WO2013100574A1 - 지상 조정통제국 기반 우주항공노드 통신중계 측위 시스템 - Google Patents

지상 조정통제국 기반 우주항공노드 통신중계 측위 시스템 Download PDF

Info

Publication number
WO2013100574A1
WO2013100574A1 PCT/KR2012/011480 KR2012011480W WO2013100574A1 WO 2013100574 A1 WO2013100574 A1 WO 2013100574A1 KR 2012011480 W KR2012011480 W KR 2012011480W WO 2013100574 A1 WO2013100574 A1 WO 2013100574A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
ground reference
satellite
receiving station
relay stations
Prior art date
Application number
PCT/KR2012/011480
Other languages
English (en)
French (fr)
Inventor
임재성
장지녕
이규만
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110144427A external-priority patent/KR101219467B1/ko
Priority claimed from KR20120084477A external-priority patent/KR101490838B1/ko
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Publication of WO2013100574A1 publication Critical patent/WO2013100574A1/ko
Priority to US14/318,034 priority Critical patent/US20150002334A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/03Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers
    • G01S19/10Cooperating elements; Interaction or communication between different cooperating elements or between cooperating elements and receivers providing dedicated supplementary positioning signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems

Definitions

  • the present invention relates to a positioning system, and more particularly, the position information and the ground reference station of the satellite aerial relay station received from the receiving station by transmitting the position information and the position of the ground reference station from the ground reference station to the receiving station.
  • the present invention relates to a positioning system, a positioning method, and an apparatus for calculating a position of a receiving station using a position of.
  • GNSS Global Navigation Satellite System
  • GNSS consists of a receiver capable of receiving one or more satellites and signals, a ground monitoring station, and a system integrity monitoring system. It is a method to determine the location of a receiver by receiving a radio wave transmitted from a satellite and obtaining a distance from a satellite. Regardless of the user's geographic location, the advantages of using a receiver are that the signal is small, the receiver is compact, and the output can be obtained in real time so that the user can work on the go.
  • the existing GNSS is exclusively owned by the Global Positioning System (GPS), developed and operated by the US Department of Defense. In response, Russia is building the GLONASS (GLObal NAvigation Satellite System), the European Union (Galileo) and China (Beidou).
  • GPS Global Positioning System
  • GLONASS GLObal NAvigation Satellite System
  • Galileo European Union
  • Beidou Beidou
  • the GPS which is monopolized by the US Department of Defense, consists of three parts: Space Segment, User Segment, and Control Segment.
  • the operation principle of GPS is to find the position by receiving the navigation message from the satellite and calculating the position at the receiver.
  • the receiver needs to know which of the 24 satellites the signal it received comes from, and since each satellite carries its data at the same frequency, it cannot be distinguished by frequency.
  • each satellite is assigned an independent ID code to identify the calling satellite.
  • the receiver finds the IDs of all the satellites that match each other, and finds out which satellite the signal is from.
  • the medium-orbit satellite navigation system with weak signal strength is a ground-mounted disturbance device with a range of 50-100 km. Disturbance of GPS signals can cause major obstacles in military or disaster situations.
  • the military weapon system of the military is being advanced, and the positioning system of the precision weapon system is basically based on GPS.
  • the mid-orbit satellite navigation system which has a weak signal strength, is known to be able to disturb GPS signals in the range of 50 to 100 km with ground vehicle disturbance equipment. It shows the vulnerability of disturbance. That is, the development of a system that depends entirely on GPS should be avoided, and the signal disturbance of the positioning signal of the low power signal is difficult to solve fundamentally due to the GPS characteristics generated in the mid-orbit satellite.
  • Electromagnetic disturbance equipment can be developed and operated at low cost, with major threats and anti-social terrorism. GPS signal disturbances by group can be a major disaster for humanity.
  • the present invention is not dependent on the conventional positioning system based on the orbiting satellite with global service capability, but the capability for networking the national security system, the disaster warning system, and the industrial infrastructure using the ground reference station and the satellite air relay station.
  • the objective is to develop a unique positioning system structure and implementation technology that can support the combined capabilities of defense, security and disasters to collect and control location / situation information.
  • the positioning system includes a ground reference station, a satellite aerial relay station, a receiving station.
  • the ground reference station shares information with respect to the position of at least three satellite air relay stations and the position of the ground reference station with the receiving station.
  • the network used may be a satellite air network, but a heterogeneous communication network may be used.
  • the ground reference station also transmits a reference signal to a receiving station using a satellite aerial network via each of the at least three satellite aerial relay stations.
  • the satellite aerial relay station amplifies the signal and returns the received signal received from the ground reference station to the ground.
  • the receiving station calculates the position of the receiving station by using the difference of the receiving time or the receiving time according to the transmission path of the reference signal, and using the position of the ground reference station and each of the satellite aerial relay stations.
  • the ground reference station may transmit positioning related information in an asynchronous manner with respect to the receiving station.
  • the receiving station is based on the time difference of Arrival (TDOA) according to the transmission path of the reference signal transmitted from the ground reference station to each of the three or more satellite aerial relay stations. The difference in distance from each of them to the receiving station can be calculated.
  • TDOA time difference of Arrival
  • the receiving station may calculate the position of the receiving station using the difference in distance from each of the satellite aerial relay stations to the receiving station. In this case, the receiving station calculates the position of the receiving station using the TDOA of the reference signal.
  • hyperbolic navigation may be used.
  • time information synchronized between the ground reference station and the receiving station may be used.
  • the ground reference station may generate code signals for each of the satellite RSs using the synchronized time information.
  • the receiving station may generate code signals for each of the satellite ARSs at the same time as the ground reference station using time information synchronized with the ground reference station.
  • Each of the code signals generated by the ground reference station may be transmitted to the receiving station via each of the satellite aerial relay stations corresponding to the code signals.
  • the receiving station may calculate a round trip time (RTT) of a transmission path through each of the satellite RSs based on a difference between a generation time of each code signal and a time of arrival (TOA). .
  • the receiving station uses the transmission delay time according to the distance from the ground reference station to each of the satellite broadcasting relay stations and the round trip delay time of the transmission path corresponding to each of the satellite broadcasting relay stations, respectively. You can calculate the distance to.
  • the receiving station may calculate the position of the receiving station using the distance from each of the satellite aerial relay stations to the receiving station.
  • a triangulation method may be used as an example of a method for determining a location of a receiving station.
  • the position of the ground reference station and the satellite aerial network using a separate satellite wire network or a separate wired or wireless communication network via at least one of the satellite air relay stations in the ground reference station.
  • Information about the location of each of the relay stations may be broadcast.
  • the location information of each of the satellite ARSs may be transmitted in a reference signal transmitted from the ground reference station via each of the satellite ARSs.
  • the receiving station transmits a measurement value for the downlink channel through which the surrounding environment information or the reference signal is received through the uplink, thereby causing the ground reference station to transmit power level when transmitting the reference signal.
  • Information may be fed back so that the ground reference station may obtain information on accidents, such as natural disasters and artificial accidents, based on the information transmitted from the receiving station.
  • the satellite air communication network is not only used for positioning but also hybrid data communication in which positioning related information and other information are transmitted and received in parallel.
  • the ground reference station may be a central station that directly controls the satellite aerial relay station, or may operate in a form in which information from each satellite satellite relay station is provided from the central station in real time or at regular intervals. .
  • the receiving station may periodically receive the position of each of the satellite ARSs from one of the plurality of ground reference stations, and may check and correct the position of each of the satellite ARSs calculated by the receiving station itself.
  • the positioning system is composed of a central station, three or more ground reference stations, three or more satellite aerial relay stations, and a receiving station.
  • the central station synchronizes the ground reference stations, monitors the satellite relay signal, and assigns the ground reference station code and transmission frequency.
  • three or more ground reference stations transmit unique signals to three or more satellite air relay stations through assigned codes and frequencies, and the satellite air relay stations may overlap the received unique signals and transmit them to the receiving stations.
  • the satellite aerial relay station may amplify the received unique signal and return it to the receiving station.
  • the receiving station calculates the position of the satellite air relay station based on the code arrival time difference between the overlapped eigen signals received from the three or more satellite air relay stations, and calculates its position based on the calculated positions of the three or more satellite air relay stations and the distance between the receiving stations. Calculate your location.
  • the process of calculating the position of the satellite aerial relay stations and their position at the receiving station is possible by the triangulation method through the obtained distance.
  • the receiving station may transmit the measured value or the surrounding environment information on the received downlink channel to the ground reference station through the uplink, and the ground reference station uses the feedback channel measurement value or the surrounding environment information to transmit the transmitted signal.
  • the power level can be adjusted.
  • the additional information may be generated through the uplink according to the transmission capability secured at the receiving station.
  • the additional information may be transmitted by using a low-speed message communication or the like, and the bidirectional communication between the ground reference station or the central station and the receiving station may be performed. It is also possible.
  • the transmitted information may be various information such as weather information around the receiving station, accident information, disaster information, and the like.
  • the present invention can improve the ability to respond to malicious signal disturbances compared to the conventional GNSS system which is vulnerable to malicious signal disturbances, and can be applied to defense weapon systems to reduce the severity of dependence of GNSS and to locate weapons in the GNSS signal disturbance situation. Can provide.
  • the present invention can be used as a positioning system in a variety of fields, such as private sector, location identification of marine vessels / fishing vessels, port / aviation / traffic control, facility management.
  • the low-speed message according to the aerospace communication relay can be broadcast to the receiving station can be operated like a disaster broadcasting system. If the receiving station is capable of transmitting, the receiving station may also serve as a sensor node via low speed message communication. It may be operated like a disaster broadcasting system or an emergency broadcasting system by enabling bidirectional communication between a receiving station and a ground reference station.
  • the transmission power level of the ground reference station can be adjusted using the information fed back by the receiving station, a hybrid data communication technique in which various pieces of information are transmitted and received in parallel with the positioning related information is also applicable.
  • the positioning system of the present invention can be implemented using one ground reference station and three or more satellite aerial relay stations. At this time, since the location information of each of the ground reference station and the satellite aerial relay stations is provided from the ground reference station to the receiving station, the receiving station can implement the process of calculating its own position relatively simply.
  • the positioning system according to another embodiment of the present invention can be implemented using three or more ground reference nodes (ground reference station) and three or more satellite aerial relay stations. At this time, even if the location information of each of the ground reference station and the satellite aerial relay stations is not necessarily provided to the receiving station, the receiving station can calculate its own location.
  • the positioning system uses a case of using one ground reference station and three or more satellite aerial relay stations, and a case of using three or more ground reference stations and three or more satellite aerial relay stations, so that the receiving station itself Computation or correction may be made by comparing the calculated position information of each of the satellite aerial relay stations with the position information transmitted from the ground reference station.
  • FIG. 1 illustrates a structure of an asynchronous ground reference station based communication relay positioning system of a ground reference station and a receiving station according to an embodiment of the present invention.
  • FIG. 2 illustrates a structure of a synchronous ground reference station based communication relay positioning system of a ground reference station and a receiving station according to an embodiment of the present invention.
  • FIG 3 shows a conceptual configuration of a receiving station according to an embodiment of the present invention.
  • FIG. 4 shows a conceptual configuration of a receiving station capable of feedback according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating an operation of a positioning method performed in the ground reference station based communication relay positioning system according to an embodiment of the present invention.
  • FIG. 6 is a flowchart illustrating an operation of a method for transmitting location information by monitoring a position of a ground reference station based satellite air relay station according to an embodiment of the present invention.
  • FIG. 7 is an operation flowchart of a method for calculating a position of a receiving station in an asynchronous positioning system according to an embodiment of the present invention.
  • FIG. 8 is an operational flowchart of a method for calculating a position of a receiving station in a synchronous positioning system according to an embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating an operation of determining a location of a receiving station by triangulation in a synchronous positioning system according to an embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating a method of broadcasting location information in a ground reference station according to an embodiment of the present invention.
  • FIG. 11 is a flowchart illustrating a method of transmitting location information to a receiving station by loading location information on a reference signal and a code signal in a ground reference station according to an embodiment of the present invention.
  • FIG. 12 illustrates an operation flowchart of a method of extracting information on a location of each of satellite satellite relay stations from a reference signal at a receiving station according to an embodiment of the present invention corresponding to FIG. 11.
  • FIG. 13 shows a conceptual configuration of a receiving station in a synchronous positioning system according to an embodiment of the present invention.
  • FIG. 14 illustrates a structure of three or more ground reference station-based satellite aerial communication relay positioning systems according to an embodiment of the present invention.
  • FIG. 15 shows a conceptual configuration of the receiving station shown in FIG.
  • FIG. 16 illustrates a conceptual configuration of a receiving station capable of feedback shown in FIG.
  • 17 is a flowchart illustrating an operation of a positioning method performed in at least three ground reference station-based satellite aerial communication relay positioning system according to an embodiment of the present invention.
  • FIG. 18 is a flowchart illustrating operation S1730 of FIG. 17 in more detail.
  • FIG. 19 is a flowchart illustrating a feedback process at a receiving station according to an embodiment of the present invention corresponding to FIG. 17.
  • Positioning system includes a ground reference station, a satellite aerial relay station, a receiving station.
  • the ground reference station shares information with respect to the position of at least three satellite air relay stations and the position of the ground reference station with the receiving station.
  • the network used may be a satellite air network, but a heterogeneous communication network may be used.
  • the ground reference station also transmits a reference signal to a receiving station using a satellite aerial network via each of the at least three satellite aerial relay stations.
  • the satellite aerial relay station amplifies the signal and returns the received signal received from the ground reference station to the ground.
  • the receiving station calculates the position of the receiving station by using the difference of the receiving time or the receiving time according to the transmission path of the reference signal, and using the position of the ground reference station and each of the satellite aerial relay stations.
  • the ground reference station may transmit positioning related information in an asynchronous manner with respect to the receiving station.
  • the receiving station is based on the time difference of Arrival (TDOA) according to the transmission path of the reference signal transmitted from the ground reference station to each of the three or more satellite aerial relay stations. The difference in distance from each of them to the receiving station can be calculated.
  • TDOA time difference of Arrival
  • the receiving station may calculate the position of the receiving station using the difference in distance from each of the satellite aerial relay stations to the receiving station. In this case, the receiving station calculates the position of the receiving station using the difference in the reception time (TDOA) of the reference signal.
  • TDOA reception time
  • hyperbolic navigation may be used.
  • time information synchronized between the ground reference station and the receiving station may be used.
  • the ground reference station may generate code signals for each of the satellite RSs using the synchronized time information.
  • the receiving station may generate code signals for each of the satellite ARSs at the same time as the ground reference station using time information synchronized with the ground reference station.
  • Each of the code signals generated by the ground reference station may be transmitted to the receiving station via each of the satellite aerial relay stations corresponding to the code signals.
  • the receiving station may calculate a round trip time (RTT) of a transmission path through each of the satellite RSs based on a difference between a generation time of each code signal and a time of arrival (TOA). .
  • the receiving station uses the transmission delay time according to the distance from the ground reference station to each of the satellite broadcasting relay stations and the round trip delay time of the transmission path corresponding to each of the satellite broadcasting relay stations, respectively. You can calculate the distance to.
  • the receiving station may calculate the position of the receiving station using the distance from each of the satellite aerial relay stations to the receiving station.
  • a triangulation method may be used as an example of a method for determining a location of a receiving station.
  • the position of the ground reference station and the satellite aerial network using a separate satellite wire network or a separate wired or wireless communication network via at least one of the satellite air relay stations in the ground reference station.
  • Information about the location of each of the relay stations may be broadcast.
  • the location information of each of the satellite ARSs may be transmitted in a reference signal transmitted from the ground reference station via each of the satellite ARSs.
  • the receiving station transmits a measurement value for the downlink channel through which the surrounding environment information or the reference signal is received through the uplink, thereby causing the ground reference station to transmit power level when transmitting the reference signal.
  • Information may be fed back so that the ground reference station may obtain information on accidents, such as natural disasters and artificial accidents, based on the information transmitted from the receiving station.
  • the satellite air communication network is not only used for positioning but also hybrid data communication in which positioning related information and other information are transmitted and received in parallel.
  • the ground reference station may be a central station that directly controls the satellite aerial relay station, or may operate in a form in which information from each satellite satellite relay station is provided from the central station in real time or at regular intervals. .
  • the receiving station may periodically receive the position of each of the satellite ARSs from one of the plurality of ground reference stations, and may check and correct the position of each of the satellite ARSs calculated by the receiving station itself.
  • the positioning system is composed of a central station, three or more ground reference stations, three or more satellite aerial relay stations, and a receiving station.
  • the central station synchronizes the ground reference stations, monitors the satellite relay signal, and assigns the ground reference station code and transmission frequency.
  • three or more ground reference stations transmit unique signals to three or more satellite air relay stations through assigned codes and frequencies, and the satellite air relay stations may overlap the received unique signals and transmit them to the receiving stations.
  • the satellite aerial relay station may amplify the received unique signal and return it to the receiving station.
  • the receiving station calculates the position of the satellite air relay station based on the code arrival time difference between the overlapped eigen signals received from the three or more satellite air relay stations, and calculates its position based on the calculated positions of the three or more satellite air relay stations and the distance between the receiving stations. Calculate your location.
  • the process of calculating the position of the satellite aerial relay stations and their position at the receiving station is possible by the triangulation method through the obtained distance.
  • the receiving station may transmit the measured value or the surrounding environment information on the received downlink channel to the ground reference station through the uplink, and the ground reference station uses the feedback channel measurement value or the surrounding environment information to transmit the transmitted signal.
  • the power level can be adjusted.
  • the additional information may be generated through the uplink according to the transmission capability secured at the receiving station.
  • the additional information may be transmitted by using a low-speed message communication or the like, and the bidirectional communication between the ground reference station or the central station and the receiving station may be performed. It is also possible.
  • the transmitted information may be various information such as weather information around the receiving station, accident information, disaster information, and the like.
  • FIG. 1 illustrates a structure of an asynchronous ground reference station based communication relay positioning system of a ground reference station and a receiving station according to an embodiment of the present invention.
  • the positioning system includes a ground reference station 110, at least three satellite aerial relay stations 131, 132, and 133 and a receiving station 120.
  • the receiving station 120 represents a concept including at least one of a communication terminal / communication device such as a mobile phone, a positioning device installed in a ship or a car, or a satellite signal receiving device.
  • a communication terminal / communication device such as a mobile phone, a positioning device installed in a ship or a car, or a satellite signal receiving device.
  • the satellite aerial relay station 131 is a concept including at least one of a geostationary communication satellite, a satellite having a forwarding / communication function, or an aircraft having a forwarding / communication function.
  • the positions of the 131, 132, and 133 may be fixed but are not necessarily fixed.
  • the ground reference station 110 continuously monitors the positions of the satellite broadcasting relay stations 131, 132, and 133 for attitude control and control of three or more satellite broadcasting relay stations 131, 132, and 133. The positions of the fields 131, 132, and 133 are determined. Thereafter, the ground reference station 110 converts the satellite air relay stations 131, 132, and 133 into position information of the three or more satellite air relay stations 131, 132, and 133 and position information of the ground reference station 110. Via the transmission to the receiving station 120 via.
  • the position of the ground reference station 110 may be known to the receiving station 120 in advance, and according to another embodiment of the present invention, the position of the ground reference station 110 may be determined.
  • the information may be transmitted to the receiving station 120 together with the information on the location of each of the satellite RSs 131, 132, and 133.
  • the satellite aerial relay stations 131, 132, and 133 receive code signals from the ground reference station 110, amplify them, and transmit the overlapped codes to the receiving station 120.
  • the receiving station 120 uses the difference between the received position information of the three or more satellite air relay stations 131, 132, and 133 and the reception time that the reference signal of the ground reference station 110 reaches via the relay nodes.
  • the position of the receiving station 120 is calculated by calculating the difference in distance between the receiving station 120 and the satellite aerial relay stations 131, 132, and 133.
  • One example of a technique that can be used at this time is hyperbolic navigation.
  • the receiving station 120 receives the position of the ground reference station 110 and the position of each of the satellite aerial relay stations 131, 132, and 133 from the ground reference station 110, and thus, the ground reference station 110.
  • the propagation delay times t'1, t'2, and t'3 according to the distances from the satellite air relay stations 131, 132, and 133 to the respective satellite air relay stations can be calculated.
  • the receiving station 120 may calculate a12, which is the difference between the propagation delay time TD1 from the relay station 131 to the receiving station 120 and the propagation delay time TD2 from the relay station 132 to the receiving station 120. Similarly, a13, which is the difference between the propagation delay time TD1 from the relay station 131 to the receiving station 120 and the propagation delay time TD3 from the relay station 133 to the receiving station 120, can be calculated.
  • the receiving station 120 may calculate the position of the receiving station 120 using the positions a12 and a13 and the relay stations 131, 132, and 133.
  • the reference signal when the ground reference station 110 transmits the reference signal, the reference signal may be simultaneously transmitted to each of the satellite satellite relay stations 131, 132, and 133.
  • the receiving station 120 considers the distance between the position of the ground reference station 110 and the position of each of the satellite aerial relay stations 131, 132, and 133 through the uplink from the ground reference station 110.
  • the propagation delay time for transmitting the reference signal should be calculated and the difference value of the reception time should be corrected in consideration of the propagation delay time of the uplink.
  • the ground reference station 110 when the ground reference station 110 transmits the reference signal, the signals are simultaneously carried toward the ground at the same time by each of the satellite satellite relay stations 131, 132, and 133 (at the same time, the receiving station (The transmission time of the reference signal may be different for each transmission path so that a signal is transmitted toward the transmission path 120. At this time, since the difference in the propagation delay time of the uplink is naturally canceled, the calculation burden of the receiving station 120 may be reduced. On the other hand, since the reference station 110 continuously monitors the position of each of the satellite broadcasting relay stations 131, 132, and 133, it is possible to adjust the transmission time of the reference signal for each transmission path.
  • the receiving station 120 transmits the measurement value for the downlink channel through which the surrounding environment information or the reference signal is received through the uplink, thereby causing the ground reference station 110 to make a reference. Information can also be fed back so that the power level can be adjusted when the signal is transmitted.
  • the ground reference station 110 may obtain information about an unexpected situation such as a natural disaster or an artificial accident based on the transmission information from the receiving station 120.
  • the satellite air communication network is not only used for positioning but also hybrid data communication in which positioning related information and other information are transmitted and received in parallel.
  • FIG. 2 illustrates a structure of a synchronous ground reference station based communication relay positioning system of a ground reference station and a receiving station according to an embodiment of the present invention.
  • the ground reference station 110 may transmit the code information C1 in the same frequency band f1 to the satellite air relay station 131 in the time slot T1 through broadcasting, and transmit the code information in the frequency band f1 to the satellite air relay station 132.
  • C2 can be carried in time slot T2
  • code information C3 can be carried in frequency band f1 in time slot T3 to satellite satellite relay station 133.
  • the code information C1, C2, C3 is a code including the unique identification information for each of the satellite aerial relay stations (131, 132, 133), and the timeslots T1, T2, T3 are satellite satellite relay stations (131, 132, 133 is a time slot allocated for 133.
  • the frequency band is constant as f1, and the timeslots T1, T2, and T3 are differently allocated to each relay station, but the timeslot is constantly given, and the frequency bands are different for each relay station. It is also possible if it is assigned. As described above, it is obvious to the skilled person that the skilled person can change the modification so that different resources can be granted to each satellite ARS.
  • the satellite aerial relay stations 131, 132, and 133 receive code signals from the ground reference station 110, amplify them, and transmit the overlapped codes to the receiving station 120.
  • the receiving station 120 may generate a code signal for each of the satellite RSs 131, 132, and 133 at the same time as the ground reference station 110 by using time information synchronized with the ground reference station 110. have.
  • the code signal generated by the ground reference station 110 is transmitted to the receiving station 120 via the satellite aerial network.
  • the receiving station 120 receives the time information (time information synchronized with the ground reference station 110) that generated the code signal by itself, and the reception time of the code signal received via each of the satellite aerial relay stations 131, 132, and 133.
  • time information time information synchronized with the ground reference station 110
  • RTT round trip time
  • Multiplying the propagation speed of the electromagnetic wave by the propagation delay time between the satellite air relay stations 131, 132, 133 and the receiving station 120 determines the travel distance between the satellite air relay stations 131, 132, 133 and the receiving station 120.
  • the horizontal distance between the satellite RSs 131, 132, and 133 and the receiving station 120 may be calculated using the altitudes of the satellite RSs 131, 132, and 133.
  • the receiving station 120 calculates the position of the receiving station 120 by triangulation based on the horizontal distance between the satellite aerial relay stations 131, 132, and 133 and the receiving station 120.
  • FIG. 2 an embodiment in which the same frequency f1 is allocated to the satellite RSs 131, 132, and 133 is illustrated, but the present invention is not limited to the embodiment of FIG. 2.
  • embodiments in which different frequency bands are allocated to the satellite ARSs 131, 132, and 133 are also possible.
  • different frequency bands are allocated to the satellite broadcasting relay stations 131, 132, and 133, they may be identified by frequency-division methods such as time-division or code-division. have. Since the receiving station 120 only needs to identify which relay station the overlapping unique code has passed through, the method of identifying each of the satellite aerial relay stations 131, 132, and 133 is not limited.
  • FIG 3 shows a conceptual configuration of a receiving station according to an embodiment of the present invention.
  • the receiving station 120 includes a receiving unit 121, a position obtaining unit 122, and a calculating unit 123.
  • the receiver 121 receives the reference signal of the ground reference station 110 transmitted from the ground reference station 110 and transmitted by each of the three or more satellite air relay stations 131, 132, and 133.
  • the receiver 121 may receive the location information broadcasted from the ground reference station 110.
  • the receiver 121 may receive a code signal in which the positions of three or more satellite air relay stations 131, 132, and 133 are overlapped.
  • the location acquisition unit 122 shares location information with the ground reference station 110 in a predetermined manner.
  • the location information to be shared includes the location of the ground reference station 110 and each of the three or more satellite air relay stations 131, 132, and 133.
  • the location acquisition unit 122 may share the location information with the ground reference station 110 through a predetermined network, and according to another embodiment of the present invention, the location information received by the reception unit 121 Alternatively, the positions of the three or more satellite ARSs 131, 132, and 133 may be extracted from the code signals received while the positions overlap.
  • the calculation unit 123 uses the positions of each of the ground reference station 110 and the three or more satellite air relay stations 131, 132, and 133 obtained by the position acquisition unit 122, and the receiver 121 By using the difference of the reception time or the reception time according to each of the transmission path of the reference signal received by the calculated distance or the distance from each of the satellite broadcasting relay stations (131, 132, 133) to the receiving station 120. Subsequently, the calculator 123 may calculate the position of the receiving station 120 using the calculated distance or the difference in distance.
  • the calculating unit 123 may calculate a difference in reception time for each path through which the received reference signal is transmitted, and the difference in reception time. And, using the position of each of the satellite RSs 131, 132, 133 can form a hyperbolic curve on the geographic information that maintains a difference of a predetermined distance from each of the satellite RSs (131, 132, 133). In this case, the calculation unit 123 may generate two or more hyperbolas, and find the intersection of the two or more hyperbolas to calculate the position of the receiving station 120 on the geographic information.
  • the calculation unit 123 uses the position of the ground reference station 110 and the position of each of the satellite RSs 131, 132, and 133. From 110, the propagation delay times t'1, t'2, and t'3 through which the reference signals are transmitted on the uplink may be subtracted from the reception times for each transmission path.
  • the calculating unit 123 may include a reception time (TOA) for each path through which the received reference signal is transmitted, and three or more satellite air relay stations.
  • TOA reception time
  • the position of the receiving station 120 is calculated by triangulation using the positions of each of the 131, 132, and 133. Since the reference signals C1 to C3 received by the receiving station 120 are all synchronized and transmitted, the transmission time from the ground reference station 110 is the same.
  • the calculation unit 123 passes through the satellite air relay stations 131, 132, and 133 from the ground reference station 110 according to the difference between the time when each reference signal arrives at the receiving station 120 and the transmission time.
  • the round trip transmission delay time (RTT) reaching the receiving station 130 may be calculated. Since the ground reference station 110 already knows the positions of the satellite broadcasting relay stations 131, 132, and 133 through continuous monitoring, the calculation unit 123 calculates the ground reference station (RTT) at the total arrival delay time (RTT) of the reference signal.
  • the satellite relay stations 131, 132, 133 and the receiving station Except for the uplink propagation delay times t'1, t'2, t'3 between the 110 and the satellite relay stations 131, 132, and 133, the satellite relay stations 131, 132, 133 and the receiving station The propagation delay time and distance between 120 can be obtained.
  • FIG. 4 shows a conceptual configuration of a receiving station capable of feedback according to an embodiment of the present invention.
  • the receiving station 120 feeds back a measurement value for the downlink channel through which the reference signal is received from the ground reference station 110 through the uplink of the transmitter 125.
  • the message generating unit 124 may generate a low-speed message and transmit to the ground reference station 110 through the uplink.
  • the message generated and transmitted by the receiving station 120 may include a measurement value for the downlink channel, or may include weather conditions, accidents, and natural disaster information around the receiving station 120.
  • the receiving station 120 may feed back the channel measurement value, or in some cases, may generate and feed back a message indicating that the positioning process failed due to poor channel characteristics.
