WO2013096464A1 - Liquefying natural gas in a motion environment - Google Patents

Liquefying natural gas in a motion environment Download PDF

Info

Publication number
WO2013096464A1
WO2013096464A1 PCT/US2012/070647 US2012070647W WO2013096464A1 WO 2013096464 A1 WO2013096464 A1 WO 2013096464A1 US 2012070647 W US2012070647 W US 2012070647W WO 2013096464 A1 WO2013096464 A1 WO 2013096464A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
heat exchanger
refrigerant stream
exchanger core
external heat
Prior art date
Application number
PCT/US2012/070647
Other languages
English (en)
French (fr)
Inventor
Paul R. Davies
Will T. JAMES
Shaun P. GRAVOIS
Original Assignee
Conocophillips Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Conocophillips Company filed Critical Conocophillips Company
Priority to AP2014007703A priority Critical patent/AP2014007703A0/xx
Priority to CN201280063729.2A priority patent/CN104011487B/zh
Priority to JP2014548840A priority patent/JP2015506454A/ja
Priority to AU2012359032A priority patent/AU2012359032A1/en
Priority to RU2014129588A priority patent/RU2620310C2/ru
Priority to EP12860640.7A priority patent/EP2795214A4/en
Publication of WO2013096464A1 publication Critical patent/WO2013096464A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0259Modularity and arrangement of parts of the liquefaction unit and in particular of the cold box, e.g. pre-fabrication, assembling and erection, dimensions, horizontal layout "plot"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0269Arrangement of liquefaction units or equipments fulfilling the same process step, e.g. multiple "trains" concept
    • F25J1/0271Inter-connecting multiple cold equipments within or downstream of the cold box
    • F25J1/0272Multiple identical heat exchangers in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J5/00Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants
    • F25J5/002Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger
    • F25J5/005Arrangements of cold exchangers or cold accumulators in separation or liquefaction plants for continuously recuperating cold, i.e. in a so-called recuperative heat exchanger in a reboiler-condenser, e.g. within a column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0017Flooded core heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/02Bath type boiler-condenser using thermo-siphon effect, e.g. with natural or forced circulation or pool boiling, i.e. core-in-kettle heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/72Processing device is used off-shore, e.g. on a platform or floating on a ship or barge

