WO2013097255A1 - 一种多载波正交频分复用双工传输方法、装置及系统 - Google Patents

一种多载波正交频分复用双工传输方法、装置及系统 Download PDF

Info

Publication number
WO2013097255A1
WO2013097255A1 PCT/CN2011/085213 CN2011085213W WO2013097255A1 WO 2013097255 A1 WO2013097255 A1 WO 2013097255A1 CN 2011085213 W CN2011085213 W CN 2011085213W WO 2013097255 A1 WO2013097255 A1 WO 2013097255A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency division
orthogonal frequency
division multiplexing
signal
carrier phase
Prior art date
Application number
PCT/CN2011/085213
Other languages
English (en)
French (fr)
Inventor
石操
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11878960.1A priority Critical patent/EP2790366B1/en
Priority to ES11878960.1T priority patent/ES2607962T3/es
Priority to CN201180002989.4A priority patent/CN102726018B/zh
Priority to PCT/CN2011/085213 priority patent/WO2013097255A1/zh
Publication of WO2013097255A1 publication Critical patent/WO2013097255A1/zh
Priority to US14/319,894 priority patent/US10382189B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/20Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other
    • H04B3/23Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a replica of transmitted signal in the time domain, e.g. echo cancellers
    • H04B3/232Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other using a replica of transmitted signal in the time domain, e.g. echo cancellers using phase shift, phase roll or frequency offset correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/068Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2657Carrier synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/027Speed or phase control by the received code signals, the signals containing no special synchronisation information extracting the synchronising or clock signal from the received signal spectrum, e.g. by using a resonant or bandpass circuit

