WO2013097298A1 - 用于控制脉冲输出的设备和方法 - Google Patents

用于控制脉冲输出的设备和方法 Download PDF

Info

Publication number
WO2013097298A1
WO2013097298A1 PCT/CN2012/001752 CN2012001752W WO2013097298A1 WO 2013097298 A1 WO2013097298 A1 WO 2013097298A1 CN 2012001752 W CN2012001752 W CN 2012001752W WO 2013097298 A1 WO2013097298 A1 WO 2013097298A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
power supply
modulated power
output
discharge
Prior art date
Application number
PCT/CN2012/001752
Other languages
English (en)
French (fr)
Inventor
刘耀红
唐传祥
闫忻水
贾玮
高建军
刘晋升
印炜
刘西颖
史浩
Original Assignee
同方威视技术股份有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 同方威视技术股份有限公司, 清华大学 filed Critical 同方威视技术股份有限公司
Priority to JP2014549299A priority Critical patent/JP5951042B2/ja
Priority to KR1020147018779A priority patent/KR101650315B1/ko
Priority to EP12862173.7A priority patent/EP2800273B1/en
Priority to PL12862173T priority patent/PL2800273T3/pl
Priority to US14/008,921 priority patent/US10340783B2/en
Publication of WO2013097298A1 publication Critical patent/WO2013097298A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K7/00Modulating pulses with a continuously-variable modulating signal
    • H03K7/08Duration or width modulation ; Duty cycle modulation

