JP2004279359A - 近接場赤外顕微分光用ナノプローブ - Google Patents
近接場赤外顕微分光用ナノプローブ Download PDFInfo
- Publication number
- JP2004279359A JP2004279359A JP2003074793A JP2003074793A JP2004279359A JP 2004279359 A JP2004279359 A JP 2004279359A JP 2003074793 A JP2003074793 A JP 2003074793A JP 2003074793 A JP2003074793 A JP 2003074793A JP 2004279359 A JP2004279359 A JP 2004279359A
- Authority
- JP
- Japan
- Prior art keywords
- nanoprobe
- infrared
- metal film
- fine
- diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
【課題】開口径の制約を受けることなく、サブミクロンから数ナノメートルオーダーの赤外分光法が可能である近接場ナノプローブを提供する。
【解決手段】(1)近接場赤外顕微分光用ナノプローブにおいて、試料表面に最も近接或いは接触するナノプローブ本体の先端部に、微粒子金属膜を有すること、(2)近接場赤外顕微分光用ナノプローブにおいて、波長(λ)を2μm〜15μmの範囲の赤外領域波長とした場合に、ナノプローブ本体の先端に、直径λ/10以上の大きさの開口部を有し、更にその開口部の少なくとも中央部分に、該開口部の直径に対し、λ/150〜λ/50の大きさの直径で微粒子金属膜を有することを特徴とする近接場赤外顕微分光用ナノプローブである。
【選択図】 図1
【解決手段】(1)近接場赤外顕微分光用ナノプローブにおいて、試料表面に最も近接或いは接触するナノプローブ本体の先端部に、微粒子金属膜を有すること、(2)近接場赤外顕微分光用ナノプローブにおいて、波長(λ)を2μm〜15μmの範囲の赤外領域波長とした場合に、ナノプローブ本体の先端に、直径λ/10以上の大きさの開口部を有し、更にその開口部の少なくとも中央部分に、該開口部の直径に対し、λ/150〜λ/50の大きさの直径で微粒子金属膜を有することを特徴とする近接場赤外顕微分光用ナノプローブである。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、近接場赤外分光法(scanning near−field microspectroscopy,or SNOM)に用いられる、高感度且つ高空間分解能での測定を可能にする近接場赤外顕微分光用ナノプローブに関する。
【0002】
【従来の技術】
従来の(紫外・可視・近赤外・赤外)顕微分光法では、その空間分解能は光の回折特性によって決定され、光の回折限界よりも小さな領域又は物質を測定・観測することは非常に困難である。然しながら、通常光ではなく微小空間に局在した別形態の光(近接場光)を利用する方式によれば、回折限界を超える分解能が得られることが知られている。
【0003】
上記として、例えば、近接場光を用いた近接場顕微分光法(scanningnear−field microspectroscopy,or SNOM)が挙げられる(非特許文献1参照)。この方式では、例えば図5に示すように、先端に微小な開口部11を有する近接場ナノプローブ10が利用される。図5の(A)図に示す態様では、試料5の下方からプリズム4を通して赤外光が投射され、試料5を透過した光成分の内の近接場光がナノプローブ10を通してピックアップされて検出光1とされる。また、図5の(B)図に示す態様では、赤外光は、試料5の上方からナノプローブ10を通して投射され、その反射光の内の近接場光が再びナノプローブ10を通してピックアップされて検出光6とされる。後者の態様は、試料9に厚みがあり、試料5からの通過光が利用できない場合に適用される。
【0004】
一方、本発明者らが見出した、赤外分光法において測定感度を飛躍的に向上できる表面増強赤外分光が知られている(非特許文献2参照)。この方法では、赤外透過性基板の表面に微粒子状金属膜を蒸着した後測定を行うことで、入射光により微粒子金属膜内の自由電子の集団振動(プラズマ振動)が励起され、その金属近傍に存在する物質の赤外吸収強度が増強される現象が発生する。これにより測定感度が数十倍〜1000倍程度まで向上する。しかもこの励起されたプラズマ振動は、金属膜内の極近傍でのみ発生し、空間的に離れた部分では急激に減衰する(ショートレンジである)ため、極表面の情報が選択的に得られ、表面近傍の分析には特に有効である。
【0005】
尚、本発明者は、表面増強赤外吸収分光用島状金属膜材料及びその製造方法について、先に提案をした(特許文献1参照)。
【0006】
上記した非特許文献1に記載されており、図5に示した方法をそのまま利用して波長の長い赤外領域において分光法を実現しようとすると、赤外波長(λ)による制約が生じ、サブミクロン(本明細書において、0.5ミクロン以下と定義する。)から数十ナノメートルの微小領域の測定が困難となる。即ち、ナノプローブ10の先端に位置する微小な開口部10より近接場光を取り出すには、赤外波長(λ)の1/10よりも大きな開口径を必要とするという制約がある(非特許文献3参照)。赤外領域の波長、即ちλの値は2μm〜15μm程度であり、例えば15μmの波長領域を観測するには、15/10=1.5μm以上の開口径が必要となる。従って、この条件では波長による回折限界以下の小さな領域を測定することは可能ではあるが、サブミクロンから数十ナノメートル領域の極微小部位の測定は事実上困難となる。このことから、より微小な領域を測定可能とするためには、赤外波長による開口径の制約を克服する必要がある。
【0007】
【特許文献1】特開2002−267602
【非特許文献1】大津元一応用物理65、2(1996)
【非特許文献2】Y.Nishikawa et.al.,Appl.Spectrosc.44,691(1990)
【非特許文献3】B.Knoll,and K.Keilmann,Appl.Phys.A66,471〜481(1998)等の報告
【0008】
【発明が解決しようとする課題】
本発明は、上記から明らかなように、開口径の制約を受けることなく、サブミクロンから数ナノメートルオーダーの赤外分光法が可能である近接場ナノプローブを提供することを課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決する本発明は、下記構成を有する。
(1)近接場赤外顕微分光用ナノプローブにおいて、試料表面に最も近接或いは接触するナノプローブ本体の先端部に、微粒子金属膜を有することを特徴とする近接場赤外顕微分光用ナノプローブ。
【0010】