Definitions

  • the present invention relates to the field of communications, and in particular, to a multi-carrier orthogonal frequency division multiplexing duplex transmission method, apparatus and system.
  • OFDM Orthogonal Frequency Division Multiplexing
  • MCM Multi-Carrier Modulation
  • OFDM Orthogonal Frequency Division Multiplexing
  • 4G 4th generation mobile communication systems
  • OSD Overlapped Spectrum Duplex
  • the OSD technology uses spectrum overlap technology to transmit and receive signals in both uplink and downlink.
  • the OSD technology enables all uplink and downlink signals to be fully multiplexed at the same time.
  • the frequency efficiency is relative to traditional FDD ( Frequency Division Duplexing or TDD (Time Division Duplexing) is expected to increase by a factor of two.
  • the delay of the channel becomes smaller and smaller, so that the signal transmitted by the near-end device and the remote device and the received signal are almost completely orthogonal in time, but in the orthogonal frequency division multiplexing system, Since the subcarrier signals for transmitting the orthogonal frequency division signals at the near end and the far end are not completely synchronized, the echo orthogonal frequency division multiplexing signals after the hybrid coils are out of synchronization with the far-end orthogonal frequency division multiplexing signals. Serious interference to the received signal.
  • Embodiments of the present invention provide a multi-carrier orthogonal frequency division multiplexing duplex transmission method, apparatus, and system, which avoid carrier back by performing carrier phase adjustment on a transmitted orthogonal frequency division multiplexed signal.
  • the orthogonal frequency division complex incomplete synchronization problem between the wave signal and the received signal sent by the remote device realizes overlapping and transmitting duplex transmission and transmission in the orthogonal frequency division multiplexing duplex transmission system.
  • a multi-carrier orthogonal frequency division multiplexing duplex transmission method includes:
  • the near-end device performs simultaneous transmission of the near-end orthogonal frequency division multiplexing signal and the reception of the far-end orthogonal frequency division multiplexing signal transmitted from the remote device on the at least one orthogonal frequency division multiplexing subcarrier channel.
  • the device sends the carrier phase difference to the remote device by using a carrier phase difference notification message, so that the remote device performs carrier phase adjustment on the far-end orthogonal frequency division multiplexing signal according to the carrier phase difference, so that the near-end device
  • the carrier phase of the orthogonal frequency division multiplexed signal is synchronized with the carrier phase of the far-end orthogonal frequency division multiplexed signal.
  • a multi-carrier orthogonal frequency division multiplexing duplex transmission apparatus comprising: a transmitting unit, configured to perform a near-end orthogonal frequency division multiplexing signal on at least one orthogonal frequency division multiplexing subcarrier channel Send
  • a receiving unit configured to perform receiving, by using the remote orthogonal frequency division multiplexing signal sent from the remote device, on the at least one orthogonal frequency division multiplexing subcarrier channel;
  • An obtaining unit configured to obtain, according to the transmitted near-end orthogonal frequency division multiplexing signal generated by the near-end orthogonal frequency division multiplexing signal, and the received far-end orthogonal frequency division multiplexing signal, to obtain And a carrier phase difference between the near-end echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal;
  • a first adjusting unit configured to perform carrier phase adjustment on the near-end orthogonal frequency division multiplexing signal according to the carrier phase difference, so that the near-end orthogonal frequency division multiplexing signal is orthogonal to the far-end Frequency division multiplexed signal synchronization.
  • An orthogonal frequency division multiplexing duplex transmission system comprising: a near-end device and a remote device, wherein The near-end device includes: a sending unit, a receiving unit, an obtaining unit, a first adjusting unit, and a message transmitting unit, where
  • a sending unit configured to perform transmission of a near-end orthogonal frequency division multiplexing signal on at least one orthogonal frequency division multiplexing subcarrier channel;
  • a receiving unit configured to perform receiving, by using the remote orthogonal frequency division multiplexing signal sent from the remote device, on the at least one orthogonal frequency division multiplexing subcarrier channel;
  • An obtaining unit configured to be used for a near-end echo orthogonal frequency division multiplexing signal generated according to the transmitted near-end orthogonal frequency division multiplexing signal, and the received far-end orthogonal frequency division multiplexing signal Obtaining a carrier phase difference between the near-end echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal;
  • a first adjusting unit configured to perform carrier phase adjustment on the near-end orthogonal frequency division multiplexing signal according to the carrier phase difference, so that the near-end orthogonal frequency division multiplexing signal is orthogonal to the far-end Frequency division multiplexed signal synchronization;
  • a message transmitting unit configured to send the carrier phase difference obtained by the near-end device to a remote device by using a carrier phase difference notification message, so that the remote device performs orthogonal frequency division according to the near-end echo a carrier phase difference between the multiplexed signal and the far-end orthogonal frequency division multiplexed signal, and performing carrier phase adjustment on the far-end carrier signal, so that the near-end echo orthogonal frequency division multiplexed signal and the far-end positive Carrier phase synchronization of the frequency division multiplexed signal.
  • the remote device includes a second adjusting unit, configured to acquire a carrier phase difference notification message sent by the near-end device, and perform carrier phase adjustment on the far-end orthogonal frequency division multiplexing signal, so that the near-end echo orthogonal frequency division
  • the multiplexed signal is synchronized with a carrier phase of the far-end orthogonal frequency division multiplexed signal.
  • the near-end device After obtaining the phase difference of the carrier, the near-end device performs carrier phase adjustment of the near-end orthogonal frequency division multiplexing signal in the first adjusting unit, or sends a carrier phase difference notification message to the remote end through the message transmitting unit.
  • the device causes the remote device to perform carrier phase adjustment on the far-end orthogonal frequency division multiplexing signal according to a carrier phase difference between the far-end orthogonal frequency division multiplexing signal and the near-end echo orthogonal frequency division multiplexing signal, to achieve And the purpose of synchronizing the near-end echo orthogonal frequency division multiplexing signal with the carrier phase of the far-end orthogonal frequency division multiplexing signal.
  • the multi-carrier orthogonal frequency division multiplexing duplex transmission method, device and system provided by the embodiments of the present invention implement the far-end orthogonal frequency division multiplexing signal and the back after the carrier phase adjustment of the signal to be transmitted
  • the echo orthogonal frequency division multiplexing signals in the wave are synchronized, and the spectrum duplex transmission is realized for the signals transmitted by the orthogonal frequency division multiplexing technology, thereby improving spectrum utilization.
  • FIG. 1 is a flowchart of a method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of an acquiring unit according to an embodiment of the present invention
  • FIG. 4 is a schematic structural diagram of a system according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of a carrier phase adjustment method according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of another carrier phase adjustment method according to an embodiment of the present invention. detailed description
  • An echo cancellation method for orthogonal frequency division multiplexing duplex transmission includes the following steps:
  • the near-end device performs simultaneous transmission of the near-end orthogonal frequency division multiplexing signal and the remote orthogonal frequency division multiplexing (OFDM) transmitted from the remote device on the at least one orthogonal frequency division multiplexing subcarrier channel.
  • OFDM remote orthogonal frequency division multiplexing
  • Orthogonal Frequency Division Multiplexing divides a channel into Orthogonal Frequency Division Multiplexing subcarrier channels.
  • the near-end device converts the near-end transmit signal into parallel low-speed sub-data streams.
