WO2013099744A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2013099744A1
WO2013099744A1 PCT/JP2012/083010 JP2012083010W WO2013099744A1 WO 2013099744 A1 WO2013099744 A1 WO 2013099744A1 JP 2012083010 W JP2012083010 W JP 2012083010W WO 2013099744 A1 WO2013099744 A1 WO 2013099744A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
subpixel
opening
pixel
organic layer
Prior art date
Application number
PCT/JP2012/083010
Other languages
French (fr)
Japanese (ja)
Inventor
伸一 川戸
菊池 克浩
学 二星
越智 貴志
優人 塚本
知裕 小坂
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2013099744A1 publication Critical patent/WO2013099744A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/351Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels comprising more than three subpixels, e.g. red-green-blue-white [RGBW]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/876Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair

Definitions

  • the present invention relates to a display device having a microcavity effect.
  • the configuration of the organic EL display device is roughly divided into a configuration in which an RGB sub-pixel is obtained using an EL layer that emits red (R), green (G), and blue (B), and white (W).
  • a configuration in which an RGB sub-pixel is obtained using an EL layer that emits color and a color filter (CF) that transmits red, green, and blue light (hereinafter may be referred to as a W + CF method) can be given.
  • the W + CF method does not require a separate process for EL layers that emit R, G, and B using a metal mask, it is extremely difficult to realize a high-definition display or a very large display. It is an effective method.
  • Non-Patent Document 1 discloses a technique using a microcavity technique in the W + CF method.
  • FIG. 6 is a cross-sectional view showing the configuration of an organic EL display panel to which the microcavity technology is applied.
  • an organic EL display panel 101 includes a TFT substrate 102, an anode 103, an ITO (Indium Tin Oxide) layer 104, an organic layer 105, and a transflective electrode 106 that is a cathode in this order. Is arranged. A CF 107 is disposed apart from the semi-transmissive electrode 106.
  • ITO Indium Tin Oxide
  • the anode 103 and the ITO layer 104 are arranged for each of the sub-pixels 110R, 110G, and 110B.
  • the CF 107 includes a CF 107R that transmits red light arranged in the sub-pixel 110R, a CF 107G that transmits green light arranged in the sub-pixel 110G, and a CF 107B that transmits blue light arranged in the sub-pixel 110B. I have.
  • the organic layer 106 and the semi-transmissive electrode 106 are formed across the subpixels 110R, 110G, and 110B.
  • the light emitted from the organic layer 105 passes through the CF 107R. Thereby, red light is emitted from the sub-pixel 110R.
  • the light emitted from the organic layer 105 passes through the CF 107G. Thereby, green light is emitted from the sub-pixel 110G.
  • the light emitted from the organic layer 105 passes through the CF 107B. Thereby, blue light is emitted from the sub-pixel 110B.
  • a microcavity technique is used for the organic EL display panel 101. Specifically, by adjusting the film thickness of the ITO layer 104, in the subpixel 110R, the distance between the anode 103 and the semi-transmissive electrode 106 is set to an optical path length in which the red wavelength resonates, and in the subpixel 110G, the anode 103 The sub-pixel 110B has a distance between the anode 103 and the semi-transmissive electrode 106, and an optical path length at which the blue wavelength resonates.
  • the red wavelength resonates between the anode 103 and the semi-transmissive electrode 106
  • the green wavelength resonates between the anode 103 and the semi-transmissive electrode 106
  • the anode 103 and The blue wavelength resonates between the semi-transmissive electrodes 106. This is called the so-called microcavity effect.
  • the color purity of each of the red light emitted from the subpixel 110R, the green light emitted from the subpixel 110G, and the blue light emitted from the subpixel 110B is increased and reduced. Power consumption can be realized.
  • a method of constructing one pixel from four color subpixels, in which the W subpixel is added to the RGB subpixel, is also very effective as a technique for obtaining the power consumption reduction effect. Is.
  • the transflective electrode 106 serving as a cathode is formed over the entire panel across the sub-pixels 110R, 110G, and 110B. If the W subpixel is provided, the transflective electrode is formed in the W subpixel with the same film thickness. For this reason, unless the ITO layer in the W subpixel is made extremely different in thickness from the other subpixels, the cavity effect is also applied in the W subpixel, and the emitted light from the W subpixel is colored. End up.
  • Patent Document 1 discloses a method in which the W sub-pixel is further composed of a plurality of sub-sub-pixels that emit RGB color lights.
  • FIG. 7 is a cross-sectional view showing the configuration of one pixel of the display device described in Patent Document 1.
  • one pixel of the display device includes an R subpixel, a G subpixel, a B subpixel, and a W subpixel.
  • the W subpixel is composed of an R subpixel, a G subsubpixel, and a B subsubpixel.
  • a light reflecting electrode 234 is formed for each R, G, B subpixel.
  • the white organic electroluminescent layer 235, the transparent electrode 236, the optical path length adjusting layer 237, the light transflective layer 232, and the adhesive layer are sequentially formed on the light reflective electrode 234 across the R, G, and B subpixels. 238 are stacked.
  • the adhesive layer 238, the CF layer 233 and the transparent substrate 239 are sequentially arranged.
  • the CF layer 233 includes an R filter, a G filter, and a B filter.
  • the R subpixel is provided with an R filter
  • the G subpixel is provided with a G filter
  • the B subpixel is provided with a B filter.
  • an R filter is disposed on the R sub-subpixel
  • a G filter is disposed on the G sub-subpixel
  • a B filter is disposed on the B sub-subpixel.
  • the optical path length adjusting layer 237 is arranged with the thickness changed corresponding to the emission wavelength of each of the R, G, B subpixels and the R, G, B subpixels.
  • the thickness of the optical path length adjusting layer 237 is set so that the distance between the light reflecting electrode 234 and the light transflective layer 232 is an optical distance at which R, G, B light resonates.
  • the light emitted from the white organic electroluminescent layer 235 is repeatedly reflected between the light reflecting electrode 234 and the light semi-transmissive reflective layer 232, and R, G, and B light having resonance wavelengths are respectively reflected in the light semi-transmissive reflective layer.
  • the light After passing through 232, the light passes through the transparent substrate 239 through the R, G, and B filters, and is emitted to the outside. In the W sub-pixel, white light is observed by mixing R, G, and B light.
  • the required wavelength resonates between the light reflecting electrode 234 and the light transflective layer 232 in each R • G • B subpixel and each R • G • B subsubpixel. Therefore, since the intensity of the necessary wavelength is amplified, light with high luminance can be extracted.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2010-80423 (published Apr. 08, 2010)”
  • one subpixel is further divided into a plurality of subsubpixels, and it is necessary to manufacture a high-resolution display device, which increases the burden of the manufacturing process and increases productivity. It drops significantly.
  • the present invention has been made to solve the above-described problems, and its purpose is to provide unnecessary coloring of light emitted from subpixels that do not require wavelength resonance without causing a significant decrease in productivity. It is to suppress.
  • a display device of the present invention includes a first electrode disposed for each of a plurality of subpixels constituting one pixel, and a second electrode disposed to face the first electrode.
  • a display device comprising: a first electrode; an organic layer that emits light between the first and second electrodes; and an insulating layer that covers an edge of the first electrode. An opening is provided, and the organic layer and the second electrode are disposed in the opening, and the plurality of sub-pixels emit first and second sub-lights that emit light of different colors.
  • the pixel has a pixel, the distance between the first and second electrodes in the opening is a distance at which the peak wavelength of visible light resonates, and the aperture ratio of the insulating layer in the second subpixel is The aperture ratio of the insulating layer in the first subpixel is small.
  • the display device of the present invention includes a first electrode disposed for each of a plurality of subpixels constituting one pixel, a second electrode disposed to face the first electrode, and the first and first electrodes.
  • a display device comprising: an organic layer that emits light disposed between the two electrodes; and an insulating layer that covers an edge of the first electrode, the opening being provided in the insulating layer.
  • the organic layer and the second electrode are disposed in a portion, and the plurality of sub-pixels include first and second sub-pixels that emit light of different colors, and the opening in the opening
  • the distance between the first and second electrodes is a distance at which the peak wavelength of visible light resonates
  • the aperture ratio of the insulating layer in the second subpixel is the insulating ratio in the first subpixel. Small compared to the aperture ratio of the layer.
  • FIG. 2A is a cross-sectional view taken along line X-X ′ of FIG. 1
  • FIG. 2B is a cross-sectional view taken along line Y-Y ′ of FIG. 1.
  • FIG. 3 is a cross-sectional view illustrating a configuration of an organic EL display panel included in the organic EL display device according to the present embodiment.
  • the organic EL display device 1 includes an organic EL display panel 2 for displaying an image, and a circuit unit 3 provided with a drive circuit for driving the organic EL display panel 2 and the like.
  • a plurality of pixels are arranged in a matrix in the image display area of the organic EL display panel 2.
  • One pixel is composed of a plurality of sub-pixels that emit light of different colors.
  • the circuit unit 3 is provided with wiring such as a flexible film cable, a driving circuit such as a driver, and the like.
  • the circuit unit 3 is connected to the organic EL display panel 2 through electric wiring terminals.
  • the organic EL display panel 2 includes a support substrate 10, a sealing substrate 20, a sealing resin 41, and a filling resin 42.
  • the support substrate 10 and the sealing substrate 20 are arranged to be opposed to each other while being separated from each other.
  • the sealing resin 41 and the filling resin 42 are disposed between the support substrate 10 and the sealing substrate 20.
  • the sealing resin 41 is arranged in a frame shape along the periphery of the support substrate 10 and the sealing substrate 20. The space between the support substrate 10 and the sealing substrate 20 is sealed by the sealing resin 41.
  • the filling resin 42 contains a desiccant or the like and fills a space formed by the support substrate 10, the sealing substrate 20, and the sealing resin 41.
  • a TFT thin film transistor
  • a pixel electrode for driving the subpixel are arranged on the support substrate 10 for each subpixel. Yes.
  • An organic layer having a light emitting layer is directly or indirectly stacked on the pixel electrode.
  • electrical wiring terminals electrical connection portions, connection terminals
  • the organic EL display panel 2 transmits light emitted from the organic layer of the support substrate 10 through the filling resin 42 and the sealing substrate 20, and the surface of the sealing substrate 20 (with the support substrate 10 and the support substrate 10). It is assumed that this is a top emission type organic EL display panel that emits light as outgoing light on the side opposite to the opposite surface.
  • the organic EL display panel 2 is not limited to this, and a bottom that emits light emitted from the organic layer as outgoing light on the back surface (the side opposite to the surface facing the sealing substrate 20) of the support substrate 10. It may be an emission type.
  • the CF may be provided on the support substrate 10 instead of the sealing substrate 20.
  • an inorganic film or a mixed organic / inorganic laminated film may be laminated on the support substrate 10. Further, the sealing resin 41, the sealing substrate 20, and the filling resin 42 may be omitted as long as the sealing performance of the organic layer is sufficient with only an inorganic film or an organic / inorganic mixed laminated film.
  • FIG. 1 is a plan view showing the configuration of one pixel of the organic EL display device 1.
  • 2A is a cross-sectional view taken along the line X-X ′ of FIG. 1
  • FIG. 2B is a cross-sectional view taken along the line Y-Y ′ of FIG. 1.
  • pixels 50 each of which is composed of a plurality of sub-pixels 50R, 50G, 50B, and 50W that emit light of different colors and are arranged side by side in order. Is formed.
  • the subpixel 50 (first subpixel) R emits red light
  • the subpixel 50 (first subpixel) G emits green light
  • the subpixel (first subpixel) 50B emits blue light
  • the sub-pixel 50 (second sub-pixel) W emits white light.
  • the arrangement of the sub-pixels 50R, 50G, 50B, and 50W is not particularly limited, but in the present embodiment, a stripe arrangement in which sub-pixels of the same color are continuously arranged in one direction between the pixels 50. It is assumed that
  • sub-pixels of the same color are continuously arranged in the longitudinal direction of the sub-pixels 50R, 50G, 50B, and 50W. Further, the sub-pixels 50R, 50G, 50B, and 50W are arranged in this order in a short direction that is a direction orthogonal to the longitudinal direction of each of the sub-pixels 50R, 50G, 50B, and 50W.
  • the arrangement of the sub-pixels 50R, 50G, 50B, and 50W is not limited to the stripe, and may be another arrangement.
  • the color of light emitted from sub-pixels other than the sub-pixel 50 ⁇ / b> W constituting one pixel 50 is not limited to the three colors RGB, for example, four colors including a sub-pixel that emits yellow (Y) light. Or two or less colors.
  • the display unit of the organic EL display device 1 includes a plurality of source wirings arranged in parallel to each other and a plurality of gate wirings orthogonal to each of the plurality of source wirings and arranged in parallel to each other. And are arranged.
  • each of the sub-pixels 50R, 50G, 50B, and 50W is a region partitioned by a plurality of adjacent source lines and a plurality of adjacent gate lines when viewed in plan.
  • the sealing substrate 20 includes an insulating substrate 21, CFs 22R, 22G, and 22B constituting the CF 22, and a BM (black matrix) 22BM.
  • the insulating substrate 21 is a base substrate and is made of an insulating material.
  • the insulating substrate 21 can be made of a transparent insulating material such as non-alkali glass or plastic.
  • CF22R / 22G / 22B / 22W are arranged on the back surface of the insulating substrate 21 (the surface facing the support substrate 10).
  • CF22R is a CF that transmits red light, and is arranged in the sub-pixel 50R.
  • the CF 22G is a CF that transmits green light, and is disposed in the sub-pixel 50G.
  • the CF 22B is a CF that transmits blue light, and is disposed in the sub-pixel 50B.
  • the CF 22W is made of a transparent resin material that transmits white light, that is, light emitted from the organic EL element 30 as it is.
  • the CF 22W is disposed in the sub pixel 50W.
  • BM22BM is the back surface of the insulating substrate 21 (the surface facing the support substrate 10) and is arranged between CF22R, 22G, 22B, and 22W. That is, one of CF22R, 22G, 22B, and 22W is arranged in the opening of BM22BM.
  • each of CF22R, 22G, 22B, and 22W is parallel to the longitudinal direction of each of the sub-pixels 50R, 50G, 50B, and 50W.
  • the lateral direction orthogonal to the longitudinal direction of each of the CF 22R, 22G, 22B, and 22W is parallel to the lateral direction orthogonal to the longitudinal direction of each of the sub-pixels 50R, 50G, 50B, and 50W.
  • the support substrate 10 includes a TFT substrate 11, a reflective anode (first electrode) 31, transparent layers 37R, 37G, 37B, and 37W, an edge cover (insulating layer) 17, an organic layer 36, and a transflective cathode ( Second electrode) 35.
  • the TFT substrate 11 is an insulating substrate, the plurality of source wirings and the plurality of gate wirings, and the TFT disposed in the vicinity of a region where the plurality of source wirings and the plurality of gate wirings intersect. And a plurality of source wirings, the plurality of gate wirings, and an interlayer insulating film covering the TFT.
  • the reflective anode 31 is for injecting (supplying) holes into the organic layer 36 and for reflecting the light emitted from the organic layer 36 toward the sealing substrate 20 and emitting it out of the organic EL display panel 2. is there.
  • the reflective anode 31 is patterned on the TFT substrate 11 for each of the sub-pixels 50R, 50G, 50B, and 50W.
  • the reflective anode 31 is connected to the TFT through a contact hole provided in the interlayer insulating film.
  • the reflective anode 31 a metal material having a high reflectance can be used.
  • the material constituting the reflective anode 31 include Ag or an Ag alloy, Al or an Al alloy, and the like.
  • the transparent layers 37R, 37G, 37B, and 37W are for adjusting the distance between the reflective anode 31 and the transflective cathode 35, respectively.
  • the film thicknesses of the transparent layers 37R, 37G, 37B, and 37W are appropriately changed or omitted depending on the thickness of another film disposed between the reflective anode 31 and the semi-transmissive cathode 35.
  • the transparent layers 37R, 37G, 37B, and 37W are made of a transparent conductive material.
  • the transparent layers 37R, 37G, 37B, and 37W have a desired film thickness for each color by etching ITO.
  • the constituent material of the transparent layers 37R, 37G, 37B, and 37W is not limited to ITO, and may be any transparent conductive material such as IZO (IndiumZZinc Oxide) or gallium-doped zinc oxide (GZO). Good.
  • the transparent layer 37R is in the sub-pixel 50R and is patterned on the reflective anode 31.
  • the transparent layer 37G is in the subpixel 50G and is patterned on the reflective anode 31.
  • the transparent layer 37B is formed in a pattern on the reflective anode 31 in the sub-pixel 50B.
  • the transparent layer 37 ⁇ / b> W is in the sub-pixel 50 ⁇ / b> W and is patterned on the reflective anode 31.
  • the transparent layer 37R has a thickness such that the distance between the reflective anode 31 and the semi-transmissive cathode 35 sandwiching the transparent layer 37R is an optical path length at which the red peak wavelength resonates.
  • the film thickness of the transparent layer 37R needs to be thicker than the transparent layer 37G, the transparent layer 37B, and the transparent layer 37W. is there.
  • the transparent layer 37R has a thickness of about 100 nm.
  • the transparent layer 37G has a film thickness such that the distance between the reflective anode 31 and the semi-transmissive cathode 35 sandwiching the transparent layer 37G is an optical path length at which the green peak wavelength resonates.
  • the transparent layer 37G is thinner than the transparent layer 37R and thicker than the transparent layer 37B and the transparent layer 37W. There is a need. As an example, when the organic layer 36 has a thickness of 200 nm, the transparent layer 37G has a thickness of about 50 nm.
  • the transparent layer 37B has a thickness such that the distance between the reflective anode 31 and the semi-transmissive cathode 35 sandwiching the transparent layer 37B is an optical path length at which the blue peak wavelength resonates.
  • the film thickness of the transparent layer 37B needs to be thinner than the transparent layer 37R and the transparent layer 37G.
  • the transparent layer 37B can be omitted.
  • the transparent layer 37W can have the same thickness as the transparent layer 37B. As an example, when the organic layer 36 has a thickness of 200 nm, the transparent layer 37W can be omitted.
  • the edge cover 17 is formed so that the organic layer 36 becomes thin or the electric field concentration occurs at the edges (end portions) of the reflective anode 31, that is, the transparent layers 37R, 37G, 37B, and 37W.
  • This is an insulating layer for preventing the transmission cathode 35 from being short-circuited.
  • the edge cover 17 is disposed so as to cover the edges of the reflective anode 31 and the transparent layers 37R, 37G, 37B, and 37W.
  • the edge cover 17 has openings formed in the sub-pixels 50R, 50G, 50B, and 50W. However, the aperture ratio of the edge cover 17 in the sub-pixels 50R, 50G, and 50B is different from the aperture ratio of the edge cover 17 in the sub-pixel 50W.
  • an opening (first opening) 18a is formed in the edge cover 17.
  • a plurality of openings (second openings) 18b having a smaller area than the openings 18a are formed in the edge cover 17.
  • the edge cover 17 is formed by applying a photosensitive acrylic insulating film using a coating technique such as spin coating, and using a normal photolithography technique to each of the sub-pixels 50R, 50G, It is obtained by forming the opening 18a and the opening 18b in 50B and 50W.
  • the film thickness of the edge cover 17 is about 2 ⁇ m.
  • Various materials can be used as the material of the edge cover 17.
  • resin materials such as acrylic, imide, and siloxane, organic materials, inorganic materials such as silicon oxide and silicon nitride, and the like can be used as the material for the edge cover 17.
  • the edge cover 17 is made of a transparent material, and almost entirely covers the transparent layer 37W of the sub-pixel 50W.
  • each of the sub-pixels 50R, 50G, and 50B is provided with one opening 18a over substantially the entire surface of each of the sub-pixels 50R, 50G, and 50B.
  • the area of the opening 18a of the edge cover 17 in each of the sub-pixels 50R, 50G, and 50B is approximately the same as the area of each of the CFs 22R, 22G, and 22B, or the sealing substrate 20 and the support substrate 10
  • the area of CF22R / 22G / 22B is slightly larger in consideration of the bonding margin.
  • the edge cover 17 covers the edge of the transparent layer 37R and exposes the transparent layer 37R through the opening 18a.
  • the edge cover 17 is disposed along the peripheral edge of the transparent layer 37R.
  • the transparent layer 37R has a larger area exposed by the opening 18a than the area covered by the edge cover 17.
  • the edge cover 17 covers the edge of the transparent layer 37G and exposes the transparent layer 37G through the opening 18a.
  • the edge cover 17 is disposed along the peripheral edge of the transparent layer 37G.
  • the transparent layer 37G has a larger area exposed by the opening 18a than an area covered by the edge cover 17.
  • the edge cover 17 covers the edge of the transparent layer 37B and exposes the transparent layer 37B through the opening 18a.
  • the edge cover 17 is disposed along the peripheral edge of the transparent layer 37B.
