WO2013099320A1 - Multiple coated steel pipe and method for producing same - Google Patents

Multiple coated steel pipe and method for producing same Download PDF

Info

Publication number
WO2013099320A1
WO2013099320A1 PCT/JP2012/064245 JP2012064245W WO2013099320A1 WO 2013099320 A1 WO2013099320 A1 WO 2013099320A1 JP 2012064245 W JP2012064245 W JP 2012064245W WO 2013099320 A1 WO2013099320 A1 WO 2013099320A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protective layer
steel pipe
resin
polypropylene resin
Prior art date
Application number
PCT/JP2012/064245
Other languages
French (fr)
Japanese (ja)
Inventor
菅原 啓司
星野 俊幸
泰宏 原田
雅仁 金子
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2011282696A external-priority patent/JP5187435B2/en
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to CN201280064625.3A priority Critical patent/CN104024718B/en
Priority to RU2014126084/06A priority patent/RU2573334C1/en
Priority to KR1020147019783A priority patent/KR101585821B1/en
Priority to IN1188KON2014 priority patent/IN2014KN01188A/en
Publication of WO2013099320A1 publication Critical patent/WO2013099320A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L58/00Protection of pipes or pipe fittings against corrosion or incrustation
    • F16L58/02Protection of pipes or pipe fittings against corrosion or incrustation by means of internal or external coatings
    • F16L58/04Coatings characterised by the materials used
    • F16L58/10Coatings characterised by the materials used by rubber or plastics
    • F16L58/1054Coatings characterised by the materials used by rubber or plastics the coating being placed outside the pipe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B1/00Layered products having a non-planar shape
    • B32B1/08Tubular products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/085Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L9/00Rigid pipes
    • F16L9/14Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups
    • F16L9/147Compound tubes, i.e. made of materials not wholly covered by any one of the preceding groups comprising only layers of metal and plastics with or without reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/714Inert, i.e. inert to chemical degradation, corrosion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2597/00Tubular articles, e.g. hoses, pipes

