WO2013097199A1 - 时钟切换方法、装置及直放站作为中继的室内分布式系统 - Google Patents

时钟切换方法、装置及直放站作为中继的室内分布式系统 Download PDF

Info

Publication number
WO2013097199A1
WO2013097199A1 PCT/CN2011/085083 CN2011085083W WO2013097199A1 WO 2013097199 A1 WO2013097199 A1 WO 2013097199A1 CN 2011085083 W CN2011085083 W CN 2011085083W WO 2013097199 A1 WO2013097199 A1 WO 2013097199A1
Authority
WO
WIPO (PCT)
Prior art keywords
mau
meu
reference clock
clock provided
mru
Prior art date
Application number
PCT/CN2011/085083
Other languages
English (en)
French (fr)
Inventor
付文君
李鹏程
Original Assignee
京信通信系统(中国)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京信通信系统(中国)有限公司 filed Critical 京信通信系统(中国)有限公司
Priority to PCT/CN2011/085083 priority Critical patent/WO2013097199A1/zh
Priority to CN201180074855.3A priority patent/CN104025701B/zh
Publication of WO2013097199A1 publication Critical patent/WO2013097199A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • H04J3/0641Change of the master or reference, e.g. take-over or failure of the master

Definitions

  • the present invention relates to the field of digital repeater technologies, and in particular, to a clock switching method, a device, and a repeater station as a relay indoor Distributed Systems.
  • a repeater is usually used as a relay, and multi-standard mobile communication service data in a mobile communication system and other service data in an indoor distributed system (such as broadband Ethernet service data) are used. Transfer together after pulling away.
  • an indoor distributed system using a repeater as a relay includes at least one multi-service access unit (MAU) and at least one multi-service extension unit (MEU, Multi-service). Extend Unit) and at least one Multi-service Remote Unit (MRU).
  • MAU multi-service access unit
  • MEU multi-service extension unit
  • MRU Multi-service Remote Unit
  • the MAU will receive the received RF signals from the base station and send them to the MEU after being transformed.
  • the MEU will receive the converted RF signals from the MAU and the received indoors.
  • the other service data signals in the overlay system are sent to the MRU after being transformed, and the MRU parses and outputs the mixed signals of the plurality of service data received according to certain rules, thereby realizing the coverage of the multi-service mixed data signal indoors. .
  • each device in the entire indoor distributed system uses the clock signal of the MAU as a reference clock to maintain time synchronization between the devices, that is, the MEU receives the data stream sent by the MAU, and receives the data code.
  • the clock signal is recovered from the stream, and the recovered clock signal is used as the reference clock information of the entire distributed system.
  • the MEU will not be able to receive the data stream sent by the MAU, and the clock signal will not be recovered.
  • the embodiment of the invention provides a method and device for clock switching and an indoor distributed system with a repeater as a relay, which can better maintain time synchronization between devices in an indoor distributed system and improve reliability of the entire system. Sex.
  • a clock switching method includes: receiving, in an indoor distributed system using a repeater as a relay, a data stream sent by a multi-service access unit MAU; and determining, according to the received data stream, Whether the reference clock provided by the MAU is in a normal state; when it is determined that the reference clock provided by the MAU is not in a normal state, indicating that the multi-service extension unit MEU is used by the reference clock pair provided by the MAU to the MEU and the multi-service remote unit MRU Time synchronization is performed, and the time synchronization between the MEU and the MRU is switched to using the reference clock provided by the MEU itself.
  • a clock switching apparatus comprising: a code stream receiving unit, configured to receive a data code stream sent by a multi-service access unit MAU in an indoor distributed system in which a repeater station is used as a relay; Determining, according to the data code stream received by the code stream receiving unit, whether the reference clock provided by the MAU is in a normal state; and the clock switching control unit, configured to: when the determining unit determines that the reference clock provided by the MAU is not in a normal state Instructing the multi-service extension unit MEU to perform time synchronization between the MEU and the multi-service remote unit MRU by using the reference clock provided by the MAU, and switch to time between the MEU and the MRU using the reference clock provided by the MEU itself. Synchronize.
  • An indoor distributed system using a repeater as a relay comprising a multi-service access unit MAU, a multi-service extension unit MEU, and a multi-service remote unit MRU, further comprising a clock switching device, wherein: the MAU is used Transmitting a data code stream; the clock switching means, configured to receive a data code stream sent by the MAU; and determining, according to the received data code stream, whether a reference clock provided by the MAU is in a normal state; When the reference clock provided by the MAU is not in a normal state, the MEU is instructed to perform time synchronization between the MEU and the MRU by using a reference clock provided by the MAU, and switch to using the reference clock pair MEU and MRU provided by the MEU itself. Performing time synchronization between the MEUs, and using the reference clock provided by the MAU or using the reference clock provided by itself to perform time synchronization between itself and the MRU according to the indication of the clock switching apparatus.
  • FIG. 1 is a structural diagram of an indoor distributed system in which a repeater is used as a relay in the prior art
  • FIG. 2 is a schematic diagram of an indoor distributed system architecture of a repeater station as a relay according to a first embodiment of the present invention
  • FIG. 3 is a schematic diagram of an internal structure of an MEU according to a first embodiment of the present invention
  • FIG. 4 is a flowchart of a clock switching method according to Embodiment 2 of the present invention
  • 5 is a schematic diagram of various signals included in a data stream sent by an MAU according to Embodiment 2 of the present invention
  • FIG. 6 is a structural diagram of a clock switching apparatus according to Embodiment 2 of the present invention
  • FIG. 7 is a flowchart of a clock switching method according to Embodiment 3 of the present invention.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the prior art, when an indoor distributed system in which a repeater is used as a relay lacks a clock source, time synchronization between devices in the indoor distributed system cannot be continuously ensured, so that the entire indoor The present invention provides a technical solution for clock switching. In an indoor distributed system in which a repeater is used as a relay, the data stream is sent according to the MAU.
  • the reference clock is provided to implement time synchronization between the MEU and the MRU, which can better maintain time synchronization between devices in the indoor distributed system, thereby improving the reliability of the entire system.
  • Embodiment 1 of the present invention provides an indoor distributed system using a repeater as a relay, including a MAU, an MEU, an MRU, and a clock switching device.
  • the structural composition is as shown in FIG. 2, where:
  • the MAU used to send data stream.
  • the MAU sends a data stream to the MEU, where the data stream is a MAU that performs filtering and digital-to-analog conversion on at least one radio frequency signal of the same standard or different standards received from the base station to obtain a data service signal. And then processing the processed data service signal, the associated clock signal, and the indication signal according to a certain coding manner to form a data stream.
  • the associated clock signal is used to identify the reference clock information provided by the MAU, and the indoor distributed system using the repeater as the relay generally uses the associated clock signal as the clock source of the entire system under normal operating conditions.
  • the indication signal is a signal for identifying the start position of each data frame included in the data stream, and may be uniformly set to a high level signal, or may be uniformly set to a low level signal. That is, every time an indication signal appears, it represents the frame header of a data frame.
  • the MAU receives the data service signal sent by the MEU, converts the received data service signal into at least one radio frequency signal of the same standard or different standards, and then sends the converted radio frequency signal to the RF signal separately.
  • One or more base stations are examples of the received data service signal sent by the MEU, converts the received data service signal into at least one radio frequency signal of the same standard or different standards.
