WO2013094689A1 - Aqueous lithium ion secondary battery - Google Patents

Aqueous lithium ion secondary battery Download PDF

Info

Publication number
WO2013094689A1
WO2013094689A1 PCT/JP2012/083086 JP2012083086W WO2013094689A1 WO 2013094689 A1 WO2013094689 A1 WO 2013094689A1 JP 2012083086 W JP2012083086 W JP 2012083086W WO 2013094689 A1 WO2013094689 A1 WO 2013094689A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
group
lithium ion
ion secondary
solid electrolyte
Prior art date
Application number
PCT/JP2012/083086
Other languages
French (fr)
Japanese (ja)
Inventor
岡田 重人
選一 朴
康介 中本
滋 三井
伸英 宮地
Original Assignee
日産化学工業株式会社
国立大学法人九州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社, 国立大学法人九州大学 filed Critical 日産化学工業株式会社
Priority to JP2013550333A priority Critical patent/JP6041813B2/en
Publication of WO2013094689A1 publication Critical patent/WO2013094689A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/04Cells with aqueous electrolyte
    • H01M6/06Dry cells, i.e. cells wherein the electrolyte is rendered non-fluid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an aqueous lithium ion secondary provided with a gel-like solid electrolyte, and more specifically, an aqueous lithium ion secondary provided with an ion conductive gel-like solid electrolyte using a low molecular lipid peptide type gelling agent. It relates to batteries.
  • non-aqueous electrolyte secondary batteries have the advantages of high voltage and high energy density and low self-discharge rate, so that non-aqueous electrolyte secondary batteries can be used as alternatives to aqueous secondary batteries such as lead batteries and nickel cadmium batteries. It has been ordered and some of them have already been commercialized. For example, more than half of notebook computers and mobile phones are driven by non-aqueous electrolyte secondary batteries.
  • laminate batteries that use laminate films instead of conventional metal cases are lighter, thinner, and more flexible in shape.
  • laminated batteries are weak in resistance to internal stimuli such as an increase in internal pressure and external stimuli such as tearing, and there is a high risk of rupture and ignition due to deformation or breakage. It is often used by being stored in a pack case, and the weight reduction has not been achieved.
  • the laminate battery generally uses a flammable organic solvent such as an ester compound and an ether compound as the electrolyte, and the flammable organic solvent causes the battery to burst, ignite, etc. This is one of the major causes of problems.
  • a polymer solid electrolyte having a form in which a solid electrolyte is uniformly dissolved in a polymer has been proposed.
  • the polymer solid electrolyte has a higher ionic conductivity than a liquid electrolyte. Therefore, there is a problem in practical use because it is extremely low.
  • a polymer gel electrolyte obtained by impregnating the above polymer with a liquid electrolyte conventionally used has been proposed as a technique for solving the problem of electrolyte ignition due to liquid leakage to the outside of the battery.
  • the battery using the polymer gel electrolyte has the same problems as conventional batteries using non-aqueous electrolytes (for example, short circuit, overcharge, etc. when the battery is abnormal) in terms of ensuring safety against liquid leakage. ) And the battery itself is not fundamentally safe.
  • Patent Document 1 an aqueous lithium battery in which 1M Li 2 SO 4 is gelled with a water-soluble polymer polyvinyl acetamide to form a gel electrolyte has been reported (Patent Document 1).
  • the aqueous lithium secondary battery as described above does not use an organic solvent in the electrolyte solution, and therefore basically does not burn or ignite, and avoids the problem of ignition in the conventionally proposed secondary battery. It is expected to be possible. Furthermore, since manufacturing process does not require moisture management, the manufacturing cost can be greatly reduced.
  • the aqueous electrolyte since the aqueous electrolyte generally has higher conductivity than the non-aqueous electrolyte, an advantage that the internal resistance can be lowered as compared with the non-aqueous lithium secondary battery is also expected.
  • the electrolyte is gelled with a gelling agent, so that safety is greatly improved in response to problems of ignition and liquid leakage, and manufacturing management is easy.
  • it is expected to be a secondary battery having various advantages such as low internal resistance.
  • Lithium polymer gel batteries in which non-aqueous electrolytes are gelled avoid the risk of leakage, but basically use non-aqueous solvents so that ignition and explosion can be completely avoided. Yes, not.
  • water-based lithium batteries do not use non-aqueous solvents in the electrolyte, so the risk of ignition and explosion can be avoided, but when aqueous solutions are used, leakage due to battery damage can be avoided. Can not.
  • the aqueous lithium polymer gel batteries proposed so far are more effective in the migration of lithium ions due to the presence of the gelling agent and the higher viscosity of the solution compared to the battery of the aqueous electrolyte without the gelling agent. As a result, there is a concern that a decrease in electric conductivity and a decrease in charge / discharge capacity are observed, which causes another problem of deterioration in battery characteristics due to gelation of the electrolytic solution.
  • the present invention has been made on the basis of the above circumstances, and the problem to be solved is to solve the problem of safety anxiety associated with a battery using a conventionally proposed non-aqueous solvent, Another object of the present invention is to provide a novel aqueous lithium ion secondary battery that can also solve the problem of deterioration of battery characteristics due to gelation of the electrolyte.
  • lipid peptide gel comprising a low molecular weight lipid peptide or a pharmaceutically usable salt thereof as a solid electrolyte of an aqueous lithium ion secondary battery.
  • a gel-like solid electrolyte containing an agent, a solid electrolyte salt and water the problem of ensuring safety in the use of an organic solvent, which has been a problem in conventional electrolytes, is solved, and good
  • the inventors have found that charge / discharge characteristics similar to those of a battery having ion conductivity and using a conventional liquid electrolyte can be obtained, and the present invention has been completed.
  • the present invention is a water based lithium ion secondary battery comprising a positive electrode and a negative electrode, and a gel solid electrolyte, the gel solid electrolyte comprising a solid electrolyte salt, water,
  • R 3 represents a — (CH 2 ) n —X group, n represents a number of 1 to 4, X represents an amino group, a guanidino group, a —CONH 2 group, or 1 to 3 nitrogen atoms. And represents a condensed heterocyclic ring composed of a 5-membered ring or a 6-membered ring or a 5-membered ring and a 6-membered ring.) (Wherein R 4 represents an aliphatic group having 9 to 23 carbon atoms, and R 5 to R 7 each independently represents a hydrogen atom or a carbon atom having a branched chain having 1 or 2 carbon atoms.
  • the present invention relates to an aqueous lithium ion secondary battery comprising a lipid peptide type gelling agent.
  • the present invention relates to the aqueous lithium ion secondary battery according to the first aspect, characterized in that the gel-like solid electrolyte further contains a water-soluble polymer.
  • the water-soluble polymer is gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinyl amine, chitosan, polylysine, polyacrylic acid, poly
  • PVA polyvinyl alcohol
  • PVP polyvinyl pyrrolidone
  • starch cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinyl amine, chitosan, polylysine, polyacrylic acid, poly
  • the aqueous lithium ion secondary battery according to the second aspect which is selected from the group consisting of alginic acid, polyhyaluronic acid, carboxycellulose, and a mixture thereof.
  • the said water-soluble polymer is polyvinyl alcohol (PVA), It is related with the water based lithium ion secondary battery as described in a 3rd viewpoint.
  • PVA polyvinyl alcohol
  • the present invention relates to the aqueous lithium ion secondary battery according to any one of the first to fourth aspects, wherein the gel-like solid electrolyte further contains a non-aqueous solvent.
  • the non-aqueous solvent is N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, tetrahydrofuran , Methanol, ethanol, n-propanol, isopropanol, 1,2-diethoxyethane (ethylene glycol diethyl ether), ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether acetate, diethyl A solvent selected from the group consisting of carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, acetonitrile and a mixture of two or more thereof.
  • a seventh aspect relates to the aqueous lithium ion secondary battery according to the sixth aspect, wherein the non-aqueous solvent is N-methyl-2-pyrrolidone.
  • the positive electrode includes a positive electrode active material, a conductive auxiliary material, and a binder
  • the negative electrode includes a negative electrode active material, a conductive auxiliary material, and a binder.
  • the present invention relates to the aqueous lithium ion secondary battery according to any one of the above.
  • the positive electrode active material and the negative electrode active material are both composed of a lithium-transition metal composite oxide capable of inserting and removing lithium ions, but the two active materials are different from each other.
  • the present invention relates to an aqueous lithium ion secondary battery according to an eighth aspect.
  • the positive electrode active material is composed of a lithium-transition metal composite oxide containing one or more transition metal elements selected from Co, Ni, Mn, Cr, V, Ti, and Fe.
  • the present invention relates to the water based lithium ion secondary battery according to the tenth aspect, wherein the positive electrode active material is LiFePO 4 .
  • the negative electrode active material is composed of a lithium-transition metal composite oxide containing one or more transition metal elements selected from V, Ti, and Fe.
  • the present invention relates to an aqueous lithium ion secondary battery.
  • the present invention relates to the aqueous lithium ion secondary battery according to the twelfth aspect, wherein the negative electrode active material is LiTi 2 (PO 4 ) 3 .
  • the conductive auxiliary material is carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, carbon nanoparticle, carbon nanotube, titanium oxide, ruthenium oxide, aluminum, nickel and
  • the water-based lithium ion secondary battery according to the eighth aspect which is selected from the group consisting of these mixtures.
  • the present invention relates to the aqueous lithium ion secondary battery according to the fourteenth aspect, wherein the conductive auxiliary material is acetylene black.
  • the binder is polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene- Hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene- Tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoro Tylene copolymer, ethylene-chlor
  • the present invention relates to the aqueous lithium ion secondary battery according to the sixteenth aspect, wherein the binder is polytetrafluoroethylene (PTFE).
  • the solid electrolyte salt is LiNO 3 , LiOH, LiF, LiCl, LiBr, LiI, LiClO 4 , Li 2 SO 4 , Li (CH 3 COO), LiBF 4 , LiPF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Li 2 O, Li 2 CO 3 and a mixture thereof, any one of the first to seventeenth aspects
  • the present invention relates to the aqueous lithium ion secondary battery according to the eighteenth aspect, wherein the solid electrolyte salt is LiClO 4 or Li 2 SO 4 .
  • aqueous lithium ion secondary battery having a gel-like solid electrolyte of the present invention by using water as a non-aqueous solvent as a solvent, there is a risk of ignition or explosion due to liquid leakage due to battery damage or the like. Risk can be avoided. For this reason, compared with the battery which gelatinizes and uses the electrolyte solution of a general lithium battery and a nonaqueous solvent, safety
  • security can be improved significantly.
  • the aqueous lithium ion secondary battery of the present invention can suppress the deterioration of battery performance seen in the conventionally proposed aqueous lithium battery, and can obtain the same charge / discharge characteristics as a battery using a conventional liquid electrolyte. it can.
  • FIG. 1 is a schematic view of water-based lithium ion secondary batteries of Examples and Comparative Examples.
  • FIG. 2 is a diagram showing a bead mill used for producing a gel-like solid electrolyte precursor dispersion used in the aqueous lithium ion secondary battery of the present invention (in FIG. 2, (a) a bead mill, (b). Cross section of rotor part).
  • FIG. 3 shows constant current charge / discharge of the aqueous lithium ion secondary battery (1) of Example 1, the aqueous lithium ion secondary battery (3) of Example 3, and the aqueous lithium ion secondary battery (4) of Comparative Example 1. It is a figure which shows the result (cycle characteristic) of a test.
  • FIG. 2 is a diagram showing a bead mill used for producing a gel-like solid electrolyte precursor dispersion used in the aqueous lithium ion secondary battery of the present invention (in FIG. 2, (a) a bead mill, (b). Cross section of rot
  • FIG. 4 is a diagram showing the results (cycle characteristics) of a constant current charge / discharge test of the water based lithium ion secondary battery (2) of Example 2 and the water based lithium ion secondary battery (5) of Comparative Example 2.
