WO2013095540A1 - Memory with elements having two stacked magnetic tunneling junction (mtj) devices - Google Patents

Memory with elements having two stacked magnetic tunneling junction (mtj) devices Download PDF

Info

Publication number
WO2013095540A1
WO2013095540A1 PCT/US2011/066979 US2011066979W WO2013095540A1 WO 2013095540 A1 WO2013095540 A1 WO 2013095540A1 US 2011066979 W US2011066979 W US 2011066979W WO 2013095540 A1 WO2013095540 A1 WO 2013095540A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory
mtj
devices
coupled
sense
Prior art date
Application number
PCT/US2011/066979
Other languages
French (fr)
Inventor
Brian S. Doyle
Arijit Raychowdhury
Yong Ju Lee
Charles C. Kuo
Kaan OGUZ
David L. Kencke
Robert S. Chau
Roksana Golizadeh MOJARAD
Original Assignee
Intel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel Corporation filed Critical Intel Corporation
Priority to CN201180075812.7A priority Critical patent/CN104081463B/en
Priority to US13/995,631 priority patent/US20140204661A1/en
Priority to PCT/US2011/066979 priority patent/WO2013095540A1/en
Priority to KR1020147017057A priority patent/KR101627591B1/en
Priority to TW101145987A priority patent/TWI528356B/en
Publication of WO2013095540A1 publication Critical patent/WO2013095540A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1653Address circuits or decoders
    • G11C11/1655Bit-line or column circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1659Cell access
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/71Three dimensional array
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/70Resistive array aspects
    • G11C2213/78Array wherein the memory cells of a group share an access device, all the memory cells of the group having a common electrode and the access device being not part of a word line or a bit line driver

