WO2013099145A1 - Light emitting module and lighting appliance for vehicle - Google Patents

Light emitting module and lighting appliance for vehicle Download PDF

Info

Publication number
WO2013099145A1
WO2013099145A1 PCT/JP2012/008049 JP2012008049W WO2013099145A1 WO 2013099145 A1 WO2013099145 A1 WO 2013099145A1 JP 2012008049 W JP2012008049 W JP 2012008049W WO 2013099145 A1 WO2013099145 A1 WO 2013099145A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
semiconductor light
resistor
emitting module
emitting element
Prior art date
Application number
PCT/JP2012/008049
Other languages
French (fr)
Japanese (ja)
Inventor
祥敬 佐々木
主 時田
Original Assignee
株式会社小糸製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小糸製作所 filed Critical 株式会社小糸製作所
Priority to CN201280064626.8A priority Critical patent/CN104011884B/en
Publication of WO2013099145A1 publication Critical patent/WO2013099145A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/151Light emitting diodes [LED] arranged in one or more lines

Definitions

  • the present invention relates to a light emitting module and a vehicular lamp including the light emitting module.
  • a light distribution pattern having an approximately rectangular light distribution pattern in which an irradiation region extends in the vehicle width direction and a light distribution pattern in which the central portion of the irradiation region is brighter than the peripheral portion is required.
  • LEDs light emitting diodes
  • the light emitting area of the semiconductor light emitting element located inside the both ends is more than the light emitting area of the semiconductor light emitting element located at both ends among the plurality of semiconductor light emitting elements arranged in a straight line. Is also small. Since the semiconductor light emitting device having a small light emitting area has a high current density, the light emission luminance near the center of the module is high.
  • the present invention has been made in view of such a situation, and an object of the present invention is to provide a light emitting module in which the luminance of the semiconductor light emitting element disposed in the central portion is higher than the luminance of the semiconductor light emitting element disposed in the peripheral portion.
  • the object is to provide a technique that can be realized with a simple configuration.
  • a light emitting module is a light emitting module used for a vehicular lamp, and includes a plurality of semiconductor light emitting elements arranged linearly.
  • the plurality of semiconductor light emitting elements are disposed at both ends of the module and are connected in series with each other, and are disposed at the center of the module, and emit light more than the first semiconductor light emitting element.
  • one or more second semiconductor light emitting elements configured to be capable of increasing the luminance of the light emitting element.
  • the first semiconductor light emitting element and the second semiconductor light emitting element are connected in parallel.
  • the currents flowing through the first semiconductor light emitting element and the second semiconductor light emitting element can be made different from each other. Therefore, a light emitting module having a high luminance at the central portion can be realized. For example, when applied to a vehicular lamp, a desired light distribution pattern with a bright central portion can be realized.
  • the second resistor has a smaller electrical resistance than the first resistor. Accordingly, the currents flowing through the first semiconductor light emitting element and the second semiconductor light emitting element can be made different from each other with a simple configuration without particularly controlling the current and voltage flowing through each element.
  • An LED package on which a plurality of semiconductor light emitting elements are mounted may be further provided. At least one of the first resistor and the second resistor is disposed at a location affected by the temperature change of the LED package, and at least one of the first resistor and the second resistor is positive. It may have a temperature coefficient. Thereby, even if the resistance of the light emitting diode as the semiconductor light emitting element decreases (increases) due to the temperature change, the resistance of the resistor arranged at the place affected by the temperature change of the LED package increases (decreases). As a result, the change in resistance of the entire light emitting module is alleviated. Therefore, even when the light emitting module is driven at a constant voltage, the temperature dependence of the current flowing through the light emitting diode can be reduced.
  • a control unit that independently controls the current flowing through the first semiconductor light emitting element and the second semiconductor light emitting element may be further provided. Thereby, the currents flowing through the first semiconductor light emitting element and the second semiconductor light emitting element can be made different from each other. Therefore, a light emitting module having a high luminance at the central portion can be realized. For example, when applied to a vehicular lamp, a desired light distribution pattern with a bright central portion can be realized.
  • the control unit may increase the amount of current flowing through the second semiconductor light emitting element when forming the light distribution pattern for high beam as compared with the case of forming the light distribution pattern for low beam.
  • the control unit may increase only the amount of current flowing through the second semiconductor light emitting element disposed in the central portion of the light emitting module, which has a large influence on the distance visibility, and is disposed at both ends of the light emitting module. Therefore, it is not necessary to increase the amount of current flowing through the first semiconductor light emitting element that has a small effect on the performance. Thereby, the increase in power consumption at the time of forming the light distribution pattern for high beams can be suppressed.
  • a desired light distribution pattern with a bright central portion can be realized with a simple configuration.
  • a light emitting module in which the brightness of the semiconductor light emitting element disposed in the central part is higher than the brightness of the semiconductor light emitting element disposed in the peripheral part can be realized with a simple configuration.
  • FIG. 1 is a front view showing a vehicular lamp according to a first embodiment. It is a sectional side view of a vehicle lamp unit. It is a figure which shows the light emitting module which concerns on this Embodiment. It is the circuit diagram which showed typically the connection state of each semiconductor light-emitting element and a power supply. It is a figure which shows an example of the light distribution pattern of a vehicle lamp. It is a schematic diagram of the light emitting module which concerns on 2nd Embodiment. It is a schematic diagram of the light emitting module which concerns on 3rd Embodiment. FIG.
  • FIG 8A is a schematic view showing the arrangement of the first semiconductor light emitting element and the second semiconductor light emitting element in the light emitting module having the total number of semiconductor light emitting elements of 4, and FIG. It is the schematic diagram which showed arrangement
  • FIG. 1 is a front view showing a vehicular lamp 100 according to the first embodiment.
  • the vehicle lamp 100 is, for example, a vehicle headlamp for low beam irradiation that irradiates light in a predetermined irradiation direction in front of the vehicle.
  • the vehicular lamp 100 accommodates three vehicular lamp units 10 in a horizontal row in a lamp chamber formed by a transparent cover 102 and a lamp body 104 constituting the lamp chamber.
  • vehicle lamp units 10 have the same or similar configuration, and when the vehicle lamp 100 is attached to the vehicle body, the optical axis is about 0.3 to 0.6 ° downward with respect to the vehicle longitudinal direction. It is accommodated in the lamp chamber.
  • the vehicular lamp 100 irradiates light ahead of the vehicle based on the light emitted by the vehicular lamp unit 10 to form a predetermined light distribution pattern.
  • the vehicular lamp 100 may include a plurality of vehicular lamp units 10 having different light distribution characteristics.
  • FIG. 2 is a side sectional view of the vehicular lamp unit 10.
  • the vehicular lamp unit 10 is a direct-type vehicular lamp unit that irradiates light emitted from the light emitting module 16 directly forward by the projection lens 12 that is an optical member.
  • the vehicular lamp unit 10 includes a support member 18, a light shielding member 14, a light emitting module 16, and a projection lens 12.
  • the support member 18 is a plate-like body that causes the light emitting module 16 to emit light toward the front of the vehicle by supporting and fixing the bottom surface of the light emitting module 16 on the surface facing the front of the vehicle.
  • the support member 18 is provided upright in the vertical direction.
  • a heat sink 19 that dissipates heat generated by the light emitting module 16 is provided at the upper and lower ends of the support member 18. The heat sink 19 can prevent the light emission efficiency of the light emitting module 16 from being reduced by heat.
  • the light shielding member 14 is a plate-like body provided to face the upper surface of the support member 18 with the light emitting module 16 interposed therebetween, and blocks the light generated by the light emitting module 16 at the upper edge portion, thereby Based on the projected shape of the edge in the front direction, a light / dark boundary of light incident on the projection lens 12 is defined.
  • the projected shape is, for example, a straight shape extending in the left-right direction of the vehicle.
  • the lower end of the light shielding member 14 is connected to the lower end of the support member 18, and the light shielding member 14 and the support member 18 are integrally formed.
  • the light emitting module 16 includes a substrate 22 having a bottom surface fixed on a support member 18, a plurality of semiconductor light emitting elements 20 arranged in a straight line on the upper surface of the substrate 22, and a translucent member that seals the semiconductor light emitting elements 20. 24.
  • the translucent member 24 is formed of a material that transmits light generated by the semiconductor light emitting element 20 such as a transparent resin.
  • the light emitting module 16 is disposed such that the arrangement direction of the plurality of semiconductor light emitting elements 20 is the left-right direction of the vehicle.
  • the light emitting module 16 is arranged so that the center of the semiconductor light emitting element 20 in the vertical direction is located on the optical axis Ax of the projection lens 12. Details of the light emitting module 16 will be described later.
  • the projection lens 12 is composed of a biconvex lens whose front surface and rear surface are convex, and its focal length fa is set to a relatively large value.
  • the projection lens 12 is fixed to the support member 18 via a connecting member (not shown).
  • the projection lens 12 is an optical system provided in common to the plurality of semiconductor light emitting elements 20 of the light emitting module 16, is provided in front of the vehicle with respect to the light emitting module 16, and transmits light generated by the light emitting module 16. Thus, the light is irradiated in a predetermined irradiation direction in front of the vehicle.
  • the projection lens 12 is disposed such that the rear focal point F as the optical center is located on the center line of the plurality of semiconductor light emitting element arrays.
  • the light emitted from the light emitting module 16 is inverted and irradiated forward by the projection lens 12 so as to converge slightly toward the optical axis Ax.
  • the light emitted from the light emitting module 16 that is directed downward from the optical axis Ax is shielded by the light shielding member 14, thereby moving forward from the vehicle lamp unit 10.
  • the upward light is not irradiated.
  • FIG. 3 is a diagram showing the light emitting module 16 according to the present embodiment.
  • the light emitting module 16 is a linear light source extending in the left-right direction of the vehicle, and includes a substrate 22, a plurality of semiconductor light emitting elements 20a to 20d, and a translucent member.
  • illustration of the translucent member is abbreviate
  • the plurality of semiconductor light emitting elements 20a to 20d are arranged on the substrate 22 in the order of the first semiconductor light emitting element 20a, the second semiconductor light emitting elements 20b and 20c, and the first semiconductor light emitting element 20d from the left side in a top view. They are arranged in a straight line at equal intervals. That is, the plurality of semiconductor light emitting elements 20a to 20d are disposed at the center of the light emitting module 16 and the plurality of first semiconductor light emitting elements 20a and 20d disposed on both ends of the light emitting module 16. And a plurality of second semiconductor light emitting elements 20b and 20c configured to be capable of increasing luminance at the time of light emission than the elements 20a and 20d. Note that there may be one second semiconductor light emitting element.
  • the semiconductor light emitting elements 20a to 20d are white LEDs that emit white light.
  • the semiconductor light emitting devices 20a to 20d emit, for example, blue light to a phosphor (not shown) provided on the surface, thereby causing the phosphor to emit yellow light and generate white light as a whole of the device. To do.
  • substantially the entire area of the upper surface shown in FIG. 3 is a light emitting area.
  • the semiconductor light emitting elements 20a to 20d are LED chips having a light emission area of approximately 1 mm square.
  • FIG. 4 is a circuit diagram schematically showing a connection state between each semiconductor light emitting element and a power source.
  • the first semiconductor light emitting elements 20a and 20d and the second semiconductor light emitting elements 20b and 20c are formed by a wiring pattern (not shown) formed on the substrate 22. Electrically connected.
  • the anode of the first semiconductor light emitting element 20a is connected to the positive terminal of the power supply device 21 shown in FIG. 4, and the cathode of the first semiconductor light emitting element 20a is the anode of the first semiconductor light emitting element 20d. Connected to.
  • the cathode of the first semiconductor light emitting element 20d is connected to the negative terminal of the power supply device 21 via the first resistor R1.
  • the anode of the second semiconductor light emitting element 20b is connected to the positive terminal of the power supply device 21, and the cathode of the second semiconductor light emitting element 20b is connected to the anode of the second semiconductor light emitting element 20c.
  • the cathode of the second semiconductor light emitting element 20c is connected to the negative terminal of the power supply device 21 via the second resistor R2.
  • the two first semiconductor light emitting elements 20 a and 20 d arranged on both ends of the light emitting module 16 are connected in series to the power supply device 21.
  • the two second semiconductor light emitting elements 20 b and 20 c arranged at the center of the light emitting module 16 are connected in series to the power supply device 21.
  • the first semiconductor light emitting elements 20a and 20d and the second semiconductor light emitting elements 20b and 20c are connected in parallel.
  • the first semiconductor light emitting elements 20a, 20d and the second semiconductor light emitting elements 20b, 20c are connected in parallel, so that the first semiconductor light emitting elements 20a, 20d and the second semiconductor light emitting elements are connected.
  • the currents flowing through 20b and 20c can be made different from each other. Therefore, if the current passed through the second semiconductor light emitting elements 20b and 20c is increased, the light emitting module 16 having high luminance at the center can be realized.
  • the vehicle lamp unit 10 provided with such a light emitting module 16 can implement
  • the light emitting module 16 includes a first resistor R1 connected in series with the first semiconductor light emitting elements 20a and 20d, and a second semiconductor light emitting element 20b and 20c in series. And it has further 2nd resistor R2 connected in parallel with 1st resistor R1. Further, the second resistor R2 has a smaller electrical resistance than the first resistor R1. Thereby, even if it does not control especially the electric current and voltage which flow into each semiconductor light-emitting device, it is simple structure, and it is 2nd semiconductor light-emitting device 20b, 20c rather than the electric current which flows into 1st semiconductor light-emitting device 20a, 20d. The flowing current can be increased. Therefore, the second semiconductor light emitting elements 20b and 20c arranged inside the light emitting module have higher emission luminance than the first semiconductor light emitting elements 20a and 20d arranged on both ends.
  • a current control circuit for individually controlling the current flowing to each semiconductor light emitting element is not necessary.
  • a current control circuit for individually controlling the current flowing to each semiconductor light emitting element is not necessary.
  • even in a light emitting module in which a plurality of semiconductor light emitting elements having the same size and performance are arranged it is possible to easily vary the brightness of each element, so there is no need to use a plurality of types of semiconductor light emitting elements, and the light emitting module Cost is reduced.