  • the transparent layer 37 ⁇ / b> B has a larger area exposed by the opening 18 a than the area covered by the edge cover 17.
  • the organic layer 36 is laminated on each of the transparent layers 37R, 37G, and 37B whose surfaces are exposed through the openings 18a of the sub-pixels 50R, 50G, and 50B.
  • the inside of each opening 18a is a light emitting portion of each sub-pixel 50R, 50G, and 50B.
  • the longitudinal directions of the openings 18a of the edge cover 17 of the subpixels 50R, 50G, and 50B are parallel to the longitudinal directions of the subpixels 50R, 50G, and 50B.
  • the short direction perpendicular to the respective longitudinal directions of the openings 18a of the edge covers 17 of the sub-pixels 50R, 50G, and 50B is parallel to the short direction perpendicular to the respective longitudinal directions of the sub-pixels 50R, 50G, and 50B. is there.
  • the edge cover 17 covers not only the edge of the transparent layer 37W but also the substantially entire surface of the transparent layer 37W.
  • a plurality of minute openings 18b are formed in the edge cover 17 covering substantially the entire surface of the transparent layer 37W.
  • Each of the plurality of openings 18b is a minute opening smaller than the area of the opening 18a.
  • the transparent layer 37W is exposed through the plurality of openings 18b.
  • the area covered with the edge cover 17 of the transparent layer 37W is wider than the area exposed by the plurality of openings 18b.
  • a plurality of openings 18b are formed so that the aperture ratio of the edge cover 17 is smaller than the aperture ratio of the edge cover 17 in the subpixels 50R, 50G, and 50B.
  • the plurality of openings 18b are formed in the edge cover 17 of the sub-pixel 50W in a line along the longitudinal direction of the sub-pixel 50W.
  • the organic layer 36 is a layer that emits light by recombining holes injected from the reflective anode 31 side and electrons injected from the transflective cathode 35 side. In the present embodiment, the organic layer 36 emits white light.
  • the organic layer 36 is laminated in the edge cover 17 and the openings 18a and 18b using, for example, a vacuum deposition method.
  • the organic layer 36 is formed across the sub-pixels 50R, 50G, 50B, and 50W, and is further formed over the entire image display area of the organic EL display panel 2.
  • the organic layer 36 covers the edge cover 17 and the transparent layers 37R, 37G, 37B, and 37W.
  • the organic layer 36 is in contact with the transparent layer 37R in the opening 18a in the subpixel 50R, is in contact with the transparent layer 37G in the opening 18a in the subpixel 50G, and is transparent in the opening 18a in the subpixel 50B.
  • 37B, and the sub-pixel 50W is in contact with the transparent layer 37W in the opening 18b.
  • the organic layer 36 that emits white light and the CF 22 that transmits R, G, B, and W color light are used. Thereby, it is not necessary to form a layer emitting light of each color by vapor deposition or the like in each of the sub-pixels 50R, 50G, 50B, and 50W.
  • the organic layer 36 that emits white light can be formed by vapor deposition or the like, and the high-definition for separately coating the RGB light-emitting layers on the sub-pixels 50R, 50G, 50B, and 50W. No mask is needed. As a result, the manufacturing cost can be reduced.
  • an organic layer that emits R-color light is disposed in the subpixel 50R
  • an organic layer that emits G-color light is disposed in the subpixel 50G
  • an organic layer that emits B-color light is disposed in the subpixel 50B.
  • An organic layer that emits W color light may be disposed in the sub-pixel 50W. In this case, the CF 22 can be omitted.
  • the transflective cathode 35 is a layer having a function of injecting electrons into the lower organic layer 36.
  • the transflective cathode 35 has a function of reflecting or transmitting part of the light emitted from the organic layer 36.
  • the transflective cathode 35 extends over the sub-pixels 50R, 50G, 50B, and 50W, and is formed over the entire image display area of the organic EL display panel 2.
  • the transflective cathode 35 is stacked on the organic layer 36.
  • the transflective cathode 35 is made of, for example, Ag or the like, and is formed on the entire surface of the organic layer 36 by vapor deposition or the like.
  • the transflective cathode 35 Since the organic EL display device 1 has a top emission structure that extracts light emitted upward, the transflective cathode 35 needs to transmit light. However, in order to obtain a microcavity effect between the transflective cathode 35 and the reflective anode 31, the transflective cathode 35 also needs to have a certain degree of reflectivity.
  • the transflective cathode 35 is made of Ag and has a thickness of about 20 nm.
  • the material and film thickness of the transflective cathode 35 are not limited to this, and can be composed of a metal thin film having a film thickness of about 10 nm to 30 nm, for example.
  • the transflective cathode 35 can be made of Al, an alloy of Ag and Al, or the like.
  • the cathode and the anode may be reversed between the semi-transmissive cathode 35 and the reflective anode 31. That is, instead of the semi-transmissive cathode 35, a semi-transmissive anode may be stacked on the organic layer 36, and the reflective cathode may be disposed below the organic layer 36 instead of the reflective anode 31.
  • a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like may be disposed between the reflective anode 31 and the semi-transmissive cathode 35.
  • the organic layer 36 and the transflective cathode 35 are not provided for each of the subpixels 50R, 50G, 50B, and 50W, but straddle the subpixels 50R, 50G, 50B, and 50W, It is provided on the entire image display area of the organic EL display device 1.
  • the organic layer 36 and the transflective cathode 35 are stacked not only in the openings 18a of the subpixels 50R, 50G, and 50B and the openings 18b of the subpixel 50W but also on the edge cover 17. Yes.
  • each of the sub-pixels 50R, 50G, 50B, and 50W such as performing separate deposition, etc. There is no need to form them separately. For this reason, the manufacturing process can be simplified.
  • the pixel 50 of the organic EL display device 1 current is injected from the reflective anode 31 into the organic layer 36.
  • the organic layer 36 emits white light in the openings 18a and 18b in the sub-pixels 50R, 50G, 50B, and 50W.
  • the sub-pixels 50R, 50G, and 50B have a cavity structure for obtaining a cavity effect.
  • the distance between the reflective anode 31 in the opening 18a and the semi-transmissive cathode 35 is reduced. Is the distance at which the peak wavelength of the R-color light, which is the visible light emitted from, resonates.
  • the thickness of the organic layer 36 is 200 nm
  • the thickness of the transparent layer 37R is 100 nm
  • the distance between the reflective anode 31 and the transflective cathode 35 is 300 nm.
  • the red peak wavelength resonates between the reflective anode 31 and the semi-transmissive cathode 35 among the wavelengths of the W color light emitted from the organic layer 36 in the opening 18a.
  • the W color light emitted from the organic layer 36 is colored red, passes through the semi-transmissive cathode 35, and further passes through the CF 22R, and is emitted from the subpixel 50R to the outside as R color light with high color purity. .
  • the distance between the reflective anode 31 in the opening 18a and the semi-transmissive cathode 35 is emitted from the subpixel 50G.
  • the peak wavelength of the G color light which is visible light, is a distance at which resonance occurs.
  • the thickness of the organic layer 36 is 200 nm
  • the thickness of the transparent layer 37G is 50 nm
  • the distance between the reflective anode 31 and the transflective cathode 35 is 250 nm.
  • the green peak wavelength resonates between the reflective anode 31 and the semi-transmissive cathode 35 among the wavelengths of the W color light emitted from the organic layer 36 in the opening 18a.
  • the W color light emitted from the organic layer 36 is colored green, passes through the semi-transmissive cathode 35, and further passes through the CF 22G, and is emitted from the subpixel 50G to the outside as G color light with high color purity. .
  • the distance between the reflective anode 31 in the opening 18a and the semi-transmissive cathode 35 is emitted from the sub-pixel 50B.
  • the peak wavelength of the B-color light that is visible light is the distance at which resonance occurs.
  • the film thickness of the organic layer 36 is 200 nm
  • the transparent layer 37B is omitted
  • the distance between the reflective anode 31 and the transflective cathode 35 is 200 nm.
  • the blue peak wavelength resonates between the reflective anode 31 and the semi-transmissive cathode 35 among the wavelengths of the W color light emitted from the organic layer 36 in the opening 18a.
  • the W color light emitted from the organic layer 36 is colored blue, passes through the semi-transmissive cathode 35, and further passes through the CF 22B, and is emitted from the subpixel 50B to the outside as B color light with high color purity. .
  • the transparent layer 37B may be omitted when the distance between the reflective anode 31 and the semi-transmissive cathode 35 is a distance at which the peak wavelength of the B color light resonates. .
  • the high-definition organic EL display device 1 can be obtained.
  • the edge cover 17 is provided with a plurality of openings 18b having a smaller area than the openings 18a.
  • a plurality of openings 18b are formed so that the aperture ratio of the edge cover 17 is smaller than the aperture ratio of the edge cover 17 in the subpixels 50R, 56G, and 50B.
  • the amount of light is a small amount of the amount of light emitted from the sub-pixel 50W.
  • the distance between the reflective anode 31 in the opening 18b and the transflective cathode 35 can be adjusted to the image observer.
  • the wavelength of visible light that is easily visible is a distance at which resonance is difficult.
  • the distance between the reflective anode 31 in the opening 18b of the subpixel 50W and the semi-transmissive cathode 35 is the distance at which the peak wavelength of blue light resonates, as in the subpixel 50B. ing.
  • the film thickness of the organic layer 36 is 200 nm
  • the transparent layer 37W is omitted
  • the distance between the reflective anode 31 and the transflective cathode 35 is 200 nm.
  • the organic layer 36 in the opening 18a emits white light.
  • the current injected from the reflective anode 31 into the organic layer 36 is generated in the openings 18b as shown by an arrow CA in FIG.
  • the organic layer 36 extends along the side wall of the opening 18b and also extends to the organic layer 36 on the edge cover 17 between the openings 18b.
  • this edge cover 17 is for functioning as an insulating layer, it is formed thick. As an example, it is about 2 ⁇ m (that is, 2000 nm).
  • the distance between the reflective anode 31 and the transflective cathode 35 in the subpixel 50W in the region where the edge cover 17 and the stacked organic layer 36 are formed is 2200 nm, and the wavelength of a specific visible light The effect of resonating is very weak.
  • the area where the plurality of openings 18b are formed is very small.
  • the microcavity effect hardly occurs, and white light with a uniform luminance distribution can be emitted with coloring suppressed.
  • the number of the openings 18b, the arrangement position, and the like can be arbitrarily set based on the size of the sub-pixel 50W.
  • the plurality of openings 18b are provided such that the area of the plurality of openings 18b is smaller than the area where the edge cover 17 covers the reflective anode 31. Thereby, coloring of W color light radiate
  • the opening 18a is provided so that the area of the opening 18a is larger than the area where the edge cover 17 covers the reflective anode 31.
  • the aperture ratio of the edge cover 17 of the subpixels 50R, 50G, 50B, and 50W is not limited to that described above, and the edge cover of the subpixel 50W is determined based on the aperture ratio of the edge cover 17 of the subpixels 50R, 50G, and 50B.
  • the aperture ratio of 17 should just become small.
  • the aperture ratio of the edge cover 17 of the sub-pixels 50R, 50G, and 50B is about 10% to 80%, and the aperture ratio of the edge cover 17 of the sub-pixel 50W is the same as that of the edge cover 17 of the sub-pixels 50R, 50G, and 50B.
  • the aperture ratio may be about 1/4 to 1/10.
  • the display driving circuit may be designed according to the emission color, and the power consumption by using the original RGBW sub-pixel is reduced. The reduction effect is not impaired.
  • the aperture ratio of the edge cover 17 of the subpixel 50W is large, a region where the microcavity effect is suppressed, that is, a region other than the opening 18b in the subpixel 50W is relatively large.
  • the outgoing light of 50 W tends to be biased to a specific color.
  • the aperture ratio of the edge cover 17 of the sub-pixel 50W is too small, the manufacturing process becomes difficult and the mass productivity may be reduced.
  • FIG. 4 is a cross-sectional view showing a modification of the opening 18b of the subpixel 50W.
  • the side surfaces of the edge cover 17 in the plurality of openings 18b of the sub-pixel 50W are tapered, so that the reflection anode 31 can be removed from the reflective anode 31 in the opening 18b as shown by an arrow CB in FIG.
  • the current injected into the organic layer 36 easily spreads along the side wall of the edge cover 17 and easily reaches the organic layer 36 on the edge cover 17.
  • the organic layer 36 can be prevented from being stepped by forming the side wall of the edge cover 17 in the plurality of openings 18b of the sub-pixel 50W into a tapered shape. Thereby, the organic layer 36 arranged on the edge cover 17 can be made to emit light reliably.
  • the organic layer 36 is stepped at the corner of the tapered shape, and the current path is disconnected or high. It becomes a resistance state. For this reason, the current does not spread laterally (that is, along the organic layer 36).
  • the taper angle of the side wall of the edge cover 17 (an angle between the side wall of the edge cover 17 and the transparent layer 37 ⁇ / b> W) at which the organic layer 36 is disconnected or the resistance is increased depends on the formation conditions of the organic layer 36.
  • the organic layer 36 is formed by vacuum vapor deposition, it varies depending on conditions such as the angle between the substrate and the vapor deposition source.
  • the taper angle at which the step breakage or the increase in resistance does not occur is 60 ° or less by a generally used technique.
  • the edge cover 17 is made of a resin material. Although depending on the formation conditions, the taper angle of the side wall of the edge cover 17 can be easily set to 60 ° or less by a normal wet photolithography process or the like.
  • FIG. 5 is a cross-sectional view illustrating a modification of the sub-pixels 50R, 50G, 50B, and 50W.
  • FIG. 5 shows only the TFT substrate.
  • Each of the sub-pixels 50R, 50G, 50B, and 50W of the organic EL display device 1 may have a so-called tandem structure.
  • the organic EL display device 1 may include a support substrate 10 a instead of the support substrate 10.
  • the support substrate 10a is different from the support substrate 10 in that the organic layer 36 is two layers of the support substrate 10 and the charge generation layer 38 is provided therebetween. Other configurations of the support substrate 10 a are the same as those of the support substrate 10.
  • the organic layer 36a, the charge generation layer 38, and the organic layer 36b are laminated in order from the lower layer to the upper layer, covering the edge cover 17, the opening 18a, and the opening 18b (not shown in FIG. 5). Has been.
  • a semi-transmissive cathode 35 is provided on the organic layer 36b.
  • the organic layer 36a, the charge generation layer 38, and the organic layer 36b are provided across the sub-pixels 50R, 50G, 50B, and 50W, and are provided over the entire image display area.
  • the organic layers 36a and 36b are layers that emit light that is white when the two layers are combined, although the emission color is not particularly limited.
  • the organic layer is not limited to two layers, and may have a tandem structure including three or more layers.
  • the charge generation layer 38 can generate holes and electrons, and can efficiently inject carriers into the organic layers 36a and 36b. Further, it is a layer made of a material having a relatively lower resistance value than the organic layers 36a and 36b.
  • the charge generation layer 38 for example, an alkali metal such as Li, Ca, or Sr, an alkaline earth metal, or a material in which these and an organic substance are co-deposited can be used.
  • the charge generation layer 38 is provided between the organic layer 36a and the organic layer 36b, so that each of the pixels 50R, 50G, 50B, and 50B.
  • the conductivity between 50W is improved. That is, the current injected from the reflective anode 31 into the organic layer 36a in each of the openings 18a and 18b can be easily spread by the charge generation layer 38 as indicated by the arrow CC in FIG.
  • the organic layers 36a and 36b are stacked on the edge cover 17 in the sub-pixel 50W, the organic layers 36a and 36b on the edge cover 17 can emit light more reliably. As a result, emitted light having a uniform luminance distribution can be obtained from the sub-pixel 50W.
  • the display device of the present invention includes the first electrode disposed for each of the plurality of subpixels constituting one pixel, the second electrode disposed to face the first electrode,
  • a display device comprising: an organic layer that emits light between the first and second electrodes; and an insulating layer that covers an edge of the first electrode, wherein an opening is provided in the insulating layer.
  • the organic layer and the second electrode are disposed in the opening, and the plurality of subpixels include first and second subpixels that emit light of different colors.
  • the distance between the first and second electrodes in the opening is a distance at which the peak wavelength of visible light resonates, and the aperture ratio of the insulating layer in the second subpixel is the first aperture.
  • the aperture ratio of the insulating layer in the subpixel is small.
  • the distance between the first and second electrodes in the opening is a distance at which the peak wavelength of visible light resonates. For this reason, visible light with high color purity can be emitted from the first subpixel. As a result, a high-definition display device can be obtained.
  • the aperture ratio of the insulating layer in the second subpixel is smaller than the aperture ratio of the insulating layer in the first subpixel. For this reason, it can suppress that a wavelength resonates within a 2nd subpixel. As a result, the coloring of the light emitted from the second subpixel can be suppressed.
  • the aperture ratio of the insulating layer in the second subpixel can be made smaller than the aperture ratio of the insulating layer in the first subpixel by simply reducing the aperture ratio of the second subpixel. Therefore, it is possible to suppress unnecessary coloring of the emitted light from the sub-pixels that do not require wavelength resonance without causing a significant decrease in productivity.
  • the opening includes a first opening and a second opening having a smaller area than the first opening, and the first opening is the insulation in the first subpixel.
  • the second opening is provided in the insulating layer of the second subpixel.
  • the aperture ratio of the insulating layer in the second subpixel can be made smaller than the aperture ratio of the insulating layer in the first subpixel.
  • the organic layer of the second subpixel can be made to emit light uniformly. As a result, the occurrence of color unevenness can be prevented.
  • the area of the first opening is larger than the area where the insulating layer covers the first electrode.
  • the insulating layer is The area of the second opening is preferably smaller than the area covering the first electrode.
  • the organic layer is preferably provided across the first and second subpixels. With the above configuration, it is not necessary to form the organic layer separately for each of the first and second subpixels, so that the manufacturing process can be simplified.
  • the organic layer preferably covers the insulating layer. With the above configuration, it is not necessary to pattern the organic layer only in the first and second openings, so that the manufacturing process can be simplified. Furthermore, by providing a plurality of openings in the second subpixel, the organic layer on the insulating layer can also emit light in the second subpixel. Thus, it is possible to obtain emitted light having a uniform luminance distribution from the second subpixel.
  • each of the first and second openings is preferably tapered.
  • the organic layer can be prevented from being stepped at the side walls of the first and second openings of the insulating layer. Thereby, even if the organic layer is arranged on the insulating layer, the organic layer can emit light reliably. As a result, emitted light having a uniform luminance distribution can be obtained from the second sub-pixel.
  • the organic layer includes a first organic layer and a second organic layer provided on the first organic layer, the first organic layer and the second organic layer. It is preferable that a charge generation layer made of a material having a relatively lower resistance value than the first and second organic layers is provided between the first and second organic layers.
  • the charge generation layer is provided between the first and second organic layers, the conductivity can be improved. Thereby, even if the first and second organic layers are provided on the insulating layer, the first and second organic layers on the insulating layer can emit light more reliably. As a result, emitted light having a uniform luminance distribution can be obtained from the second sub-pixel.
  • the first subpixel emits a red subpixel that emits red light, a green subpixel that emits green light, and a blue light.
  • the second sub-pixel may have a white sub-pixel that emits white light.
  • the distance between the first and second electrodes in the first opening is a distance at which the peak wavelength of red light resonates.
  • the distance between the first and second electrodes in one opening is a distance at which the peak wavelength of green light resonates.
  • the first and second electrodes in the first opening are resonated.
  • the distance between the two electrodes is a distance at which the peak wavelength of blue light resonates.
  • the distance between the first and second electrodes in the second opening is blue light. It is preferable that the peak wavelength is a resonating distance.
  • the present invention can be used for a display device having a microcavity effect, such as an organic EL display device.
  • Organic EL display device 10.10a Support substrate 17 Edge cover (insulating layer) 18a opening (first opening) 18b opening (second opening) 30 Organic EL element 31 Reflective anode (first electrode) 35 Transflective cathode (second electrode) 36 Organic layer 36a Organic layer (first organic layer) 36b Organic layer (second organic layer) 37R / 37G / 37B / 37W Transparent layer 38 Charge generation layer 50 Pixel 50R / 50G / 50B Sub-pixel (first sub-pixel) 50W sub-pixel (second sub-pixel)

