WO2016197996A1 - 一种射频拉远单元及其工作方法 - Google Patents

一种射频拉远单元及其工作方法 Download PDF

Info

Publication number
WO2016197996A1
WO2016197996A1 PCT/CN2016/085875 CN2016085875W WO2016197996A1 WO 2016197996 A1 WO2016197996 A1 WO 2016197996A1 CN 2016085875 W CN2016085875 W CN 2016085875W WO 2016197996 A1 WO2016197996 A1 WO 2016197996A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
processing unit
forwarding
data
radio remote
Prior art date
Application number
PCT/CN2016/085875
Other languages
English (en)
French (fr)
Inventor
王锦涛
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016197996A1 publication Critical patent/WO2016197996A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/74Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission for increasing reliability, e.g. using redundant or spare channels or apparatus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components

Definitions

  • This document relates to but not limited to the field of communications, and in particular to a radio remote unit and a working method thereof.
  • the common configuration mode is the cascading networking mode, including the chain networking mode.
  • the ring networking mode for the networking mode, whether the state of the M-th RRU (with M-1 RRUs separated from the BBU) is normal determines the M+1 level (the next-level RRU of the M-level RRU). And with the M-level RRU have uplink and downlink data exchange) RRU data or voice service normal access (also known as normal work) or not.
  • the MRU needs to be reset by the BBU to reset the RRU or the RRU by the signaling.
  • the soft reset of the M-th RRU does not affect the normal data or voice service of the M+1 RRU.
  • Access When the MRU is hard reset, it affects the normal access of data or voice services of the M+1 RRU. If the data transmission is interrupted, the heartbeat detection between the BBU and all the RRUs after the Mth level (that is, whether the BBU and the RRU detect each other's normal operation) fails. In the chain networking mode, the M+1 level is even caused. The RRU and all subsequent RRUs also enter the reset state, causing the RRUs on the entire chain link to fail to work normally after the Mth level, which seriously reduces the efficiency of the RRU.
  • the present invention provides a radio remote unit and a working method thereof, which can solve the problem that the cascaded radio remote unit in the related art is easily affected by the failure of a single radio remote unit, and the link communication efficiency is low.
  • This document provides a radio remote unit that includes:
  • the processing unit is configured to receive the downlink data, and after the processing, send the uplink radio unit to the next level, or receive the uplink data, and send the uplink radio unit or the baseband processing unit to the upper level after processing;
  • a forwarding unit connected to the processing unit, configured to send the downlink data to the next-level radio remote unit when the processing unit stops working, or when the processing unit stops working,
  • the uplink data is sent to the upper-level radio remote unit or the baseband processing unit.
  • the forwarding unit is connected in parallel or in series with the processing unit.
  • the radio remote unit further includes a detecting unit configured to detect whether the processing unit stops working, and determine whether to use the forwarding unit to forward data according to the detection result.
  • a detecting unit configured to detect whether the processing unit stops working, and determine whether to use the forwarding unit to forward data according to the detection result.
  • the detecting unit is further configured to: when the forwarding unit forwards data in place of the processing unit, detect whether the processing unit is ready, and determine whether to reuse according to the detection result.
  • the processing unit forwards the data.
  • the radio remote unit further includes a timing configuration unit configured to configure a delay parameter for the transmission link along the data transmission direction, so that the forwarding unit or the processing unit is configured according to the timing configuration unit.
  • the delay parameter transmits data along the transmission link.
  • the delay parameter is measured by the baseband processing unit and sent to the timing configuration unit.
  • the forwarding unit includes a synchronization module and a forwarding module
  • the synchronization module is configured to determine a start position and a termination position of the data frame transmitted by the baseband processing unit;
  • the forwarding module is configured to implement synchronous forwarding of data according to a starting position and an ending position of the data frame determined by the synchronization module.
  • the paper also provides a working method of the radio remote unit, including:
  • the uplink data is sent to the The upper-level radio remote unit or the baseband processing unit transmits.
  • the downlink data is sent by the forwarding unit to the next-level radio remote unit, or the uplink data is sent to the upper-level radio by the forwarding unit.
  • the method further includes:
  • the foregoing method further includes:
  • a delay parameter is configured for the transmission link, so that the forwarding unit or the processing unit transmits data along the transmission link according to the delay parameter.
  • the radio remote unit and the working method thereof are provided by the processing unit of the present invention, and the processing unit can receive downlink data, and after processing, send the data to the next-level radio remote unit, or receive the uplink data, and after processing, go up one level.
  • the radio remote unit or the baseband processing unit sends; when the processing unit stops working due to a faulty restart, the forwarding unit may send the downlink data to the radio frequency remote unit, or pull the uplink data to the radio.
  • the remote unit or the baseband processing unit transmits, so that when the processing unit of the remote radio unit of the current stage cannot work normally, the data can still be transmitted to the subsequent circuit unit through the forwarding unit, and the other radio remote units can still work normally, greatly improving The working efficiency of the cascaded radio remote unit.
  • FIG. 1 is a schematic structural diagram of a radio remote unit according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a parallel connection between a processing unit of a radio remote unit and a forwarding unit according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a serial connection between a processing unit of a radio remote unit and a forwarding unit according to an embodiment of the present invention
  • FIG. 4 is a flow chart of a working method of a radio remote unit according to an embodiment of the present invention.
  • an embodiment of the present invention provides a radio remote unit RRU, including:
  • the processing unit 11 is configured to receive the downlink data, and after the processing, send the uplink radio unit to the next level, or receive the uplink data, and send it to the radio remote unit or the baseband processing unit after processing;
  • the forwarding unit 12 is connected to the processing unit 11 and configured to send the downlink data to the radio frequency remote unit to the next level when the processing unit stops working, or to uplink the data to the radio frequency remote unit or The baseband processing unit sends.
