KR20130077699A - Cmp slurry composition and polishing method using the same - Google Patents

Cmp slurry composition and polishing method using the same Download PDF

Info

Publication number
KR20130077699A
KR20130077699A KR1020110146562A KR20110146562A KR20130077699A KR 20130077699 A KR20130077699 A KR 20130077699A KR 1020110146562 A KR1020110146562 A KR 1020110146562A KR 20110146562 A KR20110146562 A KR 20110146562A KR 20130077699 A KR20130077699 A KR 20130077699A
Authority
KR
South Korea
Prior art keywords
slurry composition
particles
cmp slurry
metal oxide
polishing
Prior art date
Application number
KR1020110146562A
Other languages
Korean (ko)
Other versions
KR101411019B1 (en
Inventor
노현수
김용국
정영철
강동헌
김동진
김태영
홍창기
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020110146562A priority Critical patent/KR101411019B1/en
Priority to PCT/KR2012/010896 priority patent/WO2013100451A1/en
Publication of KR20130077699A publication Critical patent/KR20130077699A/en
Application granted granted Critical
Publication of KR101411019B1 publication Critical patent/KR101411019B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PURPOSE: A CMP slurry composition is provided to be able to minimize the dishing on the oxide film over a trench layer while maintaining the polishing speed ratio of the oxide film on the trench layer to the nitride film layer over 10. CONSTITUTION: A CMP slurry composition comprises metal oxide particles having a positive Zeta electric potential, zwitterionic compound, cationic surfactant, and ultra-pure water. The metal oxide particles are manufactured by calcination, flame oxidation or hydrothermal synthesis. The metal oxide particles having a positive Zeta electric potential have 70-150 nm of an average particle diameter and 10-50 m^2/g of a specific surface area. The metal oxide particles having a positive Zeta electric potential are ceria particles. A polishing method comprises a step of polishing a semiconductor wafer by using the CMP slurry composition. [Reference numerals] (AA) First grinding; (BB) Convex part; (CC) Concave part; (DD) Second grinding; (EE) Third grinding

Description

CMP 슬러리 조성물 및 이를 이용한 연마 방법 {CMP slurry composition and polishing method using the same}CMP slurry composition and polishing method using same

본 발명은 CMP 슬러리 조성물 및 이를 이용한 연마 방법에 관한 것으로서, 더욱 구체적으로는 양의 제타값을 갖는 금속 산화물 입자, 양쪽 이온성 화합물, 및 양이온성 계면활성제를 포함하는 CMP 슬러리 조성물 및 이를 이용한 연마 방법에 관한 것이다.
The present invention relates to a CMP slurry composition and a polishing method using the CMP slurry composition. More specifically, the present invention relates to a CMP slurry composition comprising a metal oxide particle having a positive zeta value, an ionic compound, and a cationic surfactant, .

최근의 초대규모 집적회로(ULSI)에서 미세 가공 기술이 개발되고 있어, 20 나노의 디자인 룰(rule)이 실현되고 있다. CMP 기술은 반도체 장치의 제조 공정에 있어서, PR(Photoresist)이 도포되어 노광이 진행되는 층을 평탄화하여 노광에 의한 패턴의 정밀도를 향상함으로써 최종적으로는 수율을 안정화시킬 수 있는 중요한 기술로 각광받고 있다. 특히 소자 분리의 STI(Shallow trench isolation) 공정은 가장 정밀한 디자인이 적용되는 반도체 가공의 최초 단계이기 때문에 STI 공정 후의 평탄화는 소자 형성의 핵심이라고 할 수 있다.Recently, micromachining technology has been developed in a very large scale integrated circuit (ULSI), and a design rule of 20 nanometers is being realized. In the manufacturing process of semiconductor devices, CMP technology has been spotlighted as an important technology that can stabilize the yield by finally flattening the layer on which exposure is applied by applying PR (Photoresist) to improve the precision of the pattern by exposure. . In particular, the shallow trench isolation (STI) process for device isolation is the first step in semiconductor fabrication to which the most precise design is applied. Therefore, planarization after the STI process can be said to be the core of device formation.

그 중에서 세리아 입자를 포함하는 CMP 슬러리는 GATE 생성 자리에 STI 패턴 마스크로 300~500Å의 두께로 적층되는 질화 실리콘 (Si3N4)과 분리(Trench isolation) 영역과 질화 실리콘 위로 적층(deposioton)된 실리콘 산화막(SiO2) 간의 연마 속도 선택성을 조절하는 주요 소재로 각광받고 있다.Among them, the CMP slurry containing ceria particles is formed by depositing silicon nitride (Si 3 N 4 ) and silicon nitride (Si 3 N 4 ) layers stacked at a thickness of 300-500 Å in an STI pattern mask at the GATE generation site, Has been attracting attention as a main material for controlling the polishing rate selectivity between silicon oxide films (SiO 2 ).

도 1은 STI 공정을 도시한 것이다. STI 공정에서 소자 생성 자리에 질화막 마스크가 도포되고 소자 분리를 위하여 트렌치(Trench)에 채워지는 산화물은 완전한 충진을 위하여 질화막 위로 7,000Å까지 과적층(Over deposition)되기도 한다.Figure 1 shows an STI process. In the STI process, a nitride mask is applied to a device generation site, and an oxide filled in a trench for device isolation may be over-deposited up to 7,000Å over the nitride film for complete filling.

이때 질화막 위로 적층된 산화막과 2,000~2,500Å의 트렌치에 과적층되는 산화막 간에는 2,000~3,000Å의 단차가 발생한다. 따라서 STI CMP는 질화막 위의 과적층 산화막(볼록부)과 트렌치 상의 산화막(오목부)간의 단차를 제거하는 1차 연마, 질화막 상의 산화물을 제거하는 2차 연마, 및 질화막 위의 잔류 산화막을 완전 제거하기 위하여 과연마(overpolishing)하는 3차 연마의 세 단계로 이루어지고 있다(도1).At this time, a step of 2,000 to 3,000 angstroms occurs between the oxide film stacked over the nitride film and the oxide film over-deposited on the trench of 2,000 to 2,500 angstroms. Therefore, the STI CMP can be used for the first polishing that removes the step between the overburden oxide film (convex portion) on the nitride film and the oxide film (concave portion) on the trench, the second polishing for removing oxide on the nitride film, And a third polishing step for overpolishing the wafer (Fig. 1).