Definitions

  • This invention relates to a system and method for liquefying natural gas in a motion environment, utilizing a core-in-shell type heat exchanger.
  • Natural gas in its native form must be concentrated before it can be transported economically.
  • the use of natural gas has increased significantly in recent years due to its environmentally-friendly, clean burning characteristics. Burning natural gas produces less carbon dioxide than any other fossil fuel, which is important since carbon dioxide emissions have been recognized as a significant factor in causing the greenhouse effect.
  • Liquefied Natural Gas (LNG) is likely to be used more and more in densely-populated urban areas with the increased concern over environmental issues.
  • Floating liquefaction plants provide an off-shore alternative to on-shore liquefaction plants and alternative to costly subsea pipeline for stranded offshore reserves.
  • a floating liquefaction plant can be moored off the coast, or close to or at a gas field. It also represents a moveable asset, which can be relocated to a new site when the gas field is nearing the end of its production life, or when required by economic, environmental or political conditions.
  • a system for cooling or liquefying a process gas in a motion environment includes: (a) a separation vessel, wherein the separation vessel includes motion suppressing baffles, wherein the separation vessel separates a high pressure refrigerant stream thereby producing a vapor refrigerant stream and a liquid refrigerant stream; (b) a vapor liquid refrigerant pipe for delivering the liquid refrigerant stream from the separation vessel to an external heat exchanger core; (c) at least one external heat exchanger core, wherein the external heat exchanger core is external to a kettle, wherein the liquid refrigerant stream and a warmer process stream undergo indirect heat exchange in the external heat exchanger core thereby producing a cooled process stream and a vaporized refrigerant stream, wherein the cooled process stream is delivered to a location external to the external heat exchanger core; and (e) a partially vaporized refrigerant pipe for delivering the partially vaporized refrigerant from the external heat exchanger core to
  • a system for chilling or liquefying a process gas in a motion environment includes: (a) a separation vessel, wherein the separation vessel separates a refrigerant stream thereby producing a vapor refrigerant stream and a liquid refrigerant stream; (b) a vapor liquid refrigerant pipe for delivering the liquid refrigerant stream from the separation vessel to an external heat exchanger core; (c) at least one external heat exchanger core, wherein the liquid refrigerant stream and a warmer process stream undergo indirect heat exchange in the external heat exchanger core thereby producing a cooled process stream and a vaporized refrigerant stream; and (d)a partially vaporized refrigerant pipe for delivering the partially vaporized refrigerant from the external heat exchanger core to the separation vessel.
  • a method for liquefying natural gas in a motion environment includes: (a) introducing a refrigeration into a separation vessel to thereby produce a vapor refrigerant stream and a liquid refrigerant stream, wherein the separation vessel includes motion suppressing baffles; (b) introducing the liquid refrigerant stream near the bottom of an external heat exchanger core; (c) introducing a warmer process stream into the external heat exchanger core at a location above the liquid refrigerant stream; (d) cooling the warmer process stream via indirect heat exchange with the liquid refrigerant stream to thereby produce a cooled process stream and a partially vaporized refrigerant stream; (e) removing the cooled process stream and the partially vaporized refrigerant stream from the external heat exchanger core; (f) delivering the partially vaporized refrigerant stream to the separation vessel; and (g) delivering the cooled process stream to a location external to the external heat exchanger core.
  • a method for liquefying natural gas in a motion environment includes: (a) introducing a refrigeration into a separation vessel to thereby produce a vapor refrigerant stream and a liquid refrigerant stream; (b) introducing the liquid refrigerant stream near the bottom of an external heat exchanger core; (c) introducing a warmer process stream into the external heat exchanger core at a location above the liquid refrigerant stream; (d) cooling the warmer process stream via indirect heat exchange with the liquid refrigerant stream in the external heat exchanger core to thereby produce a cooled process stream and a partially vaporized refrigerant stream; and (e) removing the cooled process stream and the partially vaporized refrigerant stream from the external heat exchanger core.
  • FIG. 1 is a schematic of a separation vessel, according to one embodiment of the invention involving an external heat exchanger core.
  • FIG. 2 is a schematic of a separation vessel, according to one embodiment of the invention involving multiple external heat exchanger cores.
  • a principle design of the core-in-shell heat exchanger provides cross exchange of a hot process feed stream against the colder vaporizing fluid.
  • the vaporizing fluid resides in a pressure vessel where brazed aluminum compact exchanger cores are mounted and completely submerged in the vaporizing fluid which is at or near its boiling point.
