WO2013097019A1 - Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo - Google Patents

Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo Download PDF

Info

Publication number
WO2013097019A1
WO2013097019A1 PCT/BR2012/000558 BR2012000558W WO2013097019A1 WO 2013097019 A1 WO2013097019 A1 WO 2013097019A1 BR 2012000558 W BR2012000558 W BR 2012000558W WO 2013097019 A1 WO2013097019 A1 WO 2013097019A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
dimensional
microscopy
field optical
massive
Prior art date
Application number
PCT/BR2012/000558
Other languages
English (en)
French (fr)
Inventor
Ado JÓRIO DE VASCONCELLOS
Original Assignee
Universidade Federal De Minas Gerais - Ufmg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from BRPI1105968 external-priority patent/BRPI1105968A2/pt
Priority claimed from BR102012033304A external-priority patent/BR102012033304B8/pt
Application filed by Universidade Federal De Minas Gerais - Ufmg filed Critical Universidade Federal De Minas Gerais - Ufmg
Publication of WO2013097019A1 publication Critical patent/WO2013097019A1/pt

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q60/00Particular types of SPM [Scanning Probe Microscopy] or microscopes; Essential components thereof
    • G01Q60/18SNOM [Scanning Near-Field Optical Microscopy] or apparatus therefor, e.g. SNOM probes
    • G01Q60/22Probes, their manufacture, or their related instrumentation, e.g. holders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q70/00General aspects of SPM probes, their manufacture or their related instrumentation, insofar as they are not specially adapted to a single SPM technique covered by group G01Q60/00
    • G01Q70/08Probe characteristics
    • G01Q70/10Shape or taper
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01QSCANNING-PROBE TECHNIQUES OR APPARATUS; APPLICATIONS OF SCANNING-PROBE TECHNIQUES, e.g. SCANNING PROBE MICROSCOPY [SPM]
    • G01Q20/00Monitoring the movement or position of the probe
    • G01Q20/04Self-detecting probes, i.e. wherein the probe itself generates a signal representative of its position, e.g. piezoelectric gauge