1차 연마는 생산성을 고려하여 빠르게 산화막 단차를 제거하고, 2차 연마는 질화막이 연마되지 않고 트렌치의 산화막이 질화막 층 이하 높이로 연마되는 것을 방지하기 위하여 질화막 층 위로 500~1000Å 정도까지만 연마하여 평탄한 표면을 만든다. 3차 연마는 질화막상의 산화막이 완전히 제거되도록 질화막이 약 100Å 이하로 연마되도록 과연마하는데 이때 트렌치의 산화막 손실(디싱, dishing)이 최소화되어야 한다.The primary polishing removes the oxide step quickly in consideration of the productivity, and the secondary polishing flattens the surface of the nitride layer by 500 to 1000Å to prevent the nitride layer from being polished and the oxide layer of the trench to be polished to a height below the nitride layer. Make a surface. In the third polishing, the oxide film on the nitride film is completely removed so that the nitride film is polished to about 100 Å or less. At this time, the oxide film loss (dishing) of the trench should be minimized.

세리아 연마제는 산화막과의 강한 반응성으로 인하여 1% 이하의 적은 농도로도 10% 이상의 농도가 필요한 실리카 연마제보다 2배 이상의 연마 속도를 발휘할 수 있다. 최근에는 입자의 직경이 100nm로 작아지는 등 CMP 결함을 감소시키는 방향으로 개발되고 있다.Ceria abrasives can exhibit twice as much polishing speed as silica abrasives requiring concentrations of 10% or more, even at low concentrations of less than 1% due to their strong reactivity with the oxide film. Recently, it has been developed in the direction of reducing CMP defects such as the diameter of the particles is reduced to 100nm.

그러나, 질화막 상층에 존재하는 산화막에 대한 연마 속도를 3000Å/분 이상으로 유지하면서, 질화막 층에 대한 트렌치 상층의 산화막에 대한 연마 속도의 비를 10 이상으로 유지함과 동시에 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화한 CMP 슬러리 조성물은 아직 개발되지 않았으며, 이에 대한 요구가 절실한 실정이다.
However, while the polishing rate for the oxide film existing in the upper layer of the nitride film is maintained at 3000 A / min or more, the ratio of the polishing rate to the oxide film in the trench upper layer relative to the nitride film layer is maintained at 10 or more, , And a CMP slurry composition which minimizes pitting defects on the whole polishing layer has not yet been developed, and there is a strong demand for the CMP slurry composition.

본 발명의 목적은 질화막 상층에 존재하는 산화막에 대한 연마 속도를 3000Å 이상으로 유지하면서, 질화막 층에 대한 트렌치 상층의 산화막에 대한 연마 속도의 비를 10 이상으로 유지함과 동시에 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화한 CMP 슬러리 조성물을 제공하는 것이다.An object of the present invention is to maintain the polishing rate of the oxide film in the trench upper layer relative to the nitride film layer at 10 or more while maintaining the polishing rate for the oxide film existing in the upper layer of the nitride film to 3000 angstroms or more, And minimizing pitting defects on the entire polishing layer.

본 발명의 또 다른 목적은 상기 CMP 슬러리 조성물을 이용한 연마 방법을 제공하는 것이다.
Still another object of the present invention is to provide a polishing method using the CMP slurry composition.

본 발명의 CMP 슬러리 조성물은 양의 제타 전위를 갖는 금속 산화물 입자, 양쪽 이온성 화합물, 양이온성 계면활성제, 및 초순수를 포함하는 것이다.The CMP slurry composition of the present invention comprises a metal oxide particle having a positive zeta potential, an ionic compound, a cationic surfactant, and ultrapure water.

상기 금속 산화물 입자는 하소(calcination) 또는 화염 산화(flame oxidation) 또는 수열 합성(thermal synthesis)으로 제조한 것일 수 있다.The metal oxide particles may be prepared by calcination, flame oxidation, or thermal synthesis.

상기 양의 제타 전위를 갖는 금속 산화물 입자는 세리아(CeO2) 입자, 실리카(SiO2) 입자, 알루미나(Al2O3) 입자, 티타니아(TiO2) 입자, 및 지르코니아(ZrO2) 입자로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. Metal oxide particles having a zeta potential of both is composed of ceria (CeO 2) particles, and silica (SiO 2) particles, alumina (Al 2 O 3) particles, titania (TiO 2) particles, and zirconia (ZrO 2) particles Lt; RTI ID = 0.0 > and / or < / RTI >

상기 양의 제타 전위를 갖는 금속 산화물 입자는 평균 입경이 70~150nm이고, 비표면적이 10~50m2/g일 수 있다.The metal oxide particles having positive zeta potential may have an average particle diameter of 70 to 150 nm and a specific surface area of 10 to 50 m 2 / g.

상기 양의 제타 전위를 갖는 금속 산화물 입자는 세리아 입자일 수 있다.The metal oxide particles having the positive zeta potential may be ceria particles.

상기 양쪽 이온성 화합물은 알라닌(alanine), 페닐알라닌(phenylalanine), 프롤린(proline), 글리신(glycine), 히스티딘(histidine), 리신(lysine), 아르기닌(arginine), 트레오닌(threonine), 아스파르트산(aspartic acid), 트립토판(tryptophan), 글루타민(glutamine), 베타인(betaine), 코코미도프로필베테인(cocomidopropylbetaine), 라우릴프로필베테인(laurylpropylbetaine)으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 아미노산일 수 있다.The ampholytic compounds may be selected from the group consisting of alanine, phenylalanine, proline, glycine, histidine, lysine, arginine, threonine, aspartic acid, wherein the amino acid is at least one selected from the group consisting of an acid, a tryptophan, a glutamine, a betaine, a cocomidopropylbetaine, and laurylpropylbetaine. .

