WO2013100451A1 - Cmp slurry composition and polishing method using same - Google Patents

Cmp slurry composition and polishing method using same Download PDF

Info

Publication number
WO2013100451A1
WO2013100451A1 PCT/KR2012/010896 KR2012010896W WO2013100451A1 WO 2013100451 A1 WO2013100451 A1 WO 2013100451A1 KR 2012010896 W KR2012010896 W KR 2012010896W WO 2013100451 A1 WO2013100451 A1 WO 2013100451A1
Authority
WO
WIPO (PCT)
Prior art keywords
slurry composition
cmp slurry
particles
polishing
metal oxide
Prior art date
Application number
PCT/KR2012/010896
Other languages
French (fr)
Korean (ko)
Inventor
노현수
김용국
정영철
강동헌
김동진
김태영
홍창기
Original Assignee
제일모직 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직 주식회사 filed Critical 제일모직 주식회사
Publication of WO2013100451A1 publication Critical patent/WO2013100451A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Definitions

  • the present invention relates to a CMP slurry composition and a polishing method using the same, and more particularly, to a CMP slurry composition comprising a metal oxide particle having a positive zeta value, an zwitterionic compound, and a cationic surfactant and a polishing method using the same. It is about.
  • the CMP slurry containing ceria particles is deposited on the gate generation site with a silicon nitride (Si 3 N 4 ), a trench isolation region, and a silicon nitride stacked in a thickness of 300 to 500 ⁇ with an STI pattern mask. It has been in the spotlight as a main material for controlling the polishing rate selectivity between the (deposiotoned) silicon oxide film (SiO 2 ).
  • a nitride mask is applied to a device generation site, and an oxide filled in a trench for device isolation may be over-deposited up to 7,000 ⁇ over the nitride film for complete filling.
  • STI CMP includes a primary polishing to remove a step between an overlaid oxide film (convex portion) on a nitride film and an oxide film (concave portion) on a trench, a secondary polishing to remove oxide on the nitride film, and a nitride film.
  • a primary polishing to remove a step between an overlaid oxide film (convex portion) on a nitride film and an oxide film (concave portion) on a trench
  • a secondary polishing to remove oxide on the nitride film
  • three steps of overpolishing are performed.
  • the primary polishing removes the oxide step quickly in consideration of productivity, and the secondary polishing is performed by polishing only 500 ⁇ 1000 ⁇ above the nitride layer in order to prevent the nitride layer from being polished and the oxide layer of the trench polished to a height below the nitride layer. Make a surface.
  • the tertiary polishing is overpolishing so that the nitride film is polished to about 100 kPa or less so that the oxide film on the nitride film is completely removed, and the oxide film loss (dishing) of the trench should be minimized.
  • Ceria abrasives can exhibit twice as much polishing speed as silica abrasives requiring concentrations of 10% or more, even at low concentrations of less than 1% due to their strong reactivity with the oxide film. In recent years, it has been developed in the direction of reducing CMP defects such as the diameter of the particles is reduced to 100nm.
  • the ratio of the polishing rate to the oxide film of the trench upper layer to the oxide film of the trench layer can be maintained at 10 or more while maintaining the polishing rate for the oxide film existing in the nitride film upper layer at 10 or more, and at the same time dishing on the oxide film of the trench upper layer.
  • An object of the present invention is to maintain the polishing rate of the oxide film present in the upper nitride layer at 3000 Pa or more, while maintaining the ratio of the polishing rate to the oxide film of the trench upper layer to the oxide film at 10 or more and at the same time dishing on the oxide film of the upper trench layer. It is to provide a CMP slurry composition that has minimized and minimized defect defects on the entire abrasive layer.
  • Still another object of the present invention is to provide a polishing method using the CMP slurry composition.
  • the CMP slurry composition of the present invention comprises metal oxide particles having a positive zeta potential, zwitterionic compounds, cationic surfactants, and ultrapure water.
  • the metal oxide particles may be prepared by calcination, flame oxidation, or thermal synthesis.
  • the metal oxide particles having the positive zeta potential are composed of ceria (CeO 2 ) particles, silica (SiO 2 ) particles, alumina (Al 2 O 3 ) particles, titania (TiO 2 ) particles, and zirconia (ZrO 2 ) particles. It may be at least one selected from the group.
  • the metal oxide particles having the positive zeta potential have an average particle diameter of 70 to 150 nm, and the specific surface area may be 10 to 50 m 2 / g.
  • the metal oxide particles having the positive zeta potential may be ceria particles.
  • the zwitterionic compounds are alanine, phenylalanine, proline, glycine, histidine, histidine, lysine, arginine, threonine, aspartic acid. acid, tryptophan, glutamine, glutamine, betaine, cocomidopropylbetaine, cocomidopropylbetaine, and amino acid including at least one selected from the group consisting of laurylpropylbetaine Can be.
  • the cationic surfactants are triethylenetetramine, N, N-diethylethanolamine, N, N-diisopropylamine, N, N- It may be at least one selected from the group consisting of dietary butyl aniline (N, N-ditertiary butylaniline), and Lupasol (Lupasol).
  • the cationic surfactant may have a structural formula of Formula 1 below.
  • EO is ethylene oxide
  • PO propylene oxide
  • Q is hydrocarbon
  • a, b, c, and d are each independently 0 to 50, e, f, g, and h.
  • x is 0 to 15
  • the weight average molecular weight of the cationic surfactant of Formula 1 may be 1,000 g / mol to 100,000 g / mol.
  • the CMP slurry composition may include 0.01 to 1% by weight of metal oxide particles, 0.001 to 1% by weight of zwitterionic compounds, 0.001 to 1% by weight of cationic surfactant, and ultrapure water as the balance.
  • the polishing method of the present invention includes polishing a semiconductor wafer using the CMP slurry composition.
  • the present invention maintains the polishing rate of the oxide film in the upper nitride layer at 3000 kPa or more, while maintaining a ratio of the polishing rate of the oxide film in the trench upper layer to the oxide film at 10 or more, while minimizing dishing on the oxide film in the trench upper layer.
  • a CMP slurry composition is provided that minimizes the dug defects on the entire abrasive layer.
  • FIG. 1 is a schematic process diagram of an STI process, which is one embodiment to which the composition of the present invention is applied.
  • FIG. 2 is a profile measured by AFM (Atomic Force Microscope) of the defects formed on the layer to be polished after the secondary polishing.
  • AFM Anamic Force Microscope
  • the CMP slurry composition of the present invention comprises metal oxide particles having a positive zeta potential, zwitterionic compounds, cationic surfactants, and ultrapure water.
  • the CMP slurry composition of the present invention comprises metal oxide particles having a positive zeta potential.
  • metal oxide particles having the positive zeta potential those produced by calcination, flame oxidation, or thermal synthesis are preferably used.
