性無機材料等があげられる。
 光学素子10Aを製造する方法は、特に制限されず、例えば、下記の方法により製造できる。すなわち、まず、反射層101Aを形成する。反射層101Aが前記金属層の場合、例えば、基板上にスパッタまたは蒸着等の成膜技術により、前記金属層である反射層101Aを成膜してもよいし、前記金属の表面を鏡面加工して反射層101Aを形成してもよい。反射層101Aが前記誘電体多層膜の場合、例えば、基板上にスパッタまたは蒸着等の成膜技術により、低屈折率材料と高屈折率材料とを交互に積層して、反射層101Aを形成する。
 つぎに、反射層101A上に、蛍光層103Aを形成する。蛍光層103Aの形成方法は、例えば、スピンコート法、スプレー法、前記蛍光体の自己組織化法、マイクロコンタクトプリント等があげられる。これらの中でも、吸収係数の高い蛍光層103Aを実現できるため、前記自己組織化法およびマイクロコンタクトプリントが、特に好ましい。前記自己組織化法では、例えば、前記蛍光体が自然と密に配列されることにより、蛍光層103A中の蛍光体の密度を高くできるため、蛍光層103Aの励起光吸収率を向上できる。また、前記マイクロコンタクトプリントでは、例えば、蛍光層103A全体に亘って圧力がかかり、前記蛍光体が密に配列されることにより、蛍光層103A中の蛍光体の密度を高くできるため、蛍光層103Aの励起光吸収率を向上できる。
 図1および図2に示す本実施形態の光学素子は、その平面形状が矩形であるが、本発明は、これには限定されない。前記光学素子の平面形状は、例えば、円形(または楕円形)、多角形等でもよい。以下の実施形態においても同様である。また、本実施形態の光学素子において、前記発光層は、蛍光体を含む層(蛍光層)からなるが、本発明は、この例には限定されない。前記発光層は、発光体を含む層を含めばよく、前記発光体は、前記蛍光体の他にも、例えば、燐光体等があげられる。前記燐光体は、例えば、従来公知のものがあげられる。
 また、本実施形態の光学素子において、前記雰囲気と前記蛍光層との界面、および前記蛍光層と前記反射層との界面は、平行かつ平坦であるが、本発明は、これには限定されない。前記励起光の干渉による吸収率制御が機能する範囲において、前記両界面の少なくとも一方に構造体が形成されている形態、両界面が平行でない形態等もとることができる。この場合、前記光学的距離(本実施形態の光学素子では、前記蛍光層の光学的厚み)の最小値を、前記可干渉距離未満に設定する。また、前記光学素子のハンドリングの容易性の観点から、例えば、前記反射層の前記蛍光層が積層されていない側に、基板が配置されてもよい。
(実施形態2)
 本実施形態の光学素子は、前記発光層が誘電体層を含む光学素子の一例である。図4および図5に、本実施形態の光学素子の構成を示す。図4は、本実施形態の光学素子の概略斜視図である。図5は、図4のII-II方向に見た(xz平面に沿って切断した)場合の模式断面図である。
 本実施形態の光学素子は、前記発光層が2つの誘電体層を含み、前記誘電体層が前記発光層の両面に設けられていること以外は、前記実施形態1の光学素子と同様の構成を有する。図4および図5に示すように、本実施形態の光学素子10Bは、平面形状が矩形であり、反射層101Bと、誘電体層102Bと、蛍光層103Bと、誘電体層104Bとを主要な構成要素として含む。光学素子10Bでは、反射層101B、誘電体層102B、蛍光層103Bおよび誘電体層104Bが前記順序で積層されている。
 光学素子10Bは、雰囲気105B中に配置されている。光学素子10Bは、雰囲気105Bと誘電体層104Bとの界面107Bと、誘電体層102Bと反射層101Bとの界面106Bとが、平行になるように構成されている。誘電体層104Bの屈折率の実部は、雰囲気105Bの屈折率の実部と異なっている。このため、界面107Bは、本発明における「第1の反射面」として機能する。一方、反射層101Bは、前記励起光を反射可能である。このため、界面106Bは、本発明における「第2の反射面」として機能する。
 光学素子10Bでは、第1の反射面107Bで反射される励起光と、第2の反射面106Bで反射される励起光とを干渉させることにより、蛍光層103B内に励起光を閉じ込めることができる。この干渉効果により、第1の反射面107Bから入射される励起光の、蛍光層103Bにおける吸収率を調整できる。前記干渉効果は、第1の反射面107Bと第2の反射面106Bとの間の光学的距離、すなわち、誘電体層102B、蛍光層103Bおよび誘電体層104Bの合計の光学的厚みを、前記励起光の可干渉距離未満とすることにより得られる。したがって、光学素子10Bでは、前記光学的距離が所定の励起光の前記可干渉距離未満となるように、誘電体層102B、蛍光層103Bおよび誘電体層104Bの少なくとも一つの層の、厚みおよび屈折率の少なくとも一方が調整されている。このようにすることで、例えば、所定の波長・偏光・入射角θinの励起光に対して、所望の吸収率を得られる。
 光学素子10Bにおける前記干渉効果は、前記実施形態1の光学素子における干渉効果と同様である。具体的には、前記励起光が第1の反射面107B側から誘電体層104Bに入射すると、雰囲気105Bと誘電体層104Bとの界面107Bにおいて、前記実施形態1と同様に、多数の仮想反射光線が発生する。この仮想反射光線同士の干渉により、前記励起光の蛍光層103Bでの吸収量が決定される。光学素子10Bでは、誘電体層102B、蛍光層103Bおよび誘電体層104Bの少なくとも一つの層の、厚みおよび屈折率の少なくとも一方が調整されることにより、前記励起光の蛍光層103Bにおける吸収率が制御されており、誘電体層102B、蛍光層103Bおよび誘電体層104Bが吸収率制御構造として機能する。
 光学素子10Bによれば、誘電体層102Bおよび誘電体層104Bを備えることにより、例えば、光学素子の耐久性を向上できる。誘電体層102Bが蛍光層103Bの第2の反射面106B側に配置されていることにより、例えば、光学素子の励起光吸収効率の制御性や、発光効率を向上できる。
 誘電体層102Bおよび誘電体層104Bは、誘電体を含み、前記吸収率制御機構として機能する範囲において、厚みおよび屈折率を適宜設定できる。蛍光層103Bの寿命の観点から、誘電体層102Bおよび誘電体層104Bは、水分、酸素等を透過しない材料で構成されていることが好ましい。このように構成すれば、例えば、誘電体層102Bおよび誘電体層104Bにより、蛍光層103B内部への水分、酸素等の進入が防止でき、蛍光層103B内の蛍光体が水分、酸素等により影響を受けることを緩和できる。このため、例えば、蛍光層103B内の蛍光体の耐久性を向上でき、光学素子10Bの寿命を長くすることができる。前記水分、酸素等を透過しない材料は、例えば、前述の光透過性部材と同様のものがあげられる。励起光の吸収効率および発光効率の観点から、誘電体層102Bおよび誘電体層104Bの形成材料は、例えば、前記励起光の波長および蛍光層103Bの発光波長において、吸収を持たない材料が好ましい。前記励起光の波長および蛍光層103Bの発光波長において吸収を持たない材料は、例えば、前述の光透過性部材と同様のものがあげられる。
 誘電体層102Bの厚みは、特に制限されず、例えば、0.1~1000nmの範囲であり、好ましくは1~500nmの範囲であり、より好ましくは5~300nmの範囲である。前記厚みは、反射層101Bが前記金属層である場合、例えば、5nm以上とすることが好ましい。このような厚みとすることで、例えば、前記蛍光体から放出される光のうち、反射層101B中に電子-正孔対を励起し、直ちに熱として失われる光を低減でき、光学素子10Bの発光効率を向上できる。さらに、反射層101Bが前記金属層である場合、誘電体層102Bの厚みは、50nm以上とすることがより好ましい。このような厚みとすることで、例えば、前記蛍光体から放出される光のうち、前述の電子-正孔対を励起による損失の低減に加えて、反射層101B表面に表面プラズモンを励起する割合が低減されることにより、光学素子10Bの発光効率をさらに向上できる。
(実施形態3)
 本実施形態の光学素子は、導光体層を有する光学素子の一例である。図6および図7に、本実施形態の光学素子の構成を示す。図6は、本実施形態の光学素子の概略斜視図である。図7は、図6のIII-III方向に見た(xz平面に沿って切断した)場合の模式断面図である。
 本実施形態の光学素子は、導光体層を含み、前記導光体層が前記発光層の前記反射層が積層されていない側に配置されていること以外は、前記実施形態1の光学素子と同様の構成を有する。図6および図7に示すように、本実施形態の光学素子10Cは、平面形状が矩形であり、反射層101Cと、蛍光層103Cと、導光体層205Cとを主要な構成要素として含む。光学素子10Cでは、反射層101C、蛍光層103Cおよび導光体層205Cが前記順序で積層されている。
 光学素子10Cは、導光体層205Cと蛍光層103Cとの界面107Cと、蛍光層103Cと反射層101Cとの界面106Cとが、平行になるように構成されている。蛍光層103Cの屈折率の実部は、導光体層205Cの屈折率の実部と異なっている。このため、界面107Cは、本発明における「第1の反射面」として機能する。一方、反射層101Cは、前記励起光を反射可能である。このため、界面106Cは、本発明における「第2の反射面」として機能する。
 光学素子10Cでは、第1の反射面107Cで反射される励起光と、第2の反射面106Cで反射される励起光とを干渉させることにより、蛍光層103C内に励起光を閉じ込めることができる。この干渉効果により、第1の反射面107Cから入射される励起光の、蛍光層103Cにおける吸収率を調整できる。前記干渉効果は、第1の反射面107Cと第2の反射面106Cとの間の光学的距離、すなわち、蛍光層103Cの光学的厚みを、前記励起光の可干渉距離未満とすることにより得られる。したがって、光学素子10Cでは、前記光学的距離が所定の励起光の前記可干渉距離未満となるように、蛍光層103Cの厚みおよび屈折率の少なくとも一方が調整されている。このようにすることで、例えば、所定の波長・偏光・入射角θinの励起光に対して、所望の吸収率を得られる。
 光学素子10Cにおける前記干渉効果は、前記励起光が導光体層205Cの側面から入射し、導光体層205C中を伝搬した後に、導光体層205Cと蛍光層103Cとの界面107Cに入射すること以外は、前記実施形態1の光学素子における干渉効果と同様である。具体的には、前記励起光が導光体層205Cの側面から入射し、導光体層205C中を伝搬した後に、第1の反射面107C側から蛍光層103Cに入射すると、導光体層205Cと蛍光層103Cとの界面107Cにおいて、前記実施形態1と同様に、多数の仮想反射光線が発生する。この仮想反射光線同士の干渉により、前記励起光の蛍光層103Cでの吸収量が決定される。光学素子10Cでは、蛍光層103Cの厚みおよび屈折率の少なくとも一方が調整されることにより、前記励起光の蛍光層103Cにおける吸収率が制御されており、蛍光層103Cが吸収率制御構造として機能する。
 光学素子10Cによれば、導光体層205Cを備えることにより、例えば、光学素子の耐久性および光学素子の配置の自由度を向上できる。
 導光体層205Cは、その屈折率の実部が蛍光層103Cの屈折率の実部と異なる形成材料で構成されている。蛍光層103Cの寿命の観点から、導光体層205Cは、水分、酸素等を透過しない材料で構成されていることが好ましい。このように構成すれば、例えば、導光体層205Cにより、蛍光層103C内部への水分、酸素等の進入が防止でき、蛍光層103C内の蛍光体が水分、酸素等により影響を受けることを緩和できる。このため、例えば、蛍光層103C内の蛍光体の耐久性を向上でき、光学素子10Cの寿命を長くすることができる。前記水分、酸素等を透過しない材料は、例えば、前述の光透過性部材と同様のものがあげられる。励起光の吸収効率および発光効率の観点から、導光体層205Cの形成材料は、例えば、前記励起光の波長および蛍光層103Cの発光波長において、吸収を持たないことが好ましい。前記励起光の波長および蛍光層103Cの発光波長において吸収を持たない材料は、例えば、前述の光透過性部材と同様のものがあげられる。また、導光体層205Cの蛍光層103Cが積層されていない面に、蛍光層103Cの発光波長に対して、反射率を低減させる構造を有していることが好ましい。具体的には、例えば、前記発光波長よりも小さな周期的構造、すなわちモスアイ構造、誘電体多層膜からなる無反射コーティング等があげられる。
 図6および図7に示す本実施形態の光学素子において、前記導光体層は、その平面サイズが前記蛍光層と同じサイズであるが、本発明は、これには限定されない。前記導光体層は、その平面サイズが前記蛍光層より大きくてもよい。このようにすることで、例えば、前記励起光を照射する光源(励起光光源)の配置(例えば、図6におけるxy面内の配置)の自由度を向上できる。
(実施形態4)
 本実施形態の光学素子は、1/4波長板および反射型偏光子を有する光学素子の一例である。図8および図9に、本実施形態の光学素子の構成を示す。図8は、本実施形態の光学素子の概略斜視図である。図9は、図8のIV-IV方向に見た(xz平面に沿って切断した)場合の模式断面図である。
 本実施形態の光学素子は、1/4波長板および反射型偏光子を含み、前記1/4波長板および前記反射型偏光子が、前記蛍光層の前記反射層が積層されていない側に、前記蛍光層側から前記順序で配置されていること以外は、前記実施形態1の光学素子と同様の構成を有する。図8および図9に示すように、本実施形態の光学素子10Dは、平面形状が矩形であり、反射層101Dと、蛍光層103Dと、1/4波長板112Dと、反射型偏光子113Dとを主要な構成要素として含む。蛍光層103Dは、反射層101Dに積層されている。1/4波長板112Dは、蛍光層103Dの反射層101Dが積層されていない側に、蛍光層103Dから前記励起光の可干渉距離以上の距離をあけて配置されている。反射型偏光子113Dは、1/4波長板112Dの蛍光層103D側とは反対側に配置されている。反射層101D、蛍光層103D、1/4波長板112Dおよび反射型偏光子113Dは、それぞれの面方向が平行となるように配置されている。1/4波長板112Dおよび反射型偏光子113Dは、蛍光層103Dから放出される光の波長に対して機能する。