상기 양이온성 계면활성제는 트리에틸렌테트라민(triethylenetetramine), N,N-디에틸에탄올아민(N,N-Diethylethanolamine), N,N-디이소프로필아민(N,N-Diisopropylamine), N,N-디터셔리부틸아닐린(N,N-ditertiarybutylaniline), 및 루파졸(Lupasol)로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. The cationic surfactant may be selected from the group consisting of triethylenetetramine, N, N-diethylethanolamine, N, N-diisopropylamine, N, N- At least one selected from the group consisting of N, N-ditertiarybutylaniline, and Lupasol.

상기 양이온성 계면활성제는 하기의 화학식 1의 구조식을 가질 수 있다.
The cationic surfactant may have the following structural formula (1).

[화학식 1] [Formula 1]

Figure pat00001
Figure pat00001

여기서, EO는 ethylene oxide, PO는 propylene oxide, m은 0 내지 50, n은 10 내지 50, x는 0 내지 15, y는 0 내지 1이다. EO is ethylene oxide, PO is propylene oxide, m is 0 to 50, n is 10 to 50, x is 0 to 15, and y is 0 to 1.

x가 0일 경우에는 N과 N이 직접 연결된 것을 의미한다. When x is 0, it means that N and N are directly connected.

상기 화학식 1의 양이온성 계면활성제의 중량 평균 분자량은 1,000g/mol 내지 100,000g/mol일 수 있다. The weight average molecular weight of the cationic surfactant of Formula 1 may range from 1,000 g / mol to 100,000 g / mol.

상기 CMP 슬러리 조성물은 금속 산화물 입자 0.01~1 중량%, 양쪽 이온성 화합물 0.001~1 중량%, 양이온성 계면활성제 0.001~1 중량%, 및 잔량으로서 초순수를 포함할 수 있다.The CMP slurry composition may include 0.01 to 1 wt% of metal oxide particles, 0.001 to 1 wt% of an amphoteric compound, 0.001 to 1 wt% of a cationic surfactant, and ultrapure water as a balance.

본 발명의 연마 방법은 상기의 CMP 슬러리 조성물을 사용하여 반도체 웨이퍼를 연마하는 단계를 포함하는 것이다.
The polishing method of the present invention includes polishing a semiconductor wafer using the CMP slurry composition.

본 발명은 질화막 상층에 존재하는 산화막에 대한 연마 속도를 3000Å 이상으로 유지하면서, 질화막 층에 대한 트렌치 상층의 산화막에 대한 연마 속도의 비를 10 이상으로 유지함과 동시에 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화한 CMP 슬러리 조성물을 제공한다.
Disclosed is a method for manufacturing a semiconductor device, which is capable of maintaining a polishing rate to an oxide film in a trench upper layer relative to a nitride film layer at 10 or more and at the same time minimizing dishing on an oxide film in a trench upper layer while maintaining a polishing rate for an oxide film existing in an upper layer of the nitride film to 3000 Å or more The present invention provides a CMP slurry composition that minimizes pitting defects on the entire layer to be polished.

도 1은 본 발명의 조성물이 적용되는 일 구체예인 STI 공정의 개략적인 공정도이다.
도 2는 2차 연마 후 피 연마층 상에 형성되는 파임 결함을 AFM(Atomic Force Microscope)으로 측정한 프로파일이다.
1 is a schematic process diagram of an STI process, which is one embodiment of the composition of the present invention.
FIG. 2 is a profile obtained by AFM (Atomic Force Microscope) measurement of a flaw defect formed on a layer to be polished after secondary polishing.

본 발명의 CMP 슬러리 조성물은 양의 제타 전위를 갖는 금속 산화물 입자, 양쪽 이온성 화합물, 양이온성 계면활성제, 및 초순수를 포함하는 것이다.The CMP slurry composition of the present invention comprises a metal oxide particle having a positive zeta potential, an ionic compound, a cationic surfactant, and ultrapure water.

금속 산화물 입자Metal oxide particles

본 발명의 CMP 슬러리 조성물은 양의 제타 전위를 갖는 금속 산화물 입자를 포함한다.The CMP slurry composition of the present invention comprises metal oxide particles having a positive zeta potential.

상기 양의 제타 전위를 갖는 금속 산화물 입자로는 하소(calcination) 또는 화염 산화(flame oxidation) 또는 수열 합성(thermal synthesis)으로 제조한 것을 사용하는 것이 바람직하다.The metal oxide particles having positive zeta potential are preferably those prepared by calcination, flame oxidation, or thermal synthesis.

상기 양의 제타 전위를 갖는 금속 산화물 입자로는 세리아(CeO2) 입자, 실리카(SiO2) 입자, 알루미나(Al2O3) 입자, 티타니아(TiO2) 입자, 및 지르코니아(ZrO2) 입자로 이루어진 군에서 선택되는 적어도 어느 하나를 사용하는 것이 바람직하다.A metal oxide particle having a zeta potential of both the ceria (CeO 2) particles, and silica (SiO 2) particles, alumina (Al 2 O 3) particles, titania (TiO 2) particles, and zirconia (ZrO 2) particles It is preferable to use at least one selected from the group consisting of

상기 양의 제타 전위를 갖는 금속 산화물 입자는 산화막에 대한 연마 속도를 확보하고, 질화막에 대한 연마 속도를 억제하기 위하여 평균 입경이 70~150nm이고, 비표면적이 10~50m2/g인 것을 사용하는 것이 바람직하다. The metal oxide particles having positive zeta potential have an average particle diameter of 70 to 150 nm and a specific surface area of 10 to 50 m 2 / g in order to secure a polishing rate for the oxide film and to suppress the polishing rate for the nitride film .