Definitions

  • the treated matter ( Figure 1) is described by a one-dimensional massive end device for near field optical microscopy and spectroscopy.
  • This device comprises a massive probe, which can preferably be applied to microscopy and spectroscopy equipment and techniques, both by probe scanning.
  • the proposed device ( Figure 1) has adequate dimensions for coupling with the electric light field that propagates preferentially in the normal direction to the surface to be analyzed.
  • the treated material ( Figure 1) presents robustness during the surface analysis process, being able to analyze with nanometer-sized structures with high resolution.
  • SPM stands for a family of techniques that differ from each other by the type of probe-material interaction that is monitored in the process. Some examples are: AFM (atomic force microscopy; EFM (electrical force microscopy); MFM ⁇ magnetic force microscopy; STM ⁇ scanning tunneling microscopy or scanning tunneling microscopy); Scanning near-field optical microscopy (SNOM) or near field optical microscopy (NFOM).
  • AFM atomic force microscopy
  • EFM electric force microscopy
  • MFM magnetic force microscopy
  • MFM magnetic force microscopy
  • STM scanning tunneling microscopy
  • SNOM Scanning near-field optical microscopy
  • NFOM near field optical microscopy
  • many of these techniques can provide spectroscopic information, and are named by replacing M with S (for example: STS instead of STM).
  • Every microscope operating SPM techniques has at least one mechanical probe with the property required for the specific technique (electrical, magnetic, optical, etc.), a piezoelectric positioner capable of moving the probe with subnanometric precision, monitoring mechanism. of probe-sample interaction, preliminary probe-to-sample positioning system, specific technique effect measurement system (s) used, and a computer that controls the entire system (Neves, BRA et al .. Ceramics. vol.44 , No. 290, 1998).
  • Microscopy and near field optical spectroscopy are a hybrid of probe scanning microscopy with optical microscopy and spectroscopy (Synge, EH Phil. Mag. V.6, p.356, 1928).
  • the probe in this case, is the agent responsible for locating the optical signal primarily in a nanometric region, thus generating optical microscopy and spectroscopy with spatial resolution higher than the light diffraction limit. In one of its possible designs, this probe is formed of a very thin optical fiber that carries visible light to the surface of the sample.
  • the excited area is of the order of the opening of the optical fiber
  • the current technology it is possible to study the optical properties of materials with spatial resolution of the order of 50 nm (Neves et al. Ceramics, vol.44, n.290, 1998 ).
  • the term "near field” comes from the fact that there are some components of the electromagnetic field that do not propagate through holes smaller than the wavelength of light due to the diffraction effect.
  • the opening of the probe there is a very intense "near field”, which can be used for microscopy and spectroscopy using the SPM technique, which is responsible for bringing the probe close enough to the surface (of the order of 1 nm) so that the near field can interact with the surface.
  • SNOM near field optical microscopy
  • the SNOM technique can achieve a spatial resolution of the order of 10nm, which is well below the resolution of a tunnel or atomic force microscope.
  • SNOM brings several advantages originated from the SPM hybrid with microscopy and optical spectroscopy.
  • the main parameters that may be of interest for the investigation of a nanoscale structure, in addition to shape and size, are its chemical composition, molecular structure, as well as its dynamic and electronic properties, largely measured by various optical properties of the materials.
  • the system may use the usual confocal configuration of an inverted optical microscope, with light being condensed into a small 12nm region due to the resonance with the plasmons of a nanometer sized metal probe placed in the region to be studied by a system. from SPM.
  • This effect enables effective measurements of low intensity signals, such as the Raman scattering on the nanometer scale, being called in this case TERS (T / p Enhanced Raman Spectroscopy, Chem.
  • the SNOM principle is relatively simple.
  • the sample to be characterized is scanned by an optical fiber or a metal probe having an opening of the order of ten or tens of nanometers in diameter at its end.
  • the fiber propagates visible light, which interacts with the sample, and is then detected by a sensitive device or detector.
  • the metal probe With the metal probe, the propagating light is condensed in a nanometric region by the resonance effect with the metal surface plasmons.
  • Another possibility is to cover an optical fiber with a metal film, thus taking advantage of the two technologies described above.
  • the optical signal strength detected at each point of the scan constitutes a data set that will reproduce an image of the sample surface, with spatial resolution determined by the probe end size currently limited to 10nm (Anderson, N.,. Hartschuh A., Novotny, L., J. Am. Chem. Soc. 127, 2533 (2005)).
  • the probe is attached to a system capable of detecting the interaction of the probe with the surface, so that the probe is close enough to that surface that Van der Waals interactions can be felt.
  • a system capable of sensing this type of interaction is the piezoelectric oscillator, usually called 'tuning for' ((5), Figure 2), which is a tuning fork-like device with well-defined vibration frequency (Karrai K. , Grober, RD, Appl. Phys. Lett. 66, 1842-1844, (1995)
  • the probe-surface interaction alters the frequency of vibration.
  • the material under study is illuminated by an optical microscope.
  • a nanometer-sized metal tip is approached from the sample by the SPM system, condensing the electric field of light around itself.
  • the resolution is in the order of 10 nm. This resolution is limited by the manufacturing technology of the metal probes, which will hardly evolve below 10 nm due to the metallurgical properties of the material used for their manufacture.
  • the nanoanthena axis is perpendicular to the surface.
  • a direction of light propagation which, consequently, will have its polarized electric field normal to the surface, ie parallel to the axis of the antenna.
  • the so-called “doughnut mode” which generates a radially polarized propagating light, has been used (Quabis, S. et al. App. Phys. B: Laser and Optics, v.81, n.5 , p.597-600, 2005).
  • This light when focused by the microscope objective, generates a polarization component perpendicular to the focus surface of the lens, ie parallel to the nanoanthene axis.
  • a probe that scans a surface is used to obtain topographic, electrical, magnetic, elastic, optical and other information.
  • this probe should have as small an end (contacting the sample) as possible.
  • such an end would be a point which, for the surface, would represent a material of dimension "zero”.
  • This point or "zero-dimensional" probe is effectively formed by a single atom at the end of the probe as a whole, thus generating subatomic resolution images common in probe scan tunneling (STM) experiments.
  • a massive device comprised of a probe where the surface-probe interaction region is "one-dimensional".
  • you have a one-dimensional element that scans a surface instead of a point.
  • the probe is defined as having "one-dimensional end", considering that the approaching end has one of its dimensions as small as possible and the other as elongated as necessary ( Figure 1). This determines the importance of proposing a "One-dimensional massive end device (Figure 1) for near field optical microscopy and spectroscopy".
  • the one-dimensional system loses spatial resolution along one of its dimensions (Figure 1), when compared to one end, on the other, two important aspects are gained when applied to probe scanning microscopy and optical spectroscopy: (1 ) the coupling with the excitation light is increased thereby increasing the efficiency of the optical effect; (2) mechanical strength is gained so that the spatial resolution in the other dimension (Figure 1) can be reduced below the current technological limit of 10 nm.
  • the treated matter ( Figure 1) can solve the above deficiencies, since it can present an electric dipole with direction (x in Figure 2) and suitable size for coupling with the electric field of light that propagates preferentially in the normal surface direction (z, Figure 2).
  • the elongated structure in one direction (x in Figures 1 and 2) also provides mechanical rigidity to make the system more robust during the surface scanning process, and also to support a nanometer-sized structure in the reduced dimension (y in Figure 2).
  • Figure 1 illustrates the one-dimensional device having a substantially cylindrical body (1) so that it has an extension represented by a faceted region (2) which in turn ends in a one-dimensional region (3); it is next to a substantially flat surface (4) to be analyzed.
  • Figure 2 illustrates the device ( Figure 1) coupled to a probe-surface interaction sensing system, or tuning forks (5).
  • Figure 3 illustrates the device ( Figure 1) coupled to a tuning fork or tuning fork (5), so that the device ( Figure 1) makes an angle (6) with the surface (4) as it rotates along the xz plane .
  • Figure 4 illustrates the bottom view of the device ( Figure 1), where the one-dimensional region (3) has a reduced dimension (7) and an elongated dimension (8).
  • Figure 5 shows two gallium ion scanning microscopy images of a one-dimensional solid-end device produced by chemical corrosion, followed by focused ion beam (FIB). In (a) one of the surfaces of the produced wedge is observed, while in (b) the angle of the wedge is seen in top view.
  • Figure 6 shows a scanning electron microscopy image of another massive one-dimensional end device produced using Si as a form for metal deposition.
  • Figure 7 schematically illustrates the manufacturing process of the device such that: (a) represents the sample after removal of the S1O2 or Si3N4 layer in specified regions; (b) represents the sample after anisotropic thinning; (c) represents the sample after metal deposition; (d) represents the sample after removal of the remainder of the S1O2 or Si 3 N 4 (lift-out) layer; (e) represents the process of removing the metal structure from the substrate; and (f) represents the device, object of this patent application, fit for use.