  • mounting a single type of semiconductor light emitting devices on a substrate reduces manufacturing costs by simplifying the process and improving mass productivity. it can.
  • the projection lens 12 is placed on the center line C of the four semiconductor light emitting element rows. It arrange
  • FIG. 5 shows an example of a light distribution pattern of the vehicular lamp 100.
  • a light distribution pattern 400 illustrated in FIG. 5 is a left low beam light distribution pattern formed on a virtual vertical screen disposed at a position 25 m ahead of the vehicular lamp 100.
  • the light distribution pattern 400 is formed as a combined light distribution pattern of the three vehicle lamp units 10 included in the vehicle lamp 100.
  • the light distribution pattern 400 has a horizontal cut line CL1 and an oblique cut line CL2 that define a vertical light-dark boundary at the upper end thereof.
  • the horizontal cut line CL1 is set slightly below (downward from about 0.5 to 0.6 °) with respect to the front of the vehicle lamp 100 (intersection of the horizontal axis H and the vertical axis V).
  • the oblique cut line CL2 is inclined about 15 ° to the upper left from the intersection of the vertical axes V and CL1.
  • the horizontal cut line CL1 in the light distribution pattern 400 is formed by the horizontal edge of the upper edge portion of the light shielding member 14.
  • the oblique cut line CL2 is formed by the inclined edge of the upper edge portion of the light shielding member 14.
  • a region in the vicinity of the intersection of the horizontal axis H and the vertical axis V in the light distribution pattern is referred to as a hot zone 402 and is preferably illuminated brighter than other regions of the light distribution pattern 400 from the viewpoint of safety. .
  • the formation accuracy of the horizontal cut line CL1 and the oblique cut line CL2 of the light distribution pattern will be examined.
  • the first semiconductor light emitting elements 20a and 20d and the second semiconductor light emitting elements 20b and 20c are connected in parallel, and are connected in series with the second semiconductor light emitting elements 20b and 20c. Since the electric resistance of the second resistor R2 is set to be smaller than the electric resistance of the first resistor R1 connected in series with the first semiconductor light emitting elements 20a and 20d, the second resistor R2 is disposed inside the light emitting module.
  • the second semiconductor light emitting elements 20b and 20c have higher luminance than the first semiconductor light emitting elements 20a and 20d disposed on both ends of the light emitting module.
  • the vehicular lamp unit 10 When the vehicular lamp unit 10 is configured using the light emitting module 16 so that the rear focal point F of the projection lens 12 as the optical center of the optical system is located on the center line C of the semiconductor light emitting element array, The brightness of the inner second semiconductor light emitting elements 20b and 20c close to the rear focal point F increases, so that the amount of light passing through the rear focal point F increases.
  • the optical system of the vehicular lamp unit is configured such that light passing through the optical center forms a light distribution pattern with the highest accuracy, so that the amount of light passing through the rear focal point F increases,
  • the horizontal cut line CL1 and the oblique cut line CL2 of the light distribution pattern can be clearly formed.
  • the hot zone 402 can be illuminated brightly by increasing the amount of light passing through the rear focal point F of the projection lens 12. Furthermore, since only the second semiconductor light emitting elements 20b and 20c arranged on the inner side where the light use efficiency for forming the light distribution pattern is relatively high increases in luminance, the loss of power consumption can be reduced.
  • positioned three or more semiconductor light emitting elements linearly may be sufficient. Also, considering the internal resistance of each semiconductor light emitting element, it is possible to omit either the first resistor or the second resistor.
  • the power supply device 21 may be provided inside the vehicle lamp unit 10 or may be provided outside. Further, the control of the current to each semiconductor light emitting element is not limited to the constant voltage control as in the case where it is directly connected to the battery on the vehicle side, and may be control via a lighting circuit.
  • the present invention can be applied to a vehicle headlamp configured to be able to switch between a low beam light distribution pattern and a high beam light distribution pattern.
  • FIG. 6 is a schematic diagram of a light emitting module according to the second embodiment.
  • FIG. 6 mainly shows the circuit configuration. Note that descriptions of configurations, operations, and effects similar to those of the first embodiment are omitted as appropriate.
  • the first semiconductor light emitting element 20a is connected in series with the first resistor R1
  • the second semiconductor light emitting element 20b is connected in series with the second resistor R2.
  • 20c is connected in series with the third resistor R3, and the first semiconductor light emitting element 20d is connected in series with the fourth resistor R4.
  • the second resistor R2 and the third resistor R3 have a smaller electrical resistance than the first resistor R1 and the fourth resistor R4.
  • the second semiconductor light emitting element 20b, 20b, 20b, 20c, 20d, and 20d can be compared with the current flowing through the first semiconductor light emitting elements 20a, 20d with a simple configuration without special control of the current and voltage flowing through the semiconductor light emitting elements 20a-20d.
  • the current flowing through 20c can be increased. Therefore, the second semiconductor light emitting elements 20b and 20c arranged inside the light emitting module 116 have higher emission luminance than the first semiconductor light emitting elements 20a and 20d arranged on both ends.
  • FIG. 7 is a schematic diagram of a light emitting module according to the third embodiment.
  • FIG. 7 mainly shows the circuit configuration. Note that descriptions of configurations, operations, and effects similar to those of the above-described embodiments are omitted as appropriate.
  • the light emitting module 16 is a linear light source extending in the left-right direction of the vehicle, and includes a plurality of semiconductor light emitting elements 120a to 120c and a control unit 122.
  • the plurality of semiconductor light emitting elements 120a to 120c will be described as having the same configuration as each of the semiconductor light emitting elements 20a to 20d according to the first embodiment.
  • the plurality of semiconductor light emitting elements 120a to 120c are arranged on a substrate (not shown) in the order of the first semiconductor light emitting element 120a, the second semiconductor light emitting element 120b, and the first semiconductor light emitting element 120c from the left side of FIG. They are arranged in a straight line at substantially equal intervals. That is, the plurality of semiconductor light emitting elements 120a to 120c are disposed at the center of the light emitting module 216 and the plurality of first semiconductor light emitting elements 120a and 120c disposed on both ends of the light emitting module 216. And a second semiconductor light emitting element 120b configured to be able to increase luminance at the time of light emission than the elements 120a and 120c.
  • the second semiconductor light emitting element may be plural.
  • the first semiconductor light emitting elements 120a and 120c and the second semiconductor light emitting element 120b are provided in independent energization paths, respectively.
  • the control unit 122 independently controls the currents flowing through the first semiconductor light emitting elements 120a and 120c and the second semiconductor light emitting element 120b. Thereby, the currents flowing through the first semiconductor light emitting elements 120a and 120c and the second semiconductor light emitting element 120b can be made different from each other. Therefore, a light emitting module having a high luminance at the central portion can be realized. For example, when applied to a vehicular lamp, a desired light distribution pattern with a bright central portion can be realized.
  • the light emitting module 216 is applied to a vehicle lamp unit configured to realize both a high beam light distribution pattern and a low beam light distribution pattern with one type of light source. Can be installed as.
  • the control unit 122 makes the amount of current flowing through the first semiconductor light emitting elements 120a and 120c and the second semiconductor light emitting element 120b substantially the same, and emits each semiconductor light emitting element.
  • the luminances of the elements 120a to 120c are made almost equal.
  • the control unit 122 can increase the amount of current flowing through the second semiconductor light emitting element 120b as compared with the case of forming the low beam light distribution pattern. It is configured as follows.
  • the second semiconductor light emitting element 120b which is disposed in the central portion of the light emitting module 216 and has a large influence on far visibility, and is disposed on both ends of the light emitting module 216.
  • the amount of current flowing through the first semiconductor light emitting elements 120a and 120c which has a small influence on far visibility, does not need to be increased.
  • the vehicle headlamp it is possible to suppress an increase in power consumption when forming a high beam light distribution pattern.
  • FIG. 8A is a schematic view showing the arrangement of the first semiconductor light emitting element and the second semiconductor light emitting element in the light emitting module having the total number of semiconductor light emitting elements of 4, and FIG. It is the schematic diagram which showed arrangement
  • a light emitting module 218 shown in FIG. 8A has two first semiconductor light emitting elements 130a and 130d on both ends, and two second semiconductor light emitting elements 130b and 130c near the center.
  • the light emitting module 220 shown in FIG. 8B includes two first semiconductor light emitting elements 140a and 140e on both ends, and three second semiconductor light emitting elements 130b to 130d near the center.
  • one or more second light lines pass through the center of the light emitting surface of the light emitting module and are perpendicular to the longitudinal direction of the light emitting surface.
  • the semiconductor light emitting elements are arranged to be line symmetric.
  • Each semiconductor light emitting element has a shape that is symmetric with respect to the center of the light emitting surface.
  • the shape of the light emitting surface of each half conductor light emitting element is a square or a rectangle.
  • the ratio of the light emitting area of the second semiconductor light emitting element that increases the luminance by increasing the current by increasing the current in the light emitting area of the light emitting module is about 30% to 60% of the area of the entire light emitting surface. There should be. Thereby, compared with the case where the current of all the semiconductor light emitting elements is increased, the increase in power consumption can be suppressed to about 40% to 70%.
  • FIG. 9 is a diagram showing the relationship between ambient temperature and voltage when a general LED is driven with a constant current. As shown in FIG. 9, it can be seen that the drive voltage of the LED decreases as the ambient temperature increases.
  • FIG. 10 is a diagram showing the temperature dependence of the voltage-current characteristics of a general LED. As shown in FIG. 10, it can be seen that the change in current with respect to the change in voltage increases as the ambient temperature rises like T0, T1, and T2. Due to such characteristics, a ballast such as a control circuit is separately required to drive a general LED at a constant current.
  • the present inventor generally connects a resistor having a positive temperature coefficient in series with an LED having a negative temperature coefficient as a resistance component, so that the variation in brightness with respect to a change in temperature is reduced.
  • the idea was that a small number of light emitting modules could be realized with a simple configuration.
  • the light emitting module according to the first embodiment it is preferable to use materials having the following configurations as the first resistor R1 and the second resistor R2.
  • FIG. 11 is a top view showing a schematic configuration of the light emitting module according to the fourth embodiment.
  • the light emitting module 222 includes an LED package 224 on which the first semiconductor light emitting elements 150a and 150d that are LEDs and the second semiconductor light emitting elements 150b and 150c that are LEDs are mounted, a first resistor R1, and a second resistor. Resistor R2 (hereinafter, referred to as “resistors R1, R2” as appropriate).
  • the LED package 224 includes a heat conductive insulating substrate 230 formed of ceramic or the like, and a wiring pattern 232 formed on the heat conductive insulating substrate 230.
  • the first resistor R1 is connected in series with the first semiconductor light emitting elements 150a and 150d.
  • the second resistor R2 is connected in series with the second semiconductor light emitting elements 150b and 150c. Note that the second resistor R2 has a smaller electrical resistance than the first resistor R1.
  • Resistors R 1 and R 2 are flip-chip mounted on the wiring pattern 232 of the LED package 224. For this reason, the resistors R1 and R2 are arranged at a location that is affected by the temperature change of the LED package 224.
  • Resistors R1 and R2 according to the present embodiment have a positive temperature coefficient.
  • FIG. 12 is a diagram illustrating the relationship between the ambient temperature and the voltage when the light emitting module according to this embodiment is driven with a constant current.
  • the light emitting module according to the present embodiment is a resistor arranged at a location that is affected by the temperature change of the LED even if the resistance of each of the semiconductor light emitting elements 150a to 150d that are LEDs decreases (increases) due to the temperature change.
  • the resistances of R1 and R2 increase (decrease). Therefore, by appropriately designing the material and configuration of the resistor according to the LED to be used, the change in the resistance of the light emitting module as a whole is mitigated.
  • the light emitting module according to the present embodiment is less temperature dependent on the voltage than the LED only light emitting module. In other words, even when the light emitting module according to this embodiment is driven at a constant voltage, the temperature dependence of the current flowing through the light emitting diode can be reduced. That is, a light-emitting module with little variation in brightness with respect to a change in temperature can be realized using a simple control circuit or without using a control circuit or the like.
  • the life of the control circuit is usually shorter than the life of the LED chip, the life of the entire light emitting module depends on the life of the control circuit. However, if the light emitting module can be configured without using the control circuit, the life of the light emitting module and the lamp equipped with the light emitting module can be extended to the original life of the LED chip.
  • Table 1 exemplifies volume resistivity and temperature coefficient values of a metal material having a positive temperature coefficient.
  • FIG. 13 is a diagram showing the relationship between the volume resistivity and the temperature coefficient of the metal materials shown in Table 1.
  • the volume resistivity indicates a value of 0 ° C.
  • At least one of the resistors R1 and R2 of the present embodiment may have a volume resistivity at 0 ° C. of 2 ⁇ 10 ⁇ 8 [ ⁇ ⁇ m] or more. More preferably, the volume resistivity at 0 ° C. is 3 ⁇ 10 ⁇ 8 [ ⁇ ⁇ m] or more.
  • At least one of the resistors R1 and R2 only needs to have a positive temperature coefficient between 0 ° C. and 100 ° C. More preferably, at least one of the resistors R1 and R2 has a temperature coefficient between 0 ° C. and 100 ° C. of 0.05 [10 ⁇ 3 / ° C.] or more.
  • Some resistors constituting the circuit have a positive temperature coefficient in some cases, but the value is very small. And it is avoided to use a resistor having a large positive temperature coefficient in the circuit.
  • a combination of a resistor having a positive temperature coefficient that is large enough to avoid use in a circuit in general and an LED having a negative temperature coefficient as a resistance component in general makes it possible to change the LED package 224 due to temperature changes. The change in the overall resistance can be more relaxed.
  • the present invention has been described with reference to the above-described embodiments.
  • the present invention is not limited to the above-described embodiments, and the configurations of the embodiments are appropriately combined or replaced. Those are also included in the present invention. Further, it is possible to appropriately change the combination and processing order in each embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to each embodiment. Embodiments to which is added can also be included in the scope of the present invention.
  • the present invention can be used for a vehicular lamp.