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An organic EL display device (1) is provided with: reflective anodes (31), which are respectively disposed for sub-pixels (50R, 50G, 50B, 50W); a semi-transmissive cathode (35), which is disposed to face the reflective anodes (31); a light emitting organic layer (36), which is disposed between the reflective anodes (31) and the semi-transmissive cathode (35); and an edge cover (17), which covers edges of the reflective anodes (31). The edge cover (17) is provided with openings (18a, 18b), the organic layer (36) and the semi-transmissive cathode (35) are disposed in the openings (18a, 18b), a distance between the reflective anodes (31) and the semi-transmissive cathode (35) is set to a distance at which peak wavelengths of visible light resonate, and an aperture ratio of the edge cover (17) in the sub-pixel (50W) is smaller than that of the edge cover (17) in the sub-pixels (50R, 50G, 50B). Consequently, unnecessary coloring of light outputted from the sub-pixels where wavelength resonance is not necessary is suppressed without causing significant reduction of productivity.

Description

表示装置Display device
 本発明は、マイクロキャビティー効果を有する表示装置に関する。 The present invention relates to a display device having a microcavity effect.
 近年、有機EL(Electro luminescence)表示装置の開発が進められている。 In recent years, organic EL (Electroluminescence) display devices have been developed.
 有機EL表示装置の構成としては、大きく分けて、赤(R)色・緑(G)色・青(B)色を発光するEL層を用いてRGB副画素を得る構成と、白(W)色を発光するEL層と赤色・緑色・青色の光を透過するカラーフィルタ(CF)とを用いてRGB副画素を得る構成(以下、W+CF方式と称する場合がある)とを挙げることができる。 The configuration of the organic EL display device is roughly divided into a configuration in which an RGB sub-pixel is obtained using an EL layer that emits red (R), green (G), and blue (B), and white (W). A configuration in which an RGB sub-pixel is obtained using an EL layer that emits color and a color filter (CF) that transmits red, green, and blue light (hereinafter may be referred to as a W + CF method) can be given.
 W+CF方式は、メタルマスクを用いたR・G・Bを発光するEL層の塗り分けプロセスが不要であることから、特に、高精細なディスプレイや、超大型のディスプレイを実現するには、非常に有効な方式である。 Since the W + CF method does not require a separate process for EL layers that emit R, G, and B using a metal mask, it is extremely difficult to realize a high-definition display or a very large display. It is an effective method.
 非特許文献1には、W+CF方式で、マイクロキャビティー技術を用いる手法が開示されている。 Non-Patent Document 1 discloses a technique using a microcavity technique in the W + CF method.
 図6は、マイクロキャビティー技術を適用した有機EL表示パネルの構成を表す断面図である。 FIG. 6 is a cross-sectional view showing the configuration of an organic EL display panel to which the microcavity technology is applied.
 図6に示すように、有機EL表示パネル101は、TFT基板102に、順に、陽極103、ITO(Indium Tin Oxide:インジウム錫酸化物)層104、有機層105、及び陰極である半透過電極106が配されている。そして、半透過電極106と離間してCF107が配されている。 As shown in FIG. 6, an organic EL display panel 101 includes a TFT substrate 102, an anode 103, an ITO (Indium Tin Oxide) layer 104, an organic layer 105, and a transflective electrode 106 that is a cathode in this order. Is arranged. A CF 107 is disposed apart from the semi-transmissive electrode 106.
 陽極103及びITO層104は、それぞれ、副画素110R・110G・110B毎に配されている。また、CF107は、副画素110Rに配された赤色光を透過するCF107Rと、副画素110Gに配された緑色光を透過するCF107Gと、副画素110Bに配された青色光を透過するCF107Bとを備えている。有機層106と、半透過電極106とは、副画素110R・110G・110Bに跨って形成されている。 The anode 103 and the ITO layer 104 are arranged for each of the sub-pixels 110R, 110G, and 110B. The CF 107 includes a CF 107R that transmits red light arranged in the sub-pixel 110R, a CF 107G that transmits green light arranged in the sub-pixel 110G, and a CF 107B that transmits blue light arranged in the sub-pixel 110B. I have. The organic layer 106 and the semi-transmissive electrode 106 are formed across the subpixels 110R, 110G, and 110B.
 副画素110Rでは、有機層105から発光された光はCF107Rを透過する。これにより、副画素110Rから赤色光が出射する。副画素110Gでは、有機層105から発光された光はCF107Gを透過する。これにより、副画素110Gから緑色光が出射する。副画素110Bでは、有機層105から発光された光はCF107Bを透過する。これにより、副画素110Bから青色光が出射する。 In the sub-pixel 110R, the light emitted from the organic layer 105 passes through the CF 107R. Thereby, red light is emitted from the sub-pixel 110R. In the sub-pixel 110G, the light emitted from the organic layer 105 passes through the CF 107G. Thereby, green light is emitted from the sub-pixel 110G. In the sub-pixel 110B, the light emitted from the organic layer 105 passes through the CF 107B. Thereby, blue light is emitted from the sub-pixel 110B.
 さらに、有機EL表示パネル101には、マイクロキャビティー技術が用いられている。具体的には、ITO層104の膜厚を調整することで、副画素110Rでは、陽極103と半透過電極106との距離を赤色の波長が共振する光路長とし、副画素110Gでは、陽極103と半透過電極106との距離を緑色の波長が共振する光路長とし、副画素110Bでは、陽極103と半透過電極106との距離を青色の波長が共振する光路長とする。 Furthermore, a microcavity technique is used for the organic EL display panel 101. Specifically, by adjusting the film thickness of the ITO layer 104, in the subpixel 110R, the distance between the anode 103 and the semi-transmissive electrode 106 is set to an optical path length in which the red wavelength resonates, and in the subpixel 110G, the anode 103 The sub-pixel 110B has a distance between the anode 103 and the semi-transmissive electrode 106, and an optical path length at which the blue wavelength resonates.
 これにより、副画素110Rでは陽極103及び半透過電極106間で赤色の波長が共振し、副画素110Gでは陽極103及び半透過電極106間で緑色の波長が共振し、副画素110Bでは陽極103及び半透過電極106間で青色の波長が共振する。これは、いわゆるマイクロキャビティー効果と呼ばれる。 Thereby, in the subpixel 110R, the red wavelength resonates between the anode 103 and the semi-transmissive electrode 106, in the subpixel 110G, the green wavelength resonates between the anode 103 and the semi-transmissive electrode 106, and in the subpixel 110B, the anode 103 and The blue wavelength resonates between the semi-transmissive electrodes 106. This is called the so-called microcavity effect.
 この結果、有機EL表示パネル101では、副画素110Rから出射される赤色光、副画素110Gから出射される緑色光、及び副画素110Bから出射される青色光のそれぞれの色純度を高めると共に、低消費電力化を実現することができる。 As a result, in the organic EL display panel 101, the color purity of each of the red light emitted from the subpixel 110R, the green light emitted from the subpixel 110G, and the blue light emitted from the subpixel 110B is increased and reduced. Power consumption can be realized.
 また、マイクロキャビティー技術とは別に、RGB副画素に、W副画素を加えた4色の副画素から一画素を構成する方式も、消費電力の低減効果を得るための手法として、非常に効果的である。 In addition to the microcavity technology, a method of constructing one pixel from four color subpixels, in which the W subpixel is added to the RGB subpixel, is also very effective as a technique for obtaining the power consumption reduction effect. Is.
 しかし、このマイクロキャビティー技術と、RGBW副画素から一画素を構成する技術とを両立させることは困難である。特に、トップエミッション(Top Emission)型の有機EL表示パネルでは、非常に困難である。 However, it is difficult to achieve both the microcavity technology and the technology for forming one pixel from RGBW subpixels. In particular, it is very difficult for a top emission type organic EL display panel.
 図6で説明したように、陰極である半透過電極106は、各副画素110R・110G・110Bに跨り、パネル全体に形成されている。仮に、W副画素を設けた場合、W副画素内にも半透過電極が同じ膜厚で形成されることになる。このため、W副画素内のITO層をよほど極端に、他の副画素と異なる膜厚にしなければ、W副画素内でもキャビティー効果がかかってしまい、W副画素からの出射光は色づいてしまう。 As described with reference to FIG. 6, the transflective electrode 106 serving as a cathode is formed over the entire panel across the sub-pixels 110R, 110G, and 110B. If the W subpixel is provided, the transflective electrode is formed in the W subpixel with the same film thickness. For this reason, unless the ITO layer in the W subpixel is made extremely different in thickness from the other subpixels, the cavity effect is also applied in the W subpixel, and the emitted light from the W subpixel is colored. End up.
 また、仮に、そのような膜厚のITO層をW副画素内に形成したとしても、製造プロセスに大きな負担がかかり、生産性の著しい低下を招くことになる。 Even if an ITO layer having such a thickness is formed in the W sub-pixel, a large burden is imposed on the manufacturing process, resulting in a significant reduction in productivity.
 そこで、特許文献1には、W副画素を、さらに、RGB色光のそれぞれを出射する複数の副副画素から構成する方法が開示されている。 Therefore, Patent Document 1 discloses a method in which the W sub-pixel is further composed of a plurality of sub-sub-pixels that emit RGB color lights.
 図7は、特許文献1に記載の表示装置の一画素の構成を表す断面図である。 FIG. 7 is a cross-sectional view showing the configuration of one pixel of the display device described in Patent Document 1.
 図7に示すように、表示装置の一画素は、R副画素、G副画素、B副画素、及びW副画素から構成されている。そして、W副画素は、R副副画素、G副副画素、及びB副副画素から構成されている。 As shown in FIG. 7, one pixel of the display device includes an R subpixel, a G subpixel, a B subpixel, and a W subpixel. The W subpixel is composed of an R subpixel, a G subsubpixel, and a B subsubpixel.
 基板231上には、各R・G・B副画素毎に、光反射電極234が形成されている。そして、各R・G・B副画素に跨って、光反射電極234上に、順に、白色有機電界発光層235、透明電極236、光路長調整層237、光半透過反射層232、及び接着層238が積層されている。そして、接着層238上に、CF層233及び透明基板239が順に配されている。 On the substrate 231, a light reflecting electrode 234 is formed for each R, G, B subpixel. The white organic electroluminescent layer 235, the transparent electrode 236, the optical path length adjusting layer 237, the light transflective layer 232, and the adhesive layer are sequentially formed on the light reflective electrode 234 across the R, G, and B subpixels. 238 are stacked. On the adhesive layer 238, the CF layer 233 and the transparent substrate 239 are sequentially arranged.
 CF層233は、Rフィルタと、Gフィルタと、Bフィルタとからなる。R副画素にはRフィルタが配され、G副画素にはGフィルタが配され、B副画素にはBフィルタが配されている。そして、W副画素では、R副副画素にはRフィルタが配され、G副副画素にはGフィルタが配され、B副副画素にはBフィルタが配されている。 The CF layer 233 includes an R filter, a G filter, and a B filter. The R subpixel is provided with an R filter, the G subpixel is provided with a G filter, and the B subpixel is provided with a B filter. In the W sub-pixel, an R filter is disposed on the R sub-subpixel, a G filter is disposed on the G sub-subpixel, and a B filter is disposed on the B sub-subpixel.
 光路長調整層237は、各R・G・B副画素及びR・G・B副副画素の出射波長に対応して厚みを変えて配置される。光反射電極234と、光半透過反射層232との間の距離は、それぞれ、R・G・B光が共振する光学的距離となるように、光路長調整層237の厚みが設定される。 The optical path length adjusting layer 237 is arranged with the thickness changed corresponding to the emission wavelength of each of the R, G, B subpixels and the R, G, B subpixels. The thickness of the optical path length adjusting layer 237 is set so that the distance between the light reflecting electrode 234 and the light transflective layer 232 is an optical distance at which R, G, B light resonates.
 これにより、白色有機電界発光層235で発光した光は、光反射電極234と光半透過反射層232との間で反射を繰り返し、それぞれ共振波長のR・G・B光が光半透過反射層232を透過した後、されにそれぞれR・G・Bフィルターを介して、透明基板239を透過して外部に出射される。W副画素ではR・G・B光の混合により白色光として観察される。 As a result, the light emitted from the white organic electroluminescent layer 235 is repeatedly reflected between the light reflecting electrode 234 and the light semi-transmissive reflective layer 232, and R, G, and B light having resonance wavelengths are respectively reflected in the light semi-transmissive reflective layer. After passing through 232, the light passes through the transparent substrate 239 through the R, G, and B filters, and is emitted to the outside. In the W sub-pixel, white light is observed by mixing R, G, and B light.
 図7の表示装置によると、各R・G・B副画素及び各R・G・B副副画素では、光反射電極234と光半透過反射層232との間で必要な波長が共振することで、その必要な波長の強度が増幅されるため、高輝度の光を取り出すことができる。 According to the display device of FIG. 7, the required wavelength resonates between the light reflecting electrode 234 and the light transflective layer 232 in each R • G • B subpixel and each R • G • B subsubpixel. Therefore, since the intensity of the necessary wavelength is amplified, light with high luminance can be extracted.
日本国公開特許公報「特開2010-80423号公報(2010年04月08日公開)」Japanese Patent Publication “Japanese Patent Laid-Open No. 2010-80423 (published Apr. 08, 2010)”
 しかしながら、図7の表示装置は、一副画素を、さらに複数の副副画素に分割しており、高解像度の表示装置を製造する必要があるため、製造プロセスの負担が増大し、生産性が著しく低下する。 However, in the display device of FIG. 7, one subpixel is further divided into a plurality of subsubpixels, and it is necessary to manufacture a high-resolution display device, which increases the burden of the manufacturing process and increases productivity. It drops significantly.
 また、例えば、RGB全ての色の共振条件を満たすようなITO層の膜厚とすることも考えられる。しかし、この場合、非常に高精度の膜厚制御が必要となり、これも生産性の著しい低下を招くことになる。 Also, for example, it is conceivable to set the film thickness of the ITO layer so as to satisfy the resonance conditions of all the colors of RGB. However, in this case, it is necessary to control the film thickness with very high accuracy, which also causes a significant decrease in productivity.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、生産性の著しい低下を招くことなく、波長の共振が不要な副画素から出射される光の不要な色付きを抑制することである。 The present invention has been made to solve the above-described problems, and its purpose is to provide unnecessary coloring of light emitted from subpixels that do not require wavelength resonance without causing a significant decrease in productivity. It is to suppress.
 上記の課題を解決するために、本発明の表示装置は、一画素を構成する複数の副画素毎に配されている第1の電極と、当該第1の電極と対向配置されている第2の電極と、上記第1及び第2の電極間に配されている発光する有機層と、上記第1の電極のエッジを覆う絶縁層とを備えている表示装置であって、上記絶縁層に開口部が設けられており、当該開口部に、上記有機層及び上記第2の電極が配されており、上記複数の副画素は、互いに異なる色の光を出射する第1及び第2の副画素を有し、上記開口部内の上記第1及び第2の電極間の距離は、可視光のピーク波長が共振する距離となっており、上記第2の副画素における上記絶縁層の開口率は、上記第1の副画素における上記絶縁層の開口率と比べて小さいことを特徴としている。 In order to solve the above problems, a display device of the present invention includes a first electrode disposed for each of a plurality of subpixels constituting one pixel, and a second electrode disposed to face the first electrode. A display device comprising: a first electrode; an organic layer that emits light between the first and second electrodes; and an insulating layer that covers an edge of the first electrode. An opening is provided, and the organic layer and the second electrode are disposed in the opening, and the plurality of sub-pixels emit first and second sub-lights that emit light of different colors. The pixel has a pixel, the distance between the first and second electrodes in the opening is a distance at which the peak wavelength of visible light resonates, and the aperture ratio of the insulating layer in the second subpixel is The aperture ratio of the insulating layer in the first subpixel is small.
 本発明の表示装置は、一画素を構成する複数の副画素毎に配されている第1の電極と、当該第1の電極と対向配置されている第2の電極と、上記第1及び第2の電極間に配されている発光する有機層と、上記第1の電極のエッジを覆う絶縁層とを備えている表示装置であり、上記絶縁層に開口部が設けられており、当該開口部に、上記有機層及び上記第2の電極が配されており、上記複数の副画素は、互いに異なる色の光を出射する第1及び第2の副画素を有し、上記開口部内の上記第1及び第2の電極間の距離は、可視光のピーク波長が共振する距離となっており、上記第2の副画素における上記絶縁層の開口率は、上記第1の副画素における上記絶縁層の開口率と比べて小さい。 The display device of the present invention includes a first electrode disposed for each of a plurality of subpixels constituting one pixel, a second electrode disposed to face the first electrode, and the first and first electrodes. A display device comprising: an organic layer that emits light disposed between the two electrodes; and an insulating layer that covers an edge of the first electrode, the opening being provided in the insulating layer. The organic layer and the second electrode are disposed in a portion, and the plurality of sub-pixels include first and second sub-pixels that emit light of different colors, and the opening in the opening The distance between the first and second electrodes is a distance at which the peak wavelength of visible light resonates, and the aperture ratio of the insulating layer in the second subpixel is the insulating ratio in the first subpixel. Small compared to the aperture ratio of the layer.
 これにより、生産性の著しい低下を招くことなく、波長の共振が不要な副画素から出射される光の不要な色付きを抑制するという効果を奏する。 As a result, there is an effect of suppressing unnecessary coloring of light emitted from a sub-pixel that does not require wavelength resonance without causing a significant decrease in productivity.
一実施形態の有機EL表示装置の一画素の構成を表す平面図である。It is a top view showing the structure of one pixel of the organic electroluminescence display of one Embodiment. (a)は、図1のX‐X’線断面図であり、(b)は図1のY‐Y’線断面図である。FIG. 2A is a cross-sectional view taken along line X-X ′ of FIG. 1, and FIG. 2B is a cross-sectional view taken along line Y-Y ′ of FIG. 1. 一実施の形態の有機EL表示装置が備える有機EL表示パネルの構成を表す断面図である。It is sectional drawing showing the structure of the organic electroluminescence display panel with which the organic electroluminescence display of one Embodiment is provided. 一実施の形態の有機EL表示装置のW副画素の第2の開口部の変形例を示す断面図である。It is sectional drawing which shows the modification of the 2nd opening part of the W subpixel of the organic electroluminescence display of one Embodiment. 一実施の形態の有機EL表示装置の各副画素の変形例を表す断面図である。It is sectional drawing showing the modification of each sub pixel of the organic electroluminescence display of one Embodiment. 従来の、マイクロキャビティー技術を適用した有機EL表示パネルの構成を表す断面図である。It is sectional drawing showing the structure of the conventional organic electroluminescent display panel to which the microcavity technique is applied. 従来の表示装置の一画素の構成を表す断面図である。It is sectional drawing showing the structure of one pixel of the conventional display apparatus.
 (有機EL表示装置の概略)
 まず、図3を用いて、本発明に係る有機EL表示装置(表示装置)1の構成の概略について説明する。
(Outline of organic EL display device)
First, the outline of the configuration of the organic EL display device (display device) 1 according to the present invention will be described with reference to FIG.
 図3は本実施の形態に係る有機EL表示装置が備える有機EL表示パネルの構成を表す断面図である。 FIG. 3 is a cross-sectional view illustrating a configuration of an organic EL display panel included in the organic EL display device according to the present embodiment.
 有機EL表示装置1は、画像を表示する有機EL表示パネル2と、有機EL表示パネル2を駆動する駆動回路等が設けられた回路部3とを備えている。 The organic EL display device 1 includes an organic EL display panel 2 for displaying an image, and a circuit unit 3 provided with a drive circuit for driving the organic EL display panel 2 and the like.
 有機EL表示パネル2の画像表示領域には、複数の画素がマトリクス状に配されている。一画素は、互いに異なる色の光を出射する複数の副画素から構成されている。 A plurality of pixels are arranged in a matrix in the image display area of the organic EL display panel 2. One pixel is composed of a plurality of sub-pixels that emit light of different colors.
 回路部3には、例えば、フレキシブルフィルムケーブル等の配線や、ドライバ等の駆動回路等が設けられている。回路部3は、電気配線端子を介して有機EL表示パネル2と接続されている。 The circuit unit 3 is provided with wiring such as a flexible film cable, a driving circuit such as a driver, and the like. The circuit unit 3 is connected to the organic EL display panel 2 through electric wiring terminals.
 有機EL表示パネル2は、支持基板10と、封止基板20と、封止樹脂41と、充填樹脂42とを備えている。 The organic EL display panel 2 includes a support substrate 10, a sealing substrate 20, a sealing resin 41, and a filling resin 42.
 支持基板10と、封止基板20とは、互いに離間して対向配置されている。封止樹脂41及び充填樹脂42は、支持基板10と、封止基板20との間に配されている。 The support substrate 10 and the sealing substrate 20 are arranged to be opposed to each other while being separated from each other. The sealing resin 41 and the filling resin 42 are disposed between the support substrate 10 and the sealing substrate 20.
 封止樹脂41は、支持基板10及び封止基板20の周囲に沿って枠状に配されている。封止樹脂41によって、支持基板10と、封止基板20との間の空間は封止されている。 The sealing resin 41 is arranged in a frame shape along the periphery of the support substrate 10 and the sealing substrate 20. The space between the support substrate 10 and the sealing substrate 20 is sealed by the sealing resin 41.
 充填樹脂42は、乾燥剤等を含有しており、支持基板10と、封止基板20と、封止樹脂41とによって形成されている空間に充填されている。 The filling resin 42 contains a desiccant or the like and fills a space formed by the support substrate 10, the sealing substrate 20, and the sealing resin 41.