 光学素子10Dは、雰囲気105D中に配置されている。蛍光層103Dの屈折率の実部は、雰囲気105Dの屈折率の実部と異なっている。このため、前記実施形態1と同様に、雰囲気105Dと蛍光層103Dとの界面107Dは、本発明における「第1の反射面」として機能する。一方、蛍光層103Dと反射層101Dとの界面106Dは、前記実施形態1と同様に、本発明における「第2の反射面」として機能する。なお、前記実施形態3と同様に、前記導光体層が、前記蛍光層の前記反射層が積層されていない側に配置されてもよい。
 光学素子10Dでは、前記実施形態1と同様に、第1の反射面107Dで反射される励起光と、第2の反射面106Dで反射される励起光とを干渉させることにより、蛍光層103D内に励起光を閉じ込めることができる。この干渉効果により、第1の反射面107Dから入射される励起光の、蛍光層103Dにおける吸収率を調整できる。前記干渉効果は、第1の反射面107Dと第2の反射面106Dとの間の光学的距離、すなわち、蛍光層103Dの光学的厚みを、前記励起光の可干渉距離未満とすることにより得られる。したがって、光学素子10Dでは、前記光学的距離が所定の励起光の前記可干渉距離未満となるように、蛍光層103Dの厚みおよび屈折率の少なくとも一方が調整されている。このようにすることで、例えば、所定の波長・偏光・入射角θinの励起光に対して、所望の吸収率を得られる。
 つぎに、光学素子10Dの動作について説明する。まず、前記励起光が、1/4波長板112Dと蛍光層103Dとの間から蛍光層103Dに入射する。その後、前記実施形態1と同様に、前記励起光は、前記干渉効果により、蛍光層103Dに、所望の吸収率で吸収される。蛍光層103Dに吸収された前記励起光は、蛍光層103D中の蛍光体の励起に使用される。前記励起された蛍光体は、例えば、前記励起光と波長の異なる光を放出する。蛍光層103Dから界面107Dの方向へ放出された光は、雰囲気105D、1/4波長板112Dを通って、反射型偏光子113Dに入射する。ここで、反射型偏光子113Dは、特定の偏光を透過し、その偏光と直交する偏光を反射する。このため、反射型偏光子113Dに入射した光は、その特性に応じて、偏光分離される。前記偏光分離された光のうち、反射型偏光子113Dを透過した光は、そのまま光学素子10D外部に取り出される。一方、前記偏光分離された光のうち、反射型偏光子113Dで反射された光は、1/4波長板112D、雰囲気105D、蛍光層103Dを通って、反射層101Dにより、反射型偏光子113Dの方向へ反射される。前記反射光は、蛍光層103D、雰囲気105D、1/4波長板112Dを通って、再度反射型偏光子113Dに入射する。この光は、反射型偏光子113Dで反射されてから、再度反射型偏光子113Dに入射するまでに、1/4波長板112Dを2回通っているため、反射型偏光子113Dで反射された偏光と直交する偏光である。このため、反射型偏光子113Dに入射した前記反射光は、反射型偏光子113Dを透過し、光学素子10D外部に取り出される。蛍光層103Dから反射層101Dの方向へ放出された光も、前述と同様の過程を経て、光学素子10D外部に偏光した状態で取り出される。以上のように、光学素子10Dによれば、1/4波長板112Dおよび反射型偏光子113Dを有することにより、光学素子から偏光した光を取り出すことができる。
 以上では、前記励起光が1/4波長板112Dと蛍光層103Dとの間から、蛍光層103Dへ入射するものとして説明したが、例えば、前記励起光は、反射型偏光子113Dを通って、蛍光層103Dに入射してもよい。
 1/4波長板112Dは、従来公知のものを使用でき、例えば、水晶波長板、ポリマー波長板、フォトニック結晶波長板等があげられる。波長板の構成は、例えば、トゥルーゼロオーダ、マルチオーダ、コンパウンドゼロオーダ等があげられ、許容入射角幅の観点から、ゼロオーダ波長板が最も好ましい。
 反射型偏光子113Dは、従来公知のものを使用でき、例えば、ワイヤーグリッド偏光子、反射型偏光性フィルム、フォトニック結晶偏光子等があげられる。効率および許容入射角幅の観点から、反射型偏光性フィルムが好ましく、耐久性の観点から、ワイヤーグリッド偏光子またはフォトニック結晶偏光子が好ましい。反射型偏光子113Dの蛍光層103D側の面から、界面106Dまでの距離は、短いことが好ましい。
 図8および図9に示す本実施形態の光学素子では、前記1/4波長板と前記蛍光層との間の距離は、前記励起光の可干渉距離以上としたが、本発明は、これには限定されず、例えば、前記距離は、前記励起光の可干渉距離未満でもよい。前記1/4波長板と前記反射型偏光子とは、離れて配置されているが、本発明は、これには限定されず、前記1/4波長板と前記反射型偏光子とは、接して配置されてもよい。
(実施形態5)
 本実施形態の光学素子は、前記反射層が凹凸構造体を備える光学素子の一例である。図10および図11に、本実施形態の光学素子の構成を示す。図10は、本実施形態の光学素子の概略斜視図である。図11は、図10のV-V方向に見た(xz平面に沿って切断した)場合の模式断面図である。
 本実施形態の光学素子は、前記反射層の前記蛍光層側の面に凹凸構造体を備えること以外は、前記実施形態1の光学素子と同様の構成を有する。図10および図11に示すように、本実施形態の光学素子10Eは、平面形状が矩形であり、反射層101Eと、蛍光層103Eとを主要な構成要素として含む。反射層101Eは、四角格子状に配置された円柱状の凸部を有する凹凸構造体114Eを備える。蛍光層103Eは、反射層101Eの凹凸構造体114Eを備える側に積層され、凹凸構造体114Eの凹部に、蛍光層103Eの一部が充填されている。凹凸構造体114Eの凹部の底面を繋いだ面と、反射層101Eおよび蛍光層103Eとは、それぞれの面方向が平行となるように構成されている。
 光学素子10Eは、雰囲気105E中に配置されている。蛍光層103Eの屈折率の実部は、雰囲気105Eの屈折率の実部と異なっている。このため、前記実施形態1と同様に、雰囲気105Eと蛍光層103Eとの界面107Eは、本発明における「第1の反射面」として機能する。一方、蛍光層103Eと凹凸構造体114Eの底面を繋いだ面との界面106Eは、本発明における「第2の反射面」として機能する。なお、前記実施形態3と同様に、前記導光体層が、前記蛍光層の前記反射層が積層されていない側に配置されてもよい。
 反射層101Eは、金属で構成され、凹凸構造体114Eは、金属または誘電体で構成されている。凹凸構造体114Eにおける凹部および凸部は、蛍光層103E中の励起光の波長・偏光・入射角において、前記励起光の散乱強度が低くなるサイズで形成されており、前記励起光に対しては散乱体としての機能を有さない。このようなサイズの目安は、例えば、前記励起光の波長の1/4未満である。したがって、例えば、凹凸構造体114Eの凹凸高さおよび凸部径が、励起光の波長の1/4未満である。
 光学素子10Eでは、第1の反射面107Eで反射される励起光と、第2の反射面106Eで反射される励起光とを干渉させることにより、蛍光層103E内に励起光を閉じ込めることができる。この干渉効果により、第1の反射面107Eから入射される励起光の、蛍光層103Eにおける吸収率を調整できる。前記干渉効果は、第1の反射面107Eと前記第2の反射面106Eとの間の光学的距離を、前記励起光の可干渉距離未満とすることにより得られる。
 つぎに、光学素子10Eの動作について説明する。本実施形態における吸収率制御原理は、前記実施形態1と同様である。まず、前記励起光が、蛍光層103Eに入射すると、前記実施形態1と同様に、前記励起光は、前記干渉効果により、蛍光層103Eに、所望の吸収率で吸収される。蛍光層103Eに吸収された前記励起光は、蛍光層103E中の蛍光体の励起に使用される。前記励起された蛍光体は、例えば、前記励起光と波長の異なる光を、様々な方向に放出する。前記放出された光のうち、界面107Eに平行な波数が雰囲気105E中での波数より小さい光は、界面107Eを通って、光学素子10E外部に放出される。一方、前記放出された光のうち、界面107Eに平行な波数が雰囲気105E中での波数より大きい光は、反射層101Eが金属で構成されているため、凹凸構造体114E上を表面波として伝搬する。この表面波は、例えば、電子-正孔対によるもの、表面プラズモンによるもの等があげられる。前記表面波は、凹凸構造体114Eによって回折され、光学素子10E外部に取り出される。すなわち、反射層101Eが凹凸構造体114Eを備える構成では、光として前記表面波も光学素子10E外部に取り出されるため、例えば、光学素子10Eの発光効率を向上できる。
 凹凸構造体114Eは、金属または誘電体により形成される。凹凸構造体114Eの形状は、例えば、表面レリーフ格子、フォトニック結晶、プラズモニック結晶に代表される周期構造、または準周期構造、ランダムな構造(すなわち、粗面によって構成される表面構造)、ホログラム等があげられる。前記準周期構造は、例えば、周期構造の一部が欠けている不完全な周期構造を示す。光取り出し効率の観点から、凹凸構造体114Eの形状は、前記ランダムな構造、または、前記発光波長においてプラズモニックバンドギャップを有するプラズモニック結晶が好ましい。光の指向性の観点から、凹凸構造体114Eの形状は、フォトニック結晶、プラズモニック結晶に代表される周期構造または準周期構造、マイクロレンズアレイ等が好ましい。
 図10および図11に示す本実施形態の光学素子において、前記凹凸構造体の凹部に前記蛍光層の一部が充填されているが、本発明は、これには限定されない。前記凹凸構造体の凹部には、例えば、前記蛍光層の形成材料とは異なる材料が充填されていてもよいし、空洞でもよい。また、前記凹凸構造体と前記蛍光層との間、前記蛍光層と前記雰囲気との間に、前記実施形態2と同様に、前記誘電体層が配置されてもよい。また、本実施形態の光学素子では、前記凹凸構造体の凸部は、円柱状であるが、本発明は、この例には限定されない。前記凸部の形状は、例えば、四角柱、六角柱等の角柱状;三角錐、四角錐、四角錐台等の錐状等があげられる。また前記凹凸構造体の凸部は、四角格子状に配置されているが、この例には限定されない。前記配置は、例えば、三角格子状等でもよい。前記凹凸構造体は、例えば、前記凹部と前記凸部とが逆転したものでもよい。
(実施形態6)
 本実施形態の光学素子は、凹凸構造体を有する光学素子の一例である。図12および図13に、本実施形態の光学素子の構成を示す。図12は、本実施形態の光学素子の概略斜視図である。図13は、図12のVI-VI方向に見た(xz平面に沿って切断した)場合の模式断面図である。
 本実施形態の光学素子は、前記第2の反射面が分布ブラッグ反射鏡であり、さらに、前記反射層の前記蛍光層が積層されていない側に、凹凸構造体が形成された反射層が配置されていること以外は、前記実施形態1の光学素子と同様の構成を有する。図12および図13に示すように、本実施形態の光学素子10Fは、平面形状が矩形であり、反射層101Fと、蛍光層103Fと、反射層201Fを主要な構成要素として含む。蛍光層103Fは、反射層101Fに積層されている。反射層201Fは、四角格子状に配置された円柱状の凸部を有する凹凸構造体214Fを備える。反射層201Fは、反射層101Fの蛍光層103Fが積層されていない側に、凹凸構造体214Fを備える側が反射層101F側となるように配置されている。凹凸構造体214Fの凹部の底面を繋いだ面と、反射層101Fおよび蛍光層103Fとは、それぞれの面方向が平行となるように構成されている。
 光学素子10Fは、雰囲気105F中に配置されている。蛍光層103Fの屈折率の実部は、雰囲気105Fの屈折率の実部と異なっている。このため、前記実施形態1と同様に、雰囲気105Fと蛍光層103Fとの界面107Fは、本発明における「第1の反射面」として機能する。蛍光層103Fと反射層101Fとの界面106Fは、前記実施形態1と同様に、本発明における「第2の反射面」として機能する。なお、前記実施形態3と同様に、前記導光体層が、前記蛍光層の前記反射層が積層されていない側に配置されてもよい。
 凹凸構造体214Fにおける凹部および凸部は、蛍光層103Fの発光波長において、前記光を回折、散乱または反射可能なサイズで構成されている。このような機能を奏するサイズの目安は、例えば、前記発光波長の1/4以上である。したがって、例えば、凹凸構造体214Fの凹凸高さおよび凸部径が、励起光の波長の1/4以上である。反射層101Fは、前記励起光の波長・偏光・入射角に対して反射率が高く、蛍光層103Fの発光波長に対して、反射率が低くなるように設計された誘電体多層膜(分布ブラッグ反射鏡)からなる。
 光学素子10Fでは、前記実施形態1と同様に、第1の反射面107Fで反射される励起光と、第2の反射面106Fで反射される励起光とを干渉させることにより、蛍光層103F内に励起光を閉じ込めることができる。この干渉効果により、第1の反射面107Fから入射される励起光の、蛍光層103Fにおける吸収率を調整できる。前記干渉効果は、第1の反射面107Fと前記第2の反射面106Fとの間の光学的距離、すなわち、蛍光層103Fの光学的厚みを、前記励起光の可干渉距離未満とすることにより得られる。
 つぎに、光学素子10Fの動作について説明する。本実施形態における吸収率制御原理は、前記実施形態1と同様である。まず、前記励起光が、蛍光層103Fに入射すると、前記実施形態1と同様に、前記励起光は、前記干渉効果により、蛍光層103Fに、所望の吸収率で吸収される。蛍光層103Fに吸収された前記励起光は、蛍光層103F中の蛍光体の励起に使用される。前記励起された蛍光体は、例えば、前記励起光と波長の異なる光を、様々な方向に放出する。前記放出された光のうち、界面107F方向に放出された光は、界面107Fを通って、光学素子10F外部に放出される。一方、前記放出された光のうち、界面106F方向に放出された光は、反射層101Fが蛍光層103Fから放出される光を透過するように設計されているため、反射層101Fを透過する。前記透過した光は、凹凸構造体214Fで指向性を変化させられた後、反射層201Fで反射され、再度、反射層101Fに入射する。そして、この光は、界面106Fおよび界面107Fを透過して光学素子10F外部に放出される。すなわち、このように凹凸構造体214Fを備える構成では、例えば、放出光の指向性を所望に制御できる。