  • the treated matter comprises a one-dimensional solid-end device for near-field optical microscopy and spectroscopy, which has a substantially cylindrical (1) and solid body, so that it (1) has an extension represented by a faceted region.
  • (2) preferably composed of gold (Au), silver (Ag) or copper (Cu), or combined together; which, in turn, ends in a one-dimensional region (3).
  • the device ( Figure 1) is preferably used in equipment and techniques of microscopy and spectroscopy, both by probe scanning.
  • the proposed device ( Figure 1) has adequate dimensions for coupling with the electric light field that propagates preferentially in the normal direction to the surface to be analyzed.
  • the treated matter (Figure 1) can be coupled to a surface-probe interaction sensing system, preferably a piezoelectric oscillator (or tuning fork) (5), finally coupled, preferably in a SNOM system.
  • a surface-probe interaction sensing system preferably a piezoelectric oscillator (or tuning fork) (5)
  • tuning fork or tuning fork
  • the present device or probe can angle (6) to surface (4) by rotating along the xz, xy or yz planes ( Figure 3).
  • another important aspect that can be modulated is the angle that the end One-dimensional device makes with the surface.
  • This aspect is illustrated in Figure 3, which shows an image of the piezoelectric oscillator (or tuning fork) (1) where the scanning probe (2) is attached, so that the one-dimensional end of the probe (3) makes an angle (5) to the surface (4).
  • This angle allows to modulate the coupling of light with the probe and to recover the zero-dimensional condition of the scan.
  • Probe-surface angulation can also be obtained in a number of ways. In the form shown in Figure 3, the probe can be fixed to the tuning fork at an angle.
  • the probe may be aligned flush with the tuning fork, and the tuning fork is angled to the surface.
  • This second solution may be simpler to implement due to the size of the system. In any case, they are non-limiting descriptions. What is important is the angle between the one-dimensional end of the probe and the surface.
  • One-dimensional probes can be fabricated by the same methods as conventional or zero-dimensional probes (BAF Puygranier, Dawson, P., 85, 235 (2000); Johnson, TW et al. ACS Nano 6 (10), 9168-9174). , (2012)), adapting only the geometry of the actions for roughing the material. Subsequently, it must be fixed to the sensory element of the probe-surface interaction that makes up the NSOM system.
  • the massive one-dimensional end device for near field optical microscopy and spectroscopy ( Figure 1) is characterized by means of assessing the topography and optical properties of a surface.
  • Example 1 Manufacturing process of the one-dimensional solid device by chemical corrosion, followed by ion beam faceting.
  • a nanoscale one-dimensional end device can initially be achieved by roughing the wire end using only a beam beam device. Focused Ion Beam (FIB).
  • FIB Focused Ion Beam
  • the direct application of this technique may take an inevitably long time, compromising its applicability.
  • a fabrication process for the two-dimensional one-piece massive end device was carried out. Initially an Au wire was radially corroded via electrochemical thinning forming a metal ferrule. In the second stage, the tip was taken to the FIB for later faceting, producing a one-dimensional device within the expected dimensions. This procedure aims to reduce the amount of material removed by the FIB to construct (shape) the one-dimensional device. In this way we have reduced the time of operation in the FIB considerably, making it possible to make the massive one-dimensional end device in a few hours of operation ( Figure 1).
  • the procedure for producing Au nanoparticles by electrochemical roughing is quick and simple (Ren, B. et al. Review of Scientific Instruments 75, 837-841 (2004)).
  • a 0.1 mm (99.99% purity) Au wire was used as anode in an electrolyte cell.
  • the cathode used was a ring made of tungsten wire with a diameter of approximately 6 mm.
  • the ring was placed on the liquid electrolyte surface (light contact) used: a solution of hydrochloric acid (HCI) and Ethanol [1: 1].
  • the Au wire should be introduced concentric to the tungsten ring so that approximately 5 mm of it is submerged to the electrolyte.
  • a stable direct current source should apply 2.4 V between the two electrodes, promoting concentric thinning of the anode (Au wire) that occurs preferentially at the liquid-metal-air interface.
  • the good quality of the tapered end of the Au tip formed occurred not by electrochemical roughing, but by mechanical disruption between the two parts. This rupture occurred within a period of less than 2 min after the electrode voltage was established. Immediately after the rupture, the upper end, which carries the formed tip, was carefully washed with Ethanol to remove possible residues resulting from the electrochemical roughing reaction.
  • gold chloride (1), gold chloride (11) or chlorouric acid Quian, G et al. Review of Scientific Instruments 81, 016110 (2010)).
  • the tip of the nozzle was tuned with the use of submicron gallium ion beam in an FIB equipment. Firstly, a cut was made in the plane perpendicular to the axis of the wire in order to eliminate irregularities. Next, two other planes were cut in order to give the end a wedge shape. The gallium ion beam was also used to obtain images of the device (Figure 5), through the emission of secondary electrons. From the images, it can be concluded that, at the end of the process, the extremity measured less than 5 micrometres in its elongated dimension.
  • Example 2 Fabrication process of the one-dimensional solid mass device using Si as a form for metal deposition.
  • Cavities produced by anisotropic silicon roughing were used as a form for the production of the device. Due to the high control of the shape of these cavities, massive probes with one-dimensional tips of different sizes and apex less than 50 nm can be produced. Structures similar to this one, but shaped like pyramids with zero dimensional apex, were presented by several groups (Henzie, J. et al. Nano letters 5 (7), 1199-1202 (2005); Cui B., et al. Nanotechnology , 19 (14), 145302 (2008); Nagpal P., et al., Science 325, 594-597 (2009); Johnson, TW et al., ACS Nano 6 (10), 9168-9174 (2012)).
  • FIG. 1 The manufacturing process of the object of the present invention ( Figures 1 and 6) consisted of the use of a single crystalline silicon wafer coated with oxide (Si0 2 ) or silicon nitride (Si 3 N 4 ) as a starting material. The procedure was started by removing areas from the SiO 2 or Si3N4 layer, revealing the Si in those regions where anisotropic thinning later occurred ( Figure 7 (a)). Each region had an aperture of between 5 ⁇ and 100 ⁇ , preferably 20 ⁇ , and with ellipse, rectangle or rod shape; with axes in the directions or coordinates (110) and (1-10) of the silicon blade. The difference between the largest and smallest dimensions ranged from 50nm to 10 ⁇ , preferably 50nm.
  • the described probes could still be produced by directing areas with exposed silicon out of the mentioned directions and / or with different shape.
  • the use of these three geometries in the proposed direction facilitated the dimensioning of the one-dimensional apex of the probe, since this dimension is equal to the difference between the rectangle, ellipse or rod axis size.
  • Silicon exposure in the determined areas was done in three different ways: using focused ion beam (FIB) lithography, electron beam lithography or conventional photolithography.
  • FIB focused ion beam
  • the second step was anisotropic thinning of exposed Si regions (Figure 7 (b)).
  • the sample was immersed in a concentrated solution of NaOH or KOH in H 2 0 and isopropyl alcohol at temperatures ranging between 20 ° C and 95 ° C, preferably 80 ° C, for a period of time ranging from 30 minutes and 300min, preferably 165min.
  • the concentration of NaOH or KOH ranged from 2% to 45% w / w, but the best solution was NaOH or KOH (30% w / w) in H 2 O (60% w / w) and isopropyl alcohol (10% w / w).
  • the sample was washed properly to remove corrosive agents.
  • water was first used, preferably distilled, followed by a solution of H 2 SO 4 and H 2 O 2 (1: 1 w / w) and finally water again. Drying was done with nitrogen gas.
  • the third step comprised the deposition of the metal in the cavity (Figure 7 (c)).
  • Gold was used due to its chemical stability and the fact that its plasmon energy was within the visible spectrum range, which led to higher signal enhancement efficiency in NSOM and TERS.
  • Au did not adhere to Si or S1O2, which facilitated the removal of Au structures from the cavity.
  • other metals could generate probes that still showed signal increase when applied to NSOM or TERS, such as Ag, CU3AU, Cu and Al.
  • the deposition of the metal was made by sputtering, thermal evaporation, or electrochemical deposition, with rates ranging from 0.05 ⁇ / s and 40 A s, preferably 1 A / s. Thermal evaporation was chosen
  • the metal layer had a final thickness between 50nm and 500nm, preferably 200nm.
  • the fourth step in the process is also called microfabrication lift-out. It comprised the removal of the silicon oxide or nitride layer (Figure 7 (d)).
  • a concentrated solution (10% to 60%, preferably 49%) of hydrofluoric acid (HF) in H 2 O was used.
  • BHF Buffered Hydrofluoric Acid
  • the sample was then washed with water. So that the metal structures that remained inside the wells did not come out during washing, the sample was immersed in water for at least 2 minutes. Finally, the sample was dried. Thus, one-dimensional micrometric metal structures with one-dimensional extremity were inverted and coupled within the cavities (Figure 7 (d)).
  • a thin wire (10pm to 100 ⁇ in diameter, preferably 15pm) was mounted on the side of a tuning fork piezoelectric oscillator used in techniques such as STM, AFM, SNOM and TERS.
  • a small amount of glue (preferably fast drying epoxy resin) was added to the apex of this wire and it was pressed onto one of the metal structures still located in the Si cavity ( Figure 7 (e)). After drying the glue, the probe was removed in the normal direction to the surface.
  • the one-dimensional end device was obtained at the end of a wire attached to one side of a tuning fork ( Figure 6 and Figure 7 (f)); This device is then ready for use in techniques such as TERS and SNOM, for example.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