상기 양의 제타 전위를 갖는 금속 산화물 입자는 세리아 입자일 수 있으며, 상기 양의 제타 전위를 갖는 금속 산화물 입자로 수열 합성으로 제조한 세리아 입자를 사용하는 경우에는 분산제를 사용하지 않아도 되기 때문에 분산제에 의한 제타 전위 값의 변화 없이 세리아 본연의 양의 제타 전위를 유지하게 되어 산화막 연마에 효과가 크다.The metal oxide particles having positive zeta potential may be ceria particles, and in the case of using ceria particles prepared by hydrothermal synthesis with metal oxide particles having the positive zeta potential, there is no need to use a dispersant, The zeta potential of the original amount of ceria is maintained without changing the value of the zeta potential, which is effective for polishing the oxide film.

상기 양의 제타 전위를 갖는 금속 산화물 입자는 0.01~1 중량%로 사용하는 것이 바람직하며, 0.1~0.7 중량%로 사용하는 것이 보다 바람직하다.
The metal oxide particles having a positive zeta potential are preferably used in an amount of 0.01 to 1% by weight, more preferably 0.1 to 0.7% by weight.

양쪽 이온성 화합물Zwitterionic compound

본 발명의 CMP 슬러리 조성물은 질화막의 연마를 막기(stopping) 위하여 양쪽 이온성 화합물을 포함한다. The CMP slurry composition of the present invention includes both ionic compounds to stop polishing the nitride film.

상기 양쪽 이온성 화합물은 알라닌(alanine), 페닐알라닌(phenylalanine), 프롤린(proline), 글리신(glycine), 히스티딘(histidine), 리신(lysine), 아르기닌(arginine), 트레오닌(threonine), 아스파르트산(aspartic acid), 트립토판(tryptophan), 글루타민(glutamine), 베타인(betaine), 코코미도프로필베테인(ccocomidopropylbetaine), 라우릴프로필베테인(laurylpropylbetaine)으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 아미노산일 수 있다.The ampholytic compounds may be selected from the group consisting of alanine, phenylalanine, proline, glycine, histidine, lysine, arginine, threonine, aspartic acid, wherein the amino acid is at least one selected from the group consisting of acid, tryptophan, glutamine, betaine, cococidopropylbetaine, laurylpropylbetaine, .

상기 양쪽 이온성 화합물은 산화막에 대한 연마 속도를 확보하고, 질화막에 대한 연마 속도를 억제하며, 전체 피 연마층 상의 파임 결함을 최소화하기 위하여 0.001~1 중량%로 사용하는 것이 바람직하고, 0.005~0.7 중량%로 사용하는 것이 보다 바람직하며, 0.01~0.4 중량%로 사용하는 것이 가장 바람직하다.
The amphoteric compound is preferably used in an amount of 0.001 to 1 wt%, more preferably 0.005 to 0.7 wt%, in order to secure a polishing rate for an oxide film, to suppress a polishing rate for a nitride film, More preferably, it is used in an amount of 0.01 to 0.4% by weight.

양이온성Cationic 계면활성제 Surfactants

본 발명의 CMP 슬러리 조성물은 산화막에 대한 연마 속도를 조절하여 연마 프로파일을 개선하고 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화하기 위하여 양이온성 계면활성제를 포함한다.The CMP slurry composition of the present invention comprises a cationic surfactant to improve the polishing profile by controlling the polishing rate for the oxide film, minimize dishing on the oxide film of the trench upper layer, and minimize pitting defects on the entire polishing layer.

상기 양이온성 계면활성제는 트리에틸렌테트라민(triethylenetetramine), N,N-디에틸에탄올아민(N,N-Diethylethanolamine), N,N-디이소프로필아민(N,N-Diisopropylamine), N,N-디터셔리부틸아닐린(N,N-ditertiarybutylaniline), 및 루파졸(Lupasol)로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. The cationic surfactant may be selected from the group consisting of triethylenetetramine, N, N-diethylethanolamine, N, N-diisopropylamine, N, N- At least one selected from the group consisting of N, N-ditertiarybutylaniline, and Lupasol.

상기 양이온성 계면활성제는 하기의 화학식 1의 구조식을 가질 수 있다.
The cationic surfactant may have the following structural formula (1).

[화학식 1][Formula 1]

Figure pat00002

Figure pat00002

여기서, EO 는 ethylene oxide, PO 는 propylene oxide , m은 0 내지 50, n은 10 내지 50, x는 0 내지 15, y는 0 내지 1이다. EO is ethylene oxide, PO is propylene oxide, m is 0 to 50, n is 10 to 50, x is 0 to 15, and y is 0 to 1.

x가 0일 경우에는 N과 N이 직접 연결된 것을 의미한다. When x is 0, it means that N and N are directly connected.

상기 화학식 1의 양이온성 계면활성제의 중량 평균 분자량은 1,000g/mol 내지 100,000g/mol인 것이 바람직하며, 점도는 0.9 내지 2.0cP인 것이 바람직하다. The weight average molecular weight of the cationic surfactant of Formula 1 is preferably 1,000 g / mol to 100,000 g / mol, and the viscosity is preferably 0.9 to 2.0 cP.

본 발명에서는 상기 양이온성 계면활성제를 상기 양쪽 이온성 화합물과 동시에 사용함으로써 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화할 수 있다. In the present invention, by using the cationic surfactant simultaneously with the amphoteric compound, it is possible to minimize dishing on the oxide film in the trench upper layer and to minimize breakdown defects on the entire layer to be polished.