  • a clock switching device configured to receive a data stream sent by the MAU, and determine, according to the received data stream, whether the reference clock provided by the MAU is in a normal state, and determine that the reference clock provided by the MAU is not in a normal state. And sending an indication message to the MEU, instructing the MEU to perform time synchronization between the MEU and the MRU by using a reference clock provided by the MAU, and switching to time synchronization between the MEU and the MRU by using a reference clock provided by the MEU itself.
  • the clock switching device is further configured to: according to the data stream sent again by the MAU, when it is determined that the reference clock provided by the MAU returns to a normal state (for example, the MAU returns to normal after a period of power failure), to the MEU
  • the indication information is sent to the MEU to perform time synchronization between the MEU and the MRU by using the reference clock provided by the MEU itself, and switch back to continue to use the reference clock provided by the MAU to perform time synchronization between the MEU and the MRU.
  • the clock switching apparatus may specifically parse the received indication signal used by the MAU to identify the start position of each data frame included in the data code stream, and parse the adjacent indication signal.
  • the inter-clock cycle is compared with a preset clock cycle. When the comparison result is the same, it is determined that the reference clock provided by the MAU is in a normal state, otherwise it is determined that the reference clock provided by the MAU is in an abnormal state.
  • the MEU is configured to receive indication information sent by the clock switching device, and perform time synchronization between the self and the MRU according to the received indication information, using a reference clock provided by the MAU or using a reference clock provided by itself. And used to forward the data stream of the interaction between the MAU and the MRU.
  • a digital repeater in order to realize remote transmission of a multi-service data signal, it may be, but not limited to, setting a plurality of MEUs, and some MEUs are not directly related to the MAU. Connected directly to other MEUs in series, and then connected to the MRU (see Figure 2 for details).
  • the internal composition of the MEU may be, but not limited to, as shown in FIG. 3, and includes an Ethernet signal receiving unit, a control unit, a clock unit, and a processing unit.
  • the Ethernet signal receiving unit is configured to receive an Ethernet signal sent by the Ethernet device.
  • the Ethernet device can be, but is not limited to, a device that supports 100 Mbps Ethernet data transmission or Gigabit Ethernet data transmission, such as a switch, a router, and the like.
  • the processing unit can be, but is not limited to, a microprocessor formed by Field-Programmable Gate Array (FPGA) technology for receiving and forwarding data streams.
  • FPGA Field-Programmable Gate Array
  • the processing unit combines the received data stream sent by the MAU and the Ethernet data service signal sent by the Ethernet device to form a matching function with the used transmission shield. The signal is transmitted, and the formed transmission signal is then transmitted to the MRU through the transmission shield.
  • the receiving MRU transmits the transmitted signal through the transmission shield, parses the received transmission signal, obtains the digital baseband signal and the Ethernet data service signal carried therein, and transmits the obtained digital baseband signal to MAU, and the obtained Ethernet data service signal is sent to the Ethernet device based on the Ethernet frame format bearer.
  • a clock unit that generates a clock signal for the MEU itself.
  • control unit configured to control the clock unit to transmit the clock signal generated by the clock unit itself to the processing unit or adjust the clock signal of the clock unit according to the clock signal sent by the MAU.
  • the MRU is used to receive and forward the data stream using the clock signal sent by the MEU, and maintain time synchronization with the MEU.
  • the MRU parses the received transmission signal sent by the MEU through the transmission shield to obtain a digital baseband signal and an Ethernet data service signal, and then converts the obtained digital baseband signal into at least one way.
  • RF signals of the same standard or different standards, and at least one of the same or different standards obtained by the conversion The RF signals are sent to the RF terminal respectively, and the obtained Ethernet data service signals are sent to the Ethernet terminal.
  • the MRU In the uplink, the MRU combines and receives at least one radio frequency signal of the same standard or different standards sent by the radio frequency terminal, and the Ethernet service signal sent by the Ethernet terminal, to form a suitable transmission between the MRU and the MEU.
  • the transmission signal transmitted by the shield is transmitted to the MEU through the transmission shield.
  • the transmission interface between the MAU, the MRU, the MEU, and the clock switching device may be, but not limited to, an optical fiber, a Category 5 line, a Super Category 5 line, a Category 6 line, and the like.
  • the clock switching device proposed in the embodiment of the present invention may be independently disposed in any component device in the indoor distributed system in which the repeater station is used as a relay, and may be set in the MEU, for example, or Integrated in the MRU, of course, it can also be used as a stand-alone device in an indoor distributed system using a repeater as a relay.
  • the second embodiment of the present invention uses the clock switching device as an independent device in the system as an example to describe the clock switching in detail.
  • the method, as shown in Figure 4, is as follows:
  • Step 41 The MAU receives at least one radio frequency signal of the same standard or different standards sent by the base station, and performs the filtering and analog-to-digital conversion processing on the received radio frequency signal, and converts the data into a data service signal, and forms the converted digital baseband signal into a continuous
  • the data stream is sent to the clock switching device and the MEU directly connected to the MAU.
  • the clock switching device and the MEU directly connected to the MAU are connected in parallel on the MAU (see FIG. 2 for details).
  • Step 42 The clock switching device determines, according to the received data stream, whether the reference clock provided by the MAU is in a normal state. If the determination result is no, step 43 is performed. Otherwise, returning to step 41, continuing to receive the MAU The data stream sent.
  • the data stream composed of consecutive data frames sent by the MAU includes The accompanying clock signal, the indication signal, and the corresponding data traffic signal.
  • the associated clock signal is mapped to the data frame along with the data service signal sent by the base station received by the MAU according to a specific coding mode, and the associated clock signal is a reference clock provided by the MAU.
  • the associated clock signal is used as the clock source of the entire system.
  • the indication signal is a signal for identifying the start position of each data frame included in the data stream, and may be uniformly set to a high level signal, or may be uniformly set to a low level signal. Preferably, in the second embodiment of the present invention, the indication signal is uniformly set to a high level signal.
  • the data stream sent by the MAU includes a data service signal, which is a signal processed by the MAU to at least one of the same system or different types of radio frequency signals transmitted by the received base station.
  • the clock switching device determines, according to the data stream sent by the received MAU, whether the reference clock provided by the MAU is in a normal state, which can be performed by:
  • Step 1 The clock switching device parses and processes the received data stream sent by the MAU, and parses the segment The received data stream is used to identify an indication signal for each data frame start position included in the data stream.
  • Step 2 Comparing the clock period between the parsed adjacent indication signals with a preset clock period. When the comparison result is the same, determining that the reference clock provided by the MAU is in a normal state, that is, the MAU does not occur at this time. The power is faulty, otherwise it is determined that the reference clock provided by the MAU is in an abnormal state.
  • the preset clock cycle is set as: a reference clock provided by the MAU in the normal operation state of the indoor distributed system in which the digital repeater is used as a relay An integer multiple of the clock period.
  • the clock period of the reference clock provided by the MAU is M, and the preset clock period can be set to 5M.
  • the clock period between the parsed adjacent indication signals is 6M and is not equal to the preset 5M, it is determined that the reference clock provided by the MAU is in an abnormal state at this time.
  • Step 43 When determining that the reference clock provided by the MAU is not in a normal state, the clock switching apparatus sends an indication message to the MEU, indicating that the MEU is switched by the reference clock provided by the currently used MAU to use the reference clock provided by the MEU itself. Thereby achieving time synchronization between the MEU and the MRU.