  • a near-end orthogonal frequency division multiplexing signal is formed on each orthogonal frequency division multiplexing subcarrier channel for transmission, and at the same time, the near end receives the far-end orthogonal frequency division multiplexing signal transmitted by the far end.
  • Near-end Orthogonal Frequency Division Multiplexing (OFDM) signals that are locally modulated onto each Orthogonal Frequency Division Multiplexing subcarrier channel for transmission can be separated by using correlation techniques at the far end.
  • the far-end modulation is applied to each orthogonal
  • the far-end orthogonal frequency division multiplexing signals transmitted on the frequency division multiplexing subcarrier channel can be separated by using correlation techniques at the near end, thereby reducing mutual interference between orthogonal frequency division multiplexing subcarrier channel channels. .
  • S102 Acquire an echo-orthogonal frequency division multiplexing signal generated by the transmitted near-end orthogonal frequency division multiplexing signal, and receive the far-end orthogonal frequency division multiplexing signal to obtain a near-end echo orthogonal frequency division.
  • the carrier of the multiplexed signal is in phase difference with the carrier of the far-end orthogonal frequency division multiplexed signal.
  • the near-end echo orthogonal frequency division multiplexing signal is a signal that the near-end orthogonal frequency division multiplexing signal returns to the near end through the hybrid coil during the far-end transmission;
  • the cross-frequency division multiplexed signal is a signal transmitted from the far end and transmitted to the near end via orthogonal frequency division multiplexing carrier modulation.
  • the far-end orthogonal frequency division multiplexing signal transmitted from the far end and the near-end echo orthogonal frequency division multiplexing signal inevitably generate some carrier phase difference. , with the expression.
  • the near-end echo orthogonal frequency division multiplexed signal is not completely synchronized with the carrier of the far-end orthogonal frequency division multiplexed signal, but when the carrier of the received signal is unloaded and modulated, it is still near
  • the carrier phase of the Orthogonal Frequency Division Multiplexed signal is subjected to de-orthogonal frequency division multiplexing carrier modulation. Therefore, when performing echo cancellation, the near-end echo cancellation signal is synchronously adjusted, so that the echo cancellation signal and the near-end are cancelled.
  • the echo orthogonal frequency division multiplexing is synchronized after de-orthogonal frequency division multiplexing carrier modulation.
  • the channel estimation is a process of estimating a model parameter of a certain channel model from the received data, and obtaining a near-end echo orthogonal frequency division multiplexed signal and a far-end orthogonal frequency division multiplexed signal by using a channel estimation method.
  • Carrier phase difference ⁇ is a process of estimating a model parameter of a certain channel model from the received data, and obtaining a near-end echo orthogonal frequency division multiplexed signal and a far-end orthogonal frequency division multiplexed signal by using a channel estimation method.
  • acquiring the near-end echo orthogonal frequency division multiplexing signal and the location The carrier phase difference of the far-end orthogonal frequency division multiplexing signal and the channel transfer function of the near-end echo path have two schemes:
  • Solution 1 detecting a mixed signal of the near-end echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal, and obtaining a transfer function of the near-end echo channel and the near by using a channel estimation method The carrier phase difference between the end echo orthogonal frequency division multiplexing signal and the far end orthogonal frequency division multiplexing signal.
  • Solution 2 detecting the near-end echo orthogonal frequency division multiplexing signal respectively, obtaining a transfer function of the near-end echo channel and a carrier phase of the echo orthogonal frequency division multiplexing; and orthogonal to the far-end
  • the frequency division multiplexed signal is detected to obtain a carrier phase of the far-end orthogonal frequency division multiplexed signal, and after calculation, obtaining a transfer function for acquiring the echo channel and the echo orthogonal frequency division multiplexed signal and the far-end positive Carrier phase difference of the frequency division multiplexed signal.
  • the specific method is: on the one hand, channel estimation is performed on the echo orthogonal frequency division multiplexing signal by using a channel estimation method, and the carrier phase or the phase of the near-end echo orthogonal frequency division multiplexing signal is obtained. Carrier phase related parameters, and transfer function of the near-end echo channel.
  • the far-end orthogonal frequency division multiplexing signal is estimated by a channel estimation method to obtain a carrier phase or a phase-related parameter of the far-end orthogonal frequency division multiplexing signal. After calculation, a transfer function for acquiring an echo channel and a carrier phase difference between the echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal are obtained.
  • S1 03 performing carrier phase adjustment on the near-end orthogonal frequency division multiplexing signal according to the carrier phase difference, or transmitting the carrier phase difference to a remote device by using a carrier phase difference notification message, so that The remote device performs carrier phase adjustment on the far-end orthogonal frequency division multiplexing signal according to the carrier phase difference, so that the carrier phase and the far-end orthogonal frequency division multiplexing of the near-end orthogonal frequency division multiplexing signal
  • the carrier phase of the signal is synchronized.
  • the near-end device performs carrier phase adjustment on the near-end orthogonal frequency division multiplexing signal according to the carrier phase difference.
  • an embodiment of the present invention provides a carrier phase adjustment method, where the near-end orthogonal frequency division multiplexing signal and the near-end echo orthogonal frequency obtained by the previous step are
  • the carrier phase difference of the divided multiplexed signal generates a near-end reference orthogonal frequency division multiplexed signal through a loop filter, a digital-to-analog converter, and a control voltage controlled oscillator.
  • Near-end reference orthogonal The frequency division multiplexed signal also generates a certain carrier phase difference during generation and transmission.
  • the phase converter In the phase converter, the phase difference between the carrier signal of the near-end reference orthogonal frequency division multiplexed signal and the carrier signal in the received signal is obtained according to the phase detector, and then the far-end orthogonal frequency division obtained according to the previous step is used.
  • the voltage controlled oscillator generates a near-end reference orthogonal frequency division multiplexing signal, and the carrier phase difference of the carrier phase and the received signal of the near-end reference orthogonal frequency division multiplexing signal after inputting through the phase detector is The sum of the carrier phase differences of the far-end orthogonal frequency division multiplexing signal and the near-end echo orthogonal frequency division multiplexed signal is zero.
  • the stabilized near-end reference OFDM signal has the same frequency as the input signal, and its carrier phase is "phase adjusted".
  • the near-end device may send the carrier phase difference to the remote device by using a carrier phase difference notification message, so that the remote device divides the remote orthogonal frequency according to the carrier phase difference.
  • the carrier phase adjustment is performed by using a signal, so that the carrier phase of the near-end orthogonal frequency division multiplexing signal and the carrier phase of the far-end orthogonal frequency division multiplexing signal are synchronized as shown in FIG. 6, for the far-end device to the far-end orthogonal frequency.
  • the multiplexed signal is subjected to carrier phase adjustment.
  • the remote device After receiving the carrier phase difference notification message sent by the near-end device, the remote device enters the digital-to-analog converter by using a digital sine wave to generate an analog sine wave, which is not subjected to carrier phase adjustment.
  • Far-end orthogonal frequency division multiplexing signal The carrier phase of the output orthogonal OFDM signal is adjusted by modulating the carrier phase K of the digital sine wave generator such that K is equal to ⁇ .
  • the carrier phase difference obtained by the near-end device is sent to the remote device through a carrier phase difference notification message, and the carrier phase adjustment of the remote carrier signal is performed, so that the near-end echo is orthogonally frequency-divided.
  • the signal and the far-end orthogonal frequency division multiplexing signal carrier phase difference to be an integer multiple of 0 or ⁇ /2, so that the near-end echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division Synchronize with the carrier phase of the signal.
