WO2013097571A1 - 煤炭地下气化产品气体的生物利用方法 - Google Patents
煤炭地下气化产品气体的生物利用方法 Download PDFInfo
- Publication number
- WO2013097571A1 WO2013097571A1 PCT/CN2012/085363 CN2012085363W WO2013097571A1 WO 2013097571 A1 WO2013097571 A1 WO 2013097571A1 CN 2012085363 W CN2012085363 W CN 2012085363W WO 2013097571 A1 WO2013097571 A1 WO 2013097571A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- fermentation
- acetic acid
- ethanol
- product
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/065—Ethanol, i.e. non-beverage with microorganisms other than yeasts
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/54—Acetic acid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Definitions
- the invention relates to a Chinese patent application filed on December 31, 2011 by the Chinese Patent Office, the application number is 201110455007.9, and the invention is entitled "Bio-utilization method of coal underground gasification product gas". Priority is hereby incorporated by reference in its entirety.
- the invention relates to the field of biological utilization of coal underground gasification product gas, and particularly relates to a method for producing ethanol and/or acetic acid from a coal underground gasification product gas by a biochemical process such as a microbial fermentation process. Background technique
- underground coal gasification technology can save a part of mine, transportation, ground conversion and other aspects, while optimizing the integration of heat production, power generation and other production processes using gas as raw materials to improve coal utilization. And easy to clean the entire process.
- the prior art document "Underground coa l ga sifi ca ti on A new cl ean Coa l ut ili za t ion technique for Ind ia "Proposed that the underground coal gasification product gas is mainly used for power generation and as a chemical synthesis raw material, such as gas turbine or gas boiler can be used to convert it into electricity.
- Chinese Patent Application No. 200910129219. 0 discloses a coal underground gasification polygeneration system and method, including a coal underground gasification subsystem, a purification subsystem, a calorific value and a component conditioning subsystem, and a chemical production sub-product. System and power generation subsystems, etc.
- This patent application gives the idea of using coal underground gasification product gas in chemical production, but only the specific products of sterol and decane as chemical production subsystem are given, and the extension and utilization of coal underground gasification product gas is given.
- the nitrogen separation cost is relatively large for the preparation of decane, and the conversion rate of sterol is lower, and the nitrogen content in the exhaust gas is lower for the preparation of sterol. Higher, making the exhaust gas difficult to fully utilize.
- the product gas for underground coal gasification that is, the crude gas has the characteristics of low calorific value, low pressure, low temperature and large fluctuation of composition, combined with the characteristics of biochemical industry such as microbial fermentation, which requires low pressure, low temperature process conditions and large operational flexibility, the inventors tried
- the underground underground gasification product gas is used in the field of bio-chemicals such as microbial fermentation to prepare high-grade products such as ethanol, acetic acid, etc., thereby providing a new idea for applying the gas of underground coal gasification products.
- the pressure of the gas of the underground gasification product of the coal is about 0. 1-0. 4MPa (gauge pressure, it should be noted here that, in the specification of the present application, unless otherwise specified, the pressures given are The pressure is about 80-200 ° C, and the pressure required for biosynthesis of biochemicals such as ethanol or acetic acid is also about 0. 1-0. 4MPa, the temperature is near normal temperature, therefore, underground coal gasification products
- the pressure range of the gas is basically matched with the pressure range of the biosynthesis of biochemicals such as ethanol or acetic acid.
- the underground gasification product gas contains more decane, for example, up to about 12 vo l%, these decanes are not involved in the biosynthesis process of biochemicals such as ethanol or acetic acid, so decane may be rich in process exhaust.
- the process exhaust gas has a higher calorific value, and the exhaust gas can be used as a fuel to produce steam, power generation or cryogenic separation to prepare LNG, either alone or in combination with other fuels such as the product gas, wherein the produced steam can also be used for distillation.
- Biosynthesis products to aid in obtaining a final product such as ethanol or acetic acid.
- the invention By combining coal underground gasification technology and biochemical technology, the invention not only enables low-grade coal resources such as lignite to be exploited in a large area, but also provides alternative raw materials for biosynthesis of biochemicals such as ethanol or acetic acid, in addition to food.
- the combined process can also produce some decane-rich gas, which can be used for direct combustion power generation, combustion in steam boilers to generate steam or cryogenic separation to prepare LNG.
- the present invention provides a method of biological utilization of a gas for underground coal gasification products, the method comprising:
- a raw material gas preparation stage wherein a crude gas is obtained from a coal underground gasification process, wherein the raw gas is purified and adjusted to obtain a raw material gas, and the acid sulfide content of the raw material gas is less than about 2 vo l% and initial in terms of sulfur ( CO and / or C0 2 ): H 2 molar ratio is less than 7; and
- the method may further comprise a steam generation stage, wherein the combustion of the crude gas in the boiler and/or the decane-rich tail gas from the microbial fermentation stage produces steam which is used to generate electricity and is also useful for treatment
- the fermentation product of the microbial fermentation stage helps to obtain the final purified product ethanol and/or acetic acid, so that the energy self-sufficiency of the process can be achieved as much as possible and the utilization of coal can be improved.
- the present invention in the preparation stage of the raw material gas, in the underground coal gasification process, firstly, one end of the gas injection passage of the gasification passage is ignited, and then the gasification ground is blasted at the other end of the gasification passage of the gasification passage, and gasification is performed in the coal seam.
- three reaction zones of oxidation, reduction and dry distillation are formed in the gasification channel according to different temperature and chemical reaction.
- the gasifying agent is selected from the group consisting of Air, oxygen, water vapor and carbon dioxide, wherein the air may be oxygen-enriched air
- the crude gas has a pressure of about 0.1-0.4 MPa and a temperature of about 80-200 ° C, and the crude gas mainly contains C0, H. 2 , CH 4 , C0 2 and N 2 , and substantially contains 4-15 vol% of C0, 20_35 vol% of H 2 , 6_12 vol% of CH 4 and 20-40 vol% of C0 2 , and the balance is nitrogen.