  • FIG. 5 shows constant-current charge / discharge of the aqueous lithium ion secondary battery (1) of Example 1, the aqueous lithium ion secondary battery (3) of Example 3, and the aqueous lithium ion secondary battery (4) of Comparative Example 1. It is a figure which shows the result (rate characteristic) of a test.
  • 6 is a graph showing the results (rate characteristics) of constant current charge / discharge tests of the aqueous lithium ion secondary battery (2) of Example 2 and the aqueous lithium ion secondary battery (5) of Comparative Example 2.
  • FIG. 5 shows constant-current charge / discharge of the aqueous lithium ion secondary battery (1) of Example 1, the aqueous lithium ion secondary battery (3) of Example 3, and the aqueous lithium ion secondary battery (4) of
  • the present invention includes at least a positive electrode and a negative electrode made of a material capable of inserting and desorbing lithium ions, respectively, and a gel-like solid electrolyte (hereinafter also simply referred to as a gel electrolyte) containing an aqueous solution in which a lithium salt is dissolved.
  • the present invention relates to an aqueous lithium ion secondary battery.
  • the gel electrolyte is a lipid peptide comprising at least one of a solid electrolyte salt (lithium salt), water, a compound represented by the above formulas (1) to (3), or a pharmaceutically usable salt thereof. It is a gel-like solid electrolyte containing a mold gelling agent.
  • the present invention is characterized in that a gel-like solid electrolyte containing a lipid peptide type gelling agent is used as an electrolyte of an aqueous lithium ion secondary battery.
  • a gel-like solid electrolyte containing a lipid peptide type gelling agent is used as an electrolyte of an aqueous lithium ion secondary battery.
  • the positive electrode used in the aqueous lithium secondary battery of the present invention a positive electrode conventionally proposed as a positive electrode for a lithium secondary battery can be used.
  • the positive electrode is composed of a positive electrode active material, a conductive auxiliary material, and a binder, and specifically, a positive electrode material obtained by adding a binder to the positive electrode active material and the conductive auxiliary material is formed by pressure bonding to a current collector. Is done.
  • the positive electrode active material is composed of a lithium-transition metal composite oxide capable of inserting and desorbing lithium ions, and specifically, as a transition metal element whose valence changes with the insertion or desorption of lithium ions. It consists of a lithium-transition metal composite oxide containing one or more selected from Co, Ni, Mn, Cr, V, Ti, and Fe. In addition, this lithium-transition metal composite oxide has a redox potential within the range of the potential window of water, and can perform insertion / extraction reaction of lithium ions without generation of oxygen due to oxidative decomposition of water, and charge / discharge As long as the two conditions of not dissolving in water over the entire composition range are satisfied, there is no particular limitation.
  • composite oxides such as LiFePO 4 , LiMnPO 4 , LiNiO 2 , Li 3 V 2 (PO 4 ) 3 , and LiMn 2 O 4 can be given.
  • the positive electrode active material is preferably a composite oxide different from a lithium-transition metal composite oxide contained in the negative electrode described later.
  • the positive electrode active materials it is more preferable to use LiFePO 4 .
  • binder examples include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer.
  • PTFE polytetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • styrene butadiene rubber examples include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer.
  • FEP tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • PFA tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • EFT resin tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer
  • PCTFE polychlorotrifluoroethylene
  • ECTFE Ethylene-chlorotrifluoroethylene copolymer
  • ECTFE vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
  • vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer or ethylene-acrylic acid Copolymers can be used.
  • ECTFE Ethylene-chlorotrifluoroethylene copolymer
  • ECTFE vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer
  • the conductive auxiliary material carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, carbon nanoparticles, carbon nanotubes and other carbon materials, or titanium oxide, ruthenium oxide, aluminum, Metals such as nickel or metal oxides can be used.
  • the shape of these conductive auxiliary materials a shape selected from powder, sphere, flake, filament, fiber, spike, needle and the like can be adopted.
  • the conductive auxiliary material used is preferably acetylene black.
  • stainless steel mesh nickel mesh, gold mesh or the like can be used as the current collector.
  • a negative electrode As the negative electrode used in the aqueous lithium secondary battery of the present invention, a negative electrode conventionally proposed as a negative electrode for a lithium secondary battery can be used.
  • a negative electrode is composed of a negative electrode active material, a conductive auxiliary material, and a binder. Specifically, a negative electrode material obtained by adding a binder to the negative electrode active material, a conductive auxiliary material, and a current collector are formed on the current collector. Is done.
  • the conductive auxiliary material, the binder, and the current collector used for the negative electrode those mentioned in the above [Positive electrode] can be preferably used.
  • the negative electrode active material is composed of a lithium-transition metal composite oxide capable of inserting and removing lithium ions, and specifically, V as a transition metal element whose valence changes with the insertion and removal of lithium ions. And a lithium-transition metal composite oxide containing at least one selected from Ti, Fe, and Fe.
  • the redox potential is within the range of the potential window of the water, the lithium ion insertion / desorption reaction can be performed without hydrogen generation by reductive decomposition of water, and it does not dissolve in water over the entire charge / discharge composition range. As long as the two conditions are satisfied, there is no particular limitation.
  • the negative electrode active material is preferably a composite oxide different from the lithium-transition metal composite oxide contained in the positive electrode described above.
  • the negative electrode active materials it is more preferable to use LiTi 2 (PO 4 ) 3 .
  • the lipid peptide-type gelling agent used for the gel solid electrolyte is a compound (lipid peptide) represented by the following formulas (1) to (3) or a pharmaceutically usable salt thereof (hydrophobic).
  • a low molecular weight compound having a lipid part which is a sex part and a peptide part which is a hydrophilic part).
  • R 1 represents an aliphatic group having 9 to 23 carbon atoms, and preferably R 1 is a straight chain having 11 to 23 carbon atoms which may have 0 to 2 unsaturated bonds.
  • An aliphatic group is desirable.
  • Specific examples of the lipid moiety (acyl group) composed of R 1 and the adjacent carbonyl group include lauroyl group, dodecylcarbonyl group, myristoyl group, tetradecylcarbonyl group, palmitoyl group, margaroyl group, oleoyl group, and eridoyl.
  • R 2 contained in the peptide part represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a branched chain having 1 or 2 carbon atoms.
  • the alkyl group having 1 to 4 carbon atoms that may have a branched chain having 1 or 2 carbon atoms is a branched chain having 1 to 4 carbon atoms in the main chain and 1 or 2 carbon atoms.
  • Means an alkyl group which may have, and specific examples thereof include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group or tert-butyl group Etc.
  • R 2 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms which may have a branched chain having 1 carbon atom, and more preferably a hydrogen atom.
  • the alkyl group having 1 to 3 carbon atoms which can have a branched chain having 1 carbon atom is an alkyl group having 1 to 3 carbon atoms in the main chain and having a branched chain having 1 carbon atom.
  • a methyl group an ethyl group, an n-propyl group, an i-propyl group, an i-butyl group, or a sec-butyl group, preferably a methyl group, an i-propyl group, An i-butyl group or a sec-butyl group.
  • R 3 represents a — (CH 2 ) n—X group.
  • n represents a number of 1 to 4
  • X is an amino group, a guanidino group, a —CONH 2 group, or a 5-membered cyclic group having 1 to 3 nitrogen atoms.
  • X is preferably an amino group, guanidino group, carbamoyl group (—CONH 2 group), pyrrole group, imidazole group, pyrazole group or indole group, and more Preferably it is an imidazole group.
  • n is preferably 1 or 2, and more preferably 1.
  • the — (CH 2 ) n- group is preferably an aminomethyl group, 2-aminoethyl group, 3-aminopropyl group, 4-aminobutyl group, carbamoylmethyl group, 2-carbamoylethyl group, 3-carbamoyl group.
  • a lipid peptide particularly suitable as a lipid peptide-type gelling agent is a compound formed from the following lipid part and peptide part (amino acid assembly part).
  • amino acids alanine (Ala), asparagine (Asn), glutamine (Gln), glycine (Gly), histidine (His), isorosine (Ile), leucine (Leu), lysine (Lys), tryptophan (Trp) ), Valine (Val).
  • lauroyl-Gly-His lauroyl-Ala-His-myristoyl-Gly-His, myristoyl-Ala-His; palmitoyl-Gly-His, palmitoyl-Ala-His; stearoyl-Gly-His, stearoyl-Ala -His.
  • R 4 represents an aliphatic group having 9 to 23 carbon atoms, and preferred specific examples include the same groups as defined for R 1 above.
  • R 5 to R 7 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a branched chain having 1 or 2 carbon atoms, or — ( CH 2 ) nX group, and at least one of R 5 to R 7 represents a — (CH 2 ) nX group.
  • n a number of 1 to 4
  • X represents an amino group, a guanidino group, a —CONH 2 group, or a 5-membered cyclic group or a 6-membered cyclic group that may have 1 to 3 nitrogen atoms, or a 5-membered ring And a condensed heterocyclic group composed of a 6-membered ring.
  • R 5 to R 7 include the same groups as defined for R 2 and R 3 above.
  • a preferable lipid peptide is a compound formed from the following lipid part and peptide part (amino acid assembly part).
  • Myristoyl-Gly-Gly-His Myristoyl-Gly-Gly-Gln, Myristoyl-Gly-Gly-Asn, Myristoyl-Gly-Gly-Trp, Myristoyl-Gly-Gly-Lys, Myristoyl-Gly-Ala-His, Myristoyl-His Gly-Ala-Gln, Myristoyl-Gly-Ala-Asn, Myristoyl-Gly-Ala-Trp, Myristoyl-Gly-Ala-Lys, Myristoyl-Ala-Gly-His, Myristoyl-Ala-Gly-Gln, Myristoyl-Ala- Gly-Asn, Myristoyl-Ala-Gly-Trp, Myristoyl-Ala-Gly-
  • lauroyl-Gly-Gly-His myristoyl-Gly-Gly-His, palmitoyl-Gly-Gly-His, palmitoyl-Gly-His-Gly, palmitoyl-His-Gly-Gly, stearoyl -Gly-Gly-His.
  • R 8 represents an aliphatic group having 9 to 23 carbon atoms, and preferred specific examples include the same groups as defined for R 1 above.
  • R 9 to R 12 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a branched chain having 1 or 2 carbon atoms, or — ( CH 2 ) nX group, and at least one of R 9 to R 12 represents a — (CH 2 ) n—X group.
  • n a number of 1 to 4
  • X represents an amino group, a guanidino group, a —CONH 2 group, or a 5-membered cyclic group or a 6-membered cyclic group that may have 1 to 3 nitrogen atoms, or a 5-membered ring And a condensed heterocyclic group composed of a 6-membered ring.
  • R 9 to R 12 include the same groups as defined for R 2 and R 3 above.
  • particularly preferred lipid peptides include lauroyl-Gly-Gly-Gly-His, myristoyl-Gly-Gly-Gly-His. Palmitoyl-Gly-Gly-Gly-His, Palmitoyl-Gly-Gly-His-Gly, Palmitoyl-Gly-His-Gly-Gly, Palmitoyl-His-Gly-Gly, Palmitoyl-His-Gly-Gly-Gly, Stearoyl-Gly-Gly-Gly-Gly-Gly-Gly Etc.
  • the lipid peptide gelling agent used in the present invention comprises at least one of the compounds represented by the above formulas (1) to (3) (lipid peptide) or a pharmaceutically usable salt thereof, and is a gel. These compounds can be used alone or in combination of two or more as the agent.
  • the ratio of the lipid peptide type gelling agent is 0.1 to 30% by mass of the total mass of the gel-like solid electrolyte to be obtained, preferably 0.5 to 20% by mass, more preferably 1 to 5% by mass.
  • the gel-like solid electrolyte may contain a water-soluble polymer.
  • Use of the water-soluble polymer is useful because it can increase the mechanical strength of the gel-like solid electrolyte and can also serve as a water separation inhibitor for the gel.