Definitions

  • the present invention provides a corrosion protection layer and a protection layer suitable for applications such as a gas pipe, a cable protection tube, and a water supply pipe.
  • a multi-layered steel pipe having a coating layer (covering layer) has a suitable adhesion between the anti-corrosion layer and the protective layer, even if the line speed of a continuous line is increased.
  • the present invention relates to a multi-coated steel pipe having a peel property and excellent field workability, and a method for producing the same. .
  • a coated steel pipe coated with a polyethylene resin layer (polyethylene resin layer) as an anticorrosion layer on a steel pipe has not only excellent corrosion protection performance but also a wide operating temperature limit and electrical insulation. (Electrical insulating properties) and chemical resistance, it is widely used for gas pipes, water pipes, cable protection pipes and the like.
  • the coated steel pipe is provided with an anticorrosion layer (polyethylene resin layer) from mechanical external force at the time of handling operation (transportation).
  • a multilayer coating layer multi coating layer is provided on the surface (outer surface) of the anticorrosion layer using a polypropylene resin layer as a protective layer.
  • an outer surface of a steel pipe 1 as a base material is coated with an anticorrosion layer (polyethylene resin layer) 3 via an adhesive layer 2, and
  • the surface (outer surface) of the anticorrosion layer (polyethylene resin layer) 3 is covered with a protective layer (polypropylene resin layer) 4.
  • the inner surface side of the steel pipe may be coated depending on the application.
  • such a multi-coated steel pipe is manufactured in a continuous line, and the anticorrosive layer and the protective layer are formed by extrusion coating in a multi-coated line as shown in FIG. That is, the steel pipe 1 which is a base material conveyed from the upstream side of the line is preheated to about 40 to 80 ° C. by a steel pipe preheating device (preheating device of steel pipe) 10 and is applied with an adhesive applicator of adhesive layer. 20, an adhesive (not shown) heated to 150 to 200 ° C. is applied to the surface.
  • the steel pipe 1 is conveyed to an anticorrosion layer extrusion coating machine (Extruder for corrosion protection layer) 30, and the anticorrosion layer resin 300 in a molten state (about 200 to 260 ° C.) is extrusion coated on the surface. It is cooled by a cooling device (cooling device of corrosion protection layer) 31 to become an anticorrosion layer 3.
  • the steel pipe 1 is conveyed to a protective layer extrusion coater (Extruder for protection layer) 40, and a protective layer resin 400 in a molten state (about 260 to 270 ° C.) is extrusion coated on the surface of the anticorrosion layer 3 to cool the protective layer.
  • the surface is cooled by the machine 41 to become the protective layer 4.
  • the pipe ends of the plurality of steel pipes are connected by welding or the like at the time of construction.
  • the pipe ends of the multi-coated steel pipes having the protective layer (polypropylene resin layer) coated on the surface (outer surface) of the anticorrosion layer (polyethylene resin layer) are connected by welding or the like.
  • the anticorrosion layer 3 and the protective layer 4 at the end of the multi-coated steel pipe region of about 100 mm to 150 mm from the end of the steel pipe as shown in FIG. 3 for ensuring the ease of repairing the exposed steel part after welding.
  • the protective layer (polypropylene resin layer) is required to have releasability to the extent that it can be manually peeled off from the anticorrosion layer (polyethylene resin layer) during welding.
  • the peelability of the protective layer becomes excessively high, the adhesion between the protective layer (polypropylene resin layer) and the anticorrosion layer (polyethylene resin layer) is significantly lowered, which causes various problems.
  • the adhesiveness is lowered, when the cut 5 is circumferentially formed in the protective layer 4 at the end of the steel pipe in order to peel off the protective layer 4a at the end of the multi-coated steel pipe from the anticorrosive layer 3, protection around the cut 5 is performed.
  • the layer 4 may partially float from the anticorrosion layer 3.
  • the anticorrosive layer and the protective layer when the protective layer at the pipe end of the multi-coated steel pipe is peeled off from the anticorrosive layer, it is easy to peel off and does not cause the above-described floating. It is necessary to have sex. That is, it is not preferable that the adhesion between the anticorrosive layer and the protective layer is too large or too small. If any polyethylene resin and polypropylene resin are used as the anticorrosion layer and the protective layer, respectively, the resin is fused, and the releasability is remarkably deteriorated or floating is generated.
  • Patent Document 2 proposes a technique for preventing fusion between both layers by spraying an inorganic powder such as calcium oxide between the anticorrosive layer and the protective layer. . And according to the technology, it is said that a protective steel layer can be obtained in which the protective layer of the joint is easily peeled off during welding, and the protective layer can be prevented from expanding and contracting due to a change in environmental temperature (environmental temperature). Yes.
  • the technique proposed in Patent Document 2 is also disadvantageous industrially because it requires equipment for spraying powder and the handling of the powder in the factory is complicated.
  • Patent Document 3 includes an antioxidant and a nucleating agent
  • Patent Document 4 includes a lubricant and an inorganic filler
  • Patent Document 5 includes an antistatic agent (an anti-oxidant).
  • a technique for adding antistatic agent) to the anticorrosion layer or the protective layer has been proposed. And according to these techniques, it is supposed that various additives (additive agent) will prevent the fusion
  • additives additive agent
  • the amount of various additives added is increased, there are disadvantages in that the physical properties of the resin are different from those expected and the cost is increased.
  • Patent Document 6 discloses that either one of the anticorrosion layer and the protective layer is made of polyethylene alone, the other layer is made of 20 to 40% by weight (27.3 to 50% by mole) of polyethylene, and 60 to 80% of polypropylene.
  • a technique of making a copolymer or blended resin by blending in weight percent (50 to 72.7 mol%) has been proposed. And according to such a technique, it is said that a coated steel pipe is obtained in which the anticorrosion layer and the protective layer are not fused even if continuous double extrusion coating is performed without using a welding inhibitor.
  • the technique proposed in Patent Document 6 cannot sufficiently secure the hardness of the protective layer.
  • the protective layer of the multi-coated steel pipe has a higher degree of scratch resistance, so that the resin for the protective layer needs a certain degree of hardness. Therefore, in the multi-coated steel pipe, the anticorrosion layer is usually formed of polyethylene resin and the protective layer is formed of polypropylene resin.
  • the ethylene component of the resin of the protective layer is 20 to 40% by weight (27.3 to 50%). If the amount is too large, the resin becomes soft, and the protective layer is easily wrinkled and does not perform its function.
  • the hardness of the protective layer is usually measured by the test method defined in ASTM D2240 (D type) when considering impact shock at transportation and construction sites. It is preferable that it is 70 or more.
  • the extrusion discharge rate of the resin (the anticorrosion layer resin 300 and the protective layer resin 400) must be increased.
  • the temperature of the extruded resin is increased. Usually, it becomes higher due to shear heating during extrusion.
  • the line speed is increased to about 10 m / min or more
  • the molten anticorrosion layer resin (polyethylene, melting point: 120 ° C. or higher) 300 is extrusion coated with the anticorrosion layer extrusion coating machine 30, the anticorrosion layer 3 during extrusion is applied.
  • the resin temperature reaches 230 to 280 ° C.
  • the surface temperature of the anticorrosion layer 3 at the time of covering the protective layer 4 can be lowered only to about 40 to 70 ° C.
  • the molten protective layer resin (polypropylene, melting point: 160 ° C. or higher) 400 is extrusion coated with the protective layer extrusion coating machine 40, the temperature of the protective layer resin 400 when coated on the anticorrosion layer 3 is 260 to 290. Also reaches °C.
  • the present invention advantageously solves the above-described problems of the prior art. That is, the present invention is an anticorrosion layer in a multi-coated steel pipe in which a corrosion prevention layer made of a polyethylene resin layer and a protection layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer are coated on the outside of the steel pipe that is a base material. While significantly improving the peelability of the polyethylene resin layer and the polypropylene resin layer, which is a protective layer, it has moderate adhesiveness that does not cause floating during welding construction between the anticorrosive layer and the protective layer.
  • the present invention is applicable even when manufactured at a high line speed or a large-diameter tube or pipe (for example, a nominal diameter defined in JIS G 3452 (2010): 100 A or more).
  • An object of the present invention is to provide a multi-coated steel pipe having such excellent characteristics, or a method for producing the same.
  • the present inventors have coated a corrosion prevention layer made of a polyethylene resin layer and a protection layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer on the outside of a steel pipe that is a base material.
  • various factors affecting various properties such as the peelability and adhesion between the anticorrosion layer and the protective layer were studied.
  • Patent Document 6 that is, a technique in which a copolymer formed by blending polyethylene and polypropylene is used as a protective layer, multiple coated steel pipes are formed on a continuous line with a high line speed.
  • the ethylene component contained in the polypropylene resin was examined.
  • Patent Document 6 when increasing the line speed, the technique proposed in Patent Document 6 has found that the amount of ethylene component contained in the polypropylene resin is too high and the fusion between the anticorrosion layer and the protective layer becomes remarkable.
  • the inventors have found that by reducing the ethylene component contained in the polypropylene resin to a desired amount, the fusion between the anticorrosion layer and the protective layer is greatly suppressed, and appropriate peelability and adhesion can be obtained. Further, it has been found that by reducing the ethylene component contained in the polypropylene resin to a desired amount, the hardness of the protective layer resin is improved and a protective layer having a desired scratch resistance can be obtained.
  • the present inventors confirmed that the extrudability and weld strength of the protective layer resin are still insufficient only by adjusting the ethylene component contained in the polypropylene resin. In addition, it was also confirmed that moderate peelability and adhesion may not be obtained only by adjusting the ethylene component. As a result of further investigations, by optimizing the melt flow rate of polypropylene resin and the shear viscosity at 280 ° C., the extrudability and weld strength of the protective layer resin have increased dramatically. It was found that the peelability and adhesion between the anticorrosive layer and the protective layer were further improved.
  • a multi-coated steel pipe in which a corrosion prevention layer made of a polyethylene resin layer and a protection layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer are coated on the outside of a steel pipe that is a base material, and the protection layer is formed
  • the polypropylene resin is a copolymerization resin containing 19 to 23 mol% of an ethylene component, the melt flow rate of the polypropylene resin is 0.53 to 0.60 g / 10 min, and the polypropylene resin at 280 ° C.
  • the shear viscosity is 1.7 ⁇ 10 3 to 2.0 ⁇ 10 3 Pa ⁇ s when measured at a shear rate of 10 / sec, and 5.3 ⁇ 10 2 to 6.5 when measured at a shear rate of 100 / sec.
  • a multi-coated steel pipe characterized by being 0 ⁇ 10 2 Pa ⁇ s.
  • the melt flow rate is 0.53 g / 10 min or more and 0.60 g / 10 min or less, and shearing at 280 ° C.
  • the viscosity is 1.7 ⁇ 10 3 Pa ⁇ s or more and 2.0 ⁇ 10 3 Pa ⁇ s or less when measured at a shear rate of 10 / sec, and 5.3 ⁇ 10 2 when measured at a shear rate of 100 / sec.
  • a polypropylene resin having a Pa ⁇ s of 6.0 ⁇ 10 2 Pa ⁇ s or less is used, and the temperature of the polypropylene resin is 260 ° C. or more and 290 ° C. or less so that the coating thickness is 0.9 mm or more and 1.8 mm or less.
  • the protective layer is formed by coating and cooling at a cooling rate of 153 ° C./sec or more and 450 ° C./sec or less until the surface temperature of the polypropylene resin becomes 170 ° C. or less.
  • a method for producing a multi-coated steel pipe characterized by comprising:
  • the protective layer resin is excellent in extrudability and has an appropriate adhesion and peelability between the anticorrosive layer and the protective layer, and is welded. In some cases, the floating between the anticorrosion layer and the protective layer is also suppressed, and a multi-coated steel pipe having a protective layer with good scratch resistance can be easily and inexpensively manufactured.
  • the weld strength of the protective layer resin is also excellent in the present invention, even if an impact is applied to the weld portion of the protective layer (resin junction point in the protective layer extrusion coating machine), particularly at low temperatures, after the product is manufactured. The protective layer does not break from that part. Therefore, according to the present invention, it is possible to stably produce a high quality multi-clad steel pipe with high production efficiency, and there is a remarkable industrial effect.
  • the multiple-coated steel pipe of the present invention is a multiple-coated steel pipe in which a corrosion prevention layer made of a polyethylene resin layer and a protective layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer are coated on the outside of the steel pipe that is a base material.
  • the polypropylene resin forming the protective layer is a copolymer resin containing 19 to 23 mol% of an ethylene component, has a melt flow rate of 0.53 to 0.60 g / 10 min, and has a shear viscosity at 280 ° C.
  • the present invention relates to a multi-coated steel pipe in which a corrosion prevention layer made of a polyethylene resin layer and a protection layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer are coated on the outer side of the steel pipe as a base material. From a continuous line to high-speed production, particularly to make the line speed about 10 m / min or more.
  • this invention is a copolymer resin which contains 19 mol% or more and 23 mol% or less of ethylene components for the polypropylene resin which forms a protective layer, and melt flow rate is 0.53 g / 10 min or more and 0.60 g / 10 min or less, and the shear viscosity at 280 ° C. is 1.7 ⁇ 10 3 Pa ⁇ s or more and 2.0 ⁇ 10 3 Pa ⁇ s or less when measured at a shear rate of 10 / sec.
  • a polypropylene resin having a viscosity of 5.3 ⁇ 10 2 Pa ⁇ s or more and 6.0 ⁇ 10 2 Pa ⁇ s or less when measured at a shear rate of 100 / sec.
  • the surface temperature of the polyethylene resin is cooled to 40 ° C. or more and 70 ° C. or less to form the anticorrosion layer, and then the anticorrosion layer is formed.
  • a polypropylene resin having the above-mentioned predetermined characteristics is used on the surface of the resin, the temperature of the polypropylene resin is 260 ° C. or more and 290 ° C. or less, and the coating thickness is 0.9 mm or more and 1.8 mm or less, and 153 ° C.
  • a multi-coated steel pipe is manufactured by forming the protective layer by cooling the surface temperature of the polypropylene resin to 170 ° C. or less at a cooling rate of / sec or more and 450 ° C./sec or less. .
  • the type of steel pipe used as a base material for the multiple-coated steel pipe is not particularly limited, and is a conventionally known steel type used for forged welded steel pipes, ERW steel pipes, gas and water pipes, cable protection pipes, and the like. Any steel pipe can be applied.
  • the size of the steel pipe is not particularly limited. Usually, carbon steel pipes for pipes having a nominal diameter of 25A to 500A defined in JIS G 3452 (2010) are used depending on the application. In this invention, the thing of nominal diameter 100A or more and 200A or less is made into object.
  • the multi-coated steel pipe used for the above-mentioned application is a carbon steel pipe for piping normally specified in JIS G 3542 (2010), and a steel pipe having a size smaller than the nominal diameter is coated at high speed.
  • a steel pipe having a size smaller than the nominal diameter is coated at high speed.
  • the coating speed cannot usually be increased because of factory equipment. Therefore, the problem in the present invention does not occur.
  • a known pickling treatment or blast treatment can be applied to the outer surface of the steel pipe as a base material as a base treatment.
  • a known primer coating for improving the adhesion between the anticorrosion layer and the steel pipe or an adhesive defined in JIS G 3469 (2010) can be applied.
  • the inner surface of the steel pipe may be left as it is, or may be painted before and after the outer surface multiple coating.
  • the polyethylene resin used for the anticorrosion layer is a homopolymer of ethylene or ethylene and ⁇ -olefin (olefin), for example, propylene, 1-butene, 1-pentene, 1-hexene. , 4-methyl-1-pentene, 1-octene, 1-decene and the like, which is a polymer mainly composed of ethylene.
  • the polyethylene resin preferred in the present invention has a density of 920 to 950 kg / m 3 , more preferably a density of 940 to 950 kg / m 3 , a Vicat softening temperature of 110 to 130 ° C., and a tensile strength (Tensile Yield strength).
  • the polyethylene resin layer (anticorrosion layer) is formed on the outside of the steel pipe by melt-extruding these polyethylene resins.
  • This polyethylene resin layer is not only a single layer but also acid-modified polyethylene (Acid modified polyethylene). It is good also as a composite layer which coextruded two layers (the steel pipe side is acid-modified polyethylene).
  • the polypropylene resin used for the protective layer is a polymer obtained by polymerizing monomers ethylene and propylene by a known method such as a Ziegler-Natta catalyst, that is, a block polypropylene (block which is usually referred to industrially). copolymer (polypropylene), which is a mixture of polypropylene, polyethylene, and an ethylene-propylene random copolymer. And in this invention, it is essential that the ethylene component which occupies for the whole polypropylene resin is 19-23 mol% (13.5-16.6 mass%).
  • the ratio of the ethylene component can be obtained by dissolving a polypropylene resin in a solvent and using a method such as nuclear magnetic resonance spectroscopy of the resin component.
  • the proportion of the ethylene component is less than 19 mol% (13.5% by mass), the affinity (adhesion) with the polyethylene resin as the anticorrosion layer is too low, and as described above, Problems such as floating may occur between the protective layer and the like.
  • the proportion of the ethylene component exceeds 23 mol% (16.6 mass%), it becomes easy to fuse with the polyethylene resin as the anticorrosion layer, and appropriate peelability cannot be obtained.
  • the proportion of the ethylene component exceeds 23 mol% (16.6% by mass), the hardness of the polypropylene resin becomes low, and the protective layer is easily wrinkled.
  • the melt flow rate of the polypropylene resin of the protective layer is 0.53 to 0.60 g / 10 min.
  • the melt flow rate is a melt mass flow rate (MFR) defined in JIS K6921-2 (2010), and is a value obtained by a method defined in JIS K7210 (1999).
  • MFR melt mass flow rate
  • the melt flow rate is less than 0.53 g / 10 min, the extrudability of the polypropylene resin is lowered, so that the load on the extrusion coating machine increases and the extrusion discharge amount of the polypropylene resin cannot be maintained.
  • Such a problem particularly appears when manufacturing at a high line speed, that is, when increasing the coating speed of the resin.
  • the melt flow rate of the polypropylene resin of the protective layer is 0.53 to 0.60 g / It is important to set it to 10 min.
  • the shear viscosity at 280 ° C. of the polypropylene resin is 1.7 ⁇ 10 3 to 2.0 ⁇ 10 3 Pa ⁇ s when measured at a shear rate of 10 / sec, and the shear rate is It is essential that it is 5.3 ⁇ 10 2 to 6.0 ⁇ 10 2 Pa ⁇ s when measured at 100 / sec.
  • the shear viscosity is less than 1.7 ⁇ 10 3 Pa ⁇ s when measured at a shear rate of 10 / sec, or less than 5.3 ⁇ 10 2 Pa ⁇ s when measured at a shear rate of 100 / sec.
  • peel strength peel strength
  • the shear viscosity exceeds 2.0 ⁇ 10 3 Pa ⁇ s when measured at a shear rate of 10 / sec, or exceeds 6.0 ⁇ 10 2 Pa ⁇ s when measured at a shear rate of 100 / sec.
  • the strength of the weld portion of the resin when the polypropylene resin is extruded into a cylindrical shape is lowered.
  • the peel strength (peeling strength) between the anticorrosion layer (polyethylene resin) and the protective layer (polypropylene resin) becomes too low, and floating easily occurs between the anticorrosion layer and the protective layer during welding. It will cause trouble.
  • the reason for prescribing the case where the shear viscosity at 280 ° C. of the polypropylene resin is measured at two shear rates (10 / sec, 100 / sec) is that when the surface of the anticorrosion layer is extrusion coated. This is because the shear rate of the polypropylene resin (protective layer resin) is taken into consideration. It is extremely difficult to measure the shear rate when extrusion coating a molten polypropylene resin (protective layer resin). From a shear rate of 10 / sec or less depending on the extrusion coating conditions, it is 100 / sec or more. A shear rate is assumed. Therefore, in the present invention, the shear viscosity is defined in two ways: when the shear rate is low (10 / sec) and when the shear rate is high (100 / sec).
  • the polypropylene resin having the ethylene component by using the polypropylene resin having the ethylene component, the melt flow rate and the shear viscosity adjusted to the desired values as described above as a protective layer, good adhesion and adhesion between the anticorrosion layer and the protective layer, protection Sufficient hardness for the layer (durometer hardness type D defined in ASTM D2240: 70 or more) is ensured.
  • tensile fracture measured in accordance with the provisions of JIS K7162 (1994) The point stress is 22 to 45 MPa, the tensile elongation at measurement measured in accordance with JIS K7162 (1994) is 600 to 900%, and is measured in accordance with JIS K 7110 (1999).
  • An Izod impact value of 2 to 6 kJ / m 2 at ⁇ 20 ° C. and a density of 905 to 910 kg / m 3 measured in accordance with JIS K7112 (1999) is usually used for the protective layer.
  • Polypropy It can be used as a len resin.
  • the thickness of the protective layer is not particularly limited, but is about 0.8 to 2.8 mm from the viewpoint of economy and protection of the anticorrosion layer from wrinkles during transportation and construction. Is preferred.
  • the thickness of the protective layer is less than 0.8 mm, it is difficult to protect the anticorrosion layer from wrinkles during transportation and construction.
  • the thickness of the protective layer exceeds 2.8 mm, heat storage of the polypropylene resin coated on the surface of the anticorrosive layer is controlled even if the temperature of the polypropylene resin (protective layer resin) during extrusion is controlled within the scope of the present invention described later. Since the amount is too large, fusion with the anticorrosion layer (polyethylene resin layer) is likely to occur. More preferably, it is the range of 0.9 mm or more and 1.8 mm or less.
  • the polypropylene resin as described above is appropriately prepared by a conventionally known method in which ethylene and propylene are used as the main monomers and produced by performing addition polymerization using a Ziegler-Natta catalyst or a single-site catalyst.
  • polypropylene resin manufacturers have prepared a wide variety of resins having various physical properties, those satisfying the physical properties of the present invention can be appropriately used.
  • an antioxidant for preventing oxidative degradation / light degradation of the resin (light degradation) (The purpose of the present invention is to add additives such as antioxidants, ultraviolet absorbers, coloring agents such as pigments, and nucleating agents for improving moldability. You may mix
  • the peel strength (peel strength) between the anticorrosive layer (polyethylene resin) and the protective layer (polypropylene resin) is preferably 0.6 N / 10 cm width or more and 15 N / 10 cm width or less, particularly 0.6 N / 10 cm width to 10 N / 10 cm width is more preferable.
  • the peel strength is a peel strength measured based on a peel strength test described later. If the peel strength is less than 0.6 N / 10 cm width, the protective layer may be peeled off just by making a slit in the protective layer in order to remove the protective layer from the anticorrosive layer, or only the protective layer at the end of the steel pipe When peeling off, problems such as the end of the remaining protective layer floating from the anticorrosive layer are likely to occur.
  • the peel strength between the anticorrosion layer and the protective layer is preferably 0.6 N / 10 cm width or more and 15 N / 10 cm width or less.
  • the outer surface of the steel pipe is coated with a polyethylene resin to form an anticorrosion layer
  • the protective layer is formed on the surface of the anticorrosion layer by coating with the polypropylene resin having predetermined characteristics as described above.
  • the anticorrosion layer and the protective layer are formed, they are formed by extrusion coating on a continuous line, for example, a multiple coating line as shown in FIG.
  • the steel pipe 1 as a base material is conveyed from the upstream side of the line, the steel pipe 1 is preheated by the steel pipe preheating device 10 as necessary, and heated to a predetermined temperature by the adhesive application device 20.
  • the multi-coated steel pipe of the present invention is preferably manufactured from a continuous line from the viewpoint of production efficiency, and the line speed is preferably about 10 to 40 m / min.
  • the line speed (conveying speed of the steel pipe 1) is preferably about 10 m / min or more. However, if the line speed is increased too much, a coating layer having a predetermined thickness may not be formed. Therefore, the line speed is preferably 40 m / min or less. More preferably, it is 25 m / min or less.
  • shot blast treatment absolute blast cleaning
  • pickling treatment hydroochloric acid aqueous solution (hydrochloric acid aqueous solution or aqueous solution of sulfuric acid) solution), temperature: room temperature to 90 ° C.) and the like, and then, as shown in FIG.
  • the steel pipe 1 is removed by a steel pipe preheating device 10 such as a high-frequency induction heater as required.
  • a steel pipe preheating device 10 such as a high-frequency induction heater as required.
  • a coating applicator of adhesive 20 rubber, asphalt (a Phalt), heated coating adhesive mainly comprising a resin ( Figure shown) on the surface of the steel tube 1.
  • the preheating temperature of the steel pipe is preferably 40 to 80 ° C. from the viewpoint of ensuring the applicability and adhesion of the adhesive applied to the upper layer.
  • the pressure-sensitive adhesive is mainly composed of rubber, asphalt, resin, etc. stipulated in JIS G3469 (2010).
  • the thickness of the pressure-sensitive adhesive layer is 0.1 to from the viewpoint of economic and uniform application properties. It is preferably about 1 mm.
  • the polyethylene resin (anticorrosion layer resin 300) in a molten state (about 230 ° C. or more and about 280 ° C. or less) is extruded into a cylindrical shape from the crosshead die of the anticorrosion layer extrusion coating machine 30 to coat the outer surface of the pressure-sensitive adhesive layer.
  • the surface temperature of the polyethylene resin is immediately cooled to 40 ° C. or more and 70 ° C. or less by the anticorrosion layer cooler 31 to form the anticorrosion layer 3.
  • the cooling by the anticorrosion layer cooler 31 is preferably water cooling with high cooling efficiency.
  • the polypropylene resin (protective layer resin 400) having a temperature of 260 ° C. or more and 290 ° C. or less is applied to the surface of the anticorrosion layer 3 having a surface temperature of 40 ° C. or more and 70 ° C. or less.
  • FIG. From the viewpoint of cooling efficiency, the cooling by the protective layer cooler 41 is also preferably water cooling.
  • the surface temperature of the anticorrosion layer 3 after being cooled by the anticorrosion layer cooler 31 exceeds 70 ° C.
  • other conditions are set in the present invention. Even when the specified conditions are satisfied, a problem of fusion between the anticorrosive layer 3 and the protective layer 4 occurs.
  • the outer surface of the pressure-sensitive adhesive layer is coated with a molten polyethylene resin (anticorrosion layer resin 300) and cooled by water cooling in a cooling zone as shown in FIG. 2, the surface temperature of the polyethylene resin is the length of the cooling zone.
  • the anticorrosion layer 3 is formed by cooling the surface temperature of the polyethylene resin (anticorrosion layer resin 300) coated on the outside of the steel pipe to 40 ° C. or more and 70 ° C. or less.
  • the cooling in the anticorrosion layer cooler 31 is water-cooled, and the amount of water distributed on the surface of the polyethylene resin (anticorrosion layer resin 300) is By adjusting, the surface temperature of the polyethylene resin (anticorrosion layer resin 300) can be cooled to a desired range (40 ° C. or more and 70 ° C. or less).
  • the polypropylene resin (protective layer resin 400) when the surface of the anticorrosion layer 3 having a surface temperature of 40 ° C. or higher and 70 ° C. or lower is melt-extruded by the protective layer extrusion coating machine 40 with the above-described polypropylene resin having the predetermined characteristics (protective layer resin 400), the polypropylene
  • the temperature of the resin (protective layer resin 400) exceeds 290 ° C., the problem of fusion between the anticorrosive layer and the protective layer occurs even when other conditions satisfy the conditions specified in the present invention. On the contrary, if it is less than 260 ° C., the problem of floating occurs. Therefore, in the present invention, when the surface of the anticorrosion layer 3 having a surface temperature of 40 ° C. or higher and 70 ° C. or lower is coated with the polypropylene resin (protective layer resin 400), the temperature of the polypropylene resin (protective layer resin 400) is 260 ° C. Above 290 ° C.
  • the coating thickness of the polypropylene resin is 0.8 mm or more and 2.8 mm or less. That is, by setting the thickness of the protective layer 4 to 0.8 mm or more and 2.8 mm or less, it is possible to secure the scratch resistance of the protective layer and to suppress the fusion between the protective layer 4 and the anticorrosion layer 3. . More preferably, it is 0.9 mm or more and 1.8 mm or less.
  • the protective layer 4 is formed by cooling the polypropylene resin (protective layer resin 400) with the protective layer cooler 41 after coating the outer surface of the anticorrosive layer 3 with the polypropylene resin (protective layer resin 400), the polypropylene resin (protective layer resin) 400)
  • the cooling rate of the surface temperature exceeds 450 ° C./sec, even if other conditions satisfy the conditions specified in the present invention, a problem of floating between the anticorrosive layer and the protective layer occurs. Therefore, if the temperature is less than 153 ° C./sec, the problem of fusion occurs.
  • the present inventors tried to suppress floating and fusion by controlling the cooling rate of the surface temperature of the protective layer resin (polypropylene resin) instead of the cooling rate of the interface.
  • the cooling rate is set at the surface temperature of the protective layer resin (polypropylene resin). It has been found that cooling at a temperature is extremely effective in suppressing floating and fusion.
  • the outer surface of the anticorrosion layer is coated with a polypropylene resin at 260 ° C. or more and 290 ° C. or less, and then the surface temperature of the polypropylene resin is cooled at a cooling rate of 153 ° C./sec or more and 450 ° C./sec or less. .
  • the surface temperature of the polypropylene resin is cooled at a cooling rate of 153 ° C./sec or more and 450 ° C./sec or less, if the cooling stop temperature is more than 170 ° C. as the surface temperature of the polypropylene resin, the protective layer resin (polypropylene resin) There arises a problem of fusion between the resin and the anticorrosion layer resin (polyethylene resin). Therefore, in the present invention, the surface temperature of the polypropylene resin is cooled to 170 ° C. or less at a cooling rate of 153 ° C./sec or more and 450 ° C./sec or less to solidify the polypropylene resin, thereby forming the protective layer 4.
  • the protective layer resin has excellent extrudability, and the anticorrosion layer and the protective layer It has moderate adhesion and peelability, suppresses floating between the anticorrosion layer and the protective layer during welding, and also has a protective layer with good anti-wetting and excellent weld strength.
  • Multiple coated steel pipes can be manufactured easily and inexpensively.
  • the peel strength between the anticorrosion layer and the protective layer is 0.6 N / 10 cm width to 15 N / 10 cm width, or 1 It is possible to set the width between 0.0 N / 10 cm width and 10 N / 10 cm width.
  • peel strength peel strength between the anticorrosive layer (polyethylene resin) and the protective layer (polypropylene resin) is less than 0.6 N / 10 cm width
  • a slit is formed in the protective layer in order to remove the protective layer from the anticorrosive layer.
  • the protective layer is peeled off just by inserting, or when only the protective layer at the end of the steel pipe is peeled off, problems such as the end of the remaining protective layer floating from the anticorrosive layer easily occur.
  • peel strength exceeds 15 N / 10 cm width, as described above, it is difficult to peel off the anticorrosion layer and the protective layer during on-site welding, and problems such as poor workability are likely to occur. Become.
  • the peel strength (peel strength) between the anticorrosive layer (polyethylene resin) and the protective layer (polypropylene resin) is preferably 0.6 N / 10 cm width or more and 15 N / 10 cm width or less. It is more preferably 1.0 N / 10 cm width or more and 10 N / 10 cm width or less.
  • a multi-coated steel pipe having a peel strength between the anticorrosion layer and the protective layer of 0.6 N / 10 cm width or more and 15 N / 10 cm width or less can be obtained, thus eliminating the problems such as workability described above. It is extremely effective in doing so.
  • the said peel strength is the peel strength measured based on the peel strength test mentioned later.
  • the polypropylene resin is coated to make the peel strength between the anticorrosive layer and the protective layer 1.0 N / 10 cm width or more and 10 N / 10 cm width or less. It is preferable to coat the polypropylene resin so that the draw ratio (length after coating formation / length during extrusion) is in the range of 5 to 10 times.
  • the protective layer is extruded in a cylindrical shape in a molten state from the extruder, and is coated on the outer surface of the anticorrosive layer on the outer surface of the steel pipe while being stretched in the steel pipe traveling direction (steel pipe axis direction), and is cooled and solidified in that state.
  • the draw ratio indicates how much the protective layer resin discharged from the extruder is stretched and coated on the outer surface of the steel pipe, and is obtained by dividing the “length after coating formation” by the “length during extrusion”. .
  • extruded length is assumed that the extruded molten resin was a cylindrical body, the discharge weight per hour of the molten resin discharged from the extruder, the density of the resin, and the die discharge of the extruder The length of the extruded cylinder per hour is calculated from the cross-sectional area of the resin on the surface. Further, the “length after coating formation” corresponds to the traveling speed of the steel pipe per hour (coating speed, that is, line speed).
  • the draw ratio exceeds 10 times, the peel strength between the anticorrosion layer and the protective layer tends to be low, and when the draw ratio is significantly greater than 10 times, problems such as floating may occur. If it is less than 5 times, problems such as sagging may occur in the coating.
  • the relationship between the resin discharge amount and the line speed (coating speed) The draw ratio is not less than 5 times.
  • the surface of the anticorrosion layer when the protective layer is coated tends to be in a high temperature state. Therefore, when the coating condition of the polypropylene resin as the protective layer resin or the resin is outside the scope of the present invention, the anticorrosion layer and the protective layer are extremely fused, and appropriate peelability and adhesion between the anticorrosive layer and the protective layer. It is not possible to obtain a multi-coated steel pipe having the properties.
  • the surface of the anticorrosion layer when the protective layer is coated becomes a high temperature state of 70 ° C. as described above. Even if it exists, the fusion
  • a protective layer having a sufficient hardness capable of ensuring a desired scratch resistance by using a predetermined polypropylene resin as the protective layer resin, and having excellent weld strength of the polypropylene resin A multi-coated steel pipe with a protective layer. Furthermore, since the predetermined polypropylene resin used in the present invention exhibits excellent extrudability even when the line speed is increased, according to the present invention, a high-quality multi-coated steel pipe can be made highly efficient and stable. Production is possible.
  • the present invention can also be applied when the line speed is reduced. Although it is disadvantageous from the viewpoint of productivity, it is assumed that the line speed is made slower than 10 m / min for some reason. Thus, if the line speed is reduced, the surface temperature of the anticorrosion layer at the time of covering the protective layer decreases, and the temperatures of the molten anticorrosion layer resin and the protective layer resin also decrease. However, even in such a case, in the present invention, the water-cooling distance is shortened, the amount of water is reduced, or the temperature setting of the extrusion coating machine is changed, so that the molten anticorrosion layer resin and the protective layer The temperature of the resin can be the same as that at the high line speed. That is, although it has been extremely difficult to cope with an increase in line speed in the prior art, the present invention can be applied regardless of whether the line speed is high or low.
  • the SGP steel pipe with the nominal diameter shown in Table 1 specified in JIS G 3452 (2010) is used as the base material, and the outer surface of the base material is subjected to blasting and then multiple coatings in a continuous line as shown in FIG. A steel pipe was manufactured.
  • the steel pipe after blasting is preheated to 50 ° C., and after applying an adhesive specified in JIS G3469 (2010) (adhesive layer thickness: 0.3 mm), density: 950 kg / m 3 , Vicat softening temperature : 121 ° C., tensile strength: 41 N / mm 2 (41 MPa), tensile fracture strain: 600% commercially available high density polyethylene resin, or density: 920 kg / m 3 , Vicat softening temperature: 110 ° C., tensile strength: 20 N / mm 2 (20 MPa), tensile fracture strain: 1000% commercially available low-density polyethylene resin is melted in an extrusion coating machine, and is cylindrically formed on the outer surface of the adhesive from the crosshead die.
  • the steel tube was extruded and coated with a corrosion protection layer. After coating, the obtained polyethylene layer (anticorrosion layer) was immediately cooled with water to obtain an anticorrosion layer having a thickness shown in Table 1.
  • the above-mentioned density, Vicat softening temperature, tensile strength, and tensile fracture strain are all measured in accordance with JIS G 3469 (2010).
  • the thickness of the anticorrosion layer and the protective layer shown in Table 1 is a value in a range (maximum value and minimum value) measured at eight locations in the circumferential direction with respect to a cross section perpendicular to the tube axis direction of the multi-coated steel pipe. .
  • melt flow rate of the polypropylene resin shown in Table 1 is a melt mass flow rate (MFR) defined in JIS K6921-2 (2010), and was measured by a method defined in JIS K7210 (1999).
  • the shear viscosity at 280 ° C. was measured with a capillary rheometer (sometimes called a capillary-type rheometer) specified in JIS K7199 (1999). This is a value measured under the condition of 10/1.
  • the density was measured by the method prescribed in JIS K7112 (1999).
  • these values are the values measured for the resin before coating the steel pipe, they were the same as the values measured by cutting out the polypropylene resin from the protective layer portion of the manufactured multi-coated steel pipe.
  • the weld strength was evaluated. Each evaluation method is as follows.
  • the maximum 180 ° peel strength measured was 0.6 N / 10 cm width to 10 N / 10 cm width and the adhesion and peelability were very good ( ⁇ ), and the peel strength exceeded 10 N / 10 cm width.
  • Adhesiveness and releasability are good for those having a width of 15 N / 10 cm or less (O), and other than this (less than 0.6 N / 10 cm width or more than 15 N / 10 cm width) are poor adhesion and releasability ( ⁇ ). did.
  • Hardness of protective layer (polypropylene resin) The hardness of the protective layer is measured in accordance with ASTM D2240 (D type) according to the test method defined by Durometer hardness type D, 70 or more And those that were less than 70 were rejected (x).
  • the examples of the present invention had good adhesion and peelability, float resistance, hardness of the protective layer (polypropylene resin), and weld strength of the protective layer (polypropylene resin).
  • none of the comparative examples had good adhesion and peelability.
  • the steel pipe No. In Nos. 8 and 9 since the ethylene component of the polypropylene resin exceeded 23 mol%, the hardness of the protective layer (polypropylene resin) was insufficient.
  • an SGP steel pipe having a nominal diameter shown in Tables 3-1 to 3-3 defined in JIS G 3452 (2010) is used as a base material, and the outer surface of the base material is blasted. With such a continuous line, multiple coated steel pipes were manufactured at the line speeds shown in Tables 3-1 to 3-3.
  • the steel pipe after the blast treatment is preheated to 50 ° C., and after applying an adhesive specified in JIS G3469 (2010) (adhesive layer thickness: 0.3 mm), density: 950 kg / m 3 , Vicat softening temperature : 121 ° C, tensile strength: 41 N / mm 2 (41 MPa), tensile fracture strain: 600% commercially available high-density polyethylene resin is melted by an extrusion coating machine, and cylindrical on the outer surface of the adhesive from the crosshead die
  • the steel tube was coated with a corrosion protection layer. After coating, the obtained polyethylene layer (anticorrosion layer) was immediately cooled with water to cool the surface temperature of the polyethylene layer to the temperatures shown in Tables 3-1 to 3-3. Tables 3-1 to 3-3 An anticorrosion layer having the thickness shown was obtained.
  • the above-mentioned density, Vicat softening temperature, tensile strength, and tensile fracture strain are all measured in accordance with JIS G 3469 (2010).
  • the surface temperature of the polyethylene layer after water cooling was measured with a contact thermometer.
  • melt flow rate of the polypropylene resin shown in Table 3-1 to Table 3-3 is the melt mass flow rate (MFR) defined in JIS K6921-2 (2010), and is defined in JIS K7210 (1999). It was measured by the method.
  • the shear viscosity at 280 ° C. was measured with a capillary rheometer (sometimes called a capillary-type rheometer) specified in JIS K7199 (1999). This is a value measured under the condition of 10/1.
  • the density was measured by the method prescribed in JIS K7112 (1999).
  • these values are values measured for the resin before coating the steel pipe, they were the same as the values measured by cutting out the polypropylene resin from the protective layer portion of the manufactured multi-coated steel pipe.
  • the cooling rate of the surface of the polypropylene resin layer (protective layer) shown in 3-1 to Table 3-3 is determined from the temperature at the time of coating (the temperature of the polypropylene resin immediately before contacting the anticorrosive layer). The cooling rate until the temperature reaches 170 ° C. The cooling rate and the surface temperature of the polypropylene resin layer during cooling were determined by measuring with a contact thermometer.
  • draw ratios of the polypropylene resins shown in Tables 3-1 to 3-3 are values obtained by the above method.
  • the thickness of the anticorrosion layer and the protective layer shown in Table 3-1 to Table 3-3 is a range (maximum value and (Minimum value).
  • the examples of the present invention had good adhesion and peelability, float resistance, hardness of the protective layer (polypropylene resin), and weld strength of the protective layer (polypropylene resin).
  • none of the comparative examples had good adhesion and peelability.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)

Abstract

Provided is a multiple coated steel pipe that is obtained by covering the outer surface of an anti-corrosion layer, which covers the outer surface of a steel pipe, with a protective layer that has adequate adhesiveness and releasability. Specifically provided are: a multiple coated steel pipe which is obtained by covering the outer surface of a steel pipe that serves as a base with an anti-corrosion layer that is composed of a polyethylene resin layer and with a protective layer that is composed of a polypropylene resin layer and serves as an upper layer of the anti-corrosion layer; and a method for producing the multiple coated steel pipe. The polypropylene resin that forms the protective layer is a copolymerized resin which contains 19-23% by mole of an ethylene component, and has a melt flow rate of 0.53-0.60 g/10 min. The shear viscosity of the polypropylene resin at 280˚C is from 1.7 × 103 Pa·s to 2.0 × 103 Pa·s as measured at a shear rate of 10/sec, and is from 5.3 × 102 Pa·s to 6.0 × 102 Pa·s as measured at a shear rate of 100/sec.