(2)近接場赤外顕微分光用ナノプローブにおいて、波長(λ)を2μm〜15μmの範囲の赤外領域波長とした場合に、ナノプローブ本体の先端に、直径λ/10以上の大きさの開口部を有し、更にその開口部の少なくとも中央部分に、該開口部の直径に対し、λ/150〜λ/50の大きさの直径で微粒子金属膜を有することを特徴とする近接場赤外顕微分光用ナノプローブ。
【0011】
(3)近接場赤外顕微分光用ナノプローブにおいて、赤外光に対して透明である材質により形成したナノプローブ本体の開口部分に微粒子金属膜を有すると共に、ナノプローブと微粒子金属膜との間に均一な耐久性金属酸化膜を有することを特徴とする近接場赤外顕微分光用ナノプローブ。
【0012】
(4)微粒子金属膜が、直径5nm〜20nm、厚さ1nm〜10nmの不定形又は扁平な粒子より成る微粒子金属で構成されており、該微粒子金属が0.01〜0.2nmの間隔で密に凝集した構造を有することを特徴とする上記(1)〜(3)の何れかに記載の近接場赤外顕微分光用ナノプローブ。
【0013】
(5)微粒子金属膜を構成する微粒子金属として、金(Au)・銀(Ag)・白金(Pt)・パラジウム(Pd)・銅(Cu)・タングステン(W)の何れかの金属、又は少なくともこれらの1元素を含む合金を利用したことを特徴とする上記(1)〜(4)の何れかに記載の近接場赤外顕微分光用ナノプローブ。
【0014】
【発明の実施の形態】
次に、添付の図面に従って、本発明を更に詳細に説明する。
【0015】
図1に概略図で示すように、本発明に係る近接場赤外線顕微分光用ナノプローブ20は、金属マスク21の内側に、赤外線透過性を有する材料により形成されるナノプローブ本体22を配設し、更に、このナノプローブ本体22の先端に、近接場赤外線の入射口となる赤外開口部23を形成した構造である。赤外開口部23は、この部位の周囲に存在する近接場光30をピックアップするのに機能するが、その機能を高めるために、1つの実施態様では、赤外開口部23の周囲に耐久性金属酸化膜24が配設され、更に別の実施態様では、微粒子金属膜25が配設される。
【0016】
赤外開口部23は、表面増強赤外吸収の特性を利用し、赤外線の波長(λ)に対して1/10以上の大きさ(直径)で設けられており、他の実施態様では、少なくともその中央部分に、開口径よりも小さな範囲で、更に詳しくはλ/150〜λ/50の範囲内に微粒子金属膜を設ける構成により解決することができる。
【0017】
先に述べたように、微粒子金属膜による表面増強現象はその金属膜の極近傍(数ナノメートルから数十ナノメートル)で効果が最大となるので、この増強効果が及ぶ範囲、即ち微粒子金属膜を設ける範囲を適切に規制することで、開口部が大きくともより微小な部分のみを高感度に観測することが可能となる。
【0018】
然しながら、微粒子金属膜を設ける範囲をむやみに小さくすると、表面増強現象そのものが低下し必要とする感度が得られなくなる不都合を生じる。大きさが数ナノメートルの金属微粒子1個でも数倍程度の表面増強効果を示すとされる報告(例えば、前記非特許文献3等を参照)もあるが、十分な感度を得るためには個々の自由電子のプラズマ振動が互いに共鳴を起こす程度に、複数個以上の金属微粒子が凝集した状態が好ましい。
【0019】
具体的には、5nm〜20nm程度の大きさを有する不定形又は扁平な金属微粒子を数十個から数100個程度、0.05〜0.2nm程度の間隔で密に凝集させることが必要であり、従ってλ/150〜λ/50の範囲内に微粒子金属膜を設ける必要がある。
【0020】
金属微粒子の大きさは、上記程度が好ましく、これよりも小さくなると、表面増強効果が低下することが経験的に分かっている。また金属微粒子をこの範囲よりも大きくすると、上記規制範囲内で凝集できる粒子数が少なくなること、更にバルク金属の性質が強くなるため吸収に微分形の歪が生じるなどの悪影響がある。
【0021】
本発明に係る近接場赤外分光に利用するナノプローブは、ナノプローブ本体22を形成する材料として赤外光に対して透明である材料を用い、赤外開口部23の少なくとも中央部で試料表面に最も近接するか或いは接触する部分に微粒子金属膜25を配設することを特徴とする。ナノプローブ本体22を形成する材料としては、赤外光領域(波長2μm〜15μm)で透明な材料であるダイヤモンド・シリコン(Si)・ゲルマニウム(Ge)・セレン化亜鉛(ZnSe)・KRS−5(TlBrI=沃化タリウムと臭化タリウムの結晶混合物)などを利用することができる。
【0022】
上記材料を用いて先端部が赤外波長以下に先細りしたナノプローブ本体22を形成する加工方法としては、例えば、非特許文献1に記載されている選択的化学エッチング法など既知の方法を利用することができる。赤外開口部23の先端の耐久性金属酸化膜24に開口を形成する方法としては、ナノプローブ本体22の表面全体に、表皮厚の大きなアルミニウム(Al)或いは金(Au)などを100nm以上の厚みで蒸着させ、蒸着後にエッチング処理により先端部分の膜を除去してナノプローブ本体22の先端のみを露出させる方法が採用できる。
【0023】
赤外開口部23の形成には、上記した方法の外に、金属膜蒸着後に樹脂を先端部に塗布し、更にエッチングする方法、フォトレジストを塗布し、エバネッセント光で露光する立体ナノフォトリソグラフィの方法などを適用することができる。
【0024】
図2に幾つかの例を示すように、ナノプローブ本体22の先端付近の形状として、種々の形状が利用できる。
【0025】
次に、ナノプローブ本体22の先端(開口中央部)への微粒子金属膜25の形成方法について述べる。微粒子金属膜25の形成には、既知の成膜方法を利用することができる。例えば、ナノプローブ本体22の先端に樹脂を塗布し、電子ビームによるエッチングなどによりλ/150〜λ/50の範囲内に制限された部位を露出させ、真空蒸着法で微粒子金属膜を作成する方法がある。
【0026】
利用可能な金属素材としては、金(Au)・銀(Ag)・白金(Pt)・パラジウム(Pd)・銅(Cu)・タングステン(W)などが適性を示す。これらの内で耐久性と表面増強感度の面で好ましいのは金(Au)・白金(Pt)・パラジウム(Pd)・銅(Cu)・タングステン(W)の白金族元素である。尚、銀(Ag)・銅(Cu)・タングステン(W)などは蒸着後の保存状態により表面が酸化して表面増強効果が極度に低下するため短期のみの使用となる。
【0027】
製膜装置としては、一般的には抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法に用いられるものであれば、公知のものを特別の制限なく用いることができる。好ましくは抵抗加熱蒸着法と電子ビーム蒸着法に用いられる装置である。
【0028】
特に好ましいのは抵抗加熱蒸着法である。抵抗加熱蒸着法で製膜する金属酸化物皮膜は製膜時の蒸発分子が微少なため繊密な島状膜を製膜できる利点がある。
【0029】