  • Metal oxide particles having a positive zeta potential include ceria (CeO 2 ) particles, silica (SiO 2 ) particles, alumina (Al 2 O 3 ) particles, titania (TiO 2 ) particles, and zirconia (ZrO 2 ) particles. Preference is given to using one or more selected from the group consisting of.
  • the metal oxide particles having the positive zeta potential have an average particle diameter of 70 to 150 nm and a specific surface area of 10 to 50 m 2 / g in order to secure the polishing rate for the oxide film and to suppress the polishing rate for the nitride film. It is preferable.
  • the metal oxide particles having the positive zeta potential may be ceria particles, and in the case of using ceria particles prepared by hydrothermal synthesis, a dispersant may not be used. The zeta potential is maintained, so the oxide film polishing effect is excellent.
  • the metal oxide particle which has the said zeta potential of the said amount in 0.01-1 weight%, and it is more preferable to use it in 0.1-0.7 weight%.
  • the CMP slurry composition of the present invention contains a zwitterionic compound to block polishing of the nitride film.
  • the zwitterionic compounds are alanine, phenylalanine, proline, glycine, histidine, histidine, lysine, arginine, threonine, aspartic acid. acid), tryptophan, tryptophan, glutamine, glutamine, betaine, beta, cocomididopropylbetaine, and amino acid including one or more selected from the group consisting of laurylpropylbetaine. .
  • the zwitterionic compound is preferably used in an amount of 0.001 to 1% by weight relative to the total amount of the CMP slurry composition in order to secure the polishing rate for the oxide film, to suppress the polishing rate for the nitride film, and to minimize the defects on the entire polished layer. More preferably, 0.005 to 0.7% by weight, and most preferably 0.01 to 0.4% by weight.
  • the CMP slurry composition of the present invention includes a cationic surfactant to adjust the polishing rate for the oxide film to improve the polishing profile, to minimize dishing on the oxide layer in the trench top layer and to minimize dug defects on the entire layer to be polished.
  • the cationic surfactants are triethylenetetramine, N, N-diethylethanolamine, N, N-diisopropylamine, N, N- Dibutyl butylaniline (N, N-ditertiary butylaniline), and may include one or more selected from the group consisting of Lupasol (Lupasol), preferably may include a compound having a structural formula of formula (1).
  • EO is ethylene oxide
  • PO propylene oxide
  • Q is hydrocarbon
  • a, b, c, and d are each independently 0 to 50, e, f, g, and h.
  • x is 0 to 15
  • the weight average molecular weight of the cationic surfactant of Formula 1 is preferably 1,000 g / mol to 100,000 g / mol, and the viscosity is preferably 0.9 to 2.0 cP.
  • the cationic surfactant simultaneously with the zwitterionic compound, it is possible to minimize dishing on the oxide layer of the trench upper layer and to minimize dug defects on the entire layer to be polished.
  • the cationic surfactant adjusts the polishing rate for the oxide film to improve the polishing profile, to suppress the polishing rate for the nitride film, to minimize dishing on the oxide layer of the trench upper layer, and to minimize the pit defects on the entire polished layer. It is preferable to use it at -1 weight%, It is more preferable to use it at 0.005 to 0.8 weight%, It is most preferable to use it at 0.01 to 0.7 weight%.
  • the polishing method of the present invention may include polishing a semiconductor wafer using the CMP slurry composition.
  • the process may be an interlayer dielectric (ILD) process or a shallow trench isolation (STI) process.
  • ILD interlayer dielectric
  • STI shallow trench isolation
  • the semiconductor wafer to be polished preferably includes the patterned oxide film.
  • y 1
  • (a + b + c + d) / (e + f + g + h) is 1.5 and the cationic interface has a weight average molecular weight of 10,000 g / mol.
  • Aqueous dispersion with phosphoric polyacrylic acid and 0.5 wt of ceria having a zeta potential of 40 mV were mixed with ultrapure water to prepare a sample.
  • One-part slurry was produced by adjusting pH to 4.5. According to the polishing conditions, the polishing performance of the pattern wafer having the pattern density of 50% and the pitch size of 100 ⁇ m was evaluated, and the results are described as shown in Table 1.
  • a sample was prepared in the same manner as in Example 1 except that it was used, and the polishing performance was evaluated.
  • y 1
  • (a + b + c + d) / (e + f + g + h) is 1.5 and the cationic interface has a weight average molecular weight of 10,000 g / mol.
  • 0.5 wt% of the active agent (a) and 100 nm (measured by Horiba LA710) with a weight average molecular weight of 10,000 g / mol of polyacrylic acid were dispersed in water and 0.5 wt% of ceria having a zeta potential of -30 mV was mixed with ultrapure water.
  • One-part slurry was produced by adjusting pH to 4.5. According to the polishing conditions, the polishing performance of the pattern wafer having the pattern density of 50% and the pitch size of 100 ⁇ m was evaluated, and the results are described as shown in Table 1.
  • a sample was prepared in the same manner as in Comparative Example 1 except that ceria having an average particle diameter of 100 nm (measured by Horiba LA710) and a zeta potential of +40 mV was used instead of the ceria of Comparative Example 1, and the polishing performance was evaluated. Described.
  • a sample was prepared in the same manner as in Comparative Example 4 except that glycine (d) was used instead of L-aspartic acid as the zwitterionic compound, and the polishing performance thereof was shown in Table 1 below. .
  • a sample was prepared in the same manner as in Comparative Example 4 except for using Lysine (e) instead of L-Aspartic acid as the zwitterionic compound, and the polishing performance was shown in Table 1 below. .
  • Dig defect It is visually identified on the oxide film and nitride film. It is observed as visual stain. When AFM is measured, the spot is measured with a step of 400 ⁇ ⁇ 800 ⁇ compared to the surrounding area. Determination of the deficiency was determined visually or absent.
  • the patterned wafer was polished under the following polishing conditions using the CMP slurry composition prepared in the above Examples and Comparative Examples.
  • the polishing rate was calculated by measuring the change in thickness of the wafer removed by polishing, and measured using an Optiprobe (ThermalWave, Optiprobe2600) equipment.
  • Patterned Wafer 200 mm Massachusetts Institute of Technology (MIT) pattern wafers first polished with a commercial slurry (Cheil Industries SP7500).
  • Polishing pad IC1010 k-groove (Rodel)
  • Polishing time P1 60 sec, P2 30 sec, P3 40 sec
  • the CMP slurry composition of the present invention maintains the polishing rate of the oxide film in the upper layer of the nitride layer to 3000 or more, while maintaining the ratio of the polishing rate of the trench layer to the oxide film of the nitride layer to 10 or more. At the same time, it can be seen that the dug defects on the entire abrasive layer are minimized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The present invention relates to a CMP slurry composition and to a polishing method using same, wherein the CMP slurry composition of the present invention comprises: metallic oxide particles having a positive zeta-potential; a zwitterionic compound; a cationic surfactant; and ultrapure water.