Definitions

  • the present invention relates generally to pulse output control, and more particularly to pulse output leading edge control.
  • the present invention relates to controlling the output pulse leading edge on a solid state pulse modulated power supply based on the MARX generator principle.
  • the MARX generator is a way to realize a pulse-modulated power supply, and is a device that utilizes a capacitor and charges in series and then discharges in series.
  • the MARX generator achieves narrow pulses in the nanosecond range and very high pulse frequencies.
  • Solid-state pulse-modulated power supplies are power supplies that are pulse-modulated with solid-state switches, such as IGBTs (Insulated Gate Bipolar Transistors).
  • IGBTs Insulated Gate Bipolar Transistors
  • FIG. 1 is a schematic diagram of the pulse current waveform when the pulse leading edge slope meets the requirements.
  • Figure 2 is a schematic diagram of the pulse current waveform when the pulse front is too steep. The figure shows that there is a significant top drop at the top of the pulse.
  • Figure 3 is a waveform diagram of the pulse current when the pulse front is too slow. The figure shows that there is a significant rise in the top of the pulse.
  • the slope of the pulse leading edge that can maintain the top of the pulse current waveform also changes. The larger the amplitude, the steeper the slope of the leading edge required.
  • the currently common solution is to connect an inductor in series with the output of the pulse power supply.
  • the inductance of the 5 inductor can be adjusted to match the impedance.
  • the disadvantages of this method are: When the pulse current amplitude needs to be adjusted frequently, adjusting the inductance can be a very tedious task; especially for solid-state pulse-modulated power supplies used in dual-energy accelerator products, because the pulse current amplitude is per If the pulse periods alternate, the method of adjusting the inductance cannot be implemented in these products.
  • the present invention provides an apparatus and method for controlling pulse output by sequentially delaying a trigger signal.
  • a pulse modulation power supply comprising: a plurality of discharge modules connected in series during discharge; a plurality of flip-flops corresponding to the plurality of discharge modules, wherein each of the triggers is a corresponding discharge
  • the module provides a trigger signal to turn on the corresponding discharge module; the control logic module is configured to control the trigger signal to sequentially turn on the plurality of discharge modules; and the output terminal is configured to output a voltage.
  • a method of controlling a pulse output in a pulse modulated power supply comprising a plurality of discharge modules connected in series during discharge, the method comprising the steps of: providing to the plurality of discharge modules And sequentially delaying the trigger signals to sequentially turn on the plurality of discharge modules; and outputting the discharge voltage.
  • the present invention seeks to obtain a good pulse output waveform by adjusting the turn-on delay time of each IGBT module on a solid-state pulse-modulated power supply based on the MARX generator principle.
  • the amplitude of the pulse current can be adjusted without connecting an inductor in series with the output end of the pulse power source, so that the output pulse front edge and the pulse top unevenness can be conveniently controlled and adjusted to better adapt to such as magnetron control.
  • the load of the tube can be adjusted without connecting an inductor in series with the output end of the pulse power source, so that the output pulse front edge and the pulse top unevenness can be conveniently controlled and adjusted to better adapt to such as magnetron control.
  • Figure 1 is a schematic diagram of the pulse current waveform when the pulse front slope satisfies the requirements
  • Figure 2 is a schematic diagram of the pulse current waveform when the pulse front is too steep
  • Figure 6 is a timing diagram showing the operation of the solid-state pulse-modulated power supply trigger and pulse output without leading edge control
  • FIG. 7 shows the solid-state pulse-modulated power supply trigger and pulse output with leading edge control logic added. Schematic diagram of the work.
  • Figure 8 is a detailed view of the pulse front of Figure 7. detailed description
  • FIG. 4 shows the current schematic diagram of the conventional solid-state pulse-modulated power supply based on MARX generator.
  • PS is a high-power DC stabilized power supply, which is a power supply for solid-state pulse-modulated power supply, and the power supply voltage is Vin.
  • Ml ⁇ Mm are m IGBT module units.
  • Trig(l) ⁇ Trig(m) is the trigger signal corresponding to the IGBT module group.
  • Vout is the output voltage of a solid-state pulse-modulated power supply.