- the purpose of the purification process is to remove impurities such as dust, tar and sulfide contained in the crude gas, wherein various impurities are removed.
- the removal of acid sulfides such as H 2 S in the crude gas is not critical, based on subsequent bioavailability purposes, such as acid vulcanization of the crude gas.
- the content may be less than about 2 vol%, preferably about 200 ppmv to 0.2 vol%, based on sulfur, and therefore, in the present invention, the cost of decalcification of the crude gas purification process may be lower.
- the crude gas in the preparation stage of the raw material gas, it is generally required to adjust the obtained crude gas, wherein the crude gas is first subjected to component detection to determine the composition of the crude gas, and then the crude gas is adjusted based on the detection result.
- a composition such that the (CO and/or C0 2 ): H 2 molar ratio of the crude gas is less than 7, preferably about 2: 1-1: 3, more preferably about 1: 1-1: 2,
- the crude gas pressure is also brought to about 0.1 to 0.4 MPa, and preferably about 0.2 to 0.3 MPa, and the temperature of the crude gas is brought to normal temperature, preferably about 20 to 35 ° C, and more preferably about 25 - 30 ° C, wherein the composition of the crude gas is adjusted mainly by pressure swing adsorption or membrane separation to remove CO 2 , addition of C0, reverse water gas shift reaction or a combination thereof, and these adjustment means are basically in the art.
- the microorganism in the microbial fermentation stage, is present in the fermentation apparatus at a pressure of 0.1 to 0.4 MPa, preferably 0.2 to 0.3 MPa and at normal temperature, preferably about 20 to 35 ° C and more preferably about 25 to 30 ° C.
- the raw material gas is used for the microbial fermentation process, thereby biosynthesizing ethanol and/or acetic acid, and by-product producing a decane-rich tail gas.
- ethanol or acetic acid can be separately synthesized in the microbial fermentation stage, and ethanol and acetic acid can be simultaneously synthesized.
- the raw material gas can be separately fed to each fermentation apparatus, or The tail gas produced by synthesizing ethanol or acetic acid is further fermented to synthesize acetic acid or ethanol.
- the fermentation apparatus used therein may be any suitable fermentation apparatus known to those skilled in the art, including, for example, a continuous stirred tank reactor, an immobilized cell reactor, and a trickle bed reaction. , bubble column, gas lift fermentation unit, static mixer and other devices suitable for gas-liquid contact.
- the microbial strain used in the fermentation process is anaerobic bacteria, preferably Clostridium bacteria, and the fermentation process lasts for about 5 hours. -15 days, preferably about 7-10 days.
- the initial CO:H 2 molar ratio of the feed gas is required to be about 4: 1-1: 3, preferably about 2: 1-1: 2, in the fermentation process.
- the applied microbial strain may be selected from Clostridium acetate, Clostridium acetobutylicum, Clostridium thermoacetum, etc., and produce a fermentation product containing about 2-5 wt% ethanol after fermentation, which may be steamed after filtering the microbial strain.
- the acetic acid alone is required to have an initial C0 2 : H 2 molar ratio of about 2: 1-1: 3, preferably about 1: 1-1: 2, during the fermentation process.
- the applied microbial strain may be selected from the group consisting of Kaiwu vinegar, Acetobacter aceti, and Acetobacter faecalis, and the fermentation produces a fermentation product containing about 1-10% by weight of ammonium acetate, which can be filtered after the microorganism strain is filtered.
- the acetic acid and the ammonia gas are obtained by steam distillation, wherein the acetic acid product is obtained by collecting the acetic acid vapor, and the ammonia gas generated therein can be recycled back to the fermentation device after being collected.
- the fermentation produces ammonium acetate to further provide ammonium ions, that is, the ammonia gas can be recycled.
- the filtered microbial strain can be returned to the fermentation device for recycling after supplementing a certain amount of, for example, 1-5 wt% of the microbial strain, and the treatment contains acetic acid.
- the steam utilized in the ammonium fermentation product may also be steam from the steam generation stage of the process of the invention.
- the initial (C0+C0 2 ) of the feed gas is required to simultaneously produce ethanol and acetic acid: H 2 mole is about 6: 1-1 : 3 , preferably about 3: 1-1 : 2 .
- the raw material gas may be separately fed to each fermentation device, or the ethanol may be synthesized by a product, and then the acetic acid synthesized tail gas may be used to further biosynthesize acetic acid, or vice versa, the temperature in each fermentation device,
- the pressure, the duration of the fermentation process, the selection of the microbial strain, and the treatment of the fermentation product can be carried out separately in the production of ethanol and acetic acid, respectively.
- the decane-rich tail gas produced in the microbial fermentation stage can be used for direct combustion power generation or cryogenic separation to prepare LNG, in addition to being used for combustion in a boiler to generate steam in a steam generation stage, thereby enabling underground coal. Get the most out of it.
- ethanol and/or acetic acid is produced from the underground coal gasification product gas by the microbial fermentation process and the tail gas of the fermentation process is utilized accordingly, and these links are combined and/or supplemented to make full use of the coal underground gasification product gas.
- low quality coal is converted into high quality products such as ethanol and/or acetic acid.
- Figure 1 An embodiment of a method for biologically utilizing a gas of underground coal gasification products of the present invention, wherein biosynthesis of ethanol is carried out during a microbial fermentation stage;
- FIG. 1 Another embodiment of the method for bioavailability of a gas for underground coal gasification products of the present invention, wherein the acetic acid is biosynthesized during the microbial fermentation stage;
- FIG. 3 Still another implementation of the biological utilization method of the underground coal gasification product gas of the present invention In the scheme, in which the alcohol is synthesized in the microbial fermentation stage, and then the acetic acid is further biosynthesized by using the tail gas generated by biosynthesis of ethanol. detailed description
- Example 1 Gas biosynthesis of ethanol using coal underground gasification products
- the crude gas in the raw material gas preparation stage, first, coarse gas is obtained by underground gasification of lignite in the underground coal gasification process, the crude gas has a temperature of about 10 (TC, a pressure of about 0.4 MPa, and has the following composition: C08vol%; CH 4 8vol%; C0 2 25vol%; N 2 31vol%; and ⁇ 2 28vol%; then the crude gas purified to remove dust, tar and sulfides contained therein, wherein the control after purification
- the crude sulfur gas has an acid sulfide content of 500 ppmv.