Abstract

A light emitting module (16) to be used in a lighting appliance for a vehicle is provided with a plurality of semiconductor light emitting elements, which are linearly disposed. The semiconductor light emitting elements have: a plurality of first semiconductor light emitting elements (20a, 20d), which are disposed on both the end sides of the module, and are connected in series to each other; and one or more second semiconductor light emitting elements (20b, 20c), each of which is disposed at a center portion of the module, and is configured such that the element can have higher luminance when emitting light compared with the first semiconductor light emitting elements. The first semiconductor light emitting elements (20a, 20d) and the second semiconductor light emitting elements (20b, 20c) are connected in parallel.

Description

発光モジュールおよび車両用灯具Light emitting module and vehicle lamp
 本発明は、発光モジュールおよびそれを備えた車両用灯具に関する。 The present invention relates to a light emitting module and a vehicular lamp including the light emitting module.
 車両用灯具においては、安全上の観点から、所定の配光パターンを形成する必要がある。例えば、車両用前照灯においては、照射領域が車幅方向に延びている略長方形の配光パターンであって、照射領域の中央部が周辺部よりも明るい配光パターンが求められる。 In a vehicle lamp, it is necessary to form a predetermined light distribution pattern from the viewpoint of safety. For example, in a vehicle headlamp, a light distribution pattern having an approximately rectangular light distribution pattern in which an irradiation region extends in the vehicle width direction and a light distribution pattern in which the central portion of the irradiation region is brighter than the peripheral portion is required.
 一方、発光ダイオード(Light Emitting Diode:以下、適宜「LED」と称す。)などの半導体発光素子を利用した車両用灯具の開発も進められている。また、車両用前照灯の光源としてLEDを用いる場合は、一つでは所望の光量や配光パターンを得ることが難しいため、直列に接続された複数のLEDを直線状に配置した発光モジュールが考案されている(特許文献1参照)。 On the other hand, development of vehicle lamps using semiconductor light emitting elements such as light emitting diodes (hereinafter referred to as “LEDs” as appropriate) is also in progress. In addition, when an LED is used as a light source for a vehicle headlamp, it is difficult to obtain a desired light amount and light distribution pattern with a single light source. Therefore, there is a light emitting module in which a plurality of LEDs connected in series are arranged linearly. It has been devised (see Patent Document 1).
特開2009-266434号公報JP 2009-266434 A
 特許文献1に記載の発光モジュールでは、直線状に並べられた複数の半導体発光素子のうち、両端よりも内側に位置する半導体発光素子の発光面積が、両端に位置する半導体発光素子の発光面積よりも小さい。発光面積が小さい半導体発光素子は、電流密度が高くなるため、モジュールの中央部近傍での発光輝度が高くなる。 In the light emitting module described in Patent Document 1, the light emitting area of the semiconductor light emitting element located inside the both ends is more than the light emitting area of the semiconductor light emitting element located at both ends among the plurality of semiconductor light emitting elements arranged in a straight line. Is also small. Since the semiconductor light emitting device having a small light emitting area has a high current density, the light emission luminance near the center of the module is high.
 しかしながら、特許文献1の発光モジュールのように、面積が異なる半導体発光素子を作製することは素子の製造コストを上昇させる。また、特性が異なる複数種の半導体発光素子を基板上に配置することは、製造工程の増加や煩雑化を招くおそれもある。 However, as in the light emitting module of Patent Document 1, manufacturing semiconductor light emitting elements having different areas increases the manufacturing cost of the elements. In addition, arranging a plurality of types of semiconductor light emitting elements having different characteristics on a substrate may cause an increase in manufacturing steps and complication.
 本発明はこうした状況に鑑みてなされたものであり、その目的とするところは、中央部に配置された半導体発光素子の輝度が周辺部に配置された半導体発光素子の輝度よりも高い発光モジュールを簡易な構成で実現する技術を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a light emitting module in which the luminance of the semiconductor light emitting element disposed in the central portion is higher than the luminance of the semiconductor light emitting element disposed in the peripheral portion. The object is to provide a technique that can be realized with a simple configuration.
 上記課題を解決するために、本発明のある態様の発光モジュールは、車両用灯具に用いられる発光モジュールであって、直線状に配置された複数の半導体発光素子を備える。複数の半導体発光素子は、モジュールの両端側に配置され、互いに直列に接続されている複数の第1の半導体発光素子と、モジュールの中央部に配置され、第1の半導体発光素子よりも発光時の輝度を高めることが可能に構成されている1以上の第2の半導体発光素子と、を有する。第1の半導体発光素子と第2の半導体発光素子とは、並列に接続されている。 In order to solve the above problems, a light emitting module according to an aspect of the present invention is a light emitting module used for a vehicular lamp, and includes a plurality of semiconductor light emitting elements arranged linearly. The plurality of semiconductor light emitting elements are disposed at both ends of the module and are connected in series with each other, and are disposed at the center of the module, and emit light more than the first semiconductor light emitting element. And one or more second semiconductor light emitting elements configured to be capable of increasing the luminance of the light emitting element. The first semiconductor light emitting element and the second semiconductor light emitting element are connected in parallel.
 この態様によると、第1の半導体発光素子と第2の半導体発光素子とに流れる電流を互いに異ならせることができる。そのため、中央部の輝度が高い発光モジュールを実現でき、例えば、車両用灯具に適用した場合に、中央部が明るい所望の配光パターンを実現できる。 According to this aspect, the currents flowing through the first semiconductor light emitting element and the second semiconductor light emitting element can be made different from each other. Therefore, a light emitting module having a high luminance at the central portion can be realized. For example, when applied to a vehicular lamp, a desired light distribution pattern with a bright central portion can be realized.
 第1の半導体発光素子と直列に接続されている第1の抵抗器と、第2の半導体発光素子と直列に、かつ、第1の抵抗器と並列に接続されている第2の抵抗器と、を更に有してもよい。第2の抵抗器は、第1の抵抗器よりも電気抵抗が小さい。これにより、各素子に流れる電流や電圧を特段制御しなくても、簡易な構成で、第1の半導体発光素子と第2の半導体発光素子とに流れる電流を互いに異ならせることができる。 A first resistor connected in series with the first semiconductor light-emitting element; a second resistor connected in series with the second semiconductor light-emitting element and in parallel with the first resistor; , May further be included. The second resistor has a smaller electrical resistance than the first resistor. Accordingly, the currents flowing through the first semiconductor light emitting element and the second semiconductor light emitting element can be made different from each other with a simple configuration without particularly controlling the current and voltage flowing through each element.
 複数の半導体発光素子が実装されているLEDパッケージを更に備えてもよい。第1の抵抗器および第2の抵抗器の少なくとも一方は、LEDパッケージの温度変化の影響を受ける場所に配置されており、第1の抵抗器および第2の抵抗器の少なくとも一方は、正の温度係数を有してもよい。これにより、半導体発光素子としての発光ダイオードの抵抗が温度変化により減少(増加)しても、LEDパッケージの温度変化の影響を受ける場所に配置されている抵抗器の抵抗は増加(減少)する。その結果、発光モジュール全体としての抵抗の変化は緩和される。そのため、発光モジュールを定電圧駆動した場合であっても、発光ダイオードに流れる電流の温度依存性を少なくできる。 An LED package on which a plurality of semiconductor light emitting elements are mounted may be further provided. At least one of the first resistor and the second resistor is disposed at a location affected by the temperature change of the LED package, and at least one of the first resistor and the second resistor is positive. It may have a temperature coefficient. Thereby, even if the resistance of the light emitting diode as the semiconductor light emitting element decreases (increases) due to the temperature change, the resistance of the resistor arranged at the place affected by the temperature change of the LED package increases (decreases). As a result, the change in resistance of the entire light emitting module is alleviated. Therefore, even when the light emitting module is driven at a constant voltage, the temperature dependence of the current flowing through the light emitting diode can be reduced.
 第1の半導体発光素子と第2の半導体発光素子とに流れる電流を独立して制御する制御部を更に備えていてもよい。これにより、第1の半導体発光素子と第2の半導体発光素子とに流れる電流を互いに異ならせることができる。そのため、中央部の輝度が高い発光モジュールを実現でき、例えば、車両用灯具に適用した場合に、中央部が明るい所望の配光パターンを実現できる。 A control unit that independently controls the current flowing through the first semiconductor light emitting element and the second semiconductor light emitting element may be further provided. Thereby, the currents flowing through the first semiconductor light emitting element and the second semiconductor light emitting element can be made different from each other. Therefore, a light emitting module having a high luminance at the central portion can be realized. For example, when applied to a vehicular lamp, a desired light distribution pattern with a bright central portion can be realized.
 制御部は、ハイビーム用配光パターンを形成する場合には、ロービーム用配光パターンを形成する場合と比較して、第2の半導体発光素子に流す電流量を増加させてもよい。これにより、発光モジュールの中央部に配置された、遠方視認性に影響の大きい第2の半導体発光素子に流す電流量のみを増加させることができ、発光モジュールの両端側に配置された、遠方視認性に影響の小さい第1の半導体発光素子に流す電流量は増加させずにすむ。これにより、ハイビーム用配光パターンを形成する際の消費電力の増大を抑制できる。 The control unit may increase the amount of current flowing through the second semiconductor light emitting element when forming the light distribution pattern for high beam as compared with the case of forming the light distribution pattern for low beam. Thereby, it is possible to increase only the amount of current flowing through the second semiconductor light emitting element disposed in the central portion of the light emitting module, which has a large influence on the distance visibility, and is disposed at both ends of the light emitting module. Therefore, it is not necessary to increase the amount of current flowing through the first semiconductor light emitting element that has a small effect on the performance. Thereby, the increase in power consumption at the time of forming the light distribution pattern for high beams can be suppressed.
 車両の前照灯として用いられる車両用灯具であって、発光モジュールと、発光モジュールから出射された光を車両前方に照射するための光学部材と、発光モジュールおよび光学部材を収容する灯体と、を備えた。 A vehicular lamp used as a vehicle headlamp, a light emitting module, an optical member for irradiating light emitted from the light emitting module to the front of the vehicle, a light body that houses the light emitting module and the optical member, Equipped with.
 この態様によると、中央部が明るい所望の配光パターンを簡易な構成で実現できる。 According to this aspect, a desired light distribution pattern with a bright central portion can be realized with a simple configuration.
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。 It should be noted that an arbitrary combination of the above-described components and a representation obtained by converting the expression of the present invention between a method, an apparatus, a system and the like are also effective as an aspect of the present invention.
 中央部に配置された半導体発光素子の輝度が周辺部に配置された半導体発光素子の輝度よりも高い発光モジュールを簡易な構成で実現できる。 A light emitting module in which the brightness of the semiconductor light emitting element disposed in the central part is higher than the brightness of the semiconductor light emitting element disposed in the peripheral part can be realized with a simple configuration.
第1の実施の形態に係る車両用灯具を示す正面図である。1 is a front view showing a vehicular lamp according to a first embodiment. 車両用灯具ユニットの側断面図である。It is a sectional side view of a vehicle lamp unit. 本実施の形態に係る発光モジュールを示す図である。It is a figure which shows the light emitting module which concerns on this Embodiment. 各半導体発光素子と電源との接続状態を模式的に示した回路図である。It is the circuit diagram which showed typically the connection state of each semiconductor light-emitting element and a power supply. 車両用灯具の配光パターンの一例を示す図である。It is a figure which shows an example of the light distribution pattern of a vehicle lamp. 第2の実施の形態に係る発光モジュールの模式図である。It is a schematic diagram of the light emitting module which concerns on 2nd Embodiment. 第3の実施の形態に係る発光モジュールの模式図である。It is a schematic diagram of the light emitting module which concerns on 3rd Embodiment. 図8(a)は、半導体発光素子の総数が4個の発光モジュールにおける第1の半導体発光素子と第2の半導体発光素子との配置を示した模式図、図8(b)は、半導体発光素子の総数が5個の発光モジュールにおける第1の半導体発光素子と第2の半導体発光素子との配置を示した模式図である。FIG. 8A is a schematic view showing the arrangement of the first semiconductor light emitting element and the second semiconductor light emitting element in the light emitting module having the total number of semiconductor light emitting elements of 4, and FIG. It is the schematic diagram which showed arrangement | positioning with the 1st semiconductor light emitting element and the 2nd semiconductor light emitting element in the light emitting module with the total of five elements. 一般的なLEDを定電流で駆動した場合における、雰囲気温度と電圧との関係を示した図である。It is the figure which showed the relationship between atmospheric temperature and voltage in the case of driving a general LED with a constant current. 一般的なLEDの電圧-電流特性の温度依存性を示す図である。It is a figure which shows the temperature dependence of the voltage-current characteristic of a general LED. 第4の実施の形態に係る発光モジュールの概略構成を示す上面図である。It is a top view which shows schematic structure of the light emitting module which concerns on 4th Embodiment. 本実施の形態に係る発光モジュールを定電流で駆動した場合における、雰囲気温度と電圧との関係を例示した図である。It is the figure which illustrated the relationship between atmospheric temperature and a voltage at the time of driving the light emitting module which concerns on this Embodiment with a constant current. 表1に示した金属材料の体積抵抗率と温度係数との関係を示した図である。It is the figure which showed the relationship between the volume resistivity of the metal material shown in Table 1, and a temperature coefficient.
 以下、図面を参照しながら、本発明を実施するための形態について詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を適宜省略する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and repeated descriptions are omitted as appropriate.
 (第1の実施の形態)
 図1は、第1の実施の形態に係る車両用灯具100を示す正面図である。車両用灯具100は、例えば、車両の前方の予め定められた照射方向に光を照射するロービーム照射用の車両用前照灯である。車両用灯具100は、灯室を構成する透明カバー102とランプボディ104とで形成される灯室内に、3つの車両用灯具ユニット10を横一列に収容する。
(First embodiment)
FIG. 1 is a front view showing a vehicular lamp 100 according to the first embodiment. The vehicle lamp 100 is, for example, a vehicle headlamp for low beam irradiation that irradiates light in a predetermined irradiation direction in front of the vehicle. The vehicular lamp 100 accommodates three vehicular lamp units 10 in a horizontal row in a lamp chamber formed by a transparent cover 102 and a lamp body 104 constituting the lamp chamber.