  • the radio remote unit provided by the embodiment of the present invention can receive the downlink data after being processed, and send the uplink data to the next-level radio remote unit after processing, or receive the uplink data, and after the processing, the radio frequency is extended to the next level.
  • the unit or the baseband processing unit sends; when the processing unit 11 stops working due to a faulty restart or the like, the forwarding unit 12 may send the downlink data to the next-level radio remote unit, or pull the uplink data to the radio.
  • the unit or the baseband processing unit sends, so that when the processing unit of the remote radio unit of the current stage cannot work normally, the data can still be transmitted to the subsequent circuit unit through the forwarding unit 12, and the other radio remote units can still work normally, greatly improving The working efficiency of the cascaded radio remote unit.
  • the BBU is directly connected to the RRUs of each level by an optical signal.
  • Each RRU has at least two optical signal interfaces.
  • the optical port that receives the BBU data is an uplink optical port, and the optical port that sends the BBU data is a lower optical interface.
  • the BBU and the RRU can also be electrically connected, and also have at least two electrical interfaces.
  • the forwarding unit 12 and the processing unit 11 may be connected in parallel or in series. When connected in parallel, the forwarding unit 12 and the processing unit 11 are respectively connected to the upper optical port and the lower optical port to forward signals from the upper optical port to the lower optical port.
  • the processing unit 11 and the forwarding unit 12 When connected in series, the processing unit 11 and the forwarding unit 12 are connected in series, one end is connected to the upper optical port, and the other end is connected to the lower connecting port.
  • the forwarding unit 12 can pass the optional The switch or the like disconnects the connection with the processing unit 11, and directly bridges between the upper optical port and the lower optical port, thereby transmitting data to the subsequent circuit unit through the forwarding unit 12, and the other radio remote units can still be normal. Work greatly improves the working efficiency of the cascaded radio remote unit.
  • the forwarding unit 12 may be directly notified to receive the data forwarding operation, or the detecting unit may be disposed in the radio remote unit, and the detecting unit may be configured to detect whether the processing unit 11 stops working. And determining whether to use the forwarding unit 12 to forward data according to the detection result. If the detection result is that the processing unit 11 has stopped working, the forwarding unit 12 is triggered to perform data forwarding.
  • the detecting unit may also be disposed in the BBU, and the working state of the processing unit 11 is uniformly detected by the BBU, and the detecting unit is notified.
  • the detecting unit may be further configured to detect whether the processing unit 11 is ready when the forwarding unit 12 forwards the data instead of the processing unit 11, and determine whether to reuse the processing unit 11 to forward the data according to the detection result.
  • the trigger processing unit 11 performs normal operation and causes the forwarding unit 12 to be in a standby state.
  • the radio remote unit may further include a timing configuration unit, and the timing configuration unit may configure a delay parameter for the transmission link along the data transmission direction, so that the forwarding unit 12 or the processing unit 11 configures the delay according to the timing configuration unit.
  • a parameter that transmits data along the transmission link may be configured to the timing configuration unit.
  • the delay parameters involved may be measured by the baseband processing unit and sent to the timing configuration unit.
  • the BBU can perform the fiber delay measurement and configuration operation of all the RRUs after the Mth level in real time. After the BBU is pre-measured and calculated, the BBU can directly initiate the fiber delay configuration after the conditions of the configuration mechanism are met. The operation step of the measurement is performed; the fiber delay is pre-calculated by the BBU and pre-configured to each level of the RRU. When the trigger configuration mechanism is satisfied, the RRU automatically switches to the new fiber delay parameter. This embodiment of the present invention does not limit this.
  • the above-mentioned technologies can minimize the interruption of data or voice services on the entire link, reduce the service interruption caused by the RRU reset, and quickly restore the normal state and improve the communication quality.
  • the radio remote unit can directly convert the illuminating signal or the electric signal.
  • the radio remote unit When transmitting directly to the illuminating signal, it is only necessary to forward the optical signal from the uplink optical port to the lower optical port as it is, and only need to maintain the rate synchronization, and no other processing needs to be introduced.
  • the device receives the electrical signal and forwards it, if the signal frame format does not need to be parsed, no frame header synchronization is needed, and only need to be forwarded at the same rate; if the signal needs to be parsed, the forwarding unit 12 needs to be kept with the electrical signal first.
  • the RRU identifier cascading information carried in the electrical signal is obtained, and some signaling interactions are performed with the BBU, for example, whether the environment needs to enable the fast data forwarding function and the like. According to the obtained parameters (if no parameters are obtained, the default open parameters are used) to start forwarding data to the downlink optical port and forward the uplink data to the BBU without any data cache.
  • the forwarding unit of the radio remote unit may include a synchronization module and a forwarding module; wherein the synchronization module is configured to determine a start of a data frame transmitted by the baseband processing unit a location and a termination location; the forwarding module is configured to synchronously forward data according to a start position and an end position of the data frame determined by the synchronization module.
  • the embodiment of the present invention further provides a working method of the radio remote unit, including: when the processing unit stops working, sending, by the forwarding unit, the downlink data to a radio remote unit Or transmitting, by the forwarding unit, the uplink data to a radio remote unit or a baseband processing unit.
  • the forwarding unit may send the downlink data to the radio remote unit or the uplink data.
  • the first-level radio remote unit or the baseband processing unit transmits, so that when the processing unit of the radio remote unit of the current level cannot work normally, the data can still be transmitted to the subsequent circuit unit through the forwarding unit, and the other radio remote units can still be normal. Work greatly improves the working efficiency of the cascaded radio remote unit.
  • the method may further include: detecting whether the processing unit stops working, and determining whether to forward data using the forwarding unit according to the detection result.
  • the method may further include: configuring a delay parameter for the transmission link along the data transmission direction, so that the forwarding unit or the processing unit, along the transmission link, according to the delay parameter transfer data.