  • the reference clock provided by the MEU itself may be, but is not limited to, a clock provided by the MEC's own clock unit, or may be a reference clock provided by a crystal oscillator set by the corresponding MEU.
  • the clock provided by the MEU's own clock unit is used as the reference clock provided by the MEU itself, so that when the MEU needs to perform clock switching, it is not necessary to occupy additional system processing resources to obtain other
  • the reference clock provided by the crystal oscillator, and according to the obtained reference clock provided by other crystal oscillators, corrects the clock provided by the MEU's own clock unit, avoiding the clock switching indication sent by the MEU according to the clock switching device during the clock switching process.
  • the jitter occurs in the middle, and the smooth switching of the reference clock can be better achieved.
  • the system can continue to be in the running state.
  • the method further includes the step 44, the clock switching device continues to receive the data stream sent by the MAU, and determines, according to the received data stream, that the reference clock provided by the MAU returns to a normal state.
  • the MEU is instructed to use the reference clock provided by itself to time synchronize the MEU and the MRU, and switch back to continue using the reference clock pair MEU and MRU provided by the MAU. Time synchronization between.
  • the clock switching device does not send the handover indication, and the MEU continues to maintain the reference clock provided by itself as the clock source of the entire system to implement the MEU and Time synchronization between MRUs ensures the normal operation of the entire indoor distributed system.
  • the reference clock provided by the MAU is the associated clock signal that is parsed by the clock switching device from the data stream sent by the MAU.
  • the associated clock signal included in the data stream sent by the MAU the above step 42 has been elaborated and will not be described here.
  • the second embodiment of the present invention further provides a clock switching device, and the structural composition thereof is as shown in FIG. 6, which includes:
  • a code stream receiving unit 61 configured to receive multi-service access in an indoor distributed system in which a repeater is used as a relay The data stream sent by the unit MAU.
  • the determining unit 62 is configured to determine, according to the data code stream received by the code stream receiving unit 61, whether the reference clock provided by the MAU is in a normal state.
  • the determining unit is configured to parse, in the received data stream, an indication signal for identifying a start position of each data frame included in the data code stream, and a clock between the parsed adjacent indication signals The period is compared with a preset clock period. When the comparison result is the same, it is determined that the reference clock provided by the MAU is in a normal state, otherwise it is determined that the reference clock provided by the MAU is in an abnormal state.
  • the clock switching control unit 63 is configured to: when the determining unit 62 determines that the reference clock provided by the MAU is not in a normal state, instruct the multi-service extension unit MEU to use the reference clock pair provided by the MAU to the MEU and the multi-service remote unit.
  • the MRU performs time synchronization, and switches to time synchronization between the MEU and the MRU using the reference clock provided by the MEU itself.
  • the determining unit in the clock switching device is further configured to: according to the code stream receiving unit, receive the data code stream sent by the MAU again, and determine whether the reference clock provided by the MAU returns to a normal state; And the unit is further configured to: when the determining unit determines that the reference clock provided by the MAU returns to a normal state, instructing the MEU to perform time synchronization between the MEU and the MRU by using a reference clock provided by the MEU itself, and switching to using the The reference clock provided by the MAU performs time synchronization between the MEU and the MRU.
  • the clock switching device is integrated into the MEU in the system as an example, and further details are described.
  • the clock switching method as shown in Figure 7, is as follows:
  • Step 71 The MAU receives at least one radio frequency signal of the same standard or different standards sent by the base station, and performs the filtering and analog-to-digital conversion processing on the received radio frequency signal to convert into a digital baseband signal, and forms the converted digital baseband signal into a continuous
  • the data stream is sent to the MEU that is directly connected to the MAU.
  • Step 72 The MEU determines, according to the received data stream, whether the reference clock provided by the MAU is in a normal state. If the determination result is no, step 43 is performed. Otherwise, step 41 is performed to continue receiving data sent by the MAU. Code stream.
  • the data stream composed of consecutive data frames sent by the MAU includes the accompanying clock signal and the indication.
  • Signal and corresponding business data signal are not described herein again.
  • the MEU determines whether the reference clock provided by the MAU is in a normal state according to the data stream sent by the received MAU, and may be performed by:
  • Step 1 The MEU parses and processes the received data stream sent by the MAU, and parses the received segment.
  • the data stream is used to identify an indication signal for each data frame start position included in the data stream.
  • Step 2 Comparing the clock period between the parsed adjacent indication signals with a preset clock period. When the comparison result is the same, determining that the reference clock provided by the MAU is in a normal state, otherwise determining the provided by the MAU.
  • the reference clock is in an abnormal state.
  • the preset clock period is set to an integer multiple of the reference clock provided by the MAU in the normal operating state of the system, for example, the reference provided by the MAU in the normal operating state of the system.
  • the clock period of the clock is M, and the preset clock period can be set to 5M.
  • the MEU directly connected to the MEU loses power, fails, or is not connected between the MEU and the MAU, the MEU can still receive other service data signals (such as Ethernet devices existing in the indoor distributed system).
  • the Ethernet service data signal is sent, but in this case, the clock period between the adjacent indication signals parsed by the MEU according to the received data stream is 4M, which is not equal to the preset 5M, then it is determined.
  • the reference clock provided by the MAU is in an abnormal state.
  • Step 73 When determining that the reference clock provided by the MAU is not in a normal state, the MEU switches the clock source of the system from the reference clock provided by the currently used MAU to the reference clock provided by the MEU itself, and uses the switched reference clock.
  • the reference clock provided by the MEU itself serves as the clock source of the entire system, thereby implementing time synchronization between the MEU and the MRU.
  • the reference clock provided by the MEU itself may be, but is not limited to, a clock provided by the MEC's own clock unit, or may be a reference clock provided by a crystal oscillator set by the corresponding MEU.
  • the second embodiment of the present invention uses the clock provided by the MEU's own clock unit as the reference clock provided by the MEU itself.
  • the reference clock provided by the oscillator avoids the jitter that occurs during the clock switching process, and can achieve smooth switching better. During the clock switching process, the system can continue to be in the running state.
  • Step 74 The MEU continues to receive the data stream sent by the MAU, and determines whether the reference clock provided by the MAU returns to a normal state according to the received data stream. When it is determined that the reference clock provided by the MAU returns to the normal state, the MEU switches the reference clock provided by its own clock unit to the reference clock provided by the MAU, and after switching, uses the reference clock provided by the MAU as the entire application.
  • the repeater acts as the clock source for the relayed indoor distributed system, thus ensuring time synchronization between the MEU and the MRU, and ensuring the normal operation of the entire system.
  • the reference clock provided by the MAU is the associated clock signal parsed from the data stream sent by the MAU.
  • the associated clock signal included in the data stream sent by the MAU it is described in detail in step 42 of the second embodiment, and details are not described herein again.
  • embodiments of the present invention can be provided as a method, system, or computer program.
  • Product may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • present invention is in the form of a computer program product embodied on one or more computer-usable storage interfaces (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