Definitions

  • the invention relates to the field of magnetic memories particularly those using magnetic tunneling junction (MTJ) devices.
  • MTJ magnetic tunneling junction
  • magnetic memories include those employing an MTJ device having a fixed or pinned layer and a free layer as described in "Current Switching in MgO-Based Magnetic Tunneling Junctions," IEEE Transactions on Magnetics, Vol. 47, No. 1 , January 201 1 (beginning at page 156) by Zhu, et al.
  • the direction of magnetization in the free layer is switched from one direction to another through spin torque transfer using a spin-polarized current. This direction determines whether an MTJ device is storing a 1 or a 0.
  • the magnetic resistance (Rp) is lower than when the moments are opposite or anti-parallel (RAP).
  • tunneling magnetic resistance ratio RP is generally low, there are challenges in designing fast and reliable memories especially when taking into account process variations.
  • One proposal for mitigating this is through the use of two MTJ devices that are differentially programmed. See, "Integrated Magnetic Memory for Embedded Computers Systems," IEEE AC paper # 1464, Version 3, Updated October 20, 2006, by Hass et al.
  • Figure 1A is a graph used to illustrate the timing difficulties in sensing the state of data stored in an MTJ device.
  • Figure 1 B is a graph used to illustrate that the timing difficulties of
  • Figure 1 A are effectively eliminated when using the magnetic elements, each with two MTJ devices, as described below.
  • Figure 2 is a cross-sectional, elevation view showing layers in an
  • Figure 3 is a perspective view showing one embodiment of a memory element formed using two stacked MTJ devices and the element's connection to lines in a memory array.
  • Figure 4 is an electrical schematic illustrating the electrical connections between the memory elements and their respective select transistors.
  • Figure 5A is an electrical schematic used to describe the differential programming of complementary data into a memory element to achieve a first state.
  • Figure 5B is an electrical schematic used to describe the differential programming of complementary data into a memory element to achieve a second state.
  • Figure 6 A is an electrical schematic used to show the sensing of data in a memory element when the memory element is programmed in a first state.
  • Figure 6B is an electrical schematic used to show the sensing of data in a memory element when the memory element is programmed in a second state.
  • Figure 7 is an alternate embodiment of the memory element where like regions in the MTJ devices face each other in a stacked arrangement.
  • Figure 8 is an electrical schematic used to describe the operation of the memory element of Figure 7.
  • Figure 9 is a block diagram showing a computer system in which a memory as described below is used.
  • FIG. 1 A memory and its method of operation which employs magnetic tunneling junction (MTJ) devices is described.
  • MTJ magnetic tunneling junction
  • numerous specific details are set forth such as specific layers in order to provide a thorough understanding of the present invention. It will be apparent to one skilled in the art, that the present invention may be practiced without these specific details. In other instances, well-known circuits and methods are not described in detail in order to avoid unnecessarily obscuring the present invention.
  • FIG. 3 and other figures in this application one or more memory elements and their associated select transistors are described. As will be appreciated, in practice many elements and transistors are simultaneously formed on a single substrate in a memory array. Moreover, other parts of a memory are formed at the same time, including sensing circuits and decoding circuits.
  • the MTJ layers of the memory elements may be deposited over an entire substrate or only in selected portions of the substrate where the elements are embedded in a larger structure.
  • a typical design an MTJ device includes a bottom electrode 26
  • Figure 2 which itself may have several different metals such as ruthenium, copper nitride, titanium and tantalum, an anti-ferromagnetic layer 27, a fixed magnetic layer 28, pinned by the strength of layer 28, a filter layer 29 such as an MgO layer and a free magnetic layer 30.
  • the specific number of layers, their composition and thicknesses are not critical to the present application.
  • FIG. 1A One problem in sensing the state (during a read cycle) of the device of Figure 2 is illustrated in Figure 1A.
  • One terminal of the device is connected to a reference potential shown as V cc .
  • V cc a reference potential
  • line 1 1 represents the decay that occurs when the device is in its lower resistance state (P state) while line 12 shows a slower rate representing the higher resistance state (AP state). This potential is compared to a
  • the window if the device is in the P state a potential of less than 2 is present on the bit line. Similarly, if the device is in its AP state during the window 13, the bit
  • the simplified diaeram of Fieure 1A does not take into account the variations in the MTJ devices that are typical. To compensate for these variations the guardband can be made larger but in so doing the timing window becomes more narrow making the strobing even more critical. As will be seen and described later, with the stacked MTJ devices the timing window is essentially open-ended. This provides for more reliable and faster reading.
  • the memory element of Figure 3 has two MTJ devices such as shown in Figure 2, one stacked upon the other. More specifically, device 32 is stacked on device 34.
  • the free layer of device 34 faces the fixed layer of device 32.
  • the fixed layer of device 34 is coupled to bit line 1 (BL1 ) (37).
  • the free layer of device 32 is coupled to BL0 (36).
  • An interconnect 38 extends from between devices 32 and 34 and through the connecting structure 39 is coupled to one terminal of the transistor 40.
  • the other terminal of the transistor 40 is connected to a sense line 42.
  • the word line 44 provides a gate for the transistor 40 and thus where the source and drain regions of the transistor 40 are n-type regions, a positive potential on line 44 connects the interconnect structure 38 and 39 to the sense line 42.
  • devices 32 and 34 are in vertical alignment with one another. This is important since the memory element of Figure 3 takes no more substrate area than the single MTJ device of Figure 2.
  • FIG 4 three memory elements such as shown in Figure 3 have been redrawn to show how they may be arranged in a memory array.
  • One memory element is shown as having devices 32a and 34a coupled to a select transistor 50.