A matéria tratada (Figura 1) é descrita por um dispositivo maciço com extremidade unidimensional, para microscopia e espectroscopia óptica de campo próximo. Este dispositivo compreende uma sonda maciça, podendo esta ser aplicada, preferencialmente, em equipamentos e técnicas de microscopia e espectroscopia, ambas por varredura de sonda. O dispositivo proposto (Figura 1) apresenta dimensões adequadas para o acoplamento com o campo elétrico de luz que propaga preferencialmente na direção normal à superfície a ser analisada. A matéria tratada (Figura 1) apresenta robustez durante o processo de análise superficial, podendo analisar com alta resolução estruturas de dimensões nanométricas.

Description

"DISPOSITIVO MACIÇO COM EXTREMIDADE UNIDIMENSIONAL PARA MICROSCOPIA E ESPECTROSCOPIA ÓPTICA DE CAMPO PRÓXIMO"
A matéria tratada (Figura 1) é descrita por um dispositivo maciço com extremidade unidimensional, para microscopia e espectroscopia óptica de campo próximo. Este dispositivo compreende uma sonda maciça, podendo esta ser aplicada, preferencialmente, em equipamentos e técnicas de microscopia e espectroscopia, ambas por varredura de sonda. O dispositivo proposto (Figura 1) apresenta dimensões adequadas para o acoplamento com o campo elétrico de luz que propaga preferencialmente na direção normal à superfície a ser analisada. A matéria tratada (Figura 1) apresenta robustez durante o processo de análise superficial, podendo analisar com alta resolução estruturas de dimensões nanométricas.
No início dos anos 80, a Microscopia de Varredura por Sonda (do Inglês, Scanning Probe Microscopy ou SPM) surpreendeu o mundo com as primeiras imagens com resolução atómica da superfície de um cristal de silício. Desde então, a técnica de SP vem sendo utilizada amplamente, produzindo imagens de átomos a estruturas nanométricas na superfície de diversos materiais. Em indústrias de manufatura de precisão, relacionadas a tecnologias tais como microeletrônica, energia solar, dispositivos médicos, automotivo, aeroespacial e outros, os microscópios de varredura por sonda permitem aos usuários monitorar seus produtos em todo o processo de fabricação para melhorar a produtividade, reduzir custos e melhorar a qualidade do produto. O principal mercado para microscópios de varredura da sonda está no setor de semicondutores e eletrônicos, no qual eles são rotineiramente utilizados para a inspeção de produtos e análise de falhas. Eles também são amplamente utilizados nas universidades, centros de pesquisa e centros científicos em todo o mundo (Neves, B.R.A. et AL.. Cerâmica, vol.44, n.290, 1998).
A sigla SPM representa uma família de técnicas que diferem entre si pelo tipo de interação sonda-material que é monitorado no processo. Alguns exemplos são: AFM (atomic force microscopy ou microscopia de força atómica; EFM (electrícal force microscopy ou microscopia de força elétrica; MFM {magnetic force microscopy ou microscopia de força magnética; STM {scanning tunneling microscopy ou microscopia de tunelamento por varredura); SNOM (scanning near-field optical microscopy ou microscopia óptica de campo próximo por varredura) ou NFOM (near Field optical microscopy ou microscopia óptica de campo próximo). Além de informações de microscopia, várias destas técnicas podem oferecer informações espectroscópicas, sendo nomeadas trocando-se o M por S na sigla (exemplo: STS ao invés de STM). Apesar de fornecerem informações bastante diferentes entre si, tais como morfologia, condutividade elétrica, dureza e propriedades magnéticas e ópticas, todas as técnicas da família SPM se baseiam num mesmo princípio de operação. Todo microscópio que opera as técnicas de SPM possui, no mínimo, uma sonda mecânica com a propriedade necessária para a técnica específica (propriedade elétrica, magnética, óptica, etc), um posicionador piezoelétrico capaz de mover a sonda com precisão subnanométrica, mecanismo de monitoramento da interação sonda-amostra, sistema de posicionamento preliminar da sonda sobre a amostra, sistema(s) de medida do efeito da técnica específico utilizada, e um computador que controla todo o sistema (Neves, B.R.A. et AL.. Cerâmica. vol.44, n.290, 1998).
A microscopia e a espectroscopia óptica de campo próximo (SNOM ou NFOM) são um híbrido das microscopias de varredura por sonda com a microscopia e espectroscopia ótica (Synge, E.H. Phil. Mag. v.6, p.356, 1928). A sonda, neste caso, é o agente responsável por localizar o sinal óptico primordialmente em uma região nanométrica, gerando assim a microscopia e espectroscopia óptica com resolução espacial superior ao imposto pelo limite de difração da luz. Em uma de suas possíveis concepções, esta sonda é formada por uma fibra óptica muito fina que carreia luz visível à superfície da amostra. Como a área excitada é da ordem da abertura da fibra óptica, com a tecnologia atual consegue-se estudar as propriedades ópticas de materiais com resolução espacial da ordem de 50 nm (Neves et al. Cerâmica, vol.44, n.290, 1998). O termo "campo próximo" vem do fato de que existem algumas componentesd o campo eletromagnético que não se propagam por orifícios menores que o comprimento de onda da luz, devido ao efeito da difração. Entretanto, na abertura da sonda existe um "campo próximo" muito intenso, que pode ser usado para microscopia e espectroscopia com o uso da técnica de SPM, que é responsável por aproximar a sonda na superfície o suficiente (da ordem de 1 nm) para que o campo próximo possa interagis com a superfície.
Dependendo da dimensão da sonda utilizada no processo, a microscopia óptica de campo próximo (SNOM) pode melhor a resolução espacial obtida por um instrumento ótico convencional. Com a tecnologia atual, a técnica de SNOM pode alcançar uma resolução espacial da ordem de 10nm, o que é bem inferior à resolução de um microscópio de força atómica ou de tunelamento. Entretanto, o SNOM trás diversas vantagens originadas do híbrido de SPM com a microscopia e a espectroscopia ótica. Entre os principais parâmetros que podem ser de interesse para a investigação de uma estrutura na escala nanométrica, além de forma e tamanho, estão a sua composição química, estrutura molecular, bem como a suas propriedades dinâmicas e eletrônicas, largamente mensuradas por diversas proriedades ópticas dos materiais.
A resolução recorde de 12nm foi obtida não com o uso de uma fibra óptica como sonda, mas com o efeito de ressonância da luz propagante com os plasmons de uma sonda metálica (Hartschuh et al., Phys. Rev. Lett. 90, 2003). Como exemplo, o sistema pode utilizar a configuração confocal usual de um microscópio óptico invertido, com a luz sendo condensada em uma pequena região de 12nm devido à ressonância com os plasmons de uma sonda metálica de dimensão nanométrica colocada na região a ser estudada por um sistema de SPM. Este efeito possibilita medidas efetivas de sinais pouco intensos, como o espalhamento Raman na escala nanométrica, sendo chamado neste caso de TERS (T/p Enhanced Raman Spectroscopy, Chem. Phys. Lett. 335, 369-374, (2001)), em analogia ao conhecido SERS (Suríace Enhanced Raman Spectroscopy, ver Chem. Phys. Lett. 126, 163, (1974)), que utiliza partículas metálicas dispersas em uma superfície para aumentar o sinal Raman de moléculas. A diferença é que, na configuração TERS, a posição desta partícula metálica é controlada por um sistema tipo SPM. Imagens espectroscópicas com resolução nanométrica podem ser geradas, e a observação de espalhamento Raman e emissão de luz localizadas em regiões nanométricas vem sendo obtidas pela técnica (Maciel et al. Nature Materials, 7, 878 (2008)). A espectroscopia Raman tem larga aplicação nas indústrias farmacêuticas, químicas, petrolíferas, tendo o TERS grande potencial para gerar avanços tecnológicos nestes e outros ramos de atividade.
0 princípio do SNOM é, relativamente, simples. A amostra a ser caracterizada é varrida por uma fibra ótica ou por uma sonda metálica, que têm uma abertura da ordem de dez ou de dezenas de nanômetros de diâmetro na sua extremidade. Pela fibra propaga-se luz visível, que interage com a amostra, e é em seguida detectada por um dispositivo sensível ou detector. Com a sonda metálica, a luz propagante é condensada em uma região nanométrica pelo efeito de ressonância com os plasmons de superfície do metal. Outra possibilidade é recobrir uma fibra óptica com uma película metálica, aproveitando-se, assim, das vantagens das duas tecnologias descritas acima. Em todos os casos, a intensidade do sinal óptico detectado em cada ponto da varredura constitui um conjunto de dados que reproduzirá uma imagem da superfície da amostra, com resolução espacial determinada pelo tamanho da extremidade da sonda limitada atualmente em 10nm (Anderson, N., Hartschuh A., Novotny, L, J. Am. Chem. Soe. 127, 2533 (2005)).