Description

CMP 슬러리 조성물 및 이를 이용한 연마 방법CMP slurry composition and polishing method using the same
본 발명은 CMP 슬러리 조성물 및 이를 이용한 연마 방법에 관한 것으로서, 더욱 구체적으로는 양의 제타값을 갖는 금속 산화물 입자, 양쪽 이온성 화합물, 및 양이온성 계면활성제를 포함하는 CMP 슬러리 조성물 및 이를 이용한 연마 방법에 관한 것이다.The present invention relates to a CMP slurry composition and a polishing method using the same, and more particularly, to a CMP slurry composition comprising a metal oxide particle having a positive zeta value, an zwitterionic compound, and a cationic surfactant and a polishing method using the same. It is about.
최근의 초대규모 집적회로(ULSI)에서 미세 가공 기술이 개발되고 있으며 20 나노의 디자인 룰(rule)이 실현되고 있다. CMP 기술은 반도체 장치의 제조 공정에 있어서, PR(Photoresist)이 도포되어 노광이 진행되는 층을 평탄화하여 노광에 의한 패턴의 정밀도를 향상함으로써 최종적으로는 수율을 안정화시킬 수 있는 중요한 기술로 각광받고 있다. 특히 소자 분리의 STI(Shallow trench isolation) 공정은 가장 정밀한 디자인이 적용되는 반도체 가공의 최초 단계이기 때문에 STI 공정 후의 평탄화는 소자 형성의 핵심이라고 할 수 있다.Recently, microfabrication techniques have been developed in ultra large scale integrated circuits (ULSI), and design rules of 20 nanometers have been realized. In the manufacturing process of semiconductor devices, CMP technology has been spotlighted as an important technology that can stabilize the yield by finally flattening the layer on which exposure is applied by applying PR (Photoresist) to improve the precision of the pattern by exposure. . In particular, since the shallow trench isolation (STI) process is the first step in semiconductor processing with the most precise design, planarization after the STI process is the key to device formation.
그 중에서 세리아 입자를 포함하는 CMP 슬러리는 게이트(GATE) 생성 자리에 STI 패턴 마스크로 300~500Å의 두께로 적층되는 질화 실리콘 (Si3N4), 분리(Trench isolation) 영역, 및 질화 실리콘 위로 적층(deposioton)된 실리콘 산화막(SiO2) 간의 연마 속도 선택성을 조절하는 주요 소재로 각광받고 있다.Among them, the CMP slurry containing ceria particles is deposited on the gate generation site with a silicon nitride (Si 3 N 4 ), a trench isolation region, and a silicon nitride stacked in a thickness of 300 to 500 로 with an STI pattern mask. It has been in the spotlight as a main material for controlling the polishing rate selectivity between the (deposiotoned) silicon oxide film (SiO 2 ).
STI 공정에서 소자 생성 자리에 질화막 마스크가 도포되고 소자 분리를 위하여 트렌치(Trench)에 채워지는 산화물은 완전한 충진을 위하여 질화막 위로 7,000Å까지 과적층(Over deposition)되기도 한다.In the STI process, a nitride mask is applied to a device generation site, and an oxide filled in a trench for device isolation may be over-deposited up to 7,000Å over the nitride film for complete filling.
이때 질화막 위로 적층된 산화막과 2,000~2,500Å의 트렌치에 과적층되는 산화막 간에는 2,000~3,000Å의 단차가 발생한다. 도 1을 참고하면, STI CMP는 질화막 위의 과적층 산화막(볼록부)과 트렌치 상의 산화막(오목부)간의 단차를 제거하는 1차 연마, 질화막 상의 산화물을 제거하는 2차 연마, 및 질화막 위의 잔류 산화막을 완전 제거하기 위하여 과연마(overpolishing)하는 3차 연마의 세 단계로 이루어지고 있다.At this time, a step of 2,000 to 3,000 kV occurs between the oxide film stacked on the nitride film and the oxide film overlaid on the trench of 2,000 to 2,500 kV. Referring to FIG. 1, STI CMP includes a primary polishing to remove a step between an overlaid oxide film (convex portion) on a nitride film and an oxide film (concave portion) on a trench, a secondary polishing to remove oxide on the nitride film, and a nitride film. In order to completely remove the residual oxide film, three steps of overpolishing are performed.
1차 연마는 생산성을 고려하여 빠르게 산화막 단차를 제거하고, 2차 연마는 질화막이 연마되지 않고 트렌치의 산화막이 질화막 층 이하 높이로 연마되는 것을 방지하기 위하여 질화막 층 위로 500~1000Å 정도까지만 연마하여 평탄한 표면을 만든다. 3차 연마는 질화막상의 산화막이 완전히 제거되도록 질화막이 약 100Å 이하로 연마되도록 과연마하는데 이때 트렌치의 산화막 손실(디싱, dishing)이 최소화되어야 한다.The primary polishing removes the oxide step quickly in consideration of productivity, and the secondary polishing is performed by polishing only 500 ~ 1000Å above the nitride layer in order to prevent the nitride layer from being polished and the oxide layer of the trench polished to a height below the nitride layer. Make a surface. The tertiary polishing is overpolishing so that the nitride film is polished to about 100 kPa or less so that the oxide film on the nitride film is completely removed, and the oxide film loss (dishing) of the trench should be minimized.
세리아 연마제는 산화막과의 강한 반응성으로 인하여 1% 이하의 적은 농도로도 10% 이상의 농도가 필요한 실리카 연마제보다 2배 이상의 연마 속도를 발휘할 수 있다. 최근에는 입자의 직경이 100nm로 작아지는 등 CMP 결함을 감소시키는 방향으로 개발되고 있다.Ceria abrasives can exhibit twice as much polishing speed as silica abrasives requiring concentrations of 10% or more, even at low concentrations of less than 1% due to their strong reactivity with the oxide film. In recent years, it has been developed in the direction of reducing CMP defects such as the diameter of the particles is reduced to 100nm.
그러나, 질화막 상층에 존재하는 산화막에 대한 연마 속도를 3000Å/분 이상으로 유지하면서, 질화막 층에 대한 트렌치 상층의 산화막에 대한 연마 속도의 비를 10 이상으로 유지할 수 있고, 동시에 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화한 CMP 슬러리 조성물에 대한 요구가 절실한 실정이다.However, the ratio of the polishing rate to the oxide film of the trench upper layer to the oxide film of the trench layer can be maintained at 10 or more while maintaining the polishing rate for the oxide film existing in the nitride film upper layer at 10 or more, and at the same time dishing on the oxide film of the trench upper layer There is an urgent need for a CMP slurry composition that minimizes and minimizes defects on the entire abrasive layer.
본 발명의 목적은 질화막 상층에 존재하는 산화막에 대한 연마 속도를 3000Å 이상으로 유지하면서, 질화막 층에 대한 트렌치 상층의 산화막에 대한 연마 속도의 비를 10 이상으로 유지함과 동시에 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화한 CMP 슬러리 조성물을 제공하는 것이다.An object of the present invention is to maintain the polishing rate of the oxide film present in the upper nitride layer at 3000 Pa or more, while maintaining the ratio of the polishing rate to the oxide film of the trench upper layer to the oxide film at 10 or more and at the same time dishing on the oxide film of the upper trench layer. It is to provide a CMP slurry composition that has minimized and minimized defect defects on the entire abrasive layer.
본 발명의 또 다른 목적은 상기 CMP 슬러리 조성물을 이용한 연마 방법을 제공하는 것이다.Still another object of the present invention is to provide a polishing method using the CMP slurry composition.
본 발명의 CMP 슬러리 조성물은 양의 제타 전위를 갖는 금속 산화물 입자, 양쪽 이온성 화합물, 양이온성 계면활성제, 및 초순수를 포함하는 것이다.The CMP slurry composition of the present invention comprises metal oxide particles having a positive zeta potential, zwitterionic compounds, cationic surfactants, and ultrapure water.
상기 금속 산화물 입자는 하소(calcination) 또는 화염 산화(flame oxidation) 또는 수열 합성(thermal synthesis)으로 제조한 것일 수 있다.The metal oxide particles may be prepared by calcination, flame oxidation, or thermal synthesis.