  • Another has devices 32b and 34b and are coupled to a select transistor 51.
  • one of the memory elements has device 32c and 34c coupled to a select transistor 52.
  • Each of the memory devices is connected to a different pair of bit lines, BL1 and BL0.
  • a common word line may connect the gates of the transistors 50, 51 and 52, depending on the configuration of the memory array.
  • FIG. 6A the memory element of Figure 5A has been drawn in a schematic form to explain how data is read from the element.
  • the resistances associated with the element of Figure 5A are shown in Figure 6A as RAP (higher resistance) and Rp (lower resistance).
  • RAP higher resistance
  • Rp lower resistance
  • One terminal of one MTJ device, represented by R A p is connected to V ss (BLO).
  • Rp is connected to ground (BL1 ).
  • the common terminal between the two devices is coupled through the select transistor 71 to one terminal of a sense amp 73.
  • the other terminal of the sense amp receives a reference potential such as Vcc
  • the resistances R A p and Rp form a voltage divider and since RAP has higher
  • the select transistor couples a potential less than 2 to the positive terminal of the sense amp.
  • the output of the sense amp provides a potential which reflects the state of the memory element.
  • the sense amp 73 has a high input impedance and thus the current flowing through the devices forming the memory element of Figure 6A is less than that needed to program the devices.
  • the MTJ devices are coupled in parallel between V cc and V ss .
  • V cc is applied to the series connected devices; because the input impedance of the sense amp is high no substantial current flows into the sense amp.
  • the sense amp is greater than 2 and the output of the sense amp 73 will be in an opposite state when compared to the output of the sense amp of Figure 6A.
  • the high input impedance of the sense amp prevents programming of the memory element, thus the differentially programmed devices of the memory element remain unchanged.
  • Figure 7 illustrates an alternate stacking of the memory devices.
  • the memory element 85 of Figure 7 includes two MTJ devices of Figure 2.
  • Device 80 is stacked upon device 81.
  • the free layer 90 of device 80 faces the free layer 91 of device 81. More specifically, there is no fixed layer between the free layers 90 and 91.
  • the like regions of the MTJ devices may face one another although the layers in one device
  • the free layer 90 of device 80 is connected through the electrode 92 to the fixed layer of device 81. These layers are coupled to one of the terminals of the transistor 86.
  • the other terminals of transistor 86 is coupled to the sense line 88.
  • the gate of the transistor 87 forms a word line in a memory array.
  • the fixed layer of device 80 is coupled to BL1 and the free layer of device 81 is coupled to BL0.
  • each of the devices of the element 85 of Figure 7 are differentially programmed with complementary data so that sensing of data occurs in a manner similar to that of Figure 6A. Consequently the advantages of the timing discussed in conjunction with Figure IB are applicable.
  • the devices 80 or 81 of Figure 7 have been redrawn to show their connections in a memory array.
  • the three memory elements of Figure 8 each comprise two devices 80a, 81a; 80b, 81b; and 80c, 81c.
  • the elements are coupled to their respective select transistors, specifically transistors 95, 96 and 97.
  • Each of the elements is connected to a separate pair of bit lines BL1 and BL0.
  • the differential programming of the devices with complementary data occurs in a manner to that described in conjunction with the memory element of Figure 3. More specifically, the bit lines of the elements are held at a first potential for programming in one state and at a different potential for programming at another state.
  • the current through the select transistor during programming flows in one direction for programming in one state and the other direction for programming in the other state.
  • the select line also is at either V C c or V S s during programming as was the case for the programming shown in Figures 5A and 5B.
  • FIG 9 illustrates a computing device 1000 in accordance with one
  • the board 1002 may include a number of components, including but not limited to a processor 1004 and at least one communication chip 1006.
  • the processor 1004 is physically and electrically coupled to the board 1002.
  • the at least one communication chip 1006 is also physically and electrically coupled to the board 1002.
  • the communication chip 1006 is part of the processor 1004.
  • computing device 1000 may include other components that may or may not be physically and electrically coupled to the board 1002. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
  • volatile memory e.g., DRAM
  • non-volatile memory e.g., ROM
  • flash memory e.g., a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a
  • the communication chip 1006 enables wireless communications for the transfer of data to and from the computing device 1000.
  • wireless and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not.
  • the communication chip 1006 may implement any of a number of wireless standards or protocols, including but not limited to Wi- Fi (IEEE 802.1 1 family), WiMAX (IEEE 802.16 family), EEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond.
  • the computing device 1000 may include a plurality of communication chips 1006. For instance, a first communication chip 1006 may be dedicated to shorter range wireless
  • Wi-Fi and Bluetooth and a second communication chip 1006 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
  • the processor 1004 of the computing device 1000 includes an integrated circuit die packaged within the processor 1004.
  • the integrated circuit die of the processor includes one or more memory elements that are formed in accordance with implementations of the invention.
  • the term "processor" may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
  • the communication chip 1006 also includes an integrated circuit die packaged within the communication chip 1006.
  • the integrated circuit die of the communication chip includes one or more memory elements that are formed in accordance with implementations of the invention.
  • another component housed within the computing device 1000 may contain an integrated circuit die that includes one or more memory elements that are formed in accordance with implementations of the invention.
  • the computing device 1000 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder.
  • the computing device 1000 may be any other electronic device that processes data.