  • the liquid is drawn into the bottom face of the exchanger where it contacts the hotter surfaces within the core.
  • the vaporizing fluid then transfers heat through the exchanger core channels. The majority of the heat transfer is from the latent heat of vaporization of the vaporizing fluid.
  • the feed stream is cooled or condensed as it passes through the opposite side of the channels in the exchanger cores.
  • thermosiphon effect is a passive fluid transfer phenomenon resulting from natural convective thermal forces.
  • the fluid is heated and the fluid density decreases.
  • fresh liquid is drawn in. This results in a natural circulation of the vaporizing fluid into the core channels induced by the thermal gradient inside the core. Not all liquid in the channel is vaporized and a mixture of liquid and vapors typically are transported up through the exchanger core channels and expelled through the top of the core.
  • thermosiphon circulation effect in the core is enhanced or impaired by the external hydraulic pressure (level differences) between the effective liquid level inside the core versus the liquid level outside the core.
  • the driving force for the transfer of the liquid into the exchanger core is decreased, and the effective heat transfer is reduced.
  • the vaporizing fluid circulation stops due to the loss of the thermosiphon effect which results in the loss of heat transfer. If the heat exchanger is operated with a liquid level higher than the core, i.e., flooded, the heat transferred is impaired further as the vapor produced in the core has to overcome the additional head to escape from the core.
  • FIG. 1 depicts an exemplary configuration of an external heat exchanger core 50 connected to a kettle/separation vessel 42.
  • the expansion valve 40 can be utilized as a control valve to control the level in the separation vessel 42.
  • At least a portion of the expanded refrigerant stream is introduced to the separation vessel 42 to thereby produce a vapor refrigerant stream in conduit 6 and a liquid refrigerant stream.
  • the separation vessel includes motion suppressing baffles to reduce the liquid sloshing.
  • the motion suppressing baffles 52 can be horizontally disposed, vertically disposed or combinations thereof.
  • the liquid level within the separation vessel should be monitored and controlled.
  • the vessel can also be fitted with a weir plate to ensure liquid is maintained at a minimum level in the vessel.
  • a portion of the liquid refrigerant stream is introduced into the bottom of the external heat exchanger core 50 via a liquid refrigerant pipe 8.
  • a warmer process stream is also introduced into the external heat exchanger core 50 via conduit 12, whereby the warmer process feed stream is cooled via indirect heat exchange with the liquid refrigerant stream to thereby produce a cooled process stream and a partially vaporized liquid refrigerant stream.
  • the partially vaporized liquid refrigerant stream is re-circulated into the separation vessel via a pipe 16.
  • the amount of vaporization is controlled to ensure adequate gas dispersion and the two phase flow regime is maintained in the dispersed region. Piping size and distances are controlled to ensure minimum pressure drop and thermosiphon effect is maintained.
  • the higher the pressure drop in the pipe the higher the liquid level has to be maintained in the separation vessel to ensure the flow to the external heat exchanger core is maintained.
  • Adequate vapor disengaging space is provided above the partially vaporized liquid refrigerant transport pipe within the separation vessel to ensure that separation is maintained for re-circulated stream.
  • expansion valve 48 The remaining portion of the liquid refrigerant stream is transported to an expansion means (illustrated as expansion valve 48), wherein the stream is reduced in pressure to thereby produce an overflow refrigerant in conduit 18 which can be utilized in subsequent lower pressure stages of refrigeration.
  • FIG. 2 shows several configurations whereby the separation vessel is connected to multiple external heat exchanger cores.
  • Configuration of the exchangers external to the separation vessel also offers the advantage of eliminating downstream refrigerant compressor scrubbers as the pressure vessel can function as both a refrigerant separator and a compressor suction scrubber.
  • internals such as vane mist eliminators, mesh pads, or cyclonic vane mist eliminators could be installed to minimize the size of the separation vessel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Ocean & Marine Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
PCT/US2012/070647 2011-12-20 2012-12-19 Liquefying natural gas in a motion environment WO2013096464A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AP2014007703A AP2014007703A0 (en) 2011-12-20 2012-12-19 Liquefying natural gas in a motion environment
CN201280063729.2A CN104011487B (zh) 2011-12-20 2012-12-19 运动环境中冷却或液化工艺气体的系统和方法
JP2014548840A JP2015506454A (ja) 2011-12-20 2012-12-19 動き環境下での天然ガスの液化
AU2012359032A AU2012359032A1 (en) 2011-12-20 2012-12-19 Liquefying natural gas in a motion environment
RU2014129588A RU2620310C2 (ru) 2011-12-20 2012-12-19 Сжижение природного газа в движущейся окружающей среде
EP12860640.7A EP2795214A4 (en) 2011-12-20 2012-12-19 LIQUEFACTION OF NATURAL GAS IN A MOVING ENVIRONMENT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161578085P 2011-12-20 2011-12-20
US61/578,085 2011-12-20