一种时钟切换方法、装置及釆用直放站作为中西的室内分布式系统,包括:在釆用直放站作为中继的室内分布式系统中,接收多业务接入单元MAU发来的数据码流;根据接收到的数据码流,判断由所述MAU提供的参考时钟是否处于正常状态;在判断出所述MAU提供的参考时钟未处于正常状态时,指示多业务扩展单元MEU由使用所述MAU提供的参考时钟对MEU和多业务远端单元MRU之间进行时间同步,切换到使用所述MEU自身提供的参考时钟对MEU和MRU之间进行时间同步。使用本申请这里提出的技术方案,能够较好地维护室内分布式系统中各设备之间的时间同步性,提高整个系统的可靠性。

Description

时钟切换方法、 装置及直放站作为中继的室内分布式系统 技术领域 本发明涉及数字直放站技术领域, 尤其是涉及一种时钟切换方法、 装置及釆用直放站 作为中继的室内分布式系统。 背景技术 随着移动通信技术的快速发展, 为了增加移动通信系统的网络信号在室内的覆盖范 围, 建设室内分布式系统已经成为网络优化的重点。 在建设室内分布式系统的方案中, 通 常釆用直放站作为中继, 将移动通信系统中的多制式移动通信业务数据以及室内分布式系 统中的其他业务数据 (如宽带以太网业务数据 )一起拉远后传输。
如图 1所示, 釆用直放站作为中继的室内分布式系统, 包括至少一个多业务接入单元 ( MAU, Multi-service Access Unit )、至少一个多业务扩展单元 ( MEU, Multi-service Extend Unit )和至少一个多业务远端单元(MRU, Multi -service Remote Unit ) 。 MAU将接收到的 从基站发来的多种制式的射频信号,经过变换处理后发送至 MEU, MEU将接收到的从 MAU 发来的经过变换后的多种制式的射频信号以及接收到的室内覆盖系统中其他业务数据信 号, 经过变换处理后一起发送给 MRU, MRU将接收到的多种业务数据的混合信号按照一 定规则解析出来并分别发送出去, 从而实现多业务混合数据信号在室内的覆盖。
在整个室内分布式系统中, MAU、 MEU以及 MRU等各个设备之间通常需要具有相同 的时钟源才能够正常工作, 即室内分布式系统中需要设置一个基准时钟来保证各设备之间 的时间同步性。通常情况下, 整个室内分布式系统中的各设备是以 MAU的时钟信号作为基 准时钟来维护各设备之间的时间同步的, 即 MEU接收 MAU发来的数据码流, 在接收到的 数据码流中恢复出时钟信号, 然后将恢复出的时钟信号作为整个分布式系统的基准时钟信 息。 但是当 MAU发生掉电或者发生故障时, MEU将无法接收到 MAU发来的数据码流, 也 就无法恢复出时钟信号, 从而会使得整个室内分布式系统失去时钟源, 此时 MEU和 MRU 之间的时间同步性便无法建立, 导致室内分布式系统中正在工作的多种混合业务的链路出 现中断, 无法为用户继续提供服务。
由于现有技术中还没有提出一种在釆用直放站作为中继的室内分布式系统缺少时钟 源时, 能够继续保证室内分布式系统中各设备之间的时间同步性的处理方案, 从而导致整 个室内分布式系统的可靠性较低。 发明内容 本发明实施例提供一种时钟切换的方法、 装置及直放站作为中继的室内分布式系统, 能够较好地维护室内分布式系统中各设备之间的时间同步性, 提高整个系统的可靠性。
本发明实施例提供的技术方案如下:
一种时钟切换方法, 包括: 在釆用直放站作为中继的室内分布式系统中, 接收多业务 接入单元 MAU发来的数据码流; 根据接收到的数据码流, 判断由所述 MAU提供的参考时 钟是否处于正常状态; 在判断出所述 MAU提供的参考时钟未处于正常状态时, 指示多业务 扩展单元 MEU由使用所述 MAU提供的参考时钟对 MEU和多业务远端单元 MRU之间进行 时间同步, 切换到使用所述 MEU自身提供的参考时钟对 MEU和 MRU之间进行时间同步。
一种时钟切换装置, 包括: 码流接收单元, 用于在釆用直放站作为中继的室内分布式 系统中, 接收多业务接入单元 MAU发来的数据码流; 判断单元, 用于根据码流接收单元接 收到的数据码流,判断由所述 MAU提供的参考时钟是否处于正常状态;时钟切换控制单元, 用于在判断单元判断出所述 MAU提供的参考时钟未处于正常状态时,指示多业务扩展单元 MEU由使用所述 MAU提供的参考时钟对 MEU和多业务远端单元 MRU之间进行时间同步, 切换到使用所述 MEU自身提供的参考时钟对 MEU和 MRU之间进行时间同步。
一种釆用直放站作为中继的室内分布式系统, 包括多业务接入单元 MAU、 多业务扩展 单元 MEU和多业务远端单元 MRU, 还包括时钟切换装置, 其中: 所述 MAU, 用于发送数 据码流; 所述时钟切换装置, 用于接收所述 MAU发来的数据码流; 并根据接收到的数据码 流, 判断由所述 MAU提供的参考时钟是否处于正常状态; 在判断出所述 MAU提供的参考 时钟未处于正常状态时, 指示所述 MEU由使用 MAU提供的参考时钟对 MEU和 MRU之间进 行时间同步,切换到使用所述 MEU自身提供的参考时钟对 MEU和 MRU之间进行时间同步; 所述 MEU, 用于按照所述时钟切换装置的指示, 使用由所述 MAU提供的参考时钟或使用 由自身提供的参考时钟对自身和 MRU之间进行时间同步。
基于上述提出的技术方案, 在釆用直放站作为中继的室内分布式系统中, 在判断出由 MAU提供的参考时钟未处于正常状态时, 指示 MEU由使用 MAU提供的参考时钟切换到使 用该 MEU自身提供的参考时钟, 来实现 MEU和 MRU之间的时间同步性, 从而能够较好地 维护室内分布式系统中各设备之间的时间同步性, 提高了整个系统的可靠性。 附图说明 图 1为现有技术中, 釆用直放站作为中继的室内分布式系统架构图;
图 2为本发明实施例一中, 提出的釆用直放站作为中继的室内分布式系统架构图; 图 3为本发明实施例一中, 提出的 MEU内部结构组成示意图;
图 4为本发明实施例二中, 提出的时钟切换方法流程图; 图 5为本发明实施例二中, 提出的由 MAU发出的数据码流中包含的多种信号示意图; 图 6为本发明实施例二中, 提出的时钟切换装置结构图;
图 7为本发明实施例三中, 提出的时钟切换方法流程图。 具体实施方式 针对现有技术中存在的在釆用直放站作为中继的室内分布式系统缺少时钟源时, 不能 够继续保证室内分布式系统中各设备之间的时间同步性, 使得整个室内分布式系统的可靠 性较低的问题, 本发明实施例这里提出一种时钟切换的技术方案, 在釆用直放站作为中继 的室内分布式系统中, 根据由 MAU发来的数据码流, 判断由 MAU提供的参考时钟是否处 于正常状态,在判断出 MAU提供的参考时钟未处于正常状态时,指示分布式系统中的 MEU 进行时钟切换, 将由使用 MAU提供的参考时钟切换到使用 MEU自身提供的参考时钟来实 现 MEU和 MRU之间的时间同步, 能够较好地维护室内分布式系统中各设备之间的时间同 步性, 从而提高整个系统的可靠性。
下面将结合各个附图对本发明实施例技术方案的主要实现原理、 具体实施方式及其对 应能够达到的有益效果进行详细地阐述。
实施例一
本发明实施例一这里提出一种釆用直放站作为中继的室内分布式系统, 包括 MAU、 MEU, MRU以及时钟切换装置, 其结构组成如图 2所示, 其中:
MAU, 用于发送数据码流。 其中, 在下行链路中, MAU向 MEU发送数据码流, 该数 据码流是 MAU对从基站接收到的至少一路相同制式或者不同制式的射频信号进行滤波以 及数模转换处理, 得到数据业务信号, 然后将处理后的数据业务信号、 随路时钟信号、 和 指示信号按照一定的编码方式, 形成的数据码流。 其中, 随路时钟信号用于标识由 MAU提 供的参考时钟信息, 使用直放站作为中继的室内分布式系统在正常运行状态下, 一般釆用 随路时钟信号作为整个系统的时钟源。 指示信号是用于标识该数据码流中包含的各个数据 帧开始位置的信号, 可以统一设置为高电平信号, 也可以统一设置为低电平信号。 即每出 现一个指示信号, 就代表一个数据帧的帧头。 在上行链路中, MAU接收 MEU发来的数据 业务信号, 并将接收到的数据业务信号进行变换, 变换成至少一路相同制式或者不同制式 的射频信号, 然后将变换后的射频信号分别发送给一个或者多个基站。