Abstract

A magnetic memory having memory elements each with two magnetic tunneling junction (MTJ) devices is disclosed. The devices in each element are differentially programmed with complementary data. The devices for each element are stacked one above the other so that the element requires no more substrate area than a single MTJ device.

Description

Memory With Elements Having Two Stacked Magnetic Tunneling Junction
(MTJ) Devices
FIELD OF THE INVENTION
[0001] The invention relates to the field of magnetic memories particularly those using magnetic tunneling junction (MTJ) devices.
PRIOR ART AND RELATED ART
[0002] Among magnetic memories are those employing an MTJ device having a fixed or pinned layer and a free layer as described in "Current Switching in MgO-Based Magnetic Tunneling Junctions," IEEE Transactions on Magnetics, Vol. 47, No. 1 , January 201 1 (beginning at page 156) by Zhu, et al. The direction of magnetization in the free layer is switched from one direction to another through spin torque transfer using a spin-polarized current. This direction determines whether an MTJ device is storing a 1 or a 0.
[0003] When the magnetic dipole moments of the free and fixed layer of an
MTJ device are aligned (parallel to one another) the magnetic resistance (Rp) is lower than when the moments are opposite or anti-parallel (RAP). Because the
RAP - RP
tunneling magnetic resistance ratio RP is generally low, there are challenges in designing fast and reliable memories especially when taking into account process variations. One proposal for mitigating this is through the use of two MTJ devices that are differentially programmed. See, "Integrated Magnetic Memory for Embedded Computers Systems," IEEE AC paper # 1464, Version 3, Updated October 20, 2006, by Hass et al.
BRBEF DESCRIPTION OF THE DRAWINGS
[0004] Figure 1A is a graph used to illustrate the timing difficulties in sensing the state of data stored in an MTJ device.
[0005] Figure 1 B is a graph used to illustrate that the timing difficulties of
Figure 1 A are effectively eliminated when using the magnetic elements, each with two MTJ devices, as described below. [0006] Figure 2 is a cross-sectional, elevation view showing layers in an
MTJ device.
[0007] Figure 3 is a perspective view showing one embodiment of a memory element formed using two stacked MTJ devices and the element's connection to lines in a memory array.
[0008] Figure 4 is an electrical schematic illustrating the electrical connections between the memory elements and their respective select transistors.
[0009] Figure 5A is an electrical schematic used to describe the differential programming of complementary data into a memory element to achieve a first state.
[0010] Figure 5B is an electrical schematic used to describe the differential programming of complementary data into a memory element to achieve a second state.
[0011] Figure 6 A is an electrical schematic used to show the sensing of data in a memory element when the memory element is programmed in a first state.
[0012] Figure 6B is an electrical schematic used to show the sensing of data in a memory element when the memory element is programmed in a second state.
[0013] Figure 7 is an alternate embodiment of the memory element where like regions in the MTJ devices face each other in a stacked arrangement.
[0014] Figure 8 is an electrical schematic used to describe the operation of the memory element of Figure 7.
[0015] Figure 9 is a block diagram showing a computer system in which a memory as described below is used.
DETAILED DESCRIPTION
[0016] A memory and its method of operation which employs magnetic tunneling junction (MTJ) devices is described. In the following description, numerous specific details are set forth such as specific layers in order to provide a thorough understanding of the present invention. It will be apparent to one skilled in the art, that the present invention may be practiced without these specific details. In other instances, well-known circuits and methods are not described in detail in order to avoid unnecessarily obscuring the present invention. [0017] In Figure 3 and other figures in this application, one or more memory elements and their associated select transistors are described. As will be appreciated, in practice many elements and transistors are simultaneously formed on a single substrate in a memory array. Moreover, other parts of a memory are formed at the same time, including sensing circuits and decoding circuits.
Additionally, the MTJ layers of the memory elements may be deposited over an entire substrate or only in selected portions of the substrate where the elements are embedded in a larger structure.
[0018] A typical design an MTJ device includes a bottom electrode 26
(Figure 2) which itself may have several different metals such as ruthenium, copper nitride, titanium and tantalum, an anti-ferromagnetic layer 27, a fixed magnetic layer 28, pinned by the strength of layer 28, a filter layer 29 such as an MgO layer and a free magnetic layer 30. The specific number of layers, their composition and thicknesses are not critical to the present application.
[0019] One problem in sensing the state (during a read cycle) of the device of Figure 2 is illustrated in Figure 1A. One terminal of the device is connected to a reference potential shown as Vcc. When the device is selected the potential on one terminal of a sense amp is a function of whether the device is programmed in one state or the other. In Figure 1 A, line 1 1 represents the decay that occurs when the device is in its lower resistance state (P state) while line 12 shows a slower rate representing the higher resistance state (AP state). This potential is compared to a
Vc c
reference potential such as 2 applied to the second terminal of a sense amplifier.
[0020] Assume that at time 10 the device is selected, that is, the word line of the select transistor goes positive. The sense amplifier must be accurately strobed in order to determine the state of the device. Only during the window 13 can an accurate determination of the state of the device be determined. At the beginning of
Vcc
the window if the device is in the P state a potential of less than 2 is present on the bit line. Similarly, if the device is in its AP state during the window 13, the bit
Vcc
line will be at a potential greater than 2 thereby providing an accurate indication of the state. The simplified diaeram of Fieure 1A does not take into account the variations in the MTJ devices that are typical. To compensate for these variations the guardband can be made larger but in so doing the timing window becomes more narrow making the strobing even more critical. As will be seen and described later, with the stacked MTJ devices the timing window is essentially open-ended. This provides for more reliable and faster reading.