Description

多重被覆鋼管およびその製造方法Multi-coated steel pipe and manufacturing method thereof
 本発明は、ガス管(gas pipe)、ケーブル保護管(cable protector tube)、水道用配管(water supply pipe)などの用途に好適な、防食層(corrosion protection layer)および保護層(damage protection layer)を被覆層(covering layer)として有する多重被覆鋼管(multi−layer coating pipe)に係り、特に連続ラインのライン速度を高めて製造しても防食層と保護層とが適度な密着性(adhesiveness)および剥離性(peel property)を有する、現場での施工性(field workability)に優れた多重被覆鋼管およびその製造方法に関する。 INDUSTRIAL APPLICABILITY The present invention provides a corrosion protection layer and a protection layer suitable for applications such as a gas pipe, a cable protection tube, and a water supply pipe. In particular, a multi-layered steel pipe having a coating layer (covering layer) has a suitable adhesion between the anti-corrosion layer and the protective layer, even if the line speed of a continuous line is increased. The present invention relates to a multi-coated steel pipe having a peel property and excellent field workability, and a method for producing the same. .
 鋼管に防食層としてポリエチレン樹脂層(polyethylene resin layer)が被覆された被覆鋼管は、防食性能(corrosion protection performance)に優れていることに加えて使用温度範囲(operating temperature limit)が広く、電気絶縁性(electrical insulating properties)や耐薬品性(chemical resistance)にも優れていることから、ガス用配管や水道用配管、ケーブル保護管などに広く用いられている。また、現地での施工に供される場合が多いことに鑑み、この被覆鋼管には、輸送取扱(handling operation of transportation)時の機械的外力(mechanical external force)から防食層(ポリエチレン樹脂層)を保護する目的で、該防食層の表面(外面)にポリプロピレン樹脂層(polypropylene resin layer)を保護層とし、多重被覆層(multi coating layers)を設けたものがある。 A coated steel pipe coated with a polyethylene resin layer (polyethylene resin layer) as an anticorrosion layer on a steel pipe has not only excellent corrosion protection performance but also a wide operating temperature limit and electrical insulation. (Electrical insulating properties) and chemical resistance, it is widely used for gas pipes, water pipes, cable protection pipes and the like. In view of the fact that the steel pipe is often used for local construction, the coated steel pipe is provided with an anticorrosion layer (polyethylene resin layer) from mechanical external force at the time of handling operation (transportation). For the purpose of protection, there is one in which a multilayer coating layer (multi coating layer) is provided on the surface (outer surface) of the anticorrosion layer using a polypropylene resin layer as a protective layer.
 図1に例示されるように、この多重被覆鋼管は、基材である鋼管1の外側表面に、粘着剤層(adhesive layer)2を介して防食層(ポリエチレン樹脂層)3が被覆され、更に防食層(ポリエチレン樹脂層)3の表面(外面)に保護層(ポリプロピレン樹脂層)4を被覆した構成を有する。また、防食性をより一層高める目的で、用途に応じて鋼管の内面側にも被覆する場合もある。 As illustrated in FIG. 1, in this multi-coated steel pipe, an outer surface of a steel pipe 1 as a base material is coated with an anticorrosion layer (polyethylene resin layer) 3 via an adhesive layer 2, and The surface (outer surface) of the anticorrosion layer (polyethylene resin layer) 3 is covered with a protective layer (polypropylene resin layer) 4. Moreover, for the purpose of further improving the corrosion resistance, the inner surface side of the steel pipe may be coated depending on the application.
 また、通常、このような多重被覆鋼管は連続ラインで製造され、防食層および保護層は図2に示すような多重被覆ラインで押出し被覆により形成される。すなわち、ラインの上流側から搬送された基材である鋼管1は、鋼管予熱装置(preheating device of steel pipe)10で40~80℃程度に予熱され、粘着剤塗布装置(coating applicator of adhesive layer)20で表面に150~200℃に加熱された粘着剤(図省略)が塗布される。その後、鋼管1は、防食層押出被覆機(Extruder for corrosion protection layer)30に搬送され、溶融状態(melting state)(200~260℃程度)の防食層樹脂300が表面に押出被覆され、防食層冷却機(cooling device of corrosion protection layer)31で冷却され、防食層3となる。次いで、鋼管1は、保護層押出被覆機(Extruder for protection layer)40に搬送され、溶融状態(260~270℃程度)の保護層樹脂400が防食層3の表面に押出被覆され、保護層冷却機41で表面が冷却され、保護層4となる。 Usually, such a multi-coated steel pipe is manufactured in a continuous line, and the anticorrosive layer and the protective layer are formed by extrusion coating in a multi-coated line as shown in FIG. That is, the steel pipe 1 which is a base material conveyed from the upstream side of the line is preheated to about 40 to 80 ° C. by a steel pipe preheating device (preheating device of steel pipe) 10 and is applied with an adhesive applicator of adhesive layer. 20, an adhesive (not shown) heated to 150 to 200 ° C. is applied to the surface. After that, the steel pipe 1 is conveyed to an anticorrosion layer extrusion coating machine (Extruder for corrosion protection layer) 30, and the anticorrosion layer resin 300 in a molten state (about 200 to 260 ° C.) is extrusion coated on the surface. It is cooled by a cooling device (cooling device of corrosion protection layer) 31 to become an anticorrosion layer 3. Next, the steel pipe 1 is conveyed to a protective layer extrusion coater (Extruder for protection layer) 40, and a protective layer resin 400 in a molten state (about 260 to 270 ° C.) is extrusion coated on the surface of the anticorrosion layer 3 to cool the protective layer. The surface is cooled by the machine 41 to become the protective layer 4.
 ところで、被覆鋼管をガス用等の配管やケーブル保護管などに適用する場合には、施工時、複数の鋼管の管端同士を溶接などにより接続する。ここで、防食層(ポリエチレン樹脂層)の表面(外面)に保護層(ポリプロピレン樹脂層)を被覆した多重被覆鋼管の管端同士を溶接などによって接続するに際しては通常、溶接のし易さ、および溶接後の鋼露出部の補修のし易さを確保するという理由で、図3に示すように多重被覆鋼管端部(鋼管端部から100mm~150mm程度の領域)の防食層3および保護層4を剥離し鋼を露出させ、さらに保護層4aのみを剥離する(防食層端部から100mm~150mm程度の領域)。そのため、保護層(ポリプロピレン樹脂層)には、溶接施工時、防食層(ポリエチレン樹脂層)から人手によって剥離できる程度の剥離性を有することが要求される。 By the way, when the coated steel pipe is applied to a gas pipe or a cable protection pipe, the pipe ends of the plurality of steel pipes are connected by welding or the like at the time of construction. Here, when connecting the pipe ends of the multi-coated steel pipes having the protective layer (polypropylene resin layer) coated on the surface (outer surface) of the anticorrosion layer (polyethylene resin layer) by welding or the like, As shown in FIG. 3, the anticorrosion layer 3 and the protective layer 4 at the end of the multi-coated steel pipe (region of about 100 mm to 150 mm from the end of the steel pipe) as shown in FIG. 3 for ensuring the ease of repairing the exposed steel part after welding. Is peeled to expose the steel, and only the protective layer 4a is peeled off (region of about 100 mm to 150 mm from the end of the anticorrosive layer). Therefore, the protective layer (polypropylene resin layer) is required to have releasability to the extent that it can be manually peeled off from the anticorrosion layer (polyethylene resin layer) during welding.
 その一方で、保護層(ポリプロピレン樹脂層)の剥離性が過剰に高くなると、保護層(ポリプロピレン樹脂層)と防食層(ポリエチレン樹脂層)の密着性が著しく低下し、種々の問題を招来する。例えば、上記密着性が低下すると、防食層3から多重被覆鋼管端部の保護層4aを剥離するために鋼管端部の保護層4に周状に切れ目5を入れた際、切れ目5周辺の保護層4が防食層3から部分的に浮く場合がある。その結果、保護層4aを防食層3から剥離した後、防食層3上に残っている保護層4bの端部4’が防食層3から浮き、防食層3と保護層4の間に隙間6ができ、外観も悪くなる。また、多重被覆鋼管の管端部同士を溶接等によって接続した後、接続部に防食テープを巻き付ける等の補修を行うが、このような保護層の浮き(loss of adhesion)が残存したままでは、補修を行う場合にも問題が発生する。更に、防食層と保護層との密着性が低下すると、何らかの衝撃で層間にエア(air)が入る場合があり、外観が悪くなるという問題もある。 On the other hand, if the peelability of the protective layer (polypropylene resin layer) becomes excessively high, the adhesion between the protective layer (polypropylene resin layer) and the anticorrosion layer (polyethylene resin layer) is significantly lowered, which causes various problems. For example, when the adhesiveness is lowered, when the cut 5 is circumferentially formed in the protective layer 4 at the end of the steel pipe in order to peel off the protective layer 4a at the end of the multi-coated steel pipe from the anticorrosive layer 3, protection around the cut 5 is performed. The layer 4 may partially float from the anticorrosion layer 3. As a result, after peeling off the protective layer 4 a from the anticorrosive layer 3, the end 4 ′ of the protective layer 4 b remaining on the anticorrosive layer 3 floats from the anticorrosive layer 3, and a gap 6 is formed between the anticorrosive layer 3 and the protective layer 4. And the appearance also deteriorates. In addition, after connecting the pipe ends of the multi-coated steel pipes by welding or the like, repairs such as wrapping anticorrosion tape around the connection are performed. However, if such a protective layer float remains, Problems also occur when repairs are performed. Further, when the adhesion between the anticorrosion layer and the protective layer is lowered, there is a problem that air may enter between the layers due to some impact, which deteriorates the appearance.
 上述したように、防食層と保護層との間には、多重被覆鋼管の管端部における保護層を防食層から剥離する場合に、剥離し易く、且つ上記の如き浮きが発生しない程度の密着性を有する必要がある。つまり、防食層と保護層の密着性は大きすぎても小さすぎても好ましくない。任意のポリエチレン樹脂、ポリプロピレン樹脂をそれぞれ防食層、保護層として用いると、該樹脂の融着等が発生して剥離性が著しく悪化したり、浮きが発生するなど、実用性に欠くこととなる。 As described above, between the anticorrosive layer and the protective layer, when the protective layer at the pipe end of the multi-coated steel pipe is peeled off from the anticorrosive layer, it is easy to peel off and does not cause the above-described floating. It is necessary to have sex. That is, it is not preferable that the adhesion between the anticorrosive layer and the protective layer is too large or too small. If any polyethylene resin and polypropylene resin are used as the anticorrosion layer and the protective layer, respectively, the resin is fused, and the releasability is remarkably deteriorated or floating is generated.
 そこで、このような多重被覆鋼管に関し、防食層のポリエチレン樹脂と保護層のポリプロピレン樹脂との剥離性を確保すべく、現在までに様々な技術が提案されてきている。
 例えば、特許文献1には、鋼管外面に押出し被覆した防食層を25℃以下になるまで冷却したのち、保護層をその上に押出し被覆することにより、防食層と保護層の融着を防止して保護層の剥離性を確保する技術が提案されている。そして、係る技術によると、防食層および保護層の皮膜性状(film property)を損なうことなく、防食層と保護層の融着を防止することができるとされている。
Therefore, various techniques have been proposed so far in order to ensure the peelability between the polyethylene resin of the anticorrosion layer and the polypropylene resin of the protective layer, with respect to such a multi-coated steel pipe.
For example, in Patent Document 1, the corrosion prevention layer extrusion-coated on the outer surface of a steel pipe is cooled to 25 ° C. or less, and then the protective layer is extrusion-coated thereon to prevent the corrosion-proof layer and the protective layer from being fused. Thus, techniques for ensuring the peelability of the protective layer have been proposed. According to such a technique, it is said that the fusion between the anticorrosion layer and the protective layer can be prevented without impairing the film properties of the anticorrosion layer and the protective layer.
 しかしながら、特許文献1で提案された技術では、防食層を25℃以下に冷却するために冷却時間を長くすることが必要となる。それゆえ、製造時の冷却ラインを長くする、もしくはライン速度を遅くする等、冷却時間を確保するための制約が発生し、工業的に不利になる。先述のとおり、防食層の被覆および保護層の被覆は1つの連続ラインで行うのが通常であるが、近年ライン速度は生産性向上のため高速になる傾向にあり、従来の方法では適度な融着性を確保するのが困難である。 However, in the technique proposed in Patent Document 1, it is necessary to lengthen the cooling time in order to cool the anticorrosion layer to 25 ° C. or lower. Therefore, restrictions for securing the cooling time, such as lengthening the cooling line at the time of manufacture or slowing the line speed, occur, which is industrially disadvantageous. As described above, the coating of the anticorrosion layer and the coating of the protective layer are usually carried out in one continuous line. However, in recent years, the line speed has tended to increase to improve productivity. It is difficult to ensure wearability.
 また、特許文献2には、酸化カルシウム(calcium oxide)などの無機粉末(inorganic powder)を防食層と保護層の間に散布することにより、両層の融着を防止する技術が提案されている。そして、係る技術によると、溶接施工の際に接合部の保護層が剥離し易いうえ、環境温度(environmental temperature)の変化に起因する保護層の伸縮を防止し得る被覆鋼管が得られるとされている。しかしながら、特許文献2で提案された技術は、粉体を散布する設備が必要であるうえ、製造所内での粉体の扱いも煩雑なため、やはり工業的に不利なものである。 Patent Document 2 proposes a technique for preventing fusion between both layers by spraying an inorganic powder such as calcium oxide between the anticorrosive layer and the protective layer. . And according to the technology, it is said that a protective steel layer can be obtained in which the protective layer of the joint is easily peeled off during welding, and the protective layer can be prevented from expanding and contracting due to a change in environmental temperature (environmental temperature). Yes. However, the technique proposed in Patent Document 2 is also disadvantageous industrially because it requires equipment for spraying powder and the handling of the powder in the factory is complicated.
 また、特許文献3には酸化防止剤(antioxidant)や造核剤(nucleating agent)を、特許文献4には滑剤(lubricant)や無機フィラー(inorganic filler)を、特許文献5には帯電防止剤(antistatic agent)を、防食層もしくは保護層に添加する技術が提案されている。そして、これらの技術によると、各種添加剤(additive agent)によって樹脂間の融着を防ぎ、防食層と保護層の剥離性が大きく改善するとされている。しかしながら、特許文献3~5で提案された技術では、各種添加剤の添加量が微量である場合、連続ラインのライン速度を上げると樹脂間の融着を防止する効果が不十分となる。一方、各種添加剤の添加量を多くすると、樹脂の物性が期待していたものと異なったものになったり、コストが高くなるなどの不利な点がある。 Patent Document 3 includes an antioxidant and a nucleating agent, Patent Document 4 includes a lubricant and an inorganic filler, and Patent Document 5 includes an antistatic agent (an anti-oxidant). A technique for adding antistatic agent) to the anticorrosion layer or the protective layer has been proposed. And according to these techniques, it is supposed that various additives (additive agent) will prevent the fusion | melting between resin, and the peelability of a corrosion prevention layer and a protective layer will improve significantly. However, in the techniques proposed in Patent Documents 3 to 5, when the addition amount of various additives is very small, the effect of preventing fusion between resins becomes insufficient when the line speed of the continuous line is increased. On the other hand, if the amount of various additives added is increased, there are disadvantages in that the physical properties of the resin are different from those expected and the cost is increased.
 これらの技術に対し、特許文献6には、防食層と保護層のいずれか一層をポリエチレン単独とし、他の一層をポリエチレン20~40重量%(27.3~50モル%)、ポリプロピレン60~80重量%(50~72.7モル%)の配合によりなる共重合体(copolymer)またはブレンド樹脂(blended resin)とする技術が提案されている。そして、係る技術によると、溶着防止剤を用いることなく、連続的に二重押出被覆を行っても防食層と保護層とが融着することのない被覆鋼管が得られるとされている。 In contrast to these technologies, Patent Document 6 discloses that either one of the anticorrosion layer and the protective layer is made of polyethylene alone, the other layer is made of 20 to 40% by weight (27.3 to 50% by mole) of polyethylene, and 60 to 80% of polypropylene. A technique of making a copolymer or blended resin by blending in weight percent (50 to 72.7 mol%) has been proposed. And according to such a technique, it is said that a coated steel pipe is obtained in which the anticorrosion layer and the protective layer are not fused even if continuous double extrusion coating is performed without using a welding inhibitor.
特開昭49−130956号公報JP-A 49-130956 特開昭50−139422号公報JP-A-50-139422 特開平10−76601号公報JP-A-10-76601 特開平10−76602号公報Japanese Patent Laid-Open No. 10-76602 特開平10−76603号公報Japanese Patent Laid-Open No. 10-76603 特開昭54−158720号公報JP 54-158720 A
 しかしながら、特許文献6で提案された技術では、保護層の硬さを十分に確保することができない。多重被覆鋼管の保護層は、その目的からは耐疵付き性が高いほど好ましいことから、保護層用の樹脂にはある程度の硬さが必要となる。そのため、多重被覆鋼管では通常、防食層をポリエチレン樹脂、保護層をポリプロピレン樹脂で形成するが、上記の如く保護層の樹脂のエチレン成分(ethylene component)を20~40重量%(27.3~50モル%)と多くすると樹脂が柔らかくなる結果、保護層が疵付き易くなりその機能を果たさなくなる。発明者らの検討によれば、輸送および施工現場での衝撃(impact shock)等を考慮した場合、通常、保護層の硬さはASTM D2240(D型)に規定された試験方法による測定値で70以上であることが好ましい。 However, the technique proposed in Patent Document 6 cannot sufficiently secure the hardness of the protective layer. For the purpose, the protective layer of the multi-coated steel pipe has a higher degree of scratch resistance, so that the resin for the protective layer needs a certain degree of hardness. Therefore, in the multi-coated steel pipe, the anticorrosion layer is usually formed of polyethylene resin and the protective layer is formed of polypropylene resin. As described above, the ethylene component of the resin of the protective layer is 20 to 40% by weight (27.3 to 50%). If the amount is too large, the resin becomes soft, and the protective layer is easily wrinkled and does not perform its function. According to the study by the inventors, the hardness of the protective layer is usually measured by the test method defined in ASTM D2240 (D type) when considering impact shock at transportation and construction sites. It is preferable that it is 70 or more.
 また、特許文献6で提案された技術では、多重被覆鋼管の製造時に連続ラインのライン速度を高めた場合、防食層と保護層の融着を抑制することができない。先述のとおり、多重被覆鋼管を製造するに際しては通常、図2に示すように鋼管1の予熱以降、保護層4の冷却までは連続ラインで行われる。そして、防食層3と保護層4の融着性は溶融した保護層4を防食層3の外面に被覆する時の両層の温度に依存し、これらの温度が高いほど融着し易く、これらの温度が低いほど融着し難い。一方、生産性の観点からするとライン速度は速い方が好ましい。そして、ライン速度を速くした場合には、樹脂(防食層樹脂300および保護層樹脂400)の押出し吐出量(extrusion discharge rate)も多くしなければならず、その結果、押出された樹脂の温度が押出し時の剪断発熱(shear heating)などにより高くなるのが常である。 Also, with the technique proposed in Patent Document 6, if the line speed of the continuous line is increased during the production of the multi-coated steel pipe, the fusion between the anticorrosion layer and the protective layer cannot be suppressed. As described above, when a multi-coated steel pipe is manufactured, the steel pipe 1 is usually preheated and the protective layer 4 is cooled in a continuous line as shown in FIG. And, the fusibility of the anticorrosion layer 3 and the protective layer 4 depends on the temperature of both layers when the molten protective layer 4 is coated on the outer surface of the anticorrosion layer 3, and the higher these temperatures, the easier the fusion occurs. The lower the temperature, the harder it is to fuse. On the other hand, from the viewpoint of productivity, it is preferable that the line speed is high. When the line speed is increased, the extrusion discharge rate of the resin (the anticorrosion layer resin 300 and the protective layer resin 400) must be increased. As a result, the temperature of the extruded resin is increased. Usually, it becomes higher due to shear heating during extrusion.
 そのため、例えばライン速度を約10m/min以上まで高めた場合、防食層押出被覆機30で溶融状態の防食層樹脂(ポリエチレン,融点:120℃以上)300を押出被覆すると、押出し時の防食層3の樹脂温度は230~280℃にも達する。また、防食層3を被覆した後、工業的に合理的な冷却方法である水冷によって防食層樹脂を冷却した場合であっても、連続ラインの現実的な水冷効率を考慮すると、JIS G 3452(2010)に規定の呼び径100A以上の大径管においては保護層4を被覆する時点での防食層3の表面温度を40~70℃程度にまでしか下げられない。また、保護層押出被覆機40で溶融状態の保護層樹脂(ポリプロピレン,融点:160℃以上)400を押出被覆すると、防食層3の上に被覆する際の保護層樹脂400の温度は260~290℃にも達する。 Therefore, for example, when the line speed is increased to about 10 m / min or more, when the molten anticorrosion layer resin (polyethylene, melting point: 120 ° C. or higher) 300 is extrusion coated with the anticorrosion layer extrusion coating machine 30, the anticorrosion layer 3 during extrusion is applied. The resin temperature reaches 230 to 280 ° C. In addition, even when the anticorrosion layer resin is cooled by water cooling, which is an industrially rational cooling method, after coating the anticorrosion layer 3, in consideration of the realistic water cooling efficiency of the continuous line, JIS G 3452 ( In a large-diameter pipe having a nominal diameter of 100 A or more as defined in 2010), the surface temperature of the anticorrosion layer 3 at the time of covering the protective layer 4 can be lowered only to about 40 to 70 ° C. Further, when the molten protective layer resin (polypropylene, melting point: 160 ° C. or higher) 400 is extrusion coated with the protective layer extrusion coating machine 40, the temperature of the protective layer resin 400 when coated on the anticorrosion layer 3 is 260 to 290. Also reaches ℃.
 以上のように、ライン速度を高速化した場合には、防食層と保護層とが高温になり易く、非常に融着し易い状態となっている。しかしながら、特許文献6で提案された技術では、ライン速度を高速化した場合については何ら検討されていない。そのため、特許文献6で提案された技術では、生産性向上を目的としてライン速度を高速化すると、防食層と保護層の融着が発生し、良好な剥離性が得られないという問題がある。
 更に、特許文献6で提案された技術では、ライン速度を高速化した場合における保護層樹脂の押出し性(extrusion performance)や、保護層樹脂の強度について全く考慮されていない。押出し性が低下すると、押出し機の負荷(load)が高くなり、ポリプロピレン樹脂の押出し吐出量が維持できなくなる。また、保護層樹脂の強度が低下すると、製品とした後に、衝撃が加わると保護層を貫通して鋼管の防食のための要である防食層に傷が入ってしまうという支障をきたす。よって、特許文献6で提案された技術では、高品質の多重被覆鋼管を高い生産効率をもって安定的に提供することができない。
As described above, when the line speed is increased, the anticorrosion layer and the protective layer are likely to be high in temperature and are in a state of being very easily fused. However, in the technique proposed in Patent Document 6, no consideration has been given to the case where the line speed is increased. Therefore, the technique proposed in Patent Document 6 has a problem that when the line speed is increased for the purpose of improving productivity, the anticorrosion layer and the protective layer are fused, and good peelability cannot be obtained.
Furthermore, in the technique proposed in Patent Document 6, no consideration is given to the extrusion performance of the protective layer resin and the strength of the protective layer resin when the line speed is increased. When the extrudability decreases, the load on the extruder increases and the extrusion discharge amount of the polypropylene resin cannot be maintained. In addition, when the strength of the protective layer resin is reduced, when an impact is applied after the product is manufactured, the protective layer penetrates the protective layer and damages the anticorrosive layer, which is a key for preventing corrosion of the steel pipe. Therefore, the technique proposed in Patent Document 6 cannot stably provide a high-quality multi-clad steel pipe with high production efficiency.
 本発明は、上記した従来技術が抱える問題を有利に解決するものである。すなわち、本発明は、基材である鋼管の外側に、ポリエチレン樹脂層からなる防食層と、該防食層の上層としてポリプロピレン樹脂層からなる保護層が被覆された多重被覆鋼管において、防食層であるポリエチレン樹脂層と保護層であるポリプロピレン樹脂層の剥離性を著しく改良するとともに、防食層と保護層との間で溶接施工時に浮きが発生しない適度な密着性を有し、更に保護層が所望の耐疵付き性を有し、保護層樹脂の押出し性およびウエルド強度(weld impact value)(本発明で言うウエルド強度は、アイゾット衝撃強度(Izod impact value)のことを言う)にも優れた多重被覆鋼管および多重塗覆装鋼管を製造する方法を提供することを目的とする。 The present invention advantageously solves the above-described problems of the prior art. That is, the present invention is an anticorrosion layer in a multi-coated steel pipe in which a corrosion prevention layer made of a polyethylene resin layer and a protection layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer are coated on the outside of the steel pipe that is a base material. While significantly improving the peelability of the polyethylene resin layer and the polypropylene resin layer, which is a protective layer, it has moderate adhesiveness that does not cause floating during welding construction between the anticorrosive layer and the protective layer. Multi-coating with scratch resistance and excellent extrudability and weld strength (weld impact value) of the protective layer resin (weld strength in the present invention refers to Izod impact value) It is an object to provide a method of manufacturing a steel pipe and a multi-coated steel pipe.
 本発明は特に、高速のライン速度で製造した場合や大径管(large−diameter tube or pipe)(例えば、JIS G 3452(2010)に規定の呼び径:100A以上)であっても、上記の如き優れた特性を有する多重被覆鋼管、或いは更にその製造方法を提供することを目的とする。 In particular, the present invention is applicable even when manufactured at a high line speed or a large-diameter tube or pipe (for example, a nominal diameter defined in JIS G 3452 (2010): 100 A or more). An object of the present invention is to provide a multi-coated steel pipe having such excellent characteristics, or a method for producing the same.
 上記課題を解決すべく、本発明者らは、基材(base material)である鋼管の外側に、ポリエチレン樹脂層からなる防食層と、該防食層の上層としてポリプロピレン樹脂層からなる保護層が被覆された多重被覆鋼管について、防食層と保護層の剥離性や密着性等の諸特性に及ぼす各種要因について鋭意検討した。
 まず、本発明者らは、特許文献6で提案された技術、すなわち、ポリエチレンとポリプロピレンの配合によりなる共重合体を保護層とする技術において、ライン速度を高速化した連続ラインで多重被覆鋼管を製造することを念頭に置き、ポリプロピレン樹脂に含有させるエチレン成分について検討した。
In order to solve the above problems, the present inventors have coated a corrosion prevention layer made of a polyethylene resin layer and a protection layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer on the outside of a steel pipe that is a base material. With respect to the multiple coated steel pipes, various factors affecting various properties such as the peelability and adhesion between the anticorrosion layer and the protective layer were studied.