时钟切换装置, 用于接收 MAU发来的数据码流, 并根据接收到的数据码流, 判断由该 MAU提供的参考时钟是否处于正常状态, 在判断出该 MAU提供的参考时钟未处于正常状 态时, 向 MEU发送指示信息, 指示 MEU由使用 MAU提供的参考时钟对 MEU和 MRU之间进 行时间同步, 切换到使用该 MEU自身提供的参考时钟对 MEU和 MRU之间进行时间同步。 并且, 时钟切换装置还用于根据 MAU再次发来的数据码流, 在判断出由 MAU提供的参考 时钟恢复正常状态时 (例如, MAU在掉电后一段时间后又恢复至正常) , 向 MEU发送指 示信息, 指示 MEU由使用 MEU自身提供的参考时钟对 MEU和 MRU之间进行时间同步, 切 换回继续使用 MAU提供的参考时钟对 MEU和 MRU之间进行时间同步。
具体地,时钟切换装置具体可以解析接收到的由 MAU发来的数据码流中分别用于标识 该数据码流包含的各个数据帧开始位置的指示信号, 并将解析出的相邻指示信号之间的时 钟周期与预设的时钟周期进行比较,在比较结果相同时, 确定由该 MAU提供的参考时钟处 于正常状态, 否则确定由该 MAU提供的参考时钟处于非正常状态。
MEU, 用于接收时钟切换装置发来的指示信息, 并按照接收到的指示信息, 使用由 MAU提供的参考时钟或者使用由自身提供的参考时钟对自身和 MRU之间进行时间同步。 并用于转发 MAU和 MRU之间交互的数据码流。
需要说明的是, 在釆用数字直放站作为中继的室内分布式系统中, 为实现多业务数据 信号的拉远传输, 可以但不限于设置多个 MEU, 其中一部分 MEU并不是直接与 MAU相连, 而是直接与其他 MEU串联, 然后再和 MRU连接(具体可参见图 2所示) 。
具体地, MEU的内部组成可以但不限于为图 3所示, 包括以太网信号接收单元、 控制 单元、 时钟单元以及处理单元。 其中, 以太网信号接收单元, 用于接收以太网设备发来的 以太网信号。 具体地, 以太网设备可以但不限于是支持百兆以太网数据传输或者千兆以太 网数据传输的设备, 如交换机、 路由器等设备。
处理单元可以但不限于为釆用现场可编程门阵列 ( FPGA, Field - Programmable Gate Array )技术形成的一个微处理器, 用于接收和转发数据码流。 其中, 在下行链路中, 处理 单元将接收到的由 MAU发来数据码流和由以太网设备发来的以太网数据业务信号,进行合 并处理, 形成与所使用的传输介盾相匹配的传输信号, 然后将形成的传输信号通过传输介 盾发送给 MRU。 在上行链路中, 接收 MRU通过传输介盾发来的传输信号, 对接收到的传 输信号进行解析处理, 获得其中承载的数字基带信号和以太网数据业务信号, 将获得的数 字基带信号传输至 MAU,并将获得的以太网数据业务信号基于以太网帧格式承载发送给以 太网设备。
时钟单元, 用于生成 MEU自身的时钟信号。
控制单元, 用于控制时钟单元将时钟单元自身生成的时钟信号传输给处理单元或者根 据 MAU发来的时钟信号调整时钟单元的时钟信号。
MRU, 用于使用 MEU发来的时钟信号接收和转发数据码流, 保持与 MEU之间的时间 同步。 其中, 在下行链路中, MRU对接收到的由 MEU通过传输介盾发来的传输信号进行 解析处理, 获得数字基带信号和以太网数据业务信号, 然后将获得的数字基带信号变换成 至少一路相同制式或不同制式的射频信号, 并将变换得到的至少一路相同制式或不同制式 的射频信号分别发送给射频终端, 并将获得的以太网数据业务信号发送给以太网终端。 在 上行链路中, MRU对接收到的由射频终端发来的至少一路相同制式或不同制式的射频信 号, 以及以太网终端发送的以太网业务信号进行合并处理, 形成适合 MRU和 MEU之间传 输介盾传输的传输信号, 将形成的传输信号通过传输介盾发送至 MEU。
其中, 上述 MAU、 MRU, MEU和时钟切换装置之间的传输介盾可以但不限于是光纤、 五类线、 超五类线、 六类线等。
需要说明的是, 本发明实施例这里提出的时钟切换装置, 可以独立设置在釆用直放站 作为中继的室内分布式系统中的任一组成设备中, 例如可以设置在 MEU中, 也可以集成在 MRU中, 当然也可以作为釆用直放站作为中继的室内分布式系统中的一个独立设备。
实施例二
基于上述实施例一中提出的釆用直放站作为中继的室内分布式系统的系统架构, 本发 明实施例二这里将时钟切换装置作为该系统中的一个独立设备为例来详细说明时钟切换 方法, 如图 4所示, 其具体过程如下:
步骤 41 , MAU接收基站发来的至少一路相同制式或者不同制式的射频信号, 将接收到 的射频信号经过滤波和模数转换处理, 转换成数据业务信号, 将转换后的数字基带信号形 成连续的数据码流发送至时钟切换装置和与 MAU直接相连的 MEU。 其中, 时钟切换装置 和与 MAU直接连接的 MEU并联在 MAU上(具体可参见图 2所示) 。
步骤 42 , 时钟切换装置根据接收到的数据码流, 判断由所述 MAU提供的参考时钟是否 处于正常状态, 如果判断结果为否, 则执行步骤 43 , 反之, 返回继续执行步骤 41 , 继续接 收 MAU发来的数据码流。
其中, 在釆用直放站作为中继的室内分布式系统中, 在系统的正常工作状态下, 如图 5所示, 由 MAU发出的由连续的数据帧组成的数据码流中, 包含有随路时钟信号、 指示信 号和相应的数据业务信号。随路时钟信号是按照特定的编码方式与 MAU接收到的基站发来 的数据业务信号一起映射到数据帧中的, 该随路时钟信号即是由 MAU提供的参考时钟。在 整个釆用直放站作为中继的室内分布式系统正常运行状态下(即 MAU未发生掉电或出现故 障的状态) , 是釆用随路时钟信号作为整个系统的时钟源的。 指示信号是用于标识该数据 码流中包含的各个数据帧开始位置的信号, 可以统一设置为高电平信号, 也可以统一设置 为低电平信号。 较佳地, 本发明实施例二这里将指示信号统一设置为高电平信号。 而 MAU 发来的数据码流中包含数据业务信号,则是由 MAU对接收到的基站发送的至少一路相同制 式或者不同制式的射频信号进行处理后的信号。
其中, 时钟切换装置根据接收到的 MAU发来的数据码流, 判断由所述 MAU提供的参 考时钟是否处于正常状态具体可以通过下述方式进行:
步骤一: 时钟切换装置对接收到的由 MAU发来的数据码流进行解析处理, 解析该段接 收到的数据码流中分别用于标识该数据码流包含的各个数据帧开始位置的指示信号。
步骤二: 将解析出的相邻指示信号之间的时钟周期与预设的时钟周期进行比较, 在比 较结果相同时, 确定由该 MAU提供的参考时钟处于正常状态, 即此时 MAU未发生掉电或 者出现故障, 否则确定由 MAU提供的参考时钟处于非正常状态。
—种较佳地实现方式, 本发明实施例二这里将预设的时钟周期设置为: 在整个釆用数 字直放站作为中继的室内分布式系统正常运行状态下,由 MAU提供的参考时钟的时钟周期 的整数倍, 例如系统正常运行状态下, 由 MAU提供的参考时钟的时钟周期为 M, 则可以将 预设的时钟周期设置为 5M。 此时, 如果解析出来的相邻指示信号之间的时钟周期为 6M不 等于预设的 5M时, 则确定此时由 MAU提供的参考时钟处于非正常状态。
步骤 43 , 时钟切换装置在判断出由 MAU提供的参考时钟未处于正常状态时, 向 MEU 发送指示信息, 指示 MEU由当前正在使用的 MAU提供的参考时钟切换到使用该 MEU自身 提供的参考时钟, 从而实现对 MEU和 MRU之间进行时间同步。