  • the receiving station 120 may not only transmit the surrounding environment information or the channel characteristic information to the ground reference station 110 but also transmit and receive the surrounding environment information or the channel characteristic information with another receiving station (not shown). .
  • the receiving station 120 may communicate with neighboring receiving stations using a communication channel with the satellite broadcasting relay stations 131, 132, and 133.
  • the receiving station 120 may communicate with another receiving station under the control of the ground reference station 110, or may communicate with another receiving station in an environment not controlled by the ground reference station 110.
  • the receiving station 120 may configure a mesh system or the like to communicate with other receiving stations in an environment not controlled by the ground reference station 110.
  • the receiving station 120 may transmit and receive information in the form of a short message to communicate with the ground reference station 110 or another receiving station.
  • 5 is a flowchart illustrating an operation of a positioning method performed in the ground reference station based communication relay positioning system according to an embodiment of the present invention. 5 illustrates the operation performed in the receiving station 120.
  • the receiving unit 121 of the receiving station 120 receives a reference signal transmitted from the ground reference station 110 and transmitted via each of at least three satellite air relay stations 131, 132, and 133 (S510).
  • the location obtaining unit 122 of the receiving station 120 obtains information about the location of the ground reference station 110 and the location of each of the satellite aerial relay stations 131, 132, and 133 (S520).
  • step S520 performed by the position obtaining unit 122 of the receiving station 120 may be performed separately from the ground reference station 110 via at least one or more of the satellite ARSs 131, 132, and 133. It is also possible to receive information about the location of the ground reference station 110 that is broadcast using a wired or wireless communication network and the location of each of the satellite aerial relay stations 131, 132, and 133.
  • the position acquisition unit 122 of the receiving station 120 is a reference signal transmitted via each of the satellite aerial relay stations (131, 132, 133) including the position information is transmitted Information about the position of each of the satellite broadcasting relay stations 131, 132, and 133 may be extracted.
  • the calculation unit 123 of the receiving station 120 calculates the position of the ground reference station 110, the position of each of the satellite aerial relay stations 131, 132, and 133, and the reception time according to the transmission path of the reference signal.
  • the position of the receiving station 120 is calculated by using (S530).
  • the calculation unit 123 may determine the difference in the reception time according to the transmission path of the reference signal and the satellite aerial relay stations 131, 132, and 133, respectively.
  • the difference in distance from each of the satellite aerial relay stations 131, 132, 133 to the receiving station 120 is calculated using the position of.
  • the calculation unit 123 determines the position of the receiving station 120 by using the difference in distance from each of the satellite aerial relay stations 131, 132, and 133 to the receiving station 120.
  • the calculation unit 123 may geographic two or more hyperbolic curves in which the difference in distance from each of the satellite satellite relay stations 131, 132, and 133 is constant.
  • the location of the receiving station 120 may be determined using the intersection of two or more hyperbolas generated on the coordinates.
  • the synchronization unit 126 of the receiving station 120 may use the ground reference station 110 using time information synchronized with the ground reference station 110. Generate a code signal for each of the satellite broadcasting relay stations 131, 132, 133 at the same time as.
  • a conceptual diagram of a receiving station 120 including a synchronizer 126 is shown in FIG.
  • Receiving unit 121 of the receiving station 120 receives the reference signal transmitted via each of the satellite aeronautical relay stations (131, 132, 133) (S510), the calculation unit 123 to each of the transmission path of the reference signal
  • the round trip time (RTT) for each transmission path of the reference signal may be calculated by comparing the reception time with respect to the time when the code signal is generated.
  • the calculation unit 123 of the receiving station 120 transmits information about the position of the ground reference station 110 obtained through step S520, the position of each of the satellite ARSs 131, 132, and 133, and transmits the information.
  • the location of the receiving station 120 is calculated using the round trip time for each path (S530).
  • the calculation unit 123 of the receiving station 120 uses the position of the ground reference station 110 and the position of each of the satellite aerial relay stations 131, 132, and 133 to delay the uplink transmission for each of the transmission paths. Compute the times t'1, t'2, t'3, and the uplink propagation delay times t'1, t'2, t'3 for each of the delivery paths from the round trip times for each of the delivery paths. Subsequently, the transmission delay time and the horizontal distance from each of the satellite aerial relay stations 131, 132, and 133 to the receiving station 120 can be obtained.
  • 6 is a flowchart illustrating an operation of a method for transmitting location information by monitoring a position of a ground reference station based satellite air relay station according to an embodiment of the present invention. 6 is a diagram illustrating an operation performed by the ground reference station 110.
  • the ground reference station 110 communicates with each of the satellite air relay stations 131, 132, and 133 at regular intervals to control the attitude of each of the at least three satellite air relay stations 131, 132, and 133.
  • the positions of the relay stations 131, 132, and 133 are monitored (S610).
  • the ground reference station 110 may communicate with each other at least at regular intervals to monitor the position of each of the satellite broadcasting relay stations 131, 132, and 133 in real time.
  • the ground reference station 110 may adjust a period for monitoring the position according to whether each of the satellite aerial relay stations 131, 132, and 133 is a geostationary satellite, a mid-orbit satellite, a low-orbit satellite, or an aircraft.
  • the frequency of monitoring the position can be adjusted according to the degree of change of the position.
  • the ground reference station 110 transmits information on the position of the ground reference station 110 and the position of each of the at least three satellite aerial relay stations 131, 132, and 133 to the receiving station 120 ( S620).
  • the reference signal transmitted from the ground reference station 110 to the receiving station 120 is transmitted through at least three or more satellite air relay stations 131, 132, and 133 (S630).
  • a communication channel different from the reference signal is transmitted from the ground reference station 110 through at least one or more of the satellite aerial relay stations 131, 132, and 133 or by using a separate wired or wireless communication network. You can also broadcast via.
  • step S620 and step S630 may be performed as separate processes.
  • step S620 and step S630 may be merged to proceed through one process.
  • FIG. 7 is an operation flowchart of a method for calculating a position of a receiving station in an asynchronous positioning system according to an embodiment of the present invention.
  • the calculating unit 123 of the receiving station 120 uses the position of each of the TDOA and the satellite RSs 131, 132, and 133 according to the transmission path of the reference signal, respectively.
  • the difference in the distance from the receiver to the receiving station 120 is calculated (S710).
  • the calculation unit 123 may geographic two or more hyperbolic curves in which the difference in distance from each of the satellite satellite relay stations 131, 132, and 133 from each of the satellite satellite relay stations 131, 132, and 133 is constant. Generate on the coordinates (S720). The positioning method using two or more hyperbolas used at this time is called hyperbolic navigation.
  • the calculator 123 determines the position of the receiving station 120 by using the intersection of two or more hyperbolas (S730).
  • the calculation unit 123 of the receiving station 120 The propagation delay time of the uplink is calculated in consideration of the position of the ground reference station 110 and the distance between each of the satellite air relay stations 131, 132, and 133, and the propagation delay of the uplink in step S710. Time should be used to correct for differences in distance.
  • each of the different satellite aerial relay stations 131, 132, and 133 transmits the signal to the receiving station 120 simultaneously (to reflect the signal at the same time).
  • the reference signal transmission time is different for each path, the difference in the propagation delay time of the uplink is naturally canceled, so that the calculation burden of the calculation unit 123 of the receiving station 120 may be reduced.
  • the ground reference station 110 since the ground reference station 110 continuously monitors the position of each of the satellite broadcasting relay stations 131, 132, and 133, the ground reference station 110 may adjust the transmission time point such that the result is displayed.
  • FIG. 8 is an operational flowchart of a method for calculating a position of a receiving station in a synchronous positioning system according to an embodiment of the present invention.
  • the synchronization unit 126 of the receiving station 120 generates a code signal for each of the satellite RSs 131, 132, and 133 by using time information synchronized with the ground reference station 110 (S810).
  • the receiving unit 121 of the receiving station 120 receives a reference signal transmitted from the ground reference station 110 and transmitted via each of at least three satellite air relay stations 131, 132, and 133 (S510).
  • the calculator 123 may calculate a round trip time (RTT) for each of the transmission paths of the reference signal by comparing the reception time of each of the transmission paths of the reference signal and the time at which the code signal is generated.
  • RTT round trip time
  • the calculation unit 123 is a location of the ground reference station 110 obtained through the step (S520), the information on the position of each of the satellite aerial relay stations 131, 132, 133, and the round trip for each transmission path
  • the position of the receiving station 120 is calculated using the time (S530).
  • FIG. 9 is a flowchart illustrating a detailed process of determining a location of a receiving station by triangulation in a synchronous positioning system according to an embodiment of the present invention.
  • the calculating unit 123 of the receiving station 120 calculates a round trip time (RTT) of a transmission path via each of the satellite air relay stations 131, 132, and 133 from the ground reference station 110 (S910).
  • RTT round trip time
  • the calculation unit 123 uses the position of the ground reference station 120 and the positions of the satellite aerial relay stations 131, 132, and 133, respectively. 133) The uplink propagation delay time until each is calculated (S920).
  • the calculation unit 123 subtracts the uplink propagation delay time from the round trip time (RTT) of the transmission path via each of the satellite air relay stations 131, 132, and 133 (S930), and the satellite air relay stations ( The distance from each of 131, 132, and 133 to the receiving station 120 is calculated (S940), and the position of the receiving station 120 is determined by triangulation (S950).
  • the triangulation method is a method of finding the coordinates and distances of a point by using the properties of a triangle. If a point and two reference points are given, two triangulation methods It is a method to find the coordinates and distances of the points by measuring the angles of the sides, measuring the lengths of the sides, and performing a series of calculations using the sine law.
  • Receiving station by applying triangulation method using the position of each of the three or more satellite air relay stations 131, 132, 133 and the distance from each of the satellite air relay stations 131, 132, 133 to the receiving station 120.
  • the location of 120 can be determined.
  • FIG. 10 is a flowchart illustrating a method of broadcasting location information in a ground reference station of a positioning system according to an embodiment of the present invention.
  • the ground reference station 110 broadcasts the position of the ground reference station 110 and the positions of each of the satellite air relay stations 131, 132, and 133 (S1010).
  • the position obtaining unit 122 of the receiving station 120 obtains information about the position of the ground reference station 110 and the position of each of the satellite aerial relay stations 131, 132, and 133 (S520). At this time, the location information can be obtained by receiving the location information broadcast in S1010.
  • Broadcasting may be performed using a satellite air network via any one of satellite air relay stations 131, 132, and 133, using a channel separate from a channel through which a reference signal is transmitted, or satellite air It may also be through a heterogeneous wired or wireless communication network rather than a network.
  • FIG. 11 is a flowchart illustrating a method of transmitting location information to a receiving station by loading location information on a reference signal and a code signal in the ground reference station of the positioning system according to an embodiment of the present invention.
  • the ground reference station 110 transmits a reference signal including information on the position of each of the satellite air relay stations 131, 132, and 133 via each of the satellite air relay stations 131, 132, and 133 corresponding to the position. (S1110).
  • the receiving unit 121 of the receiving station 120 receives a reference signal transmitted from the ground reference station 110 and transmitted through each of at least three satellite aerial relay stations 131, 132, and 133 (S510). ).
  • FIG. 12 illustrates an operation flowchart of a method of extracting information on a location of each of satellite satellite relay stations from a reference signal at a receiving station according to an embodiment of the present invention corresponding to FIG. 11.
  • the receiving unit 121 of the receiving station 120 is transmitted from the ground reference station 110 to receive a reference signal transmitted via each of at least three or more satellite air relay stations 131, 132, and 133 (S510).
  • the location obtaining unit 122 obtains the location of the ground reference station 110 and the location of each of the satellite ARSs 131, 132, and 133.
  • the position acquisition unit 122 may extract information on the position of each of the satellite RSs 131, 132, and 133 from reference signals transmitted through the satellite RSs 131, 132, and 133, respectively. There is (S1210).
  • the calculation unit 123 uses the difference between the position of the ground reference station 110, the position of each of the satellite ARSs 131, 132, and 133, and the reception time or reception time according to the transmission path of the reference signal.
  • the position of the receiving station is calculated (S530).
  • the information on the position of each of the satellite RSs 131, 132, and 133 is transmitted through the satellite air network via each of the satellite RSs 131, 132, and 133.
  • the security of the information on the position of each of the satellite ARSs 131, 132, and 133 may be improved than in the case of broadcasting as shown in FIG. .
  • the receiving station 120 needs an additional process of extracting information on the positions of the satellite RSs 131, 132, and 133 from the reference signal, the computational burden of the receiving station 120 may increase.
  • the location information may be encoded by a specific algorithm.
  • the security of the location information can be enhanced.
  • FIG. 13 illustrates a conceptual configuration of a receiving station of a synchronous positioning system according to an embodiment of the present invention.
  • the receiving station 120 includes a receiving unit 121, a position obtaining unit 122, and a calculating unit 123. Operations of the receiver 121, the position acquirer 122, and the calculator 123 of FIG. 13 are similar to those described with reference to FIG. 3, and thus will be omitted.
  • the synchronization unit 126 of the receiving station 120 receives a reference signal from the ground reference station 110 and shares time information synchronized with the ground reference station 110.
  • the reception time along the transmission path of the reference signal reflects the round trip transmission delay time (RTT) according to the distance from each of the satellite aerial relay stations 131, 132, and 133 to the reception station 120.
  • RTT round trip transmission delay time
  • ground reference station 110 described in various embodiments of the present invention is also referred to as a ground control station by another name, and does not mean only a central station having a strict meaning of directly launching and managing satellites 131 to 133. It will be apparent to those skilled in the art that a civil communication server may also include a location information of each of the satellite broadcasting relay stations 131 to 133 from the central station.
  • a positioning system that the receiving station 120 calculates its position using one ground reference station 110 and three or more satellite air relay stations 131, 132, and 133; The method has been proposed.
  • there are a plurality of ground reference stations in particular at least three ground reference stations.
  • positioning related information eg, a reference signal
  • a reference signal is transmitted from each of the three ground reference stations via each of the three satellite aerial relay stations.
  • the receiving station will receive the reference signal via nine different transmission paths.
  • Each ground reference station appropriately distributes communication resources such as transmission frequency, transmission time slot, code signal, and the like so as to identify which reference signal is transmitted from which ground reference station via which satellite aeronautical relay station. Can transmit It is assumed that the receiving station knows in advance the location of each of the three ground reference stations.
  • the receiving station can calculate the reception time (TOA) or the difference in the reception time (TDOA) between the reference signals via one satellite air relay station from each of three different ground reference stations, and calculate the difference in the reception time or reception time.
  • the position of the relevant satellite air relay station can be calculated. In this way, the receiving station receives each receiving time or receiving time of each of the reference signals from each of the three different ground reference stations via each of the three different satellite aerial relay stations and consequently through the nine different transmission paths.
  • the difference can be used to calculate the location of each of the three satellite air relay stations.
  • the receiving station calculates the position of each of the three satellite air relay stations, and each of the three satellite air relay stations using the difference in propagation delay time or propagation delay time of the reference signal from each of the three satellite air relay stations to the receiving station.
  • the distance from to the receiving station can be calculated.
  • the receiving station can calculate the position of the receiving station using the position of each of the three satellite air relay stations and the distance from each of the three satellite air relay stations to the receiving station.
  • the computational burden of the receiving station may be increased instead of having to know the position of each of the satellite aerial relay stations in advance.
  • the computational burden of the receiving station will be reduced instead of having to share the position of each of the satellite air relay stations between the ground reference station and the receiving station.
  • the receiving station can basically calculate the position of each of the satellite aerial relay stations using the three ground reference stations, and calculate the position of the receiving station itself.
  • the ground reference station provides the receiving station with the position of each of the satellite aerial relay stations that the ground reference station is aware of, and allows the receiving station to calculate itself. It may also be directed to verify and correct the position of each satellite relay station.
  • FIG. 14 illustrates a structure of a satellite aerial communication relay positioning system based on three or more ground reference stations according to an embodiment of the present invention.
  • the positioning system comprises at least three or more ground reference stations 1411, 1412, 1413, at least three satellite aeronautical relay stations 1421, 1422, 1423 and a receiving station. (1430).
  • ground reference stations 1411, 1412, 1413 are points of position measurement, and it is assumed that accurate position information of the ground reference stations 1411, 1412, 1413 is known to the receiving station.
  • the ground reference station 1411 may allocate different frequency bands f1, f2, and f3 to each of the relay stations 1421, 1422, and 1423. At this time, the allocation of the frequency band to each of the relay stations 1421, 1422, and 1423 is performed by the central station 1440, and the allocation information may be transmitted to the ground reference stations 1411, 1412, and 1423.
  • the ground reference station 1411 may transmit the code information C1 in the frequency band f1 to the relay station 1421 and transmit the code information C4 in the frequency band f2 to the relay station 1422.
  • the code information C7 can be carried in the frequency band f3.
  • the code information C1, C4, C7 is a code including unique identification information for the ground reference station 1411, and according to the embodiment, the ground reference stations 1411, 1412, 1413 are respectively provided by the central station 1440. A unique code corresponding to may be assigned.
  • the ground reference station 1412 may similarly allocate different frequency bands f1, f2, and f3 to each of the relay stations 1421, 1422, and 1423. At this time, the allocation of the frequency band to each of the relay stations 1421, 1422, and 1423 is performed by the central station 1440, and the allocation information may be transmitted to the ground reference stations 1411, 1412, and 1423.
  • the ground reference station 1412 can transmit the code information C2 in the frequency band f1 to the relay station 1421, and transmit the code information C5 in the frequency band f2 to the relay station 1422.
  • the code information C8 can be transmitted to the relay station 1423 in the frequency band f3.
  • the code information C2, C5, and C8 are codes including unique identification information for the ground reference station 1413.
  • the ground reference stations 1411, 1412, and 1413 are provided by the central station 1440, respectively. A unique code corresponding to may be assigned.
  • the ground reference station 1413 may similarly allocate different frequency bands f1, f2, and f3 to each of the relay stations 1421, 1422, and 1423. At this time, the allocation of the frequency band to each of the relay stations 1421, 1422, and 1423 is performed by the central station 1440, and the allocation information may be transmitted to the ground reference stations 1411, 1412, and 1423.
  • the ground reference station 1413 may transmit the code information C3 in the frequency band f1 to the relay station 1421, and transmit the code information C6 in the frequency band f2 to the relay station 1422.
  • the code information C9 may be carried in the frequency band f3.
  • the code information C3, C6, C9 is a code including the unique identification information for the ground reference station 1412, and according to the embodiment, each of the ground reference stations 1411, 1412, 1413 by the central station 1440, respectively. A unique code corresponding to may be assigned.
  • the code signals transmitted from the ground reference stations 1411, 1412, and 1413 are all synchronized and transmitted at the same time.
  • the relay station 1421 receives the code signal C1 of the f1 band from the ground reference station 1411, the code signal C2 of the f1 band from the ground reference station 1412, and the code signal of the f1 band from the ground reference station 1413.
  • C3 is received, amplified, and superimposed, and transmitted to the receiving station 1430.
  • the time difference of arrival (TDOA) between the code signals C1, C2, and C3 is a value corresponding to the distance difference between the ground reference stations 1411, 1412, 1413 and the relay station 1421.
  • the reception time difference between the code signals C1, C2, and C3 is determined at the point of arrival of the relay station 1421, and the relay station 1421 overlaps the code signals C1, C2, and C3 and transmits them to the receiving station 1430.
  • the overlapping code signal reflecting the difference in reception time between the code signals C1, C2, and C3 may be received, and the reception time difference may be measured.
  • the receiving station 1430 triangulates the position of the relay station 1421 based on the difference in reception time between C1, C2, and C3. Can be calculated by survey method.
  • the other relay stations 1422 and 1423 also receive code signals C4 and C7 in the f1 band from the ground reference station 1411, code signals C5 and C8 in the f1 band from the ground reference station 1412, and the ground reference station 1413. ) Receive the code signals C6 and C9 in the f1 band, amplify them, and transmit them to the receiving station 1430.
  • the time difference of arrival (TDOA) between the code signals C4, C5, C6 and C7, C8, C9 corresponds to the distance difference between the ground reference stations 1411, 1412, 1413 and the relay stations 1422, 1423. Value.
  • the difference in reception time between the code signals C4, C5, C6 and C7, C8, C9 is determined when the relay stations 1422, 1423 are reached, and the relay stations 1422, 1423 receive the code signals C4, C5, C6, C7, Since the C8 and C9 are superimposed and transmitted to the receiving station 1430, the receiving station 1430 may also receive the overlapping code signal in which the time difference between the code signals C4, C5, C6 and C7, C8 and C9 is reflected. The time difference can be measured.
  • the receiving station 1430 receives between C4, C5, C6, C7, C8, and C9. Based on the time difference, the positions of the relay stations 1422 and 1423 may be calculated by triangulation.
  • FIG. 14 an embodiment in which different frequencies f1, f2, and f3 are allocated to the relay stations 1421, 1422, and 1423 is illustrated, but is not limited to the embodiment of FIG. 14, and is identical to the relay stations 1421, 1422, and 1423. Embodiments in which a frequency band is allocated are also possible.
  • the relay stations eg, time-division or code-division
  • the relay stations may be used in a manner other than frequency-division.
  • Each of 1421, 1422, and 1423 may be identified. Since the receiving station 1430 only needs to identify which relay station the overlapping unique code has passed through, the method for identifying each of the relay stations 1421, 1422, and 1423 is not limited.
  • FIG. 15 illustrates a conceptual configuration of the receiving station 1430 shown in FIG. 14, which includes a receiving unit 1431, a first calculating unit 1432, and a second calculating unit 1431. .
  • the receiving unit 1431 serves to receive a unique signal transmitted from the satellite air relay station 1421 starting from the ground reference station 1411.
  • the receiving station 1430 may store in advance unique identification codes and location information of the ground reference stations 1411, 1412, and 1413.
  • the first calculation is performed using the unique identification code and the location information stored in advance in the receiving station 1430.
  • the unit 1432 is three or more through the reception time difference of the superimposed codes C1, C2, C3 and C4, C5, C6 and C7, C8, C9 of the unique signals received from the relay stations 1421, 1422, and 1423. Calculate the positions of the relay stations 1421, 1422, 1423.
  • the location of the receiving station 1430 is calculated by triangulation using the distance between the relay stations 1421, 1422, and 1423 and the receiving station 1430. Since all of the unique signals C1 to C9 received by the receiving station 1430 are transmitted in synchronization, the transmission times at the ground reference stations 1411, 1412, and 1413 are the same. Accordingly, due to the difference between the time when each unique signal arrives at the receiving station 1430 and the transmission time, the receiving station (1411, 1412, 1413) is transmitted from the ground reference stations 1411, 1412, 1413 via the relay stations 1421, 1422, 1423. A transmission distance reaching 1430 may be calculated.
  • the receiving station 1430 has already computed the positions of the relay stations 1421, 1422, 1423 and knows the positions of the ground reference stations 1411, 1412, 1413, so that the ground reference stations at the full reach of the intrinsic signal Except for the distance between the 1414, 1412, and 1413 and the relay stations 1421, 1422, and 1423, the distance between the relay stations 1421, 1422, 1423 and the receiving station 1430 may be obtained.
  • the first calculation unit 1432 calculates the position and distance between the ground reference station and the satellite aviation relay station using the received time difference of three or more received unique signals, and the second calculation unit 1433 calculates the three The position of the satellite aerial relay station and the distance between the receiving stations are calculated.
  • FIG. 16 shows a conceptual configuration of the receiving station 1430 capable of feedback shown in FIG.
  • the receiving station 1430 feeds back a measurement value for the downlink channel through which the unique signal is received from the ground reference stations 1411, 1412, and 1413 through the uplink of the transmitter 1435.
  • the message generating unit 1434 may generate a low-speed message and transmit to the ground reference stations 1411, 1412, 1413 through the uplink.
  • the message generated and transmitted by the receiving station 1430 may include a measurement value for the downlink channel, or may include weather conditions, accidents, and natural disaster information around the receiving station 1430.
  • the receiving station 1430 may feed back the channel measurement value, and in some cases, may generate and feed back a message indicating that the positioning process has failed due to poor channel characteristics.
  • the receiving station 1430 may not only transmit the surrounding environment information or the channel characteristic information to the ground reference stations 1411, 1412, 1413 or the central station 1440, but also the surrounding environment with other receiving stations (not shown). Information or channel characteristic information can be transmitted and received.
  • the receiving station 1430 may communicate with neighboring receiving stations using a communication channel with the relay stations 1421, 1422, and 1423.
  • the receiving station 1430 may communicate with other receiving stations under the control of the ground reference stations 1411, 1412, 1413 or the central station 1440, and the ground reference stations 1411, 1412, 1413 or the central station 1440. It can also communicate with other receiving stations in an environment that is not under the control of.
  • the receiving station 1430 may configure a mesh system or the like to communicate with other receiving stations in an environment not controlled by the ground reference stations 1411, 1412, 1413, or the central station 1440.
  • the receiving station 1430 may transmit and receive information in the form of a short message to communicate with the ground reference stations 1411, 1412, 1413, the central station 1440, or another receiving station.
  • the ground reference stations 1411, 1412, and 1413 allocate the respective frequencies to the relay stations 1421, 1422, and 1423, and transmit a unique code to the relay stations (S1710).
  • the relay stations 1421, 1422, and 1423 transmit the overlapped unique codes to the receiving station 1430 (S1720).
  • the first calculation unit 1432 of the receiving station 1430 calculates the positions of the relay stations 1421, 1422, and 123 using the difference in the reception time of the eigensignals to determine the positions of the relay stations 1421, 1422, and 1423. It may be (S1730).
  • the second calculation unit 1433 of the receiving station 1430 uses the position of the relay stations 1421, 1422, and 1423 obtained as described above, and the arrival time of the unique signal received by the receiving station 1430. ) Can also be calculated (S1740).
  • FIG. 18 illustrates an example of describing step S1730 of FIG. 17 in more detail.
  • the receiving station 1430 identifies each ground reference station 1411, 1412, 1413 from the received unique identification code.
  • the receiving station 1430 determines the positions of the identified ground reference stations 1411, 1412, 1413 from the correspondence of the unique identification codes and the location information of the ground reference stations 1411, 1412, 1413, which are known in advance. (S1731).
  • each of the relay stations 1421, 1422, and 1423 is obtained by using the received time difference of the unique signal and the position of the obtained ground reference stations 1411, 1412, and 1413. The position is calculated (S1732).
  • the ground reference stations 1411, 1412, and 1413 may receive and store each location information from the central station 1440 in advance. Each of the ground reference stations 1411, 1412, 1413 may forward its location to the receiving station 1430 via the downlink channel.
  • FIG. 19 is a flowchart illustrating an overall feedback process such as feedback from a receiving station 1430 corresponding to FIG. 17 and a response of each of the ground reference stations 1411, 1412, and 1413.
  • each of the ground reference stations 1411, 1412, and 1413 transmits a unique signal (S1910).
  • the unique signal may be transmitted using a frequency band allocated to each of the relay stations 1421, 1422, and 1423.
  • Each of the relay stations 1421, 1422, and 1423 overlaps and receives the received unique signals, and the overlapped unique signals are transmitted to the receiving station 1430 by the transport process (S1920).
  • the receiving station 1430 measures and calculates a characteristic value for the downlink channel to which the overlapped unique signals are transmitted (S1930).
  • the process of measuring the characteristic value may be performed using the overlapped eigensignals, or may be performed using a separate pilot signal for measuring channel characteristics in addition to the eigensignals for positioning.
  • the receiving station 1430 may feed back the channel measurement value via the uplink (S1940). At this time, the receiving station 1430 may additionally feed back a separate message indicating that the failure if the positioning process failed because of poor channel characteristics.
  • Each of the ground reference stations 1411, 1412, and 1413 may adjust the transmission power level based on the fed back information (S1950). If feedback is received that the positioning process has failed, each of the ground reference stations 1411, 1412, 1413 may attempt to overcome the poor channel characteristics by increasing the transmit power level.
  • the ground reference station-based positioning method or the positioning information transmission method may be implemented in the form of program instructions that can be executed by various computer means and recorded in a computer readable medium.
  • the computer readable medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Program instructions recorded on the media may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those having skill in the computer software arts. Examples of computer readable recording media include magnetic media such as hard disks, floppy disks and magnetic tape, optical media such as CD-ROMs, DVDs, and magnetic disks such as floppy disks.
  • Magneto-optical media and hardware devices specifically configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • the hardware device described above may be configured to operate as one or more software modules to perform the operations of the present invention, and vice versa.
  • the present invention relates to a positioning system, and more particularly, to a positioning system that calculates its position at a receiving station by using a ground reference station and a satellite aeronautical relay station, and a positioning method and apparatus therein. It is not a system dependent on the global GPS system, but a flexible system that can be used as a standalone and local system in a national security, commercial, disaster and combat situation, and is less susceptible to the threat of enemy jamming signals. It was invented with the aim.
  • GPS technology using the conventional GNSS technology has a disadvantage in that the reception rate is reduced in the mountainous region due to the weak signal, and can be a fatal weakness of military equipment using GPS because it is vulnerable to malicious signal disturbance.
  • the present invention is not dependent on the conventional positioning system based on a mid-orbiting satellite with global service capability, and an independent positioning system structure and implementation technology capable of measuring a position at a receiving station using a ground reference station and a satellite aviation relay station.
  • the present invention can improve the ability to respond to malicious signal disturbances compared to the conventional GNSS system which is vulnerable to malicious signal disturbances, and can be applied to defense weapon systems to reduce the severity of dependence of GNSS and to locate weapons in the GNSS signal disturbance situation. Can provide.
  • the present invention can be used as a positioning system in a variety of fields, such as private sector, location identification of marine vessels / fishing vessels, port / aviation / traffic control, facility management.
  • the low-speed message according to the aerospace communication relay can be broadcast to the receiving station can be operated like a disaster broadcasting system. If the receiving station is capable of transmitting, the receiving station may also serve as a sensor node via low speed message communication. It may be operated like a disaster broadcasting system or an emergency broadcasting system by enabling bidirectional communication between a receiving station and a ground reference station.
  • the transmission power level of the ground reference station can be adjusted using the information fed back by the receiving station, a hybrid data communication technique in which various pieces of information are transmitted and received in parallel with the positioning related information is also applicable.
  • the positioning system of the present invention can be implemented using one ground reference station and three or more satellite aerial relay stations. At this time, since the location information of each of the ground reference station and the satellite aerial relay stations is provided from the ground reference station to the receiving station, the receiving station can implement the process of calculating its own position relatively simply.
  • the positioning system according to another embodiment of the present invention may be implemented using three or more ground reference nodes (ground reference station) and three or more satellite aerial relay stations. At this time, even if the location information of each of the ground reference station and the satellite aerial relay stations is not necessarily provided to the receiving station, the receiving station can calculate its own location.
  • the positioning system uses a case of using one ground reference station and three or more satellite aerial relay stations, and a case of using three or more ground reference stations and three or more satellite aerial relay stations, so that the receiving station itself Computation or correction may be made by comparing the calculated position information of each of the satellite aerial relay stations with the position information transmitted from the ground reference station.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Radio Relay Systems (AREA)