  • Examples of the water-soluble polymer include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinylamine, chitosan, polylysine, polyacrylic acid, Examples include polyalginic acid, polyhyaluronic acid, carboxycellulose, and the like.
  • polyvinyl alcohol (PVA) and polyvinyl pyrrolidone are preferable, and polyvinyl alcohol (PVA) is particularly preferable.
  • the proportion when the water-soluble polymer is used is 0.1 to 30% by mass of the total mass of the gel-like solid electrolyte obtained.
  • the content is preferably 0.5 to 20% by mass, more preferably 1 to 5% by mass.
  • the gel-like solid electrolyte may contain a non-aqueous solvent.
  • the lipid peptide type gelling agent of the present invention includes a hydrophilic site and a hydrophobic site. For this reason, it is possible to dissolve (and disperse) more uniformly by mixing a small amount of non-aqueous solvent as compared with the case of dissolving (and dispersing) with water alone.
  • the gel solid electrolyte precursor solution described later (a solution obtained by heating a dispersion obtained by dispersing a lipid peptide type gelling agent in an aqueous solution in which a solid electrolyte and, if necessary, a water-soluble polymer or the like are dissolved) is not available.
  • the solution is uniform, it may lead to non-uniform gelation (insufficient gelation), and the gel strength of the resulting gel may be partially reduced. And water separation, collapse, etc. occur from a portion where gelation is insufficient, which may be a factor of reducing the mechanical strength of the entire gel electrolyte.
  • a gel is prepared from a uniform precursor solution, the entire gel is gelled uniformly, so that it is possible to prevent a decrease in mechanical strength caused by water separation or collapse of the gel as described above. Become.
  • non-aqueous solvent examples include N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, and tetrahydrofuran.
  • Aprotic polar solvent lower aliphatic alcohol solvent such as methanol, ethanol, n-propanol, isopropanol; ether solvent such as 1,2-diethoxyethane (ethylene glycol diethyl ether); ethyl acetate, butyl acetate, methoxy Aliphatic esters or aliphatic ester ether solvents such as butyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate and propylene glycol monomethyl ether acetate; chain carbonate esters such as diethyl carbonate and diethyl carbonate System solvent; ethylene carbonate, cyclic carbonate-based solvent such as propylene carbonate; and acetonitrile.
  • lower aliphatic alcohol solvent such as methanol, ethanol, n-propanol, isopropanol
  • ether solvent such as 1,2-diethoxyethane (ethylene glycol diethyl ether); ethy
  • N-methyl-pyrrolidone is particularly preferable.
  • the proportion when a non-aqueous solvent is used is 0.1 to 30% by mass of the total mass of the obtained gel-like solid electrolyte, Preferably, it is 0.5 to 20% by mass, more preferably 1 to 10% by mass.
  • Solid electrolyte salt used for the gel-like solid electrolyte in the present invention
  • a solid electrolyte salt that has been conventionally proposed as being usable for a lithium ion secondary battery can be used.
  • LiNO 3 LiOH, LiF, LiCl, LiBr, LiI, LiClO 4 , Li 2 SO 4 , Li (CH 3 COO), LiBF 4 , LiPF 6 , LiN (CF 3 SO 2 ) 2
  • lithium salts such as LiN (C 2 F 5 SO 2 ) 2 , Li 2 O, Li 2 CO 3 and mixtures thereof.
  • the solid electrolyte salt (lithium salt) used for the gel solid electrolyte in the present invention is particularly preferably LiClO 4 or Li 2 SO 4 .
  • the solid electrolyte salt is used in the obtained gel solid electrolyte at a concentration of 0.01 to 5 mol / kg, preferably 1 to 3 mol / kg.
  • the solvent used for the gel solid electrolyte is water. That is, the gel-like solid electrolyte of the present invention contains the solid electrolyte salt that is the above-described lithium salt.
  • the gel-like solid electrolyte used in the aqueous lithium ion secondary battery of the present invention can be obtained by various methods.
  • the lipid peptide type gelling agent is dispersed in an aqueous solution in which the solid electrolyte salt and, if necessary, the water-soluble polymer and the non-aqueous solvent are dissolved, respectively, to obtain a gel-like solid electrolyte precursor.
  • a dispersion is obtained.
  • this precursor dispersion liquid is heated and a precursor solution (casting liquid) is obtained.
  • the temperature at the time of heating should just be 100 degrees C or less which is the boiling point of the water which is a solvent.
  • this precursor solution is dropped on a smooth surface or poured into an appropriate mold, and then cooled to room temperature or lower and allowed to stand, whereby a gel-like solid electrolyte is obtained. Can be obtained.
  • the method for obtaining the gel-like solid electrolyte precursor dispersion is, for example, by applying a wet pulverization method to a mixture comprising a lipid peptide type gelling agent and an aqueous solution of a solid electrolyte salt to obtain a lipid.
  • a method of dispersing a peptide-type gelling agent in water or the like can be mentioned.
  • Examples of the wet pulverization method applied during the production of the gel solid electrolyte precursor dispersion described above include, for example, a homodisper, a homomixer, a homogenizer, an ultrasonic homogenizer, a pipe mixer, a counter collision method, a bead mill, an annular mill, and a medium.
  • An apparatus suitable for wet grinding such as a stirring mill can be used. Among these, from the viewpoint of simplicity and dispersion stability, a bead mill or an annular mill, a homomixer and a homomixer are preferable.
  • the pulverizers such as the above bead mill and annular mill are conventionally used for pulverizing inorganic substances such as ceramics.
  • the grinding media (beads) contained in the apparatus (container) are forcibly stirred by the rotor blades (rotor) and move intensely, and the object is ground by the grinding action of the grinding media.
  • the inorganic substance is hard and poor in toughness, a fine phenomenon is achieved by causing a cracking phenomenon due to the grinding action between the medium and the medium when the medium collides with the inorganic substance.
  • the cracking phenomenon hardly occurs in the organic substance, but the bead mill, the annular mill, etc. can make the lipid peptide type gelling agent used in the present invention extremely remarkably fine.
  • a high shearing breaker such as a homodisper and a homomixer is preferable because it can prevent aggregation, and among them, a homomixer that can flow the treatment liquid more strongly is particularly preferable.
  • the rotational speed of the homomixer is preferably 3,000 rpm or more, more preferably 6,000 rpm or more.
  • FIG. 2 shows a cross-sectional view in the vicinity of the rotary blade 3. Specifically, the beads as a grinding medium in the bead mill container 2 shown in FIG.
  • the grinding medium is preferably ceramic or metal beads having a diameter of 0.3 to 6.0 mm. Since it is considered that the dispersibility of the lipid peptide type gelling agent is improved by making the diameter of the beads finer and finer, the diameter of the grinding medium is more preferably 0.3 to 1.0 mm. Further, the material of the grinding medium is preferably a ceramic or metal having a high hardness, such as alumina beads, silicon carbide beads, silicon nitride beads, zircon beads, zirconia beads, carbide stainless beads, etc., but glass beads can also be used. .
  • the rotor blade 3 may have various shapes such as a pin type and a disk type. The rotor blades rotate at a high speed, and the peripheral speed is more preferably in the range of 5 to 9 m / sec.
  • the lipid peptide type gelling agent is refined by receiving a strong grinding effect in the container, but at the same time, heat of stirring is generated and the temperature rises. Therefore, when it is preferable not to increase the temperature by absorbing this heat generation, a cooling water inlet 5 and outlet 6 are attached to the outside of the container, and a cooling water jacket is attached to the inside of the bead mill container inner wall 4. In the case of continuous operation, if miniaturization is insufficient with a single pass, repeated processing may be performed.
  • the gel refined together with the pulverization medium is discharged from the container, and the pulverization medium is separated by a screen outside the container to obtain only the target and gel-like solid electrolyte precursor dispersion.
  • lipid peptide used as a gelling agent was synthesized by the following method.
  • ⁇ Synthesis Example 1 Synthesis of N-palmitoyl-Gly-His> A 500 mL four-necked flask was charged with 14.2 g (91.6 mmol) of histidine, 30.0 g (91.6 mmol) of N-palmitoyl-Gly-methyl and 300 g of toluene, and a sodium methoxide 28% methanol solution as a base. 35.3 g (183.2 mmol) was added, and the mixture was heated in a hot water bath at 60 ° C. and stirred for 1 hour.
  • ⁇ Production Example 2 Production of Precursor Dispersion B of Gelled Solid Electrolyte> 125.0 g of Li 2 SO 4 .H 2 O (manufactured by Kanto Chemical Co., Ltd.) and distilled water were added to a 500 mL volumetric flask to prepare a 2 mol / L Li 2 SO 4 aqueous solution. 6.5 g of the low-molecular gelling agent and 320.4 g of the 2 mol / L Li 2 SO 4 aqueous solution prepared by the above method were put into a container dedicated to the bead mill. The following was carried out in the same manner as in ⁇ Production Example 1>, and a gel-like solid electrolyte precursor dispersion B (recovered amount 170.0 g, recovery rate 52.0%) was taken out.
  • crushed powder was further baked at 670 ° C. for 5 hours (increase / decrease rate of 200 ° C./hour) in an argon atmosphere using an atmosphere-controlled horizontal tubular furnace. After firing, LiFePO 4 powder having a space group Pnma was obtained.
  • the stirring of the solution 1 prepared by the above method is started, and while stirring, the solution 2, the solution 3 prepared by the above method, and 1.25 g of ethylene glycol (Nacalai Tesque) are added to obtain an orange solution 4 It was.
  • This solution 4 was stirred at 60 ° C. and 400 rpm for 2 hours. Thereafter, the temperature of the solution 4 was increased to 140 ° C. at a temperature increase rate of 10 ° C./10 min on the same hot stirrer. After raising the temperature, the gel was dried at 140 ° C. and 400 rpm for about 5 hours until a gel was obtained. This gel was baked in the atmosphere using a desktop muffle furnace (manufactured by Denken Co., Ltd.) at 350 ° C.
  • Example 1 Production of water-based lithium ion secondary battery using precursor dispersion A of gelled solid electrolyte]
  • the rotation speed was 200 rpm, and the treatment time was 1 hour.
  • PTFE polytetrafluoroethylene, Daikin Industries, Ltd., 10 mg
  • a circularly shaped current collector nickel expanded metal, Sank Metal Co., Ltd., diameter 15 mm
  • acetylene black (Electrochemical Co., Ltd., 100 mg) was weighed in the same manner as the above positive electrode, and a zirconia mill pot and ball ( Dry mixing was performed using a planetary ball mill (manufactured by Ito Seisakusho, experimental planetary pot LP-4 / 2) using ⁇ 20 mm-2 pieces, ⁇ 15 mm-4 pieces, ⁇ 10 mm-15 pieces, ⁇ 3 mm-30 g).
  • the rotation speed was 200 rpm, and the treatment time was 1 hour.
  • the obtained mixed powder was transferred to an alumina crucible and annealed at 800 ° C. for 1 hour (increase / decrease rate of 200 ° C./hour) in a N 2 atmosphere using a small tube furnace (Koyo Thermo System Co., Ltd.).
  • PTFE polytetrafluoroethylene, Daikin Industries, Ltd., 10 mg
  • the obtained pellet (45 mg) was pressure-bonded to a circularly shaped current collector (nickel expanded metal, Sank Metal Co., Ltd., diameter 15 mm) to produce a negative electrode.
  • Example 1 Charge / Discharge Test (1)
  • the charge / discharge test was performed at a constant current, and the charge and discharge current density was 0.5 A / cm 2 and the voltage range was 0.6 V to 1.2 V.
  • a charge / discharge test was conducted at 25 ° C.
  • FIG. 3 shows the results of a constant current charge / discharge test (50 cycles) of the water based lithium ion secondary battery (1).
  • Example 2 Production of aqueous lithium ion secondary battery using precursor dispersion B of gelled solid electrolyte
  • the same procedure as in Example 1 was followed except that the gel-like solid electrolyte precursor dispersion A produced in Production Example 1 was changed to the gel-like solid electrolyte precursor dispersion B produced in Production Example 2.