其中, MEU自身提供的参考时钟, 可以但不限于是 MEU自身的时钟单元提供的时钟, 也可以是由对应 MEU设置的晶体振荡器提供的参考时钟。 较佳地, 本发明实施例二这里釆 用 MEU自身的时钟单元提供的时钟作为 MEU自身提供的参考时钟, 这样, 在 MEU需要进 行时钟切换时, 可以不需要占用额外的系统处理资源去获得其它晶体振荡器提供的参考时 钟, 并根据获得的其他晶体振荡器提供的参考时钟来校正 MEU自身的时钟单元提供的时 钟, 避免了 MEU根据时钟切换装置发来的时钟切换指示在进行时钟切换的过程中发生抖 动, 可以较好的实现参考时钟的平滑切换, 在时钟切换过程中, 系统也可以继续处于运行 状态。
较佳地, 在上述步骤 43之后, 还包括步骤 44, 时钟切换装置后续继续接收 MAU发来的 数据码流,并根据接收到的数据码流,判断出由该 MAU提供的参考时钟恢复正常状态时(例 如 MAU掉电后恢复或者 MAU的故障得以清除) , 指示 MEU由使用其自身提供的参考时钟 对 MEU和 MRU之间进行时间同步,切换回继续使用由 MAU提供的参考时钟对 MEU和 MRU 之间进行时间同步。如果判断出由该 MAU提供的参考时钟还未恢复正常状态时, 则时钟切 换装置不发送切换指示, MEU此时仍继续保持使用其自身提供的参考时钟作为整个系统的 时钟源, 来实现 MEU和 MRU之间的时间同步, 保证整个室内分布式系统的正常运行。
其中, MAU提供的参考时钟, 即是时钟切换装置从由 MAU发来的数据码流中解析出 来的随路时钟信号。对于 MAU发来的数据码流中包含的随路时钟信号, 上述步骤 42已经详 细阐述, 这里不再赘述。
相应地, 本发明实施例二这里还提出一种时钟切换装置, 其结构组成如图 6所示, 包 括:
码流接收单元 61 , 用于在釆用直放站作为中继的室内分布式系统中, 接收多业务接入 单元 MAU发来的数据码流。
判断单元 62, 用于根据码流接收单元 61接收到的数据码流, 判断由所述 MAU提供的参 考时钟是否处于正常状态。
具体地, 判断单元, 具体用于解析接收到的所述数据码流中分别用于标识该数据码流 包含的各个数据帧开始位置的指示信号; 将解析出的相邻指示信号之间的时钟周期与预设 的时钟周期进行比较,在比较结果相同时,确定由所述 MAU提供的参考时钟处于正常状态, 否则确定由所述 MAU提供的参考时钟处于非正常状态。
时钟切换控制单元 63 ,用于在判断单元 62判断出所述 MAU提供的参考时钟未处于正常 状态时, 指示多业务扩展单元 MEU由使用所述 MAU提供的参考时钟对 MEU和多业务远端 单元 MRU之间进行时间同步, 切换到使用所述 MEU自身提供的参考时钟对 MEU和 MRU之 间进行时间同步。
上述提出的时钟切换装置中的判断单元, 还用于根据码流接收单元再次接收到所述 MAU发来的数据码流, 判断出由所述 MAU提供的参考时钟是否恢复正常状态; 时钟切换 控制单元,还用于在判断单元判断出由所述 MAU提供的参考时钟恢复正常状态时, 指示所 述 MEU由使用 MEU自身提供的参考时钟对 MEU和 MRU之间进行时间同步, 切换到使用所 述 MAU提供的参考时钟对 MEU和 MRU之间进行时间同步。
实施例三
基于上述实施例一中提出的釆用直放站作为中继的室内分布式系统的基础之上, 本发 明实施例三这里将时钟切换装置集成在该系统中的 MEU中为例,进一步详细说明时钟切换 方法, 如图 7所示, 其具体过程如下:
步骤 71 , MAU接收基站发来的至少一路相同制式或者不同制式的射频信号, 将接收到 的射频信号经过滤波和模数转换处理, 转换成数字基带信号, 将转换后的数字基带信号形 成连续的数据码流发送至与 MAU直接相连的 MEU。
步骤 72, MEU根据接收到的数据码流, 判断由所述 MAU提供的参考时钟是否处于正 常状态, 如果判断结果为否, 则执行步骤 43 , 反之, 执行步骤 41 , 继续接收 MAU发来的数 据码流。
其中,在釆用直放站作为中继的室内分布式系统中,在系统的正常工作状态下,由 MAU 发出的由连续的数据帧组成的数据码流中, 包含有随路时钟信号、 指示信号和相应的业务 数据信号。具体地, 由 MAU发出的数据码流中的信号组成在上述实施例二步骤 42中已经详 细阐述, 这里不再赘述。
其中, MEU根据接收到的 MAU发来的数据码流, 判断由 MAU提供的参考时钟是否处 于正常状态具体可以通过下述方式进行:
步骤一: MEU对接收到的由 MAU发来的数据码流进行解析处理, 解析该段接收到的 数据码流中分别用于标识该数据码流包含的各个数据帧开始位置的指示信号。 步骤二: 将解析出的相邻指示信号之间的时钟周期与预设的时钟周期进行比较, 在比 较结果相同时, 确定由所述 MAU提供的参考时钟处于正常状态, 否则确定由 MAU提供的 参考时钟处于非正常状态。
—种较佳地实现方式, 本发明实施例二这里将预设的时钟周期设置为系统正常运行状 态下, 由 MAU提供的参考时钟的整数倍, 例如系统正常运行状态下, 由 MAU提供的参考 时钟的时钟周期为 M, 则可以将预设的时钟周期设置为 5M。 此时, 如果在与该 MEU直接 相连的 MAU出现掉电、 发生故障或者 MEU与 MAU之间没有连接上时, MEU仍然可以接收 到其他业务数据信号 (例如室内分布式系统中存在的以太网设备发来的以太网业务数据信 号), 但是在这种情况下, MEU根据接收到的数据码流解析出来的相邻指示信号之间的时 钟周期为 4M, 不等于预设的 5M时, 则确定此时由 MAU提供的参考时钟处于非正常状态。
步骤 73 , MEU在判断出由 MAU提供的参考时钟未处于正常状态时, 则将系统的时钟 源由当前正在使用的 MAU提供的参考时钟切换到使用该 MEU自身提供的参考时钟, 使用 切换后的 MEU自身提供的参考时钟作为整个系统的时钟源, 从而实现对 MEU和 MRU之间 进行时间同步。
其中, MEU自身提供的参考时钟, 可以但不限于是 MEU自身的时钟单元提供的时钟, 也可以是由对应 MEU设置的晶体振荡器提供的参考时钟。 较佳地, 本发明实施例二这里釆 用 MEU自身的时钟单元提供的作为 MEU自身提供的参考时钟, 这样, 在 MEU需要进行时 钟切换时, 可以不需要占用额外的系统处理资源去获得其它晶体振荡器提供的参考时钟, 避免了时钟切换过程中发生的抖动, 可以较好的实现平滑切换, 在时钟切换过程中, 系统 也可以继续处于运行状态。
步骤 74, MEU后续继续接收 MAU发来的数据码流, 并根据接收到的数据码流, 判断 由该 MAU提供的参考时钟是否恢复至正常状态。 在确定出 MAU提供的参考时钟恢复至正 常状态时, MEU将正在使用的由自身的时钟单元提供的参考时钟切换到由 MAU提供的参 考时钟, 切换后,使用 MAU提供的参考时钟作为整个釆用直放站作为中继的室内分布式系 统的时钟源, 从而保证 MEU和 MRU之间的时间同步, 保证整个系统的正常运行。
其中, MAU提供的参考时钟, 即是从由 MAU发来的数据码流中解析出来的随路时钟 信号。对于 MAU发来的数据码流中包含的随路时钟信号, 上在述实施例二中步骤 42已经详 细阐述, 这里不再赘述。
显然, 本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和 范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序产 品。 因此, 本发明可釆用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实 施例的形式。 而且, 本发明可釆用在一个或多个其中包含有计算机可用程序代码的计算机 可用存储介盾 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等)上实施的计算机程 序产品的形式。