First, in the technique proposed in Patent Document 6, that is, a technique in which a copolymer formed by blending polyethylene and polypropylene is used as a protective layer, multiple coated steel pipes are formed on a continuous line with a high line speed. In consideration of manufacturing, the ethylene component contained in the polypropylene resin was examined.
 その結果、ライン速度を高速化する場合、特許文献6で提案された技術では、ポリプロピレン樹脂に含まれるエチレン成分量が高すぎ、防食層と保護層の融着が著しくなることを見い出した。そして、ポリプロピレン樹脂に含まれるエチレン成分を所望量に低減することにより、防食層と保護層の融着が大幅に抑制され、適度な剥離性と密着性が得られることを知見した。また、ポリプロピレン樹脂に含まれるエチレン成分を所望量に低減することにより、保護層樹脂の硬さが向上し、所望の耐疵付き性を有する保護層が得られることを知見した。 As a result, when increasing the line speed, the technique proposed in Patent Document 6 has found that the amount of ethylene component contained in the polypropylene resin is too high and the fusion between the anticorrosion layer and the protective layer becomes remarkable. The inventors have found that by reducing the ethylene component contained in the polypropylene resin to a desired amount, the fusion between the anticorrosion layer and the protective layer is greatly suppressed, and appropriate peelability and adhesion can be obtained. Further, it has been found that by reducing the ethylene component contained in the polypropylene resin to a desired amount, the hardness of the protective layer resin is improved and a protective layer having a desired scratch resistance can be obtained.
 一方、本発明者らは、ポリプロピレン樹脂に含まれるエチレン成分を調整しただけでは、保護層樹脂の押出し性とウエルド強度が依然として不十分であることを確認した。また、上記エチレン成分を調整しただけでは、適度な剥離性と密着性が得られない場合があることも確認した。そして、更に検討を進めた結果、ポリプロピレン樹脂のメルトフローレイト(melt flow rate)、および280℃における剪断粘度(shear viscosity)の適正化を図ることにより、保護層樹脂の押出し性とウエルド強度が飛躍的に向上するとともに、防食層−保護層間の剥離性および密着性がより一層良好になることを知見した。 On the other hand, the present inventors confirmed that the extrudability and weld strength of the protective layer resin are still insufficient only by adjusting the ethylene component contained in the polypropylene resin. In addition, it was also confirmed that moderate peelability and adhesion may not be obtained only by adjusting the ethylene component. As a result of further investigations, by optimizing the melt flow rate of polypropylene resin and the shear viscosity at 280 ° C., the extrudability and weld strength of the protective layer resin have increased dramatically. It was found that the peelability and adhesion between the anticorrosive layer and the protective layer were further improved.
 本発明は上記の知見に基づき完成されたものであり、その要旨は次のとおりである。
[1] 基材である鋼管の外側に、ポリエチレン樹脂層からなる防食層と、該防食層の上層としてポリプロピレン樹脂層からなる保護層が被覆された多重被覆鋼管であって、前記保護層を形成するポリプロピレン樹脂がエチレン成分19~23モル%を含む共重合樹脂(copolymerization resin)であり、前記ポリプロピレン樹脂のメルトフローレイトが0.53~0.60g/10minであり、前記ポリプロピレン樹脂の280℃における剪断粘度が、剪断速度10/secで測定したとき1.7×10~2.0×10Pa・sであり、剪断速度100/secで測定したとき5.3×10~6.0×10Pa・sであることを特徴とする多重被覆鋼管。
The present invention has been completed based on the above findings, and the gist thereof is as follows.
[1] A multi-coated steel pipe in which a corrosion prevention layer made of a polyethylene resin layer and a protection layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer are coated on the outside of a steel pipe that is a base material, and the protection layer is formed The polypropylene resin is a copolymerization resin containing 19 to 23 mol% of an ethylene component, the melt flow rate of the polypropylene resin is 0.53 to 0.60 g / 10 min, and the polypropylene resin at 280 ° C. The shear viscosity is 1.7 × 10 3 to 2.0 × 10 3 Pa · s when measured at a shear rate of 10 / sec, and 5.3 × 10 2 to 6.5 when measured at a shear rate of 100 / sec. A multi-coated steel pipe characterized by being 0 × 10 2 Pa · s.
[2] [1]において、前記防食層と前記保護層との間のピール強度が0.6N/10cm幅以上15N/10cm幅以下であることを特徴とする多重被覆鋼管。
[3] 基材である鋼管の外側に、ポリエチレン樹脂層からなる防食層と、該防食層の上層としてポリプロピレン樹脂層からなる保護層が被覆された多重塗覆装鋼管を製造するに際し、
 前記鋼管の外側に、ポリエチレン樹脂を被覆したのち、該ポリエチレン樹脂の表面温度を40℃以上70℃以下まで冷却して前記防食層を形成し、
 次いで、該防食層の表面に、エチレン成分19モル%以上23モル%以下を含む共重合樹脂であり、メルトフローレイトが0.53g/10min以上0.60g/10min以下であり、280℃における剪断粘度が、剪断速度10/secで測定したとき1.7×10Pa・s以上2.0×10Pa・s以下であり、剪断速度100/secで測定したとき5.3×10Pa・s以上6.0×10Pa・s以下であるポリプロピレン樹脂を使用し、該ポリプロピレン樹脂の温度を260℃以上290℃以下として被覆厚みが0.9mm以上1.8mm以下になるように被覆し、153℃/sec以上450℃/sec以下の冷却速度で前記ポリプロピレン樹脂の表面温度を170℃以下になるまで冷却して前記保護層を形成することを特徴とする多重塗覆装鋼管の製造方法。
[2] The multi-coated steel pipe according to [1], wherein a peel strength between the anticorrosion layer and the protective layer is 0.6 N / 10 cm width or more and 15 N / 10 cm width or less.
[3] When manufacturing a multi-coated steel pipe in which a corrosion prevention layer made of a polyethylene resin layer and a protection layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer are coated on the outside of the steel pipe as a base material,
After coating the outside of the steel pipe with a polyethylene resin, the surface temperature of the polyethylene resin is cooled to 40 ° C. or more and 70 ° C. or less to form the anticorrosion layer,
Next, it is a copolymer resin containing 19 mol% or more and 23 mol% or less of an ethylene component on the surface of the anticorrosion layer, the melt flow rate is 0.53 g / 10 min or more and 0.60 g / 10 min or less, and shearing at 280 ° C. The viscosity is 1.7 × 10 3 Pa · s or more and 2.0 × 10 3 Pa · s or less when measured at a shear rate of 10 / sec, and 5.3 × 10 2 when measured at a shear rate of 100 / sec. A polypropylene resin having a Pa · s of 6.0 × 10 2 Pa · s or less is used, and the temperature of the polypropylene resin is 260 ° C. or more and 290 ° C. or less so that the coating thickness is 0.9 mm or more and 1.8 mm or less. The protective layer is formed by coating and cooling at a cooling rate of 153 ° C./sec or more and 450 ° C./sec or less until the surface temperature of the polypropylene resin becomes 170 ° C. or less. A method for producing a multi-coated steel pipe characterized by comprising:
[4] [3]において、 前記ポリプロピレン樹脂を被覆する際の延伸倍率(draw ratio)が5倍以上10倍以下の範囲になるように前記ポリプロピレン樹脂を被覆することを特徴とする多重塗覆装鋼管の製造方法。 [4] In [3], the above-mentioned polypropylene resin is coated so that the draw ratio when coating the polypropylene resin is in the range of 5 times to 10 times. Steel pipe manufacturing method.
 本発明によれば、ライン速度を高速化して製造した場合であっても、保護層樹脂の押出し性に優れ、且つ防食層と保護層との適度な密着性と剥離性を有し、溶接施工時、防食層と保護層との間の浮きも抑制され、更に耐疵付き性が良好な保護層を具えた多重被覆鋼管を、容易にしかも安価に製造することができる。また本発明は保護層樹脂のウエルド強度も優れるものであるため、製品とした後、特に低温下で保護層のウエルド部(保護層押出被覆機内での樹脂の合流点)に衝撃が加わってもその部分から保護層が割れるということもない。したがって、本発明によれば、高品質の多重被覆鋼管を、高い生産効率をもって安定的に生産することが可能となり、産業上格段の効果を奏する。 According to the present invention, even when the line speed is increased, the protective layer resin is excellent in extrudability and has an appropriate adhesion and peelability between the anticorrosive layer and the protective layer, and is welded. In some cases, the floating between the anticorrosion layer and the protective layer is also suppressed, and a multi-coated steel pipe having a protective layer with good scratch resistance can be easily and inexpensively manufactured. In addition, since the weld strength of the protective layer resin is also excellent in the present invention, even if an impact is applied to the weld portion of the protective layer (resin junction point in the protective layer extrusion coating machine), particularly at low temperatures, after the product is manufactured. The protective layer does not break from that part. Therefore, according to the present invention, it is possible to stably produce a high quality multi-clad steel pipe with high production efficiency, and there is a remarkable industrial effect.
多重被覆鋼管の層構成を模式的に示す図である。It is a figure which shows typically the layer structure of a multi-clad steel pipe. 多重被覆鋼管を製造する連続ラインの一部(多重被覆ライン)を模式的に示す図である。It is a figure which shows typically a part of continuous line (multiple coating line) which manufactures a multi-coating steel pipe. 多重被覆鋼管の溶接施工時に管端部の保護層を剥離する様子を示す図である。It is a figure which shows a mode that the protective layer of a pipe end part is peeled at the time of welding construction of a multiple covering steel pipe. 実施例の多重被覆鋼管における保護層を剥離する様子を示す図である。It is a figure which shows a mode that the protective layer in the multi-clad steel pipe of an Example is peeled.
 以下、本発明について詳細に説明する。
 本発明の多重被覆鋼管は、基材である鋼管の外側に、ポリエチレン樹脂層からなる防食層と、該防食層の上層としてポリプロピレン樹脂層からなる保護層が被覆された多重被覆鋼管である。そして、前記保護層を形成するポリプロピレン樹脂は、エチレン成分19~23モル%を含む共重合樹脂で、メルトフローレイトが0.53~0.60g/10minであり、且つ、280℃における剪断粘度が、剪断速度10/secで測定したとき1.7×10~2.0×10Pa・sであり、剪断速度100/secで測定したとき5.3×10~6.0×10Pa・sであることを特徴とする。
 本発明は、基材である鋼管の外側に、ポリエチレン樹脂層からなる防食層と、該防食層の上層としてポリプロピレン樹脂層からなる保護層が被覆された多重塗覆装鋼管を、生産効率の観点から連続ラインで製造し、かつ高速に製造するためのものであり、特にライン速度を約10m/min以上とするためのものである。
Hereinafter, the present invention will be described in detail.
The multiple-coated steel pipe of the present invention is a multiple-coated steel pipe in which a corrosion prevention layer made of a polyethylene resin layer and a protective layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer are coated on the outside of the steel pipe that is a base material. The polypropylene resin forming the protective layer is a copolymer resin containing 19 to 23 mol% of an ethylene component, has a melt flow rate of 0.53 to 0.60 g / 10 min, and has a shear viscosity at 280 ° C. , When measured at a shear rate of 10 / sec, 1.7 × 10 3 to 2.0 × 10 3 Pa · s, and when measured at a shear rate of 100 / sec, 5.3 × 10 2 to 6.0 × 10 2 Pa · s.
The present invention relates to a multi-coated steel pipe in which a corrosion prevention layer made of a polyethylene resin layer and a protection layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer are coated on the outer side of the steel pipe as a base material. From a continuous line to high-speed production, particularly to make the line speed about 10 m / min or more.
 そして、本発明は、多重塗覆装鋼管を製造するに際し、保護層を形成するポリプロピレン樹脂を、エチレン成分19モル%以上23モル%以下を含む共重合樹脂で、メルトフローレイトが0.53g/10min以上0.60g/10min以下であり、且つ、280℃における剪断粘度が、剪断速度10/secで測定したとき1.7×10Pa・s以上2.0×10Pa・s以下であり、剪断速度100/secで測定したとき5.3×10Pa・s以上6.0×10Pa・s以下であるポリプロピレン樹脂とすることを特徴とする。 And when manufacturing this multi-coating steel pipe, this invention is a copolymer resin which contains 19 mol% or more and 23 mol% or less of ethylene components for the polypropylene resin which forms a protective layer, and melt flow rate is 0.53 g / 10 min or more and 0.60 g / 10 min or less, and the shear viscosity at 280 ° C. is 1.7 × 10 3 Pa · s or more and 2.0 × 10 3 Pa · s or less when measured at a shear rate of 10 / sec. Yes, a polypropylene resin having a viscosity of 5.3 × 10 2 Pa · s or more and 6.0 × 10 2 Pa · s or less when measured at a shear rate of 100 / sec.
 更に、本発明は、基材である鋼管の外側に、ポリエチレン樹脂を被覆した後、該ポリエチレン樹脂の表面温度を40℃以上70℃以下まで冷却して前記防食層を形成したのち、該防食層の表面に、上記した所定の特性を有するポリプロピレン樹脂を使用し、該ポリプロピレン樹脂の温度を260℃以上290℃以下として被覆厚みが0.9mm以上1.8mm以下になるように被覆し、153℃/sec以上450℃/sec以下の冷却速度で前記ポリプロピレン樹脂の表面温度を170℃以下になるまで冷却して前記保護層を形成することで、多重塗覆装鋼管を製造することを特徴とする。 Further, in the present invention, after the outer surface of the steel pipe as a base material is coated with a polyethylene resin, the surface temperature of the polyethylene resin is cooled to 40 ° C. or more and 70 ° C. or less to form the anticorrosion layer, and then the anticorrosion layer is formed. A polypropylene resin having the above-mentioned predetermined characteristics is used on the surface of the resin, the temperature of the polypropylene resin is 260 ° C. or more and 290 ° C. or less, and the coating thickness is 0.9 mm or more and 1.8 mm or less, and 153 ° C. A multi-coated steel pipe is manufactured by forming the protective layer by cooling the surface temperature of the polypropylene resin to 170 ° C. or less at a cooling rate of / sec or more and 450 ° C./sec or less. .
(鋼管)
 本発明において、多重被覆鋼管の基材となる鋼管の種類は特に限定されず、鍛接鋼管、電縫鋼管等、ガス用や水道用の配管、ケーブル保護管などに用いられている従前公知の鋼種の鋼管がいずれも適用可能である。また、鋼管のサイズも特に限定されるものではない。通常、用途に応じてJIS G 3452(2010)に規定される配管用炭素鋼鋼管の呼び径25A~500Aのものが使用される。本発明において、呼び径100A以上200A以下のものを対象とする。これは、上記用途に使用される多重塗覆装鋼管が通常JIS G 3452(2010)に規定される配管用炭素鋼鋼管であること、また、上記呼び径より小さいサイズの鋼管は高速で被覆しても特に防食層と保護層との融着や剥離に関してさほど大きな問題が生じないこと、さらに、上記呼び径より大きなサイズの鋼管に関しては、工場設備の関係上、通常、さほど被覆速度を速くできないため、本発明における課題が発生しないためである。
 また、基材である鋼管の外表面には、下地処理として公知の酸洗処理やブラスト処理を施すことができる。下地処理に続いて、更に防食層と鋼管との接着性を良くするための公知のプライマー塗装やJIS G 3469(2010)に規定される粘着剤を塗布することができる。なお、鋼管の内面は、そのままでもよく、外面多重被覆の前および後に塗装などを行ってもよい。
(Steel pipe)
In the present invention, the type of steel pipe used as a base material for the multiple-coated steel pipe is not particularly limited, and is a conventionally known steel type used for forged welded steel pipes, ERW steel pipes, gas and water pipes, cable protection pipes, and the like. Any steel pipe can be applied. Further, the size of the steel pipe is not particularly limited. Usually, carbon steel pipes for pipes having a nominal diameter of 25A to 500A defined in JIS G 3452 (2010) are used depending on the application. In this invention, the thing of nominal diameter 100A or more and 200A or less is made into object. This is because the multi-coated steel pipe used for the above-mentioned application is a carbon steel pipe for piping normally specified in JIS G 3542 (2010), and a steel pipe having a size smaller than the nominal diameter is coated at high speed. However, in particular, there is no significant problem with respect to the fusion and peeling between the anticorrosion layer and the protective layer. Furthermore, for steel pipes with a size larger than the above nominal diameter, the coating speed cannot usually be increased because of factory equipment. Therefore, the problem in the present invention does not occur.
In addition, a known pickling treatment or blast treatment can be applied to the outer surface of the steel pipe as a base material as a base treatment. Subsequent to the base treatment, a known primer coating for improving the adhesion between the anticorrosion layer and the steel pipe or an adhesive defined in JIS G 3469 (2010) can be applied. Note that the inner surface of the steel pipe may be left as it is, or may be painted before and after the outer surface multiple coating.
(防食層)
 防食層に用いられるポリエチレン樹脂は、エチレンの単独重合体あるいはエチレンとα−オレフィン(olefin)、例えばプロピレン(propylene)、1−ブテン(butene)、1−ペンテン(pentene)、1−ヘキセン(hexene)、4−メチル(methyl)−1−ペンテン、1−オクテン(octene)、1−デセン(decene)などとの共重合体であってエチレンを主体とする重合体である。本発明に好ましいポリエチレン樹脂は、密度:920~950kg/m、より好ましくは密度:940~950kg/m、ビカット軟化温度(Vicat softening temperature):110~130℃、引張強さ(Tensile Yield strength):30~50N/mm(MPa)、引張破壊ひずみ(Elongation at break):500~900%のものであり、防食層の厚みは0.6~1.5mm程度が適当である。なお、上記の密度、ビカット軟化温度、引張強さ、引張破壊ひずみは、いずれもJIS G 3469(2010)の規定に従い測定した値を用いるものとする。
 また、ポリエチレン樹脂層(防食層)は、これらのポリエチレン樹脂を溶融押出しすることにより鋼管の外側に形成されるが、このポリエチレン樹脂層は単一層のほか、酸変性ポリエチレン(Acid modified polyethylene)との2層を共押出した複合層としてもよい(鋼管側を酸変性ポリエチレン)。
(Anti-corrosion layer)
The polyethylene resin used for the anticorrosion layer is a homopolymer of ethylene or ethylene and α-olefin (olefin), for example, propylene, 1-butene, 1-pentene, 1-hexene. , 4-methyl-1-pentene, 1-octene, 1-decene and the like, which is a polymer mainly composed of ethylene. The polyethylene resin preferred in the present invention has a density of 920 to 950 kg / m 3 , more preferably a density of 940 to 950 kg / m 3 , a Vicat softening temperature of 110 to 130 ° C., and a tensile strength (Tensile Yield strength). ): 30 to 50 N / mm 2 (MPa), Tensile failure at break (Elongation at break): 500 to 900%, and the thickness of the anticorrosion layer is suitably about 0.6 to 1.5 mm. In addition, as for said density, Vicat softening temperature, tensile strength, and a tensile fracture strain, all shall use the value measured according to prescription | regulation of JISG3469 (2010).
The polyethylene resin layer (anticorrosion layer) is formed on the outside of the steel pipe by melt-extruding these polyethylene resins. This polyethylene resin layer is not only a single layer but also acid-modified polyethylene (Acid modified polyethylene). It is good also as a composite layer which coextruded two layers (the steel pipe side is acid-modified polyethylene).
(保護層)
 保護層に用いられるポリプロピレン樹脂は、モノマー(monomer)のエチレンとプロピレンをチーグラーナッタ系触媒(Ziegler−Natta catalyst)等公知の方法で重合したもの、すなわち工業的に通常言われるところのブロックポリプロピレン(block copolymer polypropylene)であり、ポリプロピレンとポリエチレンとエチレンプロピレンランダム共重合体(ethylene−propylene random copolymer)との混合物である。そして、本発明では、ポリプロピレン樹脂全体に占めるエチレン成分が19~23モル%(13.5~16.6質量%)であることを必須とする。
 このエチレン成分の割合はポリプロピレン樹脂を溶剤に溶かし樹脂成分の核磁気共鳴分光法(nuclear magnetic resonance analysis)などの方法により求めることができる。
(Protective layer)
The polypropylene resin used for the protective layer is a polymer obtained by polymerizing monomers ethylene and propylene by a known method such as a Ziegler-Natta catalyst, that is, a block polypropylene (block which is usually referred to industrially). copolymer (polypropylene), which is a mixture of polypropylene, polyethylene, and an ethylene-propylene random copolymer. And in this invention, it is essential that the ethylene component which occupies for the whole polypropylene resin is 19-23 mol% (13.5-16.6 mass%).
The ratio of the ethylene component can be obtained by dissolving a polypropylene resin in a solvent and using a method such as nuclear magnetic resonance spectroscopy of the resin component.
 上記エチレン成分の割合が19モル%(13.5質量%)未満であると、防食層であるポリエチレン樹脂との親和性(affinity)(密着性)が低くなりすぎ、前述したように防食層と保護層との間で浮きが発生する等の問題が発生する。一方、上記エチレン成分の割合が23モル%(16.6質量%)を超えると、防食層であるポリエチレン樹脂と融着し易くなり、適度の剥離性が得られなくなる。更に、上記エチレン成分の割合が23モル%(16.6質量%)を超えると、ポリプロピレン樹脂の硬さが低くなり、保護層として疵付き易いものとなってしまう。 When the proportion of the ethylene component is less than 19 mol% (13.5% by mass), the affinity (adhesion) with the polyethylene resin as the anticorrosion layer is too low, and as described above, Problems such as floating may occur between the protective layer and the like. On the other hand, when the proportion of the ethylene component exceeds 23 mol% (16.6 mass%), it becomes easy to fuse with the polyethylene resin as the anticorrosion layer, and appropriate peelability cannot be obtained. Furthermore, when the proportion of the ethylene component exceeds 23 mol% (16.6% by mass), the hardness of the polypropylene resin becomes low, and the protective layer is easily wrinkled.
 また、本発明では、保護層のポリプロピレン樹脂のメルトフローレイトが0.53~0.60g/10minであることを必須とする。上記メルトフローレイトは、JIS K6921−2(2010)に規定されたメルトマスフローレイト(melt mass flow rate)(MFR)であり、JIS K7210(1999)に規定される方法で求めた値である。上記メルトフローレイトが0.53g/10min未満であると、ポリプロピレン樹脂の押出し性が低下するため、押出被覆機の負荷が高くなり、ポリプロピレン樹脂の押出し吐出量が維持できなくなる。このような問題は特に、高速のライン速度で製造しようとする場合、すなわち樹脂の被覆速度を高速化しようとする場合に顕著に現れる。 In the present invention, it is essential that the melt flow rate of the polypropylene resin of the protective layer is 0.53 to 0.60 g / 10 min. The melt flow rate is a melt mass flow rate (MFR) defined in JIS K6921-2 (2010), and is a value obtained by a method defined in JIS K7210 (1999). When the melt flow rate is less than 0.53 g / 10 min, the extrudability of the polypropylene resin is lowered, so that the load on the extrusion coating machine increases and the extrusion discharge amount of the polypropylene resin cannot be maintained. Such a problem particularly appears when manufacturing at a high line speed, that is, when increasing the coating speed of the resin.
 また、上記メルトフローレイトが0.53g/10min未満であると、ポリプロピレン樹脂を円筒状に押出す際の樹脂のウエルド部の強度が低下してしまう。一方、上記メルトフローレイトが0.60g/10minを超えると、得られた保護層の強度が低下する、押出し特性が低下するなどの問題がある。
 以上のように、多重被覆鋼管が、ライン速度を高速化した連続ラインで製造されることを念頭に置いた本発明では、保護層のポリプロピレン樹脂のメルトフローレイトを0.53~0.60g/10minとすることが重要である。
On the other hand, if the melt flow rate is less than 0.53 g / 10 min, the strength of the weld portion of the resin when the polypropylene resin is extruded into a cylindrical shape is lowered. On the other hand, when the melt flow rate exceeds 0.60 g / 10 min, there are problems that the strength of the obtained protective layer is lowered and the extrusion characteristics are lowered.
As described above, in the present invention in which the multi-coated steel pipe is manufactured in a continuous line with a high line speed, the melt flow rate of the polypropylene resin of the protective layer is 0.53 to 0.60 g / It is important to set it to 10 min.
 更に、本発明では、ポリプロピレン樹脂の280℃における剪断粘度が、剪断速度(shear rate)10/secで測定したとき1.7×10~2.0×10Pa・sであり、剪断速度100/secで測定したとき5.3×10~6.0×10Pa・sであることを必須とする。なお、上記剪断粘度は、JIS K7199(1999)に規定されるキャピラリーレオメータ(capillary rheometer)(毛細管形レオメーターと呼ばれることもある)で測定したものであり、キャピラリー管の内径D、長さLが、L/D=10/1の条件で測定した値である。 Further, in the present invention, the shear viscosity at 280 ° C. of the polypropylene resin is 1.7 × 10 3 to 2.0 × 10 3 Pa · s when measured at a shear rate of 10 / sec, and the shear rate is It is essential that it is 5.3 × 10 2 to 6.0 × 10 2 Pa · s when measured at 100 / sec. The shear viscosity is measured by a capillary rheometer (sometimes called a capillary rheometer) defined in JIS K7199 (1999), and the capillary tube has an inner diameter D and a length L. , L / D = 10/1.
 上記剪断粘度が、剪断速度10/secで測定したとき1.7×10Pa・s未満である場合、または剪断速度100/secで測定したとき5.3×10Pa・s未満である場合、防食層(ポリエチレン樹脂)と保護層(ポリプロピレン樹脂)との間のピール強度(剥離強度)が高くなり過ぎ、防食層−保護層間で良好な剥離性が得られなくなる等の問題が顕在化する。
 一方、上記剪断粘度が、剪断速度10/secで測定したとき2.0×10Pa・sを超える場合、または剪断速度100/secで測定したとき6.0×10Pa・sを超える場合、ポリプロピレン樹脂を円筒状に押出す際の樹脂のウエルド部の強度が低下してしまう。また、防食層(ポリエチレン樹脂)と保護層(ポリプロピレン樹脂)との間のピール強度(剥離強度)が低くなり過ぎたり、溶接施工時に防食層−保護層間で浮きが発生し易くなる等、様々な支障をきたす。
The shear viscosity is less than 1.7 × 10 3 Pa · s when measured at a shear rate of 10 / sec, or less than 5.3 × 10 2 Pa · s when measured at a shear rate of 100 / sec. In this case, the peel strength (peeling strength) between the anticorrosive layer (polyethylene resin) and the protective layer (polypropylene resin) becomes too high, and problems such as no good peelability between the anticorrosive layer and the protective layer become apparent. To do.
On the other hand, when the shear viscosity exceeds 2.0 × 10 3 Pa · s when measured at a shear rate of 10 / sec, or exceeds 6.0 × 10 2 Pa · s when measured at a shear rate of 100 / sec. In this case, the strength of the weld portion of the resin when the polypropylene resin is extruded into a cylindrical shape is lowered. In addition, the peel strength (peeling strength) between the anticorrosion layer (polyethylene resin) and the protective layer (polypropylene resin) becomes too low, and floating easily occurs between the anticorrosion layer and the protective layer during welding. It will cause trouble.
 なお、本発明において、ポリプロピレン樹脂の280℃における剪断粘度を、2通りの剪断速度(10/sec,100/sec)で測定した場合について規定する理由は、防食層の表面に押出被覆する際のポリプロピレン樹脂(保護層樹脂)の剪断速度を考慮したためである。溶融状態のポリプロピレン樹脂(保護層樹脂)を押出被覆する際の剪断速度を測定することは極めて困難であり、押出被覆条件によって10/secあるいはこれ以下の剪断速度から、100/secあるいはこれ以上の剪断速度となることが想定される。そこで、本発明では、剪断速度が低速度である場合(10/sec)と高速度である場合(100/sec)の2通りについて剪断粘度を規定することとする。 In the present invention, the reason for prescribing the case where the shear viscosity at 280 ° C. of the polypropylene resin is measured at two shear rates (10 / sec, 100 / sec) is that when the surface of the anticorrosion layer is extrusion coated. This is because the shear rate of the polypropylene resin (protective layer resin) is taken into consideration. It is extremely difficult to measure the shear rate when extrusion coating a molten polypropylene resin (protective layer resin). From a shear rate of 10 / sec or less depending on the extrusion coating conditions, it is 100 / sec or more. A shear rate is assumed. Therefore, in the present invention, the shear viscosity is defined in two ways: when the shear rate is low (10 / sec) and when the shear rate is high (100 / sec).