  • the orthogonal frequency division multiplexing duplex transmission method provided by the embodiment of the present invention implements the carrier phase adjustment of the signal to be transmitted, and realizes the far-end carrier signal and the echo.
  • the echo orthogonal frequency division multiplexing signal synchronization avoids the interference of the echo orthogonal frequency division multiplexing signal on the received signal, and realizes spectrum duplex transmission on the signal transmitted by the orthogonal frequency division multiplexing technology, thereby improving spectrum utilization. .
  • An embodiment of the present invention provides an apparatus 200 for orthogonal frequency division multiplexing duplex transmission.
  • the apparatus for orthogonal frequency division multiplexing duplex transmission includes: a sending unit 201, a receiving unit 202, and an acquiring Unit 203, a first adjusting unit 204, wherein
  • the sending unit 201 is configured to perform transmission of the near-end orthogonal frequency division multiplexing signal on the at least one orthogonal frequency division multiplexing subcarrier channel;
  • the receiving unit 202 is configured to perform receiving, by using the remote orthogonal frequency division multiplexing signal sent from the remote device, on the at least one orthogonal frequency division multiplexing subcarrier channel;
  • the obtaining unit 203 is configured to obtain a near-end echo positive according to the echo orthogonal frequency division multiplexing signal generated by the transmitted near-end orthogonal frequency division multiplexing signal and the received far-end orthogonal frequency division multiplexing signal. a carrier phase difference between the frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal;
  • a first adjusting unit 204 configured to perform carrier on the near-end orthogonal frequency division multiplexing signal according to a carrier phase difference between the near-end echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal
  • the phase adjustment causes the near-end orthogonal frequency division multiplexed signal to be synchronized with the far-end orthogonal frequency division multiplexed signal.
  • the obtaining unit 203 may further include: a first obtaining subunit 203 1 , a second obtaining subunit 2032 , and a calculating subunit 2033 , where
  • the first obtaining subunit 203 1 is configured to detect a near-end echo orthogonal frequency division multiplexing signal after the hybrid coil, obtain a transfer function of the near-end echo channel, and obtain the orthogonal frequency division of the echo Carrier phase of the signal;
  • a second obtaining subunit 2302 configured to detect a far-end orthogonal frequency division multiplexing signal, and obtain a phase of the far-end orthogonal frequency division multiplexing signal
  • the calculating subunit 205 is configured to obtain a carrier phase difference between the near-end echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal.
  • the apparatus in the embodiment of the present invention further includes: the message transmitting unit 205: sending the carrier phase difference to the remote device by using a carrier phase difference notification message, so that the remote device is configured according to the carrier phase Poor, performing carrier phase adjustment on the far-end orthogonal frequency division multiplexing signal, so that the carrier phase of the near-end orthogonal frequency division multiplexing signal and the carrier phase of the far-end orthogonal frequency division multiplexing signal are synchronized
  • the receiving unit 202 is further configured to perform modulation for orthogonal frequency division multiplexing on the signal for the far-end orthogonal frequency division multiplexing.
  • the obtaining unit 203 may be connected to the receiving unit, and detect a signal mixed by the echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal, and obtain the echo orthogonal frequency division multiplexing signal and the far The carrier phase difference of the Orthogonal Frequency Division Multiplexing signal.
  • the first adjusting unit 204 is disposed on the near-end device side, specifically for adjusting the carrier phase, so that the carrier phase difference is an integer multiple of 0 or ⁇ /2, so that the carrier phase of the echo carrier signal and the far-end carrier signal Synchronize.
  • the multi-carrier orthogonal frequency division multiplexing duplex transmission device implemented by the embodiment of the present invention implements the carrier phase adjustment of the signal to be transmitted, and realizes the echo of the far-end orthogonal frequency division multiplexing signal and the echo.
  • the frequency-division-multiplexed signal synchronization avoids the interference of the echo orthogonal frequency division multiplexing on the received signal, and implements spectrum duplex transmission on the signal transmitted by the orthogonal frequency division multiplexing technology, thereby improving spectrum utilization.
  • the embodiment of the present invention provides a multi-carrier orthogonal frequency division multiplexing duplex transmission system 4, as shown in FIG. 4, including: a near-end device 41 and a remote device 42, wherein
  • the near-end device 41 includes: a transmitting unit 41 1 , a receiving unit 412 , an obtaining unit 413 , a first adjusting unit 414 , and a message transmitting unit 415 .
  • the transmitting unit 41 1 is configured to perform transmission of the near-end orthogonal frequency division multiplexing signal on the at least one orthogonal frequency division multiplexing subcarrier channel;
  • the receiving unit 412 is configured to perform receiving of the far-end orthogonal frequency division multiplexing signal on the at least one orthogonal frequency division multiplexing subcarrier channel;
  • the obtaining unit 413 is configured to obtain a near-end echo positive according to the echo orthogonal frequency division multiplexing signal generated by the transmitted near-end orthogonal frequency division multiplexing signal and the received far-end orthogonal frequency division multiplexing signal.
  • Carrier phase of frequency-division multiplexed signal and far-end orthogonal frequency division multiplexed signal Poor
  • a first adjusting unit 414 configured to perform carrier on the near-end orthogonal frequency division multiplexing signal according to a carrier phase difference between the near-end echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal Phase adjustment, so that the near-end orthogonal frequency division multiplexing signal is synchronized with the far-end orthogonal frequency division multiplexing signal;
  • the message transmitting unit 415 is configured to send, by the near-end device, a carrier phase difference of the obtained near-end echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal, and send the message to the carrier phase difference notification message to a remote device, the remote device performs carrier on the remote carrier signal according to a carrier phase difference between the near-end echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal Phase adjustment, the phase difference between the near-end echo orthogonal frequency division multiplexing signal and the far-end orthogonal frequency division multiplexing signal carrier is 0 or an integral multiple of ⁇ /2, so that the near-end echo
  • the orthogonal frequency division multiplexed signal is synchronized with the carrier phase of the far-end orthogonal frequency division multiplexed signal.
  • the remote device 42 includes a second adjusting unit 41 1 configured to acquire a carrier phase adjustment of the far-end orthogonal frequency division multiplexing signal after acquiring the carrier phase difference notification message sent by the near-end device, so that the near-end The echo orthogonal frequency division multiplexed signal is synchronized with the far-end orthogonal frequency division multiplexed signal.
  • the near-end device 41 After obtaining the carrier phase difference between the far-end orthogonal frequency division multiplexing signal and the near-end echo orthogonal frequency division multiplexing signal, the near-end device 41 performs near-end orthogonal frequency division in the first adjusting unit.
  • the carrier phase adjustment of the signal is used, or the carrier phase difference notification message is sent to the remote device 42 by the message transmitting unit 415, so that the remote device 42 orthogonally divides the frequency according to the far-end orthogonal frequency division multiplexed signal and the near-end echo.
  • the multi-carrier orthogonal frequency division multiplexing duplex transmission system implementeds the carrier phase adjustment of the signal to be transmitted, and realizes the echo of the far-end orthogonal frequency division multiplexing signal and the echo.
  • the frequency-division-multiplexed signal synchronization avoids the interference of the echo orthogonal frequency division multiplexing on the received signal, and implements spectrum duplex transmission on the signal transmitted by the orthogonal frequency division multiplexing technology, thereby improving spectrum utilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Bidirectional Digital Transmission (AREA)
  • Telephone Function (AREA)