十分な感度を得るためには、個々の自由電子のプラズマ振動が互いに共鳴を起こす程度に、複数個以上の金属微粒子が凝集した状態が好ましい。具体的には、大きさが5nm〜20nm程度の大きさで、厚みが1nm〜10nmの不定形又は扁平な金属微粒子を数十個〜100個程度、0.01〜0.2nm程度の間隔で密に凝集させた状態がよい。
【0030】
製膜条件は真空度、蒸着速度、蒸発源〜被着ナノプローブ先端部間距離の3条件が重要である。例えば、真空度は1×10−2Pa以下、蒸着速度は0.01n m/sec〜2nm/sec、蒸発源〜被着ナノプローブ先端距離は50mm〜300mmであり、特に好ましくは、真空度1×10−3Pa以下、蒸着速度0.01nm/sec〜0.1nm/sec、蒸発源〜被着ナノプローブ先端間距離100mm〜200mmであることが適性条件である。
【0031】
その他の利用可能な成膜方法として、フォトレジストを塗布し、エバネッセント光で露光する立体ナノフォトリソグラフィの方法、一度100nm程度の厚い金属膜を蒸着法により形成させた後、原子間力顕微鏡(AFM)を用いたナノファブリケーション法を利用して微粒子金属膜を直接切削加工する方法なども利用することができ、金属微粒子の大きさ、個数、凝集間隔を厳密に制御できるので、より再現性にすぐれた膜を形成できると考えられる。
【0032】
本発明に係る近接場赤外顕微分光用のナノプローブとして、その先端部分に微粒子金属膜25を単独で形成する実施態様が挙げられるが、長期間使用によっては、試料との接触などにより微粒子金属膜が破壊されて十分な感度が得られなくなることが考えられ、耐久性金属酸化膜24を微粒子金属膜25の下地として設ける実施態様が提案される。耐久性金属酸化膜24として、本出願人の先提案に係る特願2001−70579の明細書に記載した耐久性金属酸化膜を微粒子金属膜の下地として設けても良い。
【0033】
下引き用金属酸化物皮膜の製膜方法の代表例は次の通りである。金属酸化物皮膜素材としては、赤外線領域(波長2μm〜15μm)に透過性を有する素材であれば、公知のものを特別の制限なく用いることができる。例えば、酸化クロム(Cr2O3)、酸化セリウム(CeO2)、酸化チタン(TiO2)、酸化インジウム(InO3)などで、好ましくは酸化クロム、酸化セリウムである。
【0034】
金属酸化物被膜製造には金属酸化物をそのまま蒸発源とする製膜法と、蒸着用金属を蒸発源として真空中に酸素ガスを導入しながら製膜する反応蒸着法があり、何れの方法でも製膜可能である。
【0035】
製膜装置としては、一般的に知られている抵抗加熱蒸着法、電子ビーム蒸着法、化学的気相堆積法、スパッタリング法などに用いられるものであれば、公知のものを特別の制限なく用いることができる。好ましくは抵抗加熱蒸着法と電子ビーム蒸着法に用いられる装置の組み合わせ使用である。
【0036】
尚、上記化学的気相堆積法(CVD=Chemical Vaper Deposition)とは、真空槽内に気体(酸素、窒素、弗素、塩素、反応性特殊ガスなど)を導入し、この気体に高圧電場をかけプラズマ化して、加熱ポートから蒸発した金属蒸気と反応させて製膜する方法である。一般的には、製膜した化合物が高融点のため、抵抗加熱ではそのまま蒸着できないものを、金属状態で蒸発させてから導入ガスと反応させて製膜する方法として用いる。
【0037】
尚、前記金属酸化物皮膜の製膜状態は、上層に粒子の大きさが規制された微粒子金属膜を設けるため、島状ではなく均一な単一膜が望ましい。平均膜厚10nm〜100nm程度の均一層であればよい。
【0038】
平均膜厚は、非接触三次元汎用微小表面形状測定システム(Veeco社,WYKO)で測定し、島状直径と皮膜間距離は画像処理装置(ニレコ社製LUZEX)で測定し、各島々の面積を真円換算して算出した。測定した島状個数は150個であった。尚、真円換算以外にも整列楕円換算、正方形換算も有効である。
【0039】
製膜条件は真空度、蒸着速度、蒸発源〜被着ナノプローブ先端部間距離の3条件が重要である。例えば、真空度は1×10−2Pa以下、蒸着速度は0.01nm/sec〜2nm/sec、蒸発源〜被着ナノプローブ先端距離は50mm〜300mmであり、特に好ましくは真空度1×10−3Pa以下、蒸着速度は0.01nm/sec〜0.1nm/sec、蒸発源〜被着ナノプローブ先端間距離は100mm〜200mmが適性条件である。
【0040】
本発明に係るナノプローブを用いた近接場赤外顕微鏡又は分光装置の実施形態を図3及び図4に示す。これらの実施形態は、可視域で利用されている近接場顕微分光法の形態と大きな相違はない。
【0041】
図3に示す実施形態では、赤外光100を、赤外透過性のゲルマニウム(G e)・シリコン(Si)・セレン化亜鉛(ZnSe)などで形成したプリズム101を介して試料102に照射し、試料面に染み出した近接場光を本発明に係るナノプローブ103で検出し、赤外透過性ファイバー104などで検出器105に導き、赤外吸収スペクトルを得る。試料位置の制御はプリズム101側に設置した位置制御装置を用いて制御し、マッピングデータなどを得る。
【0042】
図4に示す実施形態では、本発明に係るナノプローブ103の側から赤外透過性ファイバー104を介して赤外光100を照射し、染み出した近接場光をナノプローブ103に近接させた分光器106などで検出する。
【0043】
更に、本発明に係るナノプローブを用いて、更に検出感度を向上させる手段として、特願2001−221303に記載の方法を組み合わせてもよい。即ち、本発明の微粒子金属膜を有するナノプローブの先端を試料に0.1〜0.2nm程度に近接又は完全に接触させた状態と試料か10〜100nm離れた状態とを周期的に反復させ、その反復に伴う信号変化をロックインアンプ等で識別増幅することにより感度を向上させる方法である。
【0044】
【発明の効果】
本発明によれば、微小開口を有する近接場赤外分光法においても、サブミクロンから数十ナノメートルの微小領域の高感度な測定が可能となり、頭記した課題が解決される。
【図面の簡単な説明】
【図1】本発明に係るナノプローブの実施例を示す概略図
【図2】先端部分の実施態様を示す概略図
【図3】本発明に係るナノプローブを用いた装置の1例を示す概略図
【図4】本発明に係るナノプローブを用いた装置の他の例を示す概略図
【図5】従来例を示す概略図
【符号の説明】
1−検出光
2−検出光
3−赤外光
4−プリズム
5−試料
6−検出光
7−検出光
8−赤外光
9−試料
10−ナノプローブ
11−開口部
20−ナノプローブ
21−金属マスク
22−ナノプローブ本体
23−赤外開口部
24−耐久性金属酸化膜
25−微粒子金属膜
30−近接場光
100−赤外光
101−プリズム
102−試料
103−ナノプローブ
104−赤外透過性ファイバー
105−検出器
106−分光器
【発明の属する技術分野】
本発明は、近接場赤外分光法(scanning near−field microspectroscopy,or SNOM)に用いられる、高感度且つ高空間分解能での測定を可能にする近接場赤外顕微分光用ナノプローブに関する。
【0002】