A limitação imposta pelo efeito de campo próximo é que a distância entre a sonda e a amostra tem de ser da ordem de poucos nanômetros. Sendo assim, a sonda é presa a um sistema capaz de detectar a interação da sonda com a superfície, de modo que a sonda se aproxime dessa superfície o suficiente para que interações de Van der Waals possam ser sentidas. Um exemplo de sistema capaz de sentir este tipo de interação é o oscilador piezoelétrico, usualmente chamado "tuning for ' ((5), Figura 2), que é um dispositivo semelhante a um diapasão, com frequência de vibração bem definida (Karrai K., Grober, R.D., Appl. Phys. Lett. 66, 1842-1844, (1995)). Quando a sonda, presa a este dispositivo, aproxima-se da superfície a ser analisada, a interação sonda-superfície altera a frequência de vibração do diapasão, e esta variação é detectada pela eletrônica do sistema. Existem também outros métodos de medir a interação sonda-superfície, como pela reflexão de um laser no topo da sonda, mais comum em sistemas de AFM (Neves, B.R.A. et AL.. Cerâmica, vol.44, n.290, 1998). Finalmente, com o SNOM obtêm-se imagens óticas de uma amostra que, para efeitos de análises dos dados, podem ser comparadas com imagens topográficas adquiridas, por exemplo, simultaneamente com o método de força atómica (L. G. Cançado, A. Hartschuh and L. Novotny, J. Raman Spectrosc. 40, 1420-1426 (2009)).
Há, contudo, diversas limitações para a eficiência de um SNOM no que diz respeito à intensidade do sinal óptico, tanto no uso de fibras-ópticas (metalizadas ou não), quanto de sondas metálicas.
No caso do funcionamento da microscopia óptica de campo próximo utilizando uma sonda de fibra-óptica, um dos maiores limitadores é a quantidade de luz enviada e/ou coletada que passa por esta sonda. A potência transmitida decai exponencialmente com a redução do diâmetro da fibra. Por essa razão, esses sistemas apresentam resolução espacial da ordem de 50 a 100 nm. Somando-se ao problema da baixa resolução, o uso desse tipo de sonda fica limitado ao estudo de sinais intensos, como por exemplo a fotoluminescência. Entretanto, este método é inadequado para o estudo de sinais mais fracos, como a espectroscopia Raman, onde a intensidade do sinal é cerca de mil vezes inferior do que sinais de luminescência, tornando inviável a espectroscopia Raman acoplada a uma resolução espacial nanométrica.
Já no caso do funcionamento da microscopia de campo próximo utilizando uma sonda metálica, o material em estudo é iluminado por um microscópio óptico. Uma ponta metálica de dimensões nanométricas é aproximada da amostra pelo sistema de SPM, condensando o campo elétrico da luz em torno de si. Nessa técnica, a resolução chega a ser da ordem de 10 nm. Esta resolução está limitada pela tecnologia de fabricação das sondas metálicas, que dificilmente evoluirão para valores abaixo de 10 nm devido às propriedades metalúrgicas do material utilizado para sua fabricação.
Melhorar a resolução das sondas metálicas não é o único ou o pior desafio: em toda microscopia por sonda de varredura a qualidade dos resultados está fortemente relacionada à qualidade da sonda utilizada. Este fato tem sido a grande limitação para a utilização em larga escala do SNOM com sonda metálica. De fato, nota-se que boa parte dos artigos publicados na área de microscopia óptica em campo-próximo está relacionada com a produção e caracterização dos dispositivos/sondas de varredura (Lambelet P., et al, Applied Optics, 37(31), 7289-7292 (1998); Ren, B., Picardi G., Pettinger, B., Rev. Sei. Instrum. 75, 837 (2004); Bharadwaj, P., Deutsch B., Novotny, L, Adv. Opt. Photon. 1 , 438 - 483 (2009)). O que agrava o problema da qualidade da sonda para a SNOM é que o acoplamento dessas sondas com a luz propagante, efeito responsável pela condensação do campo em torno da sonda não é simples, dependendo da qualidade da sonda e da geometria do sistema luz-sonda. Uma das razões de o acoplamento da sonda metálica com a luz ser pouco eficiente é que, como em qualquer antena, o campo elétrico de polarização da luz deve estar na direção do eixo do dipolo, idealmente no deixo da antena.
Entretanto, no caso da microscopia e espectroscopia de campo próximo com as extremidades "zerodimensionais" das sondas, o eixo da nanoantena é perpendicular à superfície. Dessa forma, para iluminar a superfície tem-se que usar uma direção de propagação da luz que, consequentemente, terá seu campo elétrico polarizado normal à superfície, isto é, paralelo ao eixo da antena. Para a implementação desta geometria, o chamado "doughnut mode", que gera uma luz propagante com polarização radial, tem sido utilizado (Quabis, S. et al. App. Phys. B: Laser and Optics, v.81 , n.5, p.597-600, 2005). Esta luz, quando focalizada pela objetiva do microscópio, gera uma componente de polarização perpendicular à superfície do foco da objetiva, ou seja, paralela ao eixo da nanoantena.
Em todos os processos utilizados na microscopia e espectroscopia por varredura de sonda, usa-se uma sonda de prova que varre uma superfície obtendo informações topográficas, elétricas, magnéticas, elásticas, ópticas e outras. Para obter a melhor resolução espacial possível neste processo de coleta de informações da superfície ou de objetos existentes na mesma (por exemplo, moléculas adsorvidas), esta sonda deve ter uma extremidade (que entre em contato com a amostra) tão pequena quanto possível. Idealmente, tal extremidade seria um ponto que, para a superfície, representaria um material de dimensão "zero". Esta sonda pontual ou "zerodimensional" é formada efetivamente por um único átomo na extremidade da sonda como um todo, gerando assim imagens com resolução subatômicas, comuns em experimentos de microscopia de tunelamento por varredura de sonda (STM).
Então, propõe-se um dispositivo maciço, compreendido por uma sonda onde a região de interação superfície-sonda seja "unidimensional". Neste caso, tem-se um elemento unidimensional que varre uma superfície, ao invés de um ponto. Define-se a sonda como "tendo extremidade unidimensional", considerando que a extremidade que se aproxima da superfície tem uma de suas dimensões sendo a mais reduzida possível, e a outra, tão alongada quanto necessário (Figura 1). Isto determina a importância de se propor um "Dispositivo maciço com extremidade unidimensional (Figura 1) para microscopia e espectroscopia óptica de campo próximo".
Se por um lado o sistema unidimensional perde resolução espacial ao longo de uma de suas dimensões (Figura 1), quando comparado a uma ponta, por outro, se ganha dois aspectos importantes quando aplicada na microscopia e espectroscopia óptica por varredura de sonda: (1) aumenta-se o acoplamento com a luz de excitação aumentando, portanto, a eficiência do efeito óptico; (2) ganha-se robustez mecânica para que a resolução espacial na outra dimensão (Figura 1) possa ser reduzida abaixo do limite tecnológico atual de 10 nm.
Diversos pedidos de patente descrevem detalhadamente microscópios para a realização da SNOM, conforme verificado no documento JP201 122896A, intitulado "Near-field optical microscope", e no documento US619471 B1 , intitulado "Scanning near-field optical microscope".
Outros documentos focam especificamente nas propriedades da sonda de SNOM, abordando o seu funcionamento e, em alguns casos, a sua fabricação. Isso pode ser constatado nos documentos US4917462, intitulado "Near field scanning optical microscopy"; US4604520, intitulado "Optical near- field scanning microscope"; US20100032719A1 , intitulado "Probes for scanning probe microscopy"; US007735147B2, intitulado "Probe system comprising an electric-field-aligned probe tip and method"; US20030094035A1, intitulado "Carbon nanotube probe tip grown on a small probe"; US2004168527A1 , intitulado "Coated nanotube surface signal probe"; US20050083826A1 , intitulado Optical fiber probe using an electrical potential difference and an optical recorder using the same"; US20080000293A1 , intitulado "Spm cantilever and manufacturing method thereof'; WO2009/085184A1, intitulado "Protected metallic tip or metallized scanning probe microscopy tip for optical applications"). Na patente US005831743A, intitulada Optical probes", por exemplo, é proposto um novo design de sonda com uma angulação dupla. Entretanto, o objetivo é a medição de luz totalmente refletida na interface, diferentemente do proposto na presente invenção.