상기 양이온성 계면활성제는 산화막에 대한 연마 속도를 조절하여 연마 프로파일을 개선하고, 질화막에 대한 연마 속도를 억제하며, 트렌치 상층의 산화막 상의 디싱을 최소화하고 전체 피 연마층 상의 파임 결함을 최소화하기 위하여 0.001~1 중량%로 사용하는 것이 바람직하고, 0.005~0.8 중량%로 사용하는 것이 보다 바람직하며, 0.01~0.7 중량%로 사용하는 것이 가장 바람직하다.The cationic surfactant adjusts the polishing rate for the oxide film to improve the polishing profile, to suppress the polishing rate for the nitride film, to minimize dishing on the oxide layer of the trench upper layer and to minimize the defects on the entire polished layer. It is preferable to use it at -1 weight%, It is more preferable to use it at 0.005 to 0.8 weight%, It is most preferable to use it at 0.01 to 0.7 weight%.

본 발명의 연마 방법은 상기의 CMP 슬러리 조성물을 사용하여 반도체 웨이퍼를 연마하는 단계를 포함하는 것이다. 해당 공정은 ILD(Interlayer Dielectric) 공정 또는 STI(Shallow Trench Isolation) 공정일 수 있다. 이때, 본 발명의 CMP 슬러리 조성물은 패턴화된 산화막에 대한 연마 효율이 우수하기 때문에 연마 대상인 반도체 웨이퍼는 패턴화된 산화막을 포함하는 것이 바람직하다.The polishing method of the present invention includes a step of polishing a semiconductor wafer using the above CMP slurry composition. The process may be an interlayer dielectric (ILD) process or a shallow trench isolation (STI) process. At this time, since the CMP slurry composition of the present invention has excellent polishing efficiency for the patterned oxide film, it is preferable that the semiconductor wafer to be polished contains a patterned oxide film.

이하 실시예를 통하여 본 발명을 더욱 구체적으로 설명한다. 다만, 이는 설명을 위한 가능한 실시예일 뿐, 본 발명이 이에 한정되는 것은 아니다.The present invention will be described in more detail with reference to the following Examples. However, this is a possible embodiment for explanation, but the present invention is not limited thereto.


다음의 실시예 및 비교예에서 제조된 CMP 슬러리 조성물을 이용하여 하기 연마 조건에서 패턴 웨이퍼를 연마하였다. 연마에 의해 제거된 웨이퍼의 두께 변화를 측정하여 연마 속도를 산출하였고, 옵티프로브(ThermalWave 社, Optiprobe2600) 장비를 사용하여 측정하였다.
The pattern wafers were polished under the following polishing conditions using the CMP slurry compositions prepared in the following examples and comparative examples. The polishing rate was calculated by measuring the change in thickness of the wafer removed by polishing, and measured using an Optiprobe (ThermalWave, Optiprobe2600) equipment.

<연마 조건><Polishing Condition>

- 패턴 웨이퍼: 상용 슬러리(제일모직 SP7500)로 1차 연마한 200mm MIT (Massachusetts Institute of Technology) 패턴 웨이퍼.- Pattern Wafer: 200mm MIT (Massachusetts Institute of Technology) pattern wafers first polished with commercial slurry (Cheil Industries SP7500).

=> MIT의 full name을 기재하여 주시기 바랍니다.Please fill in the full name of MIT.

- 연마 설비 : AMAT Mirra (AMAT社)-Polishing facility: AMAT Mirra (AMAT company)

- 연마 패드 : IC1010 k-groove(Rodel社)- Polishing pad: IC1010 k-groove (Rodel)

- Polishing time : P1 60초 P2 30초, P3 40초- Polishing time: P1 60 seconds P2 30 seconds, P3 40 seconds

- Polishing Pressure : 3psi- Polishing Pressure: 3 psi

- Platen rpm : 103 rpmPlaten rpm: 103 rpm

- Head rpm : 97 rpmHead rpm: 97 rpm

- Flow rate : 200 ml/min- Flow rate: 200 ml / min

비교예 1Comparative Example 1

화학식 1에서 x=2이고, y=1이며, m/n은 1.5이며 중량 평균 분자량이 10,000g/mol인 양이온성 계면활성제(a) 0.5wt%와 평균 입경이 100nm(호리바 LA710 으로 측정)이고, 중량 평균 분자량이 10,000g/mol인 폴리아크릴산으로 수계 분산하여 제타 전위가 -30mV인 세리아 0.5wt를 초순수로 혼합하여 시료를 준비하였다. pH를 4.5로 맞추어 일액형 슬러리를 제작하였다. 상기 연마 조건에 따라 패턴 밀도가 50%이고 pitch size가 100 ㎛인 패턴 웨이퍼에 대하여 연마 성능을 평가하여 표 1과 같이 결과를 기술하였다.
0.5 wt% of a cationic surfactant (a) having x = 2, y = 1, m / n of 1.5 and a weight average molecular weight of 10,000 g / mol, and an average particle size of 100 nm (measured with HORIBA LA710) , 0.5 wt% of ceria having a zeta potential of -30 mV was dispersed in water with polyacrylic acid having a weight average molecular weight of 10,000 g / mol and mixed with ultrapure water to prepare a sample. and the pH was adjusted to 4.5 to prepare a one-component slurry. The polishing performance was evaluated on a patterned wafer having a pattern density of 50% and a pitch size of 100 탆 according to the above polishing conditions, and the results are shown in Table 1.

비교예 2Comparative Example 2

비교예 1의 세리아 대신에 평균 입경이 100nm(호리바 LA710 으로 측정)이고, 제타 전위가 +40mV인 세리아를 사용한 것을 제외하고, 비교예 1과 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.
A sample was prepared in the same manner as in Comparative Example 1 except that ceria having an average particle size of 100 nm (measured by Horiba LA710) and a zeta potential of +40 mV was used instead of ceria in Comparative Example 1, and the polishing performance was evaluated. .

비교예 3Comparative Example 3

양이온성 계면활성제(a) 대신에 x=2이고, y=1이며, m은 0이며, 중량 평균 분자량이 10,000g/mol인 양이온성 계면활성제(b)를 사용한 것을 제외하고, 비교예 2와 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.
Except that the cationic surfactant (b) was used in place of the cationic surfactant (a), x = 2, y = 1, m = 0 and a weight average molecular weight of 10,000 g / mol. Samples were prepared in the same manner, and polishing performance was evaluated.