- the purified crude gas is adjusted, wherein the CO 2 is removed by membrane separation and an appropriate amount of CO is added to adjust the CO:H 2 molar ratio in the adjusted crude gas to about 1 2, thereby obtaining a raw material gas for the subsequent biosynthesis process; in the microbial fermentation stage, introducing the raw material gas into an ethanol fermentation apparatus, wherein the Clostridium thermoacetum is under low pressure at normal temperature (0.3 MPa, 30 ° C) Fermentation is carried out in the presence (including 10 parallel ethanol fermentation units), and after 10 days of fermentation, a fermentation product having an ethanol content of about 5 wt% is obtained; the fermentation product is first filtered through a filtration device to remove the microbial strain, and then distilled.
- the decane-rich tail gas is produced by the microbial fermentation stage, wherein the decane content At 15 vol%, the balance is mainly nitrogen, and the decane-rich tail gas is used for combustion in a boiler to generate steam, and the generated steam can be used for distillation to purify the fermentation product to obtain a final ethanol product.
- Example 2 Underground coal gasification Product gas biosynthesis acetic acid
- the raw material gas preparation stage which first passes through the underground coal gasification process Underground gasification of lignite to obtain crude gas having a temperature of about 10 (TC, a pressure of about 0.4 MPa, and having the following composition: C08 vol%; CH 4 8 vol%; C0 2 25 vol%; N 2 31 vol%; 2 28 vol%; Then, the crude gas is purified to remove dust, tar and sulfide contained therein, wherein the acid sulfide content of the purified crude gas is controlled to be 500 ppmv; then, the purified crude gas is adjusted , the molar ratio of C0 2 and H 2 in the adjusted crude gas is about 1:2, thereby obtaining a raw material gas for the subsequent biosynthesis process; in the microbial fermentation stage, introducing the raw material gas into the acetic acid fermentation device, The fermentation is carried out in the presence of acesulfame bacteria at 0.3 MPa and 25 ° C, and after 14 days of fermentation, a fermentation product having an ammonium
- the acetic acid and the ammonia gas are heated by steam distillation, and the acetic acid vapor is collected and condensed to obtain an acetic acid product having a purity of 95% by weight, and the ammonia gas is collected and returned to the acetic acid fermentation device, thereby further providing ammonium for the fermentation process.
- the microorganisms are filtered, and the filtered microbial strain liquid is reinjected into the acetic acid fermentation apparatus for recycling after supplementing about 2% by weight of the microorganism strain; in addition, the decane-rich tail gas is obtained from the fermentation stage, wherein the decane content is about 16 vol%.
- Example 3 Using underground coal gasification product gas successively Biosynthesis of ethanol and acetic acid
- the crude gas has a temperature of about 10 (TC, a pressure of about 0.3 MPa, And having the following composition: C08vol%; CH 4 8vol%; C0 2 25vol%; N 2 31vol%; and ⁇ 2 28vol%; then, the crude gas is purified to remove dust, tar and sulfide contained therein,
- the acid sulfide content of the crude gas after the purification is controlled to be 500 ppmv; then, the purified crude gas is adjusted to make the initial state of the adjusted feed gas (C0+C0 2 ): H 2 I
- the fermentation product is obtained by the filtration device.
- An ethanol product having a purity of 94% by weight is obtained, and the filtered microbial strain liquid is re-injected into the ethanol fermentation device for recycling after being supplemented with about 1.5 wt»/q biological strain; in addition, after 10 days of fermentation, ammonium acetate is obtained from the acetic acid fermentation device.
- the fermentation product is about 7.5 wt%, and the fermentation product is filtered through a filtering device to be filtered, and then heated by steam distillation to produce acetic acid and ammonia gas.
- the acetic acid vapor is collected and condensed to obtain an acetic acid product having a purity of 99 wt%, and ammonia gas is collected.
- the fermentation device obtains a tail gas rich in decane, that is, acetic acid to produce tail gas, wherein the decane content is about 19vo l%, the balance is mainly nitrogen, the decane-rich tail gas is used to burn steam in a boiler, and the generated steam is used for distillation to heat the fermentation product to obtain ethanol and acetic acid and ammonia gas.
- the method of the present invention can well utilize the product gas of underground coal gasification to obtain high-quality product ethanol and/or acetic acid, thereby opening up the development and utilization of low-quality coal such as lignite rich in reserves.