  • An aqueous lithium ion secondary battery (2) was produced.
  • Example 2 Charge / Discharge Test (2)
  • a charge / discharge test was performed in the same procedure as in Example 2.
  • FIG. 4 shows the results of a constant current charge / discharge test (50 cycles) of the water based lithium ion secondary battery (2).
  • Example 3 Production of aqueous lithium ion secondary battery using precursor dispersion C of gel-like solid electrolyte
  • the same procedure as in Example 1 was followed except that the gel-like solid electrolyte precursor dispersion A produced in Production Example 1 was changed to the gel-like solid electrolyte precursor dispersion C produced in Production Example 3.
  • An aqueous lithium ion secondary battery (3) was produced.
  • Example 3 Charge / Discharge Test (3)
  • a charge / discharge test was carried out in the same procedure as in Example 2.
  • FIG. 3 shows the results of a constant current charge / discharge test (50 cycles) of the water based lithium ion secondary battery (3).
  • Comparative Test Example 1 Comparative Charge / Discharge Test (1)
  • a charge / discharge test was performed in the same procedure as in Example 2.
  • FIG. 3 shows the results of a constant current charge / discharge test (50 cycles) of the water based lithium ion secondary battery (4).
  • Comparative Test Example 2 Comparative Charge / Discharge Test (2)
  • a charge / discharge test was performed in the same procedure as in Example 2.
  • FIG. 4 shows the results of a constant current charge / discharge test (50 cycles) of the water based lithium ion secondary battery (5).
  • the discharge capacity of (3) exceeds the discharge capacity of the water-based lithium ion secondary battery (4) to which no gelling agent is added, and the surprising result is that the cycle characteristics are improved by the addition of the low molecular weight gelling agent. Obtained.
  • the aqueous lithium ion secondary battery (2) of Example 2 using a 2 mol / L Li 2 SO 4 aqueous solution (addition of a gelling agent) and the aqueous lithium ion secondary battery of Comparative Example 2 ( 5) When comparing (with no gelling agent added), the cycle characteristics of the two show almost the same tendency, and the deterioration of battery performance due to gelation observed when using the conventional polymer gelling agent is recognized. No results were obtained.
  • the aqueous lithium ion secondary battery (2) of Example 2 using a 2 mol / L Li 2 SO 4 aqueous solution (addition of a gelling agent) and the aqueous lithium ion secondary battery of Comparative Example 2 were used.
  • the water-based lithium ion secondary battery (5) was slightly exceeded, and the result was that the discharge characteristics at a high rate were improved by the addition of the low molecular gelling agent.
  • the results shown in the examples and comparative examples are the decrease in lithium ion movement due to the presence of the gelling agent and the increase in the viscosity of the solution, the decrease in electrical conductivity and the decrease in charge / discharge capacity due to this. This completely overturned the predictions derived from the knowledge obtained with secondary batteries using conventional gel electrolytes.
  • the factor that resulted in the discharge capacity being equivalent to or exceeding that of a secondary battery using a liquid electrolyte with no gelling agent added is Although it is not certain, as one of them, it leads to increasing the abundance ratio of lithium ions from the lithium salt by the action of carboxyl group and imidazole group present in the lipid peptide type low molecular gelling agent used in the present invention. It is conceivable that the electric conduction was improved without lowering the charge / discharge, and the battery performance in the aqueous lithium ion secondary battery was improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

[Problem] To provide a novel aqueous lithium ion secondary battery whereby it becomes possible to solve the problem of safety inherent in conventionally proposed batteries utilizing a non-aqueous solvent and also solve the problem of deterioration in battery properties caused by the gelatinization of an electrolytic solution. [Solution] An aqueous lithium ion secondary battery provided with a positive electrode, a negative electrode and a gel-like solid electrolyte, said secondary battery being characterized in that the gel-like solid electrolyte comprises a solid electrolyte salt, water and at least one lipid-peptide-type gelatinizing agent selected from a compound represented by formula (1) (wherein R1 represents a C9-23 aliphatic group; R2 represents a hydrogen atom or a C1-4 alkyl group having a C1-2 branched chain; R3 represents a group -(CH2)n-X; n represents a numerical value of 1 to 4; X represents an amino group, a guanidino group, a group -CONH2, or a 5-membered ring, a 6-membered ring or a fused heterocyclic ring composed of a 5-membered ring and a 6-membered ring each of which may have 1 to 3 nitrogen atoms) and analogous compounds and pharmaceutically usable salts thereof.

Description

水系リチウムイオン二次電池Water-based lithium ion secondary battery
 本発明は、ゲル状の固体電解質を備えた水系リチウムイオン二次に関し、詳細には、低分子脂質ペプチド型ゲル化剤を用いたイオン伝導性のゲル状固体電解質を備えた水系リチウムイオン二次電池に関する。 The present invention relates to an aqueous lithium ion secondary provided with a gel-like solid electrolyte, and more specifically, an aqueous lithium ion secondary provided with an ion conductive gel-like solid electrolyte using a low molecular lipid peptide type gelling agent. It relates to batteries.
 近年、高電圧・高エネルギー密度という利点を有し、かつ、自己放電率も低いことから、鉛電池、ニッケルカドミウム電池等の水溶液系二次電池に代わるものとして、非水電解液二次電池が注日されており、その一部は既に商品化されている。例えば、ノート型パソコンや携帯電話等は、その半数以上が非水電解液二次電池によって駆動している。 In recent years, non-aqueous electrolyte secondary batteries have the advantages of high voltage and high energy density and low self-discharge rate, so that non-aqueous electrolyte secondary batteries can be used as alternatives to aqueous secondary batteries such as lead batteries and nickel cadmium batteries. It has been ordered and some of them have already been commercialized. For example, more than half of notebook computers and mobile phones are driven by non-aqueous electrolyte secondary batteries.
 また、近年の電子機器等の小型化、軽量化の要求に対し、最近では電池ケースとして従来の金属ケースの代わりにラミネートフィルムを用いたラミネート電池が、より軽く、薄く、形状自由度が高いことから注目されている。しかしながら、ラミネート電池は、その構造から、内圧上昇等の内的刺激や、引き裂き等の外的刺激に対する抵抗力が弱く、変形や破損等による破裂、発火等の危険性も高く、結局のところ電池パックケースに格納して用いられることが多く、軽量化の達成にいたっていない。また該ラミネート電池も、他の非水電解液電池と同様に、電解液としてエステル化合物及びエーテル化合物等の可燃性有機溶媒が一般に用いられており、該可燃性有機溶媒が電池の破裂、発火等の問題を引き起こす大きな原因の一つとなっている。 Also, in response to the recent demand for smaller and lighter electronic devices, laminate batteries that use laminate films instead of conventional metal cases are lighter, thinner, and more flexible in shape. Has been attracting attention. However, because of its structure, laminated batteries are weak in resistance to internal stimuli such as an increase in internal pressure and external stimuli such as tearing, and there is a high risk of rupture and ignition due to deformation or breakage. It is often used by being stored in a pack case, and the weight reduction has not been achieved. In addition, as with other non-aqueous electrolyte batteries, the laminate battery generally uses a flammable organic solvent such as an ester compound and an ether compound as the electrolyte, and the flammable organic solvent causes the battery to burst, ignite, etc. This is one of the major causes of problems.
 このような問題を解決する一例として、高分子中に電解質が均一固溶した形態をとった高分子固体電解質が提案されているが、該高分子固体電解質は、イオン伝導度が液状電解質に比較して著しく低いために実用上問題がある。また、最近では、上記高分子に従来用いられている液状の電解質を含浸させたポリマーゲル電解質が、電池外部への液漏れによる電解液の着火の問題を解決する手法として提案されている。しかしながら、該ポリマーゲル電解質を用いた電池は、液漏れ以外に対する安全性の確保という点では、これまでの非水系電解質を用いた電池と同様の問題(例えば、電池異常時の短絡・過充電等)を抱えており、電池そのものが根本的に安全であるわけではない。 As an example of solving such a problem, a polymer solid electrolyte having a form in which a solid electrolyte is uniformly dissolved in a polymer has been proposed. The polymer solid electrolyte has a higher ionic conductivity than a liquid electrolyte. Therefore, there is a problem in practical use because it is extremely low. Recently, a polymer gel electrolyte obtained by impregnating the above polymer with a liquid electrolyte conventionally used has been proposed as a technique for solving the problem of electrolyte ignition due to liquid leakage to the outside of the battery. However, the battery using the polymer gel electrolyte has the same problems as conventional batteries using non-aqueous electrolytes (for example, short circuit, overcharge, etc. when the battery is abnormal) in terms of ensuring safety against liquid leakage. ) And the battery itself is not fundamentally safe.
 近年、新たな様式の電池としては、1MのLi2SO4を水溶性ポリマーであるポリビニルアセトアミドでゲル化させ、ゲル電解質とした水系リチウム電池が報告されている(特許文献1)。
 上述のような水系リチウム二次電池は、電解液に有機溶媒を用いることがないため基本的には燃焼・発火することがなく、従来提案された二次電池における発火という問題を回避することが出来ることが期待される。さらに、製造工程において水分管理を必要としないため、製造コストを大幅に低減できる。
 また、水溶液系の電解液は非水系電解液に比べて一般的に伝導度が高いため、非水系リチウム二次電池に比べて内部抵抗を低くできるという利点も期待される。
 このように、水系の電解液を使用した電池において、電解液をゲル化剤でゲル化させて用いることで、発火・液漏れの問題に対応し大幅に安全性が向上し、製造管理が容易であり、かつ内部抵抗を低くできるといった様々な利点を備えた二次電池となることが期待されている。
In recent years, as a new type of battery, an aqueous lithium battery in which 1M Li 2 SO 4 is gelled with a water-soluble polymer polyvinyl acetamide to form a gel electrolyte has been reported (Patent Document 1).
The aqueous lithium secondary battery as described above does not use an organic solvent in the electrolyte solution, and therefore basically does not burn or ignite, and avoids the problem of ignition in the conventionally proposed secondary battery. It is expected to be possible. Furthermore, since manufacturing process does not require moisture management, the manufacturing cost can be greatly reduced.
Moreover, since the aqueous electrolyte generally has higher conductivity than the non-aqueous electrolyte, an advantage that the internal resistance can be lowered as compared with the non-aqueous lithium secondary battery is also expected.
In this way, in a battery using an aqueous electrolyte, the electrolyte is gelled with a gelling agent, so that safety is greatly improved in response to problems of ignition and liquid leakage, and manufacturing management is easy. In addition, it is expected to be a secondary battery having various advantages such as low internal resistance.
特開2001-102086号公報JP 2001-102086 A
 上述したように、一般のリチウム電池は電解液に非水系の溶媒が使用されているため、電池の破損による液漏れ等が起こった場合、引火・爆発の危険があり、電池の製造及び使用に際し安全性に大きな問題を抱えている。非水系の電解液をゲル化させたリチウムポリマーゲル電池では液漏れの危険性は回避されるが、基本的に非水系の溶媒を使用しているため、引火・爆発を完全に回避するまでにはいたっていない。 As described above, since non-aqueous solvents are used for electrolytes in general lithium batteries, there is a risk of ignition or explosion if liquid leakage occurs due to battery damage. I have a big safety problem. Lithium polymer gel batteries in which non-aqueous electrolytes are gelled avoid the risk of leakage, but basically use non-aqueous solvents so that ignition and explosion can be completely avoided. Yes, not.
 一方、水系のリチウム電池については、電解液に非水系の溶媒を使用しないため、引火・爆発の危険性は回避できるものの、水溶液を用いた場合には電池の破損による液漏れは回避することができない。
 またこれまで提案された水系リチウムポリマーゲル電池は、ゲル化剤を使用していない水系電解液の電池と比較して、ゲル化剤の存在及び溶液の高粘度化に起因してリチウムイオンの移動が低下し、これにより電気伝導度の低下や充放電容量の劣化がみられ、電解液をゲル化させることによる電池特性の低下という別の問題が生じることが懸念されている。
On the other hand, water-based lithium batteries do not use non-aqueous solvents in the electrolyte, so the risk of ignition and explosion can be avoided, but when aqueous solutions are used, leakage due to battery damage can be avoided. Can not.