상기 양의 제타 전위를 갖는 금속 산화물 입자는 세리아(CeO2) 입자, 실리카(SiO2) 입자, 알루미나(Al2O3) 입자, 티타니아(TiO2) 입자, 및 지르코니아(ZrO2) 입자로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. The metal oxide particles having the positive zeta potential are composed of ceria (CeO 2 ) particles, silica (SiO 2 ) particles, alumina (Al 2 O 3 ) particles, titania (TiO 2 ) particles, and zirconia (ZrO 2 ) particles. It may be at least one selected from the group.
상기 양의 제타 전위를 갖는 금속 산화물 입자는 평균 입경이 70~150nm이고, 비표면적은 비표면적이 10~50m2/g일 수 있다.The metal oxide particles having the positive zeta potential have an average particle diameter of 70 to 150 nm, and the specific surface area may be 10 to 50 m 2 / g.
상기 양의 제타 전위를 갖는 금속 산화물 입자는 세리아 입자일 수 있다.The metal oxide particles having the positive zeta potential may be ceria particles.
상기 양쪽 이온성 화합물은 알라닌(alanine), 페닐알라닌(phenylalanine), 프롤린(proline), 글리신(glycine), 히스티딘(histidine), 리신(lysine), 아르기닌(arginine), 트레오닌(threonine), 아스파르트산(aspartic acid), 트립토판(tryptophan), 글루타민(glutamine), 베타인(betaine), 코코미도프로필베테인(cocomidopropylbetaine), 라우릴프로필베테인(laurylpropylbetaine)으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 아미노산일 수 있다.The zwitterionic compounds are alanine, phenylalanine, proline, glycine, histidine, histidine, lysine, arginine, threonine, aspartic acid. acid, tryptophan, glutamine, glutamine, betaine, cocomidopropylbetaine, cocomidopropylbetaine, and amino acid including at least one selected from the group consisting of laurylpropylbetaine Can be.
상기 양이온성 계면활성제는 트리에틸렌테트라민(triethylenetetramine), N,N-디에틸에탄올아민(N,N-Diethylethanolamine), N,N-디이소프로필아민(N,N-Diisopropylamine), N,N-디터셔리부틸아닐린(N,N-ditertiarybutylaniline), 및 루파졸(Lupasol)로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. The cationic surfactants are triethylenetetramine, N, N-diethylethanolamine, N, N-diisopropylamine, N, N- It may be at least one selected from the group consisting of dietary butyl aniline (N, N-ditertiary butylaniline), and Lupasol (Lupasol).
상기 양이온성 계면활성제는 하기의 화학식 1의 구조식을 가질 수 있다.The cationic surfactant may have a structural formula of Formula 1 below.
[화학식 1] [Formula 1]
Figure PCTKR2012010896-appb-I000001
Figure PCTKR2012010896-appb-I000001
상기 화학식 1에서, EO는 산화에틸렌(ethylene oxide), PO는 산화프로필렌(propylene oxide), Q는 탄화수소이고, a, b, c, d는 각각 독립적으로 0 내지 50, e, f, g, h는 각각 독립적으로 10 내지 50 이며, x는 0 내지 15, y는 0 내지 1이다. x = 0 인 경우에는 N과 N이 직접 연결된 것을 의미한다. In Formula 1, EO is ethylene oxide, PO is propylene oxide, Q is hydrocarbon, and a, b, c, and d are each independently 0 to 50, e, f, g, and h. Are each independently 10 to 50, x is 0 to 15, and y is 0 to 1. If x = 0, it means that N and N are directly connected.
상기 화학식 1의 양이온성 계면활성제의 중량 평균 분자량은 1,000g/mol 내지 100,000g/mol일 수 있다. The weight average molecular weight of the cationic surfactant of Formula 1 may be 1,000 g / mol to 100,000 g / mol.
상기 CMP 슬러리 조성물은 금속 산화물 입자 0.01~1 중량%, 양쪽 이온성 화합물 0.001~1 중량%, 양이온성 계면활성제 0.001~1 중량%, 및 잔량으로서 초순수를 포함할 수 있다.The CMP slurry composition may include 0.01 to 1% by weight of metal oxide particles, 0.001 to 1% by weight of zwitterionic compounds, 0.001 to 1% by weight of cationic surfactant, and ultrapure water as the balance.
본 발명의 연마 방법은 상기의 CMP 슬러리 조성물을 사용하여 반도체 웨이퍼를 연마하는 단계를 포함하는 것이다.The polishing method of the present invention includes polishing a semiconductor wafer using the CMP slurry composition.
본 발명은 질화막 상층에 존재하는 산화막에 대한 연마 속도를 3000Å 이상으로 유지하면서, 질화막 층에 대한 트렌치 상층의 산화막에 대한 연마 속도의 비를 10 이상으로 유지함과 동시에 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화한 CMP 슬러리 조성물을 제공한다.The present invention maintains the polishing rate of the oxide film in the upper nitride layer at 3000 kPa or more, while maintaining a ratio of the polishing rate of the oxide film in the trench upper layer to the oxide film at 10 or more, while minimizing dishing on the oxide film in the trench upper layer. A CMP slurry composition is provided that minimizes the dug defects on the entire abrasive layer.
도 1은 본 발명의 조성물이 적용되는 일 구체예인 STI 공정의 개략적인 공정도이다.1 is a schematic process diagram of an STI process, which is one embodiment to which the composition of the present invention is applied.
도 2는 2차 연마 후 피 연마층 상에 형성되는 파임 결함을 AFM(Atomic Force Microscope)으로 측정한 프로파일이다.FIG. 2 is a profile measured by AFM (Atomic Force Microscope) of the defects formed on the layer to be polished after the secondary polishing.
본 발명의 CMP 슬러리 조성물은 양의 제타 전위를 갖는 금속 산화물 입자, 양쪽 이온성 화합물, 양이온성 계면활성제, 및 초순수를 포함하는 것이다.The CMP slurry composition of the present invention comprises metal oxide particles having a positive zeta potential, zwitterionic compounds, cationic surfactants, and ultrapure water.
금속 산화물 입자Metal oxide particles
본 발명의 CMP 슬러리 조성물은 양의 제타 전위를 갖는 금속 산화물 입자를 포함한다.The CMP slurry composition of the present invention comprises metal oxide particles having a positive zeta potential.
상기 양의 제타 전위를 갖는 금속 산화물 입자로는 하소(calcination), 또는 화염 산화(flame oxidation), 또는 수열 합성(thermal synthesis)으로 제조된 것을 사용하는 것이 바람직하다.As the metal oxide particles having the positive zeta potential, those produced by calcination, flame oxidation, or thermal synthesis are preferably used.
상기 양의 제타 전위를 갖는 금속 산화물 입자로는 세리아(CeO2) 입자, 실리카(SiO2) 입자, 알루미나(Al2O3) 입자, 티타니아(TiO2) 입자, 및 지르코니아(ZrO2) 입자로 이루어진 군에서 선택된 하나 이상을 사용하는 것이 바람직하다.Metal oxide particles having a positive zeta potential include ceria (CeO 2 ) particles, silica (SiO 2 ) particles, alumina (Al 2 O 3 ) particles, titania (TiO 2 ) particles, and zirconia (ZrO 2 ) particles. Preference is given to using one or more selected from the group consisting of.
상기 양의 제타 전위를 갖는 금속 산화물 입자는 산화막에 대한 연마 속도를 확보하고, 질화막에 대한 연마 속도를 억제하기 위하여 평균 입경이 70~150nm이고, 비표면적이 10~50m2/g인 것을 사용하는 것이 바람직하다. The metal oxide particles having the positive zeta potential have an average particle diameter of 70 to 150 nm and a specific surface area of 10 to 50 m 2 / g in order to secure the polishing rate for the oxide film and to suppress the polishing rate for the nitride film. It is preferable.
상기 양의 제타 전위를 갖는 금속 산화물 입자는 세리아 입자일 수 있으며, 수열 합성으로 제조된 세리아 입자를 사용하는 경우에는 분산제를 사용하지 않아도 되기 때문에 분산제에 의한 제타 전위 값의 변화 없이 세리아 본연의 양의 제타 전위를 유지하게 되어 산화막 연마 효과가 우수하다.The metal oxide particles having the positive zeta potential may be ceria particles, and in the case of using ceria particles prepared by hydrothermal synthesis, a dispersant may not be used. The zeta potential is maintained, so the oxide film polishing effect is excellent.
상기 양의 제타 전위를 갖는 금속 산화물 입자는 0.01~1 중량%로 사용하는 것이 바람직하며, 0.1~0.7 중량%로 사용하는 것이 보다 바람직하다.It is preferable to use the metal oxide particle which has the said zeta potential of the said amount in 0.01-1 weight%, and it is more preferable to use it in 0.1-0.7 weight%.
양쪽 이온성 화합물Zwitterionic compounds
본 발명의 CMP 슬러리 조성물은 질화막의 연마를 차단하기 위하여 양쪽 이온성 화합물을 포함한다. The CMP slurry composition of the present invention contains a zwitterionic compound to block polishing of the nitride film.