- the new approach also provides new alternatives for the industrial production of ethanol and/or acetic acid.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明涉及一种煤炭地下气化产品气体的生物利用方法,所述方法包括:原料气制备阶段,其中由煤炭地下气化过程获得粗煤气,所述粗煤气经净化和调节获得原料气,所述原料气的酸性硫化物含量以硫计低于约2vol%和初始(CO和/或CO2):H2摩尔比至少为约 1:3;和微生物发酵阶段,其中在0.1-0.4MPa的压力下及在常温下,在发酵装置内在微生物菌株存在下利用所述原料气进行微生物发酵过程,从而生物合成乙醇和/或乙酸,并副产富含甲烷的尾气。
Description
煤炭地下气化产品气体的生物利用方法 本申请要求在 2011年 12月 31 日提交中国专利局、 申请号为 201110455007.9、 发明名 称为 "煤炭地下气化产品气体的生物利用方法" 的中国专利申请的优先权, 其全部内容通过引 用结合在本申请中。
技术领域
本发明涉及煤炭地下气化产品气体的生物利用领域, 具体涉及通过生 物化工如微生物发酵过程由煤炭地下气化产品气体生产乙醇和 /或乙酸的 方法。 背景技术
在煤炭开釆领域, 煤炭地下气化技术是近年来开发出来的, 该技术集 建井、 釆煤和转化工艺于一体, 通过使煤层进行受控燃烧, 利用煤炭燃烧 的热化学作用产生产品气体即粗煤气, 从而特别适用于釆用常规方法不可 釆或开釆不经济的煤层以及煤矿的二次或多次复釆。
相比于传统的煤炭开釆方式, 煤炭地下气化技术可以省去一部分矿 井、 运输、 地面转化等环节, 同时优化集成产热、 发电以及以煤气为原料 的其它生产工艺而提高了煤炭利用率, 并且容易实现整个工艺过程的清洁 化。
但在煤炭地下气化过程中, 随着气化过程的进行, 地下地层、 煤层、 水文等条件会发生变化, 导致气化产生的粗煤气的热值、 组分分布和产量 会相应波动, 而且产生的粗煤气的热值、 温度和压力都比较低, 致使煤炭 地下气化产品气体的后续利用具有局限性,现在一般主要用于供热和发电, 下游产品大多涉及初级化工原料, 4艮少用于生产高品位的化工产品, 延伸 开发还远远不够, 因此制约着煤炭地下气化技术的产业化进程。
例如, 现有技术文献 "Underground coa l ga s i f i ca t i on A new c l ean
coa l ut i l i za t ion technique for Ind ia " 提出目前煤炭地下气化产品气 体主要用于发电和作为化工合成原料, 如可以釆用燃气轮机或者燃气锅炉 将其转化为电力。
另外, 中国专利申请 No. 200910129219. 0公开了一种煤炭地下气化多 联产系统和方法, 其中包括煤炭地下气化子系统、 净化子系统、 热值及组 分调节子系统、 化工生产子系统和发电子系统等。 该专利申请给出了在化 工生产中利用煤炭地下气化产品气体的思路, 但其中只给出了曱醇和曱烷 作为化工生产子系统的具体产品, 对煤炭地下气化产品气体的延伸开发利 用仍然不够; 而且, 由于煤炭地下气化产品气体的氮气含量较高, 用于制 备曱烷的话氮气分离成本较大, 而用于制备曱醇的话, 曱醇的转化率较低, 尾气中氮气含量较高, 使得该尾气很难充分利用。
发明内容
针对煤炭地下气化的产品气体即粗煤气具有低热值、 低压、 低温且组 成波动较大的特性, 结合生物化工如微生物发酵领域需要低压、 低温工艺 条件且操作弹性较大的特性, 发明人尝试将煤炭地下气化产品气体用于生 物化工如微生物发酵领域来制备高品位产品如乙醇、 乙酸等, 从而提供了 应用煤炭地下气化产品气体的新思路。
具体地, 煤炭地下气化产品气体的压力为约 0. 1-0. 4MPa (表压, 此处 需要说明的是, 在本申请的说明书中, 如无特别说明, 所给出的压力均为 表压), 温度为约 80-200 °C , 而生物化工如乙醇或乙酸的生物合成所需要 的压力亦为约 0. 1-0. 4MPa , 温度为常温附近, 因此, 煤炭地下气化产品气 体的压力范围与生物化工如乙醇或乙酸的生物合成的压力范围基本匹配, 在生物利用煤炭地下气化产品气体时只需要对所述产品气体的温度略作调 整, 即整个过程的能量效率可以达到较高水平。
另外, 生物化工如乙醇或乙酸的生物合成需要在弱酸环境下进行, 这
样就可以允许煤炭地下气化产品气体含有一定量的酸性含硫杂质如 H2S ,从 而可以降低所述产品气体的脱^ 成本。
再者, 由于煤炭地下气化产品气含有较多曱烷例如可以高达约 12vo l% , 但这些曱烷并不参与生物化工如乙醇或乙酸的生物合成过程, 因 此曱烷可能在过程尾气中富集而使过程尾气热值较高, 该尾气可以单独或 与其它燃料如所述产品气体掺混后作为燃料生产蒸汽、 发电或者经深冷分 离后制备 LNG , 其中生产的蒸汽亦可以用于蒸馏生物合成产物以有助于获 得最终产品如乙醇或乙酸。
本发明通过组合煤炭地下气化技术和生物化工技术, 不仅使低品位煤 资源如褐煤可以大面积开釆利用, 而且为生物化工如乙醇或乙酸的生物合 成提供了除粮食以外的替代原料, 同时, 该组合过程还可以副产一些富含 曱烷的气体, 该副产气体可以用于直接燃烧发电、 在蒸汽锅炉中燃烧产生 蒸汽或者经深冷分离制备 LNG。
因此, 本发明提供一种煤炭地下气化产品气体的生物利用方法, 所述 方法包括:
原料气制备阶段, 其中由煤炭地下气化过程获得粗煤气, 所述粗煤气 经净化和调节之后获得原料气, 所述原料气的酸性硫化物含量以硫计低于 约 2vo l%和初始 (CO和 /或 C02): H2摩尔比小于 7 ; 和
微生物发酵阶段, 其中在 0. 1 -0. 4MPa的压力下及在常温下,在发酵装 置内在微生物菌株存在下利用所述原料气进行微生物发酵过程, 从而生物 合成乙醇和 /或乙酸, 并副产富含曱烷的尾气。
按照本发明, 所述方法还可以包括蒸汽发生阶段, 其中在锅炉中燃烧 粗煤气和 /或来自微生物发酵阶段的富含曱烷的尾气产生蒸汽,所产生的蒸 汽可用于发电, 还可用于处理微生物发酵阶段的发酵产物, 以有助于获得 最终纯化的产品乙醇和 /或乙酸,从而可以尽可能地实现过程的能量自给并 提高煤炭的利用率。