Existem também diversos documentos que reivindicam o uso de materiais unidimensionais para aplicações como sondas de SPM, conforme verificado nos documentos US007735147B2, intitulado "Probe system comprising an electric-field-aligned probe tip and method for fabricating the same"; US20030094035A1 , intitulado "Carbon nanotube probe tip grown on a small probe"; US2004168527A1 , intitulado "Coated nanotube surface signal probe"; e US20080000293A1 , intitulado "SPM Cantilever and Manufacturing Method Thereof . Entretanto, estes documentos tratam do dispositivo onde o material unidimensional está disposto perpendicular à superfície em estudo, de forma que a interação com a superfície é feita com sua extremidade, essencialmente "zerodimensional".
Verifica-se, então, que em nenhum documento é descrito ou reivindicado um dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo, da forma como é proposto nesta presente invenção.
Em todos os casos descritos na literatura, a deficiência está no desenvolvimento de sondas efetivas, robustas, e com resolução espacial inferior a dezenas de nanômetros. Os requisitos são rigidez mecânica, eficiência óptica e resolução espacial, somados. O sistema tem que ser rígido para que sirva também como sonda para microscopia de forca atómica, e deve apresentar um acoplamento com o campo eletromagnético da luz incidente, gerando um aumento do campo próximo local. Este aumento deve ser localizado em uma região do espaço que, atualmente, utilizando-se sondas metálicas ou fibras ópticas metalizadas, está na faixa de dezenas de nanômetros.
A matéria tratada (Figura 1), por sua vez, pode resolver as deficiências supracitadas, uma vez que pode apresentar um dipolo elétrico com direção (x na Figura 2) e dimensão adequadas para o acoplamento com o campo elétrico da luz que propaga preferencialmente na direção normal a superfície (z, Figura 2). A estrutura alongada em uma das direções (x nas Figuras 1 e 2) fornece também rigidez mecânica para que o sistema se torne mais robusto durante o processo de varredura da superfície, e que também possa comportar uma estrutura com dimensão nanométrica na dimensão reduzida (y na Figura 2).
DESCRIÇÃO DAS FIGURAS
A Figura 1 ilustra o dispositivo unidimensional que possui um corpo substancialmente cilíndrico (1), de modo que este possui um prolongamento representado por uma região facetada (2) que, por sua vez, termina em uma região unidimensional (3); esta, próxima a uma superfície (4) substancialmente plana, a ser analisada.
A Figura 2 ilustra o dispositivo (Figura 1) acoplado a um sistema de sensoriamento da interação sonda-superfície, ou um diapasão (em inglês tuning for ) (5). A Figura 3 ilustra o dispositivo (Figura 1) acoplado a um diapasão ou tuning fork (5), de modo que o dispositivo (Figura 1) faz um ângulo (6) com a superfície (4), ao girar ao longo do plano xz.
A Figura 4 ilustra a vista inferior do dispositivo (Figura 1 ), onde a região unidimensional (3) possui uma dimensão reduzida (7) e uma dimensão alongada (8).
A Figura 5 mostra duas imagens de microscopia de varredura com íons de gálio, de um dispositivo maciço com extremidade unidimensional produzido por corrosão química, seguida de facetamento por feixe de íons focalizados ("focused íon beam", FIB). Em (a) observa-se uma das superfícies da cunha produzida, enquanto em (b) observa-se o ângulo da cunha em vista superior. A Figura 6 mostra uma imagem de microscopia eletrônica de varredura, de outro dispositivo maciço com extremidade unidimensional, produzido utilizando Si como forma para deposição de metal.
A Figura 7 Ilustra esquematicamente o processo de fabricação do dispositivo, de modo que: (a) representa a amostra após a remoção da camada de S1O2 ou SÍ3N4 em regiões determinadas; (b) representa a amostra após desbaste anisotrópico; (c) representa a amostra após a deposição de metal; (d) representa a amostra após a remoção do restante da camada de S1O2 ou Si3N4 (lift-out); (e) representa o processo de retirada da estrutura metálica do substrato; e (f) representa o dispositivo, objeto do presente pedido de patente, apto para o uso.
DESCRIÇÃO DETALHADA DA INVENÇÃO
A matéria tratada (Figura 1) compreende um dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo, que possui um corpo substancialmente cilíndrico (1) e maciço, de modo que este (1) possui um prolongamento representado por uma região facetada (2) composta, preferencialmente, por ouro (Au), prata (Ag) ou cobre (Cu), ou combinados entre si; que, por sua vez, termina em uma região unidimensional (3).
O dispositivo (Figura 1) é utilizado, preferencialmente, em equipamentos e técnicas de microscopia e espectroscopia, ambas por varredura de sonda. O dispositivo proposto (Figura 1) possui dimensões adequadas para o acoplamento com o campo elétrico de luz que propaga preferencialmente na direção normal à superfície a ser analisada.
A matéria tratada (Figura 1) pode ser acoplada a um sistema de sensoriamento da interação superfície-sonda, preferencialmente um oscilador piezoelétrico (ou diapasão, ou tuning fork) (5), finalmente acoplado, preferencialmente em um sistema de SNOM.
O presente dispositivo ou sonda (Figura 1) pode fazer ângulos (6) com a superfície (4), ao girar ao longo dos planos xz, xy ou yz (Figura 3). De fato, outro importante aspecto que pode ser modulado é o ângulo que a extremidade unidimensional do dispositivo faz com a superfície. Este aspecto está ilustrado na Figura 3, que trás uma imagem do oscilador piezoelétrico (ou diapasão, ou tuning fork) (1) onde nele está presa a sonda de varredura (2), de forma que a extremidade unidimensional da sonda (3) faz um ângulo (5) com a superfície (4). Esta angulação permite modular o acoplamento da luz com a sonda e reaver a condição zerodimensional da varredura. A angulação sonda-superfície também pode ser obtida de diversas formas. Na forma ilustrada na Figura 3, a sonda pode ser fixada no tuning fork com uma angulação. Alternativamente, a sonda pode estar fixa de forma alinhada no tuning fork, e este apresenta uma angulação em relação à superfície. Esta segunda solução pode ser de mais simples implementação devido às dimensões do sistema. De qualquer forma, são descrições não limitantes. O importante é a angulação entre a extremidade unidimensional da sonda e a superfície.
As sondas unidimensionais podem ser fabricadas pelos mesmos métodos utilizados para a fabricação de sondas convencionais ou zerodimensionais (B.A.F. Puygranier, Dawson, P., 85, 235 (2000); Johnson, T.W. et al. ACS Nano 6(10), 9168-9174, (2012)), adequando apenas a geometria das ações para desbastamento do material. Subsequentemente, ela deve ser fixada ao elemento sensorial da interação sonda-superfície que compõe o sistema de NSOM.
O dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo (Figura 1) caracteriza-se por compreender meios de avaliar a topografia e as propriedades ópticas de uma superfície.
A matéria tratada pode ser mais bem compreendida através dos seguintes exemplos, não limitantes.
Exemplo 1 - Processo de fabricação do dispositivo maciço com extremidade unidimensional por corrosão química, seguida de faceta mento por feixe de íons.
A construção de um dispositivo com extremidade unidimensional em escala nanométrica, inicialmente, pode ser obtida pelo desbaste da extremidade de fio metálico utilizando somente um equipamento de feixe de íons focalizados (Focused Ion Beam - FIB). Contudo, a aplicação direta desta técnica pode despender de um tempo inevitavelmente longo, comprometendo a sua aplicabilidade. Para contornar esta dificuldade, um processo de fabricação para o dispositivo maciço com extremidade unidimensional em duas etapas foi realizado. Inicialmente um fio de Au foi corroído radialmente via desbaste eletroquímico formando uma ponteira metálica. Na segunda etapa, a ponteira foi levada ao FIB para posterior facetamento, produzindo um dispositivo unidimensional dentro das dimensões esperadas. Este procedimento tem como objetivo reduzir a quantidade de material removido pelo FIB para construir (moldar) o dispositivo unidimensional. Desta maneira reduzimos o tempo de operação no FIB consideravelmente, possibilitando a confecção do dispositivo maciço com extremidade unidimensional ideal em poucas horas de operação (Figura 1).