상기 양쪽 이온성 화합물은 알라닌(alanine), 페닐알라닌(phenylalanine), 프롤린(proline), 글리신(glycine), 히스티딘(histidine), 리신(lysine), 아르기닌(arginine), 트레오닌(threonine), 아스파르트산(aspartic acid), 트립토판(tryptophan), 글루타민(glutamine), 베타인(betaine), 코코미도프로필베테인(ccocomidopropylbetaine), 라우릴프로필베테인(laurylpropylbetaine)으로 이루어진 군에서 선택된 하나 이상을 포함하는 아미노산일 수 있다.The zwitterionic compounds are alanine, phenylalanine, proline, glycine, histidine, histidine, lysine, arginine, threonine, aspartic acid. acid), tryptophan, tryptophan, glutamine, glutamine, betaine, beta, cocomididopropylbetaine, and amino acid including one or more selected from the group consisting of laurylpropylbetaine. .
상기 양쪽 이온성 화합물은 산화막에 대한 연마 속도를 확보하고, 질화막에 대한 연마 속도를 억제하며, 전체 피 연마층 상의 파임 결함을 최소화하기 위하여 CMP 슬러리 조성물 총량 대비 0.001 내지 1 중량%로 사용하는 것이 바람직하고, 0.005 내지 0.7 중량%로 사용하는 것이 보다 바람직하며, 0.01 내지 0.4 중량%로 사용하는 것이 가장 바람직하다.The zwitterionic compound is preferably used in an amount of 0.001 to 1% by weight relative to the total amount of the CMP slurry composition in order to secure the polishing rate for the oxide film, to suppress the polishing rate for the nitride film, and to minimize the defects on the entire polished layer. More preferably, 0.005 to 0.7% by weight, and most preferably 0.01 to 0.4% by weight.
양이온성 계면활성제Cationic surfactant
본 발명의 CMP 슬러리 조성물은 산화막에 대한 연마 속도를 조절하여 연마 프로파일을 개선하고 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화하기 위하여 양이온성 계면활성제를 포함한다.The CMP slurry composition of the present invention includes a cationic surfactant to adjust the polishing rate for the oxide film to improve the polishing profile, to minimize dishing on the oxide layer in the trench top layer and to minimize dug defects on the entire layer to be polished.
상기 양이온성 계면활성제는 트리에틸렌테트라민(triethylenetetramine), N,N-디에틸에탄올아민(N,N-Diethylethanolamine), N,N-디이소프로필아민(N,N-Diisopropylamine), N,N-디터셔리부틸아닐린(N,N-ditertiarybutylaniline), 및 루파졸(Lupasol)로 이루어진 군에서 선택된 하나 이상을 포함할 수 있으며, 바람직하게는 하기 화학식 1의 구조식을 갖는 화합물을 포함할 수 있다.The cationic surfactants are triethylenetetramine, N, N-diethylethanolamine, N, N-diisopropylamine, N, N- Dibutyl butylaniline (N, N-ditertiary butylaniline), and may include one or more selected from the group consisting of Lupasol (Lupasol), preferably may include a compound having a structural formula of formula (1).
[화학식 1][Formula 1]
Figure PCTKR2012010896-appb-I000002
Figure PCTKR2012010896-appb-I000002
상기 화학식 1에서, EO는 산화에틸렌(ethylene oxide), PO는 산화프로필렌(propylene oxide), Q는 탄화수소이고, a, b, c, d는 각각 독립적으로 0 내지 50, e, f, g, h는 각각 독립적으로 10 내지 50 이며, x는 0 내지 15, y는 0 내지 1이다. x = 0 인 경우에는 N과 N이 직접 연결된 것을 의미한다. In Formula 1, EO is ethylene oxide, PO is propylene oxide, Q is hydrocarbon, and a, b, c, and d are each independently 0 to 50, e, f, g, and h. Are each independently 10 to 50, x is 0 to 15, and y is 0 to 1. If x = 0, it means that N and N are directly connected.
상기 화학식 1의 양이온성 계면활성제의 중량 평균 분자량은 1,000g/mol 내지 100,000g/mol인 것이 바람직하며, 점도는 0.9 내지 2.0cP인 것이 바람직하다. The weight average molecular weight of the cationic surfactant of Formula 1 is preferably 1,000 g / mol to 100,000 g / mol, and the viscosity is preferably 0.9 to 2.0 cP.
본 발명에서는 상기 양이온성 계면활성제를 상기 양쪽 이온성 화합물과 동시에 사용함으로써 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화할 수 있다. In the present invention, by using the cationic surfactant simultaneously with the zwitterionic compound, it is possible to minimize dishing on the oxide layer of the trench upper layer and to minimize dug defects on the entire layer to be polished.
상기 양이온성 계면활성제는 산화막에 대한 연마 속도를 조절하여 연마 프로파일을 개선하고, 질화막에 대한 연마 속도를 억제하며, 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화하기 위하여 0.001~1 중량%로 사용하는 것이 바람직하고, 0.005~0.8 중량%로 사용하는 것이 보다 바람직하며, 0.01~0.7 중량%로 사용하는 것이 가장 바람직하다.The cationic surfactant adjusts the polishing rate for the oxide film to improve the polishing profile, to suppress the polishing rate for the nitride film, to minimize dishing on the oxide layer of the trench upper layer, and to minimize the pit defects on the entire polished layer. It is preferable to use it at -1 weight%, It is more preferable to use it at 0.005 to 0.8 weight%, It is most preferable to use it at 0.01 to 0.7 weight%.
본 발명의 연마 방법은 상기의 CMP 슬러리 조성물을 사용하여 반도체 웨이퍼를 연마하는 단계를 포함할 수 있다. 해당 공정은 ILD(Interlayer Dielectric) 공정 또는 STI(Shallow Trench Isolation) 공정일 수 있다. 이때, 본 발명의 CMP 슬러리 조성물은 패턴화된 산화막에 대한 연마 효율이 우수하기 때문에 연마 대상인 반도체 웨이퍼는 패턴화된 산화막을 포함하는 것이 바람직하다.The polishing method of the present invention may include polishing a semiconductor wafer using the CMP slurry composition. The process may be an interlayer dielectric (ILD) process or a shallow trench isolation (STI) process. At this time, since the CMP slurry composition of the present invention has excellent polishing efficiency with respect to the patterned oxide film, the semiconductor wafer to be polished preferably includes the patterned oxide film.
이하 실시예를 통하여 본 발명을 더욱 구체적으로 설명한다. 다만, 이는 설명을 위한 가능한 실시예일 뿐, 본 발명이 이에 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following Examples. However, this is only possible embodiments for description, and the present invention is not limited thereto.
실시예 1Example 1
화학식 1에서 Qx(x=2)는 에틸렌, y=1, (a+b+c+d)/(e+f+g+h)는 1.5이며 중량 평균 분자량이 10,000g/mol인 양이온성 계면활성제(a) 0.5 중량%와 양쪽 이온성 화합물인 L-아스파르트산(L-Aspartic acid)(c) 0.2 중량%를 평균 입경이 100nm(호리바 LA710 으로 측정)인, 중량 평균 분자량이 10,000g/mol인 폴리아크릴산으로 수계 분산하여 제타 전위가 40mV인 세리아 0.5wt를 초순수로 혼합하여 시료를 준비하였다. pH를 4.5로 맞추어 일액형 슬러리를 제작하였다. 상기 연마 조건에 따라 패턴 밀도가 50%이고 pitch size가 100μm인 패턴 웨이퍼에 대하여 연마 성능을 평가하여 표 1과 같이 결과를 기술하였다. In Formula 1, Qx (x = 2) is ethylene, y = 1, (a + b + c + d) / (e + f + g + h) is 1.5 and the cationic interface has a weight average molecular weight of 10,000 g / mol. A weight average molecular weight of 10,000 g / mol having an average particle diameter of 100 nm (measured by Horiba LA710) of 0.5% by weight of the active agent (a) and 0.2% by weight of the zwitterionic compound L-Aspartic acid (c) Aqueous dispersion with phosphoric polyacrylic acid and 0.5 wt of ceria having a zeta potential of 40 mV were mixed with ultrapure water to prepare a sample. One-part slurry was produced by adjusting pH to 4.5. According to the polishing conditions, the polishing performance of the pattern wafer having the pattern density of 50% and the pitch size of 100 μm was evaluated, and the results are described as shown in Table 1.
실시예 2Example 2
L-아스파르트산(L-Aspartic acid)(c) 대신에 라우릴프로필베테인(laurylpropylbetaine)(f)를 0.05 중량% 사용한 것을 제외하고, 실시예 1과 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.Samples were prepared in the same manner as in Example 1 except that 0.05% by weight of laurylpropylbetaine (f) was used instead of L-Aspartic acid (c), and the polishing performance was evaluated. It is shown in Table 1.
실시예 3Example 3