 支持基板10には、各副画素毎に、副画素を駆動するためのスイッチング素子であるTFT(薄膜トランジスタ)と、TFTと接続されており、副画素を駆動するための画素電極とが配されている。そして、画素電極には、発光する層を有する有機層が、直接又は間接的に積層されている。また、支持基板10における枠状に配された封止樹脂41の外側には、電気配線端子(電気接続部、接続端子)等が設けられている。 A TFT (thin film transistor), which is a switching element for driving the subpixel, and a pixel electrode for driving the subpixel are arranged on the support substrate 10 for each subpixel. Yes. An organic layer having a light emitting layer is directly or indirectly stacked on the pixel electrode. In addition, on the outside of the sealing resin 41 arranged in a frame shape on the support substrate 10, electrical wiring terminals (electrical connection portions, connection terminals) and the like are provided.
 有機EL表示パネル2は、本実施の形態では、支持基板10の有機層から発光された光が、充填樹脂42及び封止基板20を透過して、封止基板20の表面(支持基板10との対向面と逆側の面)側に出射光として出射するトップエミッション型の有機EL表示パネルであるものとして説明する。 In this embodiment, the organic EL display panel 2 transmits light emitted from the organic layer of the support substrate 10 through the filling resin 42 and the sealing substrate 20, and the surface of the sealing substrate 20 (with the support substrate 10 and the support substrate 10). It is assumed that this is a top emission type organic EL display panel that emits light as outgoing light on the side opposite to the opposite surface.
 なお、有機EL表示パネル2は、これに限定されず、支持基板10の裏面(封止基板20との対向面と逆側面)側に、有機層から発光された光を出射光として出射するボトムエミッション型であってもよい。ボトムエミッション型で有機EL表示パネル2を構成する場合は、CFは、封止基板20ではなく、支持基板10に設けてもよい。 Note that the organic EL display panel 2 is not limited to this, and a bottom that emits light emitted from the organic layer as outgoing light on the back surface (the side opposite to the surface facing the sealing substrate 20) of the support substrate 10. It may be an emission type. When the bottom emission type organic EL display panel 2 is configured, the CF may be provided on the support substrate 10 instead of the sealing substrate 20.
 有機層の封止性能を向上させるために、支持基板10上に、無機膜や有機・無機の混合積層膜などを積層してもよい。また、無機膜や有機・無機の混合積層膜などだけで、有機層の封止性能が十分であれば、封止樹脂41や封止基板20、充填樹脂42を省いてもよい。 In order to improve the sealing performance of the organic layer, an inorganic film or a mixed organic / inorganic laminated film may be laminated on the support substrate 10. Further, the sealing resin 41, the sealing substrate 20, and the filling resin 42 may be omitted as long as the sealing performance of the organic layer is sufficient with only an inorganic film or an organic / inorganic mixed laminated film.
 (画素の構造)
 次に、図1、図2の(a)(b)を用いて、有機EL表示装置1の一画素の構造について説明する。
(Pixel structure)
Next, the structure of one pixel of the organic EL display device 1 will be described with reference to FIGS.
 図1は有機EL表示装置1の一画素の構成を表す平面図である。図2の(a)は、図1のX‐X’線断面図であり、(b)は図1のY‐Y’線断面図である。 FIG. 1 is a plan view showing the configuration of one pixel of the organic EL display device 1. 2A is a cross-sectional view taken along the line X-X ′ of FIG. 1, and FIG. 2B is a cross-sectional view taken along the line Y-Y ′ of FIG. 1.
 有機EL表示装置1の画像表示領域には、互いに異なる色の光を出射し、順に横並びに配されている複数の副画素50R・50G・50B・50Wから構成されている画素50が、マトリクス状に形成されている。 In the image display area of the organic EL display device 1, pixels 50 each of which is composed of a plurality of sub-pixels 50R, 50G, 50B, and 50W that emit light of different colors and are arranged side by side in order. Is formed.
 副画素50(第1の副画素)Rは赤色光を出射し、副画素50(第1の副画素)Gは緑色光を出射し、副画素(第1の副画素)50Bは青色光を出射し、副画素50(第2の副画素)Wは白色光を出射する。 The subpixel 50 (first subpixel) R emits red light, the subpixel 50 (first subpixel) G emits green light, and the subpixel (first subpixel) 50B emits blue light. The sub-pixel 50 (second sub-pixel) W emits white light.
 副画素50R・50G・50B・50Wの配列は、特に限定されるものではないが、本実施の形態では、画素50間で、一方向に同じ色の副画素が連続して配されたストライプ配列であるものとして説明する。 The arrangement of the sub-pixels 50R, 50G, 50B, and 50W is not particularly limited, but in the present embodiment, a stripe arrangement in which sub-pixels of the same color are continuously arranged in one direction between the pixels 50. It is assumed that
 複数の画素50間では、副画素50R・50G・50B・50Wのそれぞれの長手方向に同じ色の副画素が連続して配されている。また、副画素50R・50G・50B・50Wのそれぞれの長手方向と直交する方向である短手方向に、副画素50R・50G・50B・50Wのそれぞれは、この順に並んで配されている。 Between the plurality of pixels 50, sub-pixels of the same color are continuously arranged in the longitudinal direction of the sub-pixels 50R, 50G, 50B, and 50W. Further, the sub-pixels 50R, 50G, 50B, and 50W are arranged in this order in a short direction that is a direction orthogonal to the longitudinal direction of each of the sub-pixels 50R, 50G, 50B, and 50W.
 なお、副画素50R・50G・50B・50Wの配列はストライプに限定されず、他の配列であってもよい。 Note that the arrangement of the sub-pixels 50R, 50G, 50B, and 50W is not limited to the stripe, and may be another arrangement.
 また、一画素50を構成する副画素50W以外の副画素が出射する光の色は、RGBの3色に限定されず、例えば黄色(Y)光を出射する副画素を加え4色であってもよく、または2色以下であってもよい。 Further, the color of light emitted from sub-pixels other than the sub-pixel 50 </ b> W constituting one pixel 50 is not limited to the three colors RGB, for example, four colors including a sub-pixel that emits yellow (Y) light. Or two or less colors.
 有機EL表示装置1の表示部には、図示しないが、互いに平行に配されている複数のソース配線と、当該複数のソース配線のそれぞれと直交し、互いに平行に配されている複数のゲート配線とが配されている。 Although not shown, the display unit of the organic EL display device 1 includes a plurality of source wirings arranged in parallel to each other and a plurality of gate wirings orthogonal to each of the plurality of source wirings and arranged in parallel to each other. And are arranged.
 本実施の形態では、副画素50R・50G・50B・50Wのそれぞれは、平面視したとき、隣接する複数のソース配線及び隣接する複数のゲート配線によって区画された領域である。 In this embodiment, each of the sub-pixels 50R, 50G, 50B, and 50W is a region partitioned by a plurality of adjacent source lines and a plurality of adjacent gate lines when viewed in plan.
 封止基板20は、絶縁基板21と、CF22を構成するCF22R・22G・22Bと、BM(ブラックマトリクス)22BMと、を備えている。 The sealing substrate 20 includes an insulating substrate 21, CFs 22R, 22G, and 22B constituting the CF 22, and a BM (black matrix) 22BM.
 絶縁基板21は、ベース基板であり絶縁性材料からなる。絶縁基板21は、例えば、無アルカリガラスまたはプラスチックなどの透明な絶縁性材料から構成することができる。 The insulating substrate 21 is a base substrate and is made of an insulating material. The insulating substrate 21 can be made of a transparent insulating material such as non-alkali glass or plastic.
 CF22R・22G・22B・22Wは絶縁基板21の裏面(支持基板10との対向面)に配されている。 CF22R / 22G / 22B / 22W are arranged on the back surface of the insulating substrate 21 (the surface facing the support substrate 10).
 CF22Rは赤色光を透過するCFであり、副画素50Rに配されている。CF22Gは緑色光を透過するCFであり副画素50Gに配されている。CF22Bは青色光を透過するCFであり副画素50Bに配されている。CF22Wは、白色光、すなわち、有機EL素子30が発光する光をそのまま透過する透明な樹脂材料からなる。CF22Wは、副画素50Wに配されている。 CF22R is a CF that transmits red light, and is arranged in the sub-pixel 50R. The CF 22G is a CF that transmits green light, and is disposed in the sub-pixel 50G. The CF 22B is a CF that transmits blue light, and is disposed in the sub-pixel 50B. The CF 22W is made of a transparent resin material that transmits white light, that is, light emitted from the organic EL element 30 as it is. The CF 22W is disposed in the sub pixel 50W.
 BM22BMは、絶縁基板21の裏面(支持基板10との対向面)であってCF22R・22G・22B・22W間に配されている。すなわち、BM22BMの開口部にCF22R・22G・22B・22Wのいずれかが配されている。 BM22BM is the back surface of the insulating substrate 21 (the surface facing the support substrate 10) and is arranged between CF22R, 22G, 22B, and 22W. That is, one of CF22R, 22G, 22B, and 22W is arranged in the opening of BM22BM.
 CF22R・22G・22B・22Wそれぞれの長手方向と、副画素50R・50G・50B・50Wそれぞれの長手方向とは平行である。また、CF22R・22G・22B・22Wそれぞれの長手方向と直交する短手方向と、副画素50R・50G・50B・50Wそれぞれの長手方向と直交する短手方向とは平行である。 The longitudinal direction of each of CF22R, 22G, 22B, and 22W is parallel to the longitudinal direction of each of the sub-pixels 50R, 50G, 50B, and 50W. Further, the lateral direction orthogonal to the longitudinal direction of each of the CF 22R, 22G, 22B, and 22W is parallel to the lateral direction orthogonal to the longitudinal direction of each of the sub-pixels 50R, 50G, 50B, and 50W.
 支持基板10は、TFT基板11と、反射陽極(第1の電極)31と、透明層37R・37G・37B・37Wと、エッジカバー(絶縁層)17と、有機層36と、半透過陰極(第2の電極)35とを備えている。 The support substrate 10 includes a TFT substrate 11, a reflective anode (first electrode) 31, transparent layers 37R, 37G, 37B, and 37W, an edge cover (insulating layer) 17, an organic layer 36, and a transflective cathode ( Second electrode) 35.
 TFT基板11は、図示しないが、絶縁性基板と、上記複数のソース配線及び上記複数のゲート配線と、上記複数のソース配線及び上記複数のゲート配線の交差する領域近傍に配されている上記TFTと、上記複数のソース配線、上記複数のゲート配線、及び上記TFTを覆う層間絶縁膜とを有している。 Although not shown, the TFT substrate 11 is an insulating substrate, the plurality of source wirings and the plurality of gate wirings, and the TFT disposed in the vicinity of a region where the plurality of source wirings and the plurality of gate wirings intersect. And a plurality of source wirings, the plurality of gate wirings, and an interlayer insulating film covering the TFT.
 反射陽極31は、有機層36に正孔を注入(供給)すると共に、有機層36が発光した光を封止基板20側へ反射して有機EL表示パネル2の外へ出射させるためのものである。 The reflective anode 31 is for injecting (supplying) holes into the organic layer 36 and for reflecting the light emitted from the organic layer 36 toward the sealing substrate 20 and emitting it out of the organic EL display panel 2. is there.
 反射陽極31は、各副画素50R・50G・50B・50W毎に、TFT基板11上にパターン形成されている。反射陽極31は、上記層間絶縁膜に設けられたコンタクトホールを介して上記TFTと接続されている。 The reflective anode 31 is patterned on the TFT substrate 11 for each of the sub-pixels 50R, 50G, 50B, and 50W. The reflective anode 31 is connected to the TFT through a contact hole provided in the interlayer insulating film.
 反射陽極31としては、反射率が高い金属材料を用いることができる。反射陽極31を構成する材料として、例えば、AgまたはAg合金や、Al又はAl合金などを挙げることができる。 As the reflective anode 31, a metal material having a high reflectance can be used. Examples of the material constituting the reflective anode 31 include Ag or an Ag alloy, Al or an Al alloy, and the like.
 透明層37R・37G・37B・37Wは、それぞれ、反射陽極31と、半透過陰極35との距離を調整するためのものである。透明層37R・37G・37B・37Wの膜厚は、反射陽極31と、半透過陰極35との間に配されている他の膜の厚みよって、適宜変更されたり、省略されたりする。 The transparent layers 37R, 37G, 37B, and 37W are for adjusting the distance between the reflective anode 31 and the transflective cathode 35, respectively. The film thicknesses of the transparent layers 37R, 37G, 37B, and 37W are appropriately changed or omitted depending on the thickness of another film disposed between the reflective anode 31 and the semi-transmissive cathode 35.
 透明層37R・37G・37B・37Wは、透明な導電性材料からなる。一例として、本実施の形態では、透明層37R・37G・37B・37Wは、ITOをエッチングすることで各色毎に所望の膜厚を得ている。なお、透明層37R・37G・37B・37Wの構成材料はITOに限らず、例えば、IZO(Indium Zinc Oxide:インジウム亜鉛酸化物)、ガリウム添加酸化亜鉛(GZO)等の透明な導電材料であればよい。 The transparent layers 37R, 37G, 37B, and 37W are made of a transparent conductive material. As an example, in the present embodiment, the transparent layers 37R, 37G, 37B, and 37W have a desired film thickness for each color by etching ITO. The constituent material of the transparent layers 37R, 37G, 37B, and 37W is not limited to ITO, and may be any transparent conductive material such as IZO (IndiumZZinc Oxide) or gallium-doped zinc oxide (GZO). Good.
 透明層37Rは、副画素50R内であり、反射陽極31上にパターン形成されている。透明層37Gは、副画素50G内であり、反射陽極31上にパターン形成されている。透明層37Bは、副画素50B内であり、反射陽極31上にパターン形成されている。透明層37Wは、副画素50W内であり、反射陽極31上にパターン形成されている。 The transparent layer 37R is in the sub-pixel 50R and is patterned on the reflective anode 31. The transparent layer 37G is in the subpixel 50G and is patterned on the reflective anode 31. The transparent layer 37B is formed in a pattern on the reflective anode 31 in the sub-pixel 50B. The transparent layer 37 </ b> W is in the sub-pixel 50 </ b> W and is patterned on the reflective anode 31.
 透明層37Rは、透明層37Rを挟む反射陽極31と半透過陰極35との距離が、赤色のピーク波長が共振する光路長となる膜厚となっている。 The transparent layer 37R has a thickness such that the distance between the reflective anode 31 and the semi-transmissive cathode 35 sandwiching the transparent layer 37R is an optical path length at which the red peak wavelength resonates.
 有機層36を、副画素50R・50G・50B・50Wで同じ膜厚で形成している場合、透明層37Rの膜厚は、透明層37G・透明層37B・透明層37Wよりも厚くする必要がある。一例として、有機層36を膜厚200nmで構成した場合、透明層37Rは100nm程度の膜厚となる。 When the organic layer 36 is formed with the same film thickness in the sub-pixels 50R, 50G, 50B, and 50W, the film thickness of the transparent layer 37R needs to be thicker than the transparent layer 37G, the transparent layer 37B, and the transparent layer 37W. is there. As an example, when the organic layer 36 has a thickness of 200 nm, the transparent layer 37R has a thickness of about 100 nm.
 透明層37Gは、透明層37Gを挟む反射陽極31と半透過陰極35との距離が、緑色のピーク波長が共振する光路長となる膜厚となっている。 The transparent layer 37G has a film thickness such that the distance between the reflective anode 31 and the semi-transmissive cathode 35 sandwiching the transparent layer 37G is an optical path length at which the green peak wavelength resonates.
 有機層36を、副画素50R・50G・50B・50Wで同じ膜厚で形成している場合、透明層37Gの膜厚は、透明層37Rより薄く、透明層37B・透明層37Wよりも厚くする必要がある。一例として、有機層36を膜厚200nmで構成した場合、透明層37Gは50nm程度の膜厚となる。 When the organic layer 36 is formed with the same film thickness in the sub-pixels 50R, 50G, 50B, and 50W, the transparent layer 37G is thinner than the transparent layer 37R and thicker than the transparent layer 37B and the transparent layer 37W. There is a need. As an example, when the organic layer 36 has a thickness of 200 nm, the transparent layer 37G has a thickness of about 50 nm.
 透明層37Bは、透明層37Bを挟む反射陽極31と半透過陰極35との距離が、青色のピーク波長が共振する光路長となる膜厚となっている。 The transparent layer 37B has a thickness such that the distance between the reflective anode 31 and the semi-transmissive cathode 35 sandwiching the transparent layer 37B is an optical path length at which the blue peak wavelength resonates.
 有機層36を、副画素50R・50G・50B・50Wで同じ膜厚で形成している場合、透明層37Bの膜厚は、透明層37R・透明層37Gよりも薄くする必要がある。一例として、有機層36を膜厚200nmで構成した場合は、透明層37Bは省略することができる。 When the organic layer 36 is formed with the same film thickness in the sub-pixels 50R, 50G, 50B, and 50W, the film thickness of the transparent layer 37B needs to be thinner than the transparent layer 37R and the transparent layer 37G. As an example, when the organic layer 36 is formed with a film thickness of 200 nm, the transparent layer 37B can be omitted.
 透明層37Wは、透明層37Bと同じ膜厚とすることができる。一例として、有機層36を膜厚200nmで構成した場合は、透明層37Wは省略することができる。 The transparent layer 37W can have the same thickness as the transparent layer 37B. As an example, when the organic layer 36 has a thickness of 200 nm, the transparent layer 37W can be omitted.
 エッジカバー17は、反射陽極31のエッジ(端部)、すなわち透明層37R・37G・37B・37Wそれぞれのエッジで有機層36が薄くなったり電界集中が起こったりすることで、反射陽極31と半透過陰極35とが短絡することを防止するための絶縁層である。 The edge cover 17 is formed so that the organic layer 36 becomes thin or the electric field concentration occurs at the edges (end portions) of the reflective anode 31, that is, the transparent layers 37R, 37G, 37B, and 37W. This is an insulating layer for preventing the transmission cathode 35 from being short-circuited.
 エッジカバー17は、反射陽極31及び透明層37R・37G・37B・37Wそれぞれのエッジを覆って配されている。 The edge cover 17 is disposed so as to cover the edges of the reflective anode 31 and the transparent layers 37R, 37G, 37B, and 37W.
 エッジカバー17には、副画素50R・50G・50B・50Wのそれぞれで、開口部が形成されている。ただし、副画素50R・50G・50Bにおけるエッジカバー17の開口率と、副画素50Wにおけるエッジカバー17の開口率とは相違する。 The edge cover 17 has openings formed in the sub-pixels 50R, 50G, 50B, and 50W. However, the aperture ratio of the edge cover 17 in the sub-pixels 50R, 50G, and 50B is different from the aperture ratio of the edge cover 17 in the sub-pixel 50W.
 副画素50R・50G・50Bのそれぞれには、エッジカバー17に開口部(第1の開口部)18aが形成されている。一方、副画素50Wには、エッジカバー17に開口部18aよりも面積が小さい開口部(第2の開口部)18bが複数形成されている。 In each of the sub-pixels 50R, 50G, and 50B, an opening (first opening) 18a is formed in the edge cover 17. On the other hand, in the sub-pixel 50W, a plurality of openings (second openings) 18b having a smaller area than the openings 18a are formed in the edge cover 17.
 一例として、本実施の形態では、エッジカバー17は、感光性のアクリル系の絶縁膜をスピンコート等のコート技術を用いて塗布し、通常のフォトリソグラフィー技術を用い、各副画素50R・50G・50B・50W内の開口部18a及び開口部18bを形成することで得ている。一例として、エッジカバー17の膜厚は2μm程度である。 As an example, in the present embodiment, the edge cover 17 is formed by applying a photosensitive acrylic insulating film using a coating technique such as spin coating, and using a normal photolithography technique to each of the sub-pixels 50R, 50G, It is obtained by forming the opening 18a and the opening 18b in 50B and 50W. As an example, the film thickness of the edge cover 17 is about 2 μm.
 エッジカバー17の材料としては、さまざまな材料を利用することができる。例えば、アクリル系やイミド系、シロキサン系などの樹脂材料、有機材料、酸化ケイ素、窒化ケイ素などの無機材料等をエッジカバー17の材料として用いることができる。 Various materials can be used as the material of the edge cover 17. For example, resin materials such as acrylic, imide, and siloxane, organic materials, inorganic materials such as silicon oxide and silicon nitride, and the like can be used as the material for the edge cover 17.
 なお、エッジカバー17は透明な材料からなり、副画素50Wの透明層37Wをほぼ全体的に覆っている。 The edge cover 17 is made of a transparent material, and almost entirely covers the transparent layer 37W of the sub-pixel 50W.
 本実施の形態では、副画素50R・50G・50Bそれぞれには、副画素50R・50G・50Bのそれぞれの略全面にわたって、一つずつ開口部18aが形成されている。 In the present embodiment, each of the sub-pixels 50R, 50G, and 50B is provided with one opening 18a over substantially the entire surface of each of the sub-pixels 50R, 50G, and 50B.
 平面視したとき、副画素50R・50G・50Bそれぞれにおけるエッジカバー17の開口部18aの面積は、CF22R・22G・22Bのそれぞれの面積とほぼ同程度か、もしくは、封止基板20と支持基板10との貼り合わせマージンを考慮して、CF22R・22G・22Bの面積の方が若干大きい程度である。 When viewed in plan, the area of the opening 18a of the edge cover 17 in each of the sub-pixels 50R, 50G, and 50B is approximately the same as the area of each of the CFs 22R, 22G, and 22B, or the sealing substrate 20 and the support substrate 10 The area of CF22R / 22G / 22B is slightly larger in consideration of the bonding margin.
 副画素50Rでは、エッジカバー17は、透明層37Rのエッジを覆うと共に、開口部18aによって透明層37Rを露出させている。換言すると、副画素50Rでは、エッジカバー17は、透明層37Rの周縁部に沿って配されている。透明層37Rは、エッジカバー17で覆われている面積より、開口部18aにより露出している面積の方が広い。 In the sub-pixel 50R, the edge cover 17 covers the edge of the transparent layer 37R and exposes the transparent layer 37R through the opening 18a. In other words, in the subpixel 50R, the edge cover 17 is disposed along the peripheral edge of the transparent layer 37R. The transparent layer 37R has a larger area exposed by the opening 18a than the area covered by the edge cover 17.
 副画素50Gでは、エッジカバー17は、透明層37Gのエッジを覆うと共に、開口部18aによって透明層37Gを露出させている。換言すると、副画素50Gでは、エッジカバー17は、透明層37Gの周縁部に沿って配されている。透明層37Gは、エッジカバー17で覆われている面積より、開口部18aにより露出している面積の方が広い。 In the subpixel 50G, the edge cover 17 covers the edge of the transparent layer 37G and exposes the transparent layer 37G through the opening 18a. In other words, in the sub-pixel 50G, the edge cover 17 is disposed along the peripheral edge of the transparent layer 37G. The transparent layer 37G has a larger area exposed by the opening 18a than an area covered by the edge cover 17.
 副画素50Bでは、エッジカバー17は、透明層37Bのエッジを覆うと共に、開口部18aによって透明層37Bを露出させている。換言すると、副画素50Bでは、エッジカバー17は、透明層37Bの周縁部に沿って配されている。透明層37Bは、エッジカバー17で覆われている面積より、開口部18aにより露出している面積の方が広い。 In the sub-pixel 50B, the edge cover 17 covers the edge of the transparent layer 37B and exposes the transparent layer 37B through the opening 18a. In other words, in the subpixel 50B, the edge cover 17 is disposed along the peripheral edge of the transparent layer 37B. The transparent layer 37 </ b> B has a larger area exposed by the opening 18 a than the area covered by the edge cover 17.
 後述するように、各副画素50R・50G・50Bのそれぞれの開口部18aにより表面が露出している透明層37R・37G・37Bに、それぞれ有機層36が積層される。副画素50R・50G・50Bのうち、それぞれの開口部18a内が、各副画素50R・50G・50Bの発光部である。 As will be described later, the organic layer 36 is laminated on each of the transparent layers 37R, 37G, and 37B whose surfaces are exposed through the openings 18a of the sub-pixels 50R, 50G, and 50B. Among the sub-pixels 50R, 50G, and 50B, the inside of each opening 18a is a light emitting portion of each sub-pixel 50R, 50G, and 50B.