【従来の技術】
従来の(紫外・可視・近赤外・赤外)顕微分光法では、その空間分解能は光の回折特性によって決定され、光の回折限界よりも小さな領域又は物質を測定・観測することは非常に困難である。然しながら、通常光ではなく微小空間に局在した別形態の光(近接場光)を利用する方式によれば、回折限界を超える分解能が得られることが知られている。
【0003】
上記として、例えば、近接場光を用いた近接場顕微分光法(scanningnear−field microspectroscopy,or SNOM)が挙げられる(非特許文献1参照)。この方式では、例えば図5に示すように、先端に微小な開口部11を有する近接場ナノプローブ10が利用される。図5の(A)図に示す態様では、試料5の下方からプリズム4を通して赤外光が投射され、試料5を透過した光成分の内の近接場光がナノプローブ10を通してピックアップされて検出光1とされる。また、図5の(B)図に示す態様では、赤外光は、試料5の上方からナノプローブ10を通して投射され、その反射光の内の近接場光が再びナノプローブ10を通してピックアップされて検出光6とされる。後者の態様は、試料9に厚みがあり、試料5からの通過光が利用できない場合に適用される。
【0004】
一方、本発明者らが見出した、赤外分光法において測定感度を飛躍的に向上できる表面増強赤外分光が知られている(非特許文献2参照)。この方法では、赤外透過性基板の表面に微粒子状金属膜を蒸着した後測定を行うことで、入射光により微粒子金属膜内の自由電子の集団振動(プラズマ振動)が励起され、その金属近傍に存在する物質の赤外吸収強度が増強される現象が発生する。これにより測定感度が数十倍〜1000倍程度まで向上する。しかもこの励起されたプラズマ振動は、金属膜内の極近傍でのみ発生し、空間的に離れた部分では急激に減衰する(ショートレンジである)ため、極表面の情報が選択的に得られ、表面近傍の分析には特に有効である。
【0005】
尚、本発明者は、表面増強赤外吸収分光用島状金属膜材料及びその製造方法について、先に提案をした(特許文献1参照)。
【0006】
上記した非特許文献1に記載されており、図5に示した方法をそのまま利用して波長の長い赤外領域において分光法を実現しようとすると、赤外波長(λ)による制約が生じ、サブミクロン(本明細書において、0.5ミクロン以下と定義する。)から数十ナノメートルの微小領域の測定が困難となる。即ち、ナノプローブ10の先端に位置する微小な開口部10より近接場光を取り出すには、赤外波長(λ)の1/10よりも大きな開口径を必要とするという制約がある(非特許文献3参照)。赤外領域の波長、即ちλの値は2μm〜15μm程度であり、例えば15μmの波長領域を観測するには、15/10=1.5μm以上の開口径が必要となる。従って、この条件では波長による回折限界以下の小さな領域を測定することは可能ではあるが、サブミクロンから数十ナノメートル領域の極微小部位の測定は事実上困難となる。このことから、より微小な領域を測定可能とするためには、赤外波長による開口径の制約を克服する必要がある。
【0007】
【特許文献1】特開2002−267602
【非特許文献1】大津元一応用物理65、2(1996)
【非特許文献2】Y.Nishikawa et.al.,Appl.Spectrosc.44,691(1990)
【非特許文献3】B.Knoll,and K.Keilmann,Appl.Phys.A66,471〜481(1998)等の報告
【0008】
【発明が解決しようとする課題】
本発明は、上記から明らかなように、開口径の制約を受けることなく、サブミクロンから数ナノメートルオーダーの赤外分光法が可能である近接場ナノプローブを提供することを課題とする。
【0009】
【課題を解決するための手段】
上記課題を解決する本発明は、下記構成を有する。
(1)近接場赤外顕微分光用ナノプローブにおいて、試料表面に最も近接或いは接触するナノプローブ本体の先端部に、微粒子金属膜を有することを特徴とする近接場赤外顕微分光用ナノプローブ。
【0010】
(2)近接場赤外顕微分光用ナノプローブにおいて、波長(λ)を2μm〜15μmの範囲の赤外領域波長とした場合に、ナノプローブ本体の先端に、直径λ/10以上の大きさの開口部を有し、更にその開口部の少なくとも中央部分に、該開口部の直径に対し、λ/150〜λ/50の大きさの直径で微粒子金属膜を有することを特徴とする近接場赤外顕微分光用ナノプローブ。
【0011】
(3)近接場赤外顕微分光用ナノプローブにおいて、赤外光に対して透明である材質により形成したナノプローブ本体の開口部分に微粒子金属膜を有すると共に、ナノプローブと微粒子金属膜との間に均一な耐久性金属酸化膜を有することを特徴とする近接場赤外顕微分光用ナノプローブ。
【0012】
(4)微粒子金属膜が、直径5nm〜20nm、厚さ1nm〜10nmの不定形又は扁平な粒子より成る微粒子金属で構成されており、該微粒子金属が0.01〜0.2nmの間隔で密に凝集した構造を有することを特徴とする上記(1)〜(3)の何れかに記載の近接場赤外顕微分光用ナノプローブ。
【0013】
(5)微粒子金属膜を構成する微粒子金属として、金(Au)・銀(Ag)・白金(Pt)・パラジウム(Pd)・銅(Cu)・タングステン(W)の何れかの金属、又は少なくともこれらの1元素を含む合金を利用したことを特徴とする上記(1)〜(4)の何れかに記載の近接場赤外顕微分光用ナノプローブ。
【0014】
【発明の実施の形態】
次に、添付の図面に従って、本発明を更に詳細に説明する。
【0015】
図1に概略図で示すように、本発明に係る近接場赤外線顕微分光用ナノプローブ20は、金属マスク21の内側に、赤外線透過性を有する材料により形成されるナノプローブ本体22を配設し、更に、このナノプローブ本体22の先端に、近接場赤外線の入射口となる赤外開口部23を形成した構造である。赤外開口部23は、この部位の周囲に存在する近接場光30をピックアップするのに機能するが、その機能を高めるために、1つの実施態様では、赤外開口部23の周囲に耐久性金属酸化膜24が配設され、更に別の実施態様では、微粒子金属膜25が配設される。
【0016】
赤外開口部23は、表面増強赤外吸収の特性を利用し、赤外線の波長(λ)に対して1/10以上の大きさ(直径)で設けられており、他の実施態様では、少なくともその中央部分に、開口径よりも小さな範囲で、更に詳しくはλ/150〜λ/50の範囲内に微粒子金属膜を設ける構成により解決することができる。
【0017】
先に述べたように、微粒子金属膜による表面増強現象はその金属膜の極近傍(数ナノメートルから数十ナノメートル)で効果が最大となるので、この増強効果が及ぶ範囲、即ち微粒子金属膜を設ける範囲を適切に規制することで、開口部が大きくともより微小な部分のみを高感度に観測することが可能となる。
【0018】