[0021] The memory element of Figure 3 has two MTJ devices such as shown in Figure 2, one stacked upon the other. More specifically, device 32 is stacked on device 34. For this embodiment, the free layer of device 34 faces the fixed layer of device 32. The fixed layer of device 34 is coupled to bit line 1 (BL1 ) (37). The free layer of device 32 is coupled to BL0 (36). An interconnect 38 extends from between devices 32 and 34 and through the connecting structure 39 is coupled to one terminal of the transistor 40. The other terminal of the transistor 40 is connected to a sense line 42. The word line 44 provides a gate for the transistor 40 and thus where the source and drain regions of the transistor 40 are n-type regions, a positive potential on line 44 connects the interconnect structure 38 and 39 to the sense line 42. For the illustrated embodiment, devices 32 and 34 are in vertical alignment with one another. This is important since the memory element of Figure 3 takes no more substrate area than the single MTJ device of Figure 2.
[0022] In Figure 4, three memory elements such as shown in Figure 3 have been redrawn to show how they may be arranged in a memory array. One memory element is shown as having devices 32a and 34a coupled to a select transistor 50. Another has devices 32b and 34b and are coupled to a select transistor 51. Lastly, one of the memory elements has device 32c and 34c coupled to a select transistor 52. Each of the memory devices is connected to a different pair of bit lines, BL1 and BL0. A common word line may connect the gates of the transistors 50, 51 and 52, depending on the configuration of the memory array.
[0023] The memory element of Figure 3 has been redrawn in Figures 5A and 5B with the devices separated to better describe how programming occurs. Assume that the memory element is to be programmed with a first state (State 1). To program the element both bit lines are coupled to Vss and the sense line is coupled to Vcc. When a potential is applied to the word line, current flows from the sense line to the bit lines BL0 and BL 1 . (The potential applied to the word line may be boosted above Vcc to eliminate threshold voltage drop across the select■ transistor.) Since the current in one device flows from the free layer to the fixed layer and in the other device from the fixed layer to the free layer, the devices will be differentially programmed. Note, the input data to be programmed into the element determines the voltage on BLO and BL1 and the voltage on the sense line.
[0024] In Figure 5B the opposite state is programmed into the memory element. Here, BLO and BL1 are coupled to VCc and the sense line is coupled to Vss. . The current now flows downward through the devices and therefore the device on the left is programmed with a 0 while the device on the right is programmed with a 1. Once again, the data to be written into the memory element determines the potentials that are applied by BLO, BL1 and the sense line.
[0025] Referring to Figure 6A, the memory element of Figure 5A has been drawn in a schematic form to explain how data is read from the element. The resistances associated with the element of Figure 5A are shown in Figure 6A as RAP (higher resistance) and Rp (lower resistance). One terminal of one MTJ device, represented by RAp is connected to Vss (BLO). One terminal of the other device represented as Rp is connected to ground (BL1 ). The common terminal between the two devices is coupled through the select transistor 71 to one terminal of a sense amp 73. The other terminal of the sense amp receives a reference potential such as Vcc
2 . The resistances RAp and Rp form a voltage divider and since RAP has higher
Vcc
resistance than RP, the select transistor couples a potential less than 2 to the positive terminal of the sense amp. The output of the sense amp provides a potential which reflects the state of the memory element. It should be noted that the sense amp 73 has a high input impedance and thus the current flowing through the devices forming the memory element of Figure 6A is less than that needed to program the devices. Note that in Figure 5A the MTJ devices are coupled in parallel between Vcc and Vss. In contrast in Figure 6A, Vcc is applied to the series connected devices; because the input impedance of the sense amp is high no substantial current flows into the sense amp. [0026] The memory element 70 of Figure 6B corresponds to the
programmed memory element of Figure 5B. Once again, the common terminal between the devices is coupled through the select transistor 71 to the high impedance input of the sense amp 73. Here however, Rp (the lower resistance) is coupled to the Vcc and the higher resistance (RAP) is coupled to ground. Therefore, the potential appearing at transistor 71 and coupled to the positive input terminal of
Vcc
the sense amp is greater than 2 and the output of the sense amp 73 will be in an opposite state when compared to the output of the sense amp of Figure 6A. Once again, the high input impedance of the sense amp prevents programming of the memory element, thus the differentially programmed devices of the memory element remain unchanged.
[0027] Referring to Figure IB, the timing advantage associated with having a differentially programmed memory element is illustrated by the curves 16 and 17. The line 17 represents the state of the memory element shown in Figure 6A.
Assume that at time 15 the word line is turned on and the sense line is at a potential
Vcc
of, for instance, 2 . As soon as transistor 71 begins to conduct, the potential on the word line drops because RAP is greater than Rp. Once the potential on the sense line drops below the guardband of the sense amplifier sensing can begin. Note sensing can occur at any time following time 15 after taking into account the guardband. Similarly, for the other state, represented by line 16 and the memory element of Figure 6B, once transistor 71 begins to conduct, the word line rises in potential. Once it is above the guardband sensing can occur. The critical window 1 3 of Figure 1 A is not present and this makes reading of data from the memory element less critical and more reliable.