  • the radio remote unit provided in this paper and its working method will be described below through practical examples.
  • Figure 2 shows a schematic diagram of the parallel connection of the processing unit and the forwarding unit in the RRU.
  • the downlink data is forwarded from the uplink optical port to the processing unit of the RRU of the current level from the link (1), and then the data is forwarded by the RRU processing unit of the current level.
  • the link (2) is sent to the lower optical port, the data is sent to the next-level RRU by the lower optical port.
  • the upstream data is reversed.
  • the lower optical port enters the RRU processing unit from the link (2).
  • the frame is reassembled by the RRU processing unit and sent to the BBU via the link (1).
  • the RRU processing unit of the current level stops working, the forwarding unit starts to be powered on and initializes to enter the working state, and the downlink data passes through the link from the uplink optical port.
  • the data After entering the forwarding unit, after being forwarded by the forwarding unit and sent to the lower optical port via the link (4), the data is sent to the next-level RRU by the lower optical port.
  • the uplink data is sent from the downlink optical port to the forwarding unit via the link (4).
  • the forwarding unit forwards the packet directly to the upstream optical port and then sends it to the BBU through the link (3).
  • the RRU processing unit After the processing unit of the Mth RRU returns to the normal working state, the RRU processing unit notifies the forwarding unit to stop forwarding data through the link (5), and the forwarding unit of the RRU replaces the forwarding unit to complete the forwarding of the uplink and downlink data. .
  • FIG. 3 shows a schematic diagram of the serial connection of the processing unit and the forwarding unit in the RRU.
  • the RRU processing unit and the forwarding unit of the current level all work normally, and the downlink data enters the forwarding unit from the uplink optical port from the link (1), and the forwarding unit After the data is forwarded, it enters the RRU processing unit of the current level through the link (2), and then forwarded by the RRU processing unit of the current level, and then sent to the lower optical port via the link (3), and then sent to the next optical port by the lower optical port.
  • Level RRU (This process link (4) remains disconnected).
  • the uplink data is just the opposite.
  • the lower optical port enters the RRU processing unit from the link (3), the frame format is reassembled by the RRU processing unit of the current level, and then sent to the forwarding unit via the link (2), and then the forwarding unit will The data is forwarded to the upstream optical port and sent to the BBU.
  • the RRU processing unit of the current level stops working, and the forwarding unit starts to be powered on and initializes to enter the working state.
  • the forwarding unit detects that the RRU processing unit of the current level is abnormal. Disconnecting the link (2) and connecting the link (4), the downlink data enters the forwarding unit from the uplink optical port via the link (1), is forwarded by the forwarding unit, and then sent to the lower optical port via the link (4). After that, the data is sent to the next-level RRU by the lower optical port. Uplink data After the port is forwarded, it is sent to the forwarding unit via the link (4). The forwarding unit directly forwards the packet to the upstream optical port and then sends it to the BBU through the link (1).
  • the processing unit of the Mth RRU After the processing unit of the Mth RRU returns to the normal working state, the processing unit of the RRU informs the forwarding unit to stop forwarding data through the link (5), and the forwarding unit disconnects the link (4) and reconnects the link. (2) The forwarding unit and the processing unit jointly complete the forwarding of the uplink and downlink data.
  • the working process of the radio remote unit may include the following steps 201 to 209:
  • the processing unit of the Mth RRU enters a power-on phase or the RRU processing unit hard resets and enters a restart phase;
  • the forwarding unit loads the own version and completes initialization.
  • the forwarding unit determines whether the stop forwarding signaling of the RRU processing unit of the current level is received. If the stop forwarding signaling of the RRU processing unit of the current level is received, the forwarding unit directly performs 209. If the forwarding forwarding message of the RRU processing unit of the current level is not received, If the forwarding and forwarding unit is set to unconditional data forwarding (ie, without the synchronization module), then 207 is performed; if the forwarding forwarding signaling of the primary RRU processing unit is not received and the forwarding unit is set to conditional data forwarding, then 204 is performed. ;
  • the forwarding unit attempts to receive the BBU data, extracts a synchronization frame header from the data, completes synchronization with the BBU, and repeats the attempt if the synchronization fails, and stops attempting to synchronize after receiving the stop forwarding signaling of the current RRU;
  • control module Performing the underlying signaling interaction with the BBU—Getting the parameters of whether the fast forwarding mode needs to be enabled. If obtained, the control module reconfigures which input/output ports are used by the forwarding unit according to the new parameters, and if not, controls. The module is configured with the default input/output ports.
  • the forwarding unit starts to forward the uplink and downlink data, so that the downlink data of the BBU can reach the MRU and the subsequent RRUs, and the uplink data of the M+1 and subsequent RRUs can reach the BBU, so that the BBU and the BBU are
  • the normal exchange of the data of the M+1 and the subsequent RRUs can prevent the BBU or the RRU from detecting the cancellation of the service cell or the reset operation when the special signaling of the other party is not detected for a long time;
  • the Mth RRU processing unit notifies the forwarding unit to stop forwarding data.
  • the forwarding unit stops forwarding data, and the processing unit of the Mth RRU continues to complete the forwarding work.
  • the radio remote unit and the working method thereof are provided by the processing unit of the present invention, and the processing unit can receive downlink data, and after processing, send the data to the next-level radio remote unit, or receive the uplink data, and after processing, go up one level.
  • the radio remote unit or the baseband processing unit sends; when the processing unit stops working due to a faulty restart, the forwarding unit may send the downlink data to the radio frequency remote unit, or pull the uplink data to the radio.
  • the remote unit or the baseband processing unit transmits, so that when the processing unit of the remote radio unit of the current stage cannot work normally, the data can still be transmitted to the subsequent circuit unit through the forwarding unit, and the other radio remote units can still work normally, greatly improving The working efficiency of the cascaded radio remote unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种射频拉远单元及其工作方法,所述射频拉远单元包括:处理单元,设置为接收下行数据,并在处理后向下一级射频拉远单元发送,或者设置为接收上行数据,并在处理后向上一级射频拉远单元或基带处理单元发送;转发单元,与所述处理单元相连,设置为在所述处理单元停止工作时,将所述下行数据向所述下一级射频拉远单元发送,或者设置为将所述上行数据向所述上一级射频拉远单元或基带处理单元发送。