按照本发明, 在原料气制备阶段, 在煤炭地下气化过程中, 其中首先 在气化通道的注气井一端点火, 然后在气化通道注气井的另一端鼓入气化 地, 在煤层气化过程中按温度及化学反应的不同在气化通道中形成氧化、 还原、 干燥干馏三个反应带, 经过这三个反应带后, 由产气井产出粗煤 气, 其中所述气化剂选自空气、 氧气、 水蒸气和二氧化碳, 其中所述空气 可以为富氧空气, 所述粗煤气的压力为约 0.1-0.4MPa 和温度为约 80-200°C,所述粗煤气主要含有 C0、 H2、 CH4、C02和 N2,且大致含有 4-15vol% 的 C0、 20_35vol%的 H2、 6_12vol%的 CH4和 20_40vol%的 C02, 其余为氮气。
按照本发明, 在原料气制备阶段, 一般需要对所获得的粗煤气进行净 化, 净化过程的目的是脱除粗煤气中所含有的灰尘、 焦油和硫化物等杂 质, 其中各种杂质的脱除相应地按本领域中已知的方式进行; 另外, 基于 后续的生物利用目的, 对所述粗煤气中酸性硫化物如 H2S 的脱除要求并不 高, 例如所述粗煤气的酸性硫化物含量以硫计可以低于约 2vol%, 优选为 约 200ppmv-0.2vol%, 因此, 在本发明中, 粗煤气净化过程的脱石克成本可 以较低。
按照本发明, 在原料气制备阶段, 一般还需要对所获得的粗煤气进行 调节, 其中首先对所述粗煤气进行组分检测确定所述粗煤气的组成, 然后 基于检测结果调节所述粗煤气的组成以使所述粗煤气的(CO 和 /或 C02): H2 摩尔比为小于 7, 优选为约 2: 1-1: 3, 更优选为约 1: 1-1: 2, 另外还使所述 粗煤气压力达到约 0.1-0.4MPa, 和优选为约 0.2-0.3MPa, 以及使所述粗煤 气的温度达到常温, 优选为约 20-35°C, 和更优选为约 25-30°C, 其中调节 所述粗煤气的组成时主要通过变压吸附或膜分离脱除 C02、 加入 C0、 逆向 水煤气变换反应或者它们的组合来进行, 这些调节手段基本上都是本领域 中常用的分离或反应过程, 其中所述逆向水煤气变换反应由 C02和 H2反应 生成 CO和 H20, 因为水煤气变换反应本身就是可逆反应。
按照本发明, 在微生物发酵阶段, 在 0.1-0.4MPa、 优选 0.2-0.3MPa 的压力下及在常温、 优选约 20-35°C和更优选约 25-30°C下, 在发酵装置内 在微生物菌株存在下利用所述原料气进行微生物发酵过程, 从而生物合成 乙醇和 /或乙酸, 并副产富含曱烷的尾气。
这样, 按照本发明, 在微生物发酵阶段可以单独合成乙醇或乙酸, 也 可以同时合成乙醇和乙酸, 其中在同时合成乙醇和乙酸时, 可以分别向各 发酵装置进料所述原料气, 也可以将在先合成乙醇或乙酸产生的尾气进一 步发酵合成乙酸或乙醇。
按照本发明, 在微生物发酵阶段, 其中所釆用的发酵装置可以为本领 域技术人员已知的任何合适的发酵装置, 包括例如连续搅拌釜式反应器、 固定化细胞反应器、 滴流床反应器、 鼓泡塔、 气举发酵装置、 静止混合器 以及适合气液接触的其它装置,发酵过程所应用的微生物菌株为厌氧细菌, 优选为梭菌属细菌, 和发酵过程持续时间约为 5-15天, 优选约为 7-10天。
按照本发明, 在微生物发酵阶段, 单独合成乙醇时要求所述原料气的 初始 CO: H2摩尔比为约 4: 1-1: 3, 优选为约 2: 1-1: 2, 发酵过程所应用的微 生物菌株可以选自醋酸梭菌、 丙酮丁醇梭菌和热醋梭菌等, 和发酵后产生 含有约 2-5wt%乙醇的发酵产物, 该发酵产物可以在滤除微生物菌株后经蒸 汽蒸馏获得纯度大于 80wt%的产品乙醇, 在此, 滤除的微生物菌株在补充 一定量例如 l-5wt»/ 々微生物菌株后可以返回发酵装置继续循环利用, 蒸馏 发酵产物所使用的蒸汽可以为来自本发明方法的蒸汽发生阶段的蒸汽。
按照本发明, 在微生物发酵阶段, 单独生产乙酸时要求所述原料气的 初始 C02: H2摩尔比为约 2: 1-1: 3, 优选为约 1: 1-1: 2, 发酵过程所应用的微 生物菌株可以选自凯伍产醋菌、 伍式醋酸杆菌和食曱基丁酸杆菌等, 和发 酵后产生含有约 l_10wt%乙酸铵的发酵产物, 该发酵产物可以在滤除微生 物菌株后经蒸汽蒸馏加热获得乙酸和氨气, 其中收集乙酸蒸汽冷凝后即可 获得乙酸产品, 而其中产生的氨气可以在收集后循环回到发酵装置内为发
酵产生乙酸铵进一步提供铵离子, 即所述氨气可以循环利用, 另外, 滤除 的微生物菌株在补充一定量例如 l-5wt%的微生物菌株后可以返回发酵装置 继续循环利用, 在处理含有乙酸铵的发酵产物时所利用的蒸汽亦可以为来 自于本发明方法的蒸汽发生阶段的蒸汽。
按照本发明, 在微生物发酵阶段, 同时生产乙醇和乙酸时要求所述原 料气的初始(C0+C02) : H2摩尔为约 6: 1-1 : 3 ,优选为约 3: 1-1 : 2 ,在此情况下, 可以分别向各发酵装置进料所述原料气, 也可以先生物合成乙醇, 然后利 用乙醇合成的尾气进一步生物合成乙酸, 或者反之, 在各发酵装置内的温 度、 压力、 发酵过程持续时间、 微生物菌株的选择以及发酵产物的处理可 以分别按单独生产乙醇和乙酸时进行。
按照本发明, 在微生物发酵阶段产生的富含曱烷的尾气除了用于在蒸 汽发生阶段在锅炉中燃烧产生蒸汽外, 还可用于直接燃烧发电或者经深冷 分离制备 LNG , 从而可以使地下煤炭得到充分利用。
因此, 按照本发明, 通过微生物发酵过程由煤炭地下气化产品气体生 产乙醇和 /或乙酸并相应利用发酵过程的尾气, 这些环节相互结合和 /或补 充, 使煤炭地下气化产品气体得以充分利用, 最终将低品质煤炭转化为高 品质产品如乙醇和 /或乙酸。
附图说明
下面结合附图进一步描述本发明的煤炭地下气化产品气体的生物利用 方法的具体实施方案, 其中:
图 1. 本发明的煤炭地下气化产品气体的生物利用方法的一种实施方 案, 其中在微生物发酵阶段生物合成乙醇;
图 2. 本发明的煤炭地下气化产品气体的生物利用方法的另一种实施 方案, 其中在微生物发酵阶段生物合成乙酸; 和
图 3. 本发明的煤炭地下气化产品气体的生物利用方法的又一种实施
方案, 其中在微生物发酵阶段先生物合成乙醇, 然后利用生物合成乙醇产 生的尾气进一步生物合成乙酸。 具体实施方式
下面通过具体实施例进一步详细描述本发明方法的具体实施方式, 所 述实施例不应构成对本发明范围的限制。
实施例 1 利用煤炭地下气化产品气体生物合成乙醇