[0028] Figure 7 illustrates an alternate stacking of the memory devices. The memory element 85 of Figure 7 includes two MTJ devices of Figure 2. Device 80 is stacked upon device 81. However, unlike Figure 3, the free layer 90 of device 80 faces the free layer 91 of device 81. More specifically, there is no fixed layer between the free layers 90 and 91. With the arrangement of Figure 7, the like regions of the MTJ devices may face one another although the layers in one device [0029] In the arrangement of Figure 7, the free layer 90 of device 80 is connected through the electrode 92 to the fixed layer of device 81. These layers are coupled to one of the terminals of the transistor 86. The other terminals of transistor 86 is coupled to the sense line 88. The gate of the transistor 87 forms a word line in a memory array. The fixed layer of device 80 is coupled to BL1 and the free layer of device 81 is coupled to BL0.
[0030] As was the case with the element of Figure 3, all the layers of the memory element 85 are vertically aligned so that the substrate area of the memory element 85 requires no more substrate area than would be required by a single MTJ device. Also like the element of Figure 3, each of the devices of the element 85 of Figure 7 are differentially programmed with complementary data so that sensing of data occurs in a manner similar to that of Figure 6A. Consequently the advantages of the timing discussed in conjunction with Figure IB are applicable.
[0031] In Figure 8, the devices 80 or 81 of Figure 7 have been redrawn to show their connections in a memory array. The three memory elements of Figure 8 each comprise two devices 80a, 81a; 80b, 81b; and 80c, 81c. The elements are coupled to their respective select transistors, specifically transistors 95, 96 and 97. Each of the elements is connected to a separate pair of bit lines BL1 and BL0. The differential programming of the devices with complementary data occurs in a manner to that described in conjunction with the memory element of Figure 3. More specifically, the bit lines of the elements are held at a first potential for programming in one state and at a different potential for programming at another state. The current through the select transistor during programming flows in one direction for programming in one state and the other direction for programming in the other state. The select line also is at either VCc or VSs during programming as was the case for the programming shown in Figures 5A and 5B.
[0032] The reading of the state of the memory elements of Figure 8 is the same as shown for Figures 6A and 6B. Again one bit line is at VCc and the other at Vss. The devices are effectively in series during reading since the sense lines are coupled to the high impedance inputs of a sense amplifiers.
[0033] Figure 9 illustrates a computing device 1000 in accordance with one The board 1002 may include a number of components, including but not limited to a processor 1004 and at least one communication chip 1006. The processor 1004 is physically and electrically coupled to the board 1002. In some implementations the at least one communication chip 1006 is also physically and electrically coupled to the board 1002. In further implementations, the communication chip 1006 is part of the processor 1004.
[0034] Depending on its applications, computing device 1000 may include other components that may or may not be physically and electrically coupled to the board 1002. These other components include, but are not limited to, volatile memory (e.g., DRAM), non-volatile memory (e.g., ROM), flash memory, a graphics processor, a digital signal processor, a crypto processor, a chipset, an antenna, a display, a touchscreen display, a touchscreen controller, a battery, an audio codec, a video codec, a power amplifier, a global positioning system (GPS) device, a compass, an accelerometer, a gyroscope, a speaker, a camera, and a mass storage device (such as hard disk drive, compact disk (CD), digital versatile disk (DVD), and so forth).
[0035] The communication chip 1006 enables wireless communications for the transfer of data to and from the computing device 1000. The term "wireless" and its derivatives may be used to describe circuits, devices, systems, methods, techniques, communications channels, etc., that may communicate data through the use of modulated electromagnetic radiation through a non-solid medium. The term does not imply that the associated devices do not contain any wires, although in some embodiments they might not. The communication chip 1006 may implement any of a number of wireless standards or protocols, including but not limited to Wi- Fi (IEEE 802.1 1 family), WiMAX (IEEE 802.16 family), EEEE 802.20, long term evolution (LTE), Ev-DO, HSPA+, HSDPA+, HSUPA+, EDGE, GSM, GPRS, CDMA, TDMA, DECT, Bluetooth, derivatives thereof, as well as any other wireless protocols that are designated as 3G, 4G, 5G, and beyond. The computing device 1000 may include a plurality of communication chips 1006. For instance, a first communication chip 1006 may be dedicated to shorter range wireless
communications such as Wi-Fi and Bluetooth and a second communication chip 1006 may be dedicated to longer range wireless communications such as GPS, EDGE, GPRS, CDMA, WiMAX, LTE, Ev-DO, and others.
[0036] The processor 1004 of the computing device 1000 includes an integrated circuit die packaged within the processor 1004. In some implementations of the invention, the integrated circuit die of the processor includes one or more memory elements that are formed in accordance with implementations of the invention. The term "processor" may refer to any device or portion of a device that processes electronic data from registers and/or memory to transform that electronic data into other electronic data that may be stored in registers and/or memory.
[0037] The communication chip 1006 also includes an integrated circuit die packaged within the communication chip 1006. In accordance with another implementation of the invention, the integrated circuit die of the communication chip includes one or more memory elements that are formed in accordance with implementations of the invention.
[0038] In further implementations, another component housed within the computing device 1000 may contain an integrated circuit die that includes one or more memory elements that are formed in accordance with implementations of the invention.
[0039] In various implementations, the computing device 1000 may be a laptop, a netbook, a notebook, an ultrabook, a smartphone, a tablet, a personal digital assistant (PDA), an ultra mobile PC, a mobile phone, a desktop computer, a server, a printer, a scanner, a monitor, a set-top box, an entertainment control unit, a digital camera, a portable music player, or a digital video recorder. In further implementations, the computing device 1000 may be any other electronic device that processes data.
[0040] Thus, stacked MTJ devices forming memory elements which are differentially programmed with complementary data has been described. This structure provides a memory from which data may be more reliably read.