 本発明では、上記の如くエチレン成分、メルトフローレイトおよび剪断粘度が所望の値に調製されたポリプロピレン樹脂を保護層として用いることにより、防食層と保護層の良好な融着性および密着性、保護層として十分な硬さ(ASTM D2240に規定のデュロメータ硬さタイプD:70以上)が確保される。また、保護層により一層の機械的強度(mechanical strength)や耐低温衝撃(low−temperature impact resistance)などが必要とされる場合には、JIS K7162(1994)の規定に準拠して測定した引張り破断点応力が22~45MPa、JIS K7162(1994)の規定に準拠して測定した引張り破断点伸び(tensile elongation at rupture)が600~900%、JIS K 7110(1999)の規定に準拠して測定したアイゾット衝撃強度(Izod impact value)が−20℃で2~6kJ/mで、通常、JIS K7112(1999)の規定に準拠して測定した密度905~910kg/mのものを保護層用のポリプロピレン樹脂として用いることができる。 In the present invention, by using the polypropylene resin having the ethylene component, the melt flow rate and the shear viscosity adjusted to the desired values as described above as a protective layer, good adhesion and adhesion between the anticorrosion layer and the protective layer, protection Sufficient hardness for the layer (durometer hardness type D defined in ASTM D2240: 70 or more) is ensured. In addition, when the protective layer requires further mechanical strength, low-temperature impact resistance, etc., tensile fracture measured in accordance with the provisions of JIS K7162 (1994) The point stress is 22 to 45 MPa, the tensile elongation at measurement measured in accordance with JIS K7162 (1994) is 600 to 900%, and is measured in accordance with JIS K 7110 (1999). An Izod impact value of 2 to 6 kJ / m 2 at −20 ° C. and a density of 905 to 910 kg / m 3 measured in accordance with JIS K7112 (1999) is usually used for the protective layer. Polypropy It can be used as a len resin.
 なお、保護層の厚みは、特に制約されるものではないが、経済面および運搬・施工時などに防食層を疵付きから保護するという観点からは、0.8~2.8mm程度であることが好ましい。
 保護層の厚みが0.8mm未満であると、運搬・施工時などに防食層を疵付きから保護することが困難となる。一方、保護層の厚みが2.8mmを超えると、押出し時のポリプロピレン樹脂(保護層樹脂)の温度を後述する本発明の範囲に制御しても、防食層表面に被覆されるポリプロピレン樹脂の蓄熱量が大きすぎるため、防食層(ポリエチレン樹脂層)との融着が発生し易くなってしまう。さらに好ましくは、0.9mm以上1.8mm以下の範囲である
The thickness of the protective layer is not particularly limited, but is about 0.8 to 2.8 mm from the viewpoint of economy and protection of the anticorrosion layer from wrinkles during transportation and construction. Is preferred.
When the thickness of the protective layer is less than 0.8 mm, it is difficult to protect the anticorrosion layer from wrinkles during transportation and construction. On the other hand, when the thickness of the protective layer exceeds 2.8 mm, heat storage of the polypropylene resin coated on the surface of the anticorrosive layer is controlled even if the temperature of the polypropylene resin (protective layer resin) during extrusion is controlled within the scope of the present invention described later. Since the amount is too large, fusion with the anticorrosion layer (polyethylene resin layer) is likely to occur. More preferably, it is the range of 0.9 mm or more and 1.8 mm or less.
 上記の如きポリプロピレン樹脂は、エチレンとプロピレンを主なモノマーとしてチーグラーナッタ系触媒やシングルサイト触媒(single−site catalyst)などを用い付加重合(addition polymerization)を行ない製造する従前公知の方法により適宜調製し得るが、ポリプロピレン樹脂メーカーでは様々な物性を有する樹脂を幅広く用意しているため、その中から本願発明の物性を満足するものを適宜使用することができる。 The polypropylene resin as described above is appropriately prepared by a conventionally known method in which ethylene and propylene are used as the main monomers and produced by performing addition polymerization using a Ziegler-Natta catalyst or a single-site catalyst. However, since polypropylene resin manufacturers have prepared a wide variety of resins having various physical properties, those satisfying the physical properties of the present invention can be appropriately used.
 なお、本発明の被覆層として用いられるポリエチレン樹脂(防食層)あるいはポリプロピレン樹脂(保護層)中には、樹脂の酸化劣化(oxidation degradation)・光劣化(light deterioration)を防ぐための酸化防止剤(antioxidant)、紫外線吸収剤(ultraviolet absorbing agent)、また、顔料(pigment)などの着色剤、また、成形性を向上させるための造核剤(nucleating agent)などの添加剤を、本発明の目的を損なわない範囲内で配合してもよい。 In addition, in the polyethylene resin (anticorrosion layer) or the polypropylene resin (protective layer) used as the coating layer of the present invention, an antioxidant for preventing oxidative degradation / light degradation of the resin (light degradation) ( The purpose of the present invention is to add additives such as antioxidants, ultraviolet absorbers, coloring agents such as pigments, and nucleating agents for improving moldability. You may mix | blend within the range which does not impair.
 また、防食層(ポリエチレン樹脂)と保護層(ポリプロピレン樹脂)との間のピール強度(剥離強度)は、0.6N/10cm幅以上15N/10cm幅以下であることが好ましく、特に、0.6N/10cm幅以上10N/10cm幅以下がより好ましい。上記ピール強度は、後述するピール強度試験に準拠して測定されたピール強度である。このピール強度が0.6N/10cm幅未満であると、防食層から保護層を除去するために保護層にスリットを入れただけで保護層が剥離してしまう、もしくは鋼管端部の保護層のみを剥がした際に、残りの保護層の端部が防食層から浮くなどの問題が発生し易くなる。一方、上記ピール強度が15N/10cm幅を超えると、前述したように、現場での溶接施工時に防食層と保護層との剥離が困難になる、作業性が悪くなるなどの問題が発生し易くなる。以上の理由により、防食層と保護層との間のピール強度は、0.6N/10cm幅以上15N/10cm幅以下であることが好ましい。 The peel strength (peel strength) between the anticorrosive layer (polyethylene resin) and the protective layer (polypropylene resin) is preferably 0.6 N / 10 cm width or more and 15 N / 10 cm width or less, particularly 0.6 N / 10 cm width to 10 N / 10 cm width is more preferable. The peel strength is a peel strength measured based on a peel strength test described later. If the peel strength is less than 0.6 N / 10 cm width, the protective layer may be peeled off just by making a slit in the protective layer in order to remove the protective layer from the anticorrosive layer, or only the protective layer at the end of the steel pipe When peeling off, problems such as the end of the remaining protective layer floating from the anticorrosive layer are likely to occur. On the other hand, when the peel strength exceeds 15 N / 10 cm width, as described above, it is difficult to peel off the anticorrosion layer and the protective layer during on-site welding, and problems such as poor workability are likely to occur. Become. For the above reasons, the peel strength between the anticorrosion layer and the protective layer is preferably 0.6 N / 10 cm width or more and 15 N / 10 cm width or less.
 次に、本発明の多重被覆鋼管を製造する方法について説明する。 Next, a method for producing the multi-coated steel pipe of the present invention will be described.
 (防食層および保護層の形成)
 本発明では、鋼管の外側に、ポリエチレン樹脂を被覆して防食層を形成し、該防食層の表面に、上記の如く所定の特性を有するポリプロピレン樹脂を被覆して保護層を形成する。
 防食層および保護層を形成するに際しては、連続ライン、例えば先に説明した図2に示すような多重被覆ラインで押出し被覆により形成する。図2の多重被覆ラインでは、基材である鋼管1をラインの上流側から搬送し、鋼管1を必要に応じて鋼管予熱装置10で予熱し、粘着剤塗布装置20で所定温度に加熱された粘着剤(図省略)を鋼管1の表面に塗布する。その後、防食層押出被覆機30で、溶融状態の防食層樹脂300を鋼管1の表面に押出被覆し、防食層冷却機31で冷却して防食層3を形成する。次いで、保護層押出被覆機40で、溶融状態の保護層樹脂400を防食層3の表面に押出被覆し、保護層冷却機41で表面を冷却して保護層4を形成する。
 本発明の多重被覆鋼管は、生産効率の観点から連続ラインで製造し、ライン速度を10~40m/min程度とすることが好ましい。
(Formation of anticorrosion layer and protective layer)
In the present invention, the outer surface of the steel pipe is coated with a polyethylene resin to form an anticorrosion layer, and the protective layer is formed on the surface of the anticorrosion layer by coating with the polypropylene resin having predetermined characteristics as described above.
When the anticorrosion layer and the protective layer are formed, they are formed by extrusion coating on a continuous line, for example, a multiple coating line as shown in FIG. In the multiple coating line of FIG. 2, the steel pipe 1 as a base material is conveyed from the upstream side of the line, the steel pipe 1 is preheated by the steel pipe preheating device 10 as necessary, and heated to a predetermined temperature by the adhesive application device 20. An adhesive (not shown) is applied to the surface of the steel pipe 1. Thereafter, the anticorrosive layer extrusion coating machine 30 is extrusion coated with the molten anticorrosion layer resin 300 on the surface of the steel pipe 1 and cooled by the anticorrosion layer cooler 31 to form the anticorrosion layer 3. Then, the protective layer resin 400 in a molten state is extrusion coated on the surface of the anticorrosion layer 3 by the protective layer extrusion coater 40, and the surface is cooled by the protective layer cooler 41 to form the protective layer 4.
The multi-coated steel pipe of the present invention is preferably manufactured from a continuous line from the viewpoint of production efficiency, and the line speed is preferably about 10 to 40 m / min.
 以上のような連続ラインを適用することにより、多重塗覆装鋼管の高速生産が可能となる。生産効率の観点から、ライン速度(鋼管1の搬送速度)は約10m/min以上とすることが好ましい。但し、ライン速度を高速化し過ぎると、所定の厚みの被覆層が形成できなくなるおそれがあるため、ライン速度は40m/min以下とすることが好ましい。さらに好ましくは、25m/min以下である。
 まず、基材となる鋼管の外表面にショットブラスト処理(shot blast treatment⇒abrasive blast cleaning)、従前公知の酸洗処理(pickling treatment)(塩酸水溶液(hydrochloric acid aqueous solution)や硫酸水溶液(sulfuric acid aqueous solution)、温度:室温~90℃)などの下地処理を行った後、図2に示すように必要に応じて高周波誘導加熱装置(high−frequency induction heater)などの鋼管予熱装置10により鋼管1を予熱し、粘着剤塗布装置(coating applicator of adhesive)20でゴム(rubber)、アスファルト(asphalt)、樹脂などを主体とする粘着剤(図省略)を鋼管1の表面に加熱塗布する。
By applying such a continuous line, high-speed production of multiple coated steel pipes becomes possible. From the viewpoint of production efficiency, the line speed (conveying speed of the steel pipe 1) is preferably about 10 m / min or more. However, if the line speed is increased too much, a coating layer having a predetermined thickness may not be formed. Therefore, the line speed is preferably 40 m / min or less. More preferably, it is 25 m / min or less.
First, shot blast treatment (absolute blast cleaning), pickling treatment (hydrochloric acid aqueous solution (hydrochloric acid aqueous solution or aqueous solution of sulfuric acid) solution), temperature: room temperature to 90 ° C.) and the like, and then, as shown in FIG. 2, the steel pipe 1 is removed by a steel pipe preheating device 10 such as a high-frequency induction heater as required. Pre-heated and applied with a coating applicator of adhesive 20, rubber, asphalt (a Phalt), heated coating adhesive mainly comprising a resin (Figure shown) on the surface of the steel tube 1.
 なお、上記鋼管の予熱温度は、その上層に塗布される粘着剤の塗布性、密着性確保の観点から40~80℃とすることが好ましい。また、粘着剤は、JIS G3469(2010)に規定されているゴム、アスファルト、樹脂などを主体としたものを用い、経済面・均一塗布性という観点から粘着剤層の厚さを0.1~1mm程度とすることが好ましい。 The preheating temperature of the steel pipe is preferably 40 to 80 ° C. from the viewpoint of ensuring the applicability and adhesion of the adhesive applied to the upper layer. The pressure-sensitive adhesive is mainly composed of rubber, asphalt, resin, etc. stipulated in JIS G3469 (2010). The thickness of the pressure-sensitive adhesive layer is 0.1 to from the viewpoint of economic and uniform application properties. It is preferably about 1 mm.
 続いて、溶融状態(230℃以上280℃以下程度)の前記ポリエチレン樹脂(防食層樹脂300)を、防食層押出被覆機30のクロスヘッドダイから円筒状に押出し、粘着剤層の外表面に被覆し、直ちに防食層冷却機31でポリエチレン樹脂の表面温度を40℃以上70℃以下まで冷却して防食層3を形成する。ライン速度を約10m/min以上に高速化する本発明においては、防食層冷却機31での冷却を、冷却効率の高い水冷とすることが好ましい。 Subsequently, the polyethylene resin (anticorrosion layer resin 300) in a molten state (about 230 ° C. or more and about 280 ° C. or less) is extruded into a cylindrical shape from the crosshead die of the anticorrosion layer extrusion coating machine 30 to coat the outer surface of the pressure-sensitive adhesive layer. Then, the surface temperature of the polyethylene resin is immediately cooled to 40 ° C. or more and 70 ° C. or less by the anticorrosion layer cooler 31 to form the anticorrosion layer 3. In the present invention in which the line speed is increased to about 10 m / min or more, the cooling by the anticorrosion layer cooler 31 is preferably water cooling with high cooling efficiency.
 防食層3を形成したのち、表面の温度が40℃以上70℃以下である防食層3の表面に、温度が260℃以上290℃以下の前記ポリプロピレン樹脂(保護層樹脂400)を、保護層押出被覆機40のクロスヘッドダイから円筒状に押出し、防食層3の外面に被覆し、保護層冷却機41でポリプロピレン樹脂の表面温度を153℃/sec以上450℃/sec以下の冷却速度で170℃以下になるまで冷却してポリプロピレン樹脂を固化し、保護層4を形成する。冷却効率の観点から、保護層冷却機41での冷却も水冷とすることが好ましい。 After forming the anticorrosion layer 3, the polypropylene resin (protective layer resin 400) having a temperature of 260 ° C. or more and 290 ° C. or less is applied to the surface of the anticorrosion layer 3 having a surface temperature of 40 ° C. or more and 70 ° C. or less. Extruded in a cylindrical shape from the crosshead die of the coating machine 40, coated on the outer surface of the anticorrosion layer 3, and the surface temperature of the polypropylene resin was 170 ° C at a cooling rate of 153 ° C / sec or more and 450 ° C / sec or less by the protective layer cooler 41. It cools until it becomes below, solidifies a polypropylene resin, and forms the protective layer 4. FIG. From the viewpoint of cooling efficiency, the cooling by the protective layer cooler 41 is also preferably water cooling.
 防食層冷却機31で冷却した後の防食層3の表面温度(ポリプロピレン樹脂(保護層樹脂400)を被覆する際の防食層の表面温度)が70℃を超えると、他の条件が本発明で規定する条件を満足する場合であっても、防食層3と保護層4との融着の問題が発生してしまう。一方、溶融状態のポリエチレン樹脂(防食層樹脂300)を粘着剤層の外表面に被覆し、図2に示すような冷却ゾーンで水冷して冷却する場合、ポリエチレン樹脂の表面温度は冷却ゾーンの長さとライン速度に依存するが、通常のライン設備で前述した厚みの防食層3を有する前述したサイズの鋼管を冷却した場合、約10m/min以上の高速のライン速度においては40℃未満にはならない。 When the surface temperature of the anticorrosion layer 3 after being cooled by the anticorrosion layer cooler 31 (surface temperature of the anticorrosion layer when coating the polypropylene resin (protective layer resin 400)) exceeds 70 ° C., other conditions are set in the present invention. Even when the specified conditions are satisfied, a problem of fusion between the anticorrosive layer 3 and the protective layer 4 occurs. On the other hand, when the outer surface of the pressure-sensitive adhesive layer is coated with a molten polyethylene resin (anticorrosion layer resin 300) and cooled by water cooling in a cooling zone as shown in FIG. 2, the surface temperature of the polyethylene resin is the length of the cooling zone. However, when a steel pipe of the above-mentioned size having the anti-corrosion layer 3 having the above-described thickness is cooled by a normal line facility, it does not become less than 40 ° C. at a high-speed line speed of about 10 m / min or more. .
 したがって、本発明では、鋼管の外側に被覆したポリエチレン樹脂(防食層樹脂300)の表面温度を40℃以上70℃以下まで冷却して前記防食層3を形成する。なお、鋼管の外側に被覆したポリエチレン樹脂(防食層樹脂300)を冷却するに際しては、例えば防食層冷却機31での冷却を水冷とし、ポリエチレン樹脂(防食層樹脂300)の表面に流布する水量を調整することで、ポリエチレン樹脂(防食層樹脂300)の表面温度を所望の範囲(40℃以上70℃以下)に冷却することができる。 Therefore, in the present invention, the anticorrosion layer 3 is formed by cooling the surface temperature of the polyethylene resin (anticorrosion layer resin 300) coated on the outside of the steel pipe to 40 ° C. or more and 70 ° C. or less. When cooling the polyethylene resin coated on the outside of the steel pipe (anticorrosion layer resin 300), for example, the cooling in the anticorrosion layer cooler 31 is water-cooled, and the amount of water distributed on the surface of the polyethylene resin (anticorrosion layer resin 300) is By adjusting, the surface temperature of the polyethylene resin (anticorrosion layer resin 300) can be cooled to a desired range (40 ° C. or more and 70 ° C. or less).
 また、表面の温度が40℃以上70℃以下である防食層3の表面に前記した所定の特性を有するポリプロピレン樹脂(保護層樹脂400)を保護層押出被覆機40により溶融押出す際、前記ポリプロピレン樹脂(保護層樹脂400)の温度が290℃を超えると、他の条件が本発明で規定する条件を満足する場合であっても防食層と保護層との融着の問題が発生してしまい、逆に260℃未満では浮きの問題が発生してしまう。したがって、本発明では、表面の温度が40℃以上70℃以下である防食層3の表面にポリプロピレン樹脂(保護層樹脂400)を被覆する際、ポリプロピレン樹脂(保護層樹脂400)の温度を260℃以上290℃以下にする。 In addition, when the surface of the anticorrosion layer 3 having a surface temperature of 40 ° C. or higher and 70 ° C. or lower is melt-extruded by the protective layer extrusion coating machine 40 with the above-described polypropylene resin having the predetermined characteristics (protective layer resin 400), the polypropylene When the temperature of the resin (protective layer resin 400) exceeds 290 ° C., the problem of fusion between the anticorrosive layer and the protective layer occurs even when other conditions satisfy the conditions specified in the present invention. On the contrary, if it is less than 260 ° C., the problem of floating occurs. Therefore, in the present invention, when the surface of the anticorrosion layer 3 having a surface temperature of 40 ° C. or higher and 70 ° C. or lower is coated with the polypropylene resin (protective layer resin 400), the temperature of the polypropylene resin (protective layer resin 400) is 260 ° C. Above 290 ° C.
 上記において、ポリプロピレン樹脂(保護層樹脂400)の被覆厚みは、0.8mm以上2.8mm以下とする。すなわち、保護層4の厚みを0.8mm以上2.8mm以下とすることで、保護層の耐疵付き性を確保するとともに、保護層4と防食層3との融着を抑制することができる。さらに好ましくは0.9mm以上1.8mm以下である。 In the above, the coating thickness of the polypropylene resin (protective layer resin 400) is 0.8 mm or more and 2.8 mm or less. That is, by setting the thickness of the protective layer 4 to 0.8 mm or more and 2.8 mm or less, it is possible to secure the scratch resistance of the protective layer and to suppress the fusion between the protective layer 4 and the anticorrosion layer 3. . More preferably, it is 0.9 mm or more and 1.8 mm or less.
 ポリプロピレン樹脂(保護層樹脂400)を防食層3の外面に被覆したのち保護層冷却機41でポリプロピレン樹脂(保護層樹脂400)を冷却して保護層4を形成するに際し、ポリプロピレン樹脂(保護層樹脂400)の表面温度の冷却速度が450℃/secを超えると、他の条件が本発明で規定する条件を満足する場合であっても、防食層と保護層との浮きの問題が発生してしまい、153℃/sec未満にすると逆に融着の問題が発生してしまう。 When the protective layer 4 is formed by cooling the polypropylene resin (protective layer resin 400) with the protective layer cooler 41 after coating the outer surface of the anticorrosive layer 3 with the polypropylene resin (protective layer resin 400), the polypropylene resin (protective layer resin) 400) When the cooling rate of the surface temperature exceeds 450 ° C./sec, even if other conditions satisfy the conditions specified in the present invention, a problem of floating between the anticorrosive layer and the protective layer occurs. Therefore, if the temperature is less than 153 ° C./sec, the problem of fusion occurs.
 上記の如く浮きや融着の問題が発生する理由としては、防食層(ポリエチレン樹脂層)の上に溶融した保護層樹脂(ポリプロピレン樹脂)を被覆する際、それらの間の界面の温度が速く冷えれば2層間での融着はより起こらなくなるので剥離し易くなり、逆に界面の温度の低下が遅くなれば2層間での融着はより起こり易くなるので剥離し難くなるためであると推測される。また、防食層(ポリエチレン樹脂層)と保護層樹脂(ポリプロピレン樹脂)の間の界面の冷却速度を制御することで、前記した浮きや融着が抑制可能であると推測される。しかし、実製造上は、防食層(ポリエチレン樹脂層)と保護層樹脂(ポリプロピレン樹脂)の間の界面の冷却速度を制御することは非常に困難である。 The reason why the problem of floating or fusion occurs as described above is that when the molten protective layer resin (polypropylene resin) is coated on the anticorrosive layer (polyethylene resin layer), the temperature of the interface between them quickly cools down. This is because the fusion between the two layers is less likely to occur and the separation is easy, and conversely, if the decrease in the interface temperature is slow, the fusion between the two layers is more likely to occur and the separation is difficult. Is done. Moreover, it is estimated that the above-mentioned float and fusion | bonding can be suppressed by controlling the cooling rate of the interface between a corrosion prevention layer (polyethylene resin layer) and protective layer resin (polypropylene resin). However, in actual production, it is very difficult to control the cooling rate at the interface between the anticorrosion layer (polyethylene resin layer) and the protective layer resin (polypropylene resin).
 そこで、本発明者らは、上記界面の冷却速度に代えて保護層樹脂(ポリプロピレン樹脂)の表面の温度の冷却速度を制御することで、浮きや融着を抑制することを試みた。その結果、保護層樹脂(ポリプロピレン樹脂)の厚みが本発明で規定した範囲内(0.8mm以上2.8mm以下)であれば、保護層樹脂(ポリプロピレン樹脂)の表面の温度を上記した冷却速度で冷却することが、浮きや融着の抑制に極めて効果的であることを見出した。以上の理由により、本発明では、防食層の外面に260℃以上290℃以下のポリプロピレン樹脂を被覆したのち、ポリプロピレン樹脂の表面温度を153℃/sec以上450℃/sec以下の冷却速度で冷却する。 Therefore, the present inventors tried to suppress floating and fusion by controlling the cooling rate of the surface temperature of the protective layer resin (polypropylene resin) instead of the cooling rate of the interface. As a result, if the thickness of the protective layer resin (polypropylene resin) is within the range specified in the present invention (0.8 mm or more and 2.8 mm or less), the cooling rate is set at the surface temperature of the protective layer resin (polypropylene resin). It has been found that cooling at a temperature is extremely effective in suppressing floating and fusion. For the above reasons, in the present invention, the outer surface of the anticorrosion layer is coated with a polypropylene resin at 260 ° C. or more and 290 ° C. or less, and then the surface temperature of the polypropylene resin is cooled at a cooling rate of 153 ° C./sec or more and 450 ° C./sec or less. .
 また、ポリプロピレン樹脂の表面温度を153℃/sec以上450℃/sec以下の冷却速度で冷却するに際し、冷却停止温度がポリプロピレン樹脂の表面温度で170℃超であると、保護層樹脂(ポリプロピレン樹脂)と防食層樹脂(ポリエチレン樹脂)との融着の問題が生じる。したがって、本発明では、ポリプロピレン樹脂の表面温度を、153℃/sec以上450℃/sec以下の冷却速度で170℃以下に冷却してポリプロピレン樹脂を固化し、保護層4を形成する。 Further, when the surface temperature of the polypropylene resin is cooled at a cooling rate of 153 ° C./sec or more and 450 ° C./sec or less, if the cooling stop temperature is more than 170 ° C. as the surface temperature of the polypropylene resin, the protective layer resin (polypropylene resin) There arises a problem of fusion between the resin and the anticorrosion layer resin (polyethylene resin). Therefore, in the present invention, the surface temperature of the polypropylene resin is cooled to 170 ° C. or less at a cooling rate of 153 ° C./sec or more and 450 ° C./sec or less to solidify the polypropylene resin, thereby forming the protective layer 4.
 上記した条件で、防食層とその上層としての保護層を被覆することにより、ライン速度を高速化して製造した場合であっても、保護層樹脂の押出し性に優れ、且つ防食層と保護層との適度な密着性と剥離性を有し、溶接施工時、防食層と保護層との間の浮きも抑制され、更に耐疵付き性が良好でありかつウエルド強度にも優れた保護層を具えた多重塗覆装鋼管を、容易にしかも安価に製造することができる。また、上記した条件で、防食層とその上層としての保護層を被覆することにより、防食層と保護層との間のピール強度を0.6N/10cm幅以上15N/10cm幅以下、或いは更に1.0N/10cm幅以上10N/10cm幅以下とすることができる。 Even if the anticorrosion layer and the protective layer as an upper layer thereof are coated under the above-described conditions, even when the line speed is increased, the protective layer resin has excellent extrudability, and the anticorrosion layer and the protective layer It has moderate adhesion and peelability, suppresses floating between the anticorrosion layer and the protective layer during welding, and also has a protective layer with good anti-wetting and excellent weld strength. Multiple coated steel pipes can be manufactured easily and inexpensively. In addition, by covering the anticorrosion layer and the protective layer as an upper layer under the above-described conditions, the peel strength between the anticorrosion layer and the protective layer is 0.6 N / 10 cm width to 15 N / 10 cm width, or 1 It is possible to set the width between 0.0 N / 10 cm width and 10 N / 10 cm width.
 防食層(ポリエチレン樹脂)と保護層(ポリプロピレン樹脂)との間のピール強度(剥離強度)が0.6N/10cm幅未満であると、防食層から保護層を除去するために保護層にスリットを入れただけで保護層が剥離してしまう、もしくは鋼管端部の保護層のみを剥がした際に、残りの保護層の端部が防食層から浮くなどの問題が発生し易くなる。一方、上記ピール強度が15N/10cm幅を超えると、前述したように、現場での溶接施工時に防食層と保護層との剥離が困難になる、作業性が悪くなるなどの問題が発生し易くなる。 If the peel strength (peel strength) between the anticorrosive layer (polyethylene resin) and the protective layer (polypropylene resin) is less than 0.6 N / 10 cm width, a slit is formed in the protective layer in order to remove the protective layer from the anticorrosive layer. When the protective layer is peeled off just by inserting, or when only the protective layer at the end of the steel pipe is peeled off, problems such as the end of the remaining protective layer floating from the anticorrosive layer easily occur. On the other hand, when the peel strength exceeds 15 N / 10 cm width, as described above, it is difficult to peel off the anticorrosion layer and the protective layer during on-site welding, and problems such as poor workability are likely to occur. Become.