Abstract

本发明实施例提供多载波正交频分复用双工传输方法、装置及系统,涉及通信领域,用以解决使用正交频分复用技术传输中的回波信号干扰导致频谱双工传输无法正常进行的问题。其中,多载波正交频分复用双工传输方法,包括:在至少一个正交频分复用子载波上,进行近端正交频分复用信号的发送与接收;并获取近端回波正交频分复用信号与远端正交频分复用信号的载波相位差;根据所述载波相位差,对近端正交频分复用信号进行相位调整。

Description

一种多载波正交频分复用汉工传输方法、 装置及系统 技术领域
本发明涉及通信领域, 尤其涉及一种多载波正交频分复用双工 传输方法、 装置及系统。
背景技术
OFDM(Orthogonal Frequency Division Multiplexing) ^7正交频分复用 技术, 实际上 OFDM是 MCM ( Multi-Carrier Modulation, 多载波调制 ) 的一种。 其主要思想是: 将信道分成若干正交子信道, 将高速数据信号 转换成并行的低速子数据流, 调制到在每个子信道上进行传输。 正交信 号可以通过在接收端采用相关技术来分开, 这样可以减少子信道之间的 相互干扰 ISI ( Inter-Symbol Interference , 符号干扰) , 除此之外的带宽 利用率高、 实现简单等特点使 OFDM在无线通信领域的应用越来越广, 比如, WLAN ( Wireless Local Area Networks, 无线局 i或网) 系统, 基于 正交频分复用多地址的 WiMax系统以及第 4代移动通讯系统( 4G )等都 是基于 OFDM技术系统。
OSD ( Overlapped Spectrum Duplex , 重叠频谱双工) 技术是上下行 均采用频谱重叠技术进行信号的发送与接收, OSD技术使得上下行信号 在同一时间能够完全复用所有频带, 频语效率相对传统 FDD ( Frequency Division Duplexing , 频分双工) 或 TDD ( Time Division Duplexing, 时分 双工) 方式有望提高 1 倍。 但是由于传输距离越来越短, 信道的延时越 来越小, 让近端设备与远端设备发送信号和接收信号在时间上几乎完全 正交, 但是在正交频分复用系统中, 由于近端与远端的发送正交频分信 号的子载波信号不是完全同步的, 使得经过混合线圈后的回波正交频分 复用信号与远端正交频分复用信号不同步,对接收信号产生严重的干 扰。
发明内容 本发明的实施例提供一种多载波正交频分复用双工传输方法、 装置 及系统, 通过对发送的正交频分复用信号进行的载波相位调整, 避免回 波信号和远端设备发送过来的接收信号的正交频分复不完全同步问题, 实现在正交频分复用双工传输系统中收发频谱重叠双工传输。
为达到上述目的, 本发明的实施例采用如下技术方案:
一种多载波正交频分复用双工传输方法, 包括:
近端设备在至少一个正交频分复用子载波信道上, 同时进行近 端正交频分复用信号的发送与进行从远端设备发送过来的远端正交 频分复用信号的接收;
根据发送的所述近端正交频分复用信号产生的回波正交频分复 用信号, 和接收到的所述远端正交频分复用信号, 获取所述近端回 波正交频分复用信号与所述远端正交频分复用信号的载波相位差; 根据所述载波相位差,对所述近端正交频分复用信号进行载波 相位调整,或近端设备将所述载波相位差通过载波相位差通知消息 发送到远端设备, 以使得远端设备根据所述载波相位差, 对所述远 端正交频分复用信号进行载波相位调整,使得近端正交频分复用信 号的载波相位与远端正交频分复用信号的载波相位同步。
一种多载波正交频分复用双工传输装置, 其特征在于, 包括: 发送单元, 用于在至少一个正交频分复用子载波信道上进行近 端正交频分复用信号的发送;
接收单元, 用于在至少一个正交频分复用子载波信道上进行从 远端设备发送过来的远端正交频分复用信号的接收;
获取单元, 用于根据发送的所述近端正交频分复用信号产生的 近端回波正交频分复用信号, 和接收到的所述远端正交频分复用信 号, 获取所述近端回波正交频分复用信号与所述远端正交频分复用 信号的载波相位差;
第一调整单元, 用于根据所述载波相位差, 对所述近端正交频 分复用信号进行载波相位调整,使得所述近端正交频分复用信号与 所述远端正交频分复用信号同步。
一种正交频分复用双工传输系统, 其特征在于, 包括: 近端装 置和远端装置, 其中, 近端装置包括: 发送单元、 接收单元、 获取单元、 第一调整单 元、 消息传送单元, 其中,
发送单元, 用于在至少一个正交频分复用子载波信道上进行近 端正交频分复用信号的发送;
接收单元, 用于在至少一个正交频分复用子载波信道上进行从 远端设备发送过来的远端正交频分复用信号的接收;
获取单元, 用于用于根据发送的所述近端正交频分复用信号产 生的近端回波正交频分复用信号, 和接收到的所述远端正交频分复 用信号, 获取所述近端回波正交频分复用信号与所述远端正交频分 复用信号的载波相位差;
第一调整单元, 用于根据所述载波相位差, 对所述近端正交频 分复用信号进行载波相位调整, 使得所述近端正交频分复用信号与 所述远端正交频分复用信号同步;
消息传送单元, 用于所述近端设备将获取的所述载波相位差, 通过载波相位差通知消息发送到远端设备, 以使得所述远端设备根 据所述近端回波正交频分复用信号与所述远端正交频分复用信号的 载波相位差, 对所述远端载波信号进行载波相位调整, 使得所述近 端回波正交频分复用信号与远端正交频分复用信号的载波相位同 步。
远端装置包括第二调整单元, 用于获取近端设备发送的载波相 位差通知消息后, 对远端正交频分复用信号进行载波相位调整, 使 所述近端回波正交频分复用信号与所述远端正交频分复用信号的载 波相位同步。
所述近端设备在获取到所述载波相位差后, 在第一调整单元中 进行近端正交频分复用信号的载波相位调整, 或通过消息传送单元 发送载波相位差通知消息到远端设备, 使得远端设备根据远端正交 频分复用信号与近端回波正交频分复用信号的载波相位差对所述远 端正交频分复用信号进行载波相位调整, 达到所述近端回波正交频 分复用信号与所述远端正交频分复用信号的载波相位同步的目 的。 本发明实施例提供的一种多载波正交频分复用双工传输方法、 装置 及系统, 通过对待发送的信号进行的载波相位调整后, 实现了远端正交 频分复用信号与回波中的回波正交频分复用信号同步, 对使用正交频分 复用技术传输的信号实现频谱双工传输, 提高频谱利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1 为本发明实施例提供的一种方法流程图;
图 2为本发明实施例提供的一种装置结构示意图;
图 3为本发明实施例提供的一种获取单元结构示意图; 图 4为本发明实施例提供的一种系统结构示意图;
图 5为本发明实施例提供的一种载波相位调整方法示意图; 图 6为本发明实施例提供的另一种载波相位调整方法示意图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。
本发明实施例提供的一种正交频分复用双工传输的回波抵消方 法, 如图 1所示, 包括以下步骤:
S 101、 近端设备在至少一个正交频分复用子载波信道上, 同时 进行近端正交频分复用信号的发送与进行从远端设备发送过来的远 端正交频分复用信号的接收。
正交频分复用技术是将信道分成若干正交频分复用子载波信 道, 近端设备将近端待发送信号转换成并行的低速子数据流, 调制 到每个正交频分复用子载波信道上形成近端正交频分复用信号进行 传输, 同时, 近端接收到远端发送的远端正交频分复用信号。 近端 调制到每个正交频分复用子载波信道上进行传输的近端正交频分复 用信号可以通过在远端采用相关技术来分开, 同样的, 远端调制到 每个正交频分复用子载波信道上进行传输的远端正交频分复用信 号, 可以通过在近端采用相关技术来分开, 这样可以减少正交频分 复用子载波信道信道之间的相互干扰。
S 102、 根据发送的近端正交频分复用信号产生的回波正交频分 复用信号, 和接收到的远端正交频分复用信号, 获取近端回波正交 频分复用信号的载波与远端正交频分复用信号的载波相位差。
该实施例中, 近端回波正交频分复用信号为所述近端正交频分 复用信号在向远端传输过程中, 通过混合线圈而回到近端的信号; 远端正交频分复用信号为从远端所发送的经过正交频分复用载波调 制传送到近端的信号。
在信号传输过程中, 由于延时等原因, 会使得从远端传来的远 端正交频分复用信号与近端的回波正交频分复用信号不可避免的产 生一些载波相位差, 用 表示。 所述近端的回波正交频分复用信号 与所述远端正交频分复用信号的载波不完全同步, 但是, 对接收到 的信号的载波进行解载调制时, 仍然按照近端正交频分复用信号的 载波相位进行解正交频分复用载波调制, 所以在进行回波抵消时, 要对近端回波抵消信号进行同步调整, 使得回波抵消信号与近端回 波正交频分复用在解正交频分复用载波调制后同步。
获取近端回波通路的信道传递函数和回波正交频分复用信号与 远端正交频分复用信号的载波相位差, 具体的, 采用信道估计的方 法获取接收信号的信道参数, 信道估计是从接收数据中将假定的某 个信道模型的模型参数估计出来的过程, 通过信道估计的方法, 获 取近端回波正交频分复用信号与远端正交频分复用信号的载波相位 差 θ
在本发明实施例中, 获取所述近端回波正交频分复用信号与所 述远端正交频分复用信号的载波相位差, 以及所述近端回波通路的 信道传递函数有两种方案:
方案一: 对近端回波正交频分复用信号和远端正交频分复用信 号混合后的信号进行检测, 通过信道估计方法, 获取近端回波信道 的传递函数和所述近端回波正交频分复用信号与远端正交频分复用 信号的载波相位差。