  • PS passes the charging inductor L and the diode is the IGBT module.
  • the capacitor C in the cell is charged to form an array of capacitors connected in parallel, and the voltage on capacitor C is held at Vin until the next trigger.
  • each IGBT module is turned on, and the capacitor C on the module forms a series discharge circuit through each IGBT module unit.
  • FIG. 5 is a schematic diagram of a solid state pulse modulated power supply based on a MARX generator in accordance with one embodiment of the present invention.
  • the solid-state pulse-modulated power supply shown in FIG. 5 is, for example, a typical MARX generator-based solid-state pulse-modulated power supply as shown in FIG. 4, in which m flip-flops 1 ... flip-flop n, flip-flop n+ 1 ... trigger The m provides a trigger signal for the solid-state pulse-modulated power supply Trig( l )... Trig(n), Tng(n+ 1)... Tng(m) 0 Trigger 1 ⁇ Trigger m is controlled by the control 5 logic module.
  • the control logic module controls the trigger signals Tng(l) ⁇ Tig(m) generated by the flip-flops l ⁇ m to sequentially turn on the m IGBT module units in the solid-state pulse-modulated power supply.
  • each IGBT module unit M1 ⁇ Mm in the solid-state pulse modulation power supply based on the MARX generator receives the trigger signals Trig(l) ⁇ 0 Trig(m) which are sequentially delayed and sequentially delays the conduction.
  • a stepped output front Vout is generated at the output of the solid state pulse modulated power supply.
  • a smooth output Vout' can be obtained at the magnetron load terminal (not shown).
  • the control logic module controls the flip-flop 1 ⁇ the trigger m, so that the flip-flop 1 ⁇ the trigger m respectively output the undelayed Trig(l), ...
  • the control logic module can control the magnitude of each of the delay times ⁇ tl ⁇ At(ml) to obtain a pulse leading edge slope that meets specific requirements.
  • the control logic module increases the delay time Atl ⁇ ⁇ t (ml) so that the pulse leading edge of the pulse output with the reduced slope is obtained.
  • the control logic module reduces the delay time Atl ⁇ At(ml) so that the pulse front of the pulse output with the increased slope is obtained.
  • Fig. 5 illustrates an example of a solid state pulse modulation power supply in accordance with the present invention
  • various changes can be made to Fig. 5.
  • the MARX generator-based solid-state pulse modulation power supply shown in Figure 5 is only one way to implement a pulse-modulated power supply.
  • the present invention can be applied to any solid state pulse modulated power supply in series discharge.
  • the solid state switches in solid state pulse modulated power supplies are not limited to IGBT (Insulated Gate Bipolar Transistor) type solid state switches, but can be any device and device suitable for discharge modules connected in series during discharge.
  • IGBT Insulated Gate Bipolar Transistor
  • the present invention can be used not only to adjust the pulse leading edge slope in the solid-state pulse modulation power supply based on the MARX generator, but also to eliminate the pulse top unevenness in the solid-state pulse modulation power supply of any series discharge. The problem.
  • Figure 6 is a timing diagram of the operation of the solid-state pulse-modulated power supply trigger and pulse output without leading edge control. In this mode of operation, there is no delay between the trigger signals Trig(l) ⁇ Trig(m), and each IGBT module is triggered simultaneously and turned on at the same time. The output voltage rise time is only related to the IGBT module parameters and output circuit parameters.
  • Figure 7 is a schematic diagram showing the operation timing of the solid-state pulse-modulated power supply trigger and pulse output with the leading edge control logic added.
  • Figure 8 is a detailed diagram of the pulse front of Figure 7.
  • the trigger signals Tng(n+l)...Tng(m) of each IGBT module are turned on at different times, but are sequentially turned on, which will generate a ladder at the output end of the power supply.
  • the Vout of the output front of the shape through the filtering of the current transmission network, can obtain a smooth output Vout' at the load of the magnetron.
  • the delay time ⁇ tl ⁇ ⁇ t(m - 1 ) of each IGBT trigger By adjusting the delay time ⁇ tl ⁇ ⁇ t(m - 1 ) of each IGBT trigger, the leading edge slope of Vout' can be changed.
  • the apparatus and method for controlling pulse output by sequentially delaying a trigger signal are avoided by the present invention, thereby avoiding the series inductance at the output end of the pulse power source, thereby avoiding The problem caused by series inductance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Plasma Technology (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供了一种脉冲调制电源,包括:在放电时串联的多个放电模块;与所述多个放电模块对应的多个触发器,其中每个触发器为对应的放电模块提供触发信号,以导通该对应的放电模块;控制逻辑模块,用于控制触发信号,以便依次延时导通所述多个放电模块;输出端,用于输出电压。