In addition, the aqueous lithium polymer gel batteries proposed so far are more effective in the migration of lithium ions due to the presence of the gelling agent and the higher viscosity of the solution compared to the battery of the aqueous electrolyte without the gelling agent. As a result, there is a concern that a decrease in electric conductivity and a decrease in charge / discharge capacity are observed, which causes another problem of deterioration in battery characteristics due to gelation of the electrolytic solution.
 本発明は、上記の事情に基づいてなされたものであり、その解決しようとする課題は、従来提案された非水系の溶媒を使用した電池につきまとう安全性への不安の問題の解決を図り、且つ、電解液のゲル化による電池特性の低下という問題をも解決できる、新規な水系リチウムイオン二次電池を提供することにある。 The present invention has been made on the basis of the above circumstances, and the problem to be solved is to solve the problem of safety anxiety associated with a battery using a conventionally proposed non-aqueous solvent, Another object of the present invention is to provide a novel aqueous lithium ion secondary battery that can also solve the problem of deterioration of battery characteristics due to gelation of the electrolyte.
 本発明者らは、上記の課題を解決すべく鋭意研究を行った結果、水系リチウムイオン二次電池の固体電解質として、低分子脂質ペプチド又はその薬学的に使用可能な塩からなる脂質ペプチド型ゲル化剤と、固体電解質塩及び水とを含むゲル状の固体電解質を採用することにより、従来の電解質において問題とされた有機溶媒の使用における安全性確保の問題の解決を図り、且つ、良好なイオン伝導性を有し、従来の液状の電解質を用いた電池と同様の充放電特性が得られることを見出し、本発明を完成させた。 As a result of intensive studies to solve the above problems, the present inventors have found that a lipid peptide gel comprising a low molecular weight lipid peptide or a pharmaceutically usable salt thereof as a solid electrolyte of an aqueous lithium ion secondary battery. By adopting a gel-like solid electrolyte containing an agent, a solid electrolyte salt and water, the problem of ensuring safety in the use of an organic solvent, which has been a problem in conventional electrolytes, is solved, and good The inventors have found that charge / discharge characteristics similar to those of a battery having ion conductivity and using a conventional liquid electrolyte can be obtained, and the present invention has been completed.
 すなわち、本発明は、第1観点として、正極および負極と、ゲル状の固体電解質とを備える水系リチウムイオン二次電池であって、前記ゲル状の固体電解質は、固体電解質塩と、水と、下記式(1)乃至式(3):
Figure JPOXMLDOC01-appb-C000004
(式中、R1は炭素原子数9乃至23の脂肪族基を表し、R2は水素原子、又は炭素原子数1若しくは2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基を表し、R3は-(CH2n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環若しくは6員環又は5員環と6員環から構成される縮合複素環を表す。)
Figure JPOXMLDOC01-appb-C000005
(式中、R4は炭素原子数9乃至23の脂肪族基を表し、R5乃至R7はそれぞれ独立して水素原子、炭素原子数1若しくは2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、又は-(CH2n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環若しくは6員環又は5員環と6員環から構成される縮合複素環を表す。)
Figure JPOXMLDOC01-appb-C000006
(式中、R8は炭素原子数9乃至23の脂肪族基を表し、R9乃至R12はそれぞれ独立して水素原子、炭素原子数1若しくは2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、又は-(CH2n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環若しくは6員環又は5員環と6員環から構成される縮合複素環を表す。)で表される化合物又はその薬学的に使用可能な塩のうちの少なくとも一種からなる脂質ペプチド型ゲル化剤とを含むことを特徴とする、水系リチウムイオン二次電池に関する。
 第2観点として、前記ゲル状の固体電解質が、さらに水溶性のポリマーを含むことを特徴とする、第1観点に記載の水系リチウムイオン二次電池に関する。
 第3観点として、前記水溶性ポリマーが、ゼラチン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉、セルロース及びその誘導体、ポリエチレンオキサイド、ポリサッカライド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース及びこれらの混合物からなる群から選択されることを特徴とする、第2観点に記載の水系リチウムイオン二次電池に関する。
 第4観点として、前記水溶性ポリマーが、ポリビニルアルコール(PVA)であることを特徴とする、第3観点に記載の水系リチウムイオン二次電池に関する。
 第5観点として、前記ゲル状の固体電解質がさらに非水系の溶媒を含むことを特徴とする、第1観点乃至第4観点のうち何れか一項に記載の水系リチウムイオン二次電池に関する。
 第6観点として、前記非水系の溶媒が、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドン、テトラヒドロフラン、メタノール、エタノール、n-プロパノール、イソプロパノール、1,2-ジエトキシエタン(エチレングリコールジエチルエーテル)、酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、アセトニトリル及びこれらの2種以上の混合物からなる群から選択される溶媒であることを特徴とする、第5観点に記載の水系リチウムイオン二次電池に関する。
 第7観点として、前記非水系の溶媒が、N-メチル-2-ピロリドンであることを特徴とする、第6観点に記載の水系リチウムイオン二次電池に関する。
 第8観点として、前記正極が、正極活物質、導電補助材及びバインダーを含み、前記負極が、負極活物質、導電補助材及びバインダーを含むことを特徴とする、第1観点乃至第7観点のうち何れか一項に記載の水系リチウムイオン二次電池に関する。
 第9観点として、前記正極活物質及び前記負極活物質はともに、リチウムイオンを挿入および脱離可能なリチウム-遷移金属複合酸化物からなるが、両活物質は相異なるものであることを特徴とする、第8観点記載の水系リチウムイオン二次電池に関する。
 第10観点として、前記正極活物質が、Co、Ni、Mn、Cr、V、Ti、及びFeから選ばれる1種以上の遷移金属元素を含有するリチウム-遷移金属複合酸化物からなることを特徴とする、第9観点記載の水系リチウムイオン二次電池に関する。
 第11観点として、前記正極活物質が、LiFePO4であることを特徴とする、第10観点記載の水系リチウムイオン二次電池に関する。
 第12観点として、前記負極活物質が、V、Ti、及びFeから選ばれる1種以上の遷移金属元素を含有するリチウム-遷移金属複合酸化物からなることを特徴とする、第9観点記載の水系リチウムイオン二次電池に関する。
 第13観点として、前記負極活物質が、LiTi2(PO43であることを特徴とする、第12観点記載の水系リチウムイオン二次電池に関する。
 第14観点として、前記導電補助材が、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウィスカー、炭素繊維、天然黒鉛、人造黒鉛、カーボンナノ粒子、カーボンナノチューブ、酸化チタン、酸化ルテニウム、アルミニウム、ニッケル及びこれらの混合物からなる群から選択されることを特徴とする、第8観点記載の水系リチウムイオン二次電池に関する。
 第15観点として、前記導電補助材が、アセチレンブラックであることを特徴とする、第14観点記載の水系リチウムイオン二次電池に関する。
 第16観点として、前記バインダーが、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体及びエチレン-アクリル酸共重合体からなる群から選択されることを特徴とする、第8観点記載の水系リチウムイオン二次電池に関する。
 第17観点として、前記バインダーが、ポリテトラフルオロエチレン(PTFE)であることを特徴とする、第16観点記載の水系リチウムイオン二次電池に関する。
 第18観点として、前記固体電解質塩が、LiNO3、LiOH、LiF、LiCl、LiBr、LiI、LiClO4、Li2SO4、Li(CH3COO)、LiBF4、LiPF6、LiN(CF3SO22、LiN(C25SO22、Li2O、Li2CO3及びこれらの混合物からなる群から選択されることを特徴とする、第1観点乃至第17観点のうち何れか一項に記載の水系リチウムイオン二次電池に関する。
 第19観点として、前記固体電解質塩がLiClO4又はLi2SO4であることを特徴とする、第18観点に記載の水系リチウムイオン二次電池に関する。
That is, the present invention, as a first aspect, is a water based lithium ion secondary battery comprising a positive electrode and a negative electrode, and a gel solid electrolyte, the gel solid electrolyte comprising a solid electrolyte salt, water, The following formulas (1) to (3):
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 represents an aliphatic group having 9 to 23 carbon atoms, and R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a branched chain having 1 or 2 carbon atoms. R 3 represents a — (CH 2 ) n —X group, n represents a number of 1 to 4, X represents an amino group, a guanidino group, a —CONH 2 group, or 1 to 3 nitrogen atoms. And represents a condensed heterocyclic ring composed of a 5-membered ring or a 6-membered ring or a 5-membered ring and a 6-membered ring.)
Figure JPOXMLDOC01-appb-C000005
(Wherein R 4 represents an aliphatic group having 9 to 23 carbon atoms, and R 5 to R 7 each independently represents a hydrogen atom or a carbon atom having a branched chain having 1 or 2 carbon atoms. 1 to 4 alkyl groups or — (CH 2 ) n —X group, n represents a number of 1 to 4, and X represents an amino group, a guanidino group, a —CONH 2 group, or a nitrogen atom of 1 to 3 This represents a 5-membered ring or 6-membered ring which may have one or a fused heterocyclic ring composed of a 5-membered ring and a 6-membered ring
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 8 represents an aliphatic group having 9 to 23 carbon atoms, and R 9 to R 12 each independently represents a hydrogen atom, or a carbon atom number that can have a branched chain having 1 or 2 carbon atoms. 1 to 4 alkyl groups or — (CH 2 ) n —X group, n represents a number of 1 to 4, and X represents an amino group, a guanidino group, a —CONH 2 group, or a nitrogen atom of 1 to 3 A 5-membered ring or a 6-membered ring or a condensed heterocyclic ring composed of a 5-membered ring and a 6-membered ring.) Or a pharmaceutically usable salt thereof The present invention relates to an aqueous lithium ion secondary battery comprising a lipid peptide type gelling agent.
As a second aspect, the present invention relates to the aqueous lithium ion secondary battery according to the first aspect, characterized in that the gel-like solid electrolyte further contains a water-soluble polymer.
As a third aspect, the water-soluble polymer is gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinyl amine, chitosan, polylysine, polyacrylic acid, poly The aqueous lithium ion secondary battery according to the second aspect, which is selected from the group consisting of alginic acid, polyhyaluronic acid, carboxycellulose, and a mixture thereof.
As a 4th viewpoint, the said water-soluble polymer is polyvinyl alcohol (PVA), It is related with the water based lithium ion secondary battery as described in a 3rd viewpoint.
As a fifth aspect, the present invention relates to the aqueous lithium ion secondary battery according to any one of the first to fourth aspects, wherein the gel-like solid electrolyte further contains a non-aqueous solvent.
As a sixth aspect, the non-aqueous solvent is N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, tetrahydrofuran , Methanol, ethanol, n-propanol, isopropanol, 1,2-diethoxyethane (ethylene glycol diethyl ether), ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether acetate, diethyl A solvent selected from the group consisting of carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, acetonitrile and a mixture of two or more thereof. Relates to aqueous lithium ion secondary battery according to the fifth aspect.
A seventh aspect relates to the aqueous lithium ion secondary battery according to the sixth aspect, wherein the non-aqueous solvent is N-methyl-2-pyrrolidone.
As an eighth aspect, the positive electrode includes a positive electrode active material, a conductive auxiliary material, and a binder, and the negative electrode includes a negative electrode active material, a conductive auxiliary material, and a binder. The present invention relates to the aqueous lithium ion secondary battery according to any one of the above.
As a ninth aspect, the positive electrode active material and the negative electrode active material are both composed of a lithium-transition metal composite oxide capable of inserting and removing lithium ions, but the two active materials are different from each other. The present invention relates to an aqueous lithium ion secondary battery according to an eighth aspect.