方案二: 分别对近端回波正交频分复用信号进行检测, 获取近 端回波信道的传递函数和所述回波正交频分复用的的载波相位; 和 对远端正交频分复用信号进行检测, 获取远端正交频分复用信号的 的载波相位, 经过计算, 获得获取回波信道的传递函数和所述回波 正交频分复用信号与远端正交频分复用信号的载波相位差。
对于方案二, 具体方法为, 一方面, 通过采用信道估计的方法 对回波正交频分复用信号进行信道估计, 获取近端回波正交频分复 用信号的的载波相位或者与的载波相位相关的参数, 和近端回波信 道的传递函数。 另一方面, 通过信道估计的方法对远端正交频分复 用信号进行估计, 获取远端正交频分复用信号的的载波相位或者与 相位相关的参数。 经过计算, 获得获取回波信道的传递函数和所述 回波正交频分复用信号与远端正交频分复用信号的载波相位差。
S 1 03、 根据所述载波相位差, 对所述近端正交频分复用信号进 行载波相位调整, 或将所述载波相位差通过载波相位差通知消息发 送到远端设备, 以使得所述远端设备根据所述载波相位差, 对所述 远端正交频分复用信号进行载波相位调整, 使得近端正交频分复用 信号的载波相位与远端正交频分复用信号的载波相位同步。
在本发明实施例中, 可选的, 近端设备根据所述载波相位差, 对所述近端正交频分复用信号进行载波相位调整。
如图 5所示,本发明实施例提供了一种的载波相位调整的方法, 近端根据上步所得出的所述远端正交频分复用信号与所述近端回波 正交频分复用信号的载波相位差经过环路滤波器、 数模转换器、 控 制压控振荡器产生近端参考正交频分复用信号。 由于近端参考正交 频分复用信号在产生与传输过程中, 还会产生一定的载波相位差, 因此, 通过将近端参考正交频分复用信号中的载波信号与接收信号 中的载波信号一起输入到鉴相器中, 根据鉴相器获得近端参考正交 频分复用信号的载波信号与接收信号中的载波信号的载波相位差, 再根据上步所得出的所述远端正交频分复用信号与所述近端回波正 交频分复用信号的中的载波信号的载波相位差之和, 得出了所要进 行调整的的载波相位偏差, 循环经过环路滤波器、 数模转换器、 压 控振荡器产生近端参考正交频分复用信号, 至到输入通过鉴相器后 的近端参考正交频分复用信号的载波相位与接收信号的载波相位差 与所述远端正交频分复用信号与所述近端回波正交频分复用信号的 载波相位差之和为 0。 经过稳定后的近端参考正交频分复用信号的 频率与输入信号相同, 其的载波相位与其相差 "相位调整"。
可选的, 也可以是近端设备将所述载波相位差通过载波相位差 通知消息发送到远端设备, 以使得远端设备根据所述载波相位差, 对所述远端正交频分复用信号进行载波相位调整, 使得近端正交频 分复用信号的载波相位与远端正交频分复用信号的载波相位同步 如图 6所示, 对于远端设备对远端正交频分复用信号进行载波 相位调整, 远端设备在接收到近端设备发送的载波相位差通知消息 后, 利用数字正弦波进入数模转换器后, 产生模拟正弦波, 作为未 进行载波相位调整的远端正交频分复用信号。 通过调制数字正弦波 产生器的的载波相位 K来调整输出的远端正交频分复用信号的载波 相位, 使得 K与 ^相等。
近端设备将获取的所述载波相位差, 通过载波相位差通知消息 形式发送到远端设备, 对所述远端载波信号进行的载波相位调整, 使所述近端回波正交频分复用信号与所述远端正交频分复用信号载 波相位差为 0或 π /2 的整数倍, 以使得所述近端回波正交频分复用 信号与远端正交频分复用信号的载波相位同步。
本发明实施例提供的正交频分复用双工传输方法, 通过对待发 送的信号进行的载波相位调整后, 实现了远端载波信号与回波中的 回波正交频分复用信号同步, 避免了回波正交频分复用信号对接收 信号的干扰, 对使用正交频分复用技术传输的信号实现频谱双工传 输, 提高频谱利用率。
实施例二
本发明实施例提供了一种正交频分复用双工传输的装置 200 , 如图 2所示, 该正交频分复用双工传输的装置包括: 发送单元 201 , 接收单元 202 , 获取单元 203 , 第一调整单元 204 , 其中,
发送单元 201 , 用于在至少一个正交频分复用子载波信道上进 行近端正交频分复用信号的发送;
接收单元 202 , 用于在至少一个正交频分复用子载波信道上进 行从远端设备发送过来的远端正交频分复用信号的接收;
获取单元 203 , 用于根据发送的近端正交频分复用信号产生的 回波正交频分复用信号, 和接收到的远端正交频分复用信号, 获取 近端回波正交频分复用信号与远端正交频分复用信号的载波相位 差;
第一调整单元 204 , 用于根据所述近端回波正交频分复用信号 与远端正交频分复用信号的载波相位差, 对近端正交频分复用信号 进行的载波相位调整, 使得近端正交频分复用信号与远端正交频分 复用信号同步。
可选的, 在本发明实施例中, 如图 3所示, 获取单元 203还可 以包括: 第一获取子单元 203 1、 第二获取子单元 2032 , 计算子单元 2033 , 其中,
第一获取子单元 203 1 , 用于对经过混合线圈后的记近端回波正 交频分复用信号进行检测, 获取近端回波信道的传递函数和所述回 波正交频分复用信号的的载波相位;
第二获取子单元 2302 , 用于对远端正交频分复用信号进行检 测, 获取远端正交频分复用信号的相位;
计算子单元 205 , 用于经过计算后得到近端回波正交频分复用 信号与远端正交频分复用信号的载波相位差。 可选的,本发明实施例中所述的装置还包括: 消息传送单元 205 将所述载波相位差通过载波相位差通知消息发送到远端设备, 以使 得所述远端设备根据所述载波相位差, 对所述远端正交频分复用信 号进行载波相位调整, 使得近端正交频分复用信号的载波相位与远 端正交频分复用信号的载波相位同步
在实际应用中, 接收单元 202还用于对远端正交频分复用用信 号进行解正交频分复用用调制。 获取单元 203可以与接收单元连接, 对回波正交频分复用信号和远端正交频分复用信号混合后的信号进 行检测, 获取所述回波正交频分复用信号与远端正交频分复用信号 的载波相位差。 第一调整单元 204 设置于近端设备侧, 具体用于对 载波相位调整, 使所述载波相位差为 0或 π /2 的整数倍, 以使得回 波载波信号与远端载波信号的载波相位同步。
本发明实施例提供的多载波正交频分复用双工传输装置, 通过 对待发送的信号进行的载波相位调整后, 实现了远端正交频分复用 信号与回波中的回波正交频分复用信号同步, 避免了回波正交频分 复用对接收信号的干扰, 对使用正交频分复用技术传输的信号实现 频谱双工传输, 提高频谱利用率。
实施例三
本发明实施例提供了一种多载波正交频分复用双工传输系统 4 , 如图 4所示, 包括: 近端装置 41和远端装置 42 , 其中,
近端装置 41 包括:发送单元 41 1、接收单元 412、获取单元 413、 第一调整单元 414、 消息传送单元 415 , 其中,
发送单元 41 1 , 用于在至少一个正交频分复用子载波信道上进 行近端正交频分复用信号的发送;
接收单元 412 , 用于在至少一个正交频分复用子载波信道上进 行远端正交频分复用信号的接收;
获取单元 413 , 用于根据发送的近端正交频分复用信号产生的 回波正交频分复用信号, 和接收到的远端正交频分复用信号, 获取 近端回波正交频分复用信号与远端正交频分复用信号的载波相位 差;
第一调整单元 414 , 用于根据所述近端回波正交频分复用信号 与远端正交频分复用信号的载波相位差, 对近端正交频分复用信号 进行的载波相位调整, 使得近端正交频分复用信号与远端正交频分 复用信号同步;
消息传送单元 415 , 用于用于近端设备将获取的近端回波正交 频分复用信号与远端正交频分复用信号的载波相位差, 通过载波相 位差通知消息形式发送到远端设备, 所述远端设备根据所述近端回 波正交频分复用信号与所述远端正交频分复用信号的载波相位差, 对所述远端载波信号进行的载波相位调整, 使所述近端回波正交频 分复用信号与所述远端正交频分复用信号载波相位差为 0或 π /2 的 整数倍, 以使得所述近端回波正交频分复用信号与远端正交频分复 用信号的载波相位同步。
远端装置 42 , 包括第二调整单元 41 1 , 用于获取到近端设备发 送的载波相位差通知消息后, 对远端正交频分复用信号进行的载波 相位调整, 使所述近端回波正交频分复用信号与所述远端正交频分 复用信号同步。
所述近端设备 41 在获取到远端正交频分复用信号与近端回波 正交频分复用信号的载波相位差后, 在第一调整单元中进行近端正 交频分复用信号的载波相位调整, 或通过消息传送单元 415 发送载 波相位差通知消息到远端设备 42 , 使得远端设备 42 根据远端正交 频分复用信号与近端回波正交频分复用信号的载波相位差对所述远 端正交频分复用信号进行的载波相位调整, 达到所述近端回波正交 频分复用信号与所述远端正交频分复用信号同步的目 的。
本发明实施例提供的多载波正交频分复用双工传输系统, 通过 对待发送的信号进行的载波相位调整后, 实现了远端正交频分复用 信号与回波中的回波正交频分复用信号同步, 避免了回波正交频分 复用对接收信号的干扰, 对使用正交频分复用技术传输的信号实现 频谱双工传输, 提高频谱利用率。 以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到变化或替换, 都应涵盖在本发明的保护范围 之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。