비교예 4Comparative Example 4

양이온성 계면활성제를 사용하지 않고, 양쪽 이온성 화합물인 L-아스파르트산(L-Aspartic acid)(c)을 0.2wt%로 사용한 것을 제외하고, 비교예 2와 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.
A sample was prepared in the same manner as in Comparative Example 2, except that a cationic surfactant was not used and 0.2 wt% of L-aspartic acid (c), which is an ionic compound, was used. The results are shown in Table 1.

비교예 5Comparative Example 5

양쪽 이온성 화합물로 L-아스파르트산(L-Aspartic acid) 대신에 글리신(Glycine)(d)을 사용한 것을 제외하고, 비교예 4와 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.
Samples were prepared in the same manner as in Comparative Example 4 except that glycine (d) was used instead of L-aspartic acid as both ionic compounds, and polishing performance was evaluated and shown in Table 1 .

비교예 6Comparative Example 6

양쪽 이온성 화합물로 L-아스파르트산(L-Aspartic acid) 대신에 리신(Lysine)(e)을 사용한 것을 제외하고, 비교예 4와 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.
Samples were prepared in the same manner as in Comparative Example 4 except that Lysine (e) was used instead of L-Aspartic acid as both ionic compounds, and polishing performance was evaluated and shown in Table 1 .

실시예 1Example 1

양이온성 계면활성제(a)를 0.5wt%로 더 추가한 것을 제외하고, 비교예 4와 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.
A sample was prepared in the same manner as in Comparative Example 4 except that the cationic surfactant (a) was further added in an amount of 0.5 wt%, and the polishing performance was evaluated.

실시예 2Example 2

L-아스파르트산(L-Aspartic acid)(c) 대신에 라우릴프로필베테인(laurylpropylbetaine)(f)를 0.05wt%로 사용한 것을 제외하고, 실시예 1과 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.
A sample was prepared and polishing performance was evaluated in the same manner as in Example 1, except that laurylpropylbetaine (f) was used in an amount of 0.05 wt% instead of L-aspartic acid (c) Are shown in Table 1.

실시예 3Example 3

양이온성 계면활성제(a) 대신에 양이온성 계면활성제(b)를 사용한 것을 제외하고, 실시예 1과 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.
Samples were prepared and polishing performance was evaluated in the same manner as in Example 1 except that the cationic surfactant (a) was replaced with the cationic surfactant (b).

실시예 4Example 4

양이온성 계면활성제(a) 대신에 양이온성 계면활성제(b)를 사용한 것을 제외하고, 실시예 2와 동일하게 시료를 준비하고 연마 성능을 평가하여 표 1에 기재하였다.
Samples were prepared and polishing performance was evaluated in the same manner as in Example 2 except that the cationic surfactant (a) was replaced with the cationic surfactant (b).

금속 산화물 입자
제타 전위
Metal oxide particles
Zeta potential
양이온성
계면활성제
Cationic
Surfactants
양쪽 이온성 화합물 Zwitterionic compound 볼록부
Ox RR
Convex portion
Ox RR
볼록부 SiN
RR(α)
Convex portion SiN
RR (?)
오목부 Ox RR(β)Concave Ox RR (β) 선택비
(β/α)
Selectivity
(? /?)
파임(pit)Pit
비교예 1Comparative Example 1 -30mV-30mV a 0.5%a 0.5% 없음none 100100 1010 100100 1010 없음 none 비교예 2Comparative Example 2 +40mV+ 40mV a 0.5%a 0.5% 없음none 35203520 930930 15201520 1.61.6 없음none 비교예 3Comparative Example 3 +40mV+ 40mV b 0.5%b 0.5% 없음none 21502150 810810 12501250 1.51.5 없음none 비교예 4Comparative Example 4 +40mV+ 40mV 없음none c 0.2%c 0.2% 43004300 260260 18201820 77 있음has exist 비교예 5Comparative Example 5 +40mV+ 40mV 없음none d 0.2%d 0.2% 52305230 650650 23002300 4.44.4 없음none 비교예 6Comparative Example 6 +40mV+ 40mV 없음none e 0.2%e 0.2% 49104910 350350 21502150 6.16.1 있음has exist 실시예 1Example 1 +40mV+ 40mV a 0.5%a 0.5% c 0.2%c 0.2% 34503450 3030 650650 21.721.7 없음none 실시예 2Example 2 +40mV+ 40mV a 0.5%a 0.5% f 0.05%f 0.05% 36003600 4040 880880 2222 없음none 실시예 3Example 3 +40mV+ 40mV b 0.5%b 0.5% c 0.2%c 0.2% 35003500 2020 550550 27.527.5 없음none 실시예 4Example 4 +40mV+ 40mV b 0.5%b 0.5% f 0.05%f 0.05% 34003400 2020 720720 3636 없음none

※ 연마 속도 단위 : Å/분 ※ polishing speed unit: Å / minute

※ 파임 결함 : 산화막과 질화막 상에서 육안 식별되는 것으로 육안상 얼룩으로 관찰되며 AFM 측정 시 얼룩 부위는 주변대비 400Å~800Å의 단차로 측정됨. 파임 결함의 판정은 육안상으로 있음 혹은 없음으로 판별하였음.※ Detachment defect: It is visually recognized on the oxide film and nitride film, and it is observed with naked eye. In AFM measurement, the spot area is measured as a step of 400 ~ 800 Å from the surrounding area. The judgment of the defective defect was judged to be with or without the naked eye.