Description

一种射频拉远单元及其工作方法 技术领域
本文涉及但不限于通信领域,尤其涉及一种射频拉远单元及其工作方法。
背景技术
BBU(Building Base band Unit,基带处理单元)与RRU(Radio Remote Unit,射频拉远单元)的组网方式有多种,其中常用的配置方式是级联组网方式,包括链式组网方式和环形组网方式等,对于这些组网方式,第M级RRU(与BBU之间间隔了M-1个RRU)的状态是否正常直接决定第M+1级(第M级RRU的下一级RRU,且与第M级RRU有上下行的数据交换)RRU的数据或语音业务的正常接入(也称为正常工作)与否。
相关技术中,第M级RRU因状态异常需要BBU通过信令来复位RRU或RRU自我复位,当第M级RRU发生软复位时,不会影响第M+1级RRU的数据或语音业务的正常接入;当第M级RRU发生硬复位时,会影响第M+1级RRU的数据或语音业务的正常接入。由于数据传输中断,造成BBU与第M级之后所有RRU之间的心跳检测(即BBU与RRU之间互相检测对方是否正常运行)失败,在链式组网方式下甚至会造成第M+1级RRU及其之后所有RRU也进入复位状态,造成第M级之后整条链式链路上RRU均无法正常工作,严重降低RRU的工作效率。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本文提供一种射频拉远单元及其工作方法,可以解决相关技术中级联的射频拉远单元容易被单个射频拉远单元的故障影响,链路通信效率低的问题。
本文提供一种射频拉远单元,包括:
处理单元,设置为接收下行数据,并在处理后向下一级射频拉远单元发送,或者接收上行数据,并在处理后向上一级射频拉远单元或基带处理单元发送;
转发单元,与所述处理单元相连,设置为在所述处理单元停止工作时,将所述下行数据向所述下一级射频拉远单元发送,或者在所述处理单元停止工作时,将所述上行数据向所述上一级射频拉远单元或基带处理单元发送。
可选地,上述射频拉远单元中,所述转发单元与所述处理单元并联或串联。
可选地,上述射频拉远单元还包括检测单元,设置为检测所述处理单元是否停止工作,并根据检测结果确定是否使用所述转发单元转发数据。
可选地,上述射频拉远单元中,所述检测单元,还设置为在所述转发单元代替所述处理单元转发数据时,检测所述处理单元是否准备就绪,并根据检测结果确定是否重新使用所述处理单元转发数据。
可选地,上述射频拉远单元还包括时序配置单元,设置为沿数据传输方向,为传输链路配置时延参数,以使所述转发单元或所述处理单元,根据所述时序配置单元配置的时延参数,沿所述传输链路传输数据。
可选地,上述射频拉远单元中,所述时延参数由所述基带处理单元测量并下发给所述时序配置单元。
可选地,上述射频拉远单元中,所述转发单元包括同步模块和转发模块;
所述同步模块,设置为确定所述基带处理单元传输的数据帧的起始位置与终止位置;
所述转发模块,设置为根据所述同步模块确定的数据帧的起始位置与终止位置,实现同步转发数据。
本文还提供一种射频拉远单元的工作方法,包括:
在所述处理单元停止工作时,通过所述转发单元将所述下行数据向所述下一级射频拉远单元发送,或者
在所述处理单元停止工作时,通过所述转发单元将所述上行数据向所述 上一级射频拉远单元或基带处理单元发送。
可选地,上述方法中,所述通过所述转发单元将所述下行数据向所述下一级射频拉远单元发送,或者通过所述转发单元将所述上行数据向所述上一级射频拉远单元或基带处理单元发送前,所述方法还包括:
检测所述处理单元是否停止工作,并根据检测结果确定是否使用所述转发单元转发数据。
可选地,上述方法还包括:
沿数据传输方向,为传输链路配置时延参数,以使所述转发单元或所述处理单元,根据所述时延参数,沿所述传输链路传输数据。
本发明实施例提供的射频拉远单元及其工作方法,其处理单元,可以接收下行数据,并在处理后向下一级射频拉远单元发送,或者接收上行数据,并在处理后向上一级射频拉远单元或基带处理单元发送;当处理单元由于故障重启等停止工作时,转发单元可以将所述下行数据向下一级射频拉远单元发送,或者将所述上行数据向上一级射频拉远单元或基带处理单元发送,这样,当本级射频拉远单元的处理单元无法正常工作时,数据仍然可以通过转发单元传送给后面的电路单元,其他射频拉远单元仍然可以正常工作,大大提高了级联射频拉远单元的工作效率。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
图1是本发明实施例提供的射频拉远单元的一种结构示意图;
图2是本发明实施例中射频拉远单元的处理单元与转发单元并行连接的一种示意图;
图3是本发明实施例中射频拉远单元的处理单元与转发单元串行连接的一种示意图;
图4是本发明实施例提供的射频拉远单元的工作方法的一种流程图。
本发明的实施方式
下文中将结合附图对本文的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
如图1所示,本发明实施例提供一种射频拉远单元RRU,包括:
处理单元11,设置为接收下行数据,并在处理后向下一级射频拉远单元发送,或者接收上行数据,并在处理后向上一级射频拉远单元或基带处理单元发送;