本发明是参照根据本发明实施例的方法、 设备 (系统) 、 和计算机程序产品的流程图 和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一流 程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理器 以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的 装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令装 置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多个 方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机 或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或其他 可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一个 方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例, 但本领域内的技术人员一旦得知了基本创造性概 念, 则可对这些实施例作出另外的变更和修改。 所以, 所附权利要求意欲解释为包括优选 实施例以及落入本发明范围的所有变更和修改。
显然, 本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实 施例的精神和范围。 这样, 倘若本发明实施例的这些修改和变型属于本发明权利要求及其 等同技术的范围之内, 则本发明也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种时钟切换方法, 其特征在于, 包括:
在釆用直放站作为中继的室内分布式系统中,接收多业务接入单元 MAU发来的数据码 流;
根据接收到的数据码流, 判断由所述 MAU提供的参考时钟是否处于正常状态; 在判断出所述 MAU提供的参考时钟未处于正常状态时, 指示多业务扩展单元 MEU由 使用所述 MAU提供的参考时钟对 MEU和多业务远端单元 MRU之间进行时间同步, 切换到 使用所述 MEU自身提供的参考时钟对 MEU和 MRU之间进行时间同步。
2、 如权利要求 1所述的方法, 其特征在于, 还包括:
再次接收到所述 MAU发来的数据码流, 并根据所述再次接收到的数据码流, 判断出由 所述 MAU提供的参考时钟恢复正常状态时, 指示所述 MEU由使用所述 MEU自身提供的参 考时钟对 MEU和 MRU之间进行时间同步, 切换到使用所述 MAU提供的参考时钟对 MEU和 MRU之间进行时间同步。
3、 如权利要求 1或 2所述的方法, 其特征在于, 根据接收到的数据码流, 判断由所述 MAU提供的参考时钟是否处于正常状态, 包括:
解析接收到的所述数据码流中分别用于标识该数据码流包含的各个数据帧开始位置 的指示信号;
将解析出的相邻指示信号之间的时钟周期与预设的时钟周期进行比较, 在比较结果相 同时, 确定由所述 MAU提供的参考时钟处于正常状态, 否则
确定由所述 MAU提供的参考时钟处于非正常状态。
4、如权利要求 1所述的方法, 其特征在于, 所述 MEU自身提供的参考时钟为 MEU自身 的时钟单元提供的时钟, 或者为由对应 MEU设置的晶体振荡器提供的参考时钟。
5、 一种时钟切换装置, 其特征在于, 包括:
码流接收单元, 用于在釆用直放站作为中继的室内分布式系统中, 接收多业务接入单 元 MAU发来的数据码流;
判断单元, 用于根据码流接收单元接收到的数据码流, 判断由所述 MAU提供的参考时 钟是否处于正常状态;
时钟切换控制单元,用于在判断单元判断出所述 MAU提供的参考时钟未处于正常状态 时, 指示多业务扩展单元 MEU由使用所述 MAU提供的参考时钟对 MEU和多业务远端单元 MRU之间进行时间同步, 切换到使用所述 MEU自身提供的参考时钟对 MEU和 MRU之间进 行时间同步。
6、 如权利要求 5所述的装置, 其特征在于, 所述判断单元, 还用于根据码流接收单元 再次接收到所述 MAU发来的数据码流, 判断出由所述 MAU提供的参考时钟是否恢复正常 状态;
时钟切换控制单元,还用于在判断单元判断出由所述 MAU提供的参考时钟恢复正常状 态时, 指示所述 MEU由使用 MEU自身提供的参考时钟对 MEU和 MRU之间进行时间同步, 切换到使用所述 MAU提供的参考时钟对 MEU和 MRU之间进行时间同步。
7、 如权利要求 5或 6所述的装置, 其特征在于, 所述判断单元, 具体用于解析接收到 的所述数据码流中分别用于标识该数据码流包含的各个数据帧开始位置的指示信号; 将解 析出的相邻指示信号之间的时钟周期与预设的时钟周期进行比较, 在比较结果相同时, 确 定由所述 MAU提供的参考时钟处于正常状态, 否则确定由所述 MAU提供的参考时钟处于 非正常状态。
8、如权利要求 5所述的装置, 其特征在于, 所述 MEU自身提供的参考时钟为 MEU自身 的时钟单元提供的时钟, 或者为由对应 MEU设置的晶体振荡器提供的参考时钟。
9、 一种釆用直放站作为中继的室内分布式系统, 包括多业务接入单元 MAU、 多业务 扩展单元 MEU和多业务远端单元 MRU, 其特征在于, 还包括时钟切换装置, 其中:
所述 MAU, 用于发送数据码流;
所述时钟切换装置, 用于接收所述 MAU发来的数据码流; 并根据接收到的数据码流, 判断由所述 MAU提供的参考时钟是否处于正常状态; 在判断出所述 MAU提供的参考时钟 未处于正常状态时, 指示所述 MEU由使用 MAU提供的参考时钟对 MEU和 MRU之间进行时 间同步, 切换到使用所述 MEU自身提供的参考时钟对 MEU和 MRU之间进行时间同步; 所述 MEU, 用于按照所述时钟切换装置的指示, 使用由所述 MAU提供的参考时钟或 使用由自身提供的参考时钟对自身和 MRU之间进行时间同步。
10、如权利要求 9所述的系统,其特征在于,所述时钟切换装置,还用于根据所述 MAU 再次发来的数据码流,判断出由所述 MAU提供的参考时钟恢复正常状态时,指示所述 MEU 由使用 MEU自身提供的参考时钟对 MEU和 MRU之间进行时间同步, 切换到使用所述 MAU 提供的参考时钟对 MEU和 MRU之间进行时间同步。
11、 如权利要求 9或 10所述的系统, 其特征在于, 所述时钟切换装置, 具体用于解析 接收到的所述数据码流中分别用于标识该数据码流包含的各个数据帧开始位置的指示信 号; 并将解析出的相邻指示信号之间的时钟周期与预设的时钟周期进行比较, 在比较结果 相同时, 确定由所述 MAU提供的参考时钟处于正常状态, 否则确定由所述 MAU提供的参 考时钟处于非正常状态。
12、 如权利要求 9所述的系统, 其特征在于, 所述时钟切换装置设置于所述 MEU中。
13、 如权利要求 9所述的系统, 其特征在于, 所述 MEU自身提供的参考时钟为 MEU自 身的时钟单元提供的时钟, 或者为由对应 MEU设置的晶体振荡器提供的参考时钟。
PCT/CN2011/085083 2011-12-30 2011-12-30 时钟切换方法、装置及直放站作为中继的室内分布式系统 WO2013097199A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/085083 WO2013097199A1 (zh) 2011-12-30 2011-12-30 时钟切换方法、装置及直放站作为中继的室内分布式系统
CN201180074855.3A CN104025701B (zh) 2011-12-30 2011-12-30 时钟切换方法、装置及直放站作为中继的室内分布式系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/085083 WO2013097199A1 (zh) 2011-12-30 2011-12-30 时钟切换方法、装置及直放站作为中继的室内分布式系统