 副画素50R・50G・50Bのエッジカバー17の開口部18aのそれぞれの長手方向と、副画素50R・50G・50Bのそれぞれの長手方向とは平行である。副画素50R・50G・50Bのエッジカバー17の開口部18aのそれぞれの長手方向と直交する短手方向と、副画素50R・50G・50Bのそれぞれの長手方向と直交する短手方向とは平行である。 The longitudinal directions of the openings 18a of the edge cover 17 of the subpixels 50R, 50G, and 50B are parallel to the longitudinal directions of the subpixels 50R, 50G, and 50B. The short direction perpendicular to the respective longitudinal directions of the openings 18a of the edge covers 17 of the sub-pixels 50R, 50G, and 50B is parallel to the short direction perpendicular to the respective longitudinal directions of the sub-pixels 50R, 50G, and 50B. is there.
 副画素50Wでは、エッジカバー17は、透明層37Wのエッジを覆うだけでなく、透明層37Wの略全面を覆っている。そして、その透明層37Wの略全面を覆うエッジカバー17に、複数の微小な開口部18bが形成されている。複数の開口部18bのそれぞれは、開口部18aの面積より小さい微小な開口部である。複数の開口部18bによって、透明層37Wは露出している。 In the sub-pixel 50W, the edge cover 17 covers not only the edge of the transparent layer 37W but also the substantially entire surface of the transparent layer 37W. A plurality of minute openings 18b are formed in the edge cover 17 covering substantially the entire surface of the transparent layer 37W. Each of the plurality of openings 18b is a minute opening smaller than the area of the opening 18a. The transparent layer 37W is exposed through the plurality of openings 18b.
 透明層37Wは、エッジカバー17で覆われている面積の方が、複数の開口部18bにより露出している面積より広い。 The area covered with the edge cover 17 of the transparent layer 37W is wider than the area exposed by the plurality of openings 18b.
 副画素50Wでは、エッジカバー17の開口率が、副画素50R・50G・50Bでのエッジカバー17の開口率より小さくなるように複数の開口部18bが形成されている。 In the subpixel 50W, a plurality of openings 18b are formed so that the aperture ratio of the edge cover 17 is smaller than the aperture ratio of the edge cover 17 in the subpixels 50R, 50G, and 50B.
 本実施の形態では、一例として、複数の開口部18bは、副画素50Wのエッジカバー17に、6個、副画素50Wの長手方向に並んで形成されている。 In the present embodiment, as an example, the plurality of openings 18b are formed in the edge cover 17 of the sub-pixel 50W in a line along the longitudinal direction of the sub-pixel 50W.
 有機層36は、反射陽極31側から注入された正孔と、半透過陰極35側から注入された電子とを再結合させて光を発光する層である。本実施の形態では、有機層36は白色の光を発光する。 The organic layer 36 is a layer that emits light by recombining holes injected from the reflective anode 31 side and electrons injected from the transflective cathode 35 side. In the present embodiment, the organic layer 36 emits white light.
 有機層36は、エッジカバー17に開口部18a・18bが形成されたあと、例えば、真空蒸着法等を用いてエッジカバー17及び開口部18a・18b内に積層される。 After the openings 18a and 18b are formed in the edge cover 17, the organic layer 36 is laminated in the edge cover 17 and the openings 18a and 18b using, for example, a vacuum deposition method.
 有機層36は、副画素50R・50G・50B・50Wに跨って形成されており、さらに、有機EL表示パネル2の画像表示領域全面に形成されている。有機層36は、エッジカバー17及び透明層37R・37G・37B・37Wを覆っている。 The organic layer 36 is formed across the sub-pixels 50R, 50G, 50B, and 50W, and is further formed over the entire image display area of the organic EL display panel 2. The organic layer 36 covers the edge cover 17 and the transparent layers 37R, 37G, 37B, and 37W.
 有機層36は、副画素50Rでは開口部18a内で透明層37Rと接しており、副画素50Gでは開口部18a内で透明層37Gと接しており、副画素50Bでは開口部18a内で透明層37Bと接しており、副画素50Wでは開口部18b内で透明層37Wと接している。 The organic layer 36 is in contact with the transparent layer 37R in the opening 18a in the subpixel 50R, is in contact with the transparent layer 37G in the opening 18a in the subpixel 50G, and is transparent in the opening 18a in the subpixel 50B. 37B, and the sub-pixel 50W is in contact with the transparent layer 37W in the opening 18b.
 このように、有機EL表示装置1では、白色を発光する有機層36と、R・G・B・W色光を透過するCF22とを用いている。これにより、副画素50R・50G・50B・50Wのそれぞれに、それぞれの色の光を発光する層を、蒸着等により形成する必要がない。 Thus, in the organic EL display device 1, the organic layer 36 that emits white light and the CF 22 that transmits R, G, B, and W color light are used. Thereby, it is not necessary to form a layer emitting light of each color by vapor deposition or the like in each of the sub-pixels 50R, 50G, 50B, and 50W.
 このため、白色を発光する有機層36を一括で蒸着する等により形成することができ、RGBを発光する層を各副画素50R・50G・50B・50Wのそれぞれに、塗り分けるための高精細なマスクが必要ない。この結果、製造コストを低減することができる。 For this reason, the organic layer 36 that emits white light can be formed by vapor deposition or the like, and the high-definition for separately coating the RGB light-emitting layers on the sub-pixels 50R, 50G, 50B, and 50W. No mask is needed. As a result, the manufacturing cost can be reduced.
 なお、有機層36に替えて、R色光を発光する有機層を副画素50Rに配し、G色光を発光する有機層を副画素50Gに配し、B色光を発光する有機層を副画素50Bに配し、W色光を発光する有機層を副画素50Wに配してもよい。この場合、CF22を省略することができる。 In place of the organic layer 36, an organic layer that emits R-color light is disposed in the subpixel 50R, an organic layer that emits G-color light is disposed in the subpixel 50G, and an organic layer that emits B-color light is disposed in the subpixel 50B. An organic layer that emits W color light may be disposed in the sub-pixel 50W. In this case, the CF 22 can be omitted.
 半透過陰極35は、下層の有機層36に電子を注入する機能を有する層である。また、半透過陰極35は、有機層36から発光された光の一部を反射したり透過したりする機能を有する。 The transflective cathode 35 is a layer having a function of injecting electrons into the lower organic layer 36. The transflective cathode 35 has a function of reflecting or transmitting part of the light emitted from the organic layer 36.
 半透過陰極35は、副画素50R・50G・50B・50Wに跨っており、さらに、有機EL表示パネル2の画像表示領域全面に形成されている。半透過陰極35は、有機層36に積層されている。 The transflective cathode 35 extends over the sub-pixels 50R, 50G, 50B, and 50W, and is formed over the entire image display area of the organic EL display panel 2. The transflective cathode 35 is stacked on the organic layer 36.
 半透過陰極35は、例えば、Ag等を、極薄く、蒸着等により、有機層36上の全面に成膜される。 The transflective cathode 35 is made of, for example, Ag or the like, and is formed on the entire surface of the organic layer 36 by vapor deposition or the like.
 有機EL表示装置1は、上方に向けて出射する光を取り出すトップエミッション構造のため、半透過陰極35は光を透過させる必要がある。しかし、半透過陰極35と、反射陽極31との間でマイクロキャビティー効果を得るためには、半透過陰極35は、ある程度の反射率を有する必要もある。 Since the organic EL display device 1 has a top emission structure that extracts light emitted upward, the transflective cathode 35 needs to transmit light. However, in order to obtain a microcavity effect between the transflective cathode 35 and the reflective anode 31, the transflective cathode 35 also needs to have a certain degree of reflectivity.
 一例として、半透過陰極35は、Agからなり、膜厚は20nm程度である。なお、半透過陰極35の材質及び膜厚は、これに限定されず、例えば、膜厚が10nm~30nm程度の金属薄膜から構成することができる。また、半透過陰極35は、Ag以外にも、Alや、Ag及びAlの合金等を用いることができる。 As an example, the transflective cathode 35 is made of Ag and has a thickness of about 20 nm. Note that the material and film thickness of the transflective cathode 35 are not limited to this, and can be composed of a metal thin film having a film thickness of about 10 nm to 30 nm, for example. In addition to Ag, the transflective cathode 35 can be made of Al, an alloy of Ag and Al, or the like.
 なお、半透過陰極35と、反射陽極31とで、陰極と陽極とが逆であってもよい。すなわち、半透過陰極35に替えて、半透過陽極を有機層36に積層し、反射陽極31に替えて反射陰極を有機層36の下方に配してもよい。 In addition, the cathode and the anode may be reversed between the semi-transmissive cathode 35 and the reflective anode 31. That is, instead of the semi-transmissive cathode 35, a semi-transmissive anode may be stacked on the organic layer 36, and the reflective cathode may be disposed below the organic layer 36 instead of the reflective anode 31.
 また、必要に応じて、正孔注入層、正孔輸送層、電子輸送層、及び電子注入層等を、反射陽極31と、半透過陰極35との間に配してもよい。 Further, if necessary, a hole injection layer, a hole transport layer, an electron transport layer, an electron injection layer, and the like may be disposed between the reflective anode 31 and the semi-transmissive cathode 35.
 (有機EL表示装置の作用効果)
 次に、図2の(a)(b)を用いて、有機EL表示装置1の主な作用効果について説明する。
(Operation effect of organic EL display device)
Next, main functions and effects of the organic EL display device 1 will be described with reference to FIGS.
 有機EL表示装置1では、有機層36及び半透過陰極35は、各副画素50R・50G・50B・50W毎に設けられているのではなく、各副画素50R・50G・50B・50Wに跨り、有機EL表示装置1の画像表示領域の全面に設けられている。 In the organic EL display device 1, the organic layer 36 and the transflective cathode 35 are not provided for each of the subpixels 50R, 50G, 50B, and 50W, but straddle the subpixels 50R, 50G, 50B, and 50W, It is provided on the entire image display area of the organic EL display device 1.
 このため、有機層36及び半透過陰極35は、副画素50R・50G・50Bの開口部18a内、及び副画素50Wの複数の開口部18b内だけでなく、エッジカバー17上にも積層されている。 For this reason, the organic layer 36 and the transflective cathode 35 are stacked not only in the openings 18a of the subpixels 50R, 50G, and 50B and the openings 18b of the subpixel 50W but also on the edge cover 17. Yes.
 このように、有機層36や、半透過陰極35を、各副画素50R・50G・50B・50Wに跨って設けることで、塗り分け蒸着を行う等、各副画素50R・50G・50B・50W毎に形成し分ける必要が無い。このため、製造プロセスを簡略化することができる。 Thus, by providing the organic layer 36 and the transflective cathode 35 across the sub-pixels 50R, 50G, 50B, and 50W, each of the sub-pixels 50R, 50G, 50B, and 50W, such as performing separate deposition, etc. There is no need to form them separately. For this reason, the manufacturing process can be simplified.
 有機EL表示装置1の画素50によると、反射陽極31から電流が有機層36に注入される。そして、副画素50R・50G・50B・50Wにおける、それぞれの開口部18a・18b内で有機層36が白色発光する。 According to the pixel 50 of the organic EL display device 1, current is injected from the reflective anode 31 into the organic layer 36. The organic layer 36 emits white light in the openings 18a and 18b in the sub-pixels 50R, 50G, 50B, and 50W.
 ここで、副画素50R・50G・50Bは、キャビティー効果を得るためのキャビティー構造となっている。 Here, the sub-pixels 50R, 50G, and 50B have a cavity structure for obtaining a cavity effect.
 すなわち、副画素50Rでは、有機層36と反射陽極31との間に透明層37Rを設けることで、開口部18a内の反射陽極31と、半透過陰極35との間の距離が、副画素50Rが出射する可視光であるR色光のピーク波長が共振する距離となっている。 That is, in the sub-pixel 50R, by providing the transparent layer 37R between the organic layer 36 and the reflective anode 31, the distance between the reflective anode 31 in the opening 18a and the semi-transmissive cathode 35 is reduced. Is the distance at which the peak wavelength of the R-color light, which is the visible light emitted from, resonates.
 一例として、有機層36の膜厚は200nmであり、透明層37Rの膜厚は100nmであり、反射陽極31と、半透過陰極35との距離は300nmである。 As an example, the thickness of the organic layer 36 is 200 nm, the thickness of the transparent layer 37R is 100 nm, and the distance between the reflective anode 31 and the transflective cathode 35 is 300 nm.
 これにより、副画素50Rでは、開口部18a内で有機層36が発光したW色光の波長のうち、反射陽極31と、半透過陰極35との間で、赤色のピーク波長が共振する。この結果、有機層36が発光したW色光は赤色に色付き、半透過陰極35を透過し、さらに、CF22Rを透過することで、色純度が高いR色光として、副画素50Rから外部へ出射される。 Thereby, in the sub-pixel 50R, the red peak wavelength resonates between the reflective anode 31 and the semi-transmissive cathode 35 among the wavelengths of the W color light emitted from the organic layer 36 in the opening 18a. As a result, the W color light emitted from the organic layer 36 is colored red, passes through the semi-transmissive cathode 35, and further passes through the CF 22R, and is emitted from the subpixel 50R to the outside as R color light with high color purity. .
 副画素50Gでは、有機層36と反射陽極31との間に透明層37Gを設けることで、開口部18a内の反射陽極31と、半透過陰極35との間の距離が、副画素50Gが出射する可視光であるG色光のピーク波長が共振する距離となっている。 In the subpixel 50G, by providing the transparent layer 37G between the organic layer 36 and the reflective anode 31, the distance between the reflective anode 31 in the opening 18a and the semi-transmissive cathode 35 is emitted from the subpixel 50G. The peak wavelength of the G color light, which is visible light, is a distance at which resonance occurs.
 一例として、有機層36の膜厚は200nmであり、透明層37Gの膜厚は50nmであり、反射陽極31と、半透過陰極35との距離は250nmである。 As an example, the thickness of the organic layer 36 is 200 nm, the thickness of the transparent layer 37G is 50 nm, and the distance between the reflective anode 31 and the transflective cathode 35 is 250 nm.
 このため、副画素50Gでは、開口部18a内で有機層36が発光したW色光の波長のうち、反射陽極31と、半透過陰極35との間で、緑色のピーク波長が共振する。この結果、有機層36が発光したW色光は緑色に色付き、半透過陰極35を透過し、さらに、CF22Gを透過することで、色純度が高いG色光として、副画素50Gから外部へ出射される。 Therefore, in the sub-pixel 50G, the green peak wavelength resonates between the reflective anode 31 and the semi-transmissive cathode 35 among the wavelengths of the W color light emitted from the organic layer 36 in the opening 18a. As a result, the W color light emitted from the organic layer 36 is colored green, passes through the semi-transmissive cathode 35, and further passes through the CF 22G, and is emitted from the subpixel 50G to the outside as G color light with high color purity. .
 副画素50Bでは、有機層36と反射陽極31との間に透明層37Bを設けることで、開口部18a内の反射陽極31と、半透過陰極35との間の距離が、副画素50Bが出射する可視光であるB色光のピーク波長が共振する距離となっている。 In the sub-pixel 50B, by providing the transparent layer 37B between the organic layer 36 and the reflective anode 31, the distance between the reflective anode 31 in the opening 18a and the semi-transmissive cathode 35 is emitted from the sub-pixel 50B. The peak wavelength of the B-color light that is visible light is the distance at which resonance occurs.
 一例として、有機層36の膜厚は200nmとした場合、透明層37Bは省略し、反射陽極31と、半透過陰極35との距離は200nmとなる。 As an example, when the film thickness of the organic layer 36 is 200 nm, the transparent layer 37B is omitted, and the distance between the reflective anode 31 and the transflective cathode 35 is 200 nm.
 このため、副画素50Bでは、開口部18a内で有機層36が発光したW色光の波長のうち、反射陽極31と、半透過陰極35との間で、青色のピーク波長が共振する。この結果、有機層36が発光したW色光は青色に色付き、半透過陰極35を透過し、さらに、CF22Bを透過することで、色純度が高いB色光として、副画素50Bから外部へ出射される。 Therefore, in the sub-pixel 50B, the blue peak wavelength resonates between the reflective anode 31 and the semi-transmissive cathode 35 among the wavelengths of the W color light emitted from the organic layer 36 in the opening 18a. As a result, the W color light emitted from the organic layer 36 is colored blue, passes through the semi-transmissive cathode 35, and further passes through the CF 22B, and is emitted from the subpixel 50B to the outside as B color light with high color purity. .
 なお、透明層37Bを設けなくても、反射陽極31と、半透過陰極35との距離が、B色光のピーク波長が共振する距離となっている場合は、透明層37Bを省略してもよい。 Even if the transparent layer 37B is not provided, the transparent layer 37B may be omitted when the distance between the reflective anode 31 and the semi-transmissive cathode 35 is a distance at which the peak wavelength of the B color light resonates. .
 このように、副画素50R・50G・50Bのそれぞれから、色純度が高い光を出射させることができるので、高精細な有機EL表示装置1を得ることができる。 As described above, since light with high color purity can be emitted from each of the sub-pixels 50R, 50G, and 50B, the high-definition organic EL display device 1 can be obtained.
 一方、副画素50Wでは、エッジカバー17には、開口部18aよりも面積が小さい開口部18bが複数配されている。副画素50Wでは、エッジカバー17の開口率が、副画素50R・56G・50Bにおけるエッジカバー17の開口率と比べて小さくなるように、複数の開口部18bが形成されている。 On the other hand, in the sub-pixel 50W, the edge cover 17 is provided with a plurality of openings 18b having a smaller area than the openings 18a. In the subpixel 50W, a plurality of openings 18b are formed so that the aperture ratio of the edge cover 17 is smaller than the aperture ratio of the edge cover 17 in the subpixels 50R, 56G, and 50B.
 このため、開口部18b内の反射陽極31と、半透過陰極35との間で、有機層36から発光された白色光のうちの、可視光領域の何れかの波長が共振したとしても、その光量は、副画素50Wからの出射光の光量のうちの僅かな量である。 For this reason, even if any wavelength in the visible light region of the white light emitted from the organic layer 36 resonates between the reflective anode 31 in the opening 18b and the transflective cathode 35, The amount of light is a small amount of the amount of light emitted from the sub-pixel 50W.
 このように、副画素50W内では、可視光の波長の共振が抑制されるので、色付きが抑制された白色光を出射させることができる。 Thus, since the resonance of the wavelength of visible light is suppressed in the sub-pixel 50W, it is possible to emit white light whose coloring is suppressed.
 副画素50Wでは、有機層36と反射陽極31との間に透明層37Wを設けることで、開口部18b内の反射陽極31と、半透過陰極35との間の距離が、画像の観察者に視認されやすい可視光の波長が共振しにくい距離となっている。 In the sub-pixel 50W, by providing the transparent layer 37W between the organic layer 36 and the reflective anode 31, the distance between the reflective anode 31 in the opening 18b and the transflective cathode 35 can be adjusted to the image observer. The wavelength of visible light that is easily visible is a distance at which resonance is difficult.
 一例として、本実施の形態では、副画素50Wの開口部18b内の反射陽極31と、半透過陰極35との距離は、副画素50Bと同様に、青色光のピーク波長が共振する距離となっている。 As an example, in the present embodiment, the distance between the reflective anode 31 in the opening 18b of the subpixel 50W and the semi-transmissive cathode 35 is the distance at which the peak wavelength of blue light resonates, as in the subpixel 50B. ing.
 すなわち、有機層36の膜厚は200nmとした場合、透明層37Wは省略し、反射陽極31と、半透過陰極35との距離は200nmとなる。 That is, when the film thickness of the organic layer 36 is 200 nm, the transparent layer 37W is omitted, and the distance between the reflective anode 31 and the transflective cathode 35 is 200 nm.
 そして、これにより、副画素50R・50G・50Bでは、開口部18a内の有機層36が白色に発光する。 As a result, in the sub-pixels 50R, 50G, and 50B, the organic layer 36 in the opening 18a emits white light.
 一方、副画素50Wでは、開口部18bが複数配されているので、反射陽極31から有機層36に注入された電流は、図2の(b)の矢印CAに示すように、開口部18b内の有機層36だけでなく、開口部18bの側壁に沿って広がり、開口部18b間のエッジカバー17上の有機層36へも広がる。これにより、開口部18b内の有機層36だけでなく、エッジカバー17上の有機層36も発光させることができるので、輝度分布が均一な白色光を、副画素50Wから出射させることができる。 On the other hand, since a plurality of openings 18b are arranged in the subpixel 50W, the current injected from the reflective anode 31 into the organic layer 36 is generated in the openings 18b as shown by an arrow CA in FIG. The organic layer 36 extends along the side wall of the opening 18b and also extends to the organic layer 36 on the edge cover 17 between the openings 18b. As a result, not only the organic layer 36 in the opening 18b but also the organic layer 36 on the edge cover 17 can emit light, so that white light with a uniform luminance distribution can be emitted from the sub-pixel 50W.
 このエッジカバー17は、絶縁層として機能させるためのものなので、膜厚が厚く形成されている。一例として、2μm(すなわち2000nm)程度である。 Since this edge cover 17 is for functioning as an insulating layer, it is formed thick. As an example, it is about 2 μm (that is, 2000 nm).
 このため、副画素50W内であって、エッジカバー17及び積層された有機層36が形成されている領域の反射陽極31と半透過陰極35との距離は2200nmであり、特定の可視光の波長を共振させる効果は非常に弱い。 For this reason, the distance between the reflective anode 31 and the transflective cathode 35 in the subpixel 50W in the region where the edge cover 17 and the stacked organic layer 36 are formed is 2200 nm, and the wavelength of a specific visible light The effect of resonating is very weak.
 一方、上述したように、副画素50Wのうち、複数の開口部18bが形成されている面積はごく僅かである。 On the other hand, as described above, in the sub-pixel 50W, the area where the plurality of openings 18b are formed is very small.
 この結果、副画素50Wでは、マイクロキャビティー効果はほとんど生じず、色付きが抑制された、輝度分布が均一な白色光を出射することができる。 As a result, in the sub-pixel 50W, the microcavity effect hardly occurs, and white light with a uniform luminance distribution can be emitted with coloring suppressed.
 この開口部18bの個数や、配置位置等は、副画素50Wの大きさ等に基づいて、任意に設定が可能である。 The number of the openings 18b, the arrangement position, and the like can be arbitrarily set based on the size of the sub-pixel 50W.
 本実施の形態では、副画素50Wでは、エッジカバー17が反射陽極31を覆う面積より、複数の開口部18bの面積の方が小さくなる程度に、複数の開口部18bを設けている。これにより、副画素50Wから出射するW色光の色付きを抑制することができる。 In the present embodiment, in the sub-pixel 50W, the plurality of openings 18b are provided such that the area of the plurality of openings 18b is smaller than the area where the edge cover 17 covers the reflective anode 31. Thereby, coloring of W color light radiate | emitted from the subpixel 50W can be suppressed.