Abstract

본 발명은 측위 시스템에 관한 것으로, 보다 상세하게는 지상기준국에서 위성항공중계국의 위치정보와 지상기준국의 위치를 수신국으로 전송하고 수신국에서 수신된 위성항공중계국의 위치정보와 지상기준국의 위치를 이용하여 수신국의 위치를 계산하는 측위 시스템, 측위 방법 및 그 장치에 관한 것이다. 본 발명은 종래의 전 세계적 서비스 능력을 갖춘 중궤도 위성을 기반한 측위 시스템에 종속되는 것이 아닌, 지상기준국과 위성항공중계국을 활용하여 국가치안체계, 재난경보체계, 산업 인프라 네트워킹을 위한 능력을 지원하는 측위/상황정보 수집 통제를 위한 국방/안보/재난의 복합능력을 지원할 수 있는 독자적인 측위 시스템 구조 및 구현 기술을 개발 하는 것이 목적이다.

Description

지상 조정통제국 기반 우주항공노드 통신중계 측위 시스템
본 발명은 측위 시스템에 관한 것으로, 보다 상세하게는 지상기준국에서 위성항공중계국의 위치정보와 지상기준국의 위치를 수신국으로 전송하고 수신국에서 수신된 위성항공중계국의 위치정보와 지상기준국의 위치를 이용하여 수신국의 위치를 계산하는 측위 시스템, 측위 방법 및 그 장치에 관한 것이다.
우주 궤도를 돌고 있는 인공위성을 이용하여 지상에 있는 물체의 위치, 고도, 속도에 관한 정보를 얻는 방식을 일반적으로 전지구 위성 항법 시스템(GNSS, Global Navigation Satellite System)이라 한다.
작게는 10m 이하 해상도의 정밀한 위치 정보까지 파악할 수 있으며, 군사적 용도뿐 아니라 항공기ㆍ선박ㆍ자동차 등 교통수단의 위치 안내나 측지ㆍ긴급구조ㆍ통신 등 민간 분야에서도 폭넓게 응용되고 있다.
GNSS는 하나 또는 그 이상의 인공위성과 신호를 받을 수 있는 수신기, 지상의 감시국 및 시스템 보전성 감시체계로 이루어진다. 인공위성에서 발신된 전파를 수신기에서 받아 위성으로부터의 거리를 구하여 수신기의 위치를 결정하는 방식이다. 사용자의 지리적 위치에 관계없이 수신기를 구비하면 신호를 이용할 수 있는 점, 수신기가 소형인 점, 실시간으로 출력을 얻을 수 있어 이동 중에도 작업할 수 있는 점 등이 장점으로 꼽힌다.
현존하는 GNSS는 미국 국방부가 개발하여 운영하고 있는 지피에스(GPS;Global Positioning System)가 독점하고 있는 실정이다. 이에 대응하여 러시아가 글로나스(GLONASS;GLObal NAvigation Satellite System)를, 유럽연합(EU)은 갈릴레오(Galileo)를, 중국은 베이더우[北斗 Beidou]를 구축하고 있다.
미국 국방부에서 독점하고 있는 GPS는 우주 부분(Space Segment)과 사용자 부분(User Segment) 그리고 관제 부분(Control Segment) 3개 부분으로 이루어져 있다.
GPS의 동작원리는 위성에서 보내주는 항법 메시지를 받아 수신기에서 위치를 계산함으로써 위치를 파악한다. 수신기에서는 자신이 받은 신호가 24개의 위성 중 어떤 위성으로부터 왔는지를 알아야 하는데, 각 위성에서 모두 똑같은 주파수로 각자의 데이터를 실어 보내기 때문에 주파수로는 구분이 불가능하다.
따라서 각 위성마다 독립적인 ID코드를 할당하여 발신위성을 파악한다. 수신기는 위성으로부터 신호가 들어오면 가지고 있는 모든 위성의 ID중 서로 맞는 ID를 찾아 내어 어느 위성으로부터 온 신호인지를 파악하게 되면 항법 데이터를 얻게 되고 위치를 계산하게 된다.
그러나 전리층과 대류권에 의해 GPS에서 송신된 신호의 속도에 영향을 미치게 되어 궂은 날씨에 따라 오차가 발생 하게 되고, 수신신호세기가 약한 중궤도 위성항법시스템은 지상 차량 탑재 교란 장비로 50~100km 범위의 GPS 신호를 교란할 수 있어 군용이나, 재해 상황 시 커다란 장애를 불러 일으킬 수 있다.
이런 이유 때문에 지상통신망 등을 이용하여 GPS의 미약한 신호를 보완하고, GPS의 오차를 보정하고자 하는 노력이 있어 왔는데, 그 중 하나가 한국등록특허 제10-0411758호에 언급된 것과 같은 하이브리드 위성항법 시스템이다. 그러나 지상통신망을 이용하여 GPS의 위치 정보를 보완하는 경우, 도심에서는 정확한 위치 정보가 제한될 수 있다는 약점이 있다.
따라서, 국가 안보를 고려할 때 GPS에 전적으로 의존하는 기존의 기술들이 아니면서, 신호교란과 오차에 강하고 보다 정밀한 위치 정보를 제공할 수 있는 측위시스템의 개발이 필요하다.
최근 군의 무기체계는 첨단화를 추진하고 있으며, 이러한 정밀 무기체계의 측위 시스템은 기본적으로 GPS에 기반하고 있다. 그러나 수신신호세기가 약한 중궤도 위성항법시스템은 지상 차량 탑재 교란 장비로 50~100km 범위의 GPS 신호를 교란할 수 있음이 알려져 있으며, 최근 한국의 수도권 서북부 지역에서도 발생한 GPS 교란상황은 이와 같은 GPS 신호 교란의 취약성을 보여주고 있다. 즉 GPS에 전적으로 의존한 시스템의 개발은 지양되어야 할 것이며, 중궤도 위성에서 발생되는 GPS 특성상 저출력 신호의 측위신호에 대한 신호교란은 근본적인 해결이 어렵다.
특히 오늘날에는 IT 기술의 발전으로 작은 크기로 보다 큰 출력을 내는 RF Sources와 안테나에 대한 기술의 진보를 이루고 있으며, 전자기적 교란 장비는 저비용으로 개발 및 운용 할 수 있으며, 주요 위협세력 및 반 사회적인 테러집단에 의한 GPS 신호 교란은 인류에 큰 재앙이 될 수도 있다.
즉 국가치안체계, 재난경보체계, 산업 인프라 네트워킹을 위한 능력을 지원하는 측위/상황정보 수집 통제를 위한 국방/안보/재난의 복합능력을 지원할 수 있는 시스템 개발이 필요하며, 이러한 국가 안보적 측면에서 상기 제시한 능력을 갖춘 측위 시스템의 개발이 필요하다.
따라서, 본 발명은 종래의 전 세계적 서비스 능력을 갖춘 중궤도 위성을 기반한 측위 시스템에 종속되는 것이 아닌, 지상기준국과 위성항공중계국을 활용하여 국가치안체계, 재난경보체계, 산업 인프라 네트워킹을 위한 능력을 지원하는 측위/상황정보 수집 통제를 위한 국방/안보/재난의 복합능력을 지원할 수 있는 독자적인 측위 시스템 구조 및 구현 기술을 개발 하는 것이 목적이다.
상기와 같은 목적을 달성하기 위해서, 본 발명의 일 실시예에 따른 측위 시스템은 지상기준국, 위성항공중계국, 수신국을 포함한다.
지상기준국은 적어도 3개 이상의 위성항공중계국들의 위치에 관한 정보와, 지상기준국의 위치에 관한 정보를 수신국과 공유한다. 이 때 이용되는 네트워크는 위성항공 네트워크일 수도 있으나, 이종의 통신 네트워크가 이용될 수도 있다.
또한 지상기준국은 기준신호를 상기 적어도 3개 이상의 위성항공중계국들 각각을 경유하는 위성항공 네트워크를 이용하여 수신국으로 전송한다.
또한, 위성항공중계국에서는 신호를 증폭하여 지상기준국에서 수신된 수신신호를 지상으로 반송한다.
수신국은 기준신호의 전달 경로에 따른 수신시간 또는 수신시간의 차이를 이용하고, 또한 지상기준국의 위치와, 위성항공중계국들 각각의 위치를 이용하여 수신국의 위치를 계산한다.
본 발명의 제1 실시예에 따른 측위 시스템에서는, 지상기준국은 수신국에 대하여 비동기 방식으로 측위 관련 정보를 전송할 수 있다. 이 때 지상기준국으로부터 3개 이상의 위성항공중계국들 각각을 경유하여 수신국으로 전달되는 기준신호의 전달 경로에 따른 수신시간의 차이(TDOA, Time difference of Arrival)에 기초하여 수신국은 위성항공중계국들 각각으로부터 수신국까지의 거리의 차이를 계산할 수 있다.
수신국은 위성항공중계국들 각각으로부터 수신국까지의 거리의 차이를 이용하여 수신국의 위치를 계산할 수 있으며, 이 때 기준신호의 수신시간의 차이(TDOA)를 이용하여 수신국의 위치를 계산하는 방법의 일 예로는 쌍곡선 항법(hyperbolic navigation) 등을 이용할 수 있다.
본 발명의 제2 실시예에 따른 측위 시스템에서는, 지상기준국과 수신국 간에 동기화된 시간 정보가 이용될 수 있다. 지상기준국은 동기화된 시간 정보를 이용하여 위성항공중계국들 각각에 대한 코드신호를 생성할 수 있다. 수신국은 지상기준국과 동기화된 시간 정보를 이용하여 지상기준국과 동일한 시간에 위성항공중계국들 각각에 대한 코드신호를 생성할 수 있다.
지상기준국에 의하여 생성된 코드신호 각각은 코드신호 각각에 대응하는 위성항공중계국들 각각을 경유하여 수신국으로 전달될 수 있다. 수신국은 코드신호 각각의 생성 시간과 수신 시간(TOA, Time of Arrival) 간의 차이에 기초하여 위성항공중계국들 각각을 경유하는 전달 경로의 라운드 트립 지연 시간(RTT, Round Trip Time)을 계산할 수 있다. 수신국은 지상기준국으로부터 위성항공중계국들 각각까지의 거리에 따른 전달 지연 시간과 상기 위성항공중계국들 각각에 대응하는 전달 경로의 라운드 트립 지연 시간을 이용하여, 상기 위성항공중계국들 각각으로부터 수신국까지의 거리를 계산할 수 있다.
수신국은 상기 위성항공중계국들 각각으로부터 수신국까지의 거리를 이용하여 수신국의 위치를 계산할 수 있다. 이 때, 수신국의 위치를 파악하기 위한 방법의 일 예로는 삼각 측량법(triangulation method)이 이용될 수 있다.
본 발명의 제3 실시예에 따른 측위 시스템에서는, 지상기준국에서 위성항공중계국들 중 적어도 하나 이상을 경유하는 위성항공네트워크, 별도의 유선 또는 무선 통신 네트워크를 이용하여 지상기준국의 위치와 위성항공중계국들 각각의 위치에 대한 정보가 브로드캐스팅될 수 있다.
본 발명의 제4 실시예에 따른 측위 시스템에서는, 지상기준국으로부터 위성항공중계국들 각각을 경유하여 전달되는 기준신호에 위성항공중계국들 각각에 대한 위치 정보가 포함되어 전송될 수 있다.
또한 본 발명의 또 다른 실시예에 따르면, 수신국은 주변 환경 정보 또는 기준신호가 수신되는 다운링크 채널에 대한 측정값을 업링크를 통하여 전송함으로써, 지상기준국으로 하여금 기준신호의 전송 시 전력 레벨을 조정할 수 있도록 정보를 피드백할 수도 있으며, 수신국으로부터의 전송 정보에 기초하여 지상기준국이 자연재해, 인위적인 사고 등 돌발 상황에 대한 정보를 얻을 수도 있다. 이처럼 본 발명의 측위 시스템에서는, 위성항공 통신네트워크가 측위를 위해서만 이용되는 것이 아니라 측위 관련 정보와 기타 정보가 병행하여 송수신되는 하이브리드 데이터 통신 또한 가능하다.
본 발명의 또 다른 실시예에 따르면 지상기준국은 위성항공중계국을 직접적으로 제어하는 중심국일 수도 있고, 중심국으로부터 위성항공중계국들 각각의 정보를 실시간으로 또는 일정 주기마다 제공받는 형태로 동작할 수도 있다.
본 발명의 또 다른 실시예에 따르면, 복수의 지상기준국이 존재하고, 지상기준국들 각각으로부터 위성항공중계국들 각각을 경유하여 수신국으로 측위 관련 정보가 제공되는 경우, 수신국은 수신 신호의 시간차를 조합하여 위성항공중계국들 각각의 위치를 계산하고, 이를 이용하여 다시 수신국의 위치를 계산하는 경우도 가능하다. 이 때 수신국은 주기적으로 복수의 지상기준국들 중 하나로부터 위성항공중계국들 각각의 위치를 제공받아 수신국 스스로 계산한 위성항공중계국들 각각의 위치의 정확성을 확인하고, 보정할 수도 있다.
본 발명의 또 다른 실시예에 따른 측위 시스템은 중심국, 3개 이상의 지상기준국, 3개 이상의 위성항공 중계국, 수신국으로 구성된다.
이때, 중심국은 지상기준국들을 동기화하며, 위성중계신호를 모니터링하고, 지상기준국 코드 및 전송주파수를 할당한다.
또한, 3개 이상의 지상기준국에서는 할당된 코드 및 주파수를 통해 3개 이상의 위성항공 중계국으로 고유신호를 전송하며, 위성항공 중계국에서는 수신된 고유신호를 중첩하여 수신국으로 전송할 수 있다. 이 때 위성항공 중계국에서는 수신된 고유신호를 증폭하여, 수신국으로 반송할 수도 있다.
수신국에서는 3개 이상의 위성항공 중계국으로부터 수신된 중첩 고유신호 간의 코드 도달시간차를 통하여 위성항공중계국의 위치를 계산하고, 계산된 3개 이상의 위성항공중계국의 위치 및 수신국 간의 도달거리를 통하여 자신의 위치를 계산한다. 수신국에서 위성항공 중계국들의 위치 및 자신의 위치를 계산하는 과정은 얻어진 거리를 통한 삼각측량법(triangulation method)으로 가능하다.
또한, 수신국은 수신되는 다운링크 채널에 대한 측정값 또는 주변 환경 정보를 업링크를 통하여 지상기준국으로 전송할 수 있고, 지상기준국에서는 피드백된 채널 측정값 또는 주변 환경 정보를 이용하여 송신신호의 전력 레벨을 조절할 수 있다.
이 때, 수신국에서 확보된 송신능력에 따라서 업링크를 통하여 추가적인 정보를 생성할 수도 있는데, 추가적인 정보는 저속메시지 통신 등을 이용하여 전송될 수 있으며, 지상기준국 또는 중심국과 수신국 간의 양방향 통신도 가능하다. 전송되는 정보는 수신국 주변의 기상 정보, 돌발 상황 정보, 재해 정보 등 다양한 정보일 수도 있다.
본 발명은 악의적 신호교란에 취약한 종래 GNSS 시스템에 비해 악의적 신호교란 대응 능력을 향상 시킬 수 있으며, 국방분야 무기체계에 적용함으로써 GNSS의 의존 심화도를 낮추고, GNSS 신호교란 상황에서도 무기체계의 측위 능력을 제공할 수 있다.
본 발명은 민간분야, 해상 상선/어선의 위치식별, 항만/항공/교통관제, 시설물 관리 등 다양한 분야의 측위 시스템으로 사용될 수 있다. 또한 우주항공 통신 중계에 따른 저속 메시지를 수신국에 방송할 수 있어 재난방송시스템과 같이 운용될 수 있다. 수신국이 송신능력을 갖춘다면, 수신국은 저속메시지 통신을 통해 센서노드로서의 역할을 수행할 수도 있다. 이는 수신국과 지상기준국 간의 양방향 통신을 가능하게 함으로써 재난방송시스템 또는 비상 방송 시스템과 같이 운용될 수도 있다. 또한, 수신국이 피드백한 정보를 이용하여 지상기준국의 송신 전력 레벨을 조정할 수도 있으므로, 다양한 정보가 측위 관련 정보와 병행하여 송수신되는 하이브리드 데이터 통신 기법도 적용 가능하다.
본 발명의 측위 시스템은 하나의 지상기준국과 3개 이상의 위성항공중계국들을 이용하여 구현될 수 있다. 이 때, 지상기준국으로부터 지상기준국과 위성항공중계국들 각각의 위치 정보가 수신국으로 제공되므로, 수신국은 스스로의 위치를 계산하는 과정을 비교적 단순하게 구현할 수 있다.
또한 본 발명의 다른 실시예에 따른 측위 시스템은 3개 이상의 지상 레퍼런스 노드(지상기준국)와 3개 이상의 위성항공중계국들을 이용하여 구현될 수 있다. 이 때에는 지상기준국과 위성항공중계국들 각각의 위치 정보가 수신국으로 반드시 제공되지 않더라도, 수신국이 스스로의 위치를 계산할 수 있다.
또한, 본 발명의 측위 시스템은 하나의 지상기준국과 3개 이상의 위성항공중계국들을 이용하는 경우와, 3개 이상의 지상기준국과 3개 이상의 위성항공중계국들을 이용하는 경우를 병행 이용하여, 수신국이 스스로 계산한 위성항공중계국들 각각의 위치 정보를 지상기준국으로부터 전송된 위치 정보와 비교하여 보완 또는 보정할 수도 있다.
도 1은 본 발명의 일 실시예에 따른 지상기준국과 수신국의 비동기식 지상기준국 기반 통신중계 측위시스템 구조를 나타낸 것이다.
도 2는 본 발명의 일 실시예에 따른 지상기준국과 수신국의 동기식 지상기준국 기반 통신중계 측위시스템 구조를 나타낸 것이다.
도 3은 본 발명의 일 실시예에 따른 수신국의 개념적인 구성을 나타낸 것이다.
도 4는 본 발명의 일 실시예에 따른 피드백이 가능한 수신국의 개념적인 구성을 나타낸 것이다.
도 5는 본 발명의 일 실시예에 따른 지상기준국 기반 통신중계 측위 시스템에서 이루어지는 측위 방법의 동작 흐름도를 나타낸 것이다.
도 6은 본 발명의 일 실시예에 따른 지상기준국 기반 위성항공중계국의 위치를 모니터링하여 측위 정보를 전송하는 방법의 동작 흐름도를 나타낸 것이다.
도 7은 본 발명의 일 실시예에 따른 비동기식 측위 시스템에서 수신국의 위치를 계산하는 방법의 동작 흐름도를 나타낸 것이다.
도 8은 본 발명의 일 실시예에 따른 동기식 측위 시스템에서 수신국의 위치를 계산하는 방법의 동작 흐름도롤 나타낸 것이다.
도 9는 본 발명의 일 실시예에 따른 동기식 측위 시스템에서 삼각측량법에 의하여 수신국의 위치를 결정하는 과정의 동작 흐름도를 나타낸 것이다.
도 10은 본 발명의 일 실시예에 따른 지상기준국에서 위치 정보를 브로드캐스팅하는 방법에 대한 동작 흐름도를 나타낸 것이다.
도 11은 본 발명의 일 실시예에 따른 지상기준국에서 위치 정보를 기준신호 및 코드신호에 실어서 수신국으로 전송하는 방법에 대한 동작 흐름도를 나타낸 것이다.
도 12는 도 11에 대응하는 본 발명의 일 실시예에 따른 수신국에서 기준신호로부터 위성항공중계국들 각각의 위치에 대한 정보를 추출하는 방법에 대한 동작 흐름도를 나타낸 것이다.
도 13은 본 발명의 일 실시예에 따른 동기식 측위 시스템에서, 수신국의 개념적인 구성을 나타낸 것이다.
도 14는 본 발명의 일 실시예에 따른 3개 이상의 지상기준국 기반 위성항공 통신 중계 측위시스템 구조를 나타낸 것이다.
도 15는 도 14에 도시된 수신국의 개념적인 구성을 나타낸 것이다.
도 16은 도 14에 도시된 피드백이 가능한 수신국의 개념적인 구성을 나타낸 것이다.
도 17은 본 발명의 일 실시예에 따른 3개 이상의 지상기준국 기반 위성항공 통신 중계 측위 시스템에서 이루어지는 측위 방법의 동작 흐름도를 나타낸 것이다.
도 18은 도 17의 S1730 단계를 더욱 상세히 나타낸 동작 흐름도이다.
도 19는 도 17에 대응하는 본 발명의 일 실시예에 따른 수신국에서의 피드백 과정을 나타낸 동작 흐름도이다.
본 발명의 일 실시예에 따른 측위 시스템은 지상기준국, 위성항공중계국, 수신국을 포함한다.
지상기준국은 적어도 3개 이상의 위성항공중계국들의 위치에 관한 정보와, 지상기준국의 위치에 관한 정보를 수신국과 공유한다. 이 때 이용되는 네트워크는 위성항공 네트워크일 수도 있으나, 이종의 통신 네트워크가 이용될 수도 있다.
또한 지상기준국은 기준신호를 상기 적어도 3개 이상의 위성항공중계국들 각각을 경유하는 위성항공 네트워크를 이용하여 수신국으로 전송한다.
또한, 위성항공중계국에서는 신호를 증폭하여 지상기준국에서 수신된 수신신호를 지상으로 반송한다.
수신국은 기준신호의 전달 경로에 따른 수신시간 또는 수신시간의 차이를 이용하고, 또한 지상기준국의 위치와, 위성항공중계국들 각각의 위치를 이용하여 수신국의 위치를 계산한다.
본 발명의 제1 실시예에 따른 측위 시스템에서는, 지상기준국은 수신국에 대하여 비동기 방식으로 측위 관련 정보를 전송할 수 있다. 이 때 지상기준국으로부터 3개 이상의 위성항공중계국들 각각을 경유하여 수신국으로 전달되는 기준신호의 전달 경로에 따른 수신시간의 차이(TDOA, Time difference of Arrival)에 기초하여 수신국은 위성항공중계국들 각각으로부터 수신국까지의 거리의 차이를 계산할 수 있다.
수신국은 위성항공중계국들 각각으로부터 수신국까지의 거리의 차이를 이용하여 수신국의 위치를 계산할 수 있으며, 이 때 기준신호의 수신시간의 차이(TDOA)를 이용하여 수신국의 위치를 계산하는 방법의 일 예로는 쌍곡선 항법(hyperbolic navigation) 등을 이용할 수 있다.
본 발명의 제2 실시예에 따른 측위 시스템에서는, 지상기준국과 수신국 간에 동기화된 시간 정보가 이용될 수 있다. 지상기준국은 동기화된 시간 정보를 이용하여 위성항공중계국들 각각에 대한 코드신호를 생성할 수 있다. 수신국은 지상기준국과 동기화된 시간 정보를 이용하여 지상기준국과 동일한 시간에 위성항공중계국들 각각에 대한 코드신호를 생성할 수 있다.
지상기준국에 의하여 생성된 코드신호 각각은 코드신호 각각에 대응하는 위성항공중계국들 각각을 경유하여 수신국으로 전달될 수 있다. 수신국은 코드신호 각각의 생성 시간과 수신 시간(TOA, Time of Arrival) 간의 차이에 기초하여 위성항공중계국들 각각을 경유하는 전달 경로의 라운드 트립 지연 시간(RTT, Round Trip Time)을 계산할 수 있다. 수신국은 지상기준국으로부터 위성항공중계국들 각각까지의 거리에 따른 전달 지연 시간과 상기 위성항공중계국들 각각에 대응하는 전달 경로의 라운드 트립 지연 시간을 이용하여, 상기 위성항공중계국들 각각으로부터 수신국까지의 거리를 계산할 수 있다.