양이온성 계면활성제(a) 대신에 Qx(x=2)는 에틸렌, y=1, a, b, c, d는 0이고, 중량 평균 분자량이 10,000g/mol인 양이온성 계면활성제(b)를 사용한 것을 제외하고, 실시예 1과 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.Instead of the cationic surfactant (a), Qx (x = 2) is a cationic surfactant (b) having ethylene, y = 1, a, b, c, d is 0 and a weight average molecular weight of 10,000 g / mol. A sample was prepared in the same manner as in Example 1 except that it was used, and the polishing performance was evaluated.
실시예 4Example 4
양이온성 계면활성제(a) 대신에 양이온성 계면활성제(b)를 사용한 것을 제외하고, 실시예 2와 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.Samples were prepared in the same manner as in Example 2, except that cationic surfactants (a) were used instead of cationic surfactants (a), and the polishing performance was evaluated and listed in Table 1.
비교예 1Comparative Example 1
화학식 1에서 Qx(x=2)는 에틸렌, y=1, (a+b+c+d)/(e+f+g+h)는 1.5이고 중량 평균 분자량이 10,000g/mol인 양이온성 계면활성제(a) 0.5wt%와 평균 입경이 100nm(호리바 LA710 으로 측정)인, 중량 평균 분자량이 10,000g/mol인 폴리아크릴산으로 수계 분산하여 제타 전위가 -30mV인 세리아 0.5wt를 초순수로 혼합하여 시료를 준비하였다. pH를 4.5로 맞추어 일액형 슬러리를 제작하였다. 상기 연마 조건에 따라 패턴 밀도가 50%이고 pitch size가 100μm인 패턴 웨이퍼에 대하여 연마 성능을 평가하여 표 1과 같이 결과를 기술하였다. In Formula 1, Qx (x = 2) is ethylene, y = 1, (a + b + c + d) / (e + f + g + h) is 1.5 and the cationic interface has a weight average molecular weight of 10,000 g / mol. 0.5 wt% of the active agent (a) and 100 nm (measured by Horiba LA710) with a weight average molecular weight of 10,000 g / mol of polyacrylic acid were dispersed in water and 0.5 wt% of ceria having a zeta potential of -30 mV was mixed with ultrapure water. Was prepared. One-part slurry was produced by adjusting pH to 4.5. According to the polishing conditions, the polishing performance of the pattern wafer having the pattern density of 50% and the pitch size of 100 μm was evaluated, and the results are described as shown in Table 1.
비교예 2Comparative Example 2
비교예 1의 세리아 대신에 평균 입경이 100nm(호리바 LA710 으로 측정)이고, 제타 전위가 +40mV인 세리아를 사용한 것을 제외하고, 비교예 1과 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.A sample was prepared in the same manner as in Comparative Example 1 except that ceria having an average particle diameter of 100 nm (measured by Horiba LA710) and a zeta potential of +40 mV was used instead of the ceria of Comparative Example 1, and the polishing performance was evaluated. Described.
비교예 3Comparative Example 3
양이온성 계면활성제(a) 대신에 Qx(x=2)는 에틸렌, y=1, a, b, c, d는 0이고, 중량 평균 분자량이 10,000g/mol인 양이온성 계면활성제(b)를 사용한 것을 제외하고, 비교예 2와 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.Instead of the cationic surfactant (a), Qx (x = 2) is a cationic surfactant (b) having ethylene, y = 1, a, b, c, d is 0 and a weight average molecular weight of 10,000 g / mol. Except for the use, samples were prepared in the same manner as in Comparative Example 2, and the polishing performance was evaluated and listed in Table 1.
비교예 4Comparative Example 4
양이온성 계면활성제를 사용하지 않고, 양쪽 이온성 화합물인 L-아스파르트산(L-Aspartic acid)(c)을 0.2 중량%로 사용한 것을 제외하고, 비교예 2와 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.Samples were prepared and polished in the same manner as in Comparative Example 2, except that 0.2% by weight of L-Aspartic acid (c), which is an ionic compound, was used without a cationic surfactant. It evaluated and is shown in Table 1.
비교예 5Comparative Example 5
양쪽 이온성 화합물로 L-아스파르트산(L-Aspartic acid) 대신에 글리신(Glycine)(d)을 사용한 것을 제외하고, 비교예 4와 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.A sample was prepared in the same manner as in Comparative Example 4 except that glycine (d) was used instead of L-aspartic acid as the zwitterionic compound, and the polishing performance thereof was shown in Table 1 below. .
비교예 6Comparative Example 6
양쪽 이온성 화합물로 L-아스파르트산(L-Aspartic acid) 대신에 리신(Lysine)(e)을 사용한 것을 제외하고, 비교예 4와 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.A sample was prepared in the same manner as in Comparative Example 4 except for using Lysine (e) instead of L-Aspartic acid as the zwitterionic compound, and the polishing performance was shown in Table 1 below. .
[물성 측정 방법][Measurement Method]
파임 결함 : 산화막과 질화막 상에서 육안 식별되는 것으로 육안상 얼룩으로 관찰되며 AFM 측정 시 얼룩 부위는 주변대비 400Å~800Å의 단차로 측정됨. 파임 결함의 판정은 육안상으로 있음 혹은 없음으로 판별하였음.Dig defect: It is visually identified on the oxide film and nitride film. It is observed as visual stain. When AFM is measured, the spot is measured with a step of 400Å ~ 800Å compared to the surrounding area. Determination of the deficiency was determined visually or absent.
연마속도(Å/분) : 볼록부 Ox RR는 질화막 상층에 존재하는 산화막에 대한 연마 속도를 의미하고, 볼록부 SiN RR는 질화막 층에 대한 연마 속도를 의미하며, 오목부 Ox RR는 트렌치 상층의 산화막에 대한 연마 속도를 의미한다.Polishing rate (Å / min): Convex Ox RR means the polishing rate for the oxide film on the upper nitride layer, Convex SiN RR means the polishing rate for the nitride layer, and concave Ox RR is the upper trench Means the polishing rate for the oxide film.
상기 실시예 및 비교예에서 제조된 CMP 슬러리 조성물을 이용하여 하기 연마 조건에서 패턴 웨이퍼를 연마하였다. 연마에 의해 제거된 웨이퍼의 두께 변화를 측정하여 연마 속도를 산출하였고, 옵티프로브(ThermalWave 社, Optiprobe2600) 장비를 사용하여 측정하였다.The patterned wafer was polished under the following polishing conditions using the CMP slurry composition prepared in the above Examples and Comparative Examples. The polishing rate was calculated by measuring the change in thickness of the wafer removed by polishing, and measured using an Optiprobe (ThermalWave, Optiprobe2600) equipment.
[연마 조건][Polishing condition]
패턴 웨이퍼: 상용 슬러리(제일모직 SP7500)로 1차 연마한 200mm MIT (Massachusetts Institute of Technology) 패턴 웨이퍼.Patterned Wafer: 200 mm Massachusetts Institute of Technology (MIT) pattern wafers first polished with a commercial slurry (Cheil Industries SP7500).
연마 설비 : AMAT Mirra (AMAT社)Polishing Equipment: AMAT Mirra (AMAT Co.)
연마 패드 : IC1010 k-groove(Rodel社)Polishing pad: IC1010 k-groove (Rodel)
Polishing time : P1 60초, P2 30초, P3 40초Polishing time: P1 60 sec, P2 30 sec, P3 40 sec
Polishing Pressure : 3psiPolishing Pressure: 3psi
Platen rpm : 103 rpmPlaten rpm: 103 rpm
Head rpm : 97 rpmHead rpm: 97 rpm
Flow rate : 200 ml/minFlow rate: 200 ml / min
[표 1]TABLE 1
Figure PCTKR2012010896-appb-I000003
Figure PCTKR2012010896-appb-I000003
이상의 결과에서 알 수 있듯이, 본 발명의 CMP 슬러리 조성물은 질화막 상층에 존재하는 산화막에 대한 연마 속도를 3000Å 이상으로 유지하면서, 질화막 층에 대한 트렌치 상층의 산화막에 대한 연마 속도의 비를 10 이상으로 유지함과 동시에 전체 피 연마층 상의 파임 결함이 최소화된 것을 알 수 있다.As can be seen from the above results, the CMP slurry composition of the present invention maintains the polishing rate of the oxide film in the upper layer of the nitride layer to 3000 or more, while maintaining the ratio of the polishing rate of the trench layer to the oxide film of the nitride layer to 10 or more. At the same time, it can be seen that the dug defects on the entire abrasive layer are minimized.