 反射層101Fは、前述ように、予め設定された波長・偏光・入射角等の励起光を反射し、蛍光層103Fから放出される光を透過する。反射層101Fは、例えば、前述の機能を有する誘電体多層膜(分布ブラッグ反射鏡)であり、これ以外にも、例えば、フォトニック結晶等でもよい。反射層201Fは、前述のように、蛍光層103Fから放出される光を反射する。反射層201Fは、例えば、前記実施形態1の反射層101Aと同様のものがあげられる。
 凹凸構造体214Fは、蛍光層103Fから放出される光を回折または散乱する。凹凸構造体214Fの形状は、例えば、表面レリーフ格子、フォトニック結晶に代表される周期構造、または準周期構造、ランダムな構造(すなわち、粗面によって構成される表面構造)、ホログラム等があげられる。光学素子10Fから出射される光の指向性が低い方が好ましい場合、凹凸構造体214Fの形状は、前記ランダムな構造等が好ましい。指向性が高い方が好ましい場合、凹凸構造体214Fの形状は、前記フォトニック結晶に代表される周期構造、または準周期構造等が好ましい。
 図12および図13に示す本実施形態の光学素子において、前記凹凸構造体は、前記反射層から離れて配置されているが、本発明は、これには限定されない。前記凹凸構造体は、例えば、前記反射層に接して配置されてもよい。前記凹凸構造体の凸部は、円柱状であるが、本発明は、この例には限定されない。前記凸部の形状は、例えば、四角柱、六角柱等の角柱状;三角錐、四角錐、四角錐台等の錐状等があげられる。また前記凹凸構造体の凸部は、四角格子状に配置されているが、この例には限定されない。前記配置は、例えば、三角格子状等でもよい。前記凹凸構造体は、例えば、前記凹部と前記凸部とが逆転したものでもよい。また、前記反射層と前記蛍光層との間、前記蛍光層と前記雰囲気との間に、前記実施形態2と同様に、前記誘電体層が配置されてもよい。
(実施形態7)
 本実施形態の光学素子は、カラーホイールを構成する光学素子の一例である。図14に、本実施形態の光学素子の構成を示す。図14は、本実施形態の光学素子の上面図である。図14に示すように、本実施形態の光学素子10Gは、カラーホイールを構成しており、その動径方向に3分割されている。そして、分割されたそれぞれにおいて、発光波長の異なる光学素子10G-1、10G-2、10G-3が構成されている。光学素子10G-1、10G-2、10G-3は、前記実施形態1から6において例示した前記本発明の光学素子である。
 光学素子10Gにより構成されるカラーホイールと、前記励起光を出射する励起光光源とを使用して、例えば、DLP(Digital Light Processing)プロジェクタを構成すれば、光学素子10Gが効果的に冷却できるため、高効率かつ寿命の長いDLPプロジェクタを構成できる。
(実施形態8)
 本実施形態の光学装置は、導光体層を有する光学素子と励起光光源とを備える光学装置の一例である。図15および図16に、本実施形態の光学装置の構成を示す。図15は、本実施形態の光学装置の概略斜視図である。図16は、図15のVII-VII方向に見た(xz平面に沿って切断した)場合の模式断面図である。
 図15および図16に示すように、本実施形態の光学装置20Aは、光学素子10Hと、励起光光源120Aとを主要な構成要素として含む。光学素子10Hは、前記実施形態3と同様に、反射層101H、蛍光層103Hおよび導光体層205Hを備える。導光体層205Hの側部の全周には、励起光を反射可能な反射構造301Hを有している。励起光光源120Aは、光学素子10Hの側方周囲に、蛍光層10Hの底部の位置(図15におけるz軸方向位置)と励起光光源120Aの底部の位置(図15におけるz軸方向位置)とが一致するように配置されている。導光体層205Hは、励起光光源120Aから出射された励起光を、反射構造301Hにより蛍光層103Hへ入射させる機能を有している。
 つぎに、光学装置20Aの動作について説明する。光学装置20Aの動作は、前記励起光の導光体層205Hへの入射方向が異なることを以外は、前記実施形態3と同様である。このため、前記励起光の前記蛍光層への入射のみを、図16を参照して、励起光光源120Aから出射される励起光108Hに基づいて説明する。なお、図16では、説明の便宜上、各構成部材における平行斜線の図示を省略している。図16に示すように、励起光光源120Aから出射された励起光108Hは、導光体層205Hに入射する。そして、導光体層205Hに入射した励起光108Hは、反射構造301Hにより導光体層205H内を伝搬する角度に反射させられる。前記反射された励起光108Hは、導光体層205H内を伝搬した後、導光体層205Hと蛍光層103Hとの界面107Hに入射する。界面107Hに入射した励起光は、前記実施形態3と同様に、仮想反射光線110Hを発生させる。そして、この仮想反射光線110Hの干渉効果により、蛍光層103Hに、所望の吸収率が得られるように蛍光層103Hの厚みおよび屈折率の少なくとも一方が調整されている。これにより、界面107Hに入射した励起光108Hは、所望の吸収率で蛍光層103Hに吸収される。蛍光層103Hに吸収された励起光は、例えば、波長が変換され、導光体層205H上部を透過して、光学素子10H外部へ放出される。
 前述のように構成された光学装置20Aは、高い発光効率と高い光出力定格を有し、さらに、発光層10Hおよび励起光光源120Aの冷却面を同一平面上に構成できるため、例えば、冷却機構を簡便化でき、冷却機構が占める体積を低減できる。
 導光体層205Hは、励起光光源120Aからの励起光を、蛍光層103Hに入射させる機能を有する。その機能を担う反射構造301Hは、例えば、屈折率差による全反射構造、高反射率の金属蒸着面等があげられる。
 励起光光源120Aは、蛍光層103H中の蛍光体を励起する励起光を照射する。励起光光源120Aは、例えば、発光ダイオード、半導体レーザダイオード素子、スーパールミネッセントダイオード等があげられる。前記励起光の波長は、特に制限されず、例えば、300~800nmの範囲であり、好ましくは400~700nmの範囲であり、より好ましくは400~500nmの範囲である。前記励起光の可干渉距離は、例えば、10μm以上である。前記励起光の光学素子10Hへの入射角は、例えば、20度以上であり、好ましくは40度以上であり、より好ましくは60度以上である。光学素子10Hへの励起光の入射時の操作性から、励起光光源120Aは、指向性および偏光性の高い発光素子が好ましい。このような発光素子は、例えば、半導体レーザダイオード素子、固体レーザ等のレーザ類やスーパールミネッセントダイオードがある。コストの観点から、励起光光源120Aは、発光ダイオードが好ましい。
 なお、本発明では、本実施形態の光学装置には限定されず、前記実施形態1から7において例示した前記本発明の光学素子と、励起光光源とを組み合わせた光学装置を構成できる。
(実施形態9)
 本実施形態の画像表示装置は、3板式の投射型表示装置(プロジェクタ)の一例である。図17に、本実施形態のプロジェクタの構成を示す。図17は、本実施形態のプロジェクタの概略斜視図である。図17に示すように、本実施形態のプロジェクタ30は、3つの前記実施形態8の光学装置20I-r、20I-g、20I-bと、3つの液晶表示素子150r、150g、150bと、照明光学系140r、140g、140bと、クロスダイクロイックプリズム130と、投射光学系160とを主要な構成要素として含む。光学装置20I-r、照明光学系140rおよび液晶表示素子150rと、光学装置20I-g、照明光学系140gおよび液晶表示素子150gと、光学装置20I-b、照明光学系140bおよび液晶表示素子150bとが、それぞれ光路を形成している。
 光学装置20I-r、20I-g、20I-bは、それぞれ、赤(R)光用、緑(G)光用、及び青(B)光用で異なる発光波長の光を放出する。照明光学系140r、140g、140bは、光学装置20I-r、20I-g、20I-bから放出された光を液晶表示素子に効率よく入射させる。前記照明光学系は、本発明の画像表示装置における「照明部」に相当する。液晶表示素子150r、150g、150bは、表示させる画像に合わせて光の強度を変調する。クロスダイクロイックプリズム130は、液晶表示素子150r、150g、150bを透過した光を合成する。投射光学系160は、液晶表示素子150r、150g、150bにより形成された画像をスクリーン上に投影する。
 プロジェクタ30は、制御回路部(図示せず)により、前記光路ごとに前記液晶表示素子上の像を変調させる。プロジェクタ30は、前記実施形態8の光学装置を備えることにより、高い発光効率と高い光出力定格を有する。
 図17に示す本実施形態のプロジェクタは、3板型液晶プロジェクタであるが、本発明は、この例には限定されず、例えば、単板型液晶プロジェクタ、DLPプロジェクタ等でもよい。また、本発明の画像表示装置は、前述のプロジェクタのみならず、例えば、液晶表示装置のバックライト、またはMEMSを使用したバックライトと組み合わせた画像表示装置でもよい。
(実施形態10)
 本実施形態の光学素子は、発光層と、反射層とを有し、前記発光層は、発光体を含む層を有し、前記発光層と前記反射層とは、積層されており、前記発光層において、前記反射層が積層されていない側の表面が第1の反射面であり、前記発光層と前記反射層との界面が第2の反射面であり、前記第1の反射面側から入射される励起光に起因して前記第1の反射面から出射される方向に発生する、仮想反射光線同士の位相をずらすことが可能である。本実施形態の光学素子における、各構成および干渉効果による吸収率の向上等は、前記実施形態1等の記載を引用できる。
(実施形態11)
 本実施形態の光学素子は、発光層と、反射層とを有し、前記発光層は、発光体を含む層を有し、前記発光層と前記反射層とは、積層されており、前記発光層において、前記反射層が積層されていない側の表面が第1の反射面であり、前記発光層と前記反射層との界面が第2の反射面であり、前記発光体を含む層の厚みは、30μm未満である。本実施形態の光学素子における、各構成および干渉効果による吸収率の向上等は、前記実施形態1等の記載を引用できる。
(実施形態12)
 本実施形態の光学装置は、発光層と、反射層とを有し、前記発光層は、発光体を含む層を有し、前記発光層と前記反射層とは、積層されており、前記発光層において、前記反射層が積層されていない側の表面が第1の反射面であり、前記発光層と前記反射層との界面が第2の反射面である光学素子と、前記光学素子の前記第1の反射面に励起光を照射する励起光光源とを含み、前記光学素子における前記発光層の厚みおよび屈折率、ならびに前記励起光の可干渉距離が、下記(I)の条件を満たすように設定されている。本実施形態の光学装置における各構成および干渉効果による吸収率の向上等は、前述の記載を引用できる。
(I)前記光学素子における前記第1の反射面と前記第2の反射面との光学的距離が、前記可干渉距離未満である
(実施形態13)
 本実施形態の光学装置は、プラズモン励起による発光を利用する光学装置の一例である。図26の斜視図に、本実施形態の光学装置の構成を示す。
 図26に示すように、本実施形態の光学装置1は、励起光光源11と、光制御部3とを、主要な構成要素として含む。光制御部3は、キャリア生成層13と、キャリア生成層13上に積層された誘電体層14と、誘電体層14上に積層されたプラズモン励起層15と、プラズモン励起層15上に積層された誘電体層16と、誘電体層16上に積層された波数ベクトル変換層17とを含む。波数ベクトル変換層17は、出射層としての機能を有する。光制御部3は、キャリア生成層13側の面が対向するように、励起光光源11に積層されている。光制御部3において、キャリア生成層13、誘電体層14、プラズモン励起層15により導波路が構成されている。
 光学装置1は、励起光入射側部分(以下、「入射側部分」ということがある。)の実効誘電率が、光出射側部分(以下、「出射側部分」ということがある。)の実効誘電率よりも低くなるように構成されている。前記入射側部分は、プラズモン励起層15の励起光光源11側に積層された構造全体と励起光光源11に接する周囲雰囲気媒質(以下、「媒質」ということがある。)とを含む。前記構造全体には、誘電体層14、キャリア生成層13および励起光光源11が含まれる。前記出射側部分は、プラズモン励起層15の波数ベクトル変換層17側に積層された構造全体と波数ベクトル変換層17に接する媒質とを含む。前記構造全体には、誘電体層16および波数ベクトル変換層17が含まれる。なお、例えば、誘電体層14および誘電体層16を除いたとしても、前記入射側部分の実効誘電率が前記出射側部分の実効誘電率よりも低い場合には、誘電体層14および誘電体層16は、必ずしも必須の構成要素ではない。
 ここで、前記実効誘電率(εeff)は、プラズモン励起層15の界面に平行な方向をx軸、y軸、プラズモン励起層15の界面に垂直な方向(プラズモン励起層15の表面に凹凸が形成されている場合には、その平均面に垂直な方向)をz軸とし、キャリア生成層13単体を励起光で励起したとき、キャリア生成層13から出射する光の角周波数をω、プラズモン励起層15に対する前記入射側部分または前記出射側部分における誘電体の誘電率分布をε(ω,x,y,z)、表面プラズモンの波数のz成分をkspp,z、虚数単位をj、Re[ ]を[ ]内の数値の実部を示す記号とすれば、下記式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 実効誘電率εeffは、下記式(9)で表される式を用いて算出されてもよい。ただし、前記式(3)を用いるのが、特に望ましい。
Figure JPOXMLDOC01-appb-M000004