转发单元12,与处理单元11相连,设置为在所述处理单元停止工作时,将所述下行数据向下一级射频拉远单元发送,或者将所述上行数据向上一级射频拉远单元或基带处理单元发送。
本发明实施例提供的射频拉远单元,其处理单元11,可以接收下行数据,并在处理后向下一级射频拉远单元发送,或者接收上行数据,并在处理后向上一级射频拉远单元或基带处理单元发送;当处理单元11由于故障重启等停止工作时,转发单元12可以将所述下行数据向下一级射频拉远单元发送,或者将所述上行数据向上一级射频拉远单元或基带处理单元发送,这样,当本级射频拉远单元的处理单元无法正常工作时,数据仍然可以通过转发单元12传送给后面的电路单元,其他射频拉远单元仍然可以正常工作,大大提高了级联射频拉远单元的工作效率。
可选地,BBU与各级RRU直接通过光信号连接,每个RRU至少具有两个光信号接口,其中接收BBU数据的光口为上联光口,发送BBU数据的光口为下联光口。BBU与RRU之间也可为电信号连接,同样具备至少两个电接口。可选的,转发单元12与处理单元11可以采用并联或串联的方式连接。当采用并联方式连接时,转发单元12和处理单元11都分别与上联光口和下联光口相连,以便将信号从上联光口转发到下联光口。当采用串联方式连接时,处理单元11与转发单元12相互串联后,一端与上联光口相连,另一端与下联端口相连,当处理单元11停止工作时,转发单元12可以通过可选通 开关等方式断开与处理单元11的连接,而直接跨接在上联光口和下联光口之间,从而将数据通过转发单元12传送给后面的电路单元,其他射频拉远单元仍然可以正常工作,大大提高了级联射频拉远单元的工作效率。
可选的,当处理单元11停止工作时,可以直接通知转发单元12接收数据转发工作,也可以在射频拉远单元中设置检测单元,该检测单元,可设置为检测处理单元11是否停止工作,并根据检测结果确定是否使用转发单元12转发数据。如果检测结果为处理单元11已经停止工作,则触发转发单元12进行数据转发。可选地,该检测部还可以设置在BBU中,由BBU统一检测处理单元11的工作状态,并通知检测单元。
可选地,检测单元还可设置为在转发单元12代替处理单元11转发数据时,检测处理单元11是否准备就绪,并根据检测结果确定是否重新使用处理单元11转发数据。当检测到处理单元11已经准备就绪可以进行工作时,触发处理单元11进行正常工作,并使转发单元12处于待机状态。
可选地,在上述转发单元12与处理单元11进行切换工作的过程中,数据传输时延也会相应的改变,为了保证数据能够顺利在随后的BBU和各级RRU中传输,在另一个实施例中,射频拉远单元还可以包括时序配置单元,时序配置单元可以沿数据传输方向,为传输链路配置时延参数,以使转发单元12或处理单元11,根据时序配置单元配置的时延参数,沿所述传输链路传输数据。
可选地,所涉及的时延参数可以由基带处理单元测量并下发给所述时序配置单元。可选的,BBU可以实时进行第M级之后所有RRU的光纤时延测量与配置操作;也可由BBU预先测量并计算后,待满足配置机制的条件后直接发起光纤时延配置,省去光纤时延测量的操作步骤;还可以由BBU预先计算光纤时延并预先配置给每一级RRU,待满足触发配置机制时由RRU自行倒换到新的光纤时延参数。本发明实施例对此不作限定。
采用上述技术后,可最大限度减少整条链路上数据或语音业务的中断时间,减少RRU复位带来的较长时间的业务中断,并能快速恢复到正常状态,提高通信质量。
可选的,射频拉远单元既可以直接转发光信号,也可以对电信号进行转 发,当直接转发光信号时,只需要将光信号从上联光口原样转发到下联光口,只需要保持速率同步即可,不需要引入其他处理。当装置接收电信号并转发时,如果不需要解析信号帧格式时,则不需要帧头同步,只需要按照同速率进行转发即可;如果需要解析信号,则转发单元12需要先与电信号保持帧头同步后,再获取电信号中携带的RRU标识等级联信息,并与BBU完成一些信令交互,例如该环境是否需要开启快速数据转发功能等参数。根据获取的参数(如无获取到的参数,则采用默认开启参数)开始转发数据到下联光口,将上行数据转发给BBU,不需要任何数据缓存。
可选地,为了保证解析信号时的帧同步,射频拉远单元的转发单元可以包括同步模块和转发模块;其中,所述同步模块,设置为确定所述基带处理单元传输的数据帧的起始位置与终止位置;所述转发模块,设置为根据所述同步模块确定的数据帧的起始位置与终止位置,同步转发数据。
相应的,本发明实施例还提供一种上述射频拉远单元的工作方法,包括:在所述处理单元停止工作时,通过所述转发单元将所述下行数据向下一级射频拉远单元发送,或者通过所述转发单元将所述上行数据向上一级射频拉远单元或基带处理单元发送。
本发明实施例提供的射频拉远单元的工作方法,当处理单元由于故障重启等停止工作时,转发单元可以将所述下行数据向下一级射频拉远单元发送,或者将所述上行数据向上一级射频拉远单元或基带处理单元发送,这样,当本级射频拉远单元的处理单元无法正常工作时,数据仍然可以通过转发单元传送给后面的电路单元,其他射频拉远单元仍然可以正常工作,大大提高了级联射频拉远单元的工作效率。
可选地,在通过所述转发单元将所述下行数据向下一级射频拉远单元发送,或者通过所述转发单元将所述上行数据向上一级射频拉远单元或基带处理单元发送前,所述方法还可以包括:检测所述处理单元是否停止工作,并根据检测结果确定是否使用所述转发单元转发数据。