Description

用于控制脉沖输出的设备和方法 技术领域
本发明一般地涉及脉沖输出控制, 特别地涉及脉沖输出前沿控制。
5 具体地, 本发明涉及在基于 MARX发生器原理的固态脉沖调制电源上 控制输出脉沖前沿。 背景技术
MARX发生器是实现脉沖调制电源一种方式, 是一种利用电容并 ! 0 联充电再串联放电的装置。 MARX 发生器可实现纳秒级的窄脉沖和很 高的脉沖频率。 固态脉沖调制电源是以固态开关, 比如 IGBT (绝缘栅 双极晶体管) 进行脉沖调制的电源。 目前应用于直线加速器的基于 MARX发生器原理的固态脉沖调制电源一般均采用各 IGBT 同时触发 的工作方式。
\ 5 在以磁控管为负载的电源系统中, 由于磁控管本身的阻抗特性, 要使其工作在特定的脉沖电流就必需满足特定要求的脉沖前沿斜率。 图 1 是脉沖前沿斜率满足要求时的脉沖电流波形示意图。 图 2是当脉 冲前沿过陡时脉沖电流波形示意图, 图中显示, 脉沖顶部有明显顶降 现象。 图 3 是当脉冲前沿过緩时脉沖电流的波形示意图, 图中显示脉 0 冲顶部有明显顶升的现象。 并且, 当脉沖电流的幅值发生变化时, 能 够维持脉沖电流波形顶部平直的脉冲前沿斜率也会发生变化, 幅值越 大, 需要的前沿斜率越陡。
为解决脉沖顶部不平的问题, 目前常用的解决方案是在脉沖电源 输出端串接一只电感。 当脉沖电流的幅值需要调整时, 可以通过调整 5 电感的电感量达到与阻抗相匹配的目的。 这个方法的缺点是: 当脉沖 电流幅值需要频繁调整时, 调整电感会是一项非常繁瑣的工作; 特别 是对于用在双能加速器产品上的固态脉沖调制电源, 因为脉沖电流幅 值是每个脉沖周期交替变化的, 通过调整电感量的方法就无法在这些 产品中实现。
30 为此, 存在能够对输出脉沖前沿进行较为便利的控制, 以更好地 适应磁控管负载的需要。 发明内容
本发明提供一种用于通过依次延时触发信号来控制脉沖输出的设 备和方法。
根据本发明的一个方面, 提供了一种脉沖调制电源, 包括: 在放 电时串联的多个放电模块; 与所述多个放电模块对应的多个触发器, 其中每个触发器为对应的放电模块提供触发信号, 以导通该对应的放 电模块; 控制逻辑模块, 用于控制触发信号, 以便依次延时导通所述 多个放电模块; 输出端, 用于输出电压。
根据本发明的另一个方面, 提供了在脉沖调制电源中控制脉沖输 出的方法, 所述脉沖调制电源包括在放电时串联的多个放电模块, 该 方法包括步骤: 向所述多个放电模块提供依次延时的触发信号, 以依 次导通所述多个放电模块; 和输出放电电压。
在本发明的一个优选实施例中, 本发明力求在以基于 MARX发生 器原理的固态脉沖调制电源上, 通过调整各 IGBT模块打开延时时间, 来得到良好的脉沖输出波形。
利用本发明, 无需在脉沖电源输出端串接一只电感就能够调整脉 沖电流的幅值, 从而可以对输出脉沖前沿以及脉沖顶部不平进行较为 便利的控制和调整, 以更好地适应诸如磁控管的负载。 附图说明
为了更完整地理解对本发明, 现在结合附图对随后的说明书进行 描述, 其中:
图 1是脉沖前沿斜率满足要求时的脉沖电流波形示意图; 图 2是当脉沖前沿过陡时脉沖电流波形示意图;
图 3是当脉沖前沿过緩时脉沖电流的波形示意图; 意图;; 。 '、 图 5是根据本发明一个实施例的基于 MARX发生器的固态脉沖调 制电源的示意图;
图 6是没有前沿控制的固态脉冲调制电源触发与脉冲输出的工作 时序示意图;
图 7是增加了前沿控制逻辑的固态脉沖调制电源触发与脉沖输出 的工作时序示意图; 和
图 8是图 7脉沖前沿的细节示意图。 具体实施方式
5 本发明所讨论的图 1 到 8 以及用于描述该专利文档中的本发明的 原理的各种实施例仅仅是说明的目的, 而不应当被理解为以任何方式 来限制本发明的范围。 本领域技术人员将理解本发明的原理能以任何 类型的适当布置的设备或系统来实现。
图 4所示为目前常见的基于 MARX发生器的固态脉沖调制电源原 ! 0 理示意图。 图中 PS为大功率直流稳压电源, 是固态脉冲调制电源的供 电电源, 电源电压 Vin。 Ml ~ Mm是 m个 IGBT模块单元。 Trig(l) ~ Trig(m)是 IGBT模块组对应的触发信号。 Vout是固态脉冲调制电源的 输出端电压。
在两次触发的间隔期, PS通过充电电感 L及二极管为 IGBT模块