 一方、副画素50R・50G・50Bでは、エッジカバー17が反射陽極31を覆う面積より、開口部18aの面積の方が大きくなるように、開口部18aを設けている。これにより、キャビティー効果により、色純度が高いR色光・G色光・B色光を得ることができる。 On the other hand, in the sub-pixels 50R, 50G, and 50B, the opening 18a is provided so that the area of the opening 18a is larger than the area where the edge cover 17 covers the reflective anode 31. Thereby, R color light, G color light, and B color light with high color purity can be obtained by the cavity effect.
 なお、副画素50R・50G・50B・50Wのエッジカバー17の開口率は、上述したものに限定されず、副画素50R・50G・50Bのエッジカバー17の開口率より、副画素50Wのエッジカバー17の開口率が小さくなっていればよい。 Note that the aperture ratio of the edge cover 17 of the subpixels 50R, 50G, 50B, and 50W is not limited to that described above, and the edge cover of the subpixel 50W is determined based on the aperture ratio of the edge cover 17 of the subpixels 50R, 50G, and 50B. The aperture ratio of 17 should just become small.
 例えば、副画素50R・50G・50Bのエッジカバー17の開口率を、約10%~80%とし、副画素50Wのエッジカバー17の開口率を、副画素50R・50G・50Bのエッジカバー17の開口率の1/4~1/10程度としてもよい。 For example, the aperture ratio of the edge cover 17 of the sub-pixels 50R, 50G, and 50B is about 10% to 80%, and the aperture ratio of the edge cover 17 of the sub-pixel 50W is the same as that of the edge cover 17 of the sub-pixels 50R, 50G, and 50B. The aperture ratio may be about 1/4 to 1/10.
 なお、副画素50Wから発光する光のうち、例えば、B色光等、開口部18bでピーク波長が共振された色の光が多少混じっても問題はない。このように、副画素50Wから、多少青色がかったW色光が得られた場合、その発光色に合せて、ディスプレイ駆動回路の設計をすればよく、本来のRGBW副画素を用いることによる消費電力の低減効果を損なうことは無い。 Of the light emitted from the sub-pixel 50W, for example, light of a color whose peak wavelength is resonated at the opening 18b, such as B color light, is mixed slightly. As described above, when W light having a slight blue color is obtained from the sub-pixel 50W, the display driving circuit may be designed according to the emission color, and the power consumption by using the original RGBW sub-pixel is reduced. The reduction effect is not impaired.
 また、副画素50Wのエッジカバー17の開口率が大きい場合は、マイクロキャビティー効果が抑制されている領域、すなわち、副画素50Wのうち開口部18b以外の領域が相対的に大きいので、副画素50Wの出射光は特定の色に偏りがちになる。一方、副画素50Wのエッジカバー17の開口率があまり小さすぎると、製造プロセスが困難となり、量産性の低下を招くおそれがある。 Further, when the aperture ratio of the edge cover 17 of the subpixel 50W is large, a region where the microcavity effect is suppressed, that is, a region other than the opening 18b in the subpixel 50W is relatively large. The outgoing light of 50 W tends to be biased to a specific color. On the other hand, if the aperture ratio of the edge cover 17 of the sub-pixel 50W is too small, the manufacturing process becomes difficult and the mass productivity may be reduced.
 (開口部の変形例)
 図4は、副画素50Wの開口部18bの変形例を示す断面図である。
(Modification of opening)
FIG. 4 is a cross-sectional view showing a modification of the opening 18b of the subpixel 50W.
 図4に示すように、副画素50Wの複数の開口部18bにおけるエッジカバー17の側面をテーパー形状とすることで、図4の矢印CBに示すように、開口部18b内で、反射陽極31から有機層36に注入された電流が、エッジカバー17の側壁に沿って広がり易くなり、エッジカバー17上の有機層36にも到達し易くなる。 As shown in FIG. 4, the side surfaces of the edge cover 17 in the plurality of openings 18b of the sub-pixel 50W are tapered, so that the reflection anode 31 can be removed from the reflective anode 31 in the opening 18b as shown by an arrow CB in FIG. The current injected into the organic layer 36 easily spreads along the side wall of the edge cover 17 and easily reaches the organic layer 36 on the edge cover 17.
 また、副画素50Wの複数の開口部18bにおけるエッジカバー17の側壁をテーパー形状とすることで、有機層36の段切りすることを防止することができる。これにより、エッジカバー17上に配されている有機層36を確実に発光させることができる。 Further, the organic layer 36 can be prevented from being stepped by forming the side wall of the edge cover 17 in the plurality of openings 18b of the sub-pixel 50W into a tapered shape. Thereby, the organic layer 36 arranged on the edge cover 17 can be made to emit light reliably.
 この結果、輝度分布が均一な出射光を得ることができる。 As a result, it is possible to obtain outgoing light with a uniform luminance distribution.
 また、このエッジカバー17の側壁がテーパー形状であっても、その角度が急峻であると、有機層36が、そのテーパー形状の角部で段切れを起こし、電流経路としては断線状態、もしくは高抵抗状態となってしまう。このため、電流が横に(すなわち、有機層36に沿って)広がらなくなってしまう。 In addition, even if the side wall of the edge cover 17 is tapered, if the angle is steep, the organic layer 36 is stepped at the corner of the tapered shape, and the current path is disconnected or high. It becomes a resistance state. For this reason, the current does not spread laterally (that is, along the organic layer 36).
 有機層36の段切れ、もしくは高抵抗化が発生するエッジカバー17の側壁のテーパー角度(エッジカバー17の側壁と、透明層37Wとの角度)は、有機層36の形成条件に依存する。例えば、有機層36を真空蒸着によって形成する場合には、基板と蒸着源の角度などの条件によっても異なる。 The taper angle of the side wall of the edge cover 17 (an angle between the side wall of the edge cover 17 and the transparent layer 37 </ b> W) at which the organic layer 36 is disconnected or the resistance is increased depends on the formation conditions of the organic layer 36. For example, in the case where the organic layer 36 is formed by vacuum vapor deposition, it varies depending on conditions such as the angle between the substrate and the vapor deposition source.
 ただし、一般的に用いられる手法で、上記段切れ、もしくは高抵抗化が起こらないテーパー角度としては、60°以下とすることが好ましい。 However, it is preferable that the taper angle at which the step breakage or the increase in resistance does not occur is 60 ° or less by a generally used technique.
 エッジカバー17を、樹脂系の材料で構成することが好ましい。形成条件にもよるが、通常のウェット系のフォトリソグラフィー工程等により、容易に、エッジカバー17の側壁のテーパー角度を60°以下とすることができる。 It is preferable that the edge cover 17 is made of a resin material. Although depending on the formation conditions, the taper angle of the side wall of the edge cover 17 can be easily set to 60 ° or less by a normal wet photolithography process or the like.
 なお、開口部18bにおけるエッジカバー17の側壁だけでなく、開口部18aにおけるエッジカバー17の側壁をテーパー形状としてもよい。 Note that not only the side wall of the edge cover 17 in the opening 18b but also the side wall of the edge cover 17 in the opening 18a may be tapered.
 (副画素の変形例)
 図5は、副画素50R・50G・50B・50Wの変形例を表す断面図である。図5では、TFT基板だけを表している。
(Subpixel variation)
FIG. 5 is a cross-sectional view illustrating a modification of the sub-pixels 50R, 50G, 50B, and 50W. FIG. 5 shows only the TFT substrate.
 有機EL表示装置1の副画素50R・50G・50B・50Wのそれぞれは、いわゆるタンデム構造であってもよい。 Each of the sub-pixels 50R, 50G, 50B, and 50W of the organic EL display device 1 may have a so-called tandem structure.
 有機EL表示装置1は、支持基板10に替えて、支持基板10aを備えていてもよい。 The organic EL display device 1 may include a support substrate 10 a instead of the support substrate 10.
 支持基板10aは、支持基板10のうち有機層36が2層となり、その間に電荷発生層38が設けられている点で、支持基板10と相違する。支持基板10aの他の構成は、支持基板10と同様である。 The support substrate 10a is different from the support substrate 10 in that the organic layer 36 is two layers of the support substrate 10 and the charge generation layer 38 is provided therebetween. Other configurations of the support substrate 10 a are the same as those of the support substrate 10.
 支持基板10aでは、エッジカバー17、開口部18a、及び開口部18b(図5には不図示)を覆って、下層から上層にかけて順に、有機層36a、電荷発生層38、及び有機層36bが積層されている。そして、有機層36bに半透過陰極35が設けられている。 In the support substrate 10a, the organic layer 36a, the charge generation layer 38, and the organic layer 36b are laminated in order from the lower layer to the upper layer, covering the edge cover 17, the opening 18a, and the opening 18b (not shown in FIG. 5). Has been. A semi-transmissive cathode 35 is provided on the organic layer 36b.
 有機層36a、電荷発生層38、及び有機層36bは、副画素50R・50G・50B・50Wに跨って設けられており、画像表示領域の全面に設けられている。 The organic layer 36a, the charge generation layer 38, and the organic layer 36b are provided across the sub-pixels 50R, 50G, 50B, and 50W, and are provided over the entire image display area.
 有機層36a・36bは、それぞれの発光色は特に問わないが、2層合せて白色となる光を発光する層である。なお、有機層は2層に限定されず、3層以上からなるタンデム構造であってもよい。 The organic layers 36a and 36b are layers that emit light that is white when the two layers are combined, although the emission color is not particularly limited. The organic layer is not limited to two layers, and may have a tandem structure including three or more layers.
 電荷発生層38は、正孔と電子を発生させることができ、有機層36a・36bに効率よくキャリアを注入させることができる。また、有機層36a・36bよりも、相対的に抵抗値が低い材料からなる層である。電荷発生層38としては、例えば、Li、Ca、Srなどのアルカリ金属、またはアルカリ土類金属、もしくはそれらと有機物とが共蒸着されたものなどを用いることができる。 The charge generation layer 38 can generate holes and electrons, and can efficiently inject carriers into the organic layers 36a and 36b. Further, it is a layer made of a material having a relatively lower resistance value than the organic layers 36a and 36b. As the charge generation layer 38, for example, an alkali metal such as Li, Ca, or Sr, an alkaline earth metal, or a material in which these and an organic substance are co-deposited can be used.
 このように、図5の副画素50R・50G・50B・50Wによると、有機層36aと、有機層36bとの間に電荷発生層38が設けられているので、各画素50R・50G・50B・50W間の導電率が向上する。すなわち、反射陽極31から各開口部18a・18b内の有機層36aに注入された電流を、図5の矢印CCに示すように、電荷発生層38により広がり易くすることができる。 As described above, according to the sub-pixels 50R, 50G, 50B, and 50W in FIG. 5, the charge generation layer 38 is provided between the organic layer 36a and the organic layer 36b, so that each of the pixels 50R, 50G, 50B, and 50B. The conductivity between 50W is improved. That is, the current injected from the reflective anode 31 into the organic layer 36a in each of the openings 18a and 18b can be easily spread by the charge generation layer 38 as indicated by the arrow CC in FIG.
 このため、副画素50Wで、エッジカバー17上に有機層36a・36bが積層されていたとしても、エッジカバー17上の有機層36a・36bを、より確実に発光させることができる。この結果、副画素50Wから輝度分布が均一な出射光を得ることができる。 Therefore, even if the organic layers 36a and 36b are stacked on the edge cover 17 in the sub-pixel 50W, the organic layers 36a and 36b on the edge cover 17 can emit light more reliably. As a result, emitted light having a uniform luminance distribution can be obtained from the sub-pixel 50W.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 以上のように、本発明の表示装置は、一画素を構成する複数の副画素毎に配されている第1の電極と、当該第1の電極と対向配置されている第2の電極と、上記第1及び第2の電極間に配されている発光する有機層と、上記第1の電極のエッジを覆う絶縁層とを備えている表示装置であって、上記絶縁層に開口部が設けられており、当該開口部に、上記有機層及び上記第2の電極が配されており、上記複数の副画素は、互いに異なる色の光を出射する第1及び第2の副画素を有し、上記開口部内の上記第1及び第2の電極間の距離は、可視光のピーク波長が共振する距離となっており、上記第2の副画素における上記絶縁層の開口率は、上記第1の副画素における上記絶縁層の開口率と比べて小さいことを特徴としている。 As described above, the display device of the present invention includes the first electrode disposed for each of the plurality of subpixels constituting one pixel, the second electrode disposed to face the first electrode, A display device comprising: an organic layer that emits light between the first and second electrodes; and an insulating layer that covers an edge of the first electrode, wherein an opening is provided in the insulating layer. The organic layer and the second electrode are disposed in the opening, and the plurality of subpixels include first and second subpixels that emit light of different colors. The distance between the first and second electrodes in the opening is a distance at which the peak wavelength of visible light resonates, and the aperture ratio of the insulating layer in the second subpixel is the first aperture. The aperture ratio of the insulating layer in the subpixel is small.
 上記構成によると、上記開口部内の上記第1及び第2の電極間の距離は、可視光のピーク波長が共振する距離となっている。このため、上記第1の副画素から、色純度が高い可視光を出射させることができる。この結果、高精細な表示装置を得ることができる。 According to the above configuration, the distance between the first and second electrodes in the opening is a distance at which the peak wavelength of visible light resonates. For this reason, visible light with high color purity can be emitted from the first subpixel. As a result, a high-definition display device can be obtained.
 そして、上記第2の副画素における上記絶縁層の開口率は、上記第1の副画素における上記絶縁層の開口率と比べて小さい。このため、第2の副画素内で波長が共振することを抑制することができる。この結果、第2の副画素から出射する光の色付きを抑制することができる。 The aperture ratio of the insulating layer in the second subpixel is smaller than the aperture ratio of the insulating layer in the first subpixel. For this reason, it can suppress that a wavelength resonates within a 2nd subpixel. As a result, the coloring of the light emitted from the second subpixel can be suppressed.
 このように、上記構成によると、上記第2の副画素における上記絶縁層の開口率を、上記第1の副画素における上記絶縁層の開口率より小さくするだけで、上記第2の副画素からの出射光の色付きを抑制することができるので、生産性の著しい低下を招くことなく、波長の共振が不要な副画素からの出射光の、不要な色付きを抑制することができる。 In this way, according to the above configuration, the aperture ratio of the insulating layer in the second subpixel can be made smaller than the aperture ratio of the insulating layer in the first subpixel by simply reducing the aperture ratio of the second subpixel. Therefore, it is possible to suppress unnecessary coloring of the emitted light from the sub-pixels that do not require wavelength resonance without causing a significant decrease in productivity.
 また、上記開口部は、第1の開口部と、当該第1の開口部より面積が小さい第2の開口部とからなり、上記第1の開口部は、上記第1の副画素における上記絶縁層に設けられており、上記第2の開口部は、上記第2の副画素における上記絶縁層に設けられていることが好ましい。 The opening includes a first opening and a second opening having a smaller area than the first opening, and the first opening is the insulation in the first subpixel. Preferably, the second opening is provided in the insulating layer of the second subpixel.
 上記構成により、上記第1の副画素における上記絶縁層の開口率より、上記第2の副画素における上記絶縁層の開口率を小さくすることができる。 With the above configuration, the aperture ratio of the insulating layer in the second subpixel can be made smaller than the aperture ratio of the insulating layer in the first subpixel.
 また、上記第2の開口部は、上記第2の副画素に複数設けられていることが好ましい。上記構成により、上記第2の副画素の有機層を均一に発光させることができる。この結果、色ムラの発生を防止することができる。 Further, it is preferable that a plurality of the second openings are provided in the second subpixel. With the above structure, the organic layer of the second subpixel can be made to emit light uniformly. As a result, the occurrence of color unevenness can be prevented.
 また、上記第1の副画素では、上記絶縁層が上記第1の電極を覆う面積より、上記第1の開口部の面積の方が大きく、上記第2の副画素では、上記絶縁層が上記第1の電極を覆う面積より、上記第2の開口部の面積の方が小さいことが好ましい。 In the first subpixel, the area of the first opening is larger than the area where the insulating layer covers the first electrode. In the second subpixel, the insulating layer is The area of the second opening is preferably smaller than the area covering the first electrode.
 上記構成により、上記第1の副画素から色純度が高い光を出射させることができ、さらに、上記第2の副画素からの出射光の色付きを抑制することができる。 With the above configuration, it is possible to emit light with high color purity from the first subpixel, and it is possible to suppress coloring of the light emitted from the second subpixel.
 また、上記有機層は、上記第1及び第2の副画素に跨って設けられていることが好ましい。上記構成により、上記有機層を、上記第1及び第2の副画素毎に形成し分ける必要が無いので、製造プロセスを簡略化することができる。 The organic layer is preferably provided across the first and second subpixels. With the above configuration, it is not necessary to form the organic layer separately for each of the first and second subpixels, so that the manufacturing process can be simplified.
 また、上記有機層は、上記絶縁層を覆っていることが好ましい。上記構成により、上記有機層を上記第1及び第2の開口部内にだけパターン形成する必要が無いので、製造プロセスの簡略化をすることができる。さらに、上記第2の副画素に複数の開口部を設けることで、上記第2の副画素では、上記絶縁層上の有機層も発光させることができる。これにおり、第2の副画素から輝度分布が均一な出射光を得ることができる。 The organic layer preferably covers the insulating layer. With the above configuration, it is not necessary to pattern the organic layer only in the first and second openings, so that the manufacturing process can be simplified. Furthermore, by providing a plurality of openings in the second subpixel, the organic layer on the insulating layer can also emit light in the second subpixel. Thus, it is possible to obtain emitted light having a uniform luminance distribution from the second subpixel.
 また、上記第1及び第2の開口部のそれぞれは、テーパー形状であることが好ましい。上記構成により、上記絶縁層の上記第1及び第2の開口部における側壁で、上記有機層が段切りすることを防止することができる。これにより、上記絶縁層の上層に上記有機層が配されていたとしても、当該有機層を、確実に発光させることができる。この結果、上記第2の副画素から輝度分布が均一な出射光を得ることができる。 In addition, each of the first and second openings is preferably tapered. With the above configuration, the organic layer can be prevented from being stepped at the side walls of the first and second openings of the insulating layer. Thereby, even if the organic layer is arranged on the insulating layer, the organic layer can emit light reliably. As a result, emitted light having a uniform luminance distribution can be obtained from the second sub-pixel.
 また、上記有機層は、第1の有機層と、当該第1の有機層の上層に設けられている第2の有機層とを備え、上記第1の有機層と、上記第2の有機層との間に、上記第1及び第2の有機層より、相対的に抵抗値が低い材料からなる電荷発生層が設けられていることが好ましい。 The organic layer includes a first organic layer and a second organic layer provided on the first organic layer, the first organic layer and the second organic layer. It is preferable that a charge generation layer made of a material having a relatively lower resistance value than the first and second organic layers is provided between the first and second organic layers.
 上記構成によると、上記第1及び第2の有機層の間に、上記電荷発生層が設けられているので、導電率を向上させることができる。これにより、上記絶縁層上に上記第1及び第2の有機層が設けられていたとしても、当該絶縁層上の第1及び第2の有機層を、より確実に発光させることができる。この結果、上記第2の副画素から輝度分布が均一な出射光を得ることができる。 According to the above configuration, since the charge generation layer is provided between the first and second organic layers, the conductivity can be improved. Thereby, even if the first and second organic layers are provided on the insulating layer, the first and second organic layers on the insulating layer can emit light more reliably. As a result, emitted light having a uniform luminance distribution can be obtained from the second sub-pixel.
 また、上記第1及び第2の副画素の一実施態様として、上記第1の副画素は、赤色光を出射する赤色副画素と、緑色光を出射する緑色副画素と、青色光を出射する青色副画素とを有し、上記第2の副画素は、白色光を出射する白色副画素を有する構成とすることができる。 As an embodiment of the first and second subpixels, the first subpixel emits a red subpixel that emits red light, a green subpixel that emits green light, and a blue light. The second sub-pixel may have a white sub-pixel that emits white light.
 また、上記赤色副画素では、上記第1の開口部内の上記第1及び第2の電極間の距離は、赤色光のピーク波長が共振する距離となっており、上記緑色副画素では、上記第1の開口部内の上記第1及び第2の電極間の距離は、緑色光のピーク波長が共振する距離となっており、上記青色副画素では、上記第1の開口部内の上記第1及び第2の電極間の距離は、青色光のピーク波長が共振する距離となっており、上記白色副画素では、上記第2の開口部内の上記第1及び第2の電極間の距離は、青色光のピーク波長が共振する距離となっていることが好ましい。 In the red subpixel, the distance between the first and second electrodes in the first opening is a distance at which the peak wavelength of red light resonates. In the green subpixel, The distance between the first and second electrodes in one opening is a distance at which the peak wavelength of green light resonates. In the blue subpixel, the first and second electrodes in the first opening are resonated. The distance between the two electrodes is a distance at which the peak wavelength of blue light resonates. In the white subpixel, the distance between the first and second electrodes in the second opening is blue light. It is preferable that the peak wavelength is a resonating distance.
 上記構成により、色純度が高い赤色光・緑色光・青色光を得ると共に、色付きが抑制された白色光を得ることができる。 With the above configuration, it is possible to obtain red light / green light / blue light with high color purity and white light with suppressed coloring.
 本発明は、有機EL表示装置等、マイクロキャビティー効果を有する表示装置に利用することができる。 The present invention can be used for a display device having a microcavity effect, such as an organic EL display device.
1 有機EL表示装置(表示装置)
10・10a 支持基板
17 エッジカバー(絶縁層)
18a 開口部(第1の開口部)
18b 開口部(第2の開口部)
30 有機EL素子
31 反射陽極(第1の電極)
35 半透過陰極(第2の電極)
36 有機層
36a 有機層(第1の有機層)
36b 有機層(第2の有機層)
37R・37G・37B・37W 透明層
38 電荷発生層
50 画素
50R・50G・50B 副画素(第1の副画素)
50W 副画素(第2の副画素)
1 Organic EL display device (display device)
10.10a Support substrate 17 Edge cover (insulating layer)
18a opening (first opening)
18b opening (second opening)
30 Organic EL element 31 Reflective anode (first electrode)
35 Transflective cathode (second electrode)
36 Organic layer 36a Organic layer (first organic layer)
36b Organic layer (second organic layer)
37R / 37G / 37B / 37W Transparent layer 38 Charge generation layer 50 Pixel 50R / 50G / 50B Sub-pixel (first sub-pixel)
50W sub-pixel (second sub-pixel)