参照图 1, 在原料气制备阶段, 其中首先在煤炭地下气化过程中通过 褐煤地下气化获得粗煤气, 该粗煤气的温度约为 10(TC , 压力为约 0.4MPa, 和具有如下组成: C08vol%; CH48vol%; C0225vol%; N231vol%; 和 Η228vol%; 然后, 所述粗煤气经净化脱除其中所含有的灰尘、 焦油和硫化 物, 其中控制净化后的粗煤气的酸性硫化物含量为 500ppmv; 接着, 对净 化后的粗煤气进行调节, 其中通过膜分离脱除 C02并加入适量 CO, 使调节 后的粗煤气中 CO: H2摩尔比为约 1: 2, 由此获得用于后续生物合成过程的原 料气; 在微生物发酵阶段, 将所述原料气引入乙醇发酵装置, 在其中在低 压常温(0.3MPa, 30°C)下在热醋梭菌存在下进行发酵(其中包括 10个并联 的乙醇发酵装置), 发酵 10天后, 获得乙醇含量为约 5wt%的发酵产物; 所 述发酵产物首先经过滤装置过滤出微生物菌株, 然后通过蒸馏得到纯度为 90wt%的乙醇产品, 而过滤出来的 生物菌株液在补充约 2wt%敖生物菌株 后再次注入乙醇发酵装置以循环利用; 微生物发酵阶段副产富含曱烷的尾 气, 其中曱烷含量为 15vol%, 余量主要为氮气, 该富含曱烷的尾气用于在 锅炉中燃烧产生蒸汽, 所产生的蒸汽可用于蒸馏提纯发酵产物获得最终的 乙醇产品。 实施例 2 利用煤炭地下气化产品气体生物合成乙酸
参照图 2, 在原料气制备阶段, 其中首先在煤炭地下气化过程中通过
褐煤地下气化获得粗煤气, 该粗煤气的温度约为 10(TC , 压力为约 0.4MPa, 和具有如下组成: C08vol%; CH48vol%; C0225vol%; N231vol%; 和 Η228vol%; 然后, 所述粗煤气经净化脱除其中所含有的灰尘、 焦油和硫化 物, 其中控制净化后的粗煤气的酸性硫化物含量为 500ppmv; 接着, 对净 化后的粗煤气进行调节, 使调节后的粗煤气中 C02和 H2摩尔比为约 1: 2, 由 此获得用于后续生物合成过程的原料气; 在微生物发酵阶段, 将所述原料 气引入乙酸发酵装置, 在其中在 0.3MPa 和 25°C下在凯伍产醋菌存在下进 行发酵, 发酵 14 天后, 获得乙酸铵含量为约 6.5wt%的发酵产物; 所述发 酵产物首先经过滤装置过滤出微生物菌株, 然后经蒸汽蒸馏加热产生乙酸 和氨气, 收集乙酸蒸汽冷凝后获得纯度为 95wt%的乙酸产品, 收集氨气并 将其返回乙酸发酵装置内,从而进一步为发酵过程提供铵离子以循环利用, 而过滤出来的微生物菌株液在补充约 2wt%微生物菌株后再次注入乙酸发酵 装置以循环利用; 另外, 由发酵阶段获得富含曱烷的尾气, 其中曱烷含量 为约 16vol%, 余量主要为氮气, 该富含曱烷的尾气用于在锅炉中燃烧产生 蒸汽, 所产生的蒸汽用于蒸馏加热发酵产物获得乙酸和氨气。 实施例 3 利用煤炭地下气化产品气体先后生物合成乙醇和乙酸 参照图 3, 在原料气制备阶段, 其中首先在煤炭地下气化过程中通过 褐煤地下气化获得粗煤气, 该粗煤气的温度约为 10(TC , 压力为约 0.3MPa, 和具有如下组成: C08vol%; CH48vol%; C0225vol%; N231vol%; 和 Η228vol%; 然后, 所述粗煤气经净化脱除其中所含有的灰尘、 焦油和硫化 物, 其中控制净化后的粗煤气的酸性硫化物含量为 500ppmv; 接着, 对净 化后的粗煤气进行调节,使调节后的原料气的初始(C0+C02): H2摩尔为 1: 3 , 由此获得用于后续生物合成过程的原料气; 在微生物发酵阶段, 将所述原 料气引入乙醇发酵装置, 在 0.3MPa和 30°C下在醋酸梭菌存在下进行发酵, 和将乙醇发酵装置的尾气即乙醇发酵尾气引入乙酸发酵装置,在 0.2MPa和
28 °C下和在凯伍产醋菌存在下进行发酵; 发酵 10天后, 由乙醇发酵装置获 得乙醇含量为约 5. 5wt%的发酵产物, 该发酵产物经过滤装置过滤出微生物 菌株后通过蒸馏得到纯度为 94wt%的乙醇产品, 而过滤出来的微生物菌株 液在补充约 1. 5wt»/q 生物菌株后再次注入乙醇发酵装置以循环利用;另外, 发酵 10 天后, 由乙酸发酵装置获得乙酸铵含量为约 7. 5wt%的发酵产物, 该发酵产物经过滤装置过滤出微生物菌株后经蒸汽蒸馏加热产生乙酸和氨 气, 收集乙酸蒸汽冷凝后获得纯度为 99wt%的乙酸产品, 收集氨气并将其 返回乙酸发酵装置内, 从而进一步为发酵过程提供铵离子以循环利用, 而 过滤出来的微生物菌株液在补充约 2. 5wt%微生物菌株后再次注入乙酸发酵 装置以循环利用; 另外, 由乙酸发酵装置获得进一步富含曱烷的尾气即醋 酸生产尾气, 其中曱烷含量为约 19vo l% , 余量主要为氮气, 该富含曱烷的 尾气用于在锅炉中燃烧产生蒸汽, 所产生的蒸汽分别用于蒸馏加热发酵产 物获得乙醇及乙酸和氨气。
由以上实施例可以看出, 本发明方法可以很好地利用煤炭地下气化的 产品气体获得高品质的产品乙醇和 /或乙酸,从而为藏量丰富的低品质煤炭 如褐煤的开发利用开辟了新途径, 亦为乙醇和 /或乙酸的工业生产提供了新 的替代原料。
Claims
1. 一种煤炭地下气化产品气体的生物利用方法, 所述方法包括: 原料气制备阶段, 其中由煤炭地下气化过程获得粗煤气, 所述粗煤气 经净化和调节获得原料气, 所述原料气的酸性硫化物含量以硫计低于约
2vol%和初始 (CO和 /或 C02): H2摩尔比小于 7; 和
微生物发酵阶段, 其中在 0.1-0.4MPa的压力下及在常温下,在发酵装 置内在微生物菌株存在下利用所述原料气进行微生物发酵过程, 从而生物 合成乙醇和 /或乙酸, 并副产富含曱烷的尾气。
2. 权利要求 1的方法,还包括蒸汽发生阶段, 其中在锅炉中燃烧粗煤 气和 /或来自微生物发酵阶段的富含曱烷的尾气产生蒸汽,所产生的蒸汽用 于发电和 /或处理微生物发酵阶段的发酵产物。
3. 权利要求 1或 1的方法,其中由煤炭地下气化过程获得的粗煤气的 压力为约 0.1-0.4MPa和温度为约 80_200°C。
4. 权利要求 1-3任一项的方法,其中所述粗煤气在净化过程中脱除灰 尘、 焦油和 化物, 其中脱除 化物至酸性 化物含量以 计为约 200ppmv-2vol%o
5. 权利要求 1-4任一项的方法,其中所述粗煤气在调节过程中通过变 压吸附或膜分离脱除 co2、 加入 co、 逆向水煤气变换反应或者它们的组合 来实现所要求的原料气组成。
6. 权利要求 1-5 任一项的方法, 其中微生物发酵阶段的压力为 0.2-0.3MPa, 温度为约 20_35°C, 优选为约 25_30°C, 微生物菌株为厌氧细 菌, 优选为梭菌属细菌, 和发酵过程持续时间约为 5-15天, 优选约为 7-10 天。