 これらの車両用灯具ユニット10は、同一又は同様の構成を有し、車両用灯具100を車体に取り付けた場合に、光軸が車両前後方向に対して0.3~0.6°程度下向きとなるように灯室内に収容されている。車両用灯具100は、これらの車両用灯具ユニット10が照射する光に基づき、車両の前方に光を照射して、所定の配光パターンを形成する。車両用灯具100は、それぞれ異なる配光特性を有する複数の車両用灯具ユニット10を備えてもよい。 These vehicle lamp units 10 have the same or similar configuration, and when the vehicle lamp 100 is attached to the vehicle body, the optical axis is about 0.3 to 0.6 ° downward with respect to the vehicle longitudinal direction. It is accommodated in the lamp chamber. The vehicular lamp 100 irradiates light ahead of the vehicle based on the light emitted by the vehicular lamp unit 10 to form a predetermined light distribution pattern. The vehicular lamp 100 may include a plurality of vehicular lamp units 10 having different light distribution characteristics.
 図2は、車両用灯具ユニット10の側断面図である。車両用灯具ユニット10は、発光モジュール16から出射された光を、光学部材である投影レンズ12により直接前方に照射する直射型の車両用灯具ユニットである。図2に示すように、車両用灯具ユニット10は、支持部材18、遮光部材14、発光モジュール16、投影レンズ12を備える。 FIG. 2 is a side sectional view of the vehicular lamp unit 10. The vehicular lamp unit 10 is a direct-type vehicular lamp unit that irradiates light emitted from the light emitting module 16 directly forward by the projection lens 12 that is an optical member. As shown in FIG. 2, the vehicular lamp unit 10 includes a support member 18, a light shielding member 14, a light emitting module 16, and a projection lens 12.
 支持部材18は、車両の前方を向く表面上に発光モジュール16の底面を支持して固定することにより、発光モジュール16を車両の前方に向けて発光させる板状体である。本実施の形態において、支持部材18は鉛直方向に立てて設けられている。支持部材18の上端および下端には、発光モジュール16の発生する熱を放熱するヒートシンク19が設けられている。ヒートシンク19により、発光モジュール16の発光効率が熱により低下するのを防ぐことができる。 The support member 18 is a plate-like body that causes the light emitting module 16 to emit light toward the front of the vehicle by supporting and fixing the bottom surface of the light emitting module 16 on the surface facing the front of the vehicle. In the present embodiment, the support member 18 is provided upright in the vertical direction. A heat sink 19 that dissipates heat generated by the light emitting module 16 is provided at the upper and lower ends of the support member 18. The heat sink 19 can prevent the light emission efficiency of the light emitting module 16 from being reduced by heat.
 遮光部材14は、発光モジュール16を挟んで支持部材18の上面と対向して設けられた板状体であり、発光モジュール16が発生する光の一部を上縁部において遮ることにより、当該上縁部の正面方向への投影形状に基づき、投影レンズ12に入射する光の明暗境界を規定する。投影形状は、例えば、車両の左右方向に延伸する直線状である。また、遮光部材14の下端は、支持部材18の下端と接続されており、遮光部材14と支持部材18とは一体に形成されている。 The light shielding member 14 is a plate-like body provided to face the upper surface of the support member 18 with the light emitting module 16 interposed therebetween, and blocks the light generated by the light emitting module 16 at the upper edge portion, thereby Based on the projected shape of the edge in the front direction, a light / dark boundary of light incident on the projection lens 12 is defined. The projected shape is, for example, a straight shape extending in the left-right direction of the vehicle. Further, the lower end of the light shielding member 14 is connected to the lower end of the support member 18, and the light shielding member 14 and the support member 18 are integrally formed.
 発光モジュール16は、支持部材18上に底面が固定された基板22と、基板22の上面上に直線状に並べられた複数の半導体発光素子20と、半導体発光素子20を封止する透光部材24とを含む。透光部材24は、透明樹脂などの半導体発光素子20が発生する光を透過する材料で形成される。発光モジュール16は、複数の半導体発光素子20の配列方向が車両の左右方向となるように配置される。また、発光モジュール16は、半導体発光素子20の鉛直方向の中央が、投影レンズ12の光軸Ax上に位置するように配置される。発光モジュール16の詳細については、後述する。 The light emitting module 16 includes a substrate 22 having a bottom surface fixed on a support member 18, a plurality of semiconductor light emitting elements 20 arranged in a straight line on the upper surface of the substrate 22, and a translucent member that seals the semiconductor light emitting elements 20. 24. The translucent member 24 is formed of a material that transmits light generated by the semiconductor light emitting element 20 such as a transparent resin. The light emitting module 16 is disposed such that the arrangement direction of the plurality of semiconductor light emitting elements 20 is the left-right direction of the vehicle. The light emitting module 16 is arranged so that the center of the semiconductor light emitting element 20 in the vertical direction is located on the optical axis Ax of the projection lens 12. Details of the light emitting module 16 will be described later.
 投影レンズ12は、前方側表面および後方側表面が凸面の両凸レンズで構成されており、その焦点距離faは比較的大きい値に設定されている。投影レンズ12は、図示しない連結部材を介して支持部材18に固定されている。投影レンズ12は、発光モジュール16の複数の半導体発光素子20に対して共通に設けられた光学系であり、発光モジュール16に対して車両前方に設けられ、発光モジュール16の発生する光を透過することにより、光を車両前方の所定の照射方向に照射する。投影レンズ12は、光学的中心としての後側焦点Fが、複数の半導体発光素子列の中央線上に位置するように配置される。 The projection lens 12 is composed of a biconvex lens whose front surface and rear surface are convex, and its focal length fa is set to a relatively large value. The projection lens 12 is fixed to the support member 18 via a connecting member (not shown). The projection lens 12 is an optical system provided in common to the plurality of semiconductor light emitting elements 20 of the light emitting module 16, is provided in front of the vehicle with respect to the light emitting module 16, and transmits light generated by the light emitting module 16. Thus, the light is irradiated in a predetermined irradiation direction in front of the vehicle. The projection lens 12 is disposed such that the rear focal point F as the optical center is located on the center line of the plurality of semiconductor light emitting element arrays.
 このように構成された車両用灯具ユニット10において、発光モジュール16からの出射光は、投影レンズ12によってわずかに光軸Ax寄りに収束させるようにして、前方へ反転照射する。その際、発光モジュール16からの出射光のうち光軸Axよりも下方へ向かう光については、これを遮光部材14により遮蔽するようになっており、これにより車両用灯具ユニット10から前方へ向けて上方光が照射されないようになっている。 In the vehicle lamp unit 10 configured as described above, the light emitted from the light emitting module 16 is inverted and irradiated forward by the projection lens 12 so as to converge slightly toward the optical axis Ax. At this time, the light emitted from the light emitting module 16 that is directed downward from the optical axis Ax is shielded by the light shielding member 14, thereby moving forward from the vehicle lamp unit 10. The upward light is not irradiated.
 図3は、本実施の形態に係る発光モジュール16を示す図である。発光モジュール16は、車両左右方向に延びる直線状光源であり、基板22と、複数の半導体発光素子20a~20dと、透光部材とを備えている。なお、図3においては、透光部材の図示を省略している。 FIG. 3 is a diagram showing the light emitting module 16 according to the present embodiment. The light emitting module 16 is a linear light source extending in the left-right direction of the vehicle, and includes a substrate 22, a plurality of semiconductor light emitting elements 20a to 20d, and a translucent member. In addition, illustration of the translucent member is abbreviate | omitted in FIG.
 複数の半導体発光素子20a~20dは、上面視において左側から、第1の半導体発光素子20a、第2の半導体発光素子20b,20c、第1の半導体発光素子20dの順で、基板22上に略等間隔に直線状に並べて配置されている。つまり、複数の半導体発光素子20a~20dは、発光モジュール16の両端側に配置された複数の第1の半導体発光素子20a,20dと、発光モジュール16の中央部に配置され、第1の半導体発光素子20a,20dよりも発光時の輝度を高めることが可能に構成されている複数の第2の半導体発光素子20b、20cと、を有する。なお、第2の半導体発光素子は、一つであってもよい。 The plurality of semiconductor light emitting elements 20a to 20d are arranged on the substrate 22 in the order of the first semiconductor light emitting element 20a, the second semiconductor light emitting elements 20b and 20c, and the first semiconductor light emitting element 20d from the left side in a top view. They are arranged in a straight line at equal intervals. That is, the plurality of semiconductor light emitting elements 20a to 20d are disposed at the center of the light emitting module 16 and the plurality of first semiconductor light emitting elements 20a and 20d disposed on both ends of the light emitting module 16. And a plurality of second semiconductor light emitting elements 20b and 20c configured to be capable of increasing luminance at the time of light emission than the elements 20a and 20d. Note that there may be one second semiconductor light emitting element.
 また、半導体発光素子20a~20dは、白色発光する白色LEDである。半導体発光素子20a~20dは、例えば、表面上に設けられた蛍光体(図示せず)に対して青色光を照射することにより、蛍光体に黄色光を発光させ、素子全体として白色光を発生する。半導体発光素子20a~20dは、それぞれ、図3に示した上面の略全領域が発光領域である。なお、半導体発光素子20a~20dは、発光面積が略1mm角のLEDチップである。 The semiconductor light emitting elements 20a to 20d are white LEDs that emit white light. The semiconductor light emitting devices 20a to 20d emit, for example, blue light to a phosphor (not shown) provided on the surface, thereby causing the phosphor to emit yellow light and generate white light as a whole of the device. To do. In each of the semiconductor light emitting elements 20a to 20d, substantially the entire area of the upper surface shown in FIG. 3 is a light emitting area. The semiconductor light emitting elements 20a to 20d are LED chips having a light emission area of approximately 1 mm square.
 図4は、各半導体発光素子と電源との接続状態を模式的に示した回路図である。図4に示すように、本実施の形態において、第1の半導体発光素子20a,20dおよび第2の半導体発光素子20b,20cは、基板22上に形成された配線パターン(図示せず)により、電気的に接続されている。 FIG. 4 is a circuit diagram schematically showing a connection state between each semiconductor light emitting element and a power source. As shown in FIG. 4, in the present embodiment, the first semiconductor light emitting elements 20a and 20d and the second semiconductor light emitting elements 20b and 20c are formed by a wiring pattern (not shown) formed on the substrate 22. Electrically connected.
 具体的には、第1の半導体発光素子20aのアノードは、図4に示す電源装置21の正極端子に接続され、第1の半導体発光素子20aのカソードは、第1の半導体発光素子20dのアノードに接続される。第1の半導体発光素子20dのカソードは、第1の抵抗器R1を介して電源装置21の負極端子に接続される。同様に、第2の半導体発光素子20bのアノードは、電源装置21の正極端子に接続され、第2の半導体発光素子20bのカソードは、第2の半導体発光素子20cのアノードに接続される。第2の半導体発光素子20cのカソードは、第2の抵抗器R2を介して電源装置21の負極端子に接続される。 Specifically, the anode of the first semiconductor light emitting element 20a is connected to the positive terminal of the power supply device 21 shown in FIG. 4, and the cathode of the first semiconductor light emitting element 20a is the anode of the first semiconductor light emitting element 20d. Connected to. The cathode of the first semiconductor light emitting element 20d is connected to the negative terminal of the power supply device 21 via the first resistor R1. Similarly, the anode of the second semiconductor light emitting element 20b is connected to the positive terminal of the power supply device 21, and the cathode of the second semiconductor light emitting element 20b is connected to the anode of the second semiconductor light emitting element 20c. The cathode of the second semiconductor light emitting element 20c is connected to the negative terminal of the power supply device 21 via the second resistor R2.
 つまり、図4に示すように、発光モジュール16の両端側に配置されている2つの第1の半導体発光素子20a,20dは、電源装置21に対して直列に接続されている。同様に、発光モジュール16の中央部に配置されている2つの第2の半導体発光素子20b,20cは、電源装置21に対して直列に接続されている。また、第1の半導体発光素子20a,20dと、第2の半導体発光素子20b,20cとは、並列に接続されている。 That is, as shown in FIG. 4, the two first semiconductor light emitting elements 20 a and 20 d arranged on both ends of the light emitting module 16 are connected in series to the power supply device 21. Similarly, the two second semiconductor light emitting elements 20 b and 20 c arranged at the center of the light emitting module 16 are connected in series to the power supply device 21. The first semiconductor light emitting elements 20a and 20d and the second semiconductor light emitting elements 20b and 20c are connected in parallel.
 したがって、第1の半導体発光素子20a,20dと、第2の半導体発光素子20b,20cとが並列に接続されていることで、第1の半導体発光素子20a,20dと、第2の半導体発光素子20b,20cとに流れる電流を、互いに異ならせることが可能となる。そのため、第2の半導体発光素子20b,20cに流す電流を高めれば、中央部の輝度が高い発光モジュール16を実現できる。また、このような発光モジュール16を備えた車両用灯具ユニット10は、中央部が明るい所望の配光パターンを簡易な構成で実現できる。 Accordingly, the first semiconductor light emitting elements 20a, 20d and the second semiconductor light emitting elements 20b, 20c are connected in parallel, so that the first semiconductor light emitting elements 20a, 20d and the second semiconductor light emitting elements are connected. The currents flowing through 20b and 20c can be made different from each other. Therefore, if the current passed through the second semiconductor light emitting elements 20b and 20c is increased, the light emitting module 16 having high luminance at the center can be realized. Moreover, the vehicle lamp unit 10 provided with such a light emitting module 16 can implement | achieve a desired light distribution pattern with a bright center part with simple structure.
 さらに、本実施の形態に係る発光モジュール16は、第1の半導体発光素子20a,20dと直列に接続されている第1の抵抗器R1と、第2の半導体発光素子20b,20cと直列に、かつ、第1の抵抗器R1と並列に接続されている第2の抵抗器R2と、を更に有している。また、第2の抵抗器R2は、第1の抵抗器R1よりも電気抵抗が小さい。これにより、各半導体発光素子に流れる電流や電圧を特段制御しなくても、簡易な構成で、第1の半導体発光素子20a,20dに流れる電流よりも、第2の半導体発光素子20b,20cに流れる電流を多くできる。したがって、発光モジュールの内側に配置されている第2の半導体発光素子20b,20cは、両端側に配置されている第1の半導体発光素子20a,20dよりも発光輝度が高くなる。 Furthermore, the light emitting module 16 according to the present embodiment includes a first resistor R1 connected in series with the first semiconductor light emitting elements 20a and 20d, and a second semiconductor light emitting element 20b and 20c in series. And it has further 2nd resistor R2 connected in parallel with 1st resistor R1. Further, the second resistor R2 has a smaller electrical resistance than the first resistor R1. Thereby, even if it does not control especially the electric current and voltage which flow into each semiconductor light-emitting device, it is simple structure, and it is 2nd semiconductor light-emitting device 20b, 20c rather than the electric current which flows into 1st semiconductor light-emitting device 20a, 20d. The flowing current can be increased. Therefore, the second semiconductor light emitting elements 20b and 20c arranged inside the light emitting module have higher emission luminance than the first semiconductor light emitting elements 20a and 20d arranged on both ends.
 また、各半導体発光素子へ流す電流を個別に制御するための電流制御回路が必要なくなる。また、同じ大きさや性能の半導体発光素子を複数並べた発光モジュールであっても、簡便に素子毎の輝度を異ならせることができるため、複数の種類の半導体発光素子を用いる必要がなく、発光モジュールのコストが低減される。また、複数の種類の半導体発光素子を基板に搭載する場合と比較して、単一の種類の半導体発光素子を基板に搭載する方が、工程の簡略化や量産性の向上によって製造コストを低減できる。 Also, a current control circuit for individually controlling the current flowing to each semiconductor light emitting element is not necessary. In addition, even in a light emitting module in which a plurality of semiconductor light emitting elements having the same size and performance are arranged, it is possible to easily vary the brightness of each element, so there is no need to use a plurality of types of semiconductor light emitting elements, and the light emitting module Cost is reduced. Also, compared to mounting multiple types of semiconductor light emitting devices on a substrate, mounting a single type of semiconductor light emitting devices on a substrate reduces manufacturing costs by simplifying the process and improving mass productivity. it can.