수신국은 상기 위성항공중계국들 각각으로부터 수신국까지의 거리를 이용하여 수신국의 위치를 계산할 수 있다. 이 때, 수신국의 위치를 파악하기 위한 방법의 일 예로는 삼각 측량법(triangulation method)이 이용될 수 있다.
본 발명의 제3 실시예에 따른 측위 시스템에서는, 지상기준국에서 위성항공중계국들 중 적어도 하나 이상을 경유하는 위성항공네트워크, 별도의 유선 또는 무선 통신 네트워크를 이용하여 지상기준국의 위치와 위성항공중계국들 각각의 위치에 대한 정보가 브로드캐스팅될 수 있다.
본 발명의 제4 실시예에 따른 측위 시스템에서는, 지상기준국으로부터 위성항공중계국들 각각을 경유하여 전달되는 기준신호에 위성항공중계국들 각각에 대한 위치 정보가 포함되어 전송될 수 있다.
또한 본 발명의 또 다른 실시예에 따르면, 수신국은 주변 환경 정보 또는 기준신호가 수신되는 다운링크 채널에 대한 측정값을 업링크를 통하여 전송함으로써, 지상기준국으로 하여금 기준신호의 전송 시 전력 레벨을 조정할 수 있도록 정보를 피드백할 수도 있으며, 수신국으로부터의 전송 정보에 기초하여 지상기준국이 자연재해, 인위적인 사고 등 돌발 상황에 대한 정보를 얻을 수도 있다. 이처럼 본 발명의 측위 시스템에서는, 위성항공 통신네트워크가 측위를 위해서만 이용되는 것이 아니라 측위 관련 정보와 기타 정보가 병행하여 송수신되는 하이브리드 데이터 통신 또한 가능하다.
본 발명의 또 다른 실시예에 따르면 지상기준국은 위성항공중계국을 직접적으로 제어하는 중심국일 수도 있고, 중심국으로부터 위성항공중계국들 각각의 정보를 실시간으로 또는 일정 주기마다 제공받는 형태로 동작할 수도 있다.
본 발명의 또 다른 실시예에 따르면, 복수의 지상기준국이 존재하고, 지상기준국들 각각으로부터 위성항공중계국들 각각을 경유하여 수신국으로 측위 관련 정보가 제공되는 경우, 수신국은 수신 신호의 시간차를 조합하여 위성항공중계국들 각각의 위치를 계산하고, 이를 이용하여 다시 수신국의 위치를 계산하는 경우도 가능하다. 이 때 수신국은 주기적으로 복수의 지상기준국들 중 하나로부터 위성항공중계국들 각각의 위치를 제공받아 수신국 스스로 계산한 위성항공중계국들 각각의 위치의 정확성을 확인하고, 보정할 수도 있다.
본 발명의 또 다른 실시예에 따른 측위 시스템은 중심국, 3개 이상의 지상기준국, 3개 이상의 위성항공 중계국, 수신국으로 구성된다.
이때, 중심국은 지상기준국들을 동기화하며, 위성중계신호를 모니터링하고, 지상기준국 코드 및 전송주파수를 할당한다.
또한, 3개 이상의 지상기준국에서는 할당된 코드 및 주파수를 통해 3개 이상의 위성항공 중계국으로 고유신호를 전송하며, 위성항공 중계국에서는 수신된 고유신호를 중첩하여 수신국으로 전송할 수 있다. 이 때 위성항공 중계국에서는 수신된 고유신호를 증폭하여, 수신국으로 반송할 수도 있다.
수신국에서는 3개 이상의 위성항공 중계국으로부터 수신된 중첩 고유신호 간의 코드 도달시간차를 통하여 위성항공중계국의 위치를 계산하고, 계산된 3개 이상의 위성항공중계국의 위치 및 수신국 간의 도달거리를 통하여 자신의 위치를 계산한다. 수신국에서 위성항공 중계국들의 위치 및 자신의 위치를 계산하는 과정은 얻어진 거리를 통한 삼각측량법(triangulation method)으로 가능하다.
또한, 수신국은 수신되는 다운링크 채널에 대한 측정값 또는 주변 환경 정보를 업링크를 통하여 지상기준국으로 전송할 수 있고, 지상기준국에서는 피드백된 채널 측정값 또는 주변 환경 정보를 이용하여 송신신호의 전력 레벨을 조절할 수 있다.
이 때, 수신국에서 확보된 송신능력에 따라서 업링크를 통하여 추가적인 정보를 생성할 수도 있는데, 추가적인 정보는 저속메시지 통신 등을 이용하여 전송될 수 있으며, 지상기준국 또는 중심국과 수신국 간의 양방향 통신도 가능하다. 전송되는 정보는 수신국 주변의 기상 정보, 돌발 상황 정보, 재해 정보 등 다양한 정보일 수도 있다.
상기 목적 외에 본 발명의 다른 목적 및 특징들은 첨부 도면을 참조한 실시 예에 대한 설명을 통하여 명백히 드러나게 될 것이다.
본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세히 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
그러나, 본 발명이 실시예들에 의해 제한되거나 한정되는 것은 아니다. 각 도면에 제시된 동일한 참조 부호는 동일한 부재를 나타낸다.
도 1은 본 발명의 일 실시예에 따른 지상기준국과 수신국의 비동기식 지상기준국 기반 통신중계 측위시스템 구조를 나타낸 것이다.
도 1에 도시된 바와 같이, 본 발명에 따른 측위 시스템은 지상기준국(110), 적어도 3개 이상의 위성항공중계국(131, 132, 133)과 수신국(120)을 포함한다.
여기서 수신국(120)이라 함은, 휴대폰 등의 통신 단말기/통신 장치, 선박이나 자동차 등에 설치된 측위 장치, 또는 위성 신호 수신 장치 중 하나 이상을 포함하는 개념을 나타낸다.
위성항공중계국(131)은, 정지궤도 통신위성, 포워딩/통신 기능을 갖춘 인공위성, 또는 포워딩/통신 기능을 갖춘 항공체 중 하나 이상을 포함하는 개념이며, 본 발명의 측위 시스템에서 위성항공중계국들(131, 132, 133)의 위치는 고정될 수도 있으나, 반드시 고정될 필요는 없다.
지상기준국(110)은 3개 이상의 위성항공중계국들(131, 132, 133)의 자세제어 및 통제를 위해 위성항공중계국들(131, 132, 133)의 위치를 지속적으로 모니터링 하여, 위성항공중계국들(131, 132, 133)의 위치를 파악한다. 이 후, 지상기준국(110)은 3개 이상의 위성항공중계국들(131, 132, 133)의 위치정보와 지상기준국(110)의 위치정보를 위성항공중계국들(131, 132, 133)을 경유하여 수신국(120)으로 전송한다.
이 때 본 발명의 실시예에 따라서는 지상기준국(110)의 위치는 수신국(120)에 미리 알려져 있을 수도 있고, 본 발명의 또 다른 실시예에 따라서는 지상기준국(110)의 위치에 대한 정보가 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보와 함께 수신국(120)으로 전달될 수도 있다.
위성항공중계국들(131, 132, 133)은 지상기준국(110)으로부터 코드신호를 수신하여 이들을 증폭하고, 중첩하여 수신국(120)으로 전송한다.
수신국(120)에서는 수신된 3개 이상의 위성항공중계국들(131, 132, 133)의 위치정보와 지상기준국(110)의 기준신호가 중계노드들을 경유하여 도달하는 수신시간의 차이를 이용하여 수신국(120)과 위성항공중계국들(131, 132, 133)간의 거리의 차이를 계산하여, 수신국(120)의 위치를 계산한다. 이 때 이용될 수 있는 기법의 일 예로는 쌍곡선 항법(hyperbolic navigation)이 있다.
이 때 수신국(120)은 지상기준국(110)의 위치와, 위성항공중계국들(131, 132, 133) 각각의 위치를 지상기준국(110)으로부터 제공받으므로, 지상기준국(110)으로부터 위성항공중계국들(131, 132, 133) 각각까지의 거리에 따른 전달 지연 시간 (t'1, t'2, t'3)을 계산할 수 있다.
수신국(120)은 중계국(131)으로부터 수신국(120)까지의 전달 지연시간 (TD1)과 중계국(132)으로부터 수신국(120)까지의 전달 지연 시간 (TD2) 간의 차이인 a12를 계산할 수 있고, 마찬가지로 중계국(131)으로부터 수신국(120)까지의 전달 지연시간 (TD1)과 중계국(133)으로부터 수신국(120)까지의 전달 지연 시간 (TD3) 간의 차이인 a13를 계산할 수 있다.
수신국(120)은 a12와 a13, 그리고 중계국들(131, 132, 133)의 위치를 이용하여 수신국(120)의 위치를 계산할 수 있다.
본 발명의 일 실시예에 따르면 지상기준국(110)이 기준신호를 전송할 때 서로 다른 위성항공중계국들(131, 132, 133) 각각에 대하여 동시에 기준신호를 전송할 수 있다. 이 때, 수신국(120)은 지상기준국(110)의 위치와, 위성항공중계국들(131, 132, 133) 각각의 위치 사이의 거리를 고려하여 지상기준국(110)으로부터 업링크를 통하여 기준신호가 전달되는 전달 지연 시간을 계산하고, 업링크의 전달 지연 시간을 고려하여 수신 시간의 차이 값을 보정해야 한다.
본 발명의 다른 실시예에 따르면, 지상기준국(110)이 기준신호를 전송할 때, 서로 다른 위성항공중계국들(131, 132, 133) 각각에서 동시에 신호가 지상을 향하여 반송되도록(동시에 수신국(120)을 향하여 신호가 전송되도록) 전달 경로마다 기준신호의 전송 시간을 달리 할 수 있다. 이 때, 업 링크의 전달 지연 시간의 차이는 자연스럽게 상쇄되므로 수신국(120)의 계산 부담이 감소할 수 있다. 한편, 기준국(110)은 지속적으로 위성항공중계국들(131, 132, 133) 각각의 위치를 모니터하고 있기 때문에 전달 경로마다 기준신호의 전송 시간을 조정할 수 있다.
또한 본 발명의 또 다른 실시예에 따르면, 수신국(120)은 주변 환경 정보 또는 기준신호가 수신되는 다운링크 채널에 대한 측정값을 업링크를 통하여 전송함으로써, 지상기준국(110)으로 하여금 기준신호의 전송 시 전력 레벨을 조정할 수 있도록 정보를 피드백할 수도 있다. 또한 지상기준국(110)은 수신국(120)으로부터의 전송 정보에 기초하여 자연재해, 인위적인 사고 등 돌발 상황에 대한 정보를 얻을 수도 있다. 이처럼 본 발명의 측위 시스템에서는, 위성항공 통신네트워크가 측위를 위해서만 이용되는 것이 아니라 측위 관련 정보와 기타 정보가 병행하여 송수신되는 하이브리드 데이터 통신 또한 가능하다.
도 2는 본 발명의 일 실시예에 따른 지상기준국과 수신국의 동기식 지상기준국 기반 통신중계 측위시스템 구조를 나타낸 것이다.
이때, 지상기준국(110)에서 전송하는 코드신호는 모두 동기화되어 위성항공중계국들(131, 132, 133)으로 동일한 시간에 전송된다.
지상기준국(110)은 브로드캐스팅을 통하여 위성항공중계국(131)에 같은 주파수 대역 f1에 코드정보 C1를 타임 슬랏 T1에 실어 전송할 수 있고, 위성항공중계국(132)에 대하여 주파수 대역 f1에 코드정보 C2를 타임 슬랏T2에 실어 전송할 수 있고, 위성항공중계국(133)에 대하여 주파수 대역 f1에 코드정보 C3를 타임 슬랏 T3에 실어 전송할 수 있다. 이 때 코드정보 C1, C2, C3은 위성항공중계국들(131, 132, 133) 각각에 대한 고유식별정보를 포함하는 코드이며, 타임 슬랏 T1, T2, T3는 위성항공중계국들(131, 132, 133)에 대하여 할당된 타임 슬랏(time slot)이다.
도 2의 실시예에서는 주파수 대역이 f1으로 일정하고, 각 중계국에 대하여 타임 슬랏 T1, T2, T3이 다르게 할당되는 경우가 도시되었으나, 타임 슬랏이 일정하게 주어지고, 각 중계국에 대하여 서로 다른 주파수 대역이 할당되는 경우도 가능하다. 이처럼 도 2의 실시예를 참고하여 각 위성항공중계국에 대하여 서로 다른 자원(resource)이 부여될 수 있도록 변경하는 것은 당업자(skilled person)에게는 자명한 변경이라 할 것이다.
위성항공중계국들(131, 132, 133)은 지상기준국(110)으로부터 코드신호를 수신하여 이들을 증폭하고, 중첩하여 수신국(120)으로 전송한다.
수신국(120)은 지상기준국(110)과 동기화된 시간 정보를 이용하여 위성항공중계국들(131, 132, 133) 각각에 대한 코드 신호를 지상기준국(110)과 동일한 시간에 생성할 수 있다. 지상기준국(110)에 의하여 생성된 코드 신호는 위성항공네트워크를 경유하여 수신국(120)으로 전송된다.
수신국(120)에서는 스스로 코드 신호를 생성한 시간 정보(지상기준국(110)과 동기화된 시간 정보)와 위성항공중계국들(131, 132, 133) 각각을 경유하여 수신된 코드 신호의 수신시간(TOA, Time of Arrival)과의 차이를 이용하여 각 위성항공중계국들(131, 132, 133)을 경유하는 전달 경로에 대한 전체 라운드 트립 시간 (RTT, Round Trip Time)을 구하고, 파악된 3개 이상의 위성항공중계국들(131, 132, 133)과 지상기준국(110)의 위치정보를 활용하여 계산된 업링크 전송시간(t'1, t'2, t'3)을 차감하면, 위성항공중계국들(131, 132, 133)과 수신국(120)간의 전달 지연 시간 및 거리를 계산할 수 있다. 위성항공중계국들(131, 132, 133)과 수신국(120) 간의 전달 지연 시간에 전자기파의 전달 속도를 곱하면 위성항공중계국들(131, 132, 133)과 수신국(120) 간의 이동 거리를 얻을 수 있고, 위성항공중계국들(131, 132, 133) 각각의 고도를 이용하여 위성항공중계국들(131, 132, 133)과 수신국(120) 간의 수평 방향 거리를 계산할 수 있다. 수신국(120)은 위성항공중계국들(131, 132, 133)과 수신국(120) 간 수평 방향 거리에 기반하여 삼각측량으로 수신국(120)의 위치를 계산한다.
도 2에서는 위성항공중계국들(131, 132, 133)마다 동일한 주파수 f1이 할당되는 실시예가 도시되었으나, 본 발명은 도 2의 실시예에만 국한되지 않는다. 앞서 설명한 대로, 위성항공중계국들(131, 132, 133)에 서로 다른 주파수 대역이 할당되는 실시예도 가능하다. 위성항공중계국들(131, 132, 133)에 서로 다른 주파수 대역이 할당되는 경우에는 시간분할(time-division), 또는 코드분할(code-division) 등 주파수분할(frequency-division)방법으로 식별될 수도 있다. 수신국(120)에서는 중첩 수신된 고유코드가 어느 중계국을 경유하였는 지만 식별할 수 있으면 되므로, 위성항공중계국들(131, 132, 133) 각각을 식별하는 방법에는 제한이 없다.
도 3은 본 발명의 일 실시예에 따른 수신국의 개념적인 구성을 나타낸 것이다.
수신국(120)은 수신부(121), 위치 획득부(122) 및 계산부(123)를 포함한다. 수신부(121)는 지상기준국(110)으로부터 전송되어 3개 이상의 위성항공중계국들(131, 132, 133) 각각에 의하여 전달되는 지상기준국(110)의 기준신호를 수신한다.
이 때, 본 발명의 실시예에 따라서는 수신부(121)는 지상기준국(110) 으로부터 브로드캐스팅된 위치 정보를 수신할 수도 있다.
본 발명의 또 다른 실시예에 따라서는 수신부(121)는 3개 이상의 위성항공중계국들(131, 132, 133)의 위치가 중첩된 코드신호를 수신할 수도 있다.
위치 획득부(122)는 미리 정해진 방식대로 지상기준국(110)과 위치 정보를 공유한다. 이 때 공유되어야 하는 위치 정보는 지상기준국(110)과 3개 이상의 위성항공중계국들(131, 132, 133) 각각의 위치를 포함한다. 이 때 위치 획득부(122)는 지상기준국(110)과 미리 정해진 네트워크를 통하여 위치 정보를 공유할 수도 있고, 본 발명의 다른 실시예에 따라서는, 수신부(121)에 의하여 수신된 위치 정보를 활용할 수도 있으며, 또는 위치가 중첩된 채로 수신된 코드신호로부터 3개 이상의 위성항공중계국들(131, 132, 133)의 위치를 추출할 수도 있다.
계산부(123)는 위치 획득부(122)에 의하여 얻어진 지상기준국(110)과 3개 이상의 위성항공중계국들(131, 132, 133) 각각의 위치를 이용하고, 여기에 수신부(121)에 의하여 수신된 기준신호의 전달 경로 각각에 따른 수신시간 또는 수신시간의 차이를 이용하여 위성항공중계국들(131, 132, 133) 각각으로부터 수신국(120)까지의 거리 또는 거리의 차이를 계산한다. 이어 계산부(123)는 상기 계산된 거리 또는 거리의 차이를 이용하여 수신국(120)의 위치를 계산할 수 있다.
도 3의 수신국(120)이 도 1의 비동기식 측위 시스템에 적용되는 경우, 계산부(123)는 수신된 기준신호가 전달된 경로 각각에 대한 수신 시간의 차이를 계산할 수 있고, 수신 시간의 차이와, 위성항공중계국들(131, 132, 133) 각각의 위치를 이용하여 위성항공중계국들(131, 132, 133) 각각으로부터 일정한 거리의 차이를 유지하는 쌍곡선을 지리 정보 상에 형성할 수 있다. 이 때 계산부(123)는 2개 이상의 쌍곡선을 생성하고, 2개 이상의 쌍곡선의 교점을 찾아 지리 정보 상의 수신국(120)의 위치를 계산할 수 있다. 이 때 수신 시간의 차이로부터 쌍곡선을 생성하기에 앞서, 계산부(123)는 지상기준국(110)의 위치와 위성항공중계국들(131, 132, 133) 각각의 위치를 이용하여 지상기준국(110)으로부터 기준신호가 업링크를 통하여 전송되는 전달 지연 시간 (t'1, t'2, t'3)을 각각의 전달 경로에 대한 수신 시간으로부터 차감할 수 있다.
도 3의 수신국(120)이 도 2의 동기식 측위 시스템에 적용되는 경우, 계산부(123)는 수신된 기준신호가 전달된 경로 각각에 대한 수신 시간(TOA)과, 3개 이상의 위성항공중계국(131, 132, 133)들 각각의 위치를 이용한 삼각측량으로 수신국(120)의 위치를 계산한다. 수신국(120)에 수신된 기준신호 C1 내지 C3는 모두 동기화되어 전송되었으므로, 지상기준국(110)에서의 전송 시각이 동일하다.
따라서, 계산부(123)는 수신국(120)에 기준신호 각각이 도달된 시각과, 전송 시각 간의 차이에 의하여 지상기준국(110)으로부터 위성항공중계국들(131, 132, 133)을 경유하여 수신국(130)에 도달하는 라운드 트립 전송 지연 시간(RTT)을 계산할 수 있다. 지상기준국(110)은 이미 위성항공중계국들(131, 132, 133)의 위치를 지속적인 모니터링을 통하여 알고 있으므로, 계산부(123)는 기준신호의 전체 도달 지연 시간(RTT)에서 지상기준국(110)과 위성항공중계국들(131, 132, 133) 간의 업 링크 전달 지연 시간(t'1, t'2, t'3)를 제외하면 위성항공중계국들(131, 132, 133)과 수신국(120) 간의 전달 지연 시간 및 거리를 얻을 수 있다.
도 4는 본 발명의 일 실시예에 따른 피드백이 가능한 수신국의 개념적인 구성을 나타낸 것이다.
도 4의 수신부(121), 위치 획득부(122), 및 계산부(123)의 동작은 도 3에서 설명한 것과 유사하므로 생략한다.
도 4를 참조하면, 수신국(120)은 지상기준국(110)으로부터 기준신호가 수신되는 다운링크 채널에 대한 측정값을 송신부(125)의 업링크를 통하여 피드백한다. 또한 수신국(120)의 주변 환경에 따라 메시지 생성부(124)에서 저속메세지를 생성하고 업링크를 통하여 지상기준국(110)으로 전송할 수 있다. 이 때 수신국(120)에서 생성되고 전송되는 메시지에는 다운링크 채널에 대한 측정값이 포함될 수 있고, 또는 수신국(120) 주변의 기상 환경, 돌발 상황, 자연 재해 정보 등도 포함될 수 있다.
수신국(120)은 채널 측정값을 피드백할 수도 있고, 경우에 따라서는 채널 특성이 불량하여 측위 과정이 실패했음을 메시지로 생성하여 피드백할 수도 있다.
한편, 수신국(120)은 지상기준국(110) 으로 주변 환경 정보 또는 채널 특성 정보를 전송할 수 있을 뿐만 아니라, 다른 수신국(도시되지 않음)과도 주변 환경 정보 또는 채널 특성 정보를 송수신할 수 있다. 이 때 수신국(120)은 위성항공중계국들(131, 132, 133)과의 통신 채널을 이용하여 주변 수신국들과 통신할 수 있다. 수신국(120)은 지상기준국(110) 의 제어 하에서 다른 수신국과 통신할 수도 있고, 지상기준국(110)의 제어를 받지 않는 환경에서 다른 수신국과 통신할 수도 있다. 수신국(120)이 지상기준국(110)의 제어를 받지 않는 환경에서 다른 수신국과 통신하기 위해서 메쉬(mesh) 시스템 등을 구성할 수도 있다.
이 때 수신국(120)은 지상기준국(110) 또는 다른 수신국과 통신하기 위하여 단문 메시지 등의 형태로 정보를 전송하고 수신할 수도 있다.