 前記式(3)および前記式(9)において、積分範囲Dは、プラズモン励起層15に対する、前記入射側部分または前記出射側部分の三次元座標の範囲である。言い換えれば、この積分範囲Dにおけるx軸及びy軸方向の範囲は、前記入射側部分の構造全体の外周面、または前記出射側部分の構造全体の外周面までの媒質を含まない範囲であり、プラズモン励起層15の波数ベクトル変換層17側の面に平行な面内の外縁までの範囲である。積分範囲Dにおけるz軸方向の範囲は、前記入射側部分または前記出射側部分の範囲である。なお、積分範囲Dにおけるz軸方向の範囲は、プラズモン励起層15と、プラズモン励起層15に隣接する、誘電性を有する層(誘電体層14または誘電体層16)との界面を、z=0となる位置とし、これらの界面から、プラズモン励起層15の、誘電体層14または誘電体層16側の無限遠までの範囲であり、これらの界面から遠ざかる方向を、前記式(3)および前記式(9)における(+)z方向とする。例えば、プラズモン励起層15の表面に凹凸が形成されている場合、プラズモン励起層15の凹凸に沿ってz座標の原点を移動させれば、前記式(3)および前記式(9)から実効誘電率が求められる。例えば、実効誘電率の計算範囲において、光学異方性を有する材料が含まれている場合、ε(ω,x,y,z)はベクトルとなり、z軸に垂直な動径方向ごとに異なった値を有する。すなわち、z軸に垂直な動径方向ごとに、前記入射側部分および前記出射側部分の実効誘電率が存在する。この場合、ε(ω,x,y,z)の値は、z軸に垂直な動径方向に平行方向に対する誘電率とする。したがって、後述のkspp,z、kspp、deff等の、実効誘電率の関係する全ての現象は、z軸に垂直な動径方向ごとに、異なった値を有する。
 また、前記表面プラズモンの波数のz成分kspp,z、前記表面プラズモンの波数のx、y成分ksppは、プラズモン励起層15の誘電率の実部をεmetal、真空中での光の波数をk0とすれば、下記式(4)および(5)で表される。
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
 さらに、光学装置1では、プラズモン励起層15のキャリア生成層13側表面からキャリア生成層13のプラズモン励起層15側表面までの距離は、表面プラズモンの有効相互作用距離deffより短く設定されている。前記deffは、Im[ ]を[ ]内の数値の虚部を示す記号とし、表面プラズモンの有効相互作用距離を表面プラズモンの強度がe-2となる距離とすれば、下記式(6)で表される。
Figure JPOXMLDOC01-appb-M000007
 したがって、前記式(3)または前記式(9)、前記式(4)および前記式(5)を用い、ε(ω,x,y,z)として、プラズモン励起層15の前記入射側部分の誘電率分布の実部εin(ω,x,y,z)、およびプラズモン励起層15の前記出射側部分の誘電率分布の実部εout(ω,x,y,z)をそれぞれ代入して、計算することで、プラズモン励起層15に対する前記入射側部分の実効誘電率εeffin、および前記出射側部分の実効誘電率εeffoutが、それぞれ求められる。例えば、z軸に垂直な面内に誘電率の異方性がある場合、z軸に垂直な動径方向ごとに、前記入射側部分および前記出射側部分の実効誘電率が存在する。したがって、前述のように、kspp,z、kspp、後述のdeff等の、実効誘電率の関係する全ての現象は、z軸に垂直な動径方向ごとに、異なった値を有する。実際には、実効誘電率εeffとして適当な初期値を与え、前記式(3)または前記式(9)、前記式(4)および前記式(5)を繰り返し計算することで、実効誘電率εeffを容易に求められる。なお、例えば、プラズモン励起層15に接する層の誘電率の実部が非常に大きい場合、前記式(4)で表される表面プラズモンの波数のz成分kspp,zが実数となる。これは、その界面において表面プラズモンが発生しないことに相当する。このため、プラズモン励起層15に接する層の誘電率が、この場合の実効誘電率に相当する。後述の実施形態における実効誘電率も、前記式(3)または前記式(9)と同様に定義される。
 つぎに、光学装置1について、励起光光源11から出射された光(以下、「励起光」ということがある。)が、光制御部3に入射し、光制御部3の波数ベクトル変換層17から光が出射される動作を説明する。
 励起光光源11から出射された励起光は、光制御部3に入射する。そして、前記励起光は、前記導波路に結合し、その中に閉じ込められる。この閉じ込められた励起光により、キャリア生成層13が励起され、キャリア生成層13中にキャリアが生成される。このキャリアは、誘電体層14を隔てたプラズモン励起層15中の自由電子と結合し、誘電体層14とプラズモン励起層15との界面に表面プラズモンを励起する。励起された表面プラズモンは、プラズモン励起層15と誘電体層16との界面から光として放出される(以下、「放出光」ということがある。)。前記光の放出は、前記入射側部分の実効誘電率が、前記出射側部分の実効誘電率より低いことにより起こる。前記放出光の波長は、キャリア生成層13を単独で励起したときに発生する光の波長に等しい。また、前記放出光の出射角度θoutは、誘電体層16の屈折率をnoutとすれば、下記式(7)で表される。
Figure JPOXMLDOC01-appb-M000008
 前記励起された表面プラズモンの波数は、前記式(4)で一義的に設定される付近しか存在しない。前記放出光は、前記表面プラズモンの波数ベクトルが変換されただけである。したがって、前記放出光の放射角度は一義的に決定され、その偏光状態は常にp偏光である。すなわち、前記放出光は、非常に高い指向性を有する、p偏光の光である。前記放出光は、波数ベクトル変換層17に入射し、波数ベクトル変換層17によって回折または屈折されて、光学装置1外部に取り出される。
 励起光光源11は、キャリア生成層13が吸収可能な波長の光(励起光)を出射する。具体的には、例えば、発光ダイオード(LED)、レーザダイオード、スーパールミネッセントダイオード等があげられる。
 キャリア生成層13は、前記励起光を吸光してキャリアを生成させる層である。キャリア生成層13は、例えば、発光体を含む。前記発光体は、例えば、蛍光体または燐光体等である。前記蛍光体は、例えば、有機蛍光体、無機蛍光体、量子ドット蛍光体、半導体蛍光体等があげられる。前記有機蛍光体は、例えば、ローダミン(Rhodamine 6G)、スルホローダミン(Sulforhodamine 101)等があげられる。前記無機蛍光体は、例えば、YS:Eu、BaMgAl:Eu、BaMgAl:Mn等があげられる。前記量子ドット蛍光体は、例えば、CdSe、CdSe/ZnS等の量子ドット等があげられる。前記半導体蛍光体は、例えば、無機材料半導体または有機材料半導体の蛍光体があげられる。前記無機材料半導体は、例えば、GaN、GaAs等があげられる。前記有機材料半導体は、例えば、(チオフェン/フェニレン)コオリゴマー、Alq3(トリス(8-キノリノラト)アルミニウム)等があげられる。キャリア生成層13は、例えば、発光波長が同一または異なる複数の波長の光を発生する、複数の材料から構成されてもよい。キャリア生成層13の厚みは、特に制限されず、例えば、1μm以下が好ましく、100nm以下が特に好ましい。
 キャリア生成層13は、例えば、金属粒子を含んでもよい。前記金属粒子は、前記励起光との相互作用により、前記金属粒子の表面に表面プラズモンを励起し、その表面近傍に、前記励起光の電場強度に対して100倍近くの増強電場を誘起する。この増強電場により、キャリア生成層13内に生成されるキャリアを増加でき、例えば、光制御部3における前記励起光の利用効率を向上できる。
 前記金属粒子を構成する金属は、例えば、金、銀、銅、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム、鉄、錫、亜鉛、コバルト、ニッケル、クロム、チタン、タンタル、タングステン、インジウム、アルミニウム、またはこれらの合金等があげられる。これらの中でも、前記金属は、金、銀、銅、白金、アルミニウム、またはこれらを主成分とする合金が好ましく、金、銀、アルミニウム、またはこれらを主成分とする合金が特に好ましい。前記金属粒子は、例えば、その周辺部と中心部とで金属種の異なるコアシェル構造;2種の金属の半球の合体した半球合体構造;異なるクラスターが集合して粒子を作るクラスター・イン・クラスター構造等の構造を有してもよい。前記金属粒子を、例えば、前記合金または、前述の特殊構造とすることにより、前記金属粒子の寸法、形状等を変化させなくとも、共鳴波長を制御できる。
 前記金属粒子の形状は、閉じた表面を有する形状であればよく、例えば、直方体、立方体、楕円体、球体、三角錐、三角柱等があげられる。前記金属粒子は、例えば、半導体リソグラフィ技術に代表される微細加工により、金属薄膜が一辺10μm未満の閉じた面で構成される構造体に加工されたものも含まれる。前記金属粒子のサイズは、例えば、1~100nmの範囲であり、好ましくは5~70nmの範囲であり、より好ましくは10~50nmの範囲である。
 プラズモン励起層15は、キャリア生成層13単体を励起光で励起したときにキャリア生成層13で発生する光の周波数(以下、「発光周波数」ということがある。)よりも高いプラズマ周波数を有する形成材料により形成された、微粒子層または薄膜層である。すなわち、プラズモン励起層15は、発光周波数において負の誘電率を有する。プラズモン励起層15のキャリア生成層13側に、プラズモン励起層15のキャリア生成層13側の界面から、前記式(6)で表される表面プラズモンの有効相互作用距離までの範囲に、例えば、光学異方性を有する誘電体層の一部が配置されてもよい。この誘電体層は、例えば、この光制御部3の構成要素の積層方向に垂直な面内、言い換えれば、各層の界面に平行な面内での方向によって誘電率が異なる光学異方性を有する。すなわち、この誘電体層は、光制御部3の構成要素の積層方向に垂直な面内において、ある方向とそれに直交する方向で、誘電率の大小関係がある。この誘電体層により、光学装置1の構成要素の積層方向に垂直な面内において、ある方向とそれに直交する方向とでは、前記入射側部分の実効誘電率が異なる。そして、前記入射側部分の実効誘電率を、ある方向でプラズモン結合が発生しない程度高く、それと直交する方向ではプラズモン結合が発生する程度低く設定すれば、例えば、波数ベクトル変換層17に入射する光の入射角および偏光をさらに限定できる。このため、例えば、波数ベクトル変換層17による光の取り出し効率を、さらに向上できる。
 理論的には、前記入射側部分の実効誘電率とプラズモン励起層15の誘電率との和が、負または0の場合、キャリア生成層13で生成されたキャリアは、プラズモン励起層15に表面プラズモンを励起する。一方、前記和が正の場合、前記キャリアは、表面プラズモンを励起しない。すなわち、前述のプラズモン結合が発生しない程度高い実効誘電率とは、プラズモン励起層15の誘電率と前記入射側部分の実効誘電率との和が正となるような誘電率であり、前述のプラズモン結合が発生する程度低い実効誘電率とは、プラズモン励起層15の誘電率と前記入射側部分の実効誘電率との和が負または0となるような誘電率である。キャリア生成層13で生成されたキャリアが表面プラズモンへ結合する効率は、前記入射側部分の実効誘電率とプラズモン励起層15の誘電率の和とが0となる条件である。したがって、プラズモン励起層15の誘電率と前記入射側部分の実効誘電率の最低値との和が0となる条件が、方位角に対する指向性を高める点で、最も好ましい。ただし、上記条件では、例えば、方位角に対する指向性を高め過ぎによる、プラズモン励起層15を透過する発光の減少やそれに伴うプラズモン励起層15での発熱が懸念される。このため、実用上は、方位角の指向性を高めすぎないのが好ましい。具体的には、プラズモン励起層15の誘電率と前記入射側部分の実効誘電率の中間値との和が0となる条件で、例えば、方位角315度~45度、135度~225度の範囲に高指向性放射が得られる。このため、例えば、方位角に対する指向性の向上と発光減少の抑制とを両立できる。前記光学異方性を有する誘電体層の構成材料は、例えば、TiO2、YVO4、Ta25等の異方性結晶等があげられる。前記誘電体層の構造は、例えば、誘電体の斜め蒸着膜、斜めスパッタ膜等があげられる。
 プラズモン励起層15の構成材料は、例えば、金、銀、銅、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム、鉄、錫、亜鉛、コバルト、ニッケル、クロム、チタン、タンタル、タングステン、インジウム、アルミニウム、またはこれらの合金等があげられる。これらの中でも、前記構成材料は、金、銀、銅、白金、アルミニウム、およびこれらを主成分とする誘電体との混合体が好ましく、金、銀、アルミニウム、およびこれらを主成分とする誘電体との混合物が特に好ましい。プラズモン励起層15の厚みは、特に制限されず、200nm以下が好ましく、10~100nm程度が特に好ましい。
 プラズモン励起層15のキャリア生成層13側表面は、例えば、粗面化されていてもよい。前記粗面が、例えば、前記励起光の散乱、前記粗面の先鋭部における局在プラズモンの励起をもたらし、キャリア生成層13中に励起されるキャリアを増加させる。この結果、例えば、光制御部3における励起光の利用効率を向上できる。
 誘電体層14は、誘電体を含む層であり、具体的には、例えば、SiOナノロッドアレイフィルム;SiO、AlF、MgF、NaAlF、NaF、LiF、CaF、BaF、低誘電率プラスチック等の薄膜又は多孔質膜等があげられる。誘電体層14の厚みは、特に制限されず、例えば、1~100nmの範囲であり、好ましくは5~50nmの範囲であり、より好ましくは5~20nmの範囲である。
 誘電体層16の構成材料は、例えば、ダイヤモンド、TiO、CeO、Ta、ZrO、Sb、HfO、La、NdO、Y、ZnO、Nb等の高誘電率材料があげられる。誘電体層16の厚みは、特に制限されない。
 波数ベクトル変換層17は、プラズモン励起層15と誘電体層16との界面から放射される光を、その波数ベクトルを変換することにより、光学装置1から出射させる出射部である。波数ベクトル変換層17は、前記出射光を、プラズモン励起層15と誘電体層16との界面にほぼ直交する向きに、光学装置1から出射させる機能を有する。