 また、本実施の形態に係る発光モジュール16は、上述したように、図2に示す車両用灯具ユニット10に組み付けられた際に、4つの半導体発光素子列の中央線C上に投影レンズ12の後側焦点Fが位置するように配置される。 Further, as described above, when the light emitting module 16 according to the present embodiment is assembled to the vehicle lamp unit 10 shown in FIG. 2, the projection lens 12 is placed on the center line C of the four semiconductor light emitting element rows. It arrange | positions so that the back side focus F may be located.
 図5は、車両用灯具100の配光パターンの一例を示す。図5に示す配光パターン400は、車両用灯具100の前方25mの位置に配置された仮想鉛直スクリーン上に形成される左ロービーム配光パターンである。配光パターン400は、車両用灯具100の有する3つの車両用灯具ユニット10の合成配光パターンとして形成される。配光パターン400は、その上端に上下方向の明暗境界を定める水平カットラインCL1および斜めカットラインCL2を有している。 FIG. 5 shows an example of a light distribution pattern of the vehicular lamp 100. A light distribution pattern 400 illustrated in FIG. 5 is a left low beam light distribution pattern formed on a virtual vertical screen disposed at a position 25 m ahead of the vehicular lamp 100. The light distribution pattern 400 is formed as a combined light distribution pattern of the three vehicle lamp units 10 included in the vehicle lamp 100. The light distribution pattern 400 has a horizontal cut line CL1 and an oblique cut line CL2 that define a vertical light-dark boundary at the upper end thereof.
 水平カットラインCL1は、車両用灯具100の正面(水平軸H-垂直軸Vの交点)に対してやや下方(0.5~0.6°程度下向き)に設定されている。斜めカットラインCL2は、垂直軸VとCL1の交点から左上方に約15°程度傾斜している。配光パターン400のうちの水平カットラインCL1は、遮光部材14の上縁部の水平エッジによって形成される。一方、斜めカットラインCL2は、遮光部材14の上縁部の傾斜エッジによって形成される。配光パターンにおける水平軸Hと垂直軸Vとの交点近傍の領域は、ホットゾーン402と呼ばれ、安全上の観点から配光パターン400の他の領域に比べて、より明るく照らされることが好ましい。 The horizontal cut line CL1 is set slightly below (downward from about 0.5 to 0.6 °) with respect to the front of the vehicle lamp 100 (intersection of the horizontal axis H and the vertical axis V). The oblique cut line CL2 is inclined about 15 ° to the upper left from the intersection of the vertical axes V and CL1. The horizontal cut line CL1 in the light distribution pattern 400 is formed by the horizontal edge of the upper edge portion of the light shielding member 14. On the other hand, the oblique cut line CL2 is formed by the inclined edge of the upper edge portion of the light shielding member 14. A region in the vicinity of the intersection of the horizontal axis H and the vertical axis V in the light distribution pattern is referred to as a hot zone 402 and is preferably illuminated brighter than other regions of the light distribution pattern 400 from the viewpoint of safety. .
 ここで、配光パターンの水平カットラインCL1および斜めカットラインCL2の形成精度について検討する。本実施の形態では、第1の半導体発光素子20a,20dと、第2の半導体発光素子20b,20cとを並列に接続し、かつ、第2の半導体発光素子20b,20cと直列に接続される第2の抵抗器R2の電気抵抗を、第1の半導体発光素子20a,20dと直列に接続される第1の抵抗器R1の電気抵抗よりも小さく設定したことにより、発光モジュールの内側に配置されている第2の半導体発光素子20b,20cは、発光モジュールの両端側に配置されている第1の半導体発光素子20a,20dよりも発光輝度が高くなる。 Here, the formation accuracy of the horizontal cut line CL1 and the oblique cut line CL2 of the light distribution pattern will be examined. In the present embodiment, the first semiconductor light emitting elements 20a and 20d and the second semiconductor light emitting elements 20b and 20c are connected in parallel, and are connected in series with the second semiconductor light emitting elements 20b and 20c. Since the electric resistance of the second resistor R2 is set to be smaller than the electric resistance of the first resistor R1 connected in series with the first semiconductor light emitting elements 20a and 20d, the second resistor R2 is disposed inside the light emitting module. The second semiconductor light emitting elements 20b and 20c have higher luminance than the first semiconductor light emitting elements 20a and 20d disposed on both ends of the light emitting module.
 この発光モジュール16を用いて、光学系の光学的中心としての投影レンズ12の後側焦点Fが、半導体発光素子列の中央線C上に位置するように車両用灯具ユニット10を構成した場合、後側焦点Fに近い内側の第2の半導体発光素子20b,20cの輝度が高くなることにより、後側焦点Fを通る光量が増加する。通常、車両用灯具ユニットの光学系は、光学的中心を通った光が最も高い精度で配光パターンを形成するように構成されているので、後側焦点Fを通る光量が増加することにより、配光パターンの水平カットラインCL1および斜めカットラインCL2を明確に形成することができる。 When the vehicular lamp unit 10 is configured using the light emitting module 16 so that the rear focal point F of the projection lens 12 as the optical center of the optical system is located on the center line C of the semiconductor light emitting element array, The brightness of the inner second semiconductor light emitting elements 20b and 20c close to the rear focal point F increases, so that the amount of light passing through the rear focal point F increases. Usually, the optical system of the vehicular lamp unit is configured such that light passing through the optical center forms a light distribution pattern with the highest accuracy, so that the amount of light passing through the rear focal point F increases, The horizontal cut line CL1 and the oblique cut line CL2 of the light distribution pattern can be clearly formed.
 また、投影レンズ12の後側焦点Fを通る光量が増加することにより、ホットゾーン402を明るく照らすことができる。さらに、配光パターンを形成するための光の利用効率が比較的高い内側に配置された第2の半導体発光素子20b,20cのみ輝度が高くなるため、消費電力の損失を低減できる。 Also, the hot zone 402 can be illuminated brightly by increasing the amount of light passing through the rear focal point F of the projection lens 12. Furthermore, since only the second semiconductor light emitting elements 20b and 20c arranged on the inner side where the light use efficiency for forming the light distribution pattern is relatively high increases in luminance, the loss of power consumption can be reduced.
 なお、本実施の形態では、4個の半導体発光素子を配置する例について説明したが、3個以上の半導体発光素子を直線状に配置した発光モジュールであってもよい。また、各半導体発光素子の内部抵抗を考慮して、第1の抵抗器と第2の抵抗器のいずれかを省略することも可能である。 In addition, although the example which arrange | positions four semiconductor light emitting elements was demonstrated in this Embodiment, the light emitting module which has arrange | positioned three or more semiconductor light emitting elements linearly may be sufficient. Also, considering the internal resistance of each semiconductor light emitting element, it is possible to omit either the first resistor or the second resistor.
 電源装置21は、車両用灯具ユニット10の内部に設けられていてもよいし、外部に設けられていてもよい。また、各半導体発光素子への電流の制御は、車両側にあるバッテリーと直結された場合のような定電圧制御に限られず、点灯回路を介した制御であってもよい。 The power supply device 21 may be provided inside the vehicle lamp unit 10 or may be provided outside. Further, the control of the current to each semiconductor light emitting element is not limited to the constant voltage control as in the case where it is directly connected to the battery on the vehicle side, and may be control via a lighting circuit.
 本実施の形態では、発光モジュール16を、ロービーム用配光パターンのみを形成する車両用前照灯に適用した例ついて説明したが、ハイビーム用配光パターンのみを形成する車両用前照灯や、ロービーム用配光パターンとハイビーム用配光パターンとを切り替え可能に構成された車両用前照灯に適用することももちろん可能である。 In the present embodiment, an example in which the light emitting module 16 is applied to a vehicle headlamp that forms only a low beam light distribution pattern has been described, but a vehicle headlamp that forms only a high beam light distribution pattern, Of course, the present invention can be applied to a vehicle headlamp configured to be able to switch between a low beam light distribution pattern and a high beam light distribution pattern.
 (第2の実施の形態)
 図6は、第2の実施の形態に係る発光モジュールの模式図である。図6では、主として回路構成を示してある。なお、第1の実施の形態と同様の構成、作用、効果の説明については、適宜省略する。
(Second Embodiment)
FIG. 6 is a schematic diagram of a light emitting module according to the second embodiment. FIG. 6 mainly shows the circuit configuration. Note that descriptions of configurations, operations, and effects similar to those of the first embodiment are omitted as appropriate.
 図6に示す発光モジュール116は、4つの半導体発光素子20a~20dがそれぞれ並列接続されている。また、第1の半導体発光素子20aは、第1の抵抗器R1と直列に接続され、第2の半導体発光素子20bは、第2の抵抗器R2と直列に接続され、第2の半導体発光素子20cは、第3の抵抗器R3と直列に接続され、第1の半導体発光素子20dは、第4の抵抗器R4と直列に接続されている。ここで、第2の抵抗器R2および第3の抵抗器R3は、第1の抵抗器R1および第4の抵抗器R4よりも電気抵抗が小さい。 In the light emitting module 116 shown in FIG. 6, four semiconductor light emitting elements 20a to 20d are respectively connected in parallel. The first semiconductor light emitting element 20a is connected in series with the first resistor R1, and the second semiconductor light emitting element 20b is connected in series with the second resistor R2. 20c is connected in series with the third resistor R3, and the first semiconductor light emitting element 20d is connected in series with the fourth resistor R4. Here, the second resistor R2 and the third resistor R3 have a smaller electrical resistance than the first resistor R1 and the fourth resistor R4.
 これにより、各半導体発光素子20a~20dに流れる電流や電圧を特段制御しなくても、簡易な構成で第1の半導体発光素子20a,20dに流れる電流よりも、第2の半導体発光素子20b,20cに流れる電流を多くできる。したがって、発光モジュール116の内側に配置されている第2の半導体発光素子20b,20cは、両端側に配置されている第1の半導体発光素子20a,20dよりも発光輝度が高くなる。 Thereby, the second semiconductor light emitting element 20b, 20b, 20b, 20c, 20d, and 20d can be compared with the current flowing through the first semiconductor light emitting elements 20a, 20d with a simple configuration without special control of the current and voltage flowing through the semiconductor light emitting elements 20a-20d. The current flowing through 20c can be increased. Therefore, the second semiconductor light emitting elements 20b and 20c arranged inside the light emitting module 116 have higher emission luminance than the first semiconductor light emitting elements 20a and 20d arranged on both ends.
 (第3の実施の形態)
 図7は、第3の実施の形態に係る発光モジュールの模式図である。図7では、主として回路構成を示してある。なお、上述の各実施の形態と同様の構成、作用、効果の説明については、適宜省略する。
(Third embodiment)
FIG. 7 is a schematic diagram of a light emitting module according to the third embodiment. FIG. 7 mainly shows the circuit configuration. Note that descriptions of configurations, operations, and effects similar to those of the above-described embodiments are omitted as appropriate.
 発光モジュール16は、車両左右方向に延びる直線状光源であり、複数の半導体発光素子120a~120cと、制御部122とを備えている。以下では、複数の半導体発光素子120a~120cは、第1の実施の形態に係る各半導体発光素子20a~20dと同等の構成として説明する。 The light emitting module 16 is a linear light source extending in the left-right direction of the vehicle, and includes a plurality of semiconductor light emitting elements 120a to 120c and a control unit 122. Hereinafter, the plurality of semiconductor light emitting elements 120a to 120c will be described as having the same configuration as each of the semiconductor light emitting elements 20a to 20d according to the first embodiment.
 複数の半導体発光素子120a~120cは、図7の左側から、第1の半導体発光素子120a、第2の半導体発光素子120b、第1の半導体発光素子120cの順で、基板(不図示)上に略等間隔に直線状に並べて配置されている。つまり、複数の半導体発光素子120a~120cは、発光モジュール216の両端側に配置された複数の第1の半導体発光素子120a,120cと、発光モジュール216の中央部に配置され、第1の半導体発光素子120a,120cよりも発光時の輝度を高めることが可能に構成されている第2の半導体発光素子120bと、を有する。なお、第2の半導体発光素子は、複数であってもよい。第1の半導体発光素子120a,120cと、第2の半導体発光素子120bとは、それぞれ独立の通電経路に設けられている。 The plurality of semiconductor light emitting elements 120a to 120c are arranged on a substrate (not shown) in the order of the first semiconductor light emitting element 120a, the second semiconductor light emitting element 120b, and the first semiconductor light emitting element 120c from the left side of FIG. They are arranged in a straight line at substantially equal intervals. That is, the plurality of semiconductor light emitting elements 120a to 120c are disposed at the center of the light emitting module 216 and the plurality of first semiconductor light emitting elements 120a and 120c disposed on both ends of the light emitting module 216. And a second semiconductor light emitting element 120b configured to be able to increase luminance at the time of light emission than the elements 120a and 120c. The second semiconductor light emitting element may be plural. The first semiconductor light emitting elements 120a and 120c and the second semiconductor light emitting element 120b are provided in independent energization paths, respectively.
 制御部122は、第1の半導体発光素子120a,120cと第2の半導体発光素子120bとに流れる電流を独立して制御する。これにより、第1の半導体発光素子120a,120cと第2の半導体発光素子120bとに流れる電流を互いに異ならせることができる。そのため、中央部の輝度が高い発光モジュールを実現でき、例えば、車両用灯具に適用した場合に、中央部が明るい所望の配光パターンを実現できる。 The control unit 122 independently controls the currents flowing through the first semiconductor light emitting elements 120a and 120c and the second semiconductor light emitting element 120b. Thereby, the currents flowing through the first semiconductor light emitting elements 120a and 120c and the second semiconductor light emitting element 120b can be made different from each other. Therefore, a light emitting module having a high luminance at the central portion can be realized. For example, when applied to a vehicular lamp, a desired light distribution pattern with a bright central portion can be realized.
 また、第3の実施の形態に係る発光モジュール216を、ハイビーム用配光パターンとロービーム用配光パターンの両方を一種類の光源で実現するように構成されている車両用灯具ユニットに、その光源として搭載できる。 Further, the light emitting module 216 according to the third embodiment is applied to a vehicle lamp unit configured to realize both a high beam light distribution pattern and a low beam light distribution pattern with one type of light source. Can be installed as.
 制御部122は、ロービーム用配光パターンを形成する場合には、第1の半導体発光素子120a,120cと第2の半導体発光素子120bとに流す電流量が略同一となるようにし、各半導体発光素子120a~120cの輝度をほぼ同等にする。また、制御部122は、ハイビーム用配光パターンを形成する場合には、ロービーム用配光パターンを形成するときと比較して、第2の半導体発光素子120bに流す電流量を増加させることができるように構成されている。これにより、発光モジュール216の中央部に配置された、遠方視認性に影響の大きい第2の半導体発光素子120bに流す電流量のみを増加させることができ、発光モジュール216の両端側に配置された、遠方視認性に影響の小さい第1の半導体発光素子120a,120cに流す電流量は増加させずにすむ。その結果、車両用前照灯において、ハイビーム用配光パターンを形成する際の消費電力の増大を抑制できる。 When the light distribution pattern for low beam is formed, the control unit 122 makes the amount of current flowing through the first semiconductor light emitting elements 120a and 120c and the second semiconductor light emitting element 120b substantially the same, and emits each semiconductor light emitting element. The luminances of the elements 120a to 120c are made almost equal. In addition, when forming the high beam light distribution pattern, the control unit 122 can increase the amount of current flowing through the second semiconductor light emitting element 120b as compared with the case of forming the low beam light distribution pattern. It is configured as follows. Thereby, it is possible to increase only the amount of current flowing through the second semiconductor light emitting element 120b, which is disposed in the central portion of the light emitting module 216 and has a large influence on far visibility, and is disposed on both ends of the light emitting module 216. The amount of current flowing through the first semiconductor light emitting elements 120a and 120c, which has a small influence on far visibility, does not need to be increased. As a result, in the vehicle headlamp, it is possible to suppress an increase in power consumption when forming a high beam light distribution pattern.