Claims (10)

  1. 양의 제타 전위를 갖는 금속산화물 입자;Metal oxide particles having a positive zeta potential;
    양쪽 이온성 화합물;Zwitterionic compounds;
    양이온성 계면활성제; 및Cationic surfactants; And
    초순수;를 포함하는 CMP 슬러리 조성물.CMP slurry composition comprising; ultrapure water.
  2. 제1항에 있어서, 상기 금속 산화물 입자는 하소, 화염 산화 또는 수열 합성하여 제조된 것을 특징으로 하는 CMP 슬러리 조성물.The CMP slurry composition of claim 1, wherein the metal oxide particles are prepared by calcination, flame oxidation, or hydrothermal synthesis.
  3. 제1항에 있어서, 상기 금속 산화물 입자는 세리아 입자, 실리카 입자, 알루미나 입자, 티타니아 입자, 및 지르코니아 입자로 이루어진 군에서 선택되는 적어도 어느 하나인 것을 특징으로 하는 CMP 슬러리 조성물.The CMP slurry composition of claim 1, wherein the metal oxide particles are at least one selected from the group consisting of ceria particles, silica particles, alumina particles, titania particles, and zirconia particles.
  4. 제1항에 있어서, 상기 양의 제타 전위를 갖는 금속 산화물 입자는 평균 입경이 70~150 nm이고, 비표면적이 10~50 m2/g 인 것을 특징으로 하는 CMP 슬러리 조성물.The CMP slurry composition according to claim 1, wherein the metal oxide particles having a positive zeta potential have an average particle diameter of 70 to 150 nm and a specific surface area of 10 to 50 m 2 / g.
  5. 제1항에 있어서, 상기 양의 제타 전위를 갖는 금속 산화물 입자는 세리아 입자인 것을 특징으로 하는 CMP 슬러리 조성물.The CMP slurry composition of claim 1 wherein the metal oxide particles having a positive zeta potential are ceria particles.
  6. 제1항에 있어서, 상기 양쪽 이온성 화합물은 알라닌 (alanine), 페닐알라닌(phenylalanine), 프롤린 (proline), 글리신 (glycine), 히스티딘 (histidine), 리신 (lysine), 아르기닌 (arginine), 트레오닌 (threonine), 아스파르트산 (aspartic acid), 트립토판 (tryptophan), 글루타민 (glutamine), 베타인 (betaine), 코코미도프로필베테인(cocomidopropylbetaine) 및 라우릴프로필베테인 (laurylpropylbetaine)으로 이루어진 군에서 선택된 하나 이상을 포함하는 아미노산인 것을 특징으로 하는 CMP 슬러리 조성물.The method of claim 1, wherein the zwitterionic compound is alanine, phenylalanine, proline, glycine, histidine, lysine, arginine, threonine ), Aspartic acid, tryptophan, glutamine, glutine, betaine, cocomidopropylbetaine and laurylpropylbetaine. CMP slurry composition, characterized in that the containing amino acid.
  7. 제1항에 있어서, 상기 양이온성 계면활성제는 트리에틸렌테트라민 (triethylenetetramine), N,N-디에틸에탄올아민 (N,N-Diethylethanolamine), N,N-디이소프로필아민 (N,N-Diisopropylamine), N,N-디터셔리부틸아닐린(N,Nditertiarybutylaniline), 및 루파졸 (Lupasol)로 이루어진 군에서 선택된 하나 이상을 포함하는 것을 특징으로 하는 CMP 슬러리 조성물.The method of claim 1, wherein the cationic surfactant is triethylenetetramine, N, N-diethylethanolamine, N, N-diisopropylamine ), N, N-dibutylbutylaniline (N, Nditertiarybutylaniline), and Lupazole (Lupasol) CMP slurry composition comprising at least one selected from the group consisting of.
  8. 제1항에 있어서, 상기 양이온성 계면활성제는 하기의 화학식 1의 구조식을 갖는 CMP 슬러리 조성물:The CMP slurry composition of claim 1, wherein the cationic surfactant has a structure of Formula 1
    [화학식 1][Formula 1]
    Figure PCTKR2012010896-appb-I000004
    Figure PCTKR2012010896-appb-I000004
    상기 화학식 1에서, EO는 산화에틸렌(ethylene oxide), PO는 산화프로필렌(propylene oxide), Q는 탄화수소이고, a, b, c, d는 각각 독립적으로 0 내지 50, e, f, g, h는 각각 독립적으로 10 내지 50 이며, x는 0 내지 15, y는 0 내지 1이다.In Formula 1, EO is ethylene oxide, PO is propylene oxide, Q is hydrocarbon, and a, b, c, and d are each independently 0 to 50, e, f, g, and h. Are each independently 10 to 50, x is 0 to 15, and y is 0 to 1.
  9. 제1항에 있어서, 상기 CMP 슬러리 조성물은 상기 양의 제타 전위를 갖는 금속산화물 입자 0.2~0.5 중량%, 양쪽이온성 화합물 0.001~1.0 중량%, 양이온성 계면활성제 0.0001~0.5 중량% 및 잔량의 초순수를 포함하는 CMP 슬러리 조성물.The method of claim 1, wherein the CMP slurry composition is 0.2 to 0.5% by weight of the metal oxide particles having the positive zeta potential, 0.001 to 1.0% by weight of zwitterionic compounds, 0.0001 to 0.5% by weight of cationic surfactant and the residual amount of ultrapure water CMP slurry composition comprising a.
  10. 제1항 내지 제9항 중 어느 하나의 CMP 슬러리 조성물을 사용하여 반도체 웨이퍼를 연마하는 단계를 포함하는 연마 방법.A polishing method comprising polishing a semiconductor wafer using the CMP slurry composition of any one of claims 1 to 9.
PCT/KR2012/010896 2011-12-29 2012-12-14 Cmp slurry composition and polishing method using same WO2013100451A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0146562 2011-12-29
KR1020110146562A KR101411019B1 (en) 2011-12-29 2011-12-29 CMP slurry composition and polishing method using the same