O procedimento de produção de nanoponteiras de Au por desbaste eletroquímico é rápido e simples (Ren, B. et al. Review of Scientific Instruments 75, 837-841 (2004)). Um fio de Au de espessura 0,1 mm (99,99% de pureza) foi utilizado como ânodo em uma célula eletrolítica. Como cátodo foi utilizado um anel construído com fio de tungsténio com diâmetro de aproximadamente 6 mm. O anel foi posicionado sobre a superfície líquida do eletrólito (leve contato) utilizado: uma solução de ácido clorídrico (HCI) e Etanol [1 :1]. O fio de Au deve ser introduzido concêntrico ao anel de tungsténio, de maneira que aproximadamente 5 mm do mesmo fique submerso ao eletrólito. Uma fonte de corrente contínua estável deve aplicar 2,4 V entre o dois eletrodos, promovendo o desbaste concêntrico do ânodo (fio de Au) que ocorre preferencialmente na interface líquido-metal-ar. A boa qualidade da extremidade cónica da ponteira de Au formada ocorreu não pelo desbaste eletroquímico, mas sim pelo rompimento mecânico entre as duas partes. Esse rompimento ocorreu em um período menor que 2 min, após o estabelecimento da tensão entre os eletrodos. Logo após o rompimento, a extremidade superior, que carrega a ponteira formada, foi cuidadosamente lavada com Etanol para remover possíveis resíduos resultantes da reação de desbaste eletroquímico do ouro, tais como cloreto de ouro(l), cloreto de ouro(lll) ou ácido cloro-áurico (Quian, G et al. Review of Scientific Instruments 81 , 016110 (2010)).
A extremidade da ponteira foi afinada com o uso de feixe de íons de gálio de diâmetro submicrométrico em um equipamento FIB. Em primeiro lugar, foi efetuado um corte no plano perpendicular ao eixo do fio, com o propósito de eliminar irregularidades. A seguir, foram efetuados cortes em dois outros planos, buscando dar à extremidade um formato de cunha. O feixe de íons de gálio foi ainda utilizado para se obter imagens do dispositivo (Figura 5), através da emissão de elétrons secundários. Das imagens, pode-se concluir que, ao final do processo, a extremidade media menos de 5 micrometros na sua dimensão alongada.
Exemplo 2 - Processo de fabricação do dispositivo maciço com extremidade unidimensional utilizando Si como forma para deposição de metal.
Cavidades produzidas por desbaste anisotrópico do silício foram usadas como forma para a produção do dispositivo. Devido ao alto controle do formato dessas cavidades, sondas maciças com pontas unidimensionais de diferentes tamanhos e com ápice menor que 50 nm podem ser produzidas. Estruturas semelhantes a essa, mas com formato de pirâmides com ápice zero dimensional, foram apresentadas por diversos grupos (Henzie, J. et al. Nano letters 5(7), 1199-1202 (2005); Cui B., et al. Nanotechnology, 19(14), 145302 (2008); Nagpal P., et al. Science 325, 594-597 (2009); Johnson, T.W. et al. ACS Nano 6(10), 9168-9174 (2012)). Nesses trabalhos, propriedades como a rugosidade, raio do ápice e razão de aspecto correspondem ao que se espera de uma sonda que apresenta alta eficiência, reprodutibilidade e que levariam a imagens de alta resolução espacial. No trabalho de Johnson (2012) (Johnson, T.W. et al. ACS nano 6(10), 9168-9174 (2012)), a aplicação dessas pirâmides em TERS e NSOM foi demonstrada. O dispositivo pleiteado no presente pedido, por sua vez, apresentou um formato diferente, isto é, uma extremidade unidimensional (Figura 6).
O procedimento de fabricação do objeto da presente invenção (Figuras 1 e 6) consistiu na utilização de uma lâmina (wafer) monocristalina de silício revestida com camada de óxido (Si02) ou de nitreto de silício (SÍ3N4) como material de partida. Iniciou-se o procedimento retirando áreas da camada de SiO2 ou SÍ3N4, revelando o Si nessas regiões onde posteriormente ocorreu o desbaste anisotrópico (Figura 7(a)). Cada região possuiu uma abertura compreendida entre 5μηι e 100μηι, preferencialmente 20μιη, e com formato de elipse, retângulo ou bastonete; com eixos nas direções ou coordenadas (110) e (1-10) da lâmina de silício. A diferença entre a dimensão maior e a menor variou entre 50nm e 10μηι, preferencialmente 50nm. As sondas descritas ainda puderam ser produzidas direcionando as áreas com silício exposto fora das direções mencionadas e/ou com formato diferente. Porém, o uso dessas três geometrias na direção proposta facilitou o dimensionamento do ápice unidimensional da sonda, uma vez que essa dimensão é igual à diferença entre o tamanho dos eixos do retângulo, elipse ou bastonete. A exposição do silício nas áreas determinadas foi feita de três formas diferentes: utilizando litografia por feixe de íons focalizados (FIB do inglês "focused ion beam"), litografia por feixe eletrônico ou pela fotolitografia convencional.
O segundo passo foi o desbaste anisotrópico das regiões de Si exposto (Figura 7(b)). Para tanto, a amostra foi imersa em uma solução concentrada de NaOH ou KOH em H20 e álcool isopropílico, em temperaturas que variaram entre 20°C e 95°C, preferencialmente 80°C, por um período de tempo que variou entre 30min e 300min, preferencialmente 165min. A concentração de NaOH ou KOH variou entre 2% e 45% w/w, porém a melhor solução foi NaOH ou KOH (30% w/w) em H2O (60% w/w) e álcool isopropílico (10% w/w).
Soluções alternativas que puderam ser utilizadas foram: KOH em H2O; NaOH em H2O; HF, HNO3 e CH3OOH; CsOH em H2O; NH4OH em H2O; TMAH em H2O; etilenodiamina em H2O e pirocatecol; hydrazina em H2O e álcool isopropílico. No entanto, essas soluções geraram corrosões com anisotropia reduzida ou geraram rugosidade indesejável nas paredes das cavidades do Si, conforme constatado por Bean (1978) (Bean, K.E., IEEE Transactions on Electron Devices 25(10), 1185-1 193 (1978)).
Após essa etapa, a amostra foi lavada adequadamente para retirar os agentes corrosivos. Para tanto, utilizou-se primeiramente água, preferencialmente destilada, seguida de uma solução de H2S04 e H2O2 (1 :1 w/w) e por fim, água novamente. A secagem foi feita com nitrogénio gasoso.
A terceira etapa compreendeu a deposição do metal na cavidade (Figura 7(c)). Utilizou-se o ouro, devido à sua estabilidade química e ao fato da sua energia de plasmons estar dentro da faixa do espectro visível, o que levou à maior eficiência de aumento de sinal em NSOM e TERS. Além disso, o Au não se aderiu ao Si ou ao S1O2, o que facilitou a retirada das estruturas de Au da cavidade. No entanto, outros metais puderam gerar sondas que ainda apresentaram aumento de sinal, quando aplicadas em NSOM ou TERS, como, por exemplo: Ag, CU3AU, Cu e Al.
A deposição do metal foi feita por pulverização catódica ("sputtering'), por evaporação térmica, ou por deposição eletroquímica, com taxas que variaram entre 0,05Â/s e 40 A s, preferencialmente 1 A/s. Dentre essas técnicas de deposição metálica, a evaporação térmica foi a escolhida. A camada do metal possuiu uma espessura final entre 50nm e 500nm, preferencialmente 200nm.
A quarta etapa do processo é também chamada de lift-out em microfabricação. Compreendeu a remoção da camada de óxido ou nitreto de silício (Figura 7(d)). Para tanto, foi usada uma solução concentrada (10% a 60%, preferencialmente 49%) de ácido fluorídrico (HF) em H2O. A adição de fluoreto de amónio (BHF, do inglês "Buffered Hydrofluoric Acid") levou à remoção da camada de SiO2 ou SÍ3N4 de forma mais lenta e controlada; levando ao mesmo resultado esperado. Lavou-se, então, a amostra com água. Para que as estruturas metálicas que permaneceram dentro das cavidades não saíssem durante a lavagem, a amostra foi imersa em água durante pelo menos 2 minutos. Por fim, a amostra foi secada. Assim, foram obtidas estruturas metálicas micrométricas com a extremidade unidimensional, invertidas e acopladas dentro das cavidades (Figura 7(d)).
Mesmo que o metal da estrutura tenha sido acoplado ao Si, o mesmo pode ser facilmente desacoplado. Para tanto, foi montado um fio fino (10pm a 100μηι de diâmetro, preferencialmente 15pm) na lateral de um oscilador piezoelétrico em forma de diapasão (tuning fork) utilizado em técnicas como STM, AFM, SNOM e TERS. Foi adicionada uma pequena quantidade de cola (preferencialmente resina epóxi de secagem rápida) no ápice desse fio e este foi pressionado sobre uma das estruturas metálicas ainda localizada na cavidade do Si (Figura 7(e)). Após a secagem da cola, retirou-se a sonda na direção normal à superfície. Obteve-se, portanto, o dispositivo com extremidade unidimensional na ponta de um fio preso a um dos lados de um diapasão (Figura 6 e Figura 7(f)); estando esse dispositivo então, pronto para o uso em técnicas como TERS e SNOM, por exemplo.