Publications (1)

Publication Number Publication Date
WO2013097199A1 true WO2013097199A1 (zh) 2013-07-04

Family

ID=48696262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/085083 WO2013097199A1 (zh) 2011-12-30 2011-12-30 时钟切换方法、装置及直放站作为中继的室内分布式系统

Country Status (2)

Country Link
CN (1) CN104025701B (zh)
WO (1) WO2013097199A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107222279A (zh) * 2017-05-05 2017-09-29 京信通信技术(广州)有限公司 分布式系统中以太网业务保护方法与系统
CN111193625A (zh) * 2019-12-31 2020-05-22 京信通信系统(中国)有限公司 路由方法、设备、系统、计算机设备和存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018195679A1 (zh) 2017-04-27 2018-11-01 南通朗恒通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN110492967B (zh) * 2019-09-24 2021-11-02 瑞斯康达科技发展股份有限公司 一种时间同步方法、中继设备及装置
CN111162862B (zh) * 2019-12-31 2021-09-24 京信网络系统股份有限公司 分布式多网元时钟传输系统
CN111162863B (zh) * 2019-12-31 2022-09-30 京信网络系统股份有限公司 接入网设备和数据处理方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047435A (zh) * 2007-04-30 2007-10-03 武汉虹信通信技术有限责任公司 Td-scdma直放站失同步后转换点位置保持方法
CN101136738A (zh) * 2007-10-08 2008-03-05 中控科技集团有限公司 网络时钟同步方法、装置及系统
CN102036361A (zh) * 2009-09-25 2011-04-27 华为技术有限公司 时钟源选择的处理方法、装置和系统
CN102098194A (zh) * 2009-12-10 2011-06-15 中兴通讯股份有限公司 一种在局域网络中实现时间同步的方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578297A (zh) * 2003-07-01 2005-02-09 华为技术有限公司 网络中的定时源自动同步方法
CN101296066B (zh) * 2008-06-30 2010-12-08 杭州华三通信技术有限公司 一种分布式系统中实时时钟的同步方法、主控板和线卡板
KR100933875B1 (ko) * 2009-04-08 2009-12-31 엔텍월드(주) 전철제어반 glds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101047435A (zh) * 2007-04-30 2007-10-03 武汉虹信通信技术有限责任公司 Td-scdma直放站失同步后转换点位置保持方法
CN101136738A (zh) * 2007-10-08 2008-03-05 中控科技集团有限公司 网络时钟同步方法、装置及系统
CN102036361A (zh) * 2009-09-25 2011-04-27 华为技术有限公司 时钟源选择的处理方法、装置和系统
CN102098194A (zh) * 2009-12-10 2011-06-15 中兴通讯股份有限公司 一种在局域网络中实现时间同步的方法及系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107222279A (zh) * 2017-05-05 2017-09-29 京信通信技术(广州)有限公司 分布式系统中以太网业务保护方法与系统
CN111193625A (zh) * 2019-12-31 2020-05-22 京信通信系统(中国)有限公司 路由方法、设备、系统、计算机设备和存储介质
CN111193625B (zh) * 2019-12-31 2022-05-06 京信网络系统股份有限公司 路由方法、设备、系统、计算机设备和存储介质

Also Published As

Publication number Publication date
CN104025701A (zh) 2014-09-03
CN104025701B (zh) 2018-06-01

Similar Documents

Publication Publication Date Title
JP3961897B2 (ja) 移動通信システム、移動通信方法、受信機および送信機
US8310967B1 (en) Infrastructure and ad-hoc node device
JP3420252B2 (ja) 無線通信システムの方法並びに装置
WO2013097199A1 (zh) 时钟切换方法、装置及直放站作为中继的室内分布式系统
JP5497120B2 (ja) 無線ネットワークの接続方法及び装置
US9853856B2 (en) Method and device for protecting service reliability and network virtualization system
WO2011020407A1 (zh) 辅载波小区同步方法及终端
CN102075317B (zh) 一种家庭基站系统中可靠的时频同步方法及系统
WO2013152700A1 (zh) 微波网元的时钟源选择方法及装置
US20130107998A1 (en) Clock Synchronization in Shared Baseband Deployments
WO2011009324A1 (zh) 主备切换接口模块、网元系统和链路信息同步检测方法
CN106686763B (zh) Lte基站系统和小区合并、分裂的方法
JP6437587B2 (ja) クロックを同期するための方法、システム、および装置
CN102685781B (zh) 主备时间源自动保护倒换方法
WO2004019636A1 (ja) 無瞬断ハードハンドオーバ制御装置及び方法
AU2020208539B2 (en) Resource periodicity configuration method and device, link processing and establishing method and device
WO2012159570A1 (zh) 链路倒换方法和装置
WO2020119214A1 (zh) 同步方法及装置、网元、计算机存储介质
JP5174799B2 (ja) 無線基地局システム及び中継装置
WO2014139307A1 (zh) 切换mcs的方法和装置
JP4709909B2 (ja) 変換装置
WO2012071838A1 (zh) 多链路时钟恢复方法及装置
CN102904661B (zh) Ptp设备实现平滑重启的方法及ptp设备
WO2016197996A1 (zh) 一种射频拉远单元及其工作方法
WO2013097365A1 (zh) 收敛主时钟源的方法及网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11878752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11878752

Country of ref document: EP

Kind code of ref document: A1