可选地,所述方法还可以包括:沿数据传输方向,为传输链路配置时延参数,以使所述转发单元或所述处理单元,根据所述时延参数,沿所述传输链路传输数据。
下面通过实际示例对本文提供的射频拉远单元及其工作方法进行说明。
图2所示为RRU中处理单元与转发单元并行连接的一种示意图。
如图2所示,当第M级RRU的处理单元正常工作时,下行数据从上联光口从链路(1)进入本级RRU的处理单元后,由本级RRU处理单元将数据转发后经链路(2)送给下联光口后,由下联光口将数据送给下一级RRU。上行数据则正好相反,由下联光口从链路(2)进入本级RRU处理单元,由本级RRU处理单元重新组装帧格式后经链路(1)送给上行光口后送往BBU。
当第M级RRU的处理单元硬复位阶段时或重新上电后,本级RRU处理单元停止工作,转发单元开始上电并初始化完成进入工作状态,下行数据从上联光口经链路(3)进入转发单元,由转发单元转发后经链路(4)送给下联光口后,由下联光口将数据送给下一级RRU。上行数据则从下联光口进入后经链路(4)送给转发单元,转发单元直接转发后经链路(3)送给上行光口后送往BBU,不需要重新组帧。
当第M级RRU的处理单元恢复到正常工作状态后,由该级RRU处理单元通过链路(5)通知转发单元停止转发数据,由本级RRU处理单元接替转发单元完成上下行数据的转发工作。
图3所示为RRU中处理单元与转发单元串行连接的一种示意图。如图3所示,当第M级RRU的处理单元正常工作时,本级RRU处理单元和转发单元均正常工作,下行数据从上联光口从链路(1)进入转发单元,由转发单元将数据转发后经链路(2)进入本级RRU处理单元,再由本级RRU处理单元转发后经链路(3)送给下联光口后,再由下联光口将数据送给下一级RRU(此过程链路(4)保持断开状态)。上行数据则正好相反,由下联光口从链路(3)进入本级RRU处理单元,由本级RRU处理单元重新组装帧格式后经链路(2)送给转发单元,再由转发单元将数据转发给上行光口后送往BBU。
当第M级RRU的处理单元硬复位阶段时或重新上电后,本级RRU处理单元停止工作,转发单元开始上电并初始化完成进入工作状态,当转发单元检测到本级RRU处理单元异常后,断开链路(2)并接通链路(4),下行数据从上联光口经链路(1)进入转发单元,由转发单元转发后经链路(4)送给下联光口后,再由下联光口将数据送给下一级RRU。上行数据则从下联光 口进入后经链路(4)送给转发单元,转发单元直接转发后经链路(1)送给上行光口后送往BBU,不需要重新组帧。
当第M级RRU的处理单元恢复到正常工作状态后,由该级RRU的处理单元通过链路(5)通知转发单元停止转发数据,转发单元断开链路(4)并重新接通链路(2),由转发单元和处理单元共同完成上下行数据的转发工作。
如图4所示,本发明实施例提供的射频拉远单元的工作过程可以包括如下步骤201至209:
201、第M级RRU的处理单元进入上电阶段或者RRU的处理单元硬复位后进入重新启动阶段;
202、转发单元加载自带版本,并完成初始化;
203、转发单元判断是否收到本级RRU处理单元的停止转发信令,如果收到本级RRU处理单元的停止转发信令则直接执行209,如果未收到本级RRU处理单元的停止转发信令并且转发单元被设置为无条件数据转发(即不含同步模块),则执行207;如果未收到本级RRU处理单元的停止转发信令并且转发单元被设置为有条件数据转发,则执行204;
204、转发单元尝试接收BBU数据,从数据中提取同步帧头,完成与BBU的同步,如果同步失败则反复尝试,直到接收到本级RRU的停止转发信令后停止尝试同步;
205、确定是否同步,如果是,执行206,如果否,执行203;
206、与BBU进行底层信令交互——获取是否需要开启快速转发模式的参数,如果获取到,则根据控制模块根据新的参数重新配置转发单元使用哪些输入/输出端口,如果未获取到则控制模块按照默认的输入/输出端口进行配置。
207、转发单元开始转发上下行数据,使得BBU的下行数据能到达第M+1级及其以后的RRU,同时使得第M+1级及其以后的RRU的上行数据能达到BBU,这样BBU与第M+1级及其后的RRU的数据进行正常交换,可以防止BBU或RRU长时间检测不到对方特殊信令时采取的取消业务小区或复位等操作;
208、当第M级RRU的处理单元恢复到正常工作时,由第M级RRU处理单元通知转发单元停止转发数据;
209、转发单元停止转发数据,由第M级RRU的处理单元继续完成转发工作。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现,例如通过处理器执行存储于存储器中的程序指令来实现其相应功能。本申请不限制于任何特定形式的硬件和软件的结合。
工业实用性
本发明实施例提供的射频拉远单元及其工作方法,其处理单元,可以接收下行数据,并在处理后向下一级射频拉远单元发送,或者接收上行数据,并在处理后向上一级射频拉远单元或基带处理单元发送;当处理单元由于故障重启等停止工作时,转发单元可以将所述下行数据向下一级射频拉远单元发送,或者将所述上行数据向上一级射频拉远单元或基带处理单元发送,这样,当本级射频拉远单元的处理单元无法正常工作时,数据仍然可以通过转发单元传送给后面的电路单元,其他射频拉远单元仍然可以正常工作,大大提高了级联射频拉远单元的工作效率。