! 5 单元中的电容 C 充电, 形成一个并联充电的电容阵列, 并在下一个触 发来临之前使电容 C上的电压保持为 Vin。 当触发来临时, 各个 IGBT 模块导通, 模块上的电容 C通过各 IGBT模块单元形成一个串联的放 电回路, 此时固态脉沖调制电源的输出电压 Vout = n*Vin,其中 n为当 前时刻导通的 IGBT模块的个数。
0 图 5是根据本发明一个实施例的基于 MARX发生器的固态脉冲调 制电源的示意图。 图 5 中所示的固态脉沖调制电源例如是如图 4所迷 的典型基于 MARX发生器的固态脉沖调制电源, 其中 m个触发器 1 ... 触发器 n、 触发器 n+ 1 ...触发器 m 为固态脉沖调制电源提供触发信号 Trig( l )... Trig(n), Tng(n+ 1)... Tng(m)0 触发器 1 ~触发器 m 受到控制 5 逻辑模块的控制。 控制逻辑模块控制触发器 l ~ m 产生的触发信号 Tng( l ) ~ Trig(m),以便依次延时导通固态脉沖调制电源中的 m个 IGBT 模块单元。
当触发来临时, 基于 MARX 发生器的固态脉沖调制电源中的各 IGBT 模块单元 Ml ~ Mm 分别接收依次延时的触发信号 Trig(l) ~ 0 Trig(m)并依次延时导通。 这样, 在固态脉冲调制电源的输出端产生一 个阶梯状的输出前沿的 Vout。 经过电流传输网络的滤波作用, 在磁控 管负载端 (未示出) 就可以得到平滑的输出 Vout'。 控制逻辑模块控制触发器 1 ~触发器 m,使得触发器 1 ~触发器 m 分别输出未延时的 Trig(l)、 …延时 At(n-l)的 Trig(n)、 延时 At(n)的 Trig(n+1)...延时 At(m-l)的 Trig(m)。 控制逻辑模块可以控制延时时间 △ tl ~ At(m-l)中每一个的大小, 以便获得满足特定要求的脉沖前沿斜 率。 在本发明的一个优选实施例中, 当脉沖前沿过陡时, 脉冲顶部出 现如图 2的明显顶降现象。 此时, 控制逻辑模块增大延时时间 Atl ~ Δ t(m-l), 使得获得斜率减小的脉沖输出的脉冲前沿。 在在本发明的另一 个优选实施例中, 当脉沖前沿过緩时, 脉冲顶部出现如图 3 的明显顶 升现象。 此时, 控制逻辑模块减小延时时间 Atl ~ At(m-l), 使得获得 斜率增大的脉沖输出的脉沖前沿。
尽管图 5说明了根据本发明的固态脉沖调制电源的一个例子, 但 可对图 5做出各种改变。 图 5所示的基于 MARX发生器的固态脉冲调 制电源仅仅是实现脉冲调制电源一种方式。 实际上, 本发明可用于任 何串联放电的固态脉冲调制电源。 此外, 固态脉沖调制电源中的固态 开关不仅限于 IGBT (绝缘栅双极晶体管)型固态开关, 而可以是任何 适于在放电时串联的放电模块的器件和装置。 本领域技术人员在阅读 本发明的说明书后可知, 本发明不仅可以用于调整基于 MARX发生器 的固态脉冲调制电源中的脉沖前沿斜率, 还可以消除任何串联放电的 固态脉沖调制电源中脉沖顶部不平的问题。
图 6是没有前沿控制的固态脉沖调制电源触发与脉冲输出的工作 时序示意图。 在这个工作模式中, 触发信号 Trig(l)~Trig(m)之间没有 延时,各 IGBT模块同时触发, 同时导通。输出电压上升时间仅与 IGBT 模块参数及输出电路参数有关。
图 7是增加了前沿控制逻辑的固态脉沖调制电源触发与脉沖输出 的工作时序示意图, 图 8是图 7脉沖前沿的细节示意图。
在图 8所示中, 各 IGBT模块的触发信号 Tng(n+l)...Tng(m)不同 时导通, 而是依次延时导通, 这样就会在电源的输出端产生一个阶梯 状的输出前沿的 Vout, 经过电流传输网络的滤波作用, 在磁控管负载 端就可以得到平滑的输出 Vout'。 通过调整各 IGBT触发的延时时间△ tl ~ Δ t(m- 1 ) , 就可以改变 Vout'的前沿斜率。
综上可知, 本发明所提供的用于通过依次延时触发信号来控制脉 沖输出的设备和方法避免了在脉沖电源输出端串接电感, 从而避免了 串接电感所带来的问题。
尽管已经为呈现本发明的基本结构的目的说明了结构的某些构 造, 但是本领域技术人员将理解其他仍然落在本发明所附的权利要求 的范围内的变型也是可能的。 尽管本发明已经根据当前被认为是最实 用和优选的实施例来描迷, 仍然可以理解, 本发明不限于所公开的实 施例, 相反, 其旨在覆盖包括在所附权利要求的精神和范围内的各种 修改和等效方案。