도 5는 본 발명의 일 실시예에 따른 지상기준국 기반 통신중계 측위 시스템에서 이루어지는 측위 방법의 동작 흐름도를 나타낸 것이다. 도 5는 수신국(120)에서 이루어지는 동작을 중심으로 설명한 것이다.
수신국(120)의 수신부(121)는 지상기준국(110)으로부터 전송되어 적어도 3개 이상의 위성항공중계국들(131, 132, 133) 각각을 경유하여 전달되는 기준신호를 수신한다(S510).
수신국(120)의 위치 획득부(122)는 지상기준국(110)의 위치와, 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보를 획득한다(S520). 이 때, 수신국(120)의 위치 획득부(122)에 의하여 수행되는 단계(S520)는 지상기준국(110)으로부터 위성항공중계국들(131, 132, 133) 중 적어도 하나 이상을 경유하거나 별도의 유선 또는 무선 통신 네트워크를 이용하여 브로드캐스팅되는 지상기준국(110)의 위치와, 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보를 수신할 수도 있다.
또한, 본 발명의 다른 실시예에 따르면 수신국(120)의 위치 획득부(122)는 위성항공중계국들(131, 132, 133) 각각을 경유하여 전달되는 기준신호(위치 정보가 포함되어 전송되는 경우)로부터 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보를 추출할 수도 있다.
이후, 수신국(120)의 계산부(123)는 지상기준국(110)의 위치와, 위성항공중계국들(131, 132, 133) 각각의 위치와, 기준신호의 전달 경로에 따른 수신시간을 이용하여 수신국(120)의 위치를 계산한다(S530).
이 때, 도 5의 동작 흐름도를 도 1의 비동기식 측위 시스템에 적용하는 경우, 계산부(123)는 기준신호의 전달 경로에 따른 수신시간의 차이와 위성항공중계국들(131, 132, 133) 각각의 위치를 이용하여 위성항공중계국들(131, 132, 133) 각각으로부터 수신국(120)까지의 거리의 차이를 계산한다. 이후, 계산부(123)는 위성항공중계국들(131, 132, 133) 각각으로부터 수신국(120)까지의 거리의 차이를 이용하여 수신국(120)의 위치를 결정한다.
또한, 계산부(123)는 위성항공중계국들(131, 132, 133) 중 서로 다른 위성항공중계국들(131, 132, 133) 각각으로부터의 거리의 차이가 일정한 점들의 집합인 쌍곡선을 둘 이상 지리 좌표 상에 생성하고, 생성된 둘 이상의 쌍곡선의 교점을 이용하여 수신국(120)의 위치를 결정할 수도 있다.
또는 도 5의 동작 흐름도를 도 2의 동기식 측위 시스템에 적용하는 경우, 수신국(120)의 동기화부(126)는 지상기준국(110)과 동기화된 시간 정보를 이용하여 지상기준국(110)과 동일한 시간에 위성항공중계국들(131, 132, 133) 각각에 대한 코드신호를 생성한다. 동기화부(126)를 포함하는 수신국(120)에 대한 개념도가 도 13에 도시된다.
수신국(120)의 수신부(121)는 위성항공중계국들(131, 132, 133) 각각을 경유하여 전달된 기준신호를 수신하고(S510), 계산부(123)는 기준신호의 전달 경로 각각에 대한 수신시간과, 코드신호가 생성된 시간을 비교하여 기준신호의 전달 경로 각각에 대한 라운드 트립 시간(RTT)을 계산할 수 있다.
수신국(120)의 계산부(123)는 단계(S520)을 통하여 획득한 지상기준국(110)의 위치와, 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보와, 전달 경로 각각에 대한 라운드 트립 시간을 이용하여 수신국(120)의 위치를 계산한다(S530).
이 때, 수신국(120)의 계산부(123)는 지상기준국(110)의 위치와 위성항공중계국들(131, 132, 133) 각각의 위치를 이용하여 전달 경로 각각에 대한 업 링크 전달 지연 시간(t'1, t'2, t'3)을 계산하고, 전달 경로 각각에 대한 라운드 트립 시간으로부터 전달 경로 각각에 대한 업 링크 전달 지연 시간(t'1, t'2, t'3)을 차감하여 위성항공중계국들(131, 132, 133) 각각으로부터 수신국(120)에 이르는 전달 지연 시간 및 수평 방향 거리를 얻을 수 있음은 앞에서 설명한 바와 같다.
도 6은 본 발명의 일 실시예에 따른 지상기준국 기반 위성항공중계국의 위치를 모니터링하여 측위 정보를 전송하는 방법의 동작 흐름도를 나타낸 것이다. 도 6은 지상기준국(110)에서 수행되는 동작을 중심으로 도시한 도면이다.
지상기준국(110)이 적어도 3개 이상의 위성항공중계국들(131, 132, 133) 각각의 자세를 제어하기 위하여 위성항공중계국들(131, 132, 133) 각각과 일정 주기마다 통신함으로써, 위성항공중계국들(131, 132, 133) 각각의 위치를 모니터 한다(S610). 이 때, 지상기준국(110)은 적어도 일정 주기마다 통신함으로써, 위성항공중계국들(131, 132, 133) 각각의 위치를 실시간으로 모니터할 수 있다. 지상기준국(110)은 위성항공중계국들(131, 132, 133) 각각이 정지궤도 위성인지, 중궤도 위성인지, 저궤도 위성인지 또는 항공체인지에 따라서 위치를 모니터하는 주기를 조정할 수 있으며, 통신 환경 또는 위치가 변화하는 정도에 따라서도 위치를 모니터하는 주기를 조정할 수 있다.
이후, 지상기준국(110)은 지상기준국(110)의 위치와, 적어도 3개 이상의 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보를 수신국(120)으로 전달한다(S620).
이후, 지상기준국(110)으로부터 적어도 3개 이상의 위성항공중계국들(131, 132, 133) 각각을 경유하여 수신국(120)으로 전달되는 기준신호를 전송한다(S630).
이 때, 위치에 대한 정보를 지상기준국(110)으로부터 위성항공중계국들(131, 132, 133) 중 적어도 하나 이상을 경유하거나 별도의 유선 또는 무선 통신 네트워크를 이용하여 기준신호와는 다른 통신 채널을 경유하여 브로드캐스트할 수도 있다. 이 때에는 단계(S620)와 단계(S630)이 별개의 과정으로 진행될 수 있다.
또한, 기준신호를 전송하는 동안 적어도 3개 이상의 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보를 적어도 3개 이상의 위성항공중계국들(131, 132, 133) 중 위치에 대한 정보 각각에 대응하는 위성항공중계국(131)을 경유하여 수신국(120)으로 전달할 수도 있다. 이 경우에는 단계(S620)과 단계(S630)은 병합되어 하나의 과정을 통하여 진행될 수도 있다.
도 7은 본 발명의 일 실시예에 따른 비동기식 측위 시스템에서 수신국의 위치를 계산하는 방법의 동작 흐름도를 나타낸 것이다.
수신국(120)의 계산부(123)는 기준신호의 전달 경로에 따른 TDOA와 위성항공중계국들(131, 132, 133) 각각의 위치를 이용하여 위성항공중계국들(131, 132, 133) 각각으로부터 수신국(120)까지의 거리의 차이를 계산한다(S710).
이후, 계산부(123)는 위성항공중계국들(131, 132, 133) 중 서로 다른 위성항공중계국들(131, 132, 133) 각각으로부터의 거리의 차이가 일정한 점들의 집합인 쌍곡선을 둘 이상 지리 좌표 상에 생성한다(S720). 이 때 이용되는 둘 이상의 쌍곡선을 이용한 측위 방법을 쌍곡선 항법(hyperbolic navigation)이라 한다.
이후, 계산부(123)는 둘 이상의 쌍곡선의 교점을 이용하여 수신국(120)의 위치를 결정한다(S730).
또한, 지상기준국(110)에서 기준신호를 전송할 때, 서로 다른 위성항공중계국들(131, 132, 133) 각각에 대하여 동시에 신호를 전송하는 경우, 수신국(120)의 계산부(123)는 지상기준국(110)의 위치와, 위성항공중계국들(131, 132, 133) 각각의 위치 사이의 거리를 고려하여 업링크의 전달 지연 시간을 계산하고, 단계(S710)에서 업링크의 전달 지연 시간을 이용하여 거리의 차이를 보정해야 한다.
또한, 지상기준국(110)에서 기준신호를 전송할 때, 서로 다른 위성항공중계국들(131, 132, 133) 각각에서 동시에 수신국(120)을 향하여 신호가 전송되도록(동시에 신호가 반사되도록) 전달 경로마다 기준신호 전송 시각을 달리 하는 경우, 업링크의 전달 지연 시간의 차이는 자연스럽게 상쇄되므로 수신국(120)의 계산부(123)의 계산 부담이 줄어들 수 있다. 한편, 지상기준국(110)은 지속적으로 위성항공중계국들(131, 132, 133) 각각의 위치를 모니터하고 있기 때문에 이러한 결과가 나타나도록 전송 시점을 조정할 수도 있다.
도 8은 본 발명의 일 실시예에 따른 동기식 측위 시스템에서 수신국의 위치를 계산하는 방법의 동작 흐름도롤 나타낸 것이다.
수신국(120)의 동기화부(126)는 지상기준국(110)과 동기화된 시간 정보를 이용하여 위성항공중계국들(131, 132, 133) 각각에 대한 코드신호를 생성한다(S810).
수신국(120)의 수신부(121)는 지상기준국(110)으로부터 전송되어 적어도 3개 이상의 위성항공중계국들(131, 132, 133) 각각을 경유하여 전달되는 기준신호를 수신한다(S510).
계산부(123)는 기준신호의 전달 경로 각각에 대한 수신시간과, 코드신호가 생성된 시간을 비교하여 기준신호의 전달 경로 각각에 대한 라운드 트립 시간(RTT)을 계산할 수 있다.
계산부(123)는 단계(S520)를 통하여 획득한 지상기준국(110)의 위치와, 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보와, 전달 경로 각각에 대한 라운드 트립 시간을 이용하여 수신국(120)의 위치를 계산한다(S530).
도 9는 본 발명의 일 실시예에 따른 동기식 측위 시스템에서 삼각측량법에 의하여 수신국의 위치를 결정하는 상세한 과정의 동작 흐름도를 나타낸 것이다.
수신국(120)의 계산부(123) 는 지상기준국(110)으로부터 위성항공중계국들 (131, 132, 133) 각각을 경유하는 전달 경로의 RTT(Round Trip Time)를 계산한다(S910).
이후, 계산부(123)는 지상기준국(120)의 위치와 위성항공중계국들(131, 132, 133) 각각의 위치를 이용하여 지상기준국(120)으로부터 위성항공중계국들(131, 132, 133) 각각까지의 업링크 전달 지연 시간을 계산한다(S920).
이후, 계산부(123)는 위성항공중계국들(131, 132, 133) 각각을 경유하는 전달 경로의 RTT(Round Trip Time)로부터 업링크 전달 지연 시간을 차감(S930)하고, 위성항공중계국들(131, 132, 133) 각각으로부터 수신국(120)까지의 거리를 계산하여(S940), 삼각측량법에 의하여 수신국(120)의 위치를 결정한다(S950).
이때, 삼각측량법(triangulation method)은 어떤 한 점의 좌표와 거리를 삼각형의 성질을 이용하여 알아내는 방법으로써, 그 점과 두 기준점이 주어졌으면, 그 점과 두 기준점이 이루는 삼각형에서 밑변과 다른 두 변이 이루는 각을 각각 측정하고, 그 변의 길이를 측정한 뒤, 사인(sine) 법칙 등을 이용하여 일련의 계산을 수행함으로써, 그 점에 대해 좌표와 거리를 알아내는 방법이다.
3개 이상의 위성항공중계국들(131, 132, 133) 각각의 위치와, 위성항공중계국들(131, 132, 133) 각각으로부터 수신국(120)까지의 거리를 이용하여 삼각측량법을 응용함으로써 수신국(120)의 위치를 결정할 수 있다.
도 10은 본 발명의 일 실시예에 따른 측위 시스템의 지상기준국에서 위치 정보를 브로드캐스팅 하는 방법에 대한 동작 흐름도를 나타낸 것이다.
지상기준국(110)은 지상기준국(110)의 위치와 위성항공중계국들(131, 132, 133) 각각의 위치를 브로드캐스트한다(S1010).
이후, 수신국(120)의 위치 획득부(122)는 지상기준국(110)의 위치와, 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보를 획득한다(S520). 이때, S1010에서 브로드캐스팅된 위치 정보를 수신함으로써 위치 정보를 획득할 수 있다.
브로드캐스팅(S1010)은 위성항공중계국들(131, 132, 133) 중 어느 하나를 경유하는 위성항공 네트워크를 이용하되, 기준신호가 전송되는 채널과 별개의 채널을 이용하여 실행될 수도 있고, 또는 위성항공 네트워크가 아닌 이종의 유선 또는 무선 통신 네트워크를 통하여 이루어질 수도 있다.
도 11은 본 발명의 일 실시예에 따른 측위 시스템의 지상기준국에서 위치 정보를 기준신호 및 코드신호에 실어서 수신국으로 전송하는 방법에 대한 동작 흐름도를 나타낸 것이다.
지상기준국(110)은 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보를 포함하는 기준신호를 위치에 상응하는 위성항공중계국들(131, 132, 133) 각각을 경유하여 전송한다(S1110).
이후, 수신국(120)의 수신부(121)는 지상기준국(110)으로부터 전송되어 적어도 3개 이상의 위성항공중계국들(131, 132, 133) 각각을 경유하여 전달되는 기준신호를 수신한다(S510).
도 12는 도 11에 대응하는 본 발명의 일 실시예에 따른 수신국에서 기준신호로부터 위성항공중계국들 각각의 위치에 대한 정보를 추출하는 방법에 대한 동작 흐름도를 나타낸 것이다.
수신국(120)의 수신부(121)가 지상기준국(110)으로부터 전송되어 적어도 3개 이상의 위성항공중계국들(131, 132, 133) 각각을 경유하여 전달되는 기준신호를 수신한(S510) 후, 위치 획득부(122)는 지상기준국(110)의 위치와, 위성항공중계국들 (131, 132, 133) 각각의 위치에 대한 정보를 획득한다(S520).
이때, 위치 획득부(122)는 위성항공중계국들(131, 132, 133) 각각을 경유하여 전달되는 기준신호로부터 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보를 추출할 수 있다(S1210).
이후, 계산부(123)는 지상기준국(110)의 위치와, 위성항공중계국들(131, 132, 133) 각각의 위치와, 기준신호의 전달 경로에 따른 수신시간 또는 수신시간의 차이를 이용하여 수신국의 위치를 계산한다(S530).
도 11 및 도 12의 실시예와 같이 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보가 위성항공중계국들(131, 132, 133) 각각을 경유하는 위성항공 네트워크를 경유하여 전달되는 기준신호에 포함되어 수신국(120)으로 전달되는 경우에는 도 10과 같이 브로드캐스팅되는 경우보다 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보에 대한 보안성을 높일 수 있다. 반면 수신국(120)은 기준신호로부터 위성항공중계국들(131, 132, 133) 각각의 위치에 대한 정보를 추출하는 추가적인 과정이 필요하므로 수신국(120)의 연산 부담이 증가할 수 있다. 한편, 위치 정보가 브로드캐스팅되는 경우 및 기준신호에 실려 전달되는 경우 모두 위치 정보는 특정 알고리즘에 의하여 부호화될 수 있다. 이 때 특정 수신국만이 해당 알고리즘에 대한 해석 방법 또는 암호 키를 보유하고 있어 위치 정보에 대해 접근할 수 있다면 위치 정보에 대한 보안 성능을 강화할 수 있다.
도 13은 본 발명의 일 실시예에 따른 동기식 측위 시스템의 수신국의 개념적인 구성을 나타낸 것이다.
수신국(120)은 수신부(121), 위치 획득부(122) 및 계산부(123)을 포함한다. 도 13의 수신부(121), 위치 획득부(122), 및 계산부(123)의 동작은 도 3에서 설명한 것과 유사하므로 생략한다.
도 13을 참조하면, 수신국(120)의 동기화부(126)는 지상기준국(110)으로부터 기준신호를 수신하여 지상기준국(110)과 동기화된 시간 정보를 공유한다.
이 때, 기준신호의 전달 경로에 따른 수신시간은 위성항공중계국들(131, 132, 133) 각각으로부터 수신국(120)까지의 거리에 따른 라운드 트립 전달 지연 시간(RTT)을 반영한다.
한편, 본 발명의 다양한 실시예에서 설명된 지상기준국(110)은 다른 이름으로는 지상 통제국으로도 불리며, 위성(131 내지 133)을 직접 발사하고 관리하는 엄밀한 의미의 중심국만을 의미하는 것이 아니라, 중심국으로부터 위성항공중계국들(131 내지 133) 각각의 위치 정보를 일정 주기마다 또는 필요에 따라 제공받아 사용할 수 있는 민간용의 통신 서버도 포함될 수 있음은 해당 분야의 종사자에게 자명하게 이해될 것이다.
이상에서 설명된 본 발명의 실시예에서는 하나의 지상기준국(110)과 3개 이상의 위성항공중계국(131, 132, 133)을 이용하여 수신국(120)이 자신의 위치를 계산하는 측위 시스템 및 방법이 제안되었다. 본 발명의 또 다른 실시예에 따르면, 복수의 지상기준국들이 존재하고, 특히 적어도 3개 이상의 지상기준국들이 존재할 수 있다. 3개 이상의 지상기준국들 각각으로부터 3개 이상의 위성항공중계국들 각각을 경유하여 수신국으로 측위 관련 정보(예를 들면, 기준신호)가 전달되는 경우가 있을 수 있다. 이 때, 설명의 편의 상 3개의 지상기준국들 각각으로부터 3개의 위성항공중계국들 각각을 경유하여 기준신호가 전달되는 경우를 가정한다. 수신국은 서로 다른 9개의 전달 경로를 경유한 기준신호를 수신하게 될 것이다.
각각의 지상기준국들은 전송 주파수, 전송 타임 슬랏, 코드 신호 등의 통신 자원(resource)을 적절히 분배하여 어느 지상기준국으로부터 어느 위성항공중계국들 경유하여 전달된 기준신호인지를 식별 가능하도록 기준신호를 전송할 수 있다. 수신국은 3개의 지상기준국들 각각의 위치를 미리 알고 있다고 가정한다. 수신국은 서로 다른 3개의 지상기준국들 각각으로부터 하나의 위성항공중계국을 경유한 기준신호 간의 수신시간(TOA) 또는 수신시간의 차이(TDOA)를 계산할 수 있고, 수신시간 또는 수신시간의 차이를 이용하여 해당하는 위성항공중계국의 위치를 계산할 수 있다. 이와 같은 방식으로 수신국은 서로 다른 3개의 지상기준국들 각각으로부터 서로 다른 3개의 위성항공중계국들 각각을 경유하여 결과적으로 서로 다른 9개의 전달 경로를 경유한 기준신호 각각의 수신시간 또는 수신시간의 차이를 이용하여 3개의 위성항공중계국들 각각의 위치를 계산할 수 있다.
수신국은 3개의 위성항공중계국들 각각의 위치를 계산하고, 3개의 위성항공중계국들 각각으로부터 수신국까지의 기준신호의 전달 지연 시간 또는 전달 지연 시간의 차이를 이용하여 3개의 위성항공중계국들 각각으로부터 수신국까지의 거리를 계산할 수 있다. 수신국은 3개의 위성항공중계국들 각각의 위치와 3개의 위성항공중계국들 각각으로부터 수신국까지의 거리를 이용하여 수신국의 위치를 계산할 수 있다.
3개의 지상기준국들을 이용하는 실시예에서는 위성항공중계국들 각각의 위치가 미리 수신국에 알려질 필요가 없는 대신에 수신국의 계산 부담이 증가할 수 있다. 반면, 1개의 지상기준국을 이용하는 실시예에서는 위성항공중계국들 각각의 위치가 지상기준국과 수신국 사이에서 공유되어야 하는 대신에 수신국의 계산 부담이 감소할 것이다.
3개의 지상기준국들을 이용하는 실시예와 1개의 지상기준국을 이용하는 실시예가 병행되어 구현될 수도 있다. 즉, 수신국은 기본적으로 3개의 지상기준국들을 이용하여 위성항공중계국들 각각의 위치를 계산하고, 수신국 자신의 위치를 계산할 수 있다. 이 때 주기적으로 또는 특별한 상황(위치의 계산 오차가 증가하는 경우 등)에서 지상기준국은 지상기준국이 파악하고 있는 위성항공중계국들 각각의 위치를 수신국에 제공하여, 수신국으로 하여금 스스로 계산한 위성항공중계국들 각각의 위치의 정확성을 확인하고, 보정하도록 유도할 수도 있다.
3개의 지상기준국들을 이용하는 실시예에 따라 도 14는 본 발명의 일 실시예에 따른 3개 이상의 지상기준국 기반의 위성항공 통신 중계 측위 시스템 구조를 나타낸 것이다.