 本実施の形態では、半導体発光素子の個数を3個として説明したが、個数は4個以上であってもよい。図8(a)は、半導体発光素子の総数が4個の発光モジュールにおける第1の半導体発光素子と第2の半導体発光素子との配置を示した模式図、図8(b)は、半導体発光素子の総数が5個の発光モジュールにおける第1の半導体発光素子と第2の半導体発光素子との配置を示した模式図である。 In the present embodiment, the number of semiconductor light emitting elements is described as three, but the number may be four or more. FIG. 8A is a schematic view showing the arrangement of the first semiconductor light emitting element and the second semiconductor light emitting element in the light emitting module having the total number of semiconductor light emitting elements of 4, and FIG. It is the schematic diagram which showed arrangement | positioning with the 1st semiconductor light emitting element and the 2nd semiconductor light emitting element in the light emitting module with the total of five elements.
 図8(a)に示す発光モジュール218は、両端側にある2個の第1の半導体発光素子130a,130dと、中央部近傍にある2個の第2の半導体発光素子130b,130cとを有する。また、図8(b)に示す発光モジュール220は、両端側にある2個の第1の半導体発光素子140a,140eと、中央部近傍にある3個の第2の半導体発光素子130b~130dとを有する。 A light emitting module 218 shown in FIG. 8A has two first semiconductor light emitting elements 130a and 130d on both ends, and two second semiconductor light emitting elements 130b and 130c near the center. . In addition, the light emitting module 220 shown in FIG. 8B includes two first semiconductor light emitting elements 140a and 140e on both ends, and three second semiconductor light emitting elements 130b to 130d near the center. Have
 本実施の形態に係る発光モジュール216,218,220のいずれにおいても、発光モジュールの発光面の中心を通り、かつ、発光面の長手方向に対して垂直な中心線に対し、1以上の第2の半導体発光素子が線対称となるように配置されている。また、各半導体発光素子は、発光面の中心に対して対称となるような形状である。本実施の形態では、半各導体発光素子の発光面の形状は、正方形又は長方形である。これにより、発光モジュールによる配光の左右対称性が実現し、視認性が向上する。 In any of the light emitting modules 216, 218, and 220 according to the present embodiment, one or more second light lines pass through the center of the light emitting surface of the light emitting module and are perpendicular to the longitudinal direction of the light emitting surface. The semiconductor light emitting elements are arranged to be line symmetric. Each semiconductor light emitting element has a shape that is symmetric with respect to the center of the light emitting surface. In the present embodiment, the shape of the light emitting surface of each half conductor light emitting element is a square or a rectangle. Thereby, the left-right symmetry of the light distribution by a light emitting module is implement | achieved, and visibility improves.
 また、発光モジュールの発光面積のうち、電流を増加させることで他より輝度を高める第2の半導体発光素子の発光面積が占める割合は、全発光面の面積に対し、30%~60%程度であるとよい。これにより全ての半導体発光素子の電流を増加させる場合に比べ、消費電力の増加分は、40%~70%程度に抑えることができる。 In addition, the ratio of the light emitting area of the second semiconductor light emitting element that increases the luminance by increasing the current by increasing the current in the light emitting area of the light emitting module is about 30% to 60% of the area of the entire light emitting surface. There should be. Thereby, compared with the case where the current of all the semiconductor light emitting elements is increased, the increase in power consumption can be suppressed to about 40% to 70%.
 (第4の実施の形態)
 一般的に、LEDは、負の温度係数を抵抗成分に持つ。図9は、一般的なLEDを定電流で駆動した場合における、雰囲気温度と電圧との関係を示した図である。図9に示すように、雰囲気温度の上昇とともにLEDの駆動電圧が低下することがわかる。図10は、一般的なLEDの電圧-電流特性の温度依存性を示す図である。図10に示すように、雰囲気温度がT0、T1、T2のように上昇するにつれて、電圧の変化に対する電流の変化が大きくなることがわかる。このような特性から、一般的なLEDを定電流駆動するためには、制御回路のような安定器が別途必要である。
(Fourth embodiment)
In general, an LED has a negative temperature coefficient as a resistance component. FIG. 9 is a diagram showing the relationship between ambient temperature and voltage when a general LED is driven with a constant current. As shown in FIG. 9, it can be seen that the drive voltage of the LED decreases as the ambient temperature increases. FIG. 10 is a diagram showing the temperature dependence of the voltage-current characteristics of a general LED. As shown in FIG. 10, it can be seen that the change in current with respect to the change in voltage increases as the ambient temperature rises like T0, T1, and T2. Due to such characteristics, a ballast such as a control circuit is separately required to drive a general LED at a constant current.
 換言すれば、定電圧駆動した場合の電流の温度依存性が少なければ、このような制御回路を簡素化又は省略できることになる。そこで、本発明者は、一般的に負の温度係数を抵抗成分に有するLEDに対して正の温度係数を有する抵抗器を直列に接続することで、温度の変化に対して明るさの変動の少ない発光モジュールを簡易な構成で実現できることに想到した。 In other words, if the temperature dependence of the current when driven at a constant voltage is small, such a control circuit can be simplified or omitted. Therefore, the present inventor generally connects a resistor having a positive temperature coefficient in series with an LED having a negative temperature coefficient as a resistance component, so that the variation in brightness with respect to a change in temperature is reduced. The idea was that a small number of light emitting modules could be realized with a simple configuration.
 具体的には、第1の実施の形態に係る発光モジュールにおいて、第1の抵抗器R1および第2の抵抗器R2として、以下の構成の材料を用いることが好ましい。 Specifically, in the light emitting module according to the first embodiment, it is preferable to use materials having the following configurations as the first resistor R1 and the second resistor R2.
 図11は、第4の実施の形態に係る発光モジュールの概略構成を示す上面図である。発光モジュール222は、LEDである第1の半導体発光素子150a,150dとLEDである第2の半導体発光素子150b,150cとが実装されているLEDパッケージ224と、第1の抵抗器R1および第2の抵抗器R2(以下、適宜「抵抗器R1,R2」と称する。)とを備える。LEDパッケージ224は、セラミックなどで形成された熱伝導性絶縁基板230と、熱伝導性絶縁基板230に形成されている配線パターン232とを有する。 FIG. 11 is a top view showing a schematic configuration of the light emitting module according to the fourth embodiment. The light emitting module 222 includes an LED package 224 on which the first semiconductor light emitting elements 150a and 150d that are LEDs and the second semiconductor light emitting elements 150b and 150c that are LEDs are mounted, a first resistor R1, and a second resistor. Resistor R2 (hereinafter, referred to as “resistors R1, R2” as appropriate). The LED package 224 includes a heat conductive insulating substrate 230 formed of ceramic or the like, and a wiring pattern 232 formed on the heat conductive insulating substrate 230.
 第1の抵抗器R1は、第1の半導体発光素子150a,150dと直列に接続されている。第2の抵抗器R2は、第2の半導体発光素子150b,150cと直列に接続されている。なお、第2の抵抗器R2は、第1の抵抗器R1よりも電気抵抗が小さい。また、抵抗器R1,R2は、LEDパッケージ224の配線パターン232上にフリップチップ実装されている。そのため、抵抗器R1,R2は、LEDパッケージ224の温度変化の影響を受ける場所に配置されていることになる。本実施の形態に係る抵抗器R1,R2は、正の温度係数を有する。 The first resistor R1 is connected in series with the first semiconductor light emitting elements 150a and 150d. The second resistor R2 is connected in series with the second semiconductor light emitting elements 150b and 150c. Note that the second resistor R2 has a smaller electrical resistance than the first resistor R1. Resistors R 1 and R 2 are flip-chip mounted on the wiring pattern 232 of the LED package 224. For this reason, the resistors R1 and R2 are arranged at a location that is affected by the temperature change of the LED package 224. Resistors R1 and R2 according to the present embodiment have a positive temperature coefficient.
 図12は、本実施の形態に係る発光モジュールを定電流で駆動した場合における、雰囲気温度と電圧との関係を例示した図である。本実施の形態に係る発光モジュールは、温度変化によりLEDである各半導体発光素子150a~150dの抵抗が減少(増加)しても、LEDの温度変化の影響を受ける場所に配置されている抵抗器R1,R2の抵抗は増加(減少)する。したがって、使用するLEDに応じて、抵抗器の材質や構成を適切に設計することで、発光モジュール全体としての抵抗の変化は緩和される。 FIG. 12 is a diagram illustrating the relationship between the ambient temperature and the voltage when the light emitting module according to this embodiment is driven with a constant current. The light emitting module according to the present embodiment is a resistor arranged at a location that is affected by the temperature change of the LED even if the resistance of each of the semiconductor light emitting elements 150a to 150d that are LEDs decreases (increases) due to the temperature change. The resistances of R1 and R2 increase (decrease). Therefore, by appropriately designing the material and configuration of the resistor according to the LED to be used, the change in the resistance of the light emitting module as a whole is mitigated.
 そのため、図12に示すように、本実施の形態に係る発光モジュールは、LEDのみの発光モジュールと比較して、電圧の温度依存性が少ない。換言すれば、本実施の形態に係る発光モジュールを定電圧駆動した場合であっても、発光ダイオードに流れる電流の温度依存性を少なくできる。つまり、温度の変化に対して明るさの変動の少ない発光モジュールを、簡易な制御回路を使用し、あるいは、制御回路などを使用せずに実現できる。 Therefore, as shown in FIG. 12, the light emitting module according to the present embodiment is less temperature dependent on the voltage than the LED only light emitting module. In other words, even when the light emitting module according to this embodiment is driven at a constant voltage, the temperature dependence of the current flowing through the light emitting diode can be reduced. That is, a light-emitting module with little variation in brightness with respect to a change in temperature can be realized using a simple control circuit or without using a control circuit or the like.
 また、通常は、制御回路の寿命はLEDチップの寿命よりも短いため、発光モジュール全体の寿命は制御回路の寿命に依存してしまう。しかしながら、制御回路を使用せずに発光モジュールを構成できれば、LEDチップ本来の寿命まで発光モジュールや発光モジュールを備えた灯具の寿命を延ばすことができる。 Also, since the life of the control circuit is usually shorter than the life of the LED chip, the life of the entire light emitting module depends on the life of the control circuit. However, if the light emitting module can be configured without using the control circuit, the life of the light emitting module and the lamp equipped with the light emitting module can be extended to the original life of the LED chip.
 表1は、正の温度係数を有する金属材料の体積抵抗率と温度係数の数値を例示したものである。図13は、表1に示した金属材料の体積抵抗率と温度係数との関係を示した図である。なお、体積抵抗率は0℃の数値を示し、温度係数は、0℃~100℃(ΔT=100℃)の間の数値である。 Table 1 exemplifies volume resistivity and temperature coefficient values of a metal material having a positive temperature coefficient. FIG. 13 is a diagram showing the relationship between the volume resistivity and the temperature coefficient of the metal materials shown in Table 1. The volume resistivity indicates a value of 0 ° C., and the temperature coefficient is a value between 0 ° C. and 100 ° C. (ΔT = 100 ° C.).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施の形態の抵抗器R1,R2の少なくとも一方は、0℃における体積抵抗率が2×10-8[Ω・m]以上であるとよい。より好ましくは、0℃における体積抵抗率が3×10-8[Ω・m]以上であるとよい。 At least one of the resistors R1 and R2 of the present embodiment may have a volume resistivity at 0 ° C. of 2 × 10 −8 [Ω · m] or more. More preferably, the volume resistivity at 0 ° C. is 3 × 10 −8 [Ω · m] or more.
 また、本実施の形態に係る抵抗器R1,R2の少なくとも一方は、0℃~100℃の間で正の温度係数を有していればよい。より好ましくは、抵抗器R1,R2の少なくとも一方は、0℃~100℃の間の温度係数が0.05[10-3/℃]以上であるとよい。 Further, at least one of the resistors R1 and R2 according to the present embodiment only needs to have a positive temperature coefficient between 0 ° C. and 100 ° C. More preferably, at least one of the resistors R1 and R2 has a temperature coefficient between 0 ° C. and 100 ° C. of 0.05 [10 −3 / ° C.] or more.
 回路を構成する抵抗器は、場合によって正の温度係数を有するものもあるが、その値は非常に小さい。そして、大きな値の正の温度係数を有する抵抗器を回路に用いることは避けられている。しかしながら、一般的に回路への使用が避けられるほど大きな値の正の温度係数を有する抵抗器と、一般的に負の温度係数を抵抗成分に有するLEDと組み合わせることで、温度変化によるLEDパッケージ224全体の抵抗の変化をより緩和できる。 Some resistors constituting the circuit have a positive temperature coefficient in some cases, but the value is very small. And it is avoided to use a resistor having a large positive temperature coefficient in the circuit. However, a combination of a resistor having a positive temperature coefficient that is large enough to avoid use in a circuit in general and an LED having a negative temperature coefficient as a resistance component in general makes it possible to change the LED package 224 due to temperature changes. The change in the overall resistance can be more relaxed.
 以上、本発明を上述の各実施の形態を参照して説明したが、本発明は上述の各実施の形態に限定されるものではなく、各実施の形態の構成を適宜組み合わせたものや置換したものについても本発明に含まれるものである。また、当業者の知識に基づいて各実施の形態における組合せや処理の順番を適宜組み替えることや各種の設計変更等の変形を各実施の形態に対して加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうる。 As described above, the present invention has been described with reference to the above-described embodiments. However, the present invention is not limited to the above-described embodiments, and the configurations of the embodiments are appropriately combined or replaced. Those are also included in the present invention. Further, it is possible to appropriately change the combination and processing order in each embodiment based on the knowledge of those skilled in the art and to add various modifications such as various design changes to each embodiment. Embodiments to which is added can also be included in the scope of the present invention.
 R1 第1の抵抗器、 R2 第2の抵抗器、 10 車両用灯具ユニット、 12 投影レンズ、 16 発光モジュール、 20a 第1の半導体発光素子、 20b,20c 第2の半導体発光素子、 20d 第1の半導体発光素子、 21 電源装置、 22 基板、 100 車両用灯具、 102 透明カバー、 104 ランプボディ、 120a 第1の半導体発光素子、 120b 第2の半導体発光素子、 120c 第1の半導体発光素子、 122 制御部。 R1 first resistor, R2 second resistor, 10 vehicle lamp unit, 12 projection lens, 16 light emitting module, 20a first semiconductor light emitting device, 20b, 20c second semiconductor light emitting device, 20d first light emitting device Semiconductor light emitting element, 21 power supply device, 22 substrate, 100 vehicle lamp, 102 transparent cover, 104 lamp body, 120a first semiconductor light emitting element, 120b second semiconductor light emitting element, 120c first semiconductor light emitting element, 122 control Department.
 本発明は、車両用灯具に利用できる。 The present invention can be used for a vehicular lamp.