Claims

权 利 要 求
I . 一种脉沖调制电源, 包括:
在放电时串联的多个放电模块;
与所述多个放电模块对应的多个触发器, 其中每个触发器为对应 的放电模块提供触发信号, 以导通该对应的放电模块;
控制逻辑模块, 用于控制触发信号, 以便依次延时导通所述多个 放电模块;
输出端, 用于输出电压。
2. 如权利要求 1所述的脉沖调制电源, 其中该脉沖调制电源是基 于 MARX发生器的脉沖调制电源。
3. 如权利要求 2所述的脉沖调制电源, 其中所述输出端产生阶梯 状的输出前沿。
4. 如权利要求 3所述的脉沖调制电源, 其中所述阶梯状的输出前 沿经电流输出网络被平滑。
5. 如权利要求 1 -4之一所述的脉冲调制电源,其中所述放电模块是 IGBT模块。
6. 如权利要求 1-4之一所述的脉沖调制电源,其中当脉沖顶部出现 顶降时, 增大所述延时。
7. 如权利要求 1 -4之一所述的脉冲调制电源,其中当脉沖顶部出现 顶升时, 减小所述延时。
8. 一种在脉沖调制电源中控制脉沖输出的方法, 所述脉沖调制电 源包括在放电时串联的多个放电模块, 该方法包括步骤:
向所述多个放电模块提供依次延时的触发信号, 以依次导通所述 多个放电模块; 和
输出放电电压。
9. 如权利要求 8所述的方法, 其中该脉沖调制电源是基于 MARX 发生器的脉沖调制电源。
10. 如权利要求 9所述的方法, 其中所述输出端产生阶梯状的输出 前沿。
I I . 如权利要求 10所述的方法, 还包括步骤: 平滑所迷阶梯状的
¾ 出前沿。
12. 如权利要求 8-11之一所述的方法, 其中所述放电模块是 IGBT 模块
13. 如权利要求 8-11之一所述的方法, 还包括步骤: 当脉沖顶部出 现顶降时, 增大所述延时。
14. 如权利要求 8-11之一所述的方法, 还包括步骤: 当脉沖顶部出 现顶升时, 减小所述延时。
PCT/CN2012/001752 2011-12-31 2012-12-28 用于控制脉冲输出的设备和方法 WO2013097298A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014549299A JP5951042B2 (ja) 2011-12-31 2012-12-28 パルス出力を制御するためのデバイス及び方法
KR1020147018779A KR101650315B1 (ko) 2011-12-31 2012-12-28 펄스 출력 제어용 설비 및 방법
EP12862173.7A EP2800273B1 (en) 2011-12-31 2012-12-28 Device and method for use in controlling pulse output
PL12862173T PL2800273T3 (pl) 2011-12-31 2012-12-28 Urządzenie i sposób stosowane przy sterowaniu impulsowym sygnałem wyjściowym
US14/008,921 US10340783B2 (en) 2011-12-31 2012-12-28 Apparatus and method for controlling pulse output

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110457646.9A CN102545846B (zh) 2011-12-31 2011-12-31 用于控制脉冲输出的设备和方法
CN201110457646.9 2011-12-31

Publications (1)

Publication Number Publication Date
WO2013097298A1 true WO2013097298A1 (zh) 2013-07-04

Family

ID=46351928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/001752 WO2013097298A1 (zh) 2011-12-31 2012-12-28 用于控制脉冲输出的设备和方法

Country Status (7)