7. 权利要求 1-6 任一项的方法, 其中在微生物发酵阶段生物合成乙 醇, 所述原料气的初始 CO: H2摩尔比为约 4: 1-1: 3, 优选为约 2: 1-1: 2, 所 述微生物菌株选自醋酸梭菌、 丙酮丁醇梭菌和热醋梭菌, 和发酵后产生含 有约 2-5wt%乙醇的发酵产物。
8. 权利要求 7的方法,其中所述发酵产物经过滤装置过滤出微生物菌 株后经蒸汽蒸馏获得纯度大于 80wt%的产品乙醇, 而过滤出来的微生物菌 株液在补充约 l-5wt%微生物菌株后再次注入乙醇发酵装置以循环利用。
9. 权利要求 7的方法,其中来自乙醇合成过程的富含曱烷的尾气用于 在锅炉中燃烧产生蒸汽、 直接燃烧发电或经深冷分离制备 LNG。
10. 权利要求 1-6任一项的方法, 其中在微生物发酵阶段生物合成乙 酸, 所述原料气的初始 C02: H2摩尔比为约 2: 1-1: 3, 优选为约 1: 1-1: 2, 所 述微生物菌株选自选自凯伍产醋菌、 伍式醋酸杆菌和食曱基丁酸杆菌, 和 发酵后产生含有约 l_10wt%乙酸铵的发酵产物。
11. 权利要求 10的方法,其中所述发酵产物经过滤装置过滤出微生物 菌株后经蒸汽蒸馏加热后产生乙酸和氨气, 其中收集乙酸蒸汽冷凝后获得 乙酸产品, 收集产生的氨气循环回到乙酸发酵装置内进一步利用, 而过滤 出来的微生物菌株液在补充约 l-5wt» 生物菌株后再次注入乙酸发酵装置 以循环利用。
12. 权利要求 10的方法,其中来自乙酸合成过程的富含曱烷的尾气用 于在锅炉中燃烧产生蒸汽、 直接燃烧发电或经深冷分离制备 LNG。
13. 权利要求 1-6任一项的方法, 其中在微生物发酵阶段首先生物合 成乙醇, 然后利用乙醇生物合成过程的尾气进一步生物合成乙酸, 所述原 料气的初始(C0+C02): H2摩尔为约 6: 1-1: 3,优选为约 3: 1-1: 2, 和在用于合 成乙醇和乙酸的各发酵装置内微生物菌株的选择及发酵产物的处理分别按 单独合成乙醇和乙酸时进行。
14. 权利要求 13的方法,其中来自乙酸合成过程的进一步富含曱烷的 尾气用于在锅炉中燃烧产生蒸汽、 直接燃烧发电或经深冷分离制备 LNG。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201110455007.9 | 2011-12-31 | ||
CN201110455007.9A CN103184242B (zh) | 2011-12-31 | 2011-12-31 | 煤炭地下气化产品气体的生物利用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2013097571A1 true WO2013097571A1 (zh) | 2013-07-04 |
Family
ID=48675688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2012/085363 WO2013097571A1 (zh) | 2011-12-31 | 2012-11-27 | 煤炭地下气化产品气体的生物利用方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN103184242B (zh) |
WO (1) | WO2013097571A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105863609A (zh) * | 2016-05-24 | 2016-08-17 | 中国地质大学(武汉) | 一种煤层气井场实时监测系统 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107033961A (zh) * | 2017-05-03 | 2017-08-11 | 中为(上海)能源技术有限公司 | 利用煤炭地下气化产品气生产氢气的方法 |
CN111684050A (zh) * | 2018-02-12 | 2020-09-18 | 朗泽科技有限公司 | 用于从气流中过滤成分的整合方法 |
CN112812930B (zh) * | 2021-02-05 | 2023-03-17 | 清华大学 | 一种二氧化碳和煤炭生产含氧有机物的系统和工艺 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1854459A (zh) * | 2005-04-21 | 2006-11-01 | 余力 | 深层地下煤炭气化工艺方法 |
CN101495603A (zh) * | 2006-03-23 | 2009-07-29 | 济阿冶金加工公司 | 用于产生氢和电的热还原气化方法 |
CN101509368A (zh) * | 2009-03-19 | 2009-08-19 | 新奥科技发展有限公司 | 一种煤炭地下气化多联产系统和方法 |
CN101705115A (zh) * | 2008-12-19 | 2010-05-12 | 新奥科技发展有限公司 | 一种催化气化煤基能源化工产品多联产系统及方法 |
WO2011002318A1 (en) * | 2009-07-02 | 2011-01-06 | Lanzatech New Zealand Limited | Alcohol production process |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ITBO20050217A1 (it) * | 2005-04-08 | 2006-10-09 | Enrico Petazzoni | Cattura della co2 da gas esausti e suo uso nella digestione anaerobica di materiale organico |
NZ560757A (en) * | 2007-10-28 | 2010-07-30 | Lanzatech New Zealand Ltd | Improved carbon capture in microbial fermentation of industrial gases to ethanol |
-
2011