然しながら、微粒子金属膜を設ける範囲をむやみに小さくすると、表面増強現象そのものが低下し必要とする感度が得られなくなる不都合を生じる。大きさが数ナノメートルの金属微粒子1個でも数倍程度の表面増強効果を示すとされる報告(例えば、前記非特許文献3等を参照)もあるが、十分な感度を得るためには個々の自由電子のプラズマ振動が互いに共鳴を起こす程度に、複数個以上の金属微粒子が凝集した状態が好ましい。
【0019】
具体的には、5nm〜20nm程度の大きさを有する不定形又は扁平な金属微粒子を数十個から数100個程度、0.05〜0.2nm程度の間隔で密に凝集させることが必要であり、従ってλ/150〜λ/50の範囲内に微粒子金属膜を設ける必要がある。
【0020】
金属微粒子の大きさは、上記程度が好ましく、これよりも小さくなると、表面増強効果が低下することが経験的に分かっている。また金属微粒子をこの範囲よりも大きくすると、上記規制範囲内で凝集できる粒子数が少なくなること、更にバルク金属の性質が強くなるため吸収に微分形の歪が生じるなどの悪影響がある。
【0021】
本発明に係る近接場赤外分光に利用するナノプローブは、ナノプローブ本体22を形成する材料として赤外光に対して透明である材料を用い、赤外開口部23の少なくとも中央部で試料表面に最も近接するか或いは接触する部分に微粒子金属膜25を配設することを特徴とする。ナノプローブ本体22を形成する材料としては、赤外光領域(波長2μm〜15μm)で透明な材料であるダイヤモンド・シリコン(Si)・ゲルマニウム(Ge)・セレン化亜鉛(ZnSe)・KRS−5(TlBrI=沃化タリウムと臭化タリウムの結晶混合物)などを利用することができる。
【0022】
上記材料を用いて先端部が赤外波長以下に先細りしたナノプローブ本体22を形成する加工方法としては、例えば、非特許文献1に記載されている選択的化学エッチング法など既知の方法を利用することができる。赤外開口部23の先端の耐久性金属酸化膜24に開口を形成する方法としては、ナノプローブ本体22の表面全体に、表皮厚の大きなアルミニウム(Al)或いは金(Au)などを100nm以上の厚みで蒸着させ、蒸着後にエッチング処理により先端部分の膜を除去してナノプローブ本体22の先端のみを露出させる方法が採用できる。
【0023】
赤外開口部23の形成には、上記した方法の外に、金属膜蒸着後に樹脂を先端部に塗布し、更にエッチングする方法、フォトレジストを塗布し、エバネッセント光で露光する立体ナノフォトリソグラフィの方法などを適用することができる。
【0024】
図2に幾つかの例を示すように、ナノプローブ本体22の先端付近の形状として、種々の形状が利用できる。
【0025】
次に、ナノプローブ本体22の先端(開口中央部)への微粒子金属膜25の形成方法について述べる。微粒子金属膜25の形成には、既知の成膜方法を利用することができる。例えば、ナノプローブ本体22の先端に樹脂を塗布し、電子ビームによるエッチングなどによりλ/150〜λ/50の範囲内に制限された部位を露出させ、真空蒸着法で微粒子金属膜を作成する方法がある。
【0026】
利用可能な金属素材としては、金(Au)・銀(Ag)・白金(Pt)・パラジウム(Pd)・銅(Cu)・タングステン(W)などが適性を示す。これらの内で耐久性と表面増強感度の面で好ましいのは金(Au)・白金(Pt)・パラジウム(Pd)・銅(Cu)・タングステン(W)の白金族元素である。尚、銀(Ag)・銅(Cu)・タングステン(W)などは蒸着後の保存状態により表面が酸化して表面増強効果が極度に低下するため短期のみの使用となる。
【0027】
製膜装置としては、一般的には抵抗加熱蒸着法、電子ビーム蒸着法、スパッタリング法に用いられるものであれば、公知のものを特別の制限なく用いることができる。好ましくは抵抗加熱蒸着法と電子ビーム蒸着法に用いられる装置である。
【0028】
特に好ましいのは抵抗加熱蒸着法である。抵抗加熱蒸着法で製膜する金属酸化物皮膜は製膜時の蒸発分子が微少なため繊密な島状膜を製膜できる利点がある。
【0029】
十分な感度を得るためには、個々の自由電子のプラズマ振動が互いに共鳴を起こす程度に、複数個以上の金属微粒子が凝集した状態が好ましい。具体的には、大きさが5nm〜20nm程度の大きさで、厚みが1nm〜10nmの不定形又は扁平な金属微粒子を数十個〜100個程度、0.01〜0.2nm程度の間隔で密に凝集させた状態がよい。
【0030】
製膜条件は真空度、蒸着速度、蒸発源〜被着ナノプローブ先端部間距離の3条件が重要である。例えば、真空度は1×10−2Pa以下、蒸着速度は0.01n m/sec〜2nm/sec、蒸発源〜被着ナノプローブ先端距離は50mm〜300mmであり、特に好ましくは、真空度1×10−3Pa以下、蒸着速度0.01nm/sec〜0.1nm/sec、蒸発源〜被着ナノプローブ先端間距離100mm〜200mmであることが適性条件である。
【0031】
その他の利用可能な成膜方法として、フォトレジストを塗布し、エバネッセント光で露光する立体ナノフォトリソグラフィの方法、一度100nm程度の厚い金属膜を蒸着法により形成させた後、原子間力顕微鏡(AFM)を用いたナノファブリケーション法を利用して微粒子金属膜を直接切削加工する方法なども利用することができ、金属微粒子の大きさ、個数、凝集間隔を厳密に制御できるので、より再現性にすぐれた膜を形成できると考えられる。
【0032】
本発明に係る近接場赤外顕微分光用のナノプローブとして、その先端部分に微粒子金属膜25を単独で形成する実施態様が挙げられるが、長期間使用によっては、試料との接触などにより微粒子金属膜が破壊されて十分な感度が得られなくなることが考えられ、耐久性金属酸化膜24を微粒子金属膜25の下地として設ける実施態様が提案される。耐久性金属酸化膜24として、本出願人の先提案に係る特願2001−70579の明細書に記載した耐久性金属酸化膜を微粒子金属膜の下地として設けても良い。
【0033】
下引き用金属酸化物皮膜の製膜方法の代表例は次の通りである。金属酸化物皮膜素材としては、赤外線領域(波長2μm〜15μm)に透過性を有する素材であれば、公知のものを特別の制限なく用いることができる。例えば、酸化クロム(Cr2O3)、酸化セリウム(CeO2)、酸化チタン(TiO2)、酸化インジウム(InO3)などで、好ましくは酸化クロム、酸化セリウムである。
【0034】
金属酸化物被膜製造には金属酸化物をそのまま蒸発源とする製膜法と、蒸着用金属を蒸発源として真空中に酸素ガスを導入しながら製膜する反応蒸着法があり、何れの方法でも製膜可能である。
【0035】
製膜装置としては、一般的に知られている抵抗加熱蒸着法、電子ビーム蒸着法、化学的気相堆積法、スパッタリング法などに用いられるものであれば、公知のものを特別の制限なく用いることができる。好ましくは抵抗加熱蒸着法と電子ビーム蒸着法に用いられる装置の組み合わせ使用である。
【0036】