Country Link
US (1) US10340783B2 (zh)
EP (1) EP2800273B1 (zh)
JP (1) JP5951042B2 (zh)
KR (1) KR101650315B1 (zh)
CN (1) CN102545846B (zh)
PL (1) PL2800273T3 (zh)
WO (1) WO2013097298A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289832A (zh) * 2019-06-28 2019-09-27 四川英杰电气股份有限公司 一种固态调制器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545687A (zh) * 2011-12-31 2012-07-04 同方威视技术股份有限公司 用于电压交替脉冲输出的设备和方法
CN102545846B (zh) 2011-12-31 2015-11-25 同方威视技术股份有限公司 用于控制脉冲输出的设备和方法
DE102012207930A1 (de) * 2012-05-11 2013-11-14 Siemens Aktiengesellschaft Verfahren zum Betreiben eines Geräts zum Erzeugen einer Mikrowellenstrahlung
CN102882493B (zh) * 2012-09-27 2016-05-25 上海交通大学 一种连续高重频高压脉冲源
CN105759680A (zh) * 2016-01-27 2016-07-13 云南电网有限责任公司电力科学研究院 全固态纳秒级脉冲发生器控制方法及系统
CN106936330B (zh) * 2017-04-27 2023-10-03 成都光大电力电子研究所 一种低成本大功率长脉冲高顶平的高压脉冲电源
KR102141684B1 (ko) 2018-08-24 2020-09-14 한국원자력연구원 전류 펄스를 제어하는 모듈레이터 및 그 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206950A (zh) * 1998-05-29 1999-02-03 清华大学 用于压电器件激振的新型驱动电源
CN101739974A (zh) * 2008-11-14 2010-06-16 群康科技(深圳)有限公司 脉波调整电路及使用该脉波调整电路的驱动电路
CN102545687A (zh) * 2011-12-31 2012-07-04 同方威视技术股份有限公司 用于电压交替脉冲输出的设备和方法
CN102545846A (zh) * 2011-12-31 2012-07-04 同方威视技术股份有限公司 用于控制脉冲输出的设备和方法
CN202406058U (zh) * 2011-12-31 2012-08-29 同方威视技术股份有限公司 用于电压交替脉冲输出的设备
CN202772856U (zh) * 2011-12-31 2013-03-06 同方威视技术股份有限公司 脉冲调制电源

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900947A (en) 1988-05-02 1990-02-13 The United States Of America As Represented By The Secretary Of The Army Asynchronous marx generator utilizing photo-conductive semiconductor switches
JP3317709B2 (ja) * 1991-08-21 2002-08-26 浜松ホトニクス株式会社 階段波発生回路
JP3424398B2 (ja) 1995-07-26 2003-07-07 松下電工株式会社 電力変換装置
US6580304B1 (en) * 2002-03-28 2003-06-17 M/A-Com, Inc. Apparatus and method for introducing signal delay
JP4329415B2 (ja) * 2003-06-06 2009-09-09 株式会社Ihi パルス電源装置
US7855904B2 (en) * 2005-03-17 2010-12-21 Los Alamos National Security, Llc Apparatus for producing voltage and current pulses
US7989987B2 (en) 2005-06-08 2011-08-02 Mcdonald Kenneth Fox Photon initiated marxed modulators
JP4803665B2 (ja) * 2006-06-27 2011-10-26 東芝三菱電機産業システム株式会社 高電圧パルス発生装置
US9024478B2 (en) * 2011-03-03 2015-05-05 Massachusetts Institute Of Technology Photovoltaic energy extraction with multilevel output DC-DC switched capacitor converters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1206950A (zh) * 1998-05-29 1999-02-03 清华大学 用于压电器件激振的新型驱动电源
CN101739974A (zh) * 2008-11-14 2010-06-16 群康科技(深圳)有限公司 脉波调整电路及使用该脉波调整电路的驱动电路
CN102545687A (zh) * 2011-12-31 2012-07-04 同方威视技术股份有限公司 用于电压交替脉冲输出的设备和方法
CN102545846A (zh) * 2011-12-31 2012-07-04 同方威视技术股份有限公司 用于控制脉冲输出的设备和方法
CN202406058U (zh) * 2011-12-31 2012-08-29 同方威视技术股份有限公司 用于电压交替脉冲输出的设备
CN202772856U (zh) * 2011-12-31 2013-03-06 同方威视技术股份有限公司 脉冲调制电源