Claims

权 利 要 求 书
1、 一种多载波正交频分复用双工传输方法, 其特征在于, 包括: 近端设备在至少一个正交频分复用子载波信道上, 同时进行近端 正交频分复用信号的发送与进行从远端设备发送过来的远端正交频 分复用信号的接收;
根据发送的所述近端正交频分复用信号产生的回波正交频分复 用信号, 和接收到的所述远端正交频分复用信号, 获取所述近端回波 正交频分复用信号与所述远端正交频分复用信号的载波相位差;
根据所述载波相位差,对所述近端正交频分复用信号进行载波相 位调整, 或将所述载波相位差通过载波相位差通知消息发送到远端设 备, 以使得所述远端设备根据所述载波相位差, 对所述远端正交频分 复用信号进行载波相位调整, 使得近端正交频分复用信号的载波相位 与远端正交频分复用信号的载波相位同步。
2、 根据权利要求 1 所述方法, 其特征在于, 获取所述近端回波 正交频分复用信号与所述远端正交频分复用信号的载波相位差包括: 对接收到的所述近端回波正交频分复用信号和所述远端正交频 分复用信号进行检测, 获取所述近端回波正交频分复用信号与所述远 端正交频分复用信号的载波相位差。
3、 根据权利要求 1 所述方法, 其特征在于, 获取所述近端回波 正交频分复用信号与所述远端正交频分复用信号的载波相位差包括: 分别对所述近端回波正交频分复用信号进行检测,获取所述近端 回波正交频分复用信号的的载波相位, 和对所述远端正交频分复用信 号进行检测, 获取所述远端正交频分复用信号的的载波相位, 经过计 算后得到所述近端回波正交频分复用信号与所述远端正交频分复用 信号的载波相位差。
4、 根据权利要求 1 所述方法, 其特征在于, 所述根据所述载波 相位差, 对所述近端正交频分复用信号进行载波相位调整包括:
对所述近端的正交频分复用信号进行的载波相位调整,使所述近 端回波正交频分复用信号与远端正交频分复用信号载波相位差为 0 或 π /2的整数倍, 以使得回波正交频分复用信号与远端正交频分复用 信号的载波相位同步。
5、 根据权利要求 1 所述方法, 其特征在于, 所述所获取远端设 备根据所述载波相位差, 对所述远端正交频分复用信号进行载波相位 调整包括:
所述远端设备根据所述载波相位差,对所述远端正交频分复用信 号进行相位调整, 使所述近端回波正交频分复用信号与所述远端载波 信号载波相位差为 0或 π /2的整数倍, 以使得所述近端回波正交频分 复用信号与远端正交频分复用信号的载波相位同步。
6、 一种多载波正交频分复用双工传输装置, 其特征在于, 包括: 发送单元,用于在至少一个正交频分复用子载波信道上进行近端 正交频分复用信号的发送;
接收单元,用于在至少一个正交频分复用子载波信道上进行从远 端设备发送过来的远端正交频分复用信号的接收;
获取单元,用于根据发送的所述近端正交频分复用信号产生的近 端回波正交频分复用信号, 和接收到的所述远端正交频分复用信号, 获取所述近端回波正交频分复用信号与所述远端正交频分复用信号 的载波相位差;
第一调整单元, 用于根据所述载波相位差, 对所述近端正交频分 复用信号进行载波相位调整, 使得所述近端正交频分复用信号与所述 远端正交频分复用信号同步。
7、 根据权利要求 6所述装置, 其特征在于, 所述获取单元具体 用于对接收到的所述近端回波正交频分复用信号和所述远端正交频 分复用信号进行检测, 获取所述近端回波正交频分复信号与所述远端 正交频分复信号的载波相位差。
8、 根据权利要求 6所述装置, 其特征在于, 所述获取单元还包 括:
第一获取子单元,用于对所述近端回波正交频分复用信号进行检 测, 获取所述近端回波正交频分复用信号的载波相位; 第二获取子单元, 用于对所述远端正交频分复用信号进行检测, 获取所述远端正交频分复用信号的载波相位。
9、 根据权利要求 8所述装置, 其特征在于, 所述获取单元还包 括计算子单元, 用于经过计算后得到近端回波正交频分复用信号与远 端正交频分复用信号的载波相位差。
10、 根据权利要求 6所述装置, 其特征在于, 所述第一调整单元 具体用于对所述近端的正交频分复用信号进行载波相位调整, 使所述 近端回波正交频分复用信号与所述远端正交频分复用信号载波相位 差为 0或 π /2的整数倍, 以使得所述近端回波正交频分复用信号与远 端正交频分复用信号的载波相位同步。
1 1、 根据权利要求 6所述装置, 其特征在于, 所述装置还包括消 息传送单元, 用于将所述获取单元获取的所述载波相位差, 通过载波 相位差通知消息发送到所述远端设备, 以使得所述远端设备根据所述 载波相位差, 对所述远端正交频分复用信号进行相位调整, 使得近端 正交频分复用信号的载波相位与远端正交频分复用信号的载波相位 同步。
12、 一种正交频分复用双工传输系统, 其特征在于, 包括: 近端 装置和远端装置, 其中,
近端装置包括: 发送单元、 接收单元、 获取单元、 第一调整单元、 消息传送单元, 其中,
发送单元,用于在至少一个正交频分复用子载波信道上进行近端 正交频分复用信号的发送;
接收单元,用于在至少一个正交频分复用子载波信道上进行从远 端设备发送过来的远端正交频分复用信号的接收;
获取单元,用于用于根据发送的所述近端正交频分复用信号产生 的近端回波正交频分复用信号, 和接收到的所述远端正交频分复用信 号, 获取所述近端回波正交频分复用信号与所述远端正交频分复用信 号的载波相位差;
第一调整单元, 用于根据所述载波相位差, 对所述近端正交频分 复用信号进行载波相位调整, 使得所述近端正交频分复用信号与所述 远端正交频分复用信号同步;
消息传送单元, 用于所述近端设备将获取的所述载波相位差, 通 过载波相位差通知消息发送到远端设备, 以使得所述远端设备根据所 述近端回波正交频分复用信号与所述远端正交频分复用信号的载波 相位差, 对所述远端载波信号进行载波相位调整, 使得所述近端回波 正交频分复用信号与远端正交频分复用信号的载波相位同步。
远端装置包括第二调整单元,用于获取近端设备发送的载波相位 差通知消息后, 对远端正交频分复用信号进行载波相位调整, 使所述 近端回波正交频分复用信号与所述远端正交频分复用信号的载波相 位同步。
所述近端设备在获取到所述载波相位差后,在第一调整单元中进 行近端正交频分复用信号的载波相位调整, 或通过消息传送单元发送 载波相位差通知消息到远端设备, 使得远端设备根据远端正交频分复 用信号与近端回波正交频分复用信号的载波相位差对所述远端正交 频分复用信号进行载波相位调整, 达到所述近端回波正交频分复用信 号与所述远端正交频分复用信号的载波相位同步的目的。
PCT/CN2011/085213 2011-12-31 2011-12-31 一种多载波正交频分复用双工传输方法、装置及系统 WO2013097255A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP11878960.1A EP2790366B1 (en) 2011-12-31 2011-12-31 Method and system for multi-carrier orthogonal frequency division multiplexing duplex transmission
ES11878960.1T ES2607962T3 (es) 2011-12-31 2011-12-31 Método y sistema para una transmisión bidireccional simultanea de portadoras múltiples mediante una multiplexación por división ortogonal de la frecuencia
CN201180002989.4A CN102726018B (zh) 2011-12-31 2011-12-31 一种多载波正交频分复用双工传输方法、装置及系统
PCT/CN2011/085213 WO2013097255A1 (zh) 2011-12-31 2011-12-31 一种多载波正交频分复用双工传输方法、装置及系统
US14/319,894 US10382189B2 (en) 2011-12-31 2014-06-30 Method, apparatus and system for multi-carrier OFDM duplex transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/085213 WO2013097255A1 (zh) 2011-12-31 2011-12-31 一种多载波正交频分复用双工传输方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/319,894 Continuation US10382189B2 (en) 2011-12-31 2014-06-30 Method, apparatus and system for multi-carrier OFDM duplex transmission

Publications (1)

Publication Number Publication Date
WO2013097255A1 true WO2013097255A1 (zh) 2013-07-04

Family

ID=46950485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/085213 WO2013097255A1 (zh) 2011-12-31 2011-12-31 一种多载波正交频分复用双工传输方法、装置及系统

Country Status (5)