尚、上記化学的気相堆積法(CVD=Chemical Vaper Deposition)とは、真空槽内に気体(酸素、窒素、弗素、塩素、反応性特殊ガスなど)を導入し、この気体に高圧電場をかけプラズマ化して、加熱ポートから蒸発した金属蒸気と反応させて製膜する方法である。一般的には、製膜した化合物が高融点のため、抵抗加熱ではそのまま蒸着できないものを、金属状態で蒸発させてから導入ガスと反応させて製膜する方法として用いる。
【0037】
尚、前記金属酸化物皮膜の製膜状態は、上層に粒子の大きさが規制された微粒子金属膜を設けるため、島状ではなく均一な単一膜が望ましい。平均膜厚10nm〜100nm程度の均一層であればよい。
【0038】
平均膜厚は、非接触三次元汎用微小表面形状測定システム(Veeco社,WYKO)で測定し、島状直径と皮膜間距離は画像処理装置(ニレコ社製LUZEX)で測定し、各島々の面積を真円換算して算出した。測定した島状個数は150個であった。尚、真円換算以外にも整列楕円換算、正方形換算も有効である。
【0039】
製膜条件は真空度、蒸着速度、蒸発源〜被着ナノプローブ先端部間距離の3条件が重要である。例えば、真空度は1×10−2Pa以下、蒸着速度は0.01nm/sec〜2nm/sec、蒸発源〜被着ナノプローブ先端距離は50mm〜300mmであり、特に好ましくは真空度1×10−3Pa以下、蒸着速度は0.01nm/sec〜0.1nm/sec、蒸発源〜被着ナノプローブ先端間距離は100mm〜200mmが適性条件である。
【0040】
本発明に係るナノプローブを用いた近接場赤外顕微鏡又は分光装置の実施形態を図3及び図4に示す。これらの実施形態は、可視域で利用されている近接場顕微分光法の形態と大きな相違はない。
【0041】
図3に示す実施形態では、赤外光100を、赤外透過性のゲルマニウム(G e)・シリコン(Si)・セレン化亜鉛(ZnSe)などで形成したプリズム101を介して試料102に照射し、試料面に染み出した近接場光を本発明に係るナノプローブ103で検出し、赤外透過性ファイバー104などで検出器105に導き、赤外吸収スペクトルを得る。試料位置の制御はプリズム101側に設置した位置制御装置を用いて制御し、マッピングデータなどを得る。
【0042】
図4に示す実施形態では、本発明に係るナノプローブ103の側から赤外透過性ファイバー104を介して赤外光100を照射し、染み出した近接場光をナノプローブ103に近接させた分光器106などで検出する。
【0043】
更に、本発明に係るナノプローブを用いて、更に検出感度を向上させる手段として、特願2001−221303に記載の方法を組み合わせてもよい。即ち、本発明の微粒子金属膜を有するナノプローブの先端を試料に0.1〜0.2nm程度に近接又は完全に接触させた状態と試料か10〜100nm離れた状態とを周期的に反復させ、その反復に伴う信号変化をロックインアンプ等で識別増幅することにより感度を向上させる方法である。
【0044】
【発明の効果】
本発明によれば、微小開口を有する近接場赤外分光法においても、サブミクロンから数十ナノメートルの微小領域の高感度な測定が可能となり、頭記した課題が解決される。
【図面の簡単な説明】
【図1】本発明に係るナノプローブの実施例を示す概略図
【図2】先端部分の実施態様を示す概略図
【図3】本発明に係るナノプローブを用いた装置の1例を示す概略図
【図4】本発明に係るナノプローブを用いた装置の他の例を示す概略図
【図5】従来例を示す概略図
【符号の説明】
1−検出光
2−検出光
3−赤外光
4−プリズム
5−試料
6−検出光
7−検出光
8−赤外光
9−試料
10−ナノプローブ
11−開口部
20−ナノプローブ
21−金属マスク
22−ナノプローブ本体
23−赤外開口部
24−耐久性金属酸化膜
25−微粒子金属膜
30−近接場光
100−赤外光
101−プリズム
102−試料
103−ナノプローブ
104−赤外透過性ファイバー
105−検出器
106−分光器
Claims (5)
- 近接場赤外顕微分光用ナノプローブにおいて、試料表面に最も近接或いは接触するナノプローブ本体の先端部に、微粒子金属膜を有することを特徴とする近接場赤外顕微分光用ナノプローブ。
- 近接場赤外顕微分光用ナノプローブにおいて、波長(λ)を2μm〜15μmの範囲の赤外領域波長とした場合に、ナノプローブ本体の先端に、直径λ/10以上の大きさの開口部を有し、更にその開口部の少なくとも中央部分に、該開口部の直径に対し、λ/150〜λ/50の大きさの直径で微粒子金属膜を有することを特徴とする近接場赤外顕微分光用ナノプローブ。
- 近接場赤外顕微分光用ナノプローブにおいて、赤外光に対して透明である材質により形成したナノプローブ本体の開口部分に微粒子金属膜を有すると共に、ナノプローブと微粒子金属膜との間に均一な耐久性金属酸化膜を有することを特徴とする近接場赤外顕微分光用ナノプローブ。
- 微粒子金属膜が、直径5nm〜20nm、厚さ1nm〜10nmの不定形又は扁平な粒子より成る微粒子金属で構成されており、該微粒子金属が0.01〜0.2nmの間隔で密に凝集した構造を有することを特徴とする請求項1〜3の何れかに記載の近接場赤外顕微分光用ナノプローブ。
- 微粒子金属膜を構成する微粒子金属として、金(Au)・銀(Ag)・白金(Pt)・パラジウム(Pd)・銅(Cu)・タングステン(W)の何れかの金属、又は少なくともこれらの1元素を含む合金を利用したことを特徴とする請求項1〜4の何れかに記載の近接場赤外顕微分光用ナノプローブ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003074793A JP2004279359A (ja) | 2003-03-19 | 2003-03-19 | 近接場赤外顕微分光用ナノプローブ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003074793A JP2004279359A (ja) | 2003-03-19 | 2003-03-19 | 近接場赤外顕微分光用ナノプローブ |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004279359A true JP2004279359A (ja) | 2004-10-07 |
Family
ID=33290282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003074793A Pending JP2004279359A (ja) | 2003-03-19 | 2003-03-19 | 近接場赤外顕微分光用ナノプローブ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004279359A (ja) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007121268A (ja) * | 2005-09-29 | 2007-05-17 | Olympus Corp | 光学装置 |
JP2007205779A (ja) * | 2006-01-31 | 2007-08-16 | Toyohashi Univ Of Technology | 近接場光装置およびその製造方法 |