Claims

CLAIMS What is claimed is:
1. A magnetic memory element comprising:
two magnetic tunneling junction (MTJ) devices one stacked above the other, each having a pair of terminals;
a transistor, coupled to one terminal of each MTJ device; and the other terminal of each MTJ device being coupled to a pair of bit lines.
2. The memory element of claim 1, wherein in the stacked MTJ devices, a free layer of one MTJ device faces a fixed layer in the other MTJ device.
3. The memory element of claim 1, wherein in the stacked MTJ devices, one of the fixed and free layers of one MTJ device faces a like layer in the other MTJ device.
4. The memory element of claim 1, wherein the one terminal of each of the MTJ devices form a common terminal.
5. The memory element of claim 1, wherein each of the MTJ devices comprise a plurality of aligned layers.
6. The memory element of claim 1, wherein potentials applied to the terminals of the MTJ devices, the transistor and the bit lines, differentially programs complementary data into the MTJ devices.
7. The memory element of claim 6, wherein the transistor is coupled to one of two potentials as a function of whether the memory element is to be programmed with a one or zero.
8. The memory element of claim 1, including a sense amp coupled to the transistor during reading of data from the element.
9. A memory comprising:
a plurality of elements, each having a pair of stacked magnetic tunneling junction (MTJ) devices;
a plurality of transistors, each transistor coupled to one of the elements, gates of the transistors being coupled to word lines and one terminal of each transistor being coupled to a sense line; and
pairs of bit lines, each element being coupled to a pair of bit lines.
10. The memory of claim 9 wherein the application of potentials on the word lines, sense lines and bit lines differentially programs each pair of MTJ devices of each of the elements.
11. The memory of claim 10, wherein during reading of data from the elements, sense lines are coupled to sense amps.
12. The memory of claim 11, wherein the sense amps are coupled to a reference potential which is compared to potential on the sense lines.
13. The memory of claim 12, wherein one stacked MTJ device of each element has a free layer facing a fixed layer in the other MTJ device of the element.
14. The memory of claim 13, wherein the layers of each MTJ device of each element are aligned.
15. The memory of claim 12, wherein one stacked MTJ device of each element has a free layer and a fixed layer, and wherein one of these layers faces a like layer in the other MTJ device of the element.
16. The memory of claim 15, wherein the layers of each MTJ device of each element are aligned.
17. A method of operating a magnetic memory comprising:
selectively coupling the word lines, sense lines, bit lines of memory elements each comprising a stacked pair of magnetic tunneling junction (MTJ) devices and a transistor to first potentials to differentially program the MTJ devices into first states;
selectively coupling the word lines, sense lines, bit lines of the memory elements to second potentials to differentially program the MTJ devices into second states; and applying third potentials to the word lines and bit lines to detect the first and second states of the memory elements.
18. The method of claim 17, including coupling the sense lines of elements through the transistors to one terminal of sense amps.
19. The method of claim 17, including applying a reference potential to the other terminals of the sense amps.
20. The method of claim 19, wherein applying the third potentials to detect the first and second states includes applying one potential to one bit line and a second potential to the other bit line where the one potential and second potential are different potentials.
PCT/US2011/066979 2011-12-22 2011-12-22 Memory with elements having two stacked magnetic tunneling junction (mtj) devices WO2013095540A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180075812.7A CN104081463B (en) 2011-12-22 2011-12-22 With with two memories of the element of MTJ (MTJ) part of stacking
US13/995,631 US20140204661A1 (en) 2011-12-22 2011-12-22 Memory with elements having two stacked magnetic tunneling junction (mtj) devices
PCT/US2011/066979 WO2013095540A1 (en) 2011-12-22 2011-12-22 Memory with elements having two stacked magnetic tunneling junction (mtj) devices
KR1020147017057A KR101627591B1 (en) 2011-12-22 2011-12-22 Memory with elements having two stacked magnetic tunneling junction (mtj) devices
TW101145987A TWI528356B (en) 2011-12-22 2012-12-06 Memory with elements having two stacked magnetic tunneling junction (mtj) devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/066979 WO2013095540A1 (en) 2011-12-22 2011-12-22 Memory with elements having two stacked magnetic tunneling junction (mtj) devices

Publications (1)

Publication Number Publication Date
WO2013095540A1 true WO2013095540A1 (en) 2013-06-27

Family

ID=48669181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/066979 WO2013095540A1 (en) 2011-12-22 2011-12-22 Memory with elements having two stacked magnetic tunneling junction (mtj) devices

Country Status (5)