As a tenth aspect, the positive electrode active material is composed of a lithium-transition metal composite oxide containing one or more transition metal elements selected from Co, Ni, Mn, Cr, V, Ti, and Fe. And an aqueous lithium ion secondary battery according to the ninth aspect.
As an eleventh aspect, the present invention relates to the water based lithium ion secondary battery according to the tenth aspect, wherein the positive electrode active material is LiFePO 4 .
According to a twelfth aspect, in the ninth aspect, the negative electrode active material is composed of a lithium-transition metal composite oxide containing one or more transition metal elements selected from V, Ti, and Fe. The present invention relates to an aqueous lithium ion secondary battery.
As a thirteenth aspect, the present invention relates to the aqueous lithium ion secondary battery according to the twelfth aspect, wherein the negative electrode active material is LiTi 2 (PO 4 ) 3 .
As a fourteenth aspect, the conductive auxiliary material is carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, carbon nanoparticle, carbon nanotube, titanium oxide, ruthenium oxide, aluminum, nickel and The water-based lithium ion secondary battery according to the eighth aspect, which is selected from the group consisting of these mixtures.
As a fifteenth aspect, the present invention relates to the aqueous lithium ion secondary battery according to the fourteenth aspect, wherein the conductive auxiliary material is acetylene black.
In a sixteenth aspect, the binder is polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene- Hexafluoropropylene copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene- Tetrafluoroethylene copolymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoro Tylene copolymer, ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer and ethylene -The water-based lithium ion secondary battery according to the eighth aspect, which is selected from the group consisting of acrylic acid copolymers.
As a seventeenth aspect, the present invention relates to the aqueous lithium ion secondary battery according to the sixteenth aspect, wherein the binder is polytetrafluoroethylene (PTFE).
As an eighteenth aspect, the solid electrolyte salt is LiNO 3 , LiOH, LiF, LiCl, LiBr, LiI, LiClO 4 , Li 2 SO 4 , Li (CH 3 COO), LiBF 4 , LiPF 6 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , Li 2 O, Li 2 CO 3 and a mixture thereof, any one of the first to seventeenth aspects The aqueous lithium ion secondary battery according to claim 1.
As a nineteenth aspect, the present invention relates to the aqueous lithium ion secondary battery according to the eighteenth aspect, wherein the solid electrolyte salt is LiClO 4 or Li 2 SO 4 .
 本発明のゲル状の固体電解質を有する水系リチウムイオン二次電池によれば、溶媒として非水系の溶媒である水を用いていることにより、電池の破損による液漏れ等が原因による引火や爆発の危険性を回避できる。このため、一般のリチウム電池や非水系溶媒の電解液をゲル化させて用いている電池と比較すると安全性を大幅に向上させることができる。 According to the aqueous lithium ion secondary battery having a gel-like solid electrolyte of the present invention, by using water as a non-aqueous solvent as a solvent, there is a risk of ignition or explosion due to liquid leakage due to battery damage or the like. Risk can be avoided. For this reason, compared with the battery which gelatinizes and uses the electrolyte solution of a general lithium battery and a nonaqueous solvent, safety | security can be improved significantly.
 また本発明の水系リチウムイオン二次電池は、従来提案された水系リチウム電池でみられた電池性能の劣化が抑制され、従来の液状の電解質を用いた電池と同様の充放電特性を得ることができる。 In addition, the aqueous lithium ion secondary battery of the present invention can suppress the deterioration of battery performance seen in the conventionally proposed aqueous lithium battery, and can obtain the same charge / discharge characteristics as a battery using a conventional liquid electrolyte. it can.
図1は、実施例及び比較例の水系リチウムイオン二次電池の模式図である。FIG. 1 is a schematic view of water-based lithium ion secondary batteries of Examples and Comparative Examples. 図2は、本発明の水系リチウムイオン二次電池に使用する、ゲル状の固体電解質の前駆体分散液の製造に用いるビーズミルを示す図である(図2中、(a)ビーズミル、(b)回転翼部分の断面)。FIG. 2 is a diagram showing a bead mill used for producing a gel-like solid electrolyte precursor dispersion used in the aqueous lithium ion secondary battery of the present invention (in FIG. 2, (a) a bead mill, (b). Cross section of rotor part). 図3は、実施例1の水系リチウムイオン二次電池(1)、実施例3の水系リチウムイオン二次電池(3)及び比較例1の水系リチウムイオン二次電池(4)の定電流充放電試験の結果(サイクル特性)を示す図である。FIG. 3 shows constant current charge / discharge of the aqueous lithium ion secondary battery (1) of Example 1, the aqueous lithium ion secondary battery (3) of Example 3, and the aqueous lithium ion secondary battery (4) of Comparative Example 1. It is a figure which shows the result (cycle characteristic) of a test. 図4は、実施例2の水系リチウムイオン二次電池(2)及び比較例2の水系リチウムイオン二次電池(5)の定電流充放電試験の結果(サイクル特性)を示す図である。FIG. 4 is a diagram showing the results (cycle characteristics) of a constant current charge / discharge test of the water based lithium ion secondary battery (2) of Example 2 and the water based lithium ion secondary battery (5) of Comparative Example 2. 図5は、実施例1の水系リチウムイオン二次電池(1)、実施例3の水系リチウムイオン二次電池(3)及び比較例1の水系リチウムイオン二次電池(4)の定電流充放電試験の結果(レート特性)を示す図である。FIG. 5 shows constant-current charge / discharge of the aqueous lithium ion secondary battery (1) of Example 1, the aqueous lithium ion secondary battery (3) of Example 3, and the aqueous lithium ion secondary battery (4) of Comparative Example 1. It is a figure which shows the result (rate characteristic) of a test. 図6は、実施例2の水系リチウムイオン二次電池(2)及び比較例2の水系リチウムイオン二次電池(5)の定電流充放電試験の結果(レート特性)を示す図である。6 is a graph showing the results (rate characteristics) of constant current charge / discharge tests of the aqueous lithium ion secondary battery (2) of Example 2 and the aqueous lithium ion secondary battery (5) of Comparative Example 2. FIG.
 本発明は、それぞれリチウムイオンの挿入および脱離が可能である物質からなる正極および負極と、リチウム塩が溶解した水溶液を含むゲル状の固体電解質(以降、単にゲル電解質とも称する)とを少なくとも備えた水系リチウムイオン二次電池に関する。このゲル電解質は、固体電解質塩(リチウム塩)と、水と、前記式(1)乃至式(3)で表される化合物又はその薬学的に使用可能な塩のうちの少なくとも一種からなる脂質ペプチド型ゲル化剤を含む、ゲル状の固体電解質である。
 特に本発明は、水系リチウムイオン二次電池の電解質として、脂質ペプチド型ゲル化剤を含むゲル状の固体電解質を用いていることを大きな特徴とする。
 以下、各構成成分について説明する。
The present invention includes at least a positive electrode and a negative electrode made of a material capable of inserting and desorbing lithium ions, respectively, and a gel-like solid electrolyte (hereinafter also simply referred to as a gel electrolyte) containing an aqueous solution in which a lithium salt is dissolved. The present invention relates to an aqueous lithium ion secondary battery. The gel electrolyte is a lipid peptide comprising at least one of a solid electrolyte salt (lithium salt), water, a compound represented by the above formulas (1) to (3), or a pharmaceutically usable salt thereof. It is a gel-like solid electrolyte containing a mold gelling agent.
In particular, the present invention is characterized in that a gel-like solid electrolyte containing a lipid peptide type gelling agent is used as an electrolyte of an aqueous lithium ion secondary battery.
Hereinafter, each component will be described.
[正極]
 本発明の水系リチウム二次電池において用いる正極としては、従来よりリチウム二次電池の正極として提案されている正極を使用可能である。
 例えば正極は、正極活物質と導電補助材とバインダーとを含むものから構成され、具体的には、該正極活物質と導電補助材にバインダーを加えた正極材料を集電体に圧着させて形成される。
[Positive electrode]
As the positive electrode used in the aqueous lithium secondary battery of the present invention, a positive electrode conventionally proposed as a positive electrode for a lithium secondary battery can be used.
For example, the positive electrode is composed of a positive electrode active material, a conductive auxiliary material, and a binder, and specifically, a positive electrode material obtained by adding a binder to the positive electrode active material and the conductive auxiliary material is formed by pressure bonding to a current collector. Is done.
 前記正極活物質としては、リチウムイオンを挿入および脱離可能なリチウム-遷移金属複合酸化物からなり、具体的には、リチウムイオンの挿入又は脱離に伴って価数が変化する遷移金属元素としてCo、Ni、Mn、Cr、V、Ti、及びFeから選ばれる1種以上を含有するリチウム-遷移金属複合酸化物からなる。また、このリチウム-遷移金属複合酸化物はそのレドックス電位が水の電位窓の範囲内にあり、水の酸化分解による酸素発生を伴わずにリチウムイオンの挿入脱離反応が行えること、そして充放電の全組成域にわたって水に溶解しないことという2つの条件を満たすものであれば、特に限定されない。例えば、LiFePO4やLiMnPO4、LiNiO2、Li32(PO43、LiMn24等の複合酸化物を挙げることができる。
 但し、正極活物質は、後述する負極に含まれるリチウム-遷移金属複合酸化物とは異なる複合酸化物であることが好ましい。
 前記正極活物質の中でも、LiFePO4を用いることがより好ましい。
The positive electrode active material is composed of a lithium-transition metal composite oxide capable of inserting and desorbing lithium ions, and specifically, as a transition metal element whose valence changes with the insertion or desorption of lithium ions. It consists of a lithium-transition metal composite oxide containing one or more selected from Co, Ni, Mn, Cr, V, Ti, and Fe. In addition, this lithium-transition metal composite oxide has a redox potential within the range of the potential window of water, and can perform insertion / extraction reaction of lithium ions without generation of oxygen due to oxidative decomposition of water, and charge / discharge As long as the two conditions of not dissolving in water over the entire composition range are satisfied, there is no particular limitation. For example, composite oxides such as LiFePO 4 , LiMnPO 4 , LiNiO 2 , Li 3 V 2 (PO 4 ) 3 , and LiMn 2 O 4 can be given.
However, the positive electrode active material is preferably a composite oxide different from a lithium-transition metal composite oxide contained in the negative electrode described later.
Among the positive electrode active materials, it is more preferable to use LiFePO 4 .
 前記バインダーとしては、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体又はエチレン-アクリル酸共重合体を用いることが可能である。
 中でも、本発明において、使用するバインダーとしてはポリテトラフルオロエチレン(PTFE)を用いることが好ましい。
Examples of the binder include polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, fluoro rubber, tetrafluoroethylene-hexafluoroethylene copolymer, and tetrafluoroethylene-hexafluoropropylene copolymer. Polymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer Polymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer , Ethylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer or ethylene-acrylic acid Copolymers can be used.
Among them, in the present invention, it is preferable to use polytetrafluoroethylene (PTFE) as the binder to be used.
 前記導電補助材としては、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウィスカー、炭素繊維、天然黒鉛、人造黒鉛、カーボンナノ粒子、カーボンナノチューブなどの炭素材料、或いは、酸化チタン、酸化ルテニウム、アルミニウム、ニッケルなどの金属又は金属酸化物を使用することが可能である。これら導電補助材の形状としては、粉状、球状、フレーク状、フィラメント状、繊維状、スパイク状、針状などから選択される形状を採用することができる。
 本発明において、使用する導電補助材としては、アセチレンブラックであることが好ましい。
As the conductive auxiliary material, carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, carbon nanoparticles, carbon nanotubes and other carbon materials, or titanium oxide, ruthenium oxide, aluminum, Metals such as nickel or metal oxides can be used. As the shape of these conductive auxiliary materials, a shape selected from powder, sphere, flake, filament, fiber, spike, needle and the like can be adopted.
In the present invention, the conductive auxiliary material used is preferably acetylene black.