Publications (1)

Publication Number Publication Date
WO2013096464A1 true WO2013096464A1 (en) 2013-06-27

Family

ID=48653241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/070647 WO2013096464A1 (en) 2011-12-20 2012-12-19 Liquefying natural gas in a motion environment

Country Status (8)

Country Link
US (1) US20130160487A1 (zh)
EP (1) EP2795214A4 (zh)
JP (1) JP2015506454A (zh)
CN (1) CN104011487B (zh)
AP (1) AP2014007703A0 (zh)
AU (1) AU2012359032A1 (zh)
RU (1) RU2620310C2 (zh)
WO (1) WO2013096464A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2941608C (en) * 2014-03-07 2021-10-12 Conocophillips Company Heat exchanger system with mono-cyclone inline separator
WO2015168509A1 (en) * 2014-05-01 2015-11-05 Conocophillips Company Liquid drains in core-in-shell heat exchanger
CN106024074A (zh) * 2016-05-11 2016-10-12 中广核研究院有限公司 抑制液面晃荡的核电厂稳压器
CN105957565B (zh) * 2016-06-23 2018-05-29 中广核研究院有限公司 抑压水池及具有该抑压水池的安全壳
CN114777412B (zh) * 2022-04-01 2023-03-24 中国科学院理化技术研究所 一种具有热虹吸式氢过冷器的氢气液化装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5363655A (en) * 1992-11-20 1994-11-15 Chiyoda Corporation Method for liquefying natural gas
US5365740A (en) * 1992-07-24 1994-11-22 Chiyoda Corporation Refrigeration system for a natural gas liquefaction process
US6378330B1 (en) * 1999-12-17 2002-04-30 Exxonmobil Upstream Research Company Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
US20070245941A1 (en) * 2004-07-02 2007-10-25 Sandstrom Robert E Lng Sloshing Impact Reduction System

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US436003A (en) * 1890-09-09 Process of circulating liquefied refrigerating agents
NL300398A (zh) * 1962-11-22
DE2438443C2 (de) * 1974-08-09 1984-01-26 Linde Ag, 6200 Wiesbaden Verfahren zum Verflüssigen von Erdgas
JPS5733298A (en) * 1980-07-31 1982-02-23 Mitsubishi Heavy Ind Ltd Liquefaction/recovery device for evaporated gas in ship's tank
US4445916A (en) * 1982-08-30 1984-05-01 Newton Charles L Process for liquefying methane
FR2545589B1 (fr) * 1983-05-06 1985-08-30 Technip Cie Procede et appareil de refroidissement et liquefaction d'au moins un gaz a bas point d'ebullition, tel que par exemple du gaz naturel
JPH0133985Y2 (zh) * 1984-09-25 1989-10-16
JP3320934B2 (ja) * 1994-12-09 2002-09-03 株式会社神戸製鋼所 ガスの液化方法
EP0723125B1 (en) * 1994-12-09 2001-10-24 Kabushiki Kaisha Kobe Seiko Sho Gas liquefying method and plant
MY117899A (en) * 1995-06-23 2004-08-30 Shell Int Research Method of liquefying and treating a natural gas.
JPH11244671A (ja) * 1998-02-27 1999-09-14 Mitsubishi Rayon Co Ltd 原油処理用中空糸膜モジュールならびにこれを用いた原油処理方法および原油処理装置
TW421704B (en) * 1998-11-18 2001-02-11 Shell Internattonale Res Mij B Plant for liquefying natural gas
US6220287B1 (en) * 2000-02-03 2001-04-24 The Boeing Company Baffle for suppressing slosh in a tank and a tank for incorporating same
WO2001088447A1 (en) * 2000-05-18 2001-11-22 Phillips Petroleum Company Enhanced ngl recovery utilizing refrigeration and reflux from lng plants
MXPA03011495A (es) * 2001-06-29 2004-03-19 Exxonmobil Upstream Res Co Proceso para recuperar etano e hidrocarburos mas pesados de una mezcla liquida presurizada rica en metano.
KR101301024B1 (ko) * 2004-06-23 2013-08-29 엑손모빌 업스트림 리서치 캄파니 혼합 냉매 액화 공정
RU2382962C2 (ru) * 2004-08-06 2010-02-27 Бп Корпорейшн Норт Америка Инк. Способ сжижения природного газа (варианты)
ATE461738T1 (de) * 2006-11-22 2010-04-15 Shell Int Research Verfahren und vorrichtung zur bereitstellung von einheitlichkeit von dampf- und flüssigphase in einem gemischten strom
RU2010124432A (ru) * 2007-11-16 2011-12-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. (NL) Способ и устройство для сжижения потока углеводородов и плавучее основание или морская платформа, содержащая указанное устройство и на которой осуществляют такой способ
JP5254354B2 (ja) * 2007-12-04 2013-08-07 三星重工業株式会社 Lngカーゴタンクのためのスロッシング抑制構造
US20090139263A1 (en) * 2007-12-04 2009-06-04 Air Products And Chemicals, Inc. Thermosyphon reboiler for the denitrogenation of liquid natural gas
US10780955B2 (en) * 2008-06-20 2020-09-22 Seaone Holdings, Llc Comprehensive system for the storage and transportation of natural gas in a light hydrocarbon liquid medium
RU2382301C1 (ru) * 2008-10-20 2010-02-20 Открытое акционерное общество "Научно-исследовательский и проектный институт по переработке газа" ОАО "НИПИгазпереработка" Установка низкотемпературного разделения углеводородного газа
FR2943683B1 (fr) * 2009-03-25 2012-12-14 Technip France Procede de traitement d'un gaz naturel de charge pour obtenir un gaz naturel traite et une coupe d'hydrocarbures en c5+, et installation associee
FR2944523B1 (fr) * 2009-04-21 2011-08-26 Technip France Procede de production d'un courant riche en methane et d'une coupe riche en hydrocarbures en c2+ a partir d'un courant de gaz naturel de charge, et installation associee
US20100281915A1 (en) * 2009-05-05 2010-11-11 Air Products And Chemicals, Inc. Pre-Cooled Liquefaction Process
EP2598817A4 (en) * 2010-07-30 2018-07-25 Exxonmobil Upstream Research Company Cryogenic systems for removing acid gases from a hydrocarbon gas stream using co-current separation devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5365740A (en) * 1992-07-24 1994-11-22 Chiyoda Corporation Refrigeration system for a natural gas liquefaction process
US5363655A (en) * 1992-11-20 1994-11-15 Chiyoda Corporation Method for liquefying natural gas
US6378330B1 (en) * 1999-12-17 2002-04-30 Exxonmobil Upstream Research Company Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling
US20070245941A1 (en) * 2004-07-02 2007-10-25 Sandstrom Robert E Lng Sloshing Impact Reduction System