Claims (10)

  1. 一种射频拉远单元,包括:
    处理单元,设置为接收下行数据,并在处理后向下一级射频拉远单元发送,或者接收上行数据,并在处理后向上一级射频拉远单元或基带处理单元发送;
    转发单元,与所述处理单元相连,设置为在所述处理单元停止工作时,将所述下行数据向所述下一级射频拉远单元发送,或者在所述处理单元停止工作时,将所述上行数据向所述上一级射频拉远单元或基带处理单元发送。
  2. 根据权利要求1所述的射频拉远单元,其中,所述转发单元与所述处理单元并联或串联。
  3. 根据权利要求1所述的射频拉远单元,还包括检测单元,设置为检测所述处理单元是否停止工作,并根据检测结果确定是否使用所述转发单元转发数据。
  4. 根据权利要求3所述的射频拉远单元,其中,所述检测单元,还设置为在所述转发单元代替所述处理单元转发数据时,检测所述处理单元是否准备就绪,并根据检测结果确定是否重新使用所述处理单元转发数据。
  5. 根据权利要求1所述的射频拉远单元,还包括时序配置单元,设置为沿数据传输方向,为传输链路配置时延参数,以使所述转发单元或所述处理单元,根据所述时序配置单元配置的时延参数,沿所述传输链路传输数据。
  6. 根据权利要求5所述的射频拉远单元,其中,所述时延参数由所述基带处理单元测量并下发给所述时序配置单元。
  7. 根据权利要求1所述的射频拉远单元,其中,
    所述转发单元包括同步模块和转发模块;
    所述同步模块,设置为确定所述基带处理单元传输的数据帧的起始位置与终止位置;
    所述转发模块,设置为根据所述同步模块确定的数据帧的起始位置与终止位置,实现同步转发数据。
  8. 一种如权利要求1至7任一项所述的射频拉远单元的工作方法,包括:
    在所述处理单元停止工作时,通过所述转发单元将所述下行数据向所述下一级射频拉远单元发送,或者
    在所述处理单元停止工作时,通过所述转发单元将所述上行数据向所述上一级射频拉远单元或基带处理单元发送。
  9. 根据权利要求8所述的方法,其中,所述通过所述转发单元将所述下行数据向所述下一级射频拉远单元发送,或者通过所述转发单元将所述上行数据向所述上一级射频拉远单元或基带处理单元发送前,所述方法还包括:
    检测所述处理单元是否停止工作,并根据检测结果确定是否使用所述转发单元转发数据。
  10. 根据权利要求8所述的方法,还包括:
    沿数据传输方向,为传输链路配置时延参数,以使所述转发单元或所述处理单元,根据所述时延参数,沿所述传输链路传输数据。
PCT/CN2016/085875 2015-10-13 2016-06-15 一种射频拉远单元及其工作方法 WO2016197996A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510669473.5A CN106572492B (zh) 2015-10-13 2015-10-13 一种射频拉远单元及其工作方法
CN201510669473.5 2015-10-13