도 14에 도시된 바와 같이, 본 발명에 따른 측위 시스템은 적어도 3개 이상의 지상기준국들(1411, 1412, 1413), 적어도 3개 이상의 위성항공 중계국들(1421, 1422, 1423)과 그리고 수신국(1430)을 포함한다.
또한, 지상기준국들(1411, 1412, 1413)은 위치 측정의 기준이 되는 지점으로서, 지상기준국들(1411, 1412, 1413)의 정확한 위치 정보가 수신국에 알려져 있을 것을 전제로 한다.
지상기준국(1411)은 중계국들(1421, 1422, 1423) 각각마다 서로 다른 주파수 대역 f1, f2, f3을 할당할 수 있다. 이 때 중계국들(1421, 1422, 1423) 각각에 대한 주파수 대역의 할당은 중심국(1440)에 의하여 이루어지고, 할당 정보가 지상기준국들(1411, 1412, 1423)에 전달될 수 있다.
지상기준국(1411)은 중계국(1421)에 대하여 주파수 대역 f1에 코드정보 C1을 실어 전송할 수 있고, 중계국(1422)에 대하여 주파수 대역 f2에 코드정보 C4를 실어 전송할 수 있고, 중계국(1423)에 대하여 주파수 대역 f3에 코드정보 C7을 실어 전송할 수 있다. 이 때 코드정보 C1, C4, C7은 지상기준국(1411)에 대한 고유식별정보를 포함하는 코드이며, 실시예에 따라서는 중심국(1440)에 의하여 지상기준국들(1411, 1412, 1413) 각각에 대응하는 고유코드가 할당될 수 있다.
또한, 지상기준국(1412)도 마찬가지로 중계국들(1421, 1422, 1423) 각각마다 서로 다른 주파수 대역 f1, f2, f3을 할당할 수 있다. 이 때 중계국들(1421, 1422, 1423) 각각에 대한 주파수 대역의 할당은 중심국(1440)에 의하여 이루어지고, 할당 정보가 지상기준국들(1411, 1412, 1423)에 전달될 수 있다.
지상기준국(1412)도 지상기준국(1413)과 마찬가지로 중계국(1421)에 대하여 주파수 대역 f1에 코드정보 C2을 실어 전송할 수 있고, 중계국(1422)에 대하여 주파수 대역 f2에 코드정보 C5를 실어 전송할 수 있고, 중계국(1423)에 대하여 주파수 대역 f3에 코드정보 C8을 실어 전송할 수 있다. 이 때 코드정보 C2, C5, C8은 지상기준국(1413)에 대한 고유식별정보를 포함하는 코드이며, 실시예에 따라서는 중심국(1440)에 의하여 지상기준국들(1411, 1412, 1413) 각각에 대응하는 고유코드가 할당될 수 있다.
또한, 지상기준국(1413)도 마찬가지로 중계국들(1421, 1422, 1423) 각각마다 서로 다른 주파수 대역 f1, f2, f3을 할당할 수 있다. 이 때 중계국들(1421, 1422, 1423) 각각에 대한 주파수 대역의 할당은 중심국(1440)에 의하여 이루어지고, 할당 정보가 지상기준국들(1411, 1412, 1423)에 전달될 수 있다.
지상기준국(1413)도 마찬가지로 중계국(1421)에 대하여 주파수 대역 f1에 코드정보 C3을 실어 전송할 수 있고, 중계국(1422)에 대하여 주파수 대역 f2에 코드정보 C6를 실어 전송할 수 있고, 중계국(1423)에 대하여 주파수 대역 f3에 코드정보 C9을 실어 전송할 수 있다. 이 때 코드정보 C3, C6, C9은 지상기준국(1412)에 대한 고유식별정보를 포함하는 코드이며, 실시예에 따라서는 중심국(1440)에 의하여 지상기준국들(1411, 1412, 1413) 각각에 대응하는 고유코드가 할당될 수 있다.
이 때 지상기준국들(1411, 1412, 1413)에서 전송하는 코드신호는 모두 동기화되어 동일한 시간에 전송된다.
중계국(1421)은 지상기준국(1411)으로부터는 f1 대역의 코드신호 C1을, 지상기준국(1412)으로부터는 f1 대역의 코드신호 C2를, 지상기준국(1413)으로부터는 f1 대역의 코드신호 C3을 수신하여, 이들을 증폭하고, 중첩하여 수신국(1430)으로 전송한다.
코드신호 C1, C2, C3 간의 수신시간차(TDOA, Time Difference of Arrival)는 지상기준국들(1411, 1412, 1413)과 중계국(1421) 간의 거리 차이에 대응하는 값이다. 코드신호 C1, C2, C3 간의 수신시간차는 중계국(1421)에 도달한 시점에 결정되고, 중계국(1421)이 코드신호 C1, C2, C3를 중첩하여 수신국(1430)으로 전송하기 때문에 수신국(1430)에서도 코드신호 C1, C2, C3 간의 수신시간차가 그대로 반영된 중첩 코드신호를 수신할 수 있으며, 수신시간차를 측정할 수 있다. 이 때 C1, C2, C3가 지상기준국들(1411, 1412, 1413)에서 동기화되어 전송되므로, 수신국(1430)에서는 C1, C2, C3 간의 수신시간차에 기초하여 중계국(1421)의 위치를 삼각측량법에 의하여 계산할 수 있다.
그 외 중계국들(1422, 1423) 또한 지상기준국(1411)로부터 f1 대역의 코드신호 C4, C7를, 지상기준국(1412) 으로 부터는 f1 대역의 코드신호 C5, C8를, 지상기준국(1413)으로부터는 f1 대역의 코드신호 C6, C9을 수신하여, 이들을 증폭하고, 중첩하여 수신국(1430)으로 전송한다.
코드신호 C4, C5, C6 와 C7, C8, C9 간의 수신시간차(TDOA, Time Difference of Arrival)는 지상기준국들(1411, 1412, 1413)과 중계국들(1422, 1423) 간의 거리 차이에 대응하는 값이다. 코드신호 C4, C5, C6 와 C7, C8, C9 간의 수신시간차는 중계국들(1422, 1423)에 도달한 시점에 결정되고, 중계국들(1422, 1423)이 코드신호 C4, C5, C6 와 C7, C8, C9을 중첩하여 수신국(1430)으로 전송하기 때문에 수신국(1430)에서도 코드신호 C4, C5, C6 와 C7, C8, C9간의 수신시간차가 그대로 반영된 중첩 코드신호를 수신할 수 있으며, 수신시간차를 측정할 수 있다. 이 때 C4, C5, C6 와 C7, C8, C9가 지상기준국들(1411, 1412, 1413)에서 동기화되어 전송되므로, 수신국(1430)에서는 C4, C5, C6 와 C7, C8, C9 간의 수신시간차에 기초하여 중계국들(1422, 1423)의 위치를 삼각측량법에 의하여 계산할 수 있다.
도 14에서는 중계국들(1421, 1422, 1423)마다 서로 다른 주파수 f1, f2, f3이 할당되는 실시예가 도시되었으나, 도 14의 실시예에만 국한되지 않고, 중계국들(1421, 1422, 1423)에 동일한 주파수 대역이 할당되는 실시예도 가능하다.
중계국들(1421, 1422, 1423)에 동일한 주파수 대역이 할당되는 경우에는 시간분할(time-division), 또는 코드분할(code-division) 등 주파수분할(frequency-division)이 아닌 다른 방법으로 중계국들(1421, 1422, 1423) 각각이 식별될 수도 있다. 수신국(1430)에서는 중첩 수신된 고유코드가 어느 중계국을 경유 하였는지만 식별할 수 있으면 되므로, 중계국들(1421, 1422, 1423) 각각을 식별하는 방법에는 제한이 없다.
도 15는 도 14에 도시된 수신국(1430)의 개념적인 구성을 나타내고 있는데 수신국(1430)은 수신부(1431), 제 1계산부(1432), 및 제 2계산부(1433)를 포함한다.
수신부(1431)에서는 지상기준국(1411)에서 시작되어 위성항공 중계국(1421)으로부터 전달된 고유신호를 수신하는 역할을 하게 된다.
수신국(1430)은 지상기준국들(1411, 1412, 1413)에 대한 고유식별코드 및 위치 정보를 미리 저장할 수 있다. 수신부(1431)에 수신된 고유신호로부터 지상기준국들(1411, 1412, 1413) 각각의 고유식별정보가 추출되면, 수신국(1430)에 미리 저장된 고유식별코드 및 위치 정보를 이용하여 제 1계산부(1432)는 중계국들(1421, 1422, 1423)로부터 수신된 고유신호의 중첩된 코드 C1, C2, C3 와 C4, C5, C6 및 C7, C8, C9의 각각의 수신시간차를 통하여 3개 이상의 중계국들(1421, 1422, 1423)의 위치를 계산한다.
제 2계산부(1433)에서는 상기 계산된 중계국들(1421, 1422, 1423)의 위치와. 중계국들(1421, 1422, 1423)과 수신국(1430) 간의 거리를 이용한 삼각측량으로 수신국(1430)의 위치를 계산한다. 수신국(1430)에 수신된 고유신호 C1 내지 C9은 모두 동기화되어 전송되었으므로, 지상기준국(1411, 1412, 1413)에서의 전송 시각이 동일하다. 따라서 수신국(1430)에 고유신호 각각이 도달된 시각과, 전송 시각 간의 차이에 의하여 지상기준국들 각각(1411, 1412, 1413)로부터 중계국들(1421, 1422, 1423)을 경유하여 수신국(1430)에 도달하는 전송 거리를 계산할 수 있다. 수신국(1430)은 이미 중계국들(1421, 1422, 1423)의 위치를 계산하였고, 지상기준국들(1411, 1412, 1413)의 위치를 알고 있으므로, 고유신호의 전체 도달 거리에서 지상기준국들(1411, 1412, 1413)과 중계국들(1421, 1422, 1423) 간의 거리를 제외하면 중계국들(1421, 1422, 1423)과 수신국(1430) 간의 거리를 얻을 수 있다.
제 1계산부(1432)에서는 3개 이상의 수신된 고유신호의 수신시간차를 이용하여 지상기준국과 위성항공 중계국과의 위치 및 거리를 계산하며, 제 2계산부(1433)에서는 상기 계산된 3개 이상의 위성항공 중계국의 위치 및 수신국 간의 거리를 통하여 자신의 위치를 계산한다.
도 16은 도 14에 도시된 피드백이 가능한 수신국(1430)의 개념적인 구성을 나타낸다.
도 16의 수신부(1431), 제 1계산부(1432), 및 제 2계산부(1433)의 동작은 도 15에서 설명한 것과 유사하므로 생략한다.
도 16을 참조하면, 수신국(1430)은 지상기준국들(1411, 1412, 1413)로부터 고유신호가 수신되는 다운링크 채널에 대한 측정값을 송신부(1435)의 업링크를 통하여 피드백한다. 또한 수신국(1430)의 주변 환경에 따라 메시지 생성부(1434)에서 저속메세지를 생성하고 업링크를 통하여 지상기준국들(1411, 1412, 1413)로 전송할 수 있다. 이 때 수신국(1430)에서 생성되고 전송되는 메시지에는 다운링크 채널에 대한 측정값이 포함될 수 있고, 또는 수신국(1430) 주변의 기상 환경, 돌발 상황, 자연 재해 정보 등도 포함될 수 있다.
또한, 수신국(1430)은 채널 측정값을 피드백할 수도 있고, 경우에 따라서는 채널 특성이 불량하여 측위 과정이 실패했음을 메시지로 생성하여 피드백할 수도 있다.
한편, 수신국(1430)은 지상기준국들(1411, 1412, 1413) 또는 중심국(1440)으로 주변 환경 정보 또는 채널 특성 정보를 전송할 수 있을 뿐만 아니라, 다른 수신국(도시되지 않음)과도 주변 환경 정보 또는 채널 특성 정보를 송수신할 수 있다. 이 때 수신국(1430)은 중계국들(1421, 1422, 1423)과의 통신 채널을 이용하여 주변 수신국들과 통신할 수 있다. 수신국(1430)은 지상기준국들(1411, 1412, 1413) 또는 중심국(1440)의 제어 하에서 다른 수신국과 통신할 수도 있고, 지상기준국들(1411, 1412, 1413) 또는 중심국(1440)의 제어를 받지 않는 환경에서 다른 수신국과 통신할 수도 있다. 수신국(1430)이 지상기준국들(1411, 1412, 1413) 또는 중심국(1440)의 제어를 받지 않는 환경에서 다른 수신국과 통신하기 위해서 메쉬(mesh) 시스템 등을 구성할 수도 있다.
이 때 수신국(1430)은 지상기준국들(1411, 1412, 1413), 중심국(1440) 또는 다른 수신국과 통신하기 위하여 단문 메시지 등의 형태로 정보를 전송하고 수신할 수도 있다.
도 17은 본 발명의 일 실시예에 따른 3개 이상의 지상기준국 기반 위성항공 통신 중계 측위 시스템에서 이루어지는 측위 방법의 일 실시예의 동작 흐름도를 나타낸다. 지상기준국들(1411, 1412, 1413)은 중계국들(1421, 1422, 1423)에게 각각의 주파수를 할당하고 고유코드를 부여하여 전송한다(S1710).
중계국들(1421, 1422, 1423)은 수신된 고유코드를 중첩하여 수신국(1430)으로 전달한다(S1720). 수신국(1430)의 제 1계산부(1432)에서 고유신호의 수신시간차를 이용하여 중계국들(1421, 1422, 123) 각각의 위치를 계산하여 중계국들(1421, 1422, 1423)의 위치를 알 수 있다(S1730).
수신국(1430)의 제 2계산부(1433)에서는 위와 같이 얻어진 중계국들(1421, 1422, 1423)의 위치와, 수신국(1430)으로 수신된 고유신호의 도달시간을 이용하여 수신국(1430)의 위치 또한 계산할 수 있다(S1740).
도 18은 도 17의 단계(S1730)를 더욱 상세히 설명하는 일 예를 도시한 것이다.
도 18을 참조하면, 수신국(1430)은 수신된 고유식별코드로부터 각 지상기준국들(1411, 1412, 1413)을 식별한다. 수신국(1430)은 미리 알고 있는 지상기준국들(1411, 1412, 1413) 각각의 고유식별코드 및 위치정보의 대응관계로부터, 상기 식별된 지상기준국들(1411, 1412, 1413)의 위치를 얻는다(S1731).
수신국(1430)의 제 1계산부(1432)에서는 고유신호의 수신 시간차와, 상기 얻어진 지상기준국들(1411, 1412, 1413)의 위치를 이용하여 중계국들(1421, 1422, 1423) 각각의 위치를 계산한다(S1732).
이 때 지상기준국들(1411, 1412, 1413)은 각각의 위치정보를 중심국(1440)으로부터 미리 전달받아 저장할 수 있다. 지상기준국들(1411, 1412, 1413) 각각은 자신의 위치를 다운링크 채널을 경유하여 수신국(1430)으로 미리 전달할 수 있다.
도 19는 도 17에 대응하는 수신국(1430)에서의 피드백과, 그에 따른 지상기준국들(1411, 1412, 1413) 각각의 응답 등 전반적인 피드백 과정을 나타낸 동작 흐름도이다. 도 19를 참조하면, 지상기준국들(1411, 1412, 1413) 각각이 고유신호를 전송한다(S1910). 이 때 고유신호는 중계국들(1421, 1422, 1423) 각각마다 할당된 주파수 대역을 이용하여 전송될 수 있다.
중계국들(1421, 1422, 1423) 각각은 수신된 고유신호들을 중첩하여 반송하고, 반송 과정에 의하여 수신국(1430)으로 중첩된 고유신호가 전달된다(S1920).
이후, 수신국(1430)은 중첩된 고유신호가 전달되는 다운링크 채널에 대한 특성값을 측정하고 계산한다(S1930). 이 때 특성값을 측정하는 과정은 중첩된 고유신호를 이용하여 실행될 수도 있고, 측위를 위한 고유신호 이외에 채널 특성을 측정하기 위한 별도의 파일럿 신호를 이용하여 실행될 수도 있다.
수신국(1430)은 업링크를 경유하여 채널 측정값을 피드백 할 수 있다(S1940). 이 때 수신국(1430)은 채널 특성이 불량하여 측위 과정이 실패한 경우, 실패했음을 알리는 별도의 메시지를 추가로 피드백할 수도 있다.
지상기준국들(1411, 1412, 1413) 각각은 피드백된 정보에 기초하여 송신 전력 레벨을 조정할 수 있다(S1950). 만일 측위 과정이 실패한 사실을 피드백 받은 경우, 지상기준국들(1411, 1412, 1413) 각각은 송신 전력 레벨을 높여 불량한 채널 특성을 극복하고자 시도할 수도 있다.
본 발명의 일 실시 예에 따른 지상기준국 기반의 측위 방법 또는 측위 정보 전송 방법은 다양한 컴퓨터 수단을 통하여 수행될 수 있는 프로그램 명령 형태로 구현되어 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체에 기록되는 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 컴퓨터 소프트웨어 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체(magnetic media), CD-ROM, DVD와 같은 광기록 매체(optical media), 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical media), 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 상기된 하드웨어 장치는 본 발명의 동작을 수행하기 위해 하나 이상의 소프트웨어 모듈로서 작동하도록 구성될 수 있으며, 그 역도 마찬가지이다.
이상과 같이 본 발명에서는 구체적인 구성 요소 등과 같은 특정 사항들과 한정된 실시예 및 도면에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상적인 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니 되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.
본 발명은 측위 시스템에 관한 것으로, 보다 상세하게는 지상기준국과 위성항공통신중계국을 활용하여, 수신국에서 자신의 위치를 계산하는 측위 시스템과, 그 측위 시스템 내에서의 측위 방법 및 그 장치에 관한 것으로 전 세계범위의 GPS 시스템에 종속되는 시스템이 아닌, 독자적이고 지역적인 시스템으로서도 활용 가능한 국가안보 및 상용, 재난 및 전투 상황시에 융통성 있고, 신속히 적 교란신호 위협에 영향을 적게 받는 측위 시스템 구축을 목표로 발명되었다.
종래의 GNSS기술을 이용한 GPS기술은 신호가 미약하여 산간지방에서 수신율이 저하되는 단점을 가지고 있으며, 악의적인 신호교란에 취약하여 GPS를 이용한 군장비의 치명적인 약점이 될 수 있었다.
본 발명은 종래의 전 세계적 서비스 능력을 갖춘 중궤도 위성을 기반한 측위 시스템에 종속되는 것이 아닌, 지상기준국과 위성항공 중계국을 활용하여 수신국에서 위치를 측정할 수 있는 독자적인 측위 시스템 구조 및 구현 기술을 이용한다.
본 발명은 악의적 신호교란에 취약한 종래 GNSS 시스템에 비해 악의적 신호교란 대응 능력을 향상 시킬 수 있으며, 국방분야 무기체계에 적용함으로써 GNSS의 의존 심화도를 낮추고, GNSS 신호교란 상황에서도 무기체계의 측위 능력을 제공할 수 있다.
본 발명은 민간분야, 해상 상선/어선의 위치식별, 항만/항공/교통관제, 시설물 관리 등 다양한 분야의 측위 시스템으로 사용될 수 있다. 또한 우주항공 통신 중계에 따른 저속 메시지를 수신국에 방송할 수 있어 재난방송시스템과 같이 운용될 수 있다. 수신국이 송신능력을 갖춘다면, 수신국은 저속메시지 통신을 통해 센서노드로서의 역할을 수행할 수도 있다. 이는 수신국과 지상기준국 간의 양방향 통신을 가능하게 함으로써 재난방송시스템 또는 비상 방송 시스템과 같이 운용될 수도 있다. 또한, 수신국이 피드백한 정보를 이용하여 지상기준국의 송신 전력 레벨을 조정할 수도 있으므로, 다양한 정보가 측위 관련 정보와 병행하여 송수신되는 하이브리드 데이터 통신 기법도 적용 가능하다.
본 발명의 측위 시스템은 하나의 지상기준국과 3개 이상의 위성항공중계국들을 이용하여 구현될 수 있다. 이 때, 지상기준국으로부터 지상기준국과 위성항공중계국들 각각의 위치 정보가 수신국으로 제공되므로, 수신국은 스스로의 위치를 계산하는 과정을 비교적 단순하게 구현할 수 있다.
또한, 본 발명의 다른 실시예에 따른 측위 시스템은 3개 이상의 지상 레퍼런스 노드(지상기준국)와 3개 이상의 위성항공중계국들을 이용하여 구현될 수 있다. 이 때에는 지상기준국과 위성항공중계국들 각각의 위치 정보가 수신국으로 반드시 제공되지 않더라도, 수신국이 스스로의 위치를 계산할 수 있다.
또한, 본 발명의 측위 시스템은 하나의 지상기준국과 3개 이상의 위성항공중계국들을 이용하는 경우와, 3개 이상의 지상기준국과 3개 이상의 위성항공중계국들을 이용하는 경우를 병행 이용하여, 수신국이 스스로 계산한 위성항공중계국들 각각의 위치 정보를 지상기준국으로부터 전송된 위치 정보와 비교하여 보완 또는 보정할 수도 있다.