Claims (10)

  1.  一画素を構成する複数の副画素毎に配されている第1の電極と、当該第1の電極と対向配置されている第2の電極と、上記第1及び第2の電極間に配されている発光する有機層と、上記第1の電極のエッジを覆う絶縁層とを備えている表示装置であって、
     上記絶縁層に開口部が設けられており、当該開口部に、上記有機層及び上記第2の電極が配されており、
     上記複数の副画素は、互いに異なる色の光を出射する第1及び第2の副画素を有し、
     上記開口部内の上記第1及び第2の電極間の距離は、可視光のピーク波長が共振する距離となっており、
     上記第2の副画素における上記絶縁層の開口率は、上記第1の副画素における上記絶縁層の開口率と比べて小さいことを特徴とする表示装置。
    A first electrode disposed for each of a plurality of sub-pixels constituting one pixel, a second electrode disposed opposite to the first electrode, and the first and second electrodes. A display device comprising: an organic layer that emits light; and an insulating layer that covers an edge of the first electrode.
    An opening is provided in the insulating layer, and the organic layer and the second electrode are arranged in the opening,
    The plurality of sub-pixels include first and second sub-pixels that emit light of different colors,
    The distance between the first and second electrodes in the opening is a distance at which the peak wavelength of visible light resonates,
    The display device, wherein an aperture ratio of the insulating layer in the second subpixel is smaller than an aperture ratio of the insulating layer in the first subpixel.
  2.  上記開口部は、第1の開口部と、当該第1の開口部より面積が小さい第2の開口部とからなり、
     上記第1の開口部は、上記第1の副画素における上記絶縁層に設けられており、
     上記第2の開口部は、上記第2の副画素における上記絶縁層に設けられていることを特徴とする請求項1に記載の表示装置。
    The opening includes a first opening and a second opening having a smaller area than the first opening.
    The first opening is provided in the insulating layer in the first subpixel,
    The display device according to claim 1, wherein the second opening is provided in the insulating layer in the second subpixel.
  3.  上記第2の開口部は、上記第2の副画素に複数設けられていることを特徴とする請求項2に記載の表示装置。 3. The display device according to claim 2, wherein a plurality of the second openings are provided in the second subpixel.
  4.  上記第1の副画素では、上記絶縁層が上記第1の電極を覆う面積より、上記第1の開口部の面積の方が大きく、
     上記第2の副画素では、上記絶縁層が上記第1の電極を覆う面積より、上記第2の開口部の面積の方が小さいことを特徴とする請求項2に記載の表示装置。
    In the first subpixel, the area of the first opening is larger than the area where the insulating layer covers the first electrode,
    3. The display device according to claim 2, wherein, in the second subpixel, an area of the second opening is smaller than an area where the insulating layer covers the first electrode.
  5.  上記有機層は、上記第1及び第2の副画素に跨って設けられていることを特徴とする請求項1~4の何れか1項に記載の表示装置。 The display device according to any one of claims 1 to 4, wherein the organic layer is provided across the first and second subpixels.
  6.  上記有機層は、上記絶縁層を覆っていることを特徴とする請求項5に記載の表示装置。 The display device according to claim 5, wherein the organic layer covers the insulating layer.
  7.  上記第1及び第2の開口部のそれぞれは、テーパー形状であることを特徴とする請求項1~6の何れか1項に記載の表示装置。 7. The display device according to claim 1, wherein each of the first and second openings has a tapered shape.
  8.  上記有機層は、第1の有機層と、当該第1の有機層の上層に設けられている第2の有機層とを備え、
     上記第1の有機層と、上記第2の有機層との間に、上記第1及び第2の有機層より、相対的に抵抗値が低い材料からなる電荷発生層が設けられていることを特徴とする請求項1~7の何れか1項に記載の表示装置。
    The organic layer includes a first organic layer and a second organic layer provided on an upper layer of the first organic layer,
    A charge generation layer made of a material having a relatively lower resistance than the first and second organic layers is provided between the first organic layer and the second organic layer. The display device according to any one of claims 1 to 7, characterized in that:
  9.  上記第1の副画素は、赤色光を出射する赤色副画素と、緑色光を出射する緑色副画素と、青色光を出射する青色副画素とを有し、上記第2の副画素は、白色光を出射する白色副画素を有することを特徴とする請求項1~8の何れか1項に記載の表示装置。 The first sub-pixel includes a red sub-pixel that emits red light, a green sub-pixel that emits green light, and a blue sub-pixel that emits blue light, and the second sub-pixel is white 9. The display device according to claim 1, further comprising a white sub-pixel that emits light.
  10.  上記赤色副画素では、上記第1の開口部内の上記第1及び第2の電極間の距離は、赤色光のピーク波長が共振する距離となっており、
     上記緑色副画素では、上記第1の開口部内の上記第1及び第2の電極間の距離は、緑色光のピーク波長が共振する距離となっており、
     上記青色副画素では、上記第1の開口部内の上記第1及び第2の電極間の距離は、青色光のピーク波長が共振する距離となっており、
     上記白色副画素では、上記第2の開口部内の上記第1及び第2の電極間の距離は、青色光のピーク波長が共振する距離となっていることを特徴とする請求項9に記載の表示装置。
    In the red sub-pixel, the distance between the first and second electrodes in the first opening is a distance at which the peak wavelength of red light resonates,
    In the green subpixel, the distance between the first and second electrodes in the first opening is a distance at which the peak wavelength of green light resonates,
    In the blue subpixel, the distance between the first and second electrodes in the first opening is a distance at which the peak wavelength of blue light resonates,
    10. The white subpixel according to claim 9, wherein the distance between the first electrode and the second electrode in the second opening is a distance at which a peak wavelength of blue light resonates. Display device.
PCT/JP2012/083010 2011-12-27 2012-12-20 Display device WO2013099744A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-286989 2011-12-27
JP2011286989 2011-12-27