Publications (1)

Publication Number Publication Date
WO2016197996A1 true WO2016197996A1 (zh) 2016-12-15

Family

ID=57504711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/085875 WO2016197996A1 (zh) 2015-10-13 2016-06-15 一种射频拉远单元及其工作方法

Country Status (2)

Country Link
CN (1) CN106572492B (zh)
WO (1) WO2016197996A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965934A (zh) * 2020-07-20 2022-01-21 中国移动通信有限公司研究院 前传通信方法及射频拉远单元

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051765A (ja) * 2001-08-08 2003-02-21 Nippon Telegr & Teleph Corp <Ntt> 光アクセスネットワーク、ノード装置、光アクセスネットワークの制御方法および制御プログラム
CN1564472A (zh) * 2004-04-09 2005-01-12 中兴通讯股份有限公司 一种光传输链型网络无业务中断的扩容方法
JP3613337B2 (ja) * 2001-08-23 2005-01-26 富士通株式会社 光伝送ネットワークにおける伝送路切替え方法
JP2005045379A (ja) * 2003-07-24 2005-02-17 Anritsu Corp 中継システム及び中継方法
CN101227238A (zh) * 2008-02-03 2008-07-23 中兴通讯股份有限公司 多点故障保护方法和装置
CN102342041A (zh) * 2009-03-04 2012-02-01 三菱电机株式会社 光传输装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1288856C (zh) * 2002-11-15 2006-12-06 华为技术有限公司 一种实现桥链路备份的方法
CN101090307B (zh) * 2007-01-26 2011-05-11 京信通信系统(中国)有限公司 全数字化无损伤切换装置及方法
CN201188673Y (zh) * 2008-04-29 2009-01-28 京信通信系统(中国)有限公司 基于系统备份的数字射频拉远系统
CN102868440B (zh) * 2011-07-04 2017-05-10 中兴通讯股份有限公司 一种环形基站系统及利用其进行业务容灾保护的方法
CN103166792B (zh) * 2011-12-16 2017-01-18 中国移动通信集团公司 线路非对称性补偿方法、设备及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003051765A (ja) * 2001-08-08 2003-02-21 Nippon Telegr & Teleph Corp <Ntt> 光アクセスネットワーク、ノード装置、光アクセスネットワークの制御方法および制御プログラム
JP3613337B2 (ja) * 2001-08-23 2005-01-26 富士通株式会社 光伝送ネットワークにおける伝送路切替え方法
JP2005045379A (ja) * 2003-07-24 2005-02-17 Anritsu Corp 中継システム及び中継方法
CN1564472A (zh) * 2004-04-09 2005-01-12 中兴通讯股份有限公司 一种光传输链型网络无业务中断的扩容方法
CN101227238A (zh) * 2008-02-03 2008-07-23 中兴通讯股份有限公司 多点故障保护方法和装置
CN102342041A (zh) * 2009-03-04 2012-02-01 三菱电机株式会社 光传输装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113965934A (zh) * 2020-07-20 2022-01-21 中国移动通信有限公司研究院 前传通信方法及射频拉远单元

Also Published As

Publication number Publication date
CN106572492B (zh) 2021-08-06
CN106572492A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
US9853856B2 (en) Method and device for protecting service reliability and network virtualization system
US8509059B2 (en) Method for operating a virtual router redundancy protocol router and communication system therefor
EP2627039B1 (en) Method and device for switching aggregation links
US20100074121A1 (en) Wireless device and method of controlling and monitoring wireless device
EP2744259B1 (en) Method and network element to limit service disruption due to a failure on a layer 2 interface
CN105024836B (zh) 一种主用业务路由器sr和备用sr的切换方法、装置及sr
JP6308534B2 (ja) ネットワーク保護方法およびネットワーク保護装置、オフリングノード、ならびにシステム
JP5216604B2 (ja) 無線装置
US11924024B2 (en) Switching method and apparatus, device, and storage medium
CN108768507B (zh) 一种rru环形组网的链路切换方法及系统
AU2011229566B2 (en) Load sharing method and apparatus
WO2013097199A1 (zh) 时钟切换方法、装置及直放站作为中继的室内分布式系统
CN104702498A (zh) 一种通过协调保护减少设备间光连接数量的方法及装置
WO2016197996A1 (zh) 一种射频拉远单元及其工作方法
WO2012159570A1 (zh) 链路倒换方法和装置
JP5174799B2 (ja) 無線基地局システム及び中継装置
US10924341B2 (en) Communication device, communication method and communication system
EP3573298B1 (en) Multi-node device and method for micro server built-in switch uplink port backup
CN113498621A (zh) 多ue设备的故障恢复
US11350386B2 (en) Point-to-point radio apparatus, mobile backhaul system, and communication control method
US20140301184A1 (en) Communication relay apparatus, active system switching method, and communication relay control board
US10484896B2 (en) Wireless communication system, wireless communication apparatus, and wireless communication method
CN105207792A (zh) 非联动的伪线网关保护系统及其伪线网关保护方法
JP2013074341A (ja) 通信装置及びデータ伝送方法
JP2011151505A (ja) 伝送処理システム及びそれに用いる回線切替え方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16806894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16806894

Country of ref document: EP

Kind code of ref document: A1