Also Published As

Publication number Publication date
RU2014129588A (ru) 2016-02-20
AP2014007703A0 (en) 2014-06-30
US20130160487A1 (en) 2013-06-27
EP2795214A1 (en) 2014-10-29
JP2015506454A (ja) 2015-03-02
EP2795214A4 (en) 2016-01-06
CN104011487B (zh) 2017-03-01
RU2620310C2 (ru) 2017-05-24
AU2012359032A1 (en) 2014-07-03
CN104011487A (zh) 2014-08-27

Similar Documents

Publication Publication Date Title
EP2795232B1 (en) Internal baffle for suppressing slosh in a core-in-shell heat exchanger
CN105509383B (zh) 在天然气液化工艺中的制冷剂回收
US20130160487A1 (en) Liquefying natural gas in a motion environment
US10989470B2 (en) Process integration for natural gas liquid recovery
CN107304974B (zh) 液化天然气冷能回收系统和方法
US11162746B2 (en) Liquid drains in core-in-shell heat exchanger
EP2795216B1 (en) Method for reducing the impact of motion in a core-in-shell heat exchanger
JP4677338B2 (ja) 冷熱供給方法
WO2018169909A2 (en) Hydrocarbon distillation
EP1855047B1 (en) A system and method for vaporizing cryogenic liquids using a naturally circulating intermediate refrigerant
CN106839650A (zh) 天然气油气回收系统及工艺
CN202382519U (zh) 深冷分离装置冷箱
KR101751830B1 (ko) 천연가스 분류장치를 포함하는 부유식 해상 구조물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548840

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012359032

Country of ref document: AU

Date of ref document: 20121219

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014129588

Country of ref document: RU

Kind code of ref document: A