 以上の理由により、防食層(ポリエチレン樹脂)と保護層(ポリプロピレン樹脂)との間のピール強度(剥離強度)は、0.6N/10cm幅以上15N/10cm幅以下であることが好ましく、特に、1.0N/10cm幅以上10N/10cm幅以下がより好ましい。本発明によると、防食層と保護層との間のピール強度を0.6N/10cm幅以上15N/10cm幅以下である多重塗覆装鋼管が得られるため、上記した作業性等の問題を解消するうえで極めて効果的である。なお、上記ピール強度は、後述するピール強度試験に準拠して測定されたピール強度である。 For the above reasons, the peel strength (peel strength) between the anticorrosive layer (polyethylene resin) and the protective layer (polypropylene resin) is preferably 0.6 N / 10 cm width or more and 15 N / 10 cm width or less. It is more preferably 1.0 N / 10 cm width or more and 10 N / 10 cm width or less. According to the present invention, a multi-coated steel pipe having a peel strength between the anticorrosion layer and the protective layer of 0.6 N / 10 cm width or more and 15 N / 10 cm width or less can be obtained, thus eliminating the problems such as workability described above. It is extremely effective in doing so. In addition, the said peel strength is the peel strength measured based on the peel strength test mentioned later.
 上述の本発明範囲において多重塗覆装鋼管を製造するに際し、防食層と保護層との間のピール強度を1.0N/10cm幅以上10N/10cm幅以下とするうえでは、前記ポリプロピレン樹脂を被覆する際の延伸倍率(draw ratio)(被覆形成後長さ/押出し時長さ)が5倍以上10倍以下の範囲になるようにポリプロピレン樹脂を被覆することが好ましい。 In producing the multi-coated steel pipe in the above-mentioned scope of the present invention, the polypropylene resin is coated to make the peel strength between the anticorrosive layer and the protective layer 1.0 N / 10 cm width or more and 10 N / 10 cm width or less. It is preferable to coat the polypropylene resin so that the draw ratio (length after coating formation / length during extrusion) is in the range of 5 to 10 times.
 通常、保護層は押出し機より溶融した状態で円筒状に押出され、それが鋼管進行方向(鋼管軸方向)に引き伸ばされながら鋼管外面の防食層外面に被覆され、その状態で冷却固化される。延伸倍率は、押出し機より吐出された保護層樹脂がどの程度引き伸ばされて鋼管外面に被覆されるかを表し、「被覆形成後長さ」を「押出し時長さ」で除算することによって求められる。 Usually, the protective layer is extruded in a cylindrical shape in a molten state from the extruder, and is coated on the outer surface of the anticorrosive layer on the outer surface of the steel pipe while being stretched in the steel pipe traveling direction (steel pipe axis direction), and is cooled and solidified in that state. The draw ratio indicates how much the protective layer resin discharged from the extruder is stretched and coated on the outer surface of the steel pipe, and is obtained by dividing the “length after coating formation” by the “length during extrusion”. .
 ここで、「押出し時長さ」は、押出された溶融樹脂が円筒体だったと仮定し、押出し機より吐出された溶融樹脂の時間当たりの吐出重量と、樹脂の密度と、押出し機のダイス吐出面における樹脂の断面積より、時間当たり押出された円筒の長さを算出して求める。また、「被覆形成後長さ」は、時間当たりの鋼管の進行速度(被覆速度、すなわちライン速度)に当たる。 Here, “extruded length” is assumed that the extruded molten resin was a cylindrical body, the discharge weight per hour of the molten resin discharged from the extruder, the density of the resin, and the die discharge of the extruder The length of the extruded cylinder per hour is calculated from the cross-sectional area of the resin on the surface. Further, the “length after coating formation” corresponds to the traveling speed of the steel pipe per hour (coating speed, that is, line speed).
 この延伸倍率が10倍を超えると、防食層と保護層との間のピール強度が低くなる傾向があり、延伸倍率が10倍を大幅に超えると浮きなどの問題が発生する場合がある。5倍未満になると、被覆にたるみ等の問題が発生する場合がある。また、通常の押出し機を使用する限り、本発明に規定した鋼管の被覆を上述の速度(約10m/min以上)で行なう場合には、樹脂吐出量とライン速度(被覆速度)の関係上、延伸倍率が5倍未満にはならない。 When the draw ratio exceeds 10 times, the peel strength between the anticorrosion layer and the protective layer tends to be low, and when the draw ratio is significantly greater than 10 times, problems such as floating may occur. If it is less than 5 times, problems such as sagging may occur in the coating. In addition, as long as a normal extruder is used, when the steel pipe specified in the present invention is coated at the above speed (about 10 m / min or more), the relationship between the resin discharge amount and the line speed (coating speed), The draw ratio is not less than 5 times.
 以上のように、基材となる鋼管が大径である場合や高速のライン速度である場合、保護層被覆時の防食層表面が高温状態となり易い。そのため、保護層樹脂としてのポリプロピレン樹脂や樹脂の被覆条件を本発明範囲外のものにした場合には防食層と保護層との融着が著しく、防食層−保護層間で適度な剥離性および密着性を有する多重塗覆装鋼管を得ることができない。これに対し、保護層樹脂として所定のポリプロピレン樹脂を用い、樹脂の被覆条件を規定した本発明によると、たとえ上記の如く保護層被覆時の防食層表面が70℃となる高温状態となる場合であっても、防食層と保護層との融着が極めて効果的に制御される。そのため、本発明によると、防食層−保護層間で適度な剥離性および密着性を有する多重塗覆装鋼管を得ることができる。 As described above, when the steel pipe serving as the base material has a large diameter or a high line speed, the surface of the anticorrosion layer when the protective layer is coated tends to be in a high temperature state. Therefore, when the coating condition of the polypropylene resin as the protective layer resin or the resin is outside the scope of the present invention, the anticorrosion layer and the protective layer are extremely fused, and appropriate peelability and adhesion between the anticorrosive layer and the protective layer. It is not possible to obtain a multi-coated steel pipe having the properties. On the other hand, according to the present invention in which a predetermined polypropylene resin is used as the protective layer resin and the coating conditions of the resin are defined, the surface of the anticorrosion layer when the protective layer is coated becomes a high temperature state of 70 ° C. as described above. Even if it exists, the fusion | melting of a corrosion prevention layer and a protective layer is controlled very effectively. Therefore, according to the present invention, it is possible to obtain a multi-coated steel pipe having moderate peelability and adhesion between the anticorrosive layer and the protective layer.
 また、本発明によると、保護層樹脂として所定のポリプロピレン樹脂を用いることにより、所望の耐疵付き性を確保し得る十分な硬さを有する保護層であって、ポリプロピレン樹脂のウエルド強度にも優れた保護層を備えた多重塗覆装鋼管とすることができる。更に、本発明で用いる所定のポリプロピレン樹脂は、ライン速度を高速化した場合であっても優れた押出し性を示すため、本発明によると、高品質の多重塗覆装鋼管を、高効率かつ安定的に生産することが可能となる。 In addition, according to the present invention, a protective layer having a sufficient hardness capable of ensuring a desired scratch resistance by using a predetermined polypropylene resin as the protective layer resin, and having excellent weld strength of the polypropylene resin A multi-coated steel pipe with a protective layer. Furthermore, since the predetermined polypropylene resin used in the present invention exhibits excellent extrudability even when the line speed is increased, according to the present invention, a high-quality multi-coated steel pipe can be made highly efficient and stable. Production is possible.
 なお、本発明は、ライン速度を低速化した場合にも適用することができる。生産性の観点からは不利であるが、何らかの理由でライン速度を10m/minよりも遅くする場合も想定される。このように、ライン速度を低速化すれば、保護層を被覆する時点での防食層の表面温度は低下し、溶融状態の防食層樹脂および保護層樹脂の温度も低下する。しかし、このような場合であっても、本発明では、水冷をする距離を短くする、水量を低減する、あるいは押出し被覆機の温度設定を変更することで、溶融状態の防食層樹脂および保護層樹脂の温度を高ライン速度の場合と同様の温度にすることができる。すなわち、従来技術ではライン速度の高速化に対応することが極めて困難であったが、本発明は、ライン速度が高速・低速の何れであっても適用することができる。 It should be noted that the present invention can also be applied when the line speed is reduced. Although it is disadvantageous from the viewpoint of productivity, it is assumed that the line speed is made slower than 10 m / min for some reason. Thus, if the line speed is reduced, the surface temperature of the anticorrosion layer at the time of covering the protective layer decreases, and the temperatures of the molten anticorrosion layer resin and the protective layer resin also decrease. However, even in such a case, in the present invention, the water-cooling distance is shortened, the amount of water is reduced, or the temperature setting of the extrusion coating machine is changed, so that the molten anticorrosion layer resin and the protective layer The temperature of the resin can be the same as that at the high line speed. That is, although it has been extremely difficult to cope with an increase in line speed in the prior art, the present invention can be applied regardless of whether the line speed is high or low.
 JIS G 3452(2010)に規定された、表1に示す呼び径のSGP鋼管を基材とし、基材の外表面に、ブラスト処理を施したのち、図2に示すような連続ラインで多重被覆鋼管を製造した。
 ブラスト処理後の鋼管を50℃に予熱し、JIS G3469(2010)に規定された粘着剤を塗布したのち(粘着剤層の厚さ:0.3mm)、密度:950kg/m、ビカット軟化温度:121℃、引張強さ:41N/mm(41MPa)、引張破壊ひずみ:600%である市販の高密度ポリエチレン樹脂、または密度:920kg/m、ビカット軟化温度:110℃、引張強さ:20N/mm(20MPa)、引張破壊ひずみ:1000%である市販の低密度ポリエチレン樹脂(low−density polyethylene resin)を押出し被覆機にて溶融し、クロスヘッドダイより粘着剤外表面に円筒状に押出し、鋼管に防食層を被覆した。被覆後、得られたポリエチレン層(防食層)を直ちに水冷し、表1に示す厚さの防食層を得た。
 なお、上記の密度、ビカット軟化温度、引張強さ、引張破壊ひずみは、いずれもJIS G 3469(2010)の規定に従い測定したものである。
The SGP steel pipe with the nominal diameter shown in Table 1 specified in JIS G 3452 (2010) is used as the base material, and the outer surface of the base material is subjected to blasting and then multiple coatings in a continuous line as shown in FIG. A steel pipe was manufactured.
The steel pipe after blasting is preheated to 50 ° C., and after applying an adhesive specified in JIS G3469 (2010) (adhesive layer thickness: 0.3 mm), density: 950 kg / m 3 , Vicat softening temperature : 121 ° C., tensile strength: 41 N / mm 2 (41 MPa), tensile fracture strain: 600% commercially available high density polyethylene resin, or density: 920 kg / m 3 , Vicat softening temperature: 110 ° C., tensile strength: 20 N / mm 2 (20 MPa), tensile fracture strain: 1000% commercially available low-density polyethylene resin is melted in an extrusion coating machine, and is cylindrically formed on the outer surface of the adhesive from the crosshead die. The steel tube was extruded and coated with a corrosion protection layer. After coating, the obtained polyethylene layer (anticorrosion layer) was immediately cooled with water to obtain an anticorrosion layer having a thickness shown in Table 1.
The above-mentioned density, Vicat softening temperature, tensile strength, and tensile fracture strain are all measured in accordance with JIS G 3469 (2010).
 次いで、表1に示す物性を有する市販のポリプロピレン樹脂を押出し被覆機にて溶融し、クロスヘッドダイより上記ポリエチレン層(防食層)の外面に、表1に示す条件で押出し被覆し、得られたポリプロピレン樹脂層(保護層)を直ちに水冷することにより、表1に示す厚さの保護層を得て、多重被覆鋼管とした。なお、表1に示す防食層および保護層の厚さは、多重被覆鋼管の管軸方向に垂直な断面について、円周方向の8箇所で測定した範囲(最大値と最小値)の値である。 Next, a commercially available polypropylene resin having the physical properties shown in Table 1 was melted by an extrusion coating machine, and the outer surface of the polyethylene layer (anticorrosion layer) was extrusion coated from the crosshead die under the conditions shown in Table 1. The polypropylene resin layer (protective layer) was immediately water-cooled to obtain a protective layer having a thickness shown in Table 1 to obtain a multi-coated steel pipe. In addition, the thickness of the anticorrosion layer and the protective layer shown in Table 1 is a value in a range (maximum value and minimum value) measured at eight locations in the circumferential direction with respect to a cross section perpendicular to the tube axis direction of the multi-coated steel pipe. .
 また、表1に示すポリプロピレン樹脂のメルトフローレイトは、JIS K6921−2(2010)に規定されたメルトマスフローレイト(MFR)であり、JIS K7210(1999)に規定される方法にて測定した。280℃における剪断粘度は、JIS K7199(1999)に規定されるキャピラリーレオメータ(毛細管形レオメーターと呼ばれることもある)で測定したものであり、キャピラリー管の内径D、長さLが、L/D=10/1の条件で測定した値である。密度は、JIS K7112(1999)に規定される方法で測定した。なお、これらの値は、鋼管に被覆する前の樹脂について測定した値であるが、製造された多重被覆鋼管の保護層の部分からポリプロピレン樹脂を切り出して測定した値と同じであった。 Further, the melt flow rate of the polypropylene resin shown in Table 1 is a melt mass flow rate (MFR) defined in JIS K6921-2 (2010), and was measured by a method defined in JIS K7210 (1999). The shear viscosity at 280 ° C. was measured with a capillary rheometer (sometimes called a capillary-type rheometer) specified in JIS K7199 (1999). This is a value measured under the condition of 10/1. The density was measured by the method prescribed in JIS K7112 (1999). In addition, although these values are the values measured for the resin before coating the steel pipe, they were the same as the values measured by cutting out the polypropylene resin from the protective layer portion of the manufactured multi-coated steel pipe.
以上によって得られた多重被覆鋼管について、防食層(ポリエチレン樹脂)と保護層(ポリプロピレン樹脂)の密着性および剥離性、耐浮き性(resistance to loss of adhesion)、並びに保護層(ポリプロピレン樹脂)の硬さ、ウエルド強度を評価した。各々の評価方法は以下のとおりである。 With respect to the multi-coated steel pipe obtained as described above, the adhesion and peelability of the anticorrosion layer (polyethylene resin) and the protective layer (polypropylene resin), resistance to loss of adhesion, and the hardness of the protective layer (polypropylene resin). The weld strength was evaluated. Each evaluation method is as follows.
(i)密着性および剥離性
 得られた各種の多重被覆鋼管を、50cm長さに切断し、両管端から20cmの位置における保護層に管周状にスリット(切れ目)を入れ、更に、前記2つのスリットで挟まれた長さ10cmの保護層において管軸方向にスリットを入れ、前記2つのスリットで挟まれた長さ10cmの保護層のみを剥がせるようにした。次いで、図4に示すように、この長さ10cmの保護層を180°方向に50mm/minの速度で半周剥離することで180°ピール強度を測定した。その際、測定された180°ピール強度の最大値が0.6N/10cm幅以上10N/10cm幅以下のものを密着性および剥離性が非常に良好(◎)、ピール強度が10N/10cm幅超え15N/10cm幅以下のものを密着性および剥離性が良好(○)、これ以外(0.6N/10cm幅未満、または15N/10cm幅超)のものを密着性および剥離性不良(×)とした。
(I) Adhesiveness and peelability Various multi-coated steel pipes obtained were cut to a length of 50 cm, slits (cuts) were put in the protective layer at a position 20 cm from both pipe ends, and further, In the protective layer having a length of 10 cm sandwiched between the two slits, a slit was formed in the tube axis direction so that only the protective layer having a length of 10 cm sandwiched between the two slits could be peeled off. Next, as shown in FIG. 4, the 180 ° peel strength was measured by peeling off the protective layer having a length of 10 cm in the 180 ° direction at a rate of 50 mm / min. At that time, the maximum 180 ° peel strength measured was 0.6 N / 10 cm width to 10 N / 10 cm width and the adhesion and peelability were very good (◎), and the peel strength exceeded 10 N / 10 cm width. Adhesiveness and releasability are good for those having a width of 15 N / 10 cm or less (O), and other than this (less than 0.6 N / 10 cm width or more than 15 N / 10 cm width) are poor adhesion and releasability (×). did.
(ii)耐浮き性
 図4に示すように、上記した10cmの保護層を剥離して取り去ったのち、鋼管に残った保護層のスリット部分を目視により観察し、浮きが観察されなかったものを耐浮き性良好(○)、浮きが観察されたものを耐浮き性不良(×)とした。
(Ii) Float resistance As shown in FIG. 4, after peeling off the 10 cm protective layer described above, the slit portion of the protective layer remaining on the steel pipe was visually observed, and no float was observed. Good floating resistance (◯) and those in which floating was observed were defined as poor floating resistance (×).
(iii)保護層(ポリプロピレン樹脂)の硬さ
 保護層の硬さを、ASTM D2240(D型)に規定された試験方法に準拠して、デュロメータ(durometer)硬さタイプDを測定し、70以上であるものを合格(○)、70未満であるものを不合格(×)とした。
(Iii) Hardness of protective layer (polypropylene resin) The hardness of the protective layer is measured in accordance with ASTM D2240 (D type) according to the test method defined by Durometer hardness type D, 70 or more And those that were less than 70 were rejected (x).
(iv)保護層(ポリプロピレン樹脂)のウエルド強度
 得られた鋼管(保護層を剥離する前)の保護層のウエルド部にデュポン衝撃試験機の要領で衝撃を加えた。25mmφの鋼球を撃芯として持つ1kgの錘を衝撃面の上500mmより自由落下させ、ウエルド部に衝撃を与えた。これを100回繰り返した後、鋼の露出がないかをホリデーディテクター(holiday detector)(ピンホール試験機(pinhole testing machine)12kVで確認した。鋼の露出がなかったものを保護層のウエルド強度良好(○)、鋼管露出が検出されたものを保護層のウエルド強度不良(×)とした。
 これらの評価結果を表2に示す。
(Iv) Weld strength of protective layer (polypropylene resin) Impact was applied to the weld portion of the protective layer of the obtained steel pipe (before the protective layer was peeled off) in the manner of a DuPont impact tester. A 1 kg weight having a steel ball of 25 mmφ as a hitting core was freely dropped from 500 mm above the impact surface, and the weld was impacted. After repeating this 100 times, whether or not the steel was exposed was confirmed with a holiday detector (pinhole testing machine) of 12 kV. The weld strength of the protective layer was good when the steel was not exposed. (◯), the case where the steel pipe exposure was detected was regarded as poor weld strength (x) of the protective layer.
These evaluation results are shown in Table 2.
 表2に示すように、本発明例は、密着性および剥離性、耐浮き性、保護層(ポリプロピレン樹脂)の硬さ、および保護層(ポリプロピレン樹脂)のウエルド強度がいずれも良好であった。これに対し、比較例は、いずれも良好な密着性および剥離性が得られなかった。更に、比較例のうち鋼管No.8,9は、ポリプロピレン樹脂のエチレン成分が23モル%を超えているため、保護層(ポリプロピレン樹脂)の硬さが不十分となった。 As shown in Table 2, the examples of the present invention had good adhesion and peelability, float resistance, hardness of the protective layer (polypropylene resin), and weld strength of the protective layer (polypropylene resin). On the other hand, none of the comparative examples had good adhesion and peelability. Further, among the comparative examples, the steel pipe No. In Nos. 8 and 9, since the ethylene component of the polypropylene resin exceeded 23 mol%, the hardness of the protective layer (polypropylene resin) was insufficient.
 JIS G 3452(2010)に規定された、表3−1~表3−3に示す呼び径のSGP鋼管を基材とし、基材の外表面に、ブラスト処理を施したのち、図2に示すような連続ラインにより、表3−1~表3−3に示すライン速度で多重塗覆装鋼管を製造した。
 ブラスト処理後の鋼管を50℃に予熱し、JIS G3469(2010)に規定された粘着剤を塗布したのち(粘着剤層の厚さ:0.3mm)、密度:950kg/m、ビカット軟化温度:121℃、引張強さ:41N/mm(41MPa)、引張破壊ひずみ:600%である市販の高密度ポリエチレン樹脂を押出し被覆機にて溶融し、クロスヘッドダイより粘着剤外表面に円筒状に押出し、鋼管に防食層を被覆した。被覆後、得られたポリエチレン層(防食層)を直ちに水冷して該ポリエチレン層の表面温度を表3−1~表3−3に示す温度に冷却し、表3−1~表3−3に示す厚さの防食層を得た。
As shown in FIG. 2, an SGP steel pipe having a nominal diameter shown in Tables 3-1 to 3-3 defined in JIS G 3452 (2010) is used as a base material, and the outer surface of the base material is blasted. With such a continuous line, multiple coated steel pipes were manufactured at the line speeds shown in Tables 3-1 to 3-3.
The steel pipe after the blast treatment is preheated to 50 ° C., and after applying an adhesive specified in JIS G3469 (2010) (adhesive layer thickness: 0.3 mm), density: 950 kg / m 3 , Vicat softening temperature : 121 ° C, tensile strength: 41 N / mm 2 (41 MPa), tensile fracture strain: 600% commercially available high-density polyethylene resin is melted by an extrusion coating machine, and cylindrical on the outer surface of the adhesive from the crosshead die The steel tube was coated with a corrosion protection layer. After coating, the obtained polyethylene layer (anticorrosion layer) was immediately cooled with water to cool the surface temperature of the polyethylene layer to the temperatures shown in Tables 3-1 to 3-3. Tables 3-1 to 3-3 An anticorrosion layer having the thickness shown was obtained.
 なお、上記の密度、ビカット軟化温度、引張強さ、引張破壊ひずみは、いずれもJIS G 3469(2010)の規定に従い測定したものである。水冷後のポリエチレン層の表面温度(ポリプロピレン樹脂と接触する直前の表面温度)は、接触温度計で測定した。 The above-mentioned density, Vicat softening temperature, tensile strength, and tensile fracture strain are all measured in accordance with JIS G 3469 (2010). The surface temperature of the polyethylene layer after water cooling (surface temperature immediately before contacting with the polypropylene resin) was measured with a contact thermometer.
 次いで、表3−1~表3−3に示す物性を有する市販のポリプロピレン樹脂を押出し被覆機にて溶融し、クロスヘッドダイより上記ポリエチレン層(防食層)の外面に、表3−1~表3−3に示す温度のポリプロピレン樹脂を、表3−1~表3−3に示す延伸倍率で押出し被覆した。被覆後、得られたポリプロピレン樹脂層を、表1に示す冷却速度(ポリプロピレン樹脂層表面の冷却速度)で直ちに水冷し、ポリプロピレン樹脂層の表面温度が170℃以下になるまで冷却することにより、表3−1~表3−3に示す厚さの保護層を得て、多重塗覆装鋼管とした。 Next, commercially available polypropylene resins having the physical properties shown in Table 3-1 to Table 3-3 were melted by an extrusion coating machine, and the outer surface of the polyethylene layer (corrosion protection layer) was crossed from the crosshead die to Table 3-1 to Table 3-3. The polypropylene resin having the temperature shown in 3-3 was extrusion coated at the draw ratios shown in Tables 3-1 to 3-3. After coating, the obtained polypropylene resin layer was immediately cooled with water at the cooling rate shown in Table 1 (the cooling rate of the surface of the polypropylene resin layer), and cooled until the surface temperature of the polypropylene resin layer became 170 ° C. or less. A protective layer having a thickness shown in 3-1 to Table 3-3 was obtained to obtain a multi-coated steel pipe.
 ここで、表3−1~表3−3に示すポリプロピレン樹脂のメルトフローレイトは、JIS K6921−2(2010)に規定されたメルトマスフローレイト(MFR)であり、JIS K7210(1999)に規定される方法にて測定した。280℃における剪断粘度は、JIS K7199(1999)に規定されるキャピラリーレオメータ(毛細管形レオメーターと呼ばれることもある)で測定したものであり、キャピラリー管の内径D、長さLが、L/D=10/1の条件で測定した値である。密度は、JIS K7112(1999)に規定される方法で測定した。なお、これらの値は、鋼管に被覆する前の樹脂について測定した値であるが、製造された多重塗覆装鋼管の保護層の部分からポリプロピレン樹脂を切り出して測定した値と同じであった。 Here, the melt flow rate of the polypropylene resin shown in Table 3-1 to Table 3-3 is the melt mass flow rate (MFR) defined in JIS K6921-2 (2010), and is defined in JIS K7210 (1999). It was measured by the method. The shear viscosity at 280 ° C. was measured with a capillary rheometer (sometimes called a capillary-type rheometer) specified in JIS K7199 (1999). This is a value measured under the condition of 10/1. The density was measured by the method prescribed in JIS K7112 (1999). In addition, although these values are values measured for the resin before coating the steel pipe, they were the same as the values measured by cutting out the polypropylene resin from the protective layer portion of the manufactured multi-coated steel pipe.
 また、3−1~表3−3に示すポリプロピレン樹脂層(保護層)表面の冷却速度は、被覆した時点の温度(防食層と接触する直前のポリプロピレン樹脂の温度)から、ポリプロピレン樹脂層の表面温度が170℃になるまでの冷却速度である。上記冷却速度、および冷却時のポリプロピレン樹脂層の表面温度は、接触温度計により測定し、求めた。 The cooling rate of the surface of the polypropylene resin layer (protective layer) shown in 3-1 to Table 3-3 is determined from the temperature at the time of coating (the temperature of the polypropylene resin immediately before contacting the anticorrosive layer). The cooling rate until the temperature reaches 170 ° C. The cooling rate and the surface temperature of the polypropylene resin layer during cooling were determined by measuring with a contact thermometer.
 また、表3−1~表3−3に示すポリプロピレン樹脂の延伸倍率は上述の方法で求めた値である。表3−1~表3−3に示す防食層および保護層の厚さは、多重塗覆装鋼管の管軸方向に垂直な断面について、円周方向の8箇所で測定した範囲(最大値と最小値)の値である。 Further, the draw ratios of the polypropylene resins shown in Tables 3-1 to 3-3 are values obtained by the above method. The thickness of the anticorrosion layer and the protective layer shown in Table 3-1 to Table 3-3 is a range (maximum value and (Minimum value).
 以上によって得られた多重塗覆装鋼管について、防食層(ポリエチレン樹脂)と保護層(ポリプロピレン樹脂)の密着性および剥離性、耐浮き性、並びに保護層(ポリプロピレン樹脂)の硬さ、ウエルド強度を評価した。各々の評価方法は実施例と同様の方法で評価した。
 これらの評価結果を表4に示す。
For the multi-coated steel pipe obtained as described above, the adhesion and peelability of the anticorrosion layer (polyethylene resin) and the protective layer (polypropylene resin), the float resistance, and the hardness and weld strength of the protective layer (polypropylene resin). evaluated. Each evaluation method was evaluated in the same manner as in the examples.
These evaluation results are shown in Table 4.
 表4に示すように、本発明例は、密着性および剥離性、耐浮き性、保護層(ポリプロピレン樹脂)の硬さ、および保護層(ポリプロピレン樹脂)のウエルド強度がいずれも良好であった。これに対し、比較例は、いずれも良好な密着性および剥離性が得られなかった。更に、比較例のうち鋼管No.28,29は、ポリプロピレン樹脂のエチレン成分が23モル%を超えているため、保護層(ポリプロピレン樹脂)の硬さが不十分となった。 As shown in Table 4, the examples of the present invention had good adhesion and peelability, float resistance, hardness of the protective layer (polypropylene resin), and weld strength of the protective layer (polypropylene resin). On the other hand, none of the comparative examples had good adhesion and peelability. Further, among the comparative examples, the steel pipe No. In Nos. 28 and 29, since the ethylene component of the polypropylene resin exceeded 23 mol%, the hardness of the protective layer (polypropylene resin) was insufficient.
   1 … 鋼管
   2 … 粘着剤層
   3 … 防食層(ポリエチレン樹脂層)
   4 … 保護層(ポリプロピレン樹脂層)
   5 … 切れ目(スリット)
   6 … 隙間(浮き)
  10 … 鋼管予熱装置
  20 … 粘着剤塗布装置
  30 … 防食層押出被覆機
  31 … 防食層冷却機
  40 … 保護層押出被覆機
  41 … 保護層冷却機
 300 … 防食層樹脂(ポリエチレン樹脂)
 400 … 保護層樹脂(ポリプロピレン樹脂)
DESCRIPTION OF SYMBOLS 1 ... Steel pipe 2 ... Adhesive layer 3 ... Anticorrosion layer (polyethylene resin layer)
4 ... Protective layer (polypropylene resin layer)
5 ... Cut (slit)
6 ... Clearance (floating)
DESCRIPTION OF SYMBOLS 10 ... Steel pipe preheating apparatus 20 ... Adhesive coating apparatus 30 ... Anticorrosion layer extrusion coating machine 31 ... Anticorrosion layer cooling machine 40 ... Protection layer extrusion coating machine 41 ... Protection layer cooling machine 300 ... Anticorrosion layer resin (polyethylene resin)
400 ... Protective layer resin (polypropylene resin)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006