- 2011-12-31 CN CN201110455007.9A patent/CN103184242B/zh active Active
-
2012
- 2012-11-27 WO PCT/CN2012/085363 patent/WO2013097571A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1854459A (zh) * | 2005-04-21 | 2006-11-01 | 余力 | 深层地下煤炭气化工艺方法 |
CN101495603A (zh) * | 2006-03-23 | 2009-07-29 | 济阿冶金加工公司 | 用于产生氢和电的热还原气化方法 |
CN101705115A (zh) * | 2008-12-19 | 2010-05-12 | 新奥科技发展有限公司 | 一种催化气化煤基能源化工产品多联产系统及方法 |
CN101509368A (zh) * | 2009-03-19 | 2009-08-19 | 新奥科技发展有限公司 | 一种煤炭地下气化多联产系统和方法 |
WO2011002318A1 (en) * | 2009-07-02 | 2011-01-06 | Lanzatech New Zealand Limited | Alcohol production process |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105863609A (zh) * | 2016-05-24 | 2016-08-17 | 中国地质大学(武汉) | 一种煤层气井场实时监测系统 |
CN105863609B (zh) * | 2016-05-24 | 2019-11-05 | 中国地质大学(武汉) | 一种煤层气井场实时监测系统 |
Also Published As
Publication number | Publication date |
---|---|
CN103184242B (zh) | 2016-08-03 |
CN103184242A (zh) | 2013-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pardo-Planas et al. | Process simulation of ethanol production from biomass gasification and syngas fermentation | |
ES2955708T3 (es) | Proceso integrado de fermentación y electrólisis | |
KR101423365B1 (ko) | 발효시 개선된 탄소 포집 방법 | |
CN111683731B (zh) | 用于提高碳转化效率的工艺 | |
TWI737676B (zh) | 生物轉化方法中之產物管理 | |
CA2973037C (en) | Integrated hydrogen production process | |
JP6622194B2 (ja) | 連続ガス発酵のための多段リアクタシステム及びプロセス | |
US9145300B1 (en) | Integrated hydrogen production process | |
US20100233775A1 (en) | System for the production of methane and other useful products and method of use | |
WO2013044134A4 (en) | Carbon neutral natural gas to liquids plant with biomass co-feed | |
WO2013097571A1 (zh) | 煤炭地下气化产品气体的生物利用方法 | |
CN110862839B (zh) | 一种煤制天然气联产甲醇的系统及方法 | |
JP2024514490A (ja) | 炭素変換率を改善するための方法 | |
JP2024509638A (ja) | 二酸化炭素を生成物に変換することの改善のための柔軟な発酵プラットフォーム | |
JP2024509639A (ja) | 二酸化炭素を生成物に変換することの改善のためにガス発酵プラットフォームを制御する方法 | |
CN115698308A (zh) | 用于通过二氧化碳的吸收和生物转化来生物产生氢气和/或甲烷的工艺 | |
RU2800360C1 (ru) | Усовершенствованное улавливание углерода при ферментации | |
Bhuyan et al. | Hydrogen Production | |
AU2022375811A1 (en) | Green methods of making product from hydrogen enriched synthesis gas | |
Lapa et al. | 15 Production of Biogas and bioH2 | |
EA046101B1 (ru) | Интегрированный процесс ферментации и электролиза | |
Zhang et al. | Study on the refining of vitamin B12 from culture liquid of acclimated H2/CO2 using methanogen | |
BR112018015550B1 (pt) | Processo para melhorar eficiência de captura de carbono em um processo industrial e de fermentação integrado | |
CN104030879A (zh) | 一种以煤层气为原料生产苯的工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12861876 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12861876 Country of ref document: EP Kind code of ref document: A1 |