Claims (39)

  1. 지상기준국으로부터 전송되어 적어도 3개 이상의 위성항공중계국들 각각을 경유하여 전달되는 기준신호를 수신하는 단계;
    상기 지상기준국의 위치와, 상기 위성항공중계국들 각각의 위치에 대한 정보를 획득하는 단계;
    상기 지상기준국의 위치와, 상기 위성항공중계국들 각각의 위치와, 상기 기준신호의 전달 경로에 따른 수신시간을 이용하여 상기 수신국의 위치를 계산하는 단계
    를 포함하는 지상기준국 기반의 측위 방법.
  2. 제1항에 있어서,
    상기 수신국의 위치를 계산하는 단계는
    상기 기준신호의 상기 전달 경로에 따른 수신시간의 차이와 상기 위성항공중계국들 각각의 위치를 이용하여 상기 위성항공중계국들 각각으로부터 상기 수신국까지의 거리의 차이를 계산하는 단계; 및
    상기 위성항공중계국들 각각으로부터 상기 수신국까지의 거리의 차이를 이용하여 상기 수신국의 위치를 결정하는 단계
    를 포함하는 지상기준국 기반의 측위 방법.
  3. 제2항에 있어서,
    상기 수신국의 위치를 결정하는 단계는,
    상기 위성항공중계국들 중 서로 다른 위성항공중계국들 각각으로부터의 거리의 차이가 일정한 점들의 집합인 쌍곡선을 둘 이상 지리 좌표 상에 생성하는 단계; 및
    상기 생성된 둘 이상의 쌍곡선의 교점을 이용하여 상기 수신국의 위치를 결정하는 단계
    를 포함하는 지상기준국 기반의 측위 방법.
  4. 제1항에 있어서,
    상기 지상기준국과 동기화된 시간 정보를 이용하여 상기 위성항공중계국들 각각에 대한 코드신호를 생성하는 단계
    를 더 포함하고,
    상기 수신국의 위치를 계산하는 단계는
    상기 위성항공중계국들 각각에 대한 코드신호의 생성 시간과, 상기 기준신호의 전달 경로 각각에 따른 수신시간의 차이에 기초하여 상기 위성항공중계국들 각각을 경유하는 전달 경로의 라운드 트립 지연 시간을 계산하는 단계;
    상기 라운드 트립 지연 시간과 상기 지상기준국의 위치와 상기 위성항공중계국들 각각의 위치를 이용하여 상기 위성항공중계국들 각각으로부터 상기 수신국까지의 거리를 계산하는 단계; 및
    상기 위성항공중계국들 각각으로부터 상기 수신국까지의 거리를 이용하여 상기 수신국의 위치를 결정하는 단계
    를 포함하는 지상기준국 기반의 측위 방법.
  5. 제4항에 있어서,
    상기 위성항공중계국들 각각으로부터 상기 수신국까지의 거리를 계산하는 단계는
    상기 지상기준국의 위치와 상기 위성항공중계국들 각각의 위치를 이용하여 상기 지상기준국으로부터 상기 위성항공중계국들 각각까지의 업링크 전달 지연 시간을 계산하는 단계; 및
    상기 위성항공중계국들 각각을 경유하는 전달 경로의 라운드 트립 시간으로부터 상기 업링크 전달 지연 시간을 차감하는 단계
    를 포함하는 지상기준국 기반의 측위 방법.
  6. 제1항에 있어서,
    상기 위치에 대한 정보를 획득하는 단계는
    상기 지상기준국으로부터 상기 위성항공중계국들 중 적어도 하나 이상을 경유하거나 별도의 유선 또는 무선 통신 네트워크를 이용하여 브로드캐스팅되는 상기 지상기준국의 위치와, 상기 위성항공중계국들 각각의 위치에 대한 정보를 수신하는 지상기준국 기반의 측위 방법.
  7. 제1항에 있어서,
    상기 위치에 대한 정보를 획득하는 단계는
    상기 위성항공중계국들 각각을 경유하여 전달되는 기준신호로부터 상기 위성항공중계국들 각각의 위치에 대한 정보를 추출하는 단계
    를 포함하는 지상기준국 기반의 측위 방법.
  8. 제1항에 있어서,
    상기 수신국이 주변 환경 정보를 업링크를 통하여 전송하는 단계
    를 더 포함하는 지상기준국 기반의 측위 방법.
  9. 제1항에 있어서,
    상기 수신국이 상기 기준신호가 수신되는 다운링크 채널에 대한 측정값을 업링크를 통하여 피드백하는 단계
    를 더 포함하는 지상기준국 기반의 측위 방법.
  10. 제1항에 있어서,
    상기 수신국이 상기 위성항공중계국들과의 통신 채널을 이용하여 제2 수신국과 통신하는 단계
    를 더 포함하는 지상기준국 기반의 측위 방법.
  11. 지상기준국이 적어도 3개 이상의 위성항공중계국들 각각의 자세를 제어하기 위하여 상기 위성항공중계국들 각각과 일정 주기마다 통신함으로써, 상기 위성항공중계국들 각각의 위치를 모니터하는 단계;
    상기 지상기준국은 상기 지상기준국의 위치와, 상기 적어도 3개 이상의 위성항공중계국들 각각의 위치에 대한 정보를 수신국으로 전달하는 단계; 및
    상기 지상기준국으로부터 상기 적어도 3개 이상의 위성항공중계국들 각각을 경유하여 수신국으로 전달되는 기준신호를 전송하는 단계
    를 포함하는 지상기준국 기반의 측위 정보를 전송하는 방법.
  12. 제11항에 있어서,
    상기 위치에 대한 정보를 상기 수신국으로 전달하는 단계는
    상기 위치에 대한 정보를 상기 지상기준국으로부터 상기 위성항공중계국들 중 적어도 하나 이상을 경유하거나 별도의 유선 또는 무선 통신 네트워크를 이용하여 상기 기준신호와는 다른 통신 채널을 경유하여 브로드캐스트하는 단계
    를 포함하는 지상기준국 기반의 측위 정보를 전송하는 방법.
  13. 제11항에 있어서,
    상기 위치에 대한 정보를 상기 수신국으로 전달하는 단계는
    상기 기준신호를 전송하는 단계가 수행되는 동안 상기 적어도 3개 이상의 위성항공중계국들 각각의 위치에 대한 정보를 상기 적어도 3개 이상의 위성항공중계국들 중 위치에 대한 정보 각각에 대응하는 위성항공중계국을 경유하여 상기 수신국으로 전달하는 단계
    를 포함하는 지상기준국 기반의 측위 정보를 전송하는 방법
  14. 제11항에 있어서,
    상기 기준신호를 전송하는 단계는
    상기 적어도 3개 이상의 위성항공중계국들 각각에 대하여 서로 다른 자원을 할당하는 단계; 및
    상기 할당된 자원을 이용하여 상기 적어도 3개 이상의 위성항공중계국들 각각을 경유하는 기준신호를 전송하는 단계
    를 포함하는 지상기준국 기반의 측위 정보를 전송하는 방법.
  15. 복수의 지상기준국들로부터 전송되어 복수의 위성항공 중계국들에 의하여 전달되는 기준신호를 수신하는 단계;
    상기 수신된 기준신호의 수신시간차를 이용하여 상기 복수의 위성항공 중계국들 각각의 위치를 계산하는 단계; 및
    상기 계산된 상기 복수의 위성항공 중계국들 각각의 위치와 상기 수신된 기준신호의 도달시간을 이용하여 수신국의 위치를 계산하는 단계
    를 포함하는 지상기준국 기반의 측위 방법.
  16. 제15항에 있어서,
    상기 수신시간차는 상기 복수의 지상기준국들 각각과 상기 복수의 위성항공 중계국들 각각 간의 거리의 차이에 대응하는 지상기준국 기반의 측위 방법.
  17. 제15항에 있어서,
    상기 기준신호는 상기 복수의 지상기준국들 각각의 고유식별정보를 포함하는 지상기준국 기반의 측위 방법.
  18. 제17항에 있어서,
    상기 복수의 지상기준국들 각각의 고유식별정보 및 위치정보를 미리 저장하는 단계
    를 더 포함하고,
    상기 복수의 위성항공 중계국들 각각의 위치를 계산하는 단계는
    상기 기준신호로부터 상기 복수의 지상기준국들 각각의 고유식별정보를 추출하여 상기 복수의 지상기준국들 각각의 위치정보를 획득하는 단계; 및
    상기 획득된 복수의 지상기준국들 각각의 위치정보 및 상기 수신된 기준신호의 수신시간차를 이용하여 상기 복수의 위성항공 중계국들 각각의 위치를 계산하는 단계
    를 포함하는 지상기준국 기반의 측위 방법.
  19. 제15항에 있어서,
    상기 복수의 위성항공 중계국들 각각으로부터 전달되는 기준신호는 상기 복수의 지상기준국들로부터 전송되는 고유식별정보가 중첩되어 전송되는 지상기준국 기반의 측위 방법.
  20. 제15항에 있어서,
    상기 기준신호는 상기 복수의 기준국들로부터 동기화되어 상기 복수의 위성항공 중계국들로 전송되는 지상기준국 기반의 측위 방법.
  21. 제15항에 있어서,
    상기 수신국이 주변 환경 정보를 업링크를 통하여 전송하는 단계
    를 더 포함하는 지상기준국 기반의 측위 방법.
  22. 제15항에 있어서,
    상기 수신국이 상기 기준신호가 수신되는 다운링크 채널에 대한 측정값을 업링크를 통하여 피드백하는 단계
    를 더 포함하는 지상기준국 기반의 측위 방법.
  23. 제15항에 있어서,
    상기 수신국이 상기 위성항공 중계국들과의 통신 채널을 이용하여 제2 수신국과 통신하는 단계
    를 더 포함하는 지상기준국 기반의 측위 방법.
  24. 제1항 내지 제23항 중 어느 한 항의 방법을 실행하기 위한 프로그램이 기록되어 있는 것을 특징으로 하는 컴퓨터에서 판독 가능한 기록 매체.
  25. 지상기준국과 수신국을 포함하는 측위 시스템에 있어서,
    적어도 3개 이상의 위성항공중계국들 각각을 경유하여 상기 수신국을 향하여 기준신호를 전송하고, 위치가 알려진 지상기준국; 및
    상기 기준신호를 수신하고, 상기 기준신호의 수신시간을 이용하여 현재 위치를 계산하는 수신국
    을 포함하고,
    상기 지상기준국은 상기 지상기준국과 상기 적어도 3개 이상의 위성항공중계국들 각각의 위치에 대한 정보를 상기 수신국과 공유하고,
    상기 수신국은 상기 공유된 위치에 대한 정보와 상기 기준신호의 수신시간을 이용하여 상기 현재 위치를 계산하는 지상기준국 기반의 측위 시스템.
  26. 제25항에 있어서,
    상기 지상기준국은
    상기 적어도 3개 이상의 위성항공중계국들 각각과 일정 주기마다 통신함으로써, 상기 위성항공중계국들 각각의 위치를 모니터하는 지상기준국 기반의 측위 시스템.
  27. 제25항에 있어서,
    상기 수신국은 상기 기준신호가 전달되는 채널의 상태 정보를 피드백하고,
    상기 지상기준국은 상기 피드백된 상기 채널의 상태 정보에 응답하여 전송 신호의 전력 레벨을 조정하는 지상기준국 기반의 측위 시스템.
  28. 제25항에 있어서,
    상기 지상기준국은
    상기 위치에 대한 정보를 상기 위성항공중계국들 중 적어도 하나 이상을 경유하거나 별도의 유선 또는 무선 통신 네트워크를 이용하여 상기 기준신호와는 다른 통신 채널을 경유하여 브로드캐스트함으로써, 상기 수신국과 공유하는 지상기준국 기반의 측위 시스템.
  29. 제25항에 있어서,
    상기 지상기준국은
    상기 적어도 3개 이상의 위성항공중계국들 각각의 위치에 대한 정보를 상기 위치에 대한 정보 각각에 대응하는 위성항공중계국을 경유하여 전달되는 기준신호에 포함된 상태로 전송함으로써 상기 수신국과 공유하는 지상기준국 기반의 측위 시스템.
  30. 지상기준국으로부터 전송되어 적어도 3개 이상의 위성항공중계국들 각각을 경유하여 전달되는 기준신호를 수신하는 수신부;
    상기 지상기준국의 위치와, 상기 위성항공중계국들 각각의 위치에 대한 정보를 획득하는 위치 획득부; 및
    상기 지상기준국의 위치와, 상기 위성항공중계국들 각각의 위치와, 상기 기준신호의 전달 경로에 따른 수신시간을 이용하여 상기 수신국의 위치를 계산하는 계산부
    를 포함하는 지상기준국 기반의 측위 장치.
  31. 제30항에 있어서,
    상기 기준신호의 전달 경로에 따른 수신시간의 차이는 상기 위성항공중계국들 각각으로부터 상기 수신국까지의 거리의 차이를 반영하는 지상기준국 기반의 측위 장치.
  32. 제30항에 있어서,
    상기 지상기준국과 동기화된 시간 정보를 공유하는 동기화부
    를 더 포함하고,
    상기 기준신호의 전달 경로에 따른 수신시간은 상기 위성항공중계국들 각각으로부터 상기 수신국까지의 거리를 반영하는 지상기준국 기반의 측위 장치.
  33. 제30항에 있어서,
    상기 수신국의 주변 환경 정보 또는 상기 수신국으로 상기 기준신호가 수신되는 다운링크 채널에 대한 측정값 중 적어도 하나 이상을 이용하여 전송 메시지를 생성하는 메시지 생성부; 및
    상기 생성된 전송 메시지를 업링크를 통하여 전송하는 송신부
    를 더 포함하는 지상기준국 기반의 측위 장치.
  34. 각각의 고유신호를 동기화하여 전송하고, 위치가 알려진 복수의 지상기준국들;
    상기 복수의 지상기준국들 각각으로부터 전송된 고유신호를 중첩하여 전달하는 복수의 위성항공 중계국들; 및
    상기 복수의 위성항공 중계국들로부터 중첩하여 전달된 고유신호의 수신시간차를 이용하여 상기 복수의 위성항공 중계국들 각각의 위치를 식별하는 수신국
    을 포함하고,
    상기 수신국은 상기 식별된 상기 복수의 위성항공 중계국들 각각의 위치를 이용하여 상기 수신국의 위치를 계산하는 지상기준국 기반의 측위 시스템.
  35. 제34항에 있어서,
    상기 복수의 지상기준국들 각각은 상기 복수의 위성항공 중계국들 각각에 대하여 서로 다른 주파수 대역을 할당하고, 상기 동기화된 고유신호를 상기 할당된 주파수 대역을 이용하여 전송하는 지상기준국 기반의 측위 시스템.
  36. 제34항에 있어서,
    상기 수신국은 상기 고유신호가 전달되는 채널의 상태 정보를 피드백하고,
    상기 복수의 기준국들 각각은 상기 피드백된 상기 채널의 상태 정보에 응답하여 전송 신호의 전력 레벨을 조정하는 지상기준국 기반의 측위 시스템.
  37. 복수의 지상기준국들으로부터 전송되어 복수의 위성항공 중계국들에 의하여 전달되는 기준신호를 수신하는 수신부;
    상기 수신된 기준신호의 수신시간차를 이용하여 상기 복수의 위성항공 중계국들 각각의 위치를 계산하는 제1계산부; 및
    상기 계산된 상기 복수의 위성항공 중계국들 각각의 위치와 상기 수신된 기준신호의 도달시간을 이용하여 수신국의 위치를 계산하는 제2계산부
    를 포함하는 지상기준국 기반의 측위 장치.
  38. 제37항에 있어서,
    상기 수신시간차는 상기 복수의 지상기준국들 각각과 상기 복수의 위성항공 중계국들 각각 간의 거리의 차이에 대응하는 지상기준국 기반의 측위 장치.
  39. 제37항에 있어서,
    상기 수신국의 주변 환경 정보를 생성하는 메시지 생성부; 및
    상기 생성된 주변 환경 정보를 업링크를 통하여 전송하는 송신부
    를 더 포함하는 지상기준국 기반의 측위 장치.
PCT/KR2012/011480 2011-12-28 2012-12-26 지상 조정통제국 기반 우주항공노드 통신중계 측위 시스템 WO2013100574A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/318,034 US20150002334A1 (en) 2011-12-28 2014-06-27 Positioning system and method based on channel from ground control center to aerospace relay node