Publications (1)

Publication Number Publication Date
WO2013100451A1 true WO2013100451A1 (en) 2013-07-04

Family

ID=48697835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/010896 WO2013100451A1 (en) 2011-12-29 2012-12-14 Cmp slurry composition and polishing method using same

Country Status (2)

Country Link
KR (1) KR101411019B1 (en)
WO (1) WO2013100451A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384583B1 (en) * 2014-12-26 2022-04-11 솔브레인 주식회사 Slurry composition for chemical mechanical polishing and method for manufacturing semiconductor device by using the same
KR20170030143A (en) * 2015-09-08 2017-03-17 삼성에스디아이 주식회사 Cmp slurry composition for copper and polishing method using the same
KR102096695B1 (en) * 2017-12-14 2020-04-02 주식회사 케이씨텍 Polishing slurry composition for low density sti cmp process
KR20200076991A (en) * 2018-12-20 2020-06-30 주식회사 케이씨텍 Polishing slurry composition for sti process
KR102213533B1 (en) * 2020-04-24 2021-02-09 주식회사 케이씨텍 Polishing slurry composition for sti process
KR20220083915A (en) 2020-12-11 2022-06-21 삼성디스플레이 주식회사 Display appatus inculding the detection sensor and method for manufacturing the detection sensor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050098288A (en) * 2003-02-03 2005-10-11 캐보트 마이크로일렉트로닉스 코포레이션 Method of polishing a silicon-containing dielectric
KR20060016498A (en) * 2004-08-18 2006-02-22 삼성전자주식회사 Slurry composition, method for forming the slurry composition and method for polishing an object using the slurry composition
KR20100079854A (en) * 2008-12-31 2010-07-08 제일모직주식회사 Slurry composition for chemical mechanical polishing
KR20110057876A (en) * 2009-11-25 2011-06-01 주식회사 엘지화학 Slurry composition for chemical mechanical polishing and preparation method of the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050098288A (en) * 2003-02-03 2005-10-11 캐보트 마이크로일렉트로닉스 코포레이션 Method of polishing a silicon-containing dielectric
KR20060016498A (en) * 2004-08-18 2006-02-22 삼성전자주식회사 Slurry composition, method for forming the slurry composition and method for polishing an object using the slurry composition
KR20100079854A (en) * 2008-12-31 2010-07-08 제일모직주식회사 Slurry composition for chemical mechanical polishing
KR20110057876A (en) * 2009-11-25 2011-06-01 주식회사 엘지화학 Slurry composition for chemical mechanical polishing and preparation method of the same

Also Published As

Publication number Publication date
KR20130077699A (en) 2013-07-09
KR101411019B1 (en) 2014-06-24

Similar Documents

Publication Publication Date Title
WO2013100451A1 (en) Cmp slurry composition and polishing method using same
KR100814416B1 (en) High planarity slurry composition and method of chemical mechanical polishing using the same
US8828266B2 (en) CMP slurry composition and polishing method using the same
US8409990B2 (en) Chemical-mechanical polishing compositions and methods of making and using the same
WO2013100447A1 (en) Cmp slurry composition and polishing method using same
US6443811B1 (en) Ceria slurry solution for improved defect control of silicon dioxide chemical-mechanical polishing
TW201632605A (en) CMP polishing fluid, polishing method of substrate, and electronic component
KR101037526B1 (en) Chemical Mechanical Polishing Composition and Method for Manufacturing Semiconductor Device Using the Same
KR20030002479A (en) Nitride CMP Slurry having Selectivity to Oxide
JP2001085373A (en) Cmp polishing liquid
WO2017052280A1 (en) Slurry composition for cmp and polishing method using same
WO2011010819A2 (en) Multi-selective polishing slurry composition and a semiconductor element production method using the same
JP2006352096A (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
WO2020130332A1 (en) Polishing slurry composition
EP2092034B1 (en) Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same
US8512593B2 (en) Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same
US6488730B2 (en) Polishing composition
KR20200132756A (en) Chemical mechanical polishing compositions and methods having enhanced defect inhibition and selectively polishing silicon nitride over silicon dioxide in an acid environment
WO2017057906A1 (en) Cmp slurry composition for polishing organic film and polishing method using same
US20200172763A1 (en) Polishing additive composition, polishing slurry composition and method for polishing insulating film of semiconductor element
WO2016148409A1 (en) Abrasive grains and polishing slurry composition containing same
KR20000074300A (en) Composition for polishing
WO2020101134A1 (en) Polishing slurry composition and method for producing same
WO2022124559A1 (en) Polishing composition for semiconductor processing, method for preparing polishing composition, and method for manufacturing semiconductor element to which polishing composition is applied
KR101874999B1 (en) A chemical-mechanical polishing slurry composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862085

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12862085

Country of ref document: EP

Kind code of ref document: A1