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHAO, CHUN ET AL.: "Repetition Rate Pulsed Power Supply for Triggered Switch Test", HIGH VOLTAGE ENGINEERING, vol. 35, no. 1, January 2009 (2009-01-01), pages 82 - 86, XP008171783 *
ZHOU, DAN: "High Voltage Pulse Generator and Its Application in Optical-electrical Dual Pulse LIBS", ELECTRONIC TECHNOLOGY & INFORMATION SCIENCE, CHINA MASTER'S THESES FULL-TEXT DATABASE, 15 March 2011 (2011-03-15), pages 9 AND 27 - 31, XP008171833 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110289832A (zh) * 2019-06-28 2019-09-27 四川英杰电气股份有限公司 一种固态调制器
CN110289832B (zh) * 2019-06-28 2023-06-02 四川英杰电气股份有限公司 一种固态调制器

Also Published As

Publication number Publication date
JP5951042B2 (ja) 2016-07-13
EP2800273A1 (en) 2014-11-05
EP2800273A4 (en) 2015-10-28
JP2015505236A (ja) 2015-02-16
US10340783B2 (en) 2019-07-02
CN102545846B (zh) 2015-11-25
KR20140127212A (ko) 2014-11-03
CN102545846A (zh) 2012-07-04
US20140320105A1 (en) 2014-10-30
PL2800273T3 (pl) 2020-01-31
EP2800273B1 (en) 2019-08-07
KR101650315B1 (ko) 2016-08-24

Similar Documents

Publication Publication Date Title
WO2013097298A1 (zh) 用于控制脉冲输出的设备和方法
US11962304B2 (en) High voltage pre-pulsing
US20220085801A1 (en) Efficient igbt switching
TWI544729B (zh) 應用於交錯並聯式開關電源的控制電路
CN101677210B (zh) 具有低阻抗初始驱动和较高阻抗最终驱动的开关驱动器
JP2016524447A (ja) 並列電力スイッチの同期
WO2013097299A1 (zh) 用于电压交替脉冲输出的设备和方法
KR20130048152A (ko) 동적 mosfet 게이트 드라이버
TW202137819A (zh) 脈衝雷射二極體驅動器
TW201434259A (zh) 返馳式功率轉換器之控制電路
CN108322198B (zh) 一种双极性高压脉冲电源的控制系统及方法
US20170149330A1 (en) Switching Circuit And Power Conversion Circuit
US10374587B2 (en) Phase shift clock for digital LLC converter
US10181786B1 (en) Anti-cross-conduction time interval minimizer
CN111464067A (zh) 高频极短电子枪栅极调控脉冲电源系统
CN104821718A (zh) 基于输入电压前馈控制的Boost升压型电路及其控制方法
KR102609990B1 (ko) 스위칭 파워컨버터 내 파워스위치 트랜지스터를 위한 적응형 게이트 드라이브
WO2023213292A1 (zh) 一种组合控制电压变换器、控制方法、电源和新能源汽车
CN102158207B (zh) 开关晶体管驱动信号的脉冲调制方法及脉冲调制电路
JP6614818B2 (ja) 昇降圧dc/dcコンバータ
TWI742282B (zh) 直流-直流轉換電路及其控制方法
US7391626B1 (en) Chop wave control circuit
TW200832878A (en) Slope compensation method of power converting circuit used in peak value current control mode and circuit thereof
US11214056B2 (en) Driver circuit
CN107394998B (zh) 控制电路、控制方法及开关电源

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12862173

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012862173

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 14008921

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2014549299

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147018779

Country of ref document: KR

Kind code of ref document: A