 波数ベクトル変換層17の形状は、例えば、表面レリーフ格子;フォトニック結晶に代表される周期構造、または準周期構造;そのサイズが光学装置1からの出射光の波長より大きいテクスチャー構造(例えば、粗面によって構成される表面構造);ホログラム;マイクロレンズアレイ等があげられる。前記準周期構造は、例えば、周期構造の一部が欠けている不完全な周期構造を示す。光の取り出し効率の向上および指向性制御の観点から、前記形状は、フォトニック結晶に代表される周期構造、または準周期構造;マイクロレンズアレイ等が好ましい。前記フォトニック結晶は、結晶構造が三角格子構造を採るものが好ましい。波数ベクトル変換層17は、例えば、平板状の基部上に凸部が設けられた構造でもよい。
 前述のように、光学装置1では、プラズモン励起層15のキャリア生成層13側表面からキャリア生成層13のプラズモン励起層15側表面までの距離は、表面プラズモンの有効相互作用距離deffより短く設定されている。このように設定されていることで、キャリア生成層13中に生成されるキャリアとプラズモン励起層15中の自由電子とを、効率よく結合でき、その結果、例えば、発光効率を向上できる。結合効率の高い領域は、例えば、キャリア生成層13中のキャリアが生成される位置(例えば、キャリア生成層13中の蛍光体が存在する位置)から、プラズモン励起層15のキャリア生成層13側表面までの領域である。前記領域は、例えば、200nm程度と非常に狭く、例えば、1~200nm範囲または10~100nmの範囲である。光学装置1において、前記領域が1~200nmの範囲の場合には、例えば、キャリア生成層13は、プラズモン励起層15から1~200nmの範囲内に配置されていることが好ましい。また、前記領域が10~100nmの範囲の場合には、例えば、キャリア生成層13は、プラズモン励起層15から10~100nmの範囲内に配置されていることが好ましく、具体的には、例えば、誘電体層14の厚みを10nm、キャリア生成層13の厚みを90nmとする。光取り出し効率の観点からは、キャリア生成層13は薄いほど好ましい。一方、光出力定格の観点からは、キャリア生成層13は厚いほど好ましい。したがって、キャリア生成層13の厚みは、例えば、求められる光取り出し効率と光出力定格に基づいて決定される。なお、前記領域の範囲は、キャリア生成層とプラズモン励起層との間に配置される誘電体層の誘電率等により変化するため、所定条件における前記領域の範囲に応じて、例えば、前記誘電体層の厚みおよび前記キャリア生成層の厚み等を、適宜設定すればよい。
 図26に示す本実施形態の光学装置において、前記プラズモン励起層は、前記2つの誘電体層に挟まれているが、前述のように、前記誘電体層は、本発明において必須ではなく、例えば、前記キャリア生成層上に、前記プラズモン励起層が配置されてもよい。また、前記誘電体層は、前記プラズモン励起層の一方の面のみに積層されてよい。
 また、本実施形態の光学装置において、前記励起光光源と前記光制御部とは、接して積層されているが、前記励起光光源と前記光制御部とは、例えば、離れて配置されてもよい。また、前記励起光光源は、例えば、複数の前記励起光光源を備えてもよい。前記励起光は、例えば、導光体を介して、前記光制御部に入射されてもよい。前記導光体の形状は、例えば、直方体または楔形;前記導光体の光出射部または前記導光体内部に光取り出し用の構造体を有する形状のもの等があげられる。前記導光体の光出射部を除く面は、例えば、反射材料または誘電体多層膜等を使用して、前記励起光を前記面から出射させない処理が施されているのが好ましい。
 また、本実施形態の光学装置において、前記光制御部は、例えば、前記実施形態1から7に示すような吸収率制御構造を有してもよい。前記光制御部が前述の吸収率制御構造を有することにより、励起光の吸収効率を向上でき、例えば、より高い発光効率とより高い出力定格を備える光学装置を実現できる。
(実施形態14)
 本実施形態の光学装置は、プラズモン励起による発光を利用する光学装置の一例である。図27の斜視図に、本実施形態の光学装置の構成を示す。本実施形態の光学装置は、前記光制御部が誘電体層を含まないこと以外は、前記実施形態13の光学装置と同様の構成を有する。図27に示すように、本実施形態の光学装置1aは、励起光光源11と、光制御部3aとを、主要な構成要素として含む。光制御部3aは、キャリア生成層13と、キャリア生成層13上に積層されたプラズモン励起層15と、プラズモン励起層15上に積層された波数ベクトル変換層(出射層)27とを含む。光制御部3aは、キャリア生成層13側の面が対向するようにして、励起光光源11に積層されている。
 光学装置1aは、入射側部分の実効誘電率が、出射側部分の実効誘電率よりも高いか、または等しくなるように構成されている。前記入射側部分は、プラズモン励起層15の励起光光源11側に積層された構造全体と励起光光源11に接する媒質とを含む。前記構造全体には、キャリア生成層13および励起光光源11が含まれる。前記出射側部分は、プラズモン励起層15の波数ベクトル変換層27側に積層された構造全体と波数ベクトル変換層27に接する媒質とを含む。前記構造全体には、波数ベクトル変換層27が含まれる。
 キャリア生成層13は、プラズモン励起層15に接して配置されているが、本発明は、この例には限定されない。キャリア生成層15とプラズモン励起層13との間には、例えば、その厚みが前記式(6)で表わされる表面プラズモンの有効相互作用距離deffより小さい厚みの、誘電体層が配置されてもよい。また、波数ベクトル変換層27は、プラズモン励起層15に接して配置されているが、本発明は、この例には限定されず、例えば、波数ベクトル変換層27とプラズモン励起層15との間には、その厚みが前記式(6)で表わされる表面プラズモンの有効相互作用距離deffより小さい厚みの、誘電体層が配置されてもよい。このように誘電体層が配置されることで、前記実施形態13と同様に、キャリア生成層13中に生成されるキャリアとプラズモン励起層15中の自由電子とを、効率よく結合でき、その結果、例えば、発光効率を向上できる。
 つぎに、光学装置1aについて、励起光光源11からの励起光が、光制御部3aに入射し、光制御部3aの波数ベクトル変換層27から光が出射される動作を説明する。
 励起光光源11から出射された励起光は、光制御部3aのキャリア生成層13に入射する。キャリア生成層13に入射した励起光の一部は、キャリア生成層13に吸収され、キャリア生成層13中にキャリアが生成される。このキャリアは、プラズモン励起層15中の自由電子と結合し、キャリア生成層13とプラズモン励起層15との界面、およびプラズモン励起層15と波数ベクトル変換層27との界面に表面プラズモンを励起する。キャリア生成層13とプラズモン励起層15との界面に励起された表面プラズモンは、プラズモン励起層15を透過し、プラズモン励起層15と波数ベクトル変換層27との界面まで伝搬する。前述のように、光学装置1aは、前記入射側部分の実効誘電率が、前記出射側部分の実効誘電率よりも高いか、または等しくなるように構成され、波数ベクトル変換層27のプラズモン励起層15側の端部は、プラズモン励起層15の波数ベクトル変換層27の面からの距離が、表面プラズモンの有効相互作用距離の範囲内に配置されている。ここで、波数ベクトル変換層27が平坦な誘電体層である場合、プラズモン励起層15と波数ベクトル変換層27との界面での表面プラズモンは、その界面では光に変換されない。前記界面での表面プラズモンは、波数ベクトル変換層27が表面プラズモンを光として取り出す機能、例えば、回折作用を有するため、光学装置1a外部に光として放射される。前記放射光の波長は、キャリア生成層13を単独で励起したときに発生する光の波長に等しい。また、前記放出光の放射角度θradは、波数ベクトル変換層27の周期構造のピッチをΛとし、波数ベクトル変換層27の光取り出し側(すなわち、波数ベクトル変換層27に接する媒質)の屈折率をnradとすれば、下記式(8)で表される。
Figure JPOXMLDOC01-appb-M000009
 キャリア生成層13とプラズモン励起層15との界面に励起される表面プラズモンの波数は、前記式(4)で一義的に設定される付近しか存在しない。プラズモン励起層15と波数ベクトル変換層27との界面に励起される表面プラズモンの波数についても同様である。したがって、前記放出光の放射角度は一義的に決定され、その偏光状態は常にp偏光である。すなわち、前記放出光は、非常に高い指向性を有する、p偏光の光である。
 波数ベクトル変換層27は、プラズモン励起層15と波数ベクトル変換層27との界面に励起された表面プラズモンを、その波数ベクトルを変換することで、前記界面から光として取り出し、光学装置1aから放射させる出射部である。すなわち、波数ベクトル変換層27は、表面プラズモンを所定の放射角の光に変換して、前記光を光学装置1aから放射させる。さらに、波数ベクトル変換層27は、例えば、プラズモン励起層15と波数ベクトル変換層27との界面に対してほぼ直交するように、放射光を光学装置1aから放射させる機能を有している。波数ベクトル変換層27は、例えば、前記実施形態13の波数ベクトル変換層17と同様のものを使用できる。
 本実施形態の光学装置において、前記光制御部は、例えば、前記実施形態1から7に示すような吸収率制御構造を有してもよい。前記光制御部が前述の吸収率制御構造を有することにより、励起光の吸収効率を向上でき、例えば、より高い発光効率とより高い出力定格を備える光学装置を実現できる。
(実施形態15)
 本実施形態の光学装置は、プラズモン励起による発光を利用し、導光体を備える光学装置の一例である。図28の斜視図に、本実施形態の光学装置の構成を示す。図28において、全構成要素を示すため、導光体38で遮られて見えない部分を破線で示す。図28に示すように、本実施形態の光学装置1bは、光源部2bと、光制御部3bとを、主要な構成要素として含む。光源部2bは、励起光光源31と、導光体38とを含む。励起光光源31は、導光体38の側方周囲に配置されている。光制御部3bは、キャリア生成部33と、プラズモン励起層35と、誘電体層36とを含む。誘電体層36は、プラズモン励起層35に積層されている。キャリア生成部33は、誘電体層36に周期的に埋め込まれ、誘電体層36を貫通し、その一端部がプラズモン励起層35と接している。キャリア生成部33は、出射層としての機能を有する。光制御部3bは、光制御部3bの誘電体層36側の面と光源部2bの導光体38とが対向するようにして、光源部2bに積層されている。
 さらに、光学装置1bでは、プラズモン励起層35のキャリア生成部33側表面からキャリア生成部33のプラズモン励起層35側表面までの距離は、前記式(6)で表される表面プラズモンの有効相互作用距離deffより短く設定されている。
 つぎに、光学装置1bについて、励起光光源31からの励起光が、光制御部3bに入射し、導光体38のキャリア生成部33側の面とは反対側の面(光出射面39)から光が出射される動作を説明する。
 励起光光源31から出射された励起光は、導光体38に入射し、導光体38からプラズモン励起層35までの間を多重反射しながら導光する。導光している励起光のうち、キャリア生成部33に入射した励起光は、その一部が、キャリア生成部33で吸収され、キャリア生成部33中にキャリアが生成される。前記キャリアの一部は、プラズモン励起層35中の自由電子と結合し、誘電体層36とプラズモン励起層35との界面に表面プラズモンを励起する。励起された表面プラズモンは、キャリア生成部33と誘電体層36とが形成する周期構造によって、回折され、光出射面39を通って、光学装置1b外部に光として放出される。前記放出光の波長は、キャリア生成部33を単独で励起したときに発生する光の波長に等しい。また、前記放出光の出射角度θradは、前記式(8)で表される。ここで、光学装置1bでは、プラズモン励起層35の導光体38側に積層された全体構造と導光体38に接する媒質とを含む部分が、前記実施形態13で定義した励起光の入射側部分および出射側部分を兼ねている。誘電体層36とプラズモン励起層35との界面に励起される表面プラズモンの波数は、前記式(4)で一義的に設定される付近しか存在しない。したがって、前記放出光の放射角度は一義的に決定され、その偏光状態は常にp偏光である。すなわち、前記放出光は非常に高い指向性を有する、p偏光の光である。この放射光の配光分布に、表面プラズモンと結合しなかったキャリアによる伝搬光の配光分布が重畳される。
 励起光光源31は、例えば、前記実施形態13の励起光光源11と同様のものが使用できる。
 導光体38の形状は、例えば、直方体および楔形;導光体38の光出射面39側の面、光出射面39側の面と対向する面、または導光体38内部に光取り出し用の構造体を有する形状のもの等があげられ、例えば、前記両面および前記内部の全てに、前記光取り出し用の構造体を有してもよい。導光体38の光出射面39側、およびそれと対向する面を除く面は、例えば、反射材料または誘電体多層膜等を使用して、前記励起光を前記面から出射させない処理が施されているのが好ましい。
 キャリア生成部33は、励起光を吸光してキャリアを生成させる層であり、その機能・構成材料等は、例えば、前記実施形態13のキャリア生成層13と同様である。
 誘電体層36の構成材料は、例えば、ダイヤモンド、TiO、CeO、Ta、ZrO、Sb、HfO、La、NdO、Y、ZnO、Nb等の高誘電率材料があげられる。誘電体層36の厚みは、特に制限されず、例えば、1~100nmの範囲であり、好ましくは5~50nmの範囲であり、より好ましくは5~10nmの範囲である。前記高誘電率材料を使用することにより、例えば、キャリア生成部33中に生成されたキャリアのうち、表面プラズモンと結合するキャリアの数を増加でき、より指向性の高く、より偏光度の高い光を光学装置1bから放射できる。
 プラズモン励起層35において、その機能・構成材料・形状等は、例えば、前記実施形態13のプラズモン励起層15と同様である。導光体38とプラズモン励起層35との間には、例えば、光学異方性を有する誘電体層が配置されてもよい。この誘電体層の構成および効果等は、前記実施形態13で示したものと同様である。
 図28に示す本実施形態の光学装置において、前記光源部と前記光制御部とは、接して積層されているが、本発明は、この例には限定されず、前記光源部と前記光制御部とは、例えば、離れて配置されてもよい。