 さらに、前記集電体としては、ステンレスメッシュ、ニッケルメッシュ、金メッシュ等を用いることができる。 Furthermore, stainless steel mesh, nickel mesh, gold mesh or the like can be used as the current collector.
[負極]
 本発明の水系リチウム二次電池において用いる負極としては、従来よりリチウム二次電池の負極として提案されている負極を使用可能である。
 例えば負極は、負極活物質と導電補助材とバインダーとを含むものから構成され、具体的には、該負極活物質と導電補助材にバインダーを加えた負極材料を集電体に圧着させて形成される。
 ここで負極に用いられる導電補助材、バインダー及び集電体は、前述の[正極]において挙げたものを好適に使用できる。
[Negative electrode]
As the negative electrode used in the aqueous lithium secondary battery of the present invention, a negative electrode conventionally proposed as a negative electrode for a lithium secondary battery can be used.
For example, a negative electrode is composed of a negative electrode active material, a conductive auxiliary material, and a binder. Specifically, a negative electrode material obtained by adding a binder to the negative electrode active material, a conductive auxiliary material, and a current collector are formed on the current collector. Is done.
Here, as the conductive auxiliary material, the binder, and the current collector used for the negative electrode, those mentioned in the above [Positive electrode] can be preferably used.
 前記負極活物質としては、リチウムイオンを挿入および脱離可能なリチウム-遷移金属複合酸化物からなり、具体的にはリチウムイオンの挿入および脱離に伴って価数が変化する遷移金属元素としてV、Ti、及びFeから選ばれる1種以上を含有するリチウム-遷移金属複合酸化物からなる。また、そのレドックス電位が水の電位窓の範囲内にあり、水の還元分解による水素発生を伴わずにリチウムイオンの挿入脱離反応が行えること、そして充放電の全組成域にわたって水に溶解しないことという2つの条件を満たすものであれば、特に限定されない。例えばLiTi2(PO43やLi32(PO43、LiMn24、VO2、LiV33、Li2Mn49、Li4Mn512等の複合酸化物を挙げることができる。
 但し負極活物質は、前述した正極に含まれるリチウム-遷移金属複合酸化物とは異なる複合酸化物であることが好ましい。
 前記負極活物質の中でも、LiTi2(PO43を使用することがより好ましい。
The negative electrode active material is composed of a lithium-transition metal composite oxide capable of inserting and removing lithium ions, and specifically, V as a transition metal element whose valence changes with the insertion and removal of lithium ions. And a lithium-transition metal composite oxide containing at least one selected from Ti, Fe, and Fe. In addition, the redox potential is within the range of the potential window of the water, the lithium ion insertion / desorption reaction can be performed without hydrogen generation by reductive decomposition of water, and it does not dissolve in water over the entire charge / discharge composition range. As long as the two conditions are satisfied, there is no particular limitation. For example, complex oxides such as LiTi 2 (PO 4 ) 3 , Li 3 V 2 (PO 4 ) 3 , LiMn 2 O 4 , VO 2 , LiV 3 O 3 , Li 2 Mn 4 O 9 , Li 4 Mn 5 O 12 Can be mentioned.
However, the negative electrode active material is preferably a composite oxide different from the lithium-transition metal composite oxide contained in the positive electrode described above.
Among the negative electrode active materials, it is more preferable to use LiTi 2 (PO 4 ) 3 .
[ゲル状の固体電解質]
<脂質ペプチド型ゲル化剤>
 本発明においてゲル状の固体電解質に用いられる脂質ペプチド型ゲル化剤としては、下記式(1)乃至式(3)で表される化合物(脂質ペプチド)又はその薬学的に使用可能な塩(疎水性部位である脂質部と親水性部位であるペプチド部とを有する低分子化合物)を用いることができる。
Figure JPOXMLDOC01-appb-C000007
[Gel-like solid electrolyte]
<Lipid peptide type gelling agent>
In the present invention, the lipid peptide-type gelling agent used for the gel solid electrolyte is a compound (lipid peptide) represented by the following formulas (1) to (3) or a pharmaceutically usable salt thereof (hydrophobic). A low molecular weight compound having a lipid part which is a sex part and a peptide part which is a hydrophilic part).
Figure JPOXMLDOC01-appb-C000007
 上記式(1)において、R1は炭素原子数9乃至23の脂肪族基を表し、好ましくは、R1は不飽和結合を0乃至2個有し得る炭素原子数11乃至23の直鎖状脂肪族基であることが望ましい。
 R1は及び隣接するカルボニル基で構成される脂質部(アシル基)の具体例としては、ラウロイル基、ドデシルカルボニル基、ミリストイル基、テトラデシルカルボニル基、パルミトイル基、マルガロイル基、オレオイル基、エライドイル基、リノレオイル基、ステアロイル基、バクセノイル基、オクタデシルカルボニル基、アラキドイル基、エイコシルカルボニル基、ベヘノイル基、エルカノイル基、ドコシルカルボニル基、リグノセイル基、ネルボノイル基等を挙げることができ、特に好ましいものとして、ラウロイル基、ミリストイル基、パルミトイル基、マルガロイル基、ステアロイル基、オレオイル基、エライドイル基及びベヘノイル基が挙げられる。
In the above formula (1), R 1 represents an aliphatic group having 9 to 23 carbon atoms, and preferably R 1 is a straight chain having 11 to 23 carbon atoms which may have 0 to 2 unsaturated bonds. An aliphatic group is desirable.
Specific examples of the lipid moiety (acyl group) composed of R 1 and the adjacent carbonyl group include lauroyl group, dodecylcarbonyl group, myristoyl group, tetradecylcarbonyl group, palmitoyl group, margaroyl group, oleoyl group, and eridoyl. Group, linoleoyl group, stearoyl group, baccenoyl group, octadecylcarbonyl group, arachidyl group, eicosylcarbonyl group, behenoyl group, ercanoyl group, docosylcarbonyl group, lignoceyl group, nerbonoyl group, etc. , Lauroyl group, myristoyl group, palmitoyl group, margaroyl group, stearoyl group, oleoyl group, elidoyl group and behenoyl group.
 上記式(1)において、ペプチド部に含まれるR2は、水素原子、又は炭素原子数1若しくは2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基を表す。
 上記炭素原子数1若しくは2の分岐鎖を有し得る炭素原子数1乃至4のアルキル基とは、主鎖の炭素原子数が1乃至4であり、かつ炭素原子数1若しくは2の分岐鎖を有し得るアルキル基を意味し、その具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、sec-ブチル基又はtert-ブチル基などが挙げられる。
In the above formula (1), R 2 contained in the peptide part represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a branched chain having 1 or 2 carbon atoms.
The alkyl group having 1 to 4 carbon atoms that may have a branched chain having 1 or 2 carbon atoms is a branched chain having 1 to 4 carbon atoms in the main chain and 1 or 2 carbon atoms. Means an alkyl group which may have, and specific examples thereof include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, i-butyl group, sec-butyl group or tert-butyl group Etc.
 上記R2は好ましくは、水素原子、又は炭素原子数1の分岐鎖を有し得る炭素原子数1乃至3のアルキル基であり、より好ましくは水素原子である。
 炭素原子数1の分岐鎖を有し得る炭素原子数1乃至3のアルキル基とは、主鎖の炭素原子数が1乃至3であり、かつ炭素原子数1の分岐鎖を有し得るアルキル基を意味し、その具体例としては、メチル基、エチル基、n-プロピル基、i-プロピル基、i-ブチル基又はsec-ブチル基などが挙げられ、好ましくはメチル基、i-プロピル基、i-ブチル基又はsec-ブチル基である。
R 2 is preferably a hydrogen atom or an alkyl group having 1 to 3 carbon atoms which may have a branched chain having 1 carbon atom, and more preferably a hydrogen atom.
The alkyl group having 1 to 3 carbon atoms which can have a branched chain having 1 carbon atom is an alkyl group having 1 to 3 carbon atoms in the main chain and having a branched chain having 1 carbon atom. Specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an i-propyl group, an i-butyl group, or a sec-butyl group, preferably a methyl group, an i-propyl group, An i-butyl group or a sec-butyl group.
 上記式(1)において、R3は-(CH2)n-X基を表す。上記-(CH2)n-X基において、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環式基若しくは6員環式基、又は5員環と6員環から構成される縮合複素環式基を表す。
 上記R3を表す-(CH2)n-X基において、Xは好ましくはアミノ基、グアニジノ基、カルバモイル基(-CONH2基)、ピロール基、イミダゾール基、ピラゾール基又はインドール基であり、より好ましくはイミダゾール基である。また、上記-(CH2)n-X基において、nは好ましくは1又は2であり、より好ましくは1である。
 従って、上記-(CH2)n-基は、好ましくはアミノメチル基、2-アミノエチル基、3-アミノプロピル基、4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-カルバモイルブチル基、2-グアニジノエチル基、3-グアニジノブチル基、ピロールメチル基、4-イミダゾールメチル基、ピラゾールメチル基、又は3-インドールメチル基を表し、より好ましくは4-アミノブチル基、カルバモイルメチル基、2-カルバモイルエチル基、3-グアニジノブチル基、4-イミダゾールメチル基又は3-インドールメチル基を表し、さらに好ましくは4-イミダゾールメチル基である。
In the above formula (1), R 3 represents a — (CH 2 ) n—X group. In the — (CH 2 ) n—X group, n represents a number of 1 to 4, and X is an amino group, a guanidino group, a —CONH 2 group, or a 5-membered cyclic group having 1 to 3 nitrogen atoms. Represents a group, a 6-membered cyclic group, or a condensed heterocyclic group composed of a 5-membered ring and a 6-membered ring.
In the — (CH 2 ) n—X group representing R 3 , X is preferably an amino group, guanidino group, carbamoyl group (—CONH 2 group), pyrrole group, imidazole group, pyrazole group or indole group, and more Preferably it is an imidazole group. In the — (CH 2 ) n—X group, n is preferably 1 or 2, and more preferably 1.
Therefore, the — (CH 2 ) n- group is preferably an aminomethyl group, 2-aminoethyl group, 3-aminopropyl group, 4-aminobutyl group, carbamoylmethyl group, 2-carbamoylethyl group, 3-carbamoyl group. Represents a butyl group, a 2-guanidinoethyl group, a 3-guanidinobutyl group, a pyrrolemethyl group, a 4-imidazolemethyl group, a pyrazolemethyl group, or a 3-indolemethyl group, more preferably a 4-aminobutyl group, a carbamoylmethyl group Represents a 2-carbamoylethyl group, a 3-guanidinobutyl group, a 4-imidazolemethyl group or a 3-indolemethyl group, more preferably a 4-imidazolemethyl group.