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020110144427A KR101219467B1 (ko) 2011-12-28 2011-12-28 지상기준국 기반 우주항공 노드중계 측위 시스템
KR10-2011-0144427 2011-12-28
KR10-2012-0084477 2012-08-01
KR20120084477A KR101490838B1 (ko) 2012-08-01 2012-08-01 지상 조정통제국 기반 우주항공노드 통신중계 측위 시스템

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/318,034 Continuation US20150002334A1 (en) 2011-12-28 2014-06-27 Positioning system and method based on channel from ground control center to aerospace relay node

Publications (1)

Publication Number Publication Date
WO2013100574A1 true WO2013100574A1 (ko) 2013-07-04

Family

ID=48697933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/011480 WO2013100574A1 (ko) 2011-12-28 2012-12-26 지상 조정통제국 기반 우주항공노드 통신중계 측위 시스템

Country Status (2)

Country Link
US (1) US20150002334A1 (ko)
WO (1) WO2013100574A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015320A1 (zh) * 2017-07-20 2019-01-24 中兴通讯股份有限公司 事件处理方法和装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948566B1 (en) * 2015-01-23 2021-03-16 Oceanit Laboratories, Inc. GPS-alternative method to perform asynchronous positioning of networked nodes
KR101839964B1 (ko) * 2016-04-22 2018-03-20 아주대학교산학협력단 시분할 다중접속 기반의 측위 방법, 측위 시스템, 및 이에 이용되는 프레임의 구조
WO2018172485A1 (en) * 2017-03-24 2018-09-27 Sony Corporation Terminal devices, infrastructure equipment and methods
US11269079B2 (en) 2017-05-05 2022-03-08 Miguel Angel Fernandez Gomez De Aranda Method for authenticating the position supplied by GNSS systems which is also valid in situations in which the receiver is starting up cold
CN114144981B (zh) * 2019-08-16 2023-08-04 华为技术有限公司 配置侧行链路的传输资源的方法和通信装置
US20230067774A1 (en) * 2019-09-23 2023-03-02 Kay Nishimoto Transmission receiver system apparatus utilizing relayed, delayed, or virtual timing marker transmissions of gps, gps, alternative, gnss, pnt, electronic, optic, acoustic, or similar signals for positioning, navigation, timing, ranging, or beacon purposes or applications
CN111060940A (zh) * 2019-12-09 2020-04-24 辰芯科技有限公司 基于卫星通信网络的卫星定位方法、装置、终端及介质
US11681052B2 (en) 2020-01-07 2023-06-20 All. Space Networks Limited Non-cooperative position, navigation, and timing extraction from VSAT communications signals using multi-beam phased array antenna
CN112953617B (zh) * 2020-12-24 2022-11-18 中国特种飞行器研究所 一种空中、地面应急通信系统及平流层飞艇应急通信系统
IL279913A (en) * 2020-12-31 2022-07-01 Elta Systems Ltd System, method and computer software product for positioning, utilizing inputs from geostationary communication satellites
CN113644956B (zh) * 2021-07-13 2022-07-29 中国电子科技集团公司电子科学研究院 一种面向卫星互联网络的天基信息中继数据分发方法
CN115102988B (zh) * 2022-06-17 2023-10-03 国能远海航运有限公司 一种船舶定位与报文收发系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040087071A (ko) * 2003-04-04 2004-10-13 (주)씨앤드에스 마이크로 웨이브 방송위성과 지상 중계기를 이용한 단말기 위치 추적 방법및 단말기 위치 추적만을 위한 더미 파일럿 중계기
JP2004309364A (ja) * 2003-04-09 2004-11-04 Hitachi Ltd 測位システム
US20090109090A1 (en) * 2007-10-29 2009-04-30 Ulrich Vollath Position determination with reference data outage
US20090322615A1 (en) * 2006-08-30 2009-12-31 Stefan Schwarzer Method and device for travel time-based location identification with the aid of a triggered or self-triggering reference signal

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3384891A (en) * 1965-02-11 1968-05-21 Gen Electric Method and system for long distance navigation and communication
DE3426851C1 (de) * 1984-07-20 1985-10-17 Deutsche Forschungs- und Versuchsanstalt für Luft- und Raumfahrt e.V., 5300 Bonn Satelliten-Navigationssystem
US4987420A (en) * 1989-01-11 1991-01-22 Mitsubishi Denki Kabushiki Kaisha Method of determining a position using satellites
US5160935A (en) * 1990-11-28 1992-11-03 Mitsubishi Denki Kabushiki Kaisha Positioning method utilizing artificial satellites in geosynchronous altitude orbits
GB2339100B (en) * 1995-10-24 2000-05-31 Inmarsat Ltd Satellite radiodetermination
US20060227043A1 (en) * 2005-04-07 2006-10-12 Fm Bay Passive geostationary satellite position determination
EP1739450A1 (en) * 2005-06-30 2007-01-03 SES Astra S.A. Method and apparatus for determining the location of a stationary satellite receiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040087071A (ko) * 2003-04-04 2004-10-13 (주)씨앤드에스 마이크로 웨이브 방송위성과 지상 중계기를 이용한 단말기 위치 추적 방법및 단말기 위치 추적만을 위한 더미 파일럿 중계기
JP2004309364A (ja) * 2003-04-09 2004-11-04 Hitachi Ltd 測位システム
US20090322615A1 (en) * 2006-08-30 2009-12-31 Stefan Schwarzer Method and device for travel time-based location identification with the aid of a triggered or self-triggering reference signal
US20090109090A1 (en) * 2007-10-29 2009-04-30 Ulrich Vollath Position determination with reference data outage

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019015320A1 (zh) * 2017-07-20 2019-01-24 中兴通讯股份有限公司 事件处理方法和装置

Also Published As

Publication number Publication date
US20150002334A1 (en) 2015-01-01

Similar Documents

Publication Publication Date Title
WO2013100574A1 (ko) 지상 조정통제국 기반 우주항공노드 통신중계 측위 시스템
US20230262466A1 (en) Interferometry-based satellite location accuracy
WO2017183920A1 (ko) 차량용 제어장치
US20170102466A1 (en) Systems and methods for space-based geolocation of vessels using maritime signals transmitted therefrom
RU2608763C2 (ru) Усовершенствованные синхронизация по времени и передача значений времени для группировок спутников посредством определения расстояния между спутниками и использования источника точного времени
EP2523019B1 (en) Global positioning system signal reception with increased resistance to interference
CN105026951A (zh) 获取信道地理位置
CA2372843C (en) Improvements in or relating to object location
JP2014238388A (ja) Ads−b認証およびナビゲーションのために到来角測定を使用するデバイス、システム、および方法
KR20130024300A (ko) eLORAN 수신기, 및 eLORAN 수신기의 측위 방법
WO2020251091A1 (ko) 자율주행시스템에서 다른 자율주행차량을 이용한 원격주행 방법
US6888498B2 (en) Method and system for compensating satellite signals
WO2012157806A1 (ko) 다중 위성 항법 상태를 감시하기 위한 통합 감시 보강 시스템
WO2014109472A1 (ko) 위치 확인 시스템 및 방법
JP3545640B2 (ja) ローカルエリア統合測位システム
KR101490838B1 (ko) 지상 조정통제국 기반 우주항공노드 통신중계 측위 시스템
WO2022080748A1 (ko) Gps 위치 측정 시스템 및 그 방법
WO2020096198A1 (ko) 해상 통신 서비스 제공 방법 및 해상 통신 서비스 제공 장치
KR101219467B1 (ko) 지상기준국 기반 우주항공 노드중계 측위 시스템
KR101239015B1 (ko) 전파측위용 지상 고정형 송신기의 시각 동기 방법 및 간섭 제거 방법
CN112114336B (zh) 一种卫星导航欺骗信号防御系统及方法
KR102041470B1 (ko) eLoran 기반의 시각동기 장치 및 방법
KR20150103574A (ko) 장거리 음향표적 위치추정 장치 및 방법
KR101486329B1 (ko) 지상기반 위성항법 보강 시스템의 평가 장치 및 그 방법
Kelsey et al. Multilateration Method for Locating GNSS Spoofing Attacks Affecting Substation Clocks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861245

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861245

Country of ref document: EP

Kind code of ref document: A1