Country Link
US (1) US20140204661A1 (en)
KR (1) KR101627591B1 (en)
CN (1) CN104081463B (en)
TW (1) TWI528356B (en)
WO (1) WO2013095540A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150141240A (en) * 2014-06-09 2015-12-18 삼성전자주식회사 Semiconductor memory device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9524765B2 (en) * 2014-08-15 2016-12-20 Qualcomm Incorporated Differential magnetic tunnel junction pair including a sense layer with a high coercivity portion
KR101712725B1 (en) * 2015-04-09 2017-03-07 한양대학교 산학협력단 2-input Programmable Logic Element using single MTJ
US9548096B1 (en) * 2015-08-26 2017-01-17 Qualcomm Incorporated Reverse complement magnetic tunnel junction (MTJ) bit cells employing shared source lines, and related methods
US9589636B1 (en) * 2015-09-22 2017-03-07 Arm Ltd. Method, system and device for complementary non-volatile memory device operation
KR102485297B1 (en) 2015-12-11 2023-01-05 삼성전자주식회사 Magnetoresistive random access device and method of manufacturing the same
US10585630B2 (en) 2017-09-11 2020-03-10 Samsung Electronics Co., Ltd. Selectorless 3D stackable memory
JP2019160368A (en) 2018-03-13 2019-09-19 東芝メモリ株式会社 Semiconductor storage device
CN109166962B (en) * 2018-08-09 2020-10-20 北京航空航天大学 Complementary magnetic memory unit
CN111048130B (en) * 2018-10-12 2022-03-04 中电海康集团有限公司 Magnetic random access memory
KR102182232B1 (en) * 2019-01-17 2020-11-24 한양대학교 산학협력단 Processing Element Based Magnetic Tunnel Junction Structure
CN111798896B (en) * 2020-06-01 2022-04-12 北京航空航天大学 Memory computing system supporting general computing based on magnetic random access memory
US11948616B2 (en) 2021-11-12 2024-04-02 Changxin Memory Technologies, Inc. Semiconductor structure and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030198080A1 (en) * 2001-11-29 2003-10-23 Yoshihisa Iwata Magnetic random access memory
US20040206994A1 (en) * 2003-01-18 2004-10-21 Samsung Electronics Co., Ltd. MRAM including unit cell formed of one transistor and two magnetic tunnel junctions (MTJS) and method for fabricating the same
US20060262595A1 (en) * 2001-11-30 2006-11-23 Takeshi Kajiyama Magnetic random access memory
US20070195586A1 (en) * 2006-02-22 2007-08-23 Samsung Electronics Co., Ltd. Magnetic memory device and methods thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI223259B (en) * 2003-01-07 2004-11-01 Ind Tech Res Inst A reference mid-point current generator for a magnetic random access memory
US7166881B2 (en) * 2003-10-13 2007-01-23 Taiwan Semiconductor Manufacturing Company, Ltd. Multi-sensing level MRAM structures
KR20100123136A (en) * 2009-05-14 2010-11-24 삼성전자주식회사 Nonvolatile memory device
US7577021B2 (en) * 2007-11-21 2009-08-18 Magic Technologies, Inc. Spin transfer MRAM device with separated CPP assisted writing
JP2012203944A (en) * 2011-03-24 2012-10-22 Toshiba Corp Resistance change type memory
KR20120114611A (en) * 2011-04-07 2012-10-17 에스케이하이닉스 주식회사 Semiconductor memory apparatus having magnetroresistive memory elements and method of manufacturing the same
US9245610B2 (en) * 2012-09-13 2016-01-26 Qualcomm Incorporated OTP cell with reversed MTJ connection

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030198080A1 (en) * 2001-11-29 2003-10-23 Yoshihisa Iwata Magnetic random access memory
US20060262595A1 (en) * 2001-11-30 2006-11-23 Takeshi Kajiyama Magnetic random access memory
US20040206994A1 (en) * 2003-01-18 2004-10-21 Samsung Electronics Co., Ltd. MRAM including unit cell formed of one transistor and two magnetic tunnel junctions (MTJS) and method for fabricating the same
US20070195586A1 (en) * 2006-02-22 2007-08-23 Samsung Electronics Co., Ltd. Magnetic memory device and methods thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150141240A (en) * 2014-06-09 2015-12-18 삼성전자주식회사 Semiconductor memory device
KR102235043B1 (en) * 2014-06-09 2021-04-05 삼성전자주식회사 Semiconductor memory device

Also Published As

Publication number Publication date
CN104081463B (en) 2017-06-13
CN104081463A (en) 2014-10-01
KR101627591B1 (en) 2016-06-08
TWI528356B (en) 2016-04-01
TW201344686A (en) 2013-11-01
US20140204661A1 (en) 2014-07-24
KR20140093732A (en) 2014-07-28

Similar Documents

Publication Publication Date Title
KR101627591B1 (en) Memory with elements having two stacked magnetic tunneling junction (mtj) devices
US9972373B2 (en) Self-referenced read with offset current in a memory
US9042152B2 (en) Data read circuit, a non-volatile memory device having the same, and a method of reading data from the non-volatile memory device
JP6246509B2 (en) Sense amplifier circuit for resistive memory
US10878889B2 (en) High retention time memory element with dual gate devices
US8873328B2 (en) Nonvolatile memory device including sudden power off detection circuit and sudden power off detection method thereof
US9773538B2 (en) Nonvolatile semiconductor memory
US10559744B2 (en) Texture breaking layer to decouple bottom electrode from PMTJ device
TWI790497B (en) semiconductor memory device
CN108630271B (en) Memory device and memory system
US10878871B2 (en) Spin transfer torque memory (STTM) devices with decreased critical current and computing device comprising the same
US20210103531A1 (en) Isolation component
US9218877B2 (en) Differential bit cell
US10068635B2 (en) Memory device including delay circuit having gate insulation films with thicknesses different from each other
US9653138B1 (en) Magnetic memory and method of writing data
US11328758B2 (en) Magnetic memory, and programming control method, reading method, and magnetic storage device of the magnetic memory
KR20130022540A (en) Data read circuit, nonvolatile memory device having the same and method for reading data of nonvolatile memory device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13995631

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877899

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147017057

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877899

Country of ref document: EP

Kind code of ref document: A1