Claims (6)

  1.  車両用灯具に用いられる発光モジュールであって、
     直線状に配置された複数の半導体発光素子を備え、
     前記複数の半導体発光素子は、
     モジュールの両端側に配置され、互いに直列に接続されている複数の第1の半導体発光素子と、
     モジュールの中央部に配置され、前記第1の半導体発光素子よりも発光時の輝度を高めることが可能に構成されている1以上の第2の半導体発光素子と、を有し、
     前記第1の半導体発光素子と前記第2の半導体発光素子とは、並列に接続されていることを特徴とする発光モジュール。
    A light emitting module used for a vehicle lamp,
    A plurality of semiconductor light emitting elements arranged in a straight line,
    The plurality of semiconductor light emitting elements are:
    A plurality of first semiconductor light emitting elements disposed on both ends of the module and connected in series with each other;
    One or more second semiconductor light emitting elements arranged at the center of the module and configured to be capable of increasing luminance at the time of light emission than the first semiconductor light emitting element,
    The light emitting module, wherein the first semiconductor light emitting element and the second semiconductor light emitting element are connected in parallel.
  2.  前記第1の半導体発光素子と直列に接続されている第1の抵抗器と、
     前記第2の半導体発光素子と直列に、かつ、前記第1の抵抗器と並列に接続されている第2の抵抗器と、を更に有し、
     前記第2の抵抗器は、前記第1の抵抗器よりも電気抵抗が小さいことを特徴とする請求項1に記載の発光モジュール。
    A first resistor connected in series with the first semiconductor light emitting device;
    A second resistor connected in series with the second semiconductor light emitting element and in parallel with the first resistor;
    The light emitting module according to claim 1, wherein the second resistor has a smaller electrical resistance than the first resistor.
  3.  前記複数の半導体発光素子が実装されているLEDパッケージを更に備え、
     前記第1の抵抗器および前記第2の抵抗器の少なくとも一方は、前記LEDパッケージの温度変化の影響を受ける場所に配置されており、
     前記第1の抵抗器および前記第2の抵抗器の少なくとも一方は、正の温度係数を有することを特徴とする請求項2に記載の発光モジュール。
    An LED package on which the plurality of semiconductor light emitting elements are mounted;
    At least one of the first resistor and the second resistor is disposed at a location affected by a temperature change of the LED package;
    The light emitting module according to claim 2, wherein at least one of the first resistor and the second resistor has a positive temperature coefficient.
  4.  前記第1の半導体発光素子と前記第2の半導体発光素子とに流れる電流を独立して制御する制御部を更に備えていることを特徴とする請求項1に記載の発光モジュール。 The light emitting module according to claim 1, further comprising a control unit that independently controls a current flowing through the first semiconductor light emitting element and the second semiconductor light emitting element.
  5.  前記制御部は、
     ハイビーム用配光パターンを形成する場合には、ロービーム用配光パターンを形成する場合と比較して、前記第2の半導体発光素子に流す電流量を増加させる、
     ことを特徴とする請求項4に記載の発光モジュール。
    The controller is
    In the case of forming a high beam light distribution pattern, compared to the case of forming a low beam light distribution pattern, the amount of current passed through the second semiconductor light emitting element is increased.
    The light-emitting module according to claim 4.
  6.  車両の前照灯として用いられる車両用灯具であって、
     請求項1乃至5のいずれか1項に記載の発光モジュールと、
     前記発光モジュールから出射された光を車両前方に照射するための光学部材と、
     前記発光モジュールおよび前記光学部材を収容する灯体と、
     を備えた車両用灯具。
    A vehicular lamp used as a vehicle headlamp,
    The light emitting module according to any one of claims 1 to 5,
    An optical member for irradiating the light emitted from the light emitting module forward of the vehicle;
    A lamp housing the light emitting module and the optical member;
    Vehicular lamp equipped with
PCT/JP2012/008049 2011-12-26 2012-12-17 Light emitting module and lighting appliance for vehicle WO2013099145A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280064626.8A CN104011884B (en) 2011-12-26 2012-12-17 Light emitting module and lamps apparatus for vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011284234A JP5952557B2 (en) 2011-12-26 2011-12-26 Light emitting module and vehicle lamp
JP2011-284234 2011-12-26