 上記式(1)で表される化合物において、脂質ペプチド型ゲル化剤として特に好適な脂質ペプチドとしては、以下の脂質部とペプチド部(アミノ酸集合部)から形成される化合物である。なおアミノ酸の略称としては、アラニン(Ala)、アスパラギン(Asn)、グルタミン(Gln)、グリシン(Gly)、ヒスチジン(His)、イソロシン(Ile)、ロイシン(Leu)、リジン(Lys)、トリプトファン(Trp)、バリン(Val)を表す。:ラウロイル-Gly-His、ラウロイル-Gly-Gln、ラウロイル-Gly-Asn、ラウロイル-Gly-Trp、ラウロイル-Gly-Lys、ラウロイル-Ala-His、ラウロイル-Ala-Gln、ラウロイル-Ala-Asn、ラウロイル-Ala-Trp、ラウロイル-Ala-Lys;ミリストイル-Gly-His、ミリストイル-Gly-Gln、ミリストイル-Gly-Asn、ミリストイル-Gly-Trp、ミリストイル-Gly-Lys、ミリストイル-Ala-His、ミリストイル-Ala-Gln、ミリストイル-Ala-Asn、ミリストイル-Ala-Trp、ミリストイル-Ala-Lys;パルミトイル-Gly-His、パルミトイル-Gly-Gln、パルミトイル-Gly-Asn、パルミトイル-Gly-Trp、パルミトイル-Gly-Lys、パルミトイル-Ala-His、パルミトイル-Ala-Gln、パルミトイル-Ala-Asn、パルミトイル-Ala-Trp、パルミトイル-Ala-Lys;ステアロイル-Gly-His、ステアロイル-Gly-Gln、ステアロイル-Gly-Asn、ステアロイル-Gly-Trp、ステアロイル-Gly-Lys、ステアロイル-Ala-His、ステアロイル-Ala-Gln、ステアロイル-Ala-Asn、ステアロイル-Ala-Trp、ステアロイル-Ala-Lys。 In the compound represented by the above formula (1), a lipid peptide particularly suitable as a lipid peptide-type gelling agent is a compound formed from the following lipid part and peptide part (amino acid assembly part). As abbreviations of amino acids, alanine (Ala), asparagine (Asn), glutamine (Gln), glycine (Gly), histidine (His), isorosine (Ile), leucine (Leu), lysine (Lys), tryptophan (Trp) ), Valine (Val). : Lauroyl-Gly-His, Lauroyl-Gly-Gln, Lauroyl-Gly-Asn, Lauroyl-Gly-Trp, Lauroyl-Gly-Lys, Lauroyl-Ala-His, Lauroyl-Ala-Gln, Lauroyl-Ala-Asn, Lauroyl -Ala-Trp, Lauroyl-Ala-Lys; Myristoyl-Gly-His, Myristoyl-Gly-Gln, Myristoyl-Gly-Asn, Myristoyl-Gly-Trp, Myristoyl-Gly-Lys, Myristoyl-Ala-His, Myristoyl-Ala -Gln, Myristoyl-Ala-Asn, Myristoyl-Ala-Trp, Myristoyl-Ala-Lys; Palmitoyl-Gly-His, Palmitoyl-Gly-Gln, Palmitoyl-Gly-A n, Palmitoyl-Gly-Trp, Palmitoyl-Gly-Lys, Palmitoyl-Ala-His, Palmitoyl-Ala-Gln, Palmitoyl-Ala-Asn, Palmitoyl-Ala-Trp, Palmitoyl-Ala-Lys; Stearoyl-Gly-His Stearoyl-Gly-Gln, stearoyl-Gly-Asn, stearoyl-Gly-Trp, stearoyl-Gly-Lys, stearoyl-Ala-His, stearoyl-Ala-Gln, stearoyl-Ala-Asn, stearoyl-Ala-Trp, stearoyl- Ala-Lys.
 最も好ましいものとして、ラウロイル-Gly-His、ラウロイル-Ala-His-ミリストイル-Gly-His、ミリストイル-Ala-His;パルミトイル-Gly-His、パルミトイル-Ala-His;ステアロイル-Gly-His、ステアロイル-Ala-Hisが挙げられる。 Most preferred are lauroyl-Gly-His, lauroyl-Ala-His-myristoyl-Gly-His, myristoyl-Ala-His; palmitoyl-Gly-His, palmitoyl-Ala-His; stearoyl-Gly-His, stearoyl-Ala -His.
Figure JPOXMLDOC01-appb-C000008
 上記式(2)において、R4は炭素原子数9乃至23の脂肪族基を表し、好ましい具体例としては、前出のR1で定義したものと同じ基が挙げられる。
 上記式(2)において、R5乃至R7は、それぞれ独立して、水素原子、又は炭素原子数1若しくは2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、又は-(CH2)n-X基を表し、且つR5乃至R7のうち少なくとも一つ以上が-(CH2)n-X基を表す。nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環式基若しくは6員環式基、又は5員環と6員環から構成される縮合複素環式基を表す。ここでR5乃至R7の好ましい具体例としては、前出のR2及びR3で定義したものと同じ基が挙げられる。
Figure JPOXMLDOC01-appb-C000008
In the above formula (2), R 4 represents an aliphatic group having 9 to 23 carbon atoms, and preferred specific examples include the same groups as defined for R 1 above.
In the above formula (2), R 5 to R 7 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a branched chain having 1 or 2 carbon atoms, or — ( CH 2 ) nX group, and at least one of R 5 to R 7 represents a — (CH 2 ) nX group. n represents a number of 1 to 4, and X represents an amino group, a guanidino group, a —CONH 2 group, or a 5-membered cyclic group or a 6-membered cyclic group that may have 1 to 3 nitrogen atoms, or a 5-membered ring And a condensed heterocyclic group composed of a 6-membered ring. Here, preferred specific examples of R 5 to R 7 include the same groups as defined for R 2 and R 3 above.
 上記式(2)で表される化合物において、好適な脂質ペプチドとしては、以下の脂質部とペプチド部(アミノ酸集合部)から形成される化合物である。ミリストイル-Gly-Gly-His、ミリストイル-Gly-Gly-Gln、ミリストイル-Gly-Gly-Asn、ミリストイル-Gly-Gly-Trp、ミリストイル-Gly-Gly-Lys、ミリストイル-Gly-Ala-His、ミリストイル-Gly-Ala-Gln、ミリストイル-Gly-Ala-Asn、ミリストイル-Gly-Ala-Trp、ミリストイル-Gly-Ala-Lys、ミリストイル-Ala-Gly-His、ミリストイル-Ala-Gly-Gln、ミリストイル-Ala-Gly-Asn、ミリストイル-Ala-Gly-Trp、ミリストイル-Ala-Gly-Lys、ミリストイル-Gly-His-Gly、ミリストイル-His-Gly-Gly、パルミトイル-Gly-Gly-His、パルミトイル-Gly-Gly-Gln、パルミトイル-Gly-Gly-Asn、パルミトイル-Gly-Gly-Trp、パルミトイル-Gly-Gly-Lys、パルミトイル-Gly-Ala-His、パルミトイル-Gly-Ala-Gln、パルミトイル-Gly-Ala-Asn、パルミトイル-Gly-Ala-Trp、パルミトイル-Gly-Ala-Lys、パルミトイル-Ala-Gly-His、パルミトイル-Ala-Gly-Gln、パルミトイル-Ala-Gly-Asn、パルミトイル-Ala-Gly-Trp、パルミトイル-Ala-Gly-Lys、パルミトイル-Gly-His-Gly、パルミトイル-His-Gly-Gly。 In the compound represented by the above formula (2), a preferable lipid peptide is a compound formed from the following lipid part and peptide part (amino acid assembly part). Myristoyl-Gly-Gly-His, Myristoyl-Gly-Gly-Gln, Myristoyl-Gly-Gly-Asn, Myristoyl-Gly-Gly-Trp, Myristoyl-Gly-Gly-Lys, Myristoyl-Gly-Ala-His, Myristoyl-His Gly-Ala-Gln, Myristoyl-Gly-Ala-Asn, Myristoyl-Gly-Ala-Trp, Myristoyl-Gly-Ala-Lys, Myristoyl-Ala-Gly-His, Myristoyl-Ala-Gly-Gln, Myristoyl-Ala- Gly-Asn, Myristoyl-Ala-Gly-Trp, Myristoyl-Ala-Gly-Lys, Myristoyl-Gly-His-Gly, Myristoyl-His-Gly-Gly, Palmitoyl-Gly Gly-His, Palmitoyl-Gly-Gly-Gln, Palmitoyl-Gly-Gly-Asn, Palmitoyl-Gly-Gly-Trp, Palmitoyl-Gly-Lys, Palmitoyl-Gly-Ala-His, Palmitoyl-Gly-Gly Gln, Palmitoyl-Gly-Ala-Asn, Palmitoyl-Gly-Ala-Trp, Palmitoyl-Gly-Ala-Lys, Palmitoyl-Ala-Gly-His, Palmitoyl-Ala-Gly-Gln, Palmitoyl-Ala-Gly-As Palmitoyl-Ala-Gly-Trp, Palmitoyl-Ala-Gly-Lys, Palmitoyl-Gly-His-Gly, Palmitoyl-His-Gly-Gly.
 これらのうち、最も好ましいものとして、ラウロイル-Gly-Gly-His、ミリストイル-Gly-Gly-His、パルミトイル-Gly-Gly-His、パルミトイル-Gly-His-Gly、パルミトイル-His-Gly-Gly、ステアロイル-Gly-Gly-Hisが挙げられる。 Of these, lauroyl-Gly-Gly-His, myristoyl-Gly-Gly-His, palmitoyl-Gly-Gly-His, palmitoyl-Gly-His-Gly, palmitoyl-His-Gly-Gly, stearoyl -Gly-Gly-His.
Figure JPOXMLDOC01-appb-C000009

 上記式(3)において、R8は炭素原子数9乃至23の脂肪族基を表し、好ましい具体例としては、前出のR1で定義したものと同じ基が挙げられる。
 上記式(3)において、R9乃至R12は、それぞれ独立して、水素原子、又は炭素原子数1若しくは2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、又は-(CH2)n-X基を表し、且つR9乃至R12のうち少なくとも一つ以上が-(CH2)n-X基を表す。nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環式基若しくは6員環式基、又は5員環と6員環から構成される縮合複素環式基を表す。ここでR9乃至R12の好ましい具体例としては、前出のR2及びR3で定義したものと同じ基が挙げられる。
Figure JPOXMLDOC01-appb-C000009

In the above formula (3), R 8 represents an aliphatic group having 9 to 23 carbon atoms, and preferred specific examples include the same groups as defined for R 1 above.
In the above formula (3), R 9 to R 12 are each independently a hydrogen atom, an alkyl group having 1 to 4 carbon atoms which may have a branched chain having 1 or 2 carbon atoms, or — ( CH 2 ) nX group, and at least one of R 9 to R 12 represents a — (CH 2 ) n—X group. n represents a number of 1 to 4, and X represents an amino group, a guanidino group, a —CONH 2 group, or a 5-membered cyclic group or a 6-membered cyclic group that may have 1 to 3 nitrogen atoms, or a 5-membered ring And a condensed heterocyclic group composed of a 6-membered ring. Here, preferred specific examples of R 9 to R 12 include the same groups as defined for R 2 and R 3 above.
 したがって上記式(3)で表される化合物において、好適な脂質ペプチド型ゲル化剤として、特に好適な脂質ペプチドとしては、ラウロイル-Gly-Gly-Gly-His、ミリストイル-Gly-Gly-Gly-His、パルミトイル-Gly-Gly-Gly-His、パルミトイル-Gly-Gly-His-Gly、パルミトイル-Gly-His-Gly-Gly、パルミトイル-His-Gly-Gly-Gly、ステアロイル-Gly-Gly-Gly-His等が挙げられる。 Therefore, in the compound represented by the above formula (3), as a suitable lipid peptide type gelling agent, particularly preferred lipid peptides include lauroyl-Gly-Gly-Gly-His, myristoyl-Gly-Gly-Gly-His. Palmitoyl-Gly-Gly-Gly-His, Palmitoyl-Gly-Gly-His-Gly, Palmitoyl-Gly-His-Gly-Gly, Palmitoyl-His-Gly-Gly-Gly, Stearoyl-Gly-Gly-Gly-Gly-Gly Etc.
 本発明において用いられる脂質ペプチド型ゲル化剤は、上記式(1)乃至式(3)で表される化合物(脂質ペプチド)又はその薬学的な使用可能な塩のうちの少なくとも一種からなり、ゲル化剤としてこれら化合物を単独で、或いは二種以上を組み合わせて用いることができる。 The lipid peptide gelling agent used in the present invention comprises at least one of the compounds represented by the above formulas (1) to (3) (lipid peptide) or a pharmaceutically usable salt thereof, and is a gel. These compounds can be used alone or in combination of two or more as the agent.
 本発明における水系リチウムイオン二次電池に用いるゲル状の固体電解質において、前記脂質ペプチド型ゲル化剤の割合は、得られるゲル状の固体電解質の総質量の0.1乃至30質量%、好ましくは、0.5乃至20質量%、より好ましくは、1乃至5質量%である。 In the gel-like solid electrolyte used in the aqueous lithium ion secondary battery in the present invention, the ratio of the lipid