 また、本実施形態の光学装置において、前記キャリア生成部は、前記誘電体層内に埋め込まれているが、本発明は、この例には限定されず、例えば、前記誘電体層と前記キャリア生成部との関係を逆転させ、キャリア生成層内に誘電体部が周期的に埋め込まれていてもよい。このような構成でも、前述と同様の効果が得られる。また、前記誘電体層の前記導光体側の表面と前記キャリア生成部の前記導光体側の表面とは、同じ高さに設定されているが、本発明は、この例には限定されず、必ずしも同じ高さである必要はない。前記キャリア生成部は、例えば、前記誘電体層表面の全体に亘って繋がったものでもよいし、前記キャリア生成部の一端部が前記プラズモン励起層に接していなくてもよい。
 また、本実施形態の光学装置において、前記光制御部は、例えば、前記実施形態1から7に示すような吸収率制御構造を有してもよい。前記光制御部が前述の吸収率制御構造を有することにより、励起光の吸収効率を向上でき、例えば、より高い発光効率とより高い出力定格を備える光学装置を実現できる。
(実施形態16)
 本実施形態の光学装置は、偏光変換素子として1/2波長板を備える光学装置の一例である。図29の斜視図に、本実施形態の光学装置の構成を示す。
 図29に示すように、本実施形態の光学装置1cは、光学装置1と、1/2波長板41とを、主要な構成要素として含む。光学装置1は、図26に示した前記実施形態13の光学装置である。1/2波長板41は、光学装置1の波数ベクトル変換層17側に配置されている。なお、図29では、説明の便宜上、1/2波長板41を二点鎖線で示している。
 前記実施形態13で示したように、波数ベクトル変換層17から光が出射される。前記光は、前述のように、p偏光であるため、前記光のフィールドパターンは、偏光方向が放射状になっている。このため、前記光は、軸対称偏光となっている(例えば、国際公開第2011/040528号の[0104]参照)。そして、前記光(軸対称偏光)は、1/2波長板41に入射する。この時、前記軸対称偏光は、1/2波長板41により、直線偏光に変換される。このように、本実施形態の光学装置では、前記光の偏光状態を揃えることができる(例えば、同国際公開の[0105]参照)。
 1/2波長板41は、特に制限されず、例えば、従来公知のものがあげられる。具体的には、例えば、国際公開第2011/040528号に開示されている、下記の1/2波長板があげられる。
 前記公報に開示の1/2波長板は、例えば、配向膜がそれぞれ形成された一対のガラス基板と、これらの基板の配向膜を対向させてガラス基板に挟んで配置された液晶層と、ガラス基板の間に配置されたスペーサとを備えるものがあげられる。前記液晶層は、常光に対する屈折率をn、異常光に対する屈折率をnとすると、屈折率nが屈折率nより大きい。また、前記液晶層の厚みdは、(n-n)×d=λ/2を満たしている。なお、前記λは、真空中における入射光の波長である。
 前記液晶層において、液晶分子は、前記1/2波長板の中心に対して同心円状に配置されている。また、前記液晶分子は、液晶分子の主軸とこの主軸近傍の座標軸とのなす角をφとし、座標軸と偏光方向とがなす角をθとすると、前記液晶分子は、θ=2φ、または、θ=2φ-180のいずれかの関係式を満たす方向に配向されている。
 図29に示す本実施形態の光学装置では、前記1/2波長板により軸対称偏光を直線偏光に変換したが、本発明は、この例には限定されず、例えば、前記軸対称偏光を円偏光に変換してもよい。また、本実施形態の光学装置では、前記実施形態13の光学装置を使用しているが、本発明は、この例に限定されず、例えば、前記実施形態14または15の光学装置を使用してもよい。
 また、本実施形態の光学装置において、前記光制御部は、例えば、前記実施形態1から7に示すような吸収率制御構造を有してもよい。前記光制御部が前述の吸収率制御構造を有することにより、励起光の吸収効率を向上でき、例えば、より高い発光効率とより高い出力定格を備える光学装置を実現できる。
 つぎに、本発明の実施例について説明する。なお、本発明は、下記の実施例によって何ら限定および制限されない。
[実施例1]
 前記実施形態1の光学素子10Aについて、下記の条件を設定し、吸収率および反射率を、シミュレーションにより測定した。本実施例の光学素子における蛍光層103Aの光学的厚み(第1の反射面107Aと第2の反射面106Aとの間の光学的距離)は、99.71nmであり、前記励起光の可干渉距離未満である。
反射層101A 厚み:200nm、材質:Ag
蛍光層103A 厚み:59nm、蛍光体:半導体蛍光体
        屈折率(実部):1.7、屈折率(虚部):0.01
雰囲気105A 空気
励起光     波長(真空中):460nm
        偏光:p偏光またはs偏光
        入射角:0~90度
 図18のグラフに、励起光の入射角と吸収率との関係を示し、図19のグラフに、励起光の入射角と反射率との関係を示す。図18および図19の凡例は、励起光の偏光状態を示し、「p」はp偏光を、「s」はs偏光を示す(以下、同様。)図18および図19は、前記励起光の吸収率と反射率とは、真逆の関係にあることを示している。図18に示すように、本実施例の光学素子では、前記励起光の入射角および偏光を選択すれば、前記励起光の吸収率を向上できることが確認された。前記励起光の偏光をs偏光、入射角を20度以上とした場合、前記吸収率が19%以上であり、前記入射角を40度以上とした場合、前記吸収率が22%以上であり、前記入射角を60度以上とした場合、前記吸収率が31%以上であり、前記入射角を80度以上とした場合、前記吸収率が65%以上である。特に、前記励起光の偏光をs偏光、入射角を87.4度とした場合、100%の励起光を蛍光層103Aに、1回の入射で吸収させることができることが確認された。
[実施例2]
 蛍光層103Aの厚みを100nmとしたこと以外は、前記実施例1と同様の条件で、前記実施形態1の光学素子10Aについての励起光吸収率を、シミュレーションにより測定した。本実施例の光学素子における蛍光層103Aの光学的厚みは、169nmであり、前記励起光の可干渉距離未満である。
 図20のグラフに、励起光の入射角と吸収率との関係を示す。図20に示すように、本実施例の光学素子では、前記励起光の入射角および偏光を選択すれば、前記実施例1と比較して、前記励起光の吸収率の最大値は低いものの、前記励起光の吸収率を向上できることが確認された。この結果から、前記励起光の干渉を利用した光閉じ込めにおいて、最大の吸収率を得るには、吸収率制御構造の一つである蛍光層103Aの厚みを適切に制御するのが望ましいことが示唆された。
[実施例3]
 蛍光層103Aの屈折率(実部)を1.9としたこと以外は、前記実施例1と同様の条件で、前記実施形態1の光学素子10Aの励起光吸収率を、シミュレーションにより測定した。本実施例の光学素子における蛍光層103Aの光学的厚みは、111.51nmであり、前記励起光の可干渉距離未満である。
 図21のグラフに、励起光の入射角と吸収率との関係を示す。図21に示すように、本実施例の光学素子では、前記励起光の入射角および偏光を選択すれば、前記実施例1と比較して、前記励起光の吸収率の最大値は低いものの、前記励起光の吸収率を向上できることが確認された。この結果から、前記励起光の干渉を利用した光閉じ込めにおいて、最大の吸収率を得るには、吸収率制御構造の一つである蛍光層103Aの屈折率を適切に制御するのが望ましいことが示唆された。
[実施例4]
 前記励起光の波長を、450nmまたは470nmとしたこと以外は、前記実施例1と同様の条件で、前記実施形態1の光学素子10Aの励起光吸収率を、シミュレーションにより測定した。本実施例の光学素子における蛍光層103Aの光学的厚みは、99.71nmであり、前記励起光の可干渉距離未満である。
 図22のグラフに、励起光の波長が450nmの場合の、励起光の入射角と吸収率との関係を示し、図23のグラフに、励起光の波長が470nmの場合の、励起光の入射角と吸収率との関係を示す。図22および図23に示すように、本実施例の光学素子によれば、前記励起光の吸収率を向上できることが確認された。前記実施例1の吸収率と比較した場合、本実施例の光学素子における吸収率は、若干低かった。この結果から、前記励起光の干渉を利用した光閉じ込めにおいて、前記励起光の波長に応じて、吸収率制御構造を適切に設計することで、最大の吸収率を得ることができることが確認された。なお、図22および図23は、励起光の波長変化に対する吸収率の変化が小さいこと、すなわち、波長トレランスが高いことを示しており、反射された励起光を、折り返しミラー等の光学素子を使用して、再度、光学素子10Aへ入射させることで、容易に吸収率を96%以上とすることできる。このような波長トレランスは、半導体レーザダイオードに対しては十分な範囲である。
[実施例5]
 蛍光層103Aの厚みを129nmとしたこと以外は、前記実施例1と同様の条件で、前記実施形態1の光学素子10Aについての励起光吸収率を、シミュレーションにより測定した。本実施例の光学素子における蛍光層103Aの光学的厚みは、218.01nmであり、前記励起光の可干渉距離未満である。
 図24のグラフに、励起光の入射角と吸収率との関係を示す。図24に示すように、本実施例の光学素子によれば、前記励起光の吸収率を向上できることが確認された。また、吸収率の最大値は、前記実施例1と同等であった。前記励起光の偏光をp偏光、入射角を20度以上とした場合、前記吸収率が11%以上であり、前記入射角を40度以上とした場合、前記吸収率が13%以上であり、前記入射角を60度以上とした場合、前記吸収率が19%以上であり、前記入射角を80度以上とした場合、前記吸収率が45%以上である。特に、前記励起光の偏光をp偏光、入射角度を88.5度とした場合、100%の励起光を蛍光層103Aに、1回の入射で吸収させることができることが確認された。
 以上の結果から、前記励起光の吸収率が特に高くなる条件は、第1の反射面と第2の反射面間の光学的距離(蛍光層103Aの光学的厚み)が、励起光光源の可干渉距離を越えない範囲で複数存在し、この条件を適切に設定することで、吸収率を向上できることが確認された。
[実施例6]
 前記実施形態1および3の光学素子10Aおよび10Cについて、前記励起光の入射角および偏光を自由に設定できるとし、蛍光層103Aおよび103Cの厚みをできるだけ薄くした場合において、前記励起光の吸収率が100%となる条件を、シミュレーションにより確認した。
 図25のグラフに、励起光吸収率が100%となるための屈折率差と蛍光層の厚みとの関係を示す。図25において、横軸は、蛍光層103Aから雰囲気105Aの屈折率(実部)を差し引いた値(屈折率差)、または蛍光層103Cから導光体205Cの屈折率(実部)を差し引いた値(屈折率差)を示す。縦軸は、前記励起光の吸収率が100%となる条件における蛍光層103Aおよび103Cの光学的厚みを前記励起光の波長で規格化したときの、蛍光層103Aおよび103Cの厚みを示している。凡例は、左から、前記励起光の波長、反射層101Aまたは101Cの構成材料、蛍光層103Aまたは103Cの屈折率(虚部)、雰囲気105Aまたは導光体層205Cの構成材料を、前記順序で示している。図25に示すように、いずれの条件においても、蛍光層が蛍光層中での励起光の波長より薄い条件で、前記励起光を100%吸収できることが確認された。
 前述のように、本発明の光学素子は、励起光の吸収効率が向上されている。従って、本発明の光学素子を使用した光学装置は、例えば、ディスプレイ(画像表示装置)全般の光源に使用できる。前記本発明の画像表示装置は、特に制限されず、例えば、プロジェクタがあげられる。前記プロジェクタは、例えば、モバイルプロジェクタ、次世代リアプロジェクションTV(rear projection TV)、デジタルシネマ、網膜走査ディスプレイ(RSD:Retinal Scanning Display)、ヘッドアップディスプレイ(HUD:Head Up Display)、または携帯電話、デジタルカメラ、ノートパソコン等への組込型プロジェクタ(embedded projector)等があげられ、幅広い市場に対する応用が可能である。ただし、その用途は限定されず、広い分野に適用可能である。
 以上、実施形態および実施例を参照して本願発明を説明したが、本願発明は、上記実施形態および実施例に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解しうる様々な変更をすることができる。
 この出願は、2012年1月7日に出願された日本出願特願2012-1694を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10A、10B、10C、10D、10E、10F、10G、10G-1、10G-2、10G-3、10H 光学素子
20A、20I-r、20I-g、20I-b 光学装置
30 プロジェクタ(画像表示装置)
101A、101B、101C、101D、101E、101F、101H、201F 反射層
102B、104B 誘電体層
103A、103B、103C、103D、103E、103F、103H 蛍光層(発光体を含む層)
105A、105B、105D、105E、105F  雰囲気
106A、106B、106C、106D、106E、106F、106H 界面(第2の反射面)
107A、107B、107C、107D、107E、107F、107H 界面(第1の反射面)
108A、108H 励起光
109A、110A、110H、111A 仮想光線
112D 1/4波長板
113D 反射型偏光子
114E 凹凸構造体
120A 励起光光源
130  クロスダイクロイックプリズム
140r、140g、140b 照明光学系(照射部)
150r、150g、150b 液晶表示素子
160  投射光学系
205C、205H 導光体層
214F 凹凸構造体
301H 反射構造
1、1a、1b、1c 光学装置
2b 光源部
3、3a、3b 光制御部
11、31 励起光光源
13 キャリア生成層
14 誘電体層
15、35 プラズモン励起層
16、36 誘電体層
17、27 波数ベクトル変換層(出射層)
33 キャリア生成部(出射層)
38 導光体
39 光出射面
41 1/2波長板(偏光変換素子)
 