Publications (1)

Publication Number Publication Date
WO2013099145A1 true WO2013099145A1 (en) 2013-07-04

Family

ID=48696692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/008049 WO2013099145A1 (en) 2011-12-26 2012-12-17 Light emitting module and lighting appliance for vehicle

Country Status (3)

Country Link
JP (1) JP5952557B2 (en)
CN (1) CN104011884B (en)
WO (1) WO2013099145A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015013191A1 (en) * 2015-10-10 2017-04-13 Daimler Ag Method for operating a lighting unit and lighting unit
JP6872413B2 (en) * 2017-04-28 2021-05-19 株式会社小糸製作所 Vehicle lighting
JP6991811B2 (en) * 2017-09-25 2022-02-03 株式会社小糸製作所 Vehicle headlights
JP7282767B2 (en) 2018-06-21 2023-05-29 ヌヴォトンテクノロジージャパン株式会社 white light emitting device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306264A (en) * 1988-06-03 1989-12-11 Matsushita Graphic Commun Syst Inc Light emitting diode array
JP2001287398A (en) * 2000-04-06 2001-10-16 Nippon Sheet Glass Co Ltd Self-scanning type light emitting element array and method of driving the same
JP2004039466A (en) * 2002-07-04 2004-02-05 Koito Mfg Co Ltd Lamp for vehicle
JP2005324657A (en) * 2004-05-13 2005-11-24 Toyota Motor Corp Headlamp device for vehicle
JP2006267780A (en) * 2005-03-25 2006-10-05 Funai Electric Co Ltd Liquid crystal display apparatus
JP2007317423A (en) * 2006-05-24 2007-12-06 Harison Toshiba Lighting Corp Backlight unit
WO2008136359A1 (en) * 2007-04-26 2008-11-13 Sharp Kabushiki Kaisha Light emitting element and liquid crystal display device
JP2009266434A (en) * 2008-04-22 2009-11-12 Koito Mfg Co Ltd Light source module and lighting fixture for vehicle
JP2011134474A (en) * 2009-12-22 2011-07-07 Sharp Corp Surface light emitting device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3016028B2 (en) * 1988-06-03 2000-03-06 大日本印刷株式会社 Printing condition setting system for web offset press
CN1166517C (en) * 2000-04-06 2004-09-15 日本板硝子株式会社 Method for driving self-scanning light-emitting device array

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306264A (en) * 1988-06-03 1989-12-11 Matsushita Graphic Commun Syst Inc Light emitting diode array
JP2001287398A (en) * 2000-04-06 2001-10-16 Nippon Sheet Glass Co Ltd Self-scanning type light emitting element array and method of driving the same
JP2004039466A (en) * 2002-07-04 2004-02-05 Koito Mfg Co Ltd Lamp for vehicle
JP2005324657A (en) * 2004-05-13 2005-11-24 Toyota Motor Corp Headlamp device for vehicle
JP2006267780A (en) * 2005-03-25 2006-10-05 Funai Electric Co Ltd Liquid crystal display apparatus
JP2007317423A (en) * 2006-05-24 2007-12-06 Harison Toshiba Lighting Corp Backlight unit
WO2008136359A1 (en) * 2007-04-26 2008-11-13 Sharp Kabushiki Kaisha Light emitting element and liquid crystal display device
JP2009266434A (en) * 2008-04-22 2009-11-12 Koito Mfg Co Ltd Light source module and lighting fixture for vehicle
JP2011134474A (en) * 2009-12-22 2011-07-07 Sharp Corp Surface light emitting device

Also Published As

Publication number Publication date
CN104011884B (en) 2016-11-09
JP2013135073A (en) 2013-07-08
JP5952557B2 (en) 2016-07-13
CN104011884A (en) 2014-08-27

Similar Documents

Publication Publication Date Title
JP6037619B2 (en) Light emitting module and vehicle lamp
US8465188B2 (en) Light source module and vehicle lamp
JP5035995B2 (en) Light source module and vehicle lamp
JP5488310B2 (en) Light source unit of semiconductor light source for vehicle lamp, vehicle lamp
JP5454171B2 (en) Drive circuit for semiconductor light source of vehicle lamp, vehicle lamp
JP6640544B2 (en) Light emitting module, lamp and circuit board for light emitting element
JP2012022797A (en) Light source unit of semiconductor type light source of lamp fitting for vehicle, and lamp fitting for vehicle
KR20170061919A (en) Lighting source module and lighting apparatus
JP5952557B2 (en) Light emitting module and vehicle lamp
KR20180104577A (en) Light device, in particular a lighting and/or signalling device, for a motor vehicle
JP2012104689A (en) Light-emitting module and vehicle lamp
JP2011146483A (en) Light source unit of semiconductor type light source of lighting fixture for vehicle, and lighting fixture for vehicle
US20190211986A1 (en) Light emitting module and lamp unit
JP5407025B2 (en) Light source unit of semiconductor light source for vehicle lamp, vehicle lamp
JP2018081832A (en) Light source unit and lighting appliance for vehicle
JP2018022616A (en) Light source unit for vehicle
EP2071640A1 (en) Lighting device
KR20220032083A (en) Support and lighting device for light emitting elements
JP5412618B2 (en) Light source unit of semiconductor light source for vehicle lamp, vehicle lamp
JP7059276B2 (en) Alignment of LEDs
US20190003689A1 (en) Light source module
JP2011143802A (en) Driving circuit of semiconductor type light source for vehicular lighting fixture, and vehicular lighting fixture
JP6839523B2 (en) Element mounting board, vehicle lamps and element mounting method
JP2023003346A (en) Vehicular lighting tool
JP2024005676A (en) Light-emitting module, and lamp tool unit for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861854

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861854

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 12861854

Country of ref document: EP

Kind code of ref document: A1