※ 볼록부 Ox RR이란 질화막 상층에 존재하는 산화막에 대한 연마 속도를 의미하고, 볼록부 SiN RR이란 질화막 층에 대한 연마 속도를 의미하며, 오목부 Ox RR이란 트렌치 상층의 산화막에 대한 연마 속도를 의미함※ convex Ox RR means the polishing rate for the oxide film existing in the upper layer of the nitride film, convex SiN RR means the polishing rate for the nitride film layer, and the concavity Ox RR means the polishing rate for the oxide film in the upper trench box

이상의 결과에서 알 수 있듯이, 본 발명의 CMP 슬러리 조성물은 질화막 상층에 존재하는 산화막에 대한 연마 속도를 3000Å 이상으로 유지하면서, 질화막 층에 대한 트렌치 상층의 산화막에 대한 연마 속도의 비를 10 이상으로 유지함과 동시에 전체 피 연마층 상의 파임 결함을 최소화한 CMP 슬러리 조성물을 제공한다.
As can be seen from the above results, the CMP slurry composition of the present invention maintains the ratio of the polishing rate to the oxide film in the trench upper layer relative to the nitride film layer at 10 or more while maintaining the polishing rate for the oxide film present in the upper layer of the nitride film to 3000 Å or more And at the same time, minimizes pitting defects on the entire layer to be polished.

Claims (10)

양의 제타 전위를 갖는 금속산화물 입자;
양쪽 이온성 화합물;
양이온성 계면활성제; 및
초순수;를 포함하는 CMP 슬러리 조성물.
Metal oxide particles having positive zeta potential;
Both ionic compounds;
Cationic surfactants; And
Ultra pure water.
제1항에 있어서, 상기 금속 산화물 입자는 하소, 화염 산화 또는 수열 합성하여 제조된 것을 특징으로 하는 CMP 슬러리 조성물.
The CMP slurry composition according to claim 1, wherein the metal oxide particles are prepared by calcination, flame oxidation or hydrothermal synthesis.
제1항에 있어서, 상기 금속 산화물 입자는 세세리아(CeO2) 입자, 실리카(SiO2) 입자, 알루미나(Al2O3) 입자, 티타니아(TiO2) 입자, 및 지르코니아(ZrO2) 입자로 이루어진 군에서 선택되는 적어도 어느 하나인 것을 특징으로 하는 CMP 슬러리 조성물.
According to claim 1, wherein the metal oxide particles are ceria (CeO 2 ) particles, silica (SiO 2 ) particles, alumina (Al 2 O 3 ) particles, titania (TiO 2 ) particles, and zirconia (ZrO 2 ) particles. CMP slurry composition, characterized in that at least one selected from the group consisting of.
제1항에 있어서, 상기 양의 제타 전위를 갖는 금속 산화물 입자는 평균 입경이 70~150 nm이고, 비표면적이 10~50 m2/g 인 것을 특징으로 하는 CMP 슬러리 조성물.
The CMP slurry composition according to claim 1, wherein the metal oxide particles having a positive zeta potential have an average particle size of 70 to 150 nm and a specific surface area of 10 to 50 m 2 / g.
제1항에 있어서, 상기 양의 제타 전위를 갖는 금속 산화물 입자는 세리아 입자인 것을 특징으로 하는 CMP 슬러리 조성물.
The CMP slurry composition according to claim 1, wherein the metal oxide particles having positive zeta potential are ceria particles.
제1항에 있어서, 상기 양쪽 이온성 화합물은 알라닌 (alanine), 페닐알라닌 (phenylalanine), 프롤린 (proline), 글리신 (glycine), 히스티딘 (histidine), 리신 (lysine), 아르기닌 (arginine), 트레오닌 (threonine), 아스파르트산 (aspartic acid), 트립토판 (tryptophan), 글루타민 (glutamine), 베타인 (betaine), 코코미도프로필베테인(cocomidopropylbetaine) 및 라우릴프로필베테인(laurylpropylbetaine)으로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 아미노산인 것을 특징으로 하는 CMP 슬러리 조성물.
3. The composition of claim 1 wherein the ampholytic compound is selected from the group consisting of alanine, phenylalanine, proline, glycine, histidine, lysine, arginine, threonine, At least one selected from the group consisting of aspartic acid, tryptophan, glutamine, betaine, cocomidopropylbetaine, and laurylpropylbetaine. Lt; RTI ID = 0.0 &gt; CMP &lt; / RTI &gt;
제1항에 있어서, 상기 양이온성 계면활성제는 트리에틸렌테트라민 (triethylenetetramine), N,N-디에틸에탄올아민 (N,N-Diethylethanolamine), N,N-디이소프로필아민 (N,N-Diisopropylamine), N,N-디터셔리부틸아닐린(N,N-ditertiarybutylaniline), 및 루파졸 (Lupasol)로 이루어진 군에서 선택되는 적어도 어느 하나를 포함하는 것을 특징으로 하는 CMP 슬러리 조성물.
The method according to claim 1, wherein the cationic surfactant is selected from the group consisting of triethylenetetramine, N, N-diethylethanolamine, N, N-diisopropylamine And at least one selected from the group consisting of N, N-ditertiarybutylaniline, and Lupasol.
제1항에 있어서, 상기 양이온성 계면활성제는 하기의 화학식 1의 구조식을 갖는 CMP 슬러리 조성물:
[화학식 1]
Figure pat00003

상기 화학식 1에서, EO 는 ethylene oxide, PO 는 propylene oxide , m은 0 내지 50, n은 10 내지 50, x는 0 내지 15, y는 0 내지 1이다.
2. The CMP slurry composition of claim 1, wherein the cationic surfactant has the following structural formula:
[Formula 1]
Figure pat00003

Wherein EO is ethylene oxide, PO is propylene oxide, m is 0 to 50, n is 10 to 50, x is 0 to 15, and y is 0 to 1.
제1항에 있어서, 상기 CMP 슬러리 조성물은 상기 양의 제타 전위를 갖는 금속산화물 입자 0.2~0.5 중량%, 양쪽이온성 화합물 0.001~1.0 중량%, 양이온성 계면활성제 0.0001~0.5 중량% 및 잔량의 초순수를 포함하는 CMP 슬러리 조성물.
The CMP slurry composition of claim 1, wherein the CMP slurry composition comprises 0.2-0.5 wt% metal oxide particles having positive zeta potential, 0.001-1.0 wt% zwitterionic compound, 0.0001-0.5 wt% cationic surfactant, &Lt; / RTI &gt;
제1항 내지 제9항 중 어느 하나의 CMP 슬러리 조성물을 사용하여 반도체 웨이퍼를 연마하는 단계를 포함하는 연마 방법.