Claims (23)

  1. 発光層と、反射層とを有し、
    前記発光層は、発光体を含む層を有し、
    前記発光層と前記反射層とは、積層されており、
    前記発光層において、前記反射層が積層されていない側の表面が第1の反射面であり、
    前記発光層と前記反射層との界面が第2の反射面であり、
    前記第1の反射面で反射される励起光と、前記第2の反射面で反射される励起光とを干渉させる、光学素子。
  2. 発光層と、反射層とを有し、
    前記発光層は、発光体を含む層を有し、
    前記発光層と前記反射層とは、積層されており、
    前記発光層において、前記反射層が積層されていない側の表面が第1の反射面であり、
    前記発光層と前記反射層との界面が第2の反射面であり、
    前記第1の反射面側から入射される励起光に起因して前記第1の反射面から出射される方向に発生する、仮想反射光線同士の位相をずらすことが可能である、光学素子。
  3. 発光層と、反射層とを有し、
    前記発光層は、発光体を含む層を有し、
    前記発光層と前記反射層とは、積層されており、
    前記発光層において、前記反射層が積層されていない側の表面が第1の反射面であり、
    前記発光層と前記反射層との界面が第2の反射面であり、
    前記発光体を含む層の厚みは、30μm未満である、光学素子。
  4. 前記発光体を含む層の厚みは、10μm未満である、請求項3記載の光学素子。
  5. 前記発光層の厚みは、30μm未満である、請求項3または4記載の光学素子。
  6. 前記発光層の厚みは、10μm未満である、請求項5記載の光学素子。
  7. 前記発光体は、蛍光体である、請求項1から6のいずれか一項に記載の光学素子。
  8. 前記発光体は、ナノ蛍光体である、請求項1から7のいずれか一項に記載の光学素子。
  9. 前記発光層は、誘電体層を含む、請求項1から8のいずれか一項に記載の光学素子。
  10. 前記誘電体層は、前記発光層の前記第2の反射面側に配置されている、請求項9記載の光学素子。
  11. さらに、導光体層を有し、
    前記導光体層は、前記発光層の前記反射層が積層されていない側に配置されている、請求項1から10のいずれか一項に記載の光学素子。
  12. 前記第2の反射面は、前記励起光の波長に対して機能する、分布ブラッグ反射鏡により形成される、請求項1から11のいずれか一項に記載の光学素子。
  13. 前記反射層は、金属を含む層である、請求項1から11のいずれか一項に記載の光学素子。
  14. 前記第2の反射面は、第2反射面凹凸構造体により形成され、
    前記第2反射面凹凸構造体における凸部のサイズは、前記励起光の波長の1/4未満である、請求項1から13のいずれか一項に記載の光学素子。
  15. さらに、凹凸構造体を有し、
    前記凹凸構造体は、前記反射層の前記発光層が積層されていない側に配置され、
    前記凹凸構造体における凸部のサイズは、発光波長の1/4以上である、請求項1から14のいずれか一項に記載の光学素子。
  16. さらに、1/4波長板および反射型偏光子を有し、
    前記1/4波長板および前記反射型偏光子は、前記発光層の前記反射層が積層されていない側に、前記順序で、前記発光層側から配置されている、請求項1から15のいずれか一項に記載の光学素子。
  17. 請求項1から16のいずれか一項に記載の光学素子と、
    前記光学素子の前記第1の反射面に励起光を照射する励起光光源とを含む、光学装置。
  18. 前記光学素子における前記発光層の厚みおよび屈折率、ならびに前記励起光の可干渉距離が、下記(I)の条件を満たすように設定されている、請求項17記載の光学装置。
    (I)前記光学素子における前記第1の反射面と前記第2の反射面との光学的距離が、前記可干渉距離未満である
  19. 発光層と、反射層とを有し、
    前記発光層は、発光体を含む層を有し、
    前記発光層と前記反射層とは、積層されており、
    前記発光層において、前記反射層が積層されていない側の表面が第1の反射面であり、
    前記発光層と前記反射層との界面が第2の反射面である光学素子と、
    前記光学素子の前記第1の反射面に励起光を照射する励起光光源とを含み、
    前記光学素子における前記発光層の厚みおよび屈折率、ならびに前記励起光の可干渉距離が、下記(I)の条件を満たすように設定されている、光学装置。
    (I)前記光学素子における前記第1の反射面と前記第2の反射面との光学的距離が、前記可干渉距離未満である
  20. 前記励起光光源は、指向性および偏光性が高い光源である、請求項17から19のいずれか一項に記載の光学装置。
  21. 請求項17から20のいずれか一項に記載の光学装置と、
    画像を表示可能な画像表示部とを含む、画像表示装置。
  22. さらに、前記画像表示部に光を照射する照射部と、
    前記画像表示部からの出射光により投射映像を投射する投射光学系とを含む、請求項21記載の画像表示装置。
  23. 発光層と、反射層とを有し、
    前記発光層は、発光体を含む層を有し、
    前記発光層と前記反射層とは、積層されており、
    前記発光層において、前記反射層が積層されていない側の表面が第1の反射面であり、
    前記発光層と前記反射層との界面が第2の反射面である光学素子において、
    前記第1の反射面で反射される励起光と、前記第2の反射面で反射される励起光とを干渉させることで、前記第1の反射面側から入射される励起光の、前記発光層における吸収率を向上させる方法。
PCT/JP2012/075697 2012-01-07 2012-10-03 光学素子、光学装置、画像表示装置および励起光の吸収率向上方法 WO2013103039A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012001694 2012-01-07
JP2012-001694 2012-01-07