Claims (4)

  1.  基材である鋼管の外側に、ポリエチレン樹脂層からなる防食層と、該防食層の上層としてポリプロピレン樹脂層からなる保護層が被覆された多重被覆鋼管であって、前記保護層を形成するポリプロピレン樹脂がエチレン成分19~23モル%を含む共重合樹脂であり、前記ポリプロピレン樹脂のメルトフローレイトが0.53~0.60g/10minであり、前記ポリプロピレン樹脂の280℃における剪断粘度が、剪断速度10/secで測定したとき1.7×10~2.0×10Pa・sであり、剪断速度100/secで測定したとき5.3×10~6.0×10Pa・sである多重被覆鋼管。 A multi-coated steel pipe in which a corrosion prevention layer made of a polyethylene resin layer and a protection layer made of a polypropylene resin layer as an upper layer of the corrosion prevention layer are coated on the outside of a steel pipe as a base material, and the polypropylene resin forming the protection layer Is a copolymer resin containing 19 to 23 mol% of an ethylene component, the melt flow rate of the polypropylene resin is 0.53 to 0.60 g / 10 min, and the shear viscosity of the polypropylene resin at 280 ° C. is a shear rate of 10 1.7 × 10 3 to 2.0 × 10 3 Pa · s when measured at / sec, and 5.3 × 10 2 to 6.0 × 10 2 Pa · s when measured at a shear rate of 100 / sec. Is a multi-coated steel pipe.
  2.  前記防食層と前記保護層との間のピール強度が0.6N/10cm幅以上15N/10cm幅以下である請求項1に記載の多重被覆鋼管。 The multi-coated steel pipe according to claim 1, wherein a peel strength between the anticorrosion layer and the protective layer is 0.6 N / 10 cm width or more and 15 N / 10 cm width or less.
  3.  基材である鋼管の外側に、ポリエチレン樹脂層からなる防食層と、該防食層の上層としてポリプロピレン樹脂層からなる保護層が被覆された多重塗覆装鋼管を製造するに際し、
     前記鋼管の外側に、ポリエチレン樹脂を被覆したのち、該ポリエチレン樹脂の表面温度を40℃以上70℃以下まで冷却して前記防食層を形成し、
     次いで、該防食層の表面に、エチレン成分19モル%以上23モル%以下を含む共重合樹脂であり、メルトフローレイトが0.53g/10min以上0.60g/10min以下であり、280℃における剪断粘度が、剪断速度10/secで測定したとき1.7×10Pa・s以上2.0×10Pa・s以下であり、剪断速度100/secで測定したとき5.3×10Pa・s以上6.0×10Pa・s以下であるポリプロピレン樹脂を使用し、該ポリプロピレン樹脂の温度を260℃以上290℃以下として被覆厚みが0.9mm以上1.8mm以下になるように被覆し、153℃/sec以上450℃/sec以下の冷却速度で前記ポリプロピレン樹脂の表面温度を170℃以下になるまで冷却して前記保護層を形成する多重塗覆装鋼管の製造方法。
    When manufacturing a multi-coated steel pipe coated with a protective layer made of a polypropylene resin layer as an upper layer of the anticorrosion layer and a corrosion prevention layer made of a polyethylene resin layer on the outside of the steel pipe as a base material,
    After coating the outside of the steel pipe with a polyethylene resin, the surface temperature of the polyethylene resin is cooled to 40 ° C. or more and 70 ° C. or less to form the anticorrosion layer,
    Next, it is a copolymer resin containing 19 mol% or more and 23 mol% or less of an ethylene component on the surface of the anticorrosion layer, the melt flow rate is 0.53 g / 10 min or more and 0.60 g / 10 min or less, and shearing at 280 ° C. The viscosity is 1.7 × 10 3 Pa · s or more and 2.0 × 10 3 Pa · s or less when measured at a shear rate of 10 / sec, and 5.3 × 10 2 when measured at a shear rate of 100 / sec. A polypropylene resin having a Pa · s of 6.0 × 10 2 Pa · s or less is used, and the temperature of the polypropylene resin is 260 ° C. or more and 290 ° C. or less so that the coating thickness is 0.9 mm or more and 1.8 mm or less. The protective layer is formed by coating and cooling at a cooling rate of 153 ° C./sec or more and 450 ° C./sec or less until the surface temperature of the polypropylene resin becomes 170 ° C. or less. A method for manufacturing a multi-coated steel pipe.
  4.  前記ポリプロピレン樹脂を被覆する際の延伸倍率が5倍以上10倍以下の範囲になるように前記ポリプロピレン樹脂を被覆する請求項3に記載の多重塗覆装鋼管の製造方法。 The method for producing a multi-coated steel pipe according to claim 3, wherein the polypropylene resin is coated so that a draw ratio when coating the polypropylene resin is in a range of 5 to 10 times.
PCT/JP2012/064245 2011-12-26 2012-05-25 Multiple coated steel pipe and method for producing same WO2013099320A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201280064625.3A CN104024718B (en) 2011-12-26 2012-05-25 Multilayer coating steel pipe and manufacture method thereof
RU2014126084/06A RU2573334C1 (en) 2011-12-26 2012-05-25 Pipe with multilayer coating, and method of its manufacturing
KR1020147019783A KR101585821B1 (en) 2011-12-26 2012-05-25 Multi-layer coating pipe and method for manufacturing the same
IN1188KON2014 IN2014KN01188A (en) 2011-12-26 2012-05-25