A polishing method comprising polishing a semiconductor wafer using the CMP slurry composition of any one of claims 1 to 9.




KR1020110146562A 2011-12-29 2011-12-29 CMP slurry composition and polishing method using the same KR101411019B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110146562A KR101411019B1 (en) 2011-12-29 2011-12-29 CMP slurry composition and polishing method using the same
PCT/KR2012/010896 WO2013100451A1 (en) 2011-12-29 2012-12-14 Cmp slurry composition and polishing method using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110146562A KR101411019B1 (en) 2011-12-29 2011-12-29 CMP slurry composition and polishing method using the same

Publications (2)

Publication Number Publication Date
KR20130077699A true KR20130077699A (en) 2013-07-09
KR101411019B1 KR101411019B1 (en) 2014-06-24

Family

ID=48697835

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110146562A KR101411019B1 (en) 2011-12-29 2011-12-29 CMP slurry composition and polishing method using the same

Country Status (2)

Country Link
KR (1) KR101411019B1 (en)
WO (1) WO2013100451A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160079328A (en) * 2014-12-26 2016-07-06 솔브레인 주식회사 Slurry composition for chemical mechanical polishing and method for manufacturing semiconductor device by using the same
WO2017043701A1 (en) * 2015-09-08 2017-03-16 삼성에스디아이 주식회사 Cmp slurry composition for polishing copper, and polishing method using same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102096695B1 (en) * 2017-12-14 2020-04-02 주식회사 케이씨텍 Polishing slurry composition for low density sti cmp process
KR20200076991A (en) * 2018-12-20 2020-06-30 주식회사 케이씨텍 Polishing slurry composition for sti process
KR102213533B1 (en) * 2020-04-24 2021-02-09 주식회사 케이씨텍 Polishing slurry composition for sti process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7071105B2 (en) * 2003-02-03 2006-07-04 Cabot Microelectronics Corporation Method of polishing a silicon-containing dielectric
KR20060016498A (en) * 2004-08-18 2006-02-22 삼성전자주식회사 Slurry composition, method for forming the slurry composition and method for polishing an object using the slurry composition
KR20100079854A (en) * 2008-12-31 2010-07-08 제일모직주식회사 Slurry composition for chemical mechanical polishing
KR101191427B1 (en) * 2009-11-25 2012-10-16 주식회사 엘지화학 Slurry composition for chemical mechanical polishing and preparation method of the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160079328A (en) * 2014-12-26 2016-07-06 솔브레인 주식회사 Slurry composition for chemical mechanical polishing and method for manufacturing semiconductor device by using the same
WO2017043701A1 (en) * 2015-09-08 2017-03-16 삼성에스디아이 주식회사 Cmp slurry composition for polishing copper, and polishing method using same
US10150890B2 (en) 2015-09-08 2018-12-11 Samsung Sdi Co., Ltd. CMP slurry composition for polishing copper and polishing method using the same

Also Published As

Publication number Publication date
WO2013100451A1 (en) 2013-07-04
KR101411019B1 (en) 2014-06-24

Similar Documents

Publication Publication Date Title
KR100759623B1 (en) Chemical-Mechanical Silicon Dioxide Polishing Slurry
KR101480179B1 (en) Cmp slurry composition and polishing method using the same
KR20080112126A (en) Chemical mechanical polishing aqueous dispersion preparation set, method of preparing chemical mechanical polishing aqueous dispersion, chemical mechanical polishing aqueous dispersion, and chemical mechanical polishing method
US8409990B2 (en) Chemical-mechanical polishing compositions and methods of making and using the same
KR101411019B1 (en) CMP slurry composition and polishing method using the same
US20090047870A1 (en) Reverse Shallow Trench Isolation Process
KR20200077372A (en) Polishing compositions and methods of using same
KR20150032495A (en) Low defect chemical mechanical polishing composition
JP2008124377A (en) Aqueous dispersant for chemical-mechanical polishing, chemical-mechanical polishing method, and kit for preparing aqueous dispersant for chemical-mechanical polishing
JP2006352096A (en) Chemical mechanical polishing aqueous dispersion, chemical mechanical polishing method, and kit for preparing chemical mechanical polishing aqueous dispersion
EP2092034B1 (en) Chemical mechanical polishing slurry compositions, methods of preparing the same and methods of using the same
US9758698B2 (en) Polishing slurry and substrate polishing method using the same
US10844244B2 (en) Polishing additive composition, polishing slurry composition and method for polishing insulating film of semiconductor element
JP2006128689A (en) Water-based slurry composition for chemical mechanical planarization
KR101279969B1 (en) CMP slurry composition for polishing metal wiring and polishing method using the same
KR102164777B1 (en) Polishing slurry composition
KR101566068B1 (en) Cmp slurry composition and polishing method using the same
KR20170072524A (en) Chemical Mechanical Polishing Slurry and POLISHING METHOD USING THE SAME
JP4984032B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
US20080314872A1 (en) Chemical-Mechanical Polishing Compositions Containing Aspartame And Methods Of Making And Using The Same
JP2013065858A (en) Aqueous dispersing element for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersing element for chemical mechanical polishing
JPWO2004100243A1 (en) Chemical mechanical polishing slurry composition capable of compensating for nanotopography effect and surface planarization method of semiconductor device using the same
KR20130069994A (en) Chemical mechanical polishing slurry compositions and polishing method using the same
KR101385044B1 (en) CMP slurry composition and polishing method using the same
KR20070090128A (en) Composition for polishing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170526

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180518

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190527

Year of fee payment: 6