Publications (1)

Publication Number Publication Date
WO2013099744A1 true WO2013099744A1 (en) 2013-07-04

Family

ID=48697233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083010 WO2013099744A1 (en) 2011-12-27 2012-12-20 Display device

Country Status (1)

Country Link
WO (1) WO2013099744A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032367A (en) * 2013-07-31 2015-02-16 Lumiotec株式会社 Organic electroluminescent element and lighting system
WO2016149969A1 (en) * 2015-03-25 2016-09-29 青岛海信电器股份有限公司 Substrate for oled display and display device
WO2019127727A1 (en) * 2017-12-29 2019-07-04 深圳市华星光电半导体显示技术有限公司 Color filter and white organic light-emitting diode display device
CN110045874A (en) * 2019-04-28 2019-07-23 武汉天马微电子有限公司 Touch display panel and touch display device
US10510811B2 (en) 2017-12-29 2019-12-17 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Color filter and white organic light-emitting diode display apparatus
JP2019220481A (en) * 2014-05-15 2019-12-26 株式会社半導体エネルギー研究所 Light-emitting device, electronic device, and lighting device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103519A (en) * 2002-09-12 2004-04-02 Fuji Electric Holdings Co Ltd Color conversion color filter substrate and organic color display using this
JP2005267990A (en) * 2004-03-18 2005-09-29 Hitachi Ltd Organic light emitting display device
JP2007265973A (en) * 2006-03-03 2007-10-11 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2010056017A (en) * 2008-08-29 2010-03-11 Fujifilm Corp Color display device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004103519A (en) * 2002-09-12 2004-04-02 Fuji Electric Holdings Co Ltd Color conversion color filter substrate and organic color display using this
JP2005267990A (en) * 2004-03-18 2005-09-29 Hitachi Ltd Organic light emitting display device
JP2007265973A (en) * 2006-03-03 2007-10-11 Semiconductor Energy Lab Co Ltd Semiconductor device
JP2010056017A (en) * 2008-08-29 2010-03-11 Fujifilm Corp Color display device and method of manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M. KASHIWABARA ET AL.: "29.5L:Late-News Paper: Advenced AM-OLED Display Based on White Emitter with Microcavity Structure", SID 04 DIGEST, vol. 35, no. ISSUE, May 2004 (2004-05-01), pages 1017 - 1019 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015032367A (en) * 2013-07-31 2015-02-16 Lumiotec株式会社 Organic electroluminescent element and lighting system
JP2019220481A (en) * 2014-05-15 2019-12-26 株式会社半導体エネルギー研究所 Light-emitting device, electronic device, and lighting device
JP2021184386A (en) * 2014-05-15 2021-12-02 株式会社半導体エネルギー研究所 Light emitting device
WO2016149969A1 (en) * 2015-03-25 2016-09-29 青岛海信电器股份有限公司 Substrate for oled display and display device
WO2019127727A1 (en) * 2017-12-29 2019-07-04 深圳市华星光电半导体显示技术有限公司 Color filter and white organic light-emitting diode display device
US10510811B2 (en) 2017-12-29 2019-12-17 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Color filter and white organic light-emitting diode display apparatus
CN110045874A (en) * 2019-04-28 2019-07-23 武汉天马微电子有限公司 Touch display panel and touch display device

Similar Documents

Publication Publication Date Title
KR102431686B1 (en) Electroluminescent Display Device
KR101882579B1 (en) Display device
CN107195584B (en) Preparation method of display panel, display panel and display device
KR101897876B1 (en) Display device
KR102514938B1 (en) Display device
KR101990312B1 (en) Organic Light Emitting Diode Display Device and Method for Manufacturing The Same
WO2020233284A1 (en) Display panel and preparation method therefor, and display device
TW201926676A (en) Organic light emitting diode display
WO2013099744A1 (en) Display device
TWI730991B (en) Organic el device, method of manufacturing organic el device, and electronic device
KR20090106099A (en) Organic light emitting diode display and method for manufacturing the same
JP2008515131A (en) Display device
US8350464B1 (en) Organic light-emitting display device
JP5831100B2 (en) Organic EL display device
KR20140129852A (en) Organic light emitting diode display
KR20100069337A (en) Top emission white organic light emitting display device
KR20150065143A (en) Organic electro-luminecence display device
TW201740558A (en) Electro-optical device and electronic apparatus
KR102449980B1 (en) Organic light emitting display device
JP2017004746A (en) Display device
WO2022163123A1 (en) Display device
JP2015026508A (en) Light emitting element display device
KR101904466B1 (en) Organic light emitting display and the manufacturing method thereof
JP2015069758A (en) Organic el display device
CN107564944B (en) Organic light emitting display panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12863593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12863593

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 12863593

Country of ref document: EP

Kind code of ref document: A1