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-282696 2011-12-26
JP2011282696A JP5187435B2 (en) 2011-02-07 2011-12-26 Multi-coated steel pipe
JP2012097239A JP5187455B1 (en) 2012-04-23 2012-04-23 Manufacturing method of multi-coated steel pipe
JP2012-097239 2012-04-23

Publications (1)

Publication Number Publication Date
WO2013099320A1 true WO2013099320A1 (en) 2013-07-04

Family

ID=48481431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064245 WO2013099320A1 (en) 2011-12-26 2012-05-25 Multiple coated steel pipe and method for producing same

Country Status (6)

Country Link
JP (1) JP5187455B1 (en)
KR (1) KR101585821B1 (en)
CN (1) CN104024718B (en)
IN (1) IN2014KN01188A (en)
RU (1) RU2573334C1 (en)
WO (1) WO2013099320A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018217120A1 (en) * 2017-05-26 2018-11-29 Закрытое акционерное общество "Уральский завод полимерных технологий "Маяк" Method for obtaining an electron-beam-modified polymer coating on a steel pipe and steel pipe having electron-beam-modified polymer coating

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3059485A1 (en) 2015-02-17 2016-08-24 J. van Beugen Beheer B.V. Metal pipes with anticorrosive polyolefin covering layer
CN106949339B (en) * 2017-05-15 2019-05-31 山东大城防腐保温安装工程有限公司 Pipe fitting erosion resistant coating hydraulic type processing method
JP6581633B2 (en) * 2017-09-12 2019-09-25 株式会社協成 Manufacturing method of resin-coated steel pipe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130956A (en) * 1973-04-20 1974-12-16
JPS54158720A (en) * 1978-06-05 1979-12-14 Nippon Kokan Kk <Nkk> Plastic extrusion covered steel tubing
JPS59209855A (en) * 1983-05-13 1984-11-28 出光石油化学株式会社 Metallic pipe coated with resin
JPH09267433A (en) * 1996-04-01 1997-10-14 Nkk Corp Multiple coated metal pipe
JPH1076602A (en) * 1996-09-06 1998-03-24 Nkk Corp Multiple coating metallic tube

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000063668A (en) 1998-08-21 2000-02-29 Kureha Chem Ind Co Ltd Piping member for heat transfer medium
CN2648239Y (en) * 2003-06-12 2004-10-13 大庆石油新科庆联防腐有限公司 Modified double-layer epoxy powder anticorrosive pipe
RU2292513C1 (en) * 2005-09-09 2007-01-27 Владимир Николаевич Коваль Multi-layered polymeric corrosion-resisting coating
CN201196298Y (en) * 2008-05-28 2009-02-18 大庆石油新科庆联防腐有限公司 Round die negative-phase shaping three-layer PE corrosion-proof pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49130956A (en) * 1973-04-20 1974-12-16
JPS54158720A (en) * 1978-06-05 1979-12-14 Nippon Kokan Kk <Nkk> Plastic extrusion covered steel tubing
JPS59209855A (en) * 1983-05-13 1984-11-28 出光石油化学株式会社 Metallic pipe coated with resin
JPH09267433A (en) * 1996-04-01 1997-10-14 Nkk Corp Multiple coated metal pipe
JPH1076602A (en) * 1996-09-06 1998-03-24 Nkk Corp Multiple coating metallic tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018217120A1 (en) * 2017-05-26 2018-11-29 Закрытое акционерное общество "Уральский завод полимерных технологий "Маяк" Method for obtaining an electron-beam-modified polymer coating on a steel pipe and steel pipe having electron-beam-modified polymer coating
RU2673921C1 (en) * 2017-05-26 2018-12-03 Закрытое акционерное общество "Уральский завод полимерных технологий "Маяк" (ЗАО УЗПТ "Маяк") Method for obtaining electron-ray modified polymer coating on a steel pipe and steel pipe with electron-ray modified polymer coating

Also Published As

Publication number Publication date
IN2014KN01188A (en) 2015-10-16
KR20140112031A (en) 2014-09-22
CN104024718B (en) 2016-06-15
RU2573334C1 (en) 2016-01-20
JP5187455B1 (en) 2013-04-24
JP2013223971A (en) 2013-10-31
KR101585821B1 (en) 2016-01-14
CN104024718A (en) 2014-09-03

Similar Documents

Publication Publication Date Title
WO2013099320A1 (en) Multiple coated steel pipe and method for producing same
JP2008544469A (en) Skin layer for power or communication cable
CA2660663C (en) Low temperature pe topcoat
US9616462B2 (en) Protective polymer layer
KR20110127240A (en) Method for extrusion of multi-layer coated elongate member
EA032871B1 (en) Anti-corrosion composition, method of corrosion protection using this composition, wrapping tape with an anti-corrosion composition
WO1990003850A1 (en) Process for field coating pipe
JP5187435B2 (en) Multi-coated steel pipe
JP4093288B2 (en) Multi-coated metal tube
JP2023026618A (en) polyethylene resin pipe
JP2016166314A (en) Resin composition, molded article, electric wire and cable, and method for producing electric wire and cable
WO2016174962A1 (en) Heat recovery article, heat recovery article manufacturing method, wire splice, and wire harness
JP3674795B2 (en) Multi-coated metal tube
JPH1076601A (en) Multiple coating metallic tube
JPH1076603A (en) Multiple coating metallic tube
JP3573033B2 (en) Resin-lined steel pipe
JP2943288B2 (en) Polyethylene resin pipe excellent in fusing property and method for producing the same
JP6359281B2 (en) Flame-retardant resin composition and cable using the same
JPH03114743A (en) Metallic pipe multiply-covered with polyolefin
JP2017114954A (en) Adhesive composition and multilayer heat recovery article
JP2001009913A (en) Resin-lined steel pipe
PL236782B1 (en) Polymer mixture and the product containing the polymer mixture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862176

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014126084

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147019783

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 12862176

Country of ref document: EP

Kind code of ref document: A1