Claims

REIVINDICAÇÕES
1. Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo, caracterizado por compreender um corpo substancialmente cilíndrico (1) de modo que (1) possua um prolongamento representado por uma região facetada (2) que, por sua vez, termine em uma região unidimensional (3), composta, preferencialmente, por Au, Ag ou Cu, ou combinados entre si; e (1) seja acoplado a um sistema para sensoriamento da interação sonda superfície (exemplo: oscilador diapasão ou tuning fork) (5), podendo girar, quando acoplado a (5), ao longo dos planos xz, xy e yz em relação à superfície (4).
2. Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo, de acordo com a reivindicação 1, caracterizado pelas dimensões da região unidimensional (3) poder variar de 1 angstrom a 50 nm em sua dimensão reduzida (7 na Figura 4), e de 1 nm a 5 pm em sua dimensão alongada (8 na Figura 4).
3. Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo, de acordo com as reivindicações 1 e 2, caracterizado por todo o dispositivo ((1), (2) e (3) na Figura 1) ser composto por material metálico, preferencialmente, por Au, Ag ou Cu, ou combinados entre si.
4. Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo, de acordo com as reivindicações 1 e 2, caracterizado pela extremidade do dispositivo ((2) e (3) na Figura 1) ser recoberta com material metálico, preferencialmente, por Au, Ag ou Cu, ou combinados entre si.
5. Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo, de acordo com as reivindicações 1 e 2, caracterizado pelo acoplamento de um elemento unidimensional na região (3), preferencialmente, um nanotubo de carbono, ou um feixe de nanotubos, ou nanofio ou nanobastão.
6. Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo, de acordo com as reivindicações 1 a 5, caracterizado por poder ser utilizado nas microscopias e espectroscopias ópticas de campo próximo; preferencialmente, SNOM.
7. Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo, de acordo com as reivindicações 1 a 6, caracterizado por compreender meios de avaliar a topografia e as propriedades ópticas de uma superfície.
PCT/BR2012/000558 2011-12-29 2012-12-28 Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo WO2013097019A1 (pt)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
BRPI1105968-0 2011-12-29
BRPI1105968 BRPI1105968A2 (pt) 2011-12-29 2011-12-29 Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo
BRBR1020120333040 2012-12-27
BR102012033304A BR102012033304B8 (pt) 2012-12-27 2012-12-27 Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo

Publications (1)

Publication Number Publication Date
WO2013097019A1 true WO2013097019A1 (pt) 2013-07-04

Family

ID=48696133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000558 WO2013097019A1 (pt) 2011-12-29 2012-12-28 Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo

Country Status (1)

Country Link
WO (1) WO2013097019A1 (pt)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279359A (ja) * 2003-03-19 2004-10-07 Konica Minolta Holdings Inc 近接場赤外顕微分光用ナノプローブ
US20070221840A1 (en) * 2006-03-23 2007-09-27 International Business Machines Corporation Monolithic high aspect ratio nano-size scanning probe microscope (SPM) tip formed by nanowire growth

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004279359A (ja) * 2003-03-19 2004-10-07 Konica Minolta Holdings Inc 近接場赤外顕微分光用ナノプローブ
US20070221840A1 (en) * 2006-03-23 2007-09-27 International Business Machines Corporation Monolithic high aspect ratio nano-size scanning probe microscope (SPM) tip formed by nanowire growth

Similar Documents

Publication Publication Date Title
Neacsu et al. Plasmonic light scattering from nanoscopic metal tips
US6887365B2 (en) Nanotube cantilever probes for nanoscale magnetic microscopy
US7211795B2 (en) Method for manufacturing single wall carbon nanotube tips
US7214303B2 (en) Cantilever probes for nanoscale magnetic and atomic force microscopy
Neacsu et al. Tip-enhanced Raman imaging and nanospectroscopy: sensitivity, symmetry, and selection rules
Patanè et al. Apertureless near-field optical microscopy
JP2009541742A (ja) 偏光設計の方法およびそれらの適用例
Sun et al. Near‐field scanning Raman microscopy using apertureless probes
BR102015010352B1 (pt) dispositivo metálico para miscroscopia e espectroscopia óptica de campo próximo e método de fabricação do mesmo
JP3522261B2 (ja) ナノチューブ、近接場光検出装置および近接場光検出方法
Hou et al. A dual-use probe for nano-metric photoelectric characterization using a confined light field generated by photonic crystals in the cantilever
BR102012033304A2 (pt) Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo
Voylov et al. Noncontact tip-enhanced Raman spectroscopy for nanomaterials and biomedical applications
WO2013097019A1 (pt) Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo
US7297933B2 (en) Probe, near-field light generation apparatus including probe, exposure apparatus, and exposing method using probe
Wang et al. Detection of carbon nanotubes using tip-enhanced Raman spectroscopy
BR102012026973B1 (pt) Dispositivo maciço encapado com nanocone de carbono para microscopia e espectroscopia por varredura de sonda
WO2013097021A1 (pt) Dispositivo vazado com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo
BRPI1105968A2 (pt) Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo
Radamson et al. Scanning Probe Microscopies (SPMs) Part I: Atom Force microscope (AFM)
WO2013097018A1 (pt) Dispositivo de fibra óptica com elemento unidimensional para microscopia e espectroscopia óptica de campo próximo
Chang et al. Fabrication of cantilevered tip-on-aperture probe for enhancing resolution of scanning near-field optical microscopy system
Stiegler Infrared spectroscopic near-field microscopy of nanoparticles and semiconductor nanowires
Bykov et al. New possibility of scanning probe microscopy and spectroscopy
Riaz et al. Nanoscale Spectroscopy with Applications to Chemistry

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861356

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861356

Country of ref document: EP

Kind code of ref document: A1