JP2007248316A (ja) * | 2006-03-17 | 2007-09-27 | Canon Inc | プローブ及び近接場顕微鏡 |
JP2008032716A (ja) * | 2006-07-28 | 2008-02-14 | Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi | 光ファイバー探針の製造方法 |
JP2008516257A (ja) * | 2004-10-13 | 2008-05-15 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | 表面増強ラマン分光法のためのその場励起 |
JP2009276344A (ja) * | 2008-04-17 | 2009-11-26 | National Institute Of Advanced Industrial & Technology | 走査型プローブ顕微鏡用プローブ及びそのプローブの作製方法 |
JP2010085382A (ja) * | 2008-10-03 | 2010-04-15 | Toray Res Center:Kk | 赤外顕微鏡装置および分光分析方法 |
JP2010286397A (ja) * | 2009-06-12 | 2010-12-24 | Institute Of Physical & Chemical Research | 紫外近接場光学顕微鏡 |
JP2012073226A (ja) * | 2010-08-31 | 2012-04-12 | National Institute For Materials Science | ファイバー用プローブ及びその製作方法 |
JP2013079442A (ja) * | 2011-09-22 | 2013-05-02 | Sumitomo Chemical Co Ltd | 金属系粒子集合体の製造方法 |
WO2013097018A1 (pt) * | 2011-12-29 | 2013-07-04 | Universidade Federal De Minas Gerais - Ufmg | Dispositivo de fibra óptica com elemento unidimensional para microscopia e espectroscopia óptica de campo próximo |
WO2013097021A1 (pt) * | 2011-12-29 | 2013-07-04 | Universidade Federal De Minas Gerais - Ufmg | Dispositivo vazado com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo |
WO2013097019A1 (pt) * | 2011-12-29 | 2013-07-04 | Universidade Federal De Minas Gerais - Ufmg | Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo |
-
2003
- 2003-03-19 JP JP2003074793A patent/JP2004279359A/ja active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008516257A (ja) * | 2004-10-13 | 2008-05-15 | ヒューレット−パッカード デベロップメント カンパニー エル.ピー. | 表面増強ラマン分光法のためのその場励起 |
JP2007121268A (ja) * | 2005-09-29 | 2007-05-17 | Olympus Corp | 光学装置 |
JP2007205779A (ja) * | 2006-01-31 | 2007-08-16 | Toyohashi Univ Of Technology | 近接場光装置およびその製造方法 |
JP4646838B2 (ja) * | 2006-03-17 | 2011-03-09 | キヤノン株式会社 | プローブ及び近接場顕微鏡 |
JP2007248316A (ja) * | 2006-03-17 | 2007-09-27 | Canon Inc | プローブ及び近接場顕微鏡 |
JP2008032716A (ja) * | 2006-07-28 | 2008-02-14 | Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi | 光ファイバー探針の製造方法 |
JP4520493B2 (ja) * | 2006-07-28 | 2010-08-04 | 鴻富錦精密工業(深▲セン▼)有限公司 | 光ファイバー探針の製造方法 |
JP2009276344A (ja) * | 2008-04-17 | 2009-11-26 | National Institute Of Advanced Industrial & Technology | 走査型プローブ顕微鏡用プローブ及びそのプローブの作製方法 |
JP2010085382A (ja) * | 2008-10-03 | 2010-04-15 | Toray Res Center:Kk | 赤外顕微鏡装置および分光分析方法 |
JP2010286397A (ja) * | 2009-06-12 | 2010-12-24 | Institute Of Physical & Chemical Research | 紫外近接場光学顕微鏡 |
JP2012073226A (ja) * | 2010-08-31 | 2012-04-12 | National Institute For Materials Science | ファイバー用プローブ及びその製作方法 |
JP2013079442A (ja) * | 2011-09-22 | 2013-05-02 | Sumitomo Chemical Co Ltd | 金属系粒子集合体の製造方法 |
WO2013097018A1 (pt) * | 2011-12-29 | 2013-07-04 | Universidade Federal De Minas Gerais - Ufmg | Dispositivo de fibra óptica com elemento unidimensional para microscopia e espectroscopia óptica de campo próximo |
WO2013097021A1 (pt) * | 2011-12-29 | 2013-07-04 | Universidade Federal De Minas Gerais - Ufmg | Dispositivo vazado com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo |
WO2013097019A1 (pt) * | 2011-12-29 | 2013-07-04 | Universidade Federal De Minas Gerais - Ufmg | Dispositivo maciço com extremidade unidimensional para microscopia e espectroscopia óptica de campo próximo |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bonyár et al. | Investigation of the performance of thermally generated gold nanoislands for LSPR and SERS applications | |
Kosuda et al. | Nanostructures and surfaceenhanced Raman spectroscopy | |
US9360429B2 (en) | SERS substrates | |
US6778316B2 (en) | Nanoparticle-based all-optical sensors | |
Asghari‐Khiavi et al. | Exploring the origin of tip‐enhanced Raman scattering; preparation of efficient TERS probes with high yield | |
JP2004279359A (ja) | 近接場赤外顕微分光用ナノプローブ | |
Bouhelier | Field‐enhanced scanning near‐field optical microscopy | |
US20110168954A1 (en) | Carbon nanotube based composite surface enhanced raman scattering (sers) probe | |
Karabchevsky et al. | Microspot sensing based on surface-enhanced fluorescence from nanosculptured thin films | |
Omran et al. | Fundamentals of nanotechnology and nanobiotechnology | |
Kumar et al. | Sculptured thin films: overcoming the limitations of surface-enhanced Raman scattering substrates | |
Arai et al. | An optical biosensor based on localized surface plasmon resonance of silver nanostructured films | |
JP5246667B2 (ja) | 紫外近接場光学顕微鏡および先端増強ラマン分光顕微鏡法 | |
Hong et al. | The influence of dielectric environment on the localized surface plasmon resonance of silver-based composite thin films | |
Degioanni et al. | Surface-enhanced Raman scattering of amorphous TiO2 thin films by gold nanostructures: Revealing first layer effect with thickness variation | |
JPH11237391A (ja) | フォトン走査トンネル顕微鏡用ピックアップ | |
Jasrotia et al. | Surface nanostructuring and wettability of low energy Ar+ irradiated Au/V2O5/Au multilayer system for SERS detection of rhodamine-6G | |
Li et al. | Surface plasmon sensor with gold film deposited on a two-dimensional colloidal crystal | |
Haynes et al. | Nanosphere lithography: synthesis and application of nanoparticles with inherently anisotropic structures and surface chemistry | |
Li et al. | Full color plasmonic nanostructured surfaces and their sensor applications | |
Guicheteau et al. | Assessing metal nanofabricated substrates for surface-enhanced Raman scattering (SERS) activity and reproducibility | |
Schmid et al. | Use of tip-enhanced vibrational spectroscopy for analytical applications in chemistry, biology, and materials science | |
JP2007003354A (ja) | 結晶表面の歪み測定方法およびその装置 | |
KR100873439B1 (ko) | 표면 플라즈몬 공명 기술을 이용한 센서칩용 나노금속콜로이드 기판의 제조방법 및 이를 포함하는 센서칩 | |
Shi et al. | Microstructure evolution and SERS performance of self-formed Ag nanoparticles/Ag-27.9 at% Co-8.9 at% Zr alloy films |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060309 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071024 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071030 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080311 |