Publications (1)

Publication Number Publication Date
WO2013103039A1 true WO2013103039A1 (ja) 2013-07-11

Family

ID=48745106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/075697 WO2013103039A1 (ja) 2012-01-07 2012-10-03 光学素子、光学装置、画像表示装置および励起光の吸収率向上方法

Country Status (2)

Country Link
JP (1) JPWO2013103039A1 (ja)
WO (1) WO2013103039A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150096869A (ko) * 2014-02-17 2015-08-26 엘지디스플레이 주식회사 유기발광표시장치
JP2016522984A (ja) * 2013-10-29 2016-08-04 フィリップス ライティング ホールディング ビー ヴィ 光出力を発生する蛍光体に基づく照明デバイス及び方法
CN107765499A (zh) * 2016-08-20 2018-03-06 精工爱普生株式会社 波长转换元件、光源装置和投影仪
WO2019171775A1 (ja) * 2018-03-06 2019-09-12 ソニー株式会社 発光素子、光源装置及びプロジェクタ
US10942432B2 (en) 2017-05-31 2021-03-09 Seiko Epson Corporation Light emitting apparatus and projector
US11061311B2 (en) 2017-05-31 2021-07-13 Seiko Epson Corporation Light emitter and projector
WO2023070478A1 (zh) * 2021-10-28 2023-05-04 京东方科技集团股份有限公司 发光基板及其制备方法和发光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10269820A (ja) * 1997-03-25 1998-10-09 Nec Home Electron Ltd 照明器具
JP2004327361A (ja) * 2003-04-28 2004-11-18 Seiko Epson Corp 照明装置および投射型表示装置
JP2008177227A (ja) * 2007-01-16 2008-07-31 Toshiba Corp 発光装置
JP2010186873A (ja) * 2009-02-12 2010-08-26 Panasonic Corp 白色発光素子およびその製造方法
JP2011077444A (ja) * 2009-10-01 2011-04-14 Citizen Holdings Co Ltd 光源装置、偏光変換素子及び表示装置
JP2011186132A (ja) * 2010-03-08 2011-09-22 Minebea Co Ltd プロジェクタ

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5717949B2 (ja) * 2009-01-26 2015-05-13 デクセリアルズ株式会社 光学部材および表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10269820A (ja) * 1997-03-25 1998-10-09 Nec Home Electron Ltd 照明器具
JP2004327361A (ja) * 2003-04-28 2004-11-18 Seiko Epson Corp 照明装置および投射型表示装置
JP2008177227A (ja) * 2007-01-16 2008-07-31 Toshiba Corp 発光装置
JP2010186873A (ja) * 2009-02-12 2010-08-26 Panasonic Corp 白色発光素子およびその製造方法
JP2011077444A (ja) * 2009-10-01 2011-04-14 Citizen Holdings Co Ltd 光源装置、偏光変換素子及び表示装置
JP2011186132A (ja) * 2010-03-08 2011-09-22 Minebea Co Ltd プロジェクタ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016522984A (ja) * 2013-10-29 2016-08-04 フィリップス ライティング ホールディング ビー ヴィ 光出力を発生する蛍光体に基づく照明デバイス及び方法
KR20150096869A (ko) * 2014-02-17 2015-08-26 엘지디스플레이 주식회사 유기발광표시장치
KR102119087B1 (ko) 2014-02-17 2020-06-04 엘지디스플레이 주식회사 유기발광표시장치
CN107765499A (zh) * 2016-08-20 2018-03-06 精工爱普生株式会社 波长转换元件、光源装置和投影仪
US10942432B2 (en) 2017-05-31 2021-03-09 Seiko Epson Corporation Light emitting apparatus and projector
US11061311B2 (en) 2017-05-31 2021-07-13 Seiko Epson Corporation Light emitter and projector
WO2019171775A1 (ja) * 2018-03-06 2019-09-12 ソニー株式会社 発光素子、光源装置及びプロジェクタ
CN111788521A (zh) * 2018-03-06 2020-10-16 索尼公司 发光元件、光源装置以及投影仪
JPWO2019171775A1 (ja) * 2018-03-06 2021-03-18 ソニー株式会社 発光素子、光源装置及びプロジェクタ
US11429015B2 (en) 2018-03-06 2022-08-30 Sony Corporation Light-emitting element, light source device and projector
CN111788521B (zh) * 2018-03-06 2022-10-28 索尼公司 发光元件、光源装置以及投影仪
WO2023070478A1 (zh) * 2021-10-28 2023-05-04 京东方科技集团股份有限公司 发光基板及其制备方法和发光装置

Also Published As

Publication number Publication date
JPWO2013103039A1 (ja) 2015-05-11

Similar Documents

Publication Publication Date Title
US9086619B2 (en) Optical device for projection display device having plasmons excited with fluorescence
WO2013103039A1 (ja) 光学素子、光学装置、画像表示装置および励起光の吸収率向上方法
US9041041B2 (en) Optical device, optical element, and image display device
JP5605368B2 (ja) 光学素子、光源装置及び投射型表示装置
JP5605426B2 (ja) 光学素子、光源装置及び投射型表示装置
US20140022818A1 (en) Optical element, illumination device, and projection display device
US9170351B2 (en) Optical element, light source apparatus, and projection-type display apparatus
JP2016171228A (ja) 発光素子、発光装置および検知装置
US9880336B2 (en) Light-emitting device including photoluminescent layer
WO2013046866A1 (ja) 光素子および該光素子を用いた投射型表示装置
WO2013175670A1 (ja) 光学素子、照明装置および画像表示装置
WO2013046865A1 (ja) 光学素子、光源装置及び投射型表示装置
WO2013046872A1 (ja) 光学素子、光源装置及び投射型表示装置
US20150085464A1 (en) Light emitting device
WO2014020954A1 (ja) 光学素子、照明装置、画像表示装置、光学素子の作動方法
WO2014020955A1 (ja) 光学素子、照明装置、画像表示装置、光学素子の作動方法
WO2013103038A1 (ja) 光学装置および画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12864390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013552389

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12864390

Country of ref document: EP

Kind code of ref document: A1