Country Link
US (1) US10382189B2 (zh)
EP (1) EP2790366B1 (zh)
CN (1) CN102726018B (zh)
ES (1) ES2607962T3 (zh)
WO (1) WO2013097255A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150078588A (ko) * 2013-12-31 2015-07-08 주식회사 엔젤해피 직교 주파수 분할 듀플렉싱을 이용한 무선 송수신 장치 및 방법

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10841030B2 (en) * 2018-07-30 2020-11-17 Avago Technologies International Sales Pte. Limited Leg combining by FFT selection
DE112019007772B4 (de) * 2019-11-08 2023-11-23 Mitsubishi Electric Corporation Phasensynchronisationsschaltkreis und in-phase-verteilungsschaltkreis

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303561A (zh) * 1998-04-14 2001-07-11 弗兰霍菲尔运输应用研究公司 多载波调制和解调方法和设备及执行与之相关的回波相位偏移校正的方法和设备
US20050063323A1 (en) * 2002-06-13 2005-03-24 Infineon Technologies Ag Method and circuit arrangement for determination of transmission parameters
CN1802828A (zh) * 2003-06-11 2006-07-12 皇家飞利浦电子股份有限公司 用于多载波通信系统的接收机
CN102227878A (zh) * 2008-09-30 2011-10-26 法国电信公司 考虑回波的传输方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5864592A (en) * 1992-11-03 1999-01-26 Pairgain Technologies, Inc. Timing recovery system for digital subscriber line transceivers
WO1995017046A1 (en) * 1993-12-17 1995-06-22 Bell Communications Research, Inc. An improved discrete multitone echo canceler
JP3717363B2 (ja) * 2000-03-07 2005-11-16 富士通株式会社 xDSLトランシーバ
US7082157B2 (en) * 2002-12-24 2006-07-25 Realtek Semiconductor Corp. Residual echo reduction for a full duplex transceiver
US7433435B2 (en) * 2003-10-22 2008-10-07 Sasken Communication Technologies Limited Apparatus, methods, systems, and articles incorporating a clock correction technique
US20060098748A1 (en) * 2004-11-09 2006-05-11 Heng-Cheng Yeh Multi-carrier communication system and communication method thereof
KR100617322B1 (ko) * 2005-05-09 2006-08-30 한국전자통신연구원 송신누설신호를 제거하는 rfid 리더기 수신 장치
US7860236B2 (en) * 2007-02-01 2010-12-28 Hewlet-Packard Company Method and system for echo cancellation in a network switch
EP2235921A2 (en) * 2008-01-22 2010-10-06 Provigent Ltd. Beamforming in mimo communication systems
EP2319191A4 (en) * 2008-08-23 2017-06-28 Ikanos Communications, Inc. Method and apparatus for dmt crosstalk cancellation
TW201041328A (en) * 2009-05-12 2010-11-16 Ralink Technology Corp Method for enhancing Ethernet channel impairment, and apparatus using the same
US8699551B2 (en) * 2009-08-24 2014-04-15 Leanics Corporation System for FEXT cancellation of multi-channel transceivers with precoding
CN101923157B (zh) * 2010-07-29 2013-05-01 西安空间无线电技术研究所 一种星载双通道角跟踪校准系统
CN101895488B (zh) * 2010-07-30 2013-06-12 福建新大陆通信科技股份有限公司 无线通信中回波消除系统中误差信号的计算方法
KR101378282B1 (ko) * 2010-08-23 2014-03-25 한국전자통신연구원 Rfid 리더기의 수신감도 개선 장치 및 방법
US8744340B2 (en) * 2010-09-13 2014-06-03 Qualcomm Incorporated Method and apparatus of obtaining timing in a repeater
US9019849B2 (en) * 2011-11-07 2015-04-28 Telefonaktiebolaget L M Ericsson (Publ) Dynamic space division duplex (SDD) wireless communications with multiple antennas using self-interference cancellation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303561A (zh) * 1998-04-14 2001-07-11 弗兰霍菲尔运输应用研究公司 多载波调制和解调方法和设备及执行与之相关的回波相位偏移校正的方法和设备
US20050063323A1 (en) * 2002-06-13 2005-03-24 Infineon Technologies Ag Method and circuit arrangement for determination of transmission parameters
CN1802828A (zh) * 2003-06-11 2006-07-12 皇家飞利浦电子股份有限公司 用于多载波通信系统的接收机
CN102227878A (zh) * 2008-09-30 2011-10-26 法国电信公司 考虑回波的传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2790366A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150078588A (ko) * 2013-12-31 2015-07-08 주식회사 엔젤해피 직교 주파수 분할 듀플렉싱을 이용한 무선 송수신 장치 및 방법
KR101585846B1 (ko) * 2013-12-31 2016-01-15 주식회사 엔젤해피 직교 주파수 분할 듀플렉싱을 이용한 무선 송수신 장치 및 방법

Also Published As

Publication number Publication date
ES2607962T3 (es) 2017-04-04
EP2790366B1 (en) 2016-09-28
EP2790366A1 (en) 2014-10-15
CN102726018B (zh) 2014-05-21
CN102726018A (zh) 2012-10-10
US10382189B2 (en) 2019-08-13
EP2790366A4 (en) 2014-12-17
US20140314071A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
US8995410B2 (en) Airsync: enabling distributed multiuser MIMO with full multiplexing gain
JP4302988B2 (ja) 電力線ネットワーク上でのポイント・ツー・マルチポイントシステムにおける多重アクセス及び伝送のための方法
CN102694762B (zh) 一种实现载波和采样时钟同步的方法、用户站点设备
US7948865B2 (en) Bi-directional communication channel
EP1908223B1 (en) Communicating schedule and network information in a powerline network
US8792431B2 (en) Wireless communication apparatus and method for wireless communication
US10615845B2 (en) Line synchronization method in OSD system, system, and vectoring control entity
US8588314B2 (en) Communication device and method for detecting broadcast wave to be performed by communication device
WO2020032783A1 (ko) 비면허 대역에서의 채널 액세스 방법, 장치 및 시스템
WO2012130090A1 (zh) 一种基于ofdm的数据传输方法和系统
JP2014064100A (ja) 電力線通信用トランシーバ及び電力線通信方法
WO2008119219A1 (en) Method, system, and wireless frame structure for supporting different mode of multiple access
WO2007088580A1 (ja) 通信制御方法、受信局装置、送信局装置および通信システム
WO2013097255A1 (zh) 一种多载波正交频分复用双工传输方法、装置及系统
US8165238B2 (en) Bi-directional communication system, communication apparatus, and control method of communication apparatus
CN101369882A (zh) 一种基于发送端预纠正的频率同步方法
JP2004533769A (ja) Ofdm変調を用いたポイント・ツー・ポイント通信におけるアップリンクチャンネルのための同期化方法
WO2012163042A1 (zh) 提高时钟恢复能力的方法、装置和系统
EP1146659A1 (en) Communication method and communication device
WO2013189051A1 (zh) 基于ofdm-tdma双向业务的处理方法及通信设备
EP1021012A1 (en) Communications network system for multiple access
JP2008294647A (ja) 電力線搬送通信方式
WO2022147833A1 (zh) 时钟同步方法和通信装置
CN102726019B (zh) 一种利用载波调制的传输方法、装置和系统
WO2021141371A1 (ko) 무선 통신 시스템에서 동기 및 비동기 데이터의 재전송 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002989.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878960

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011878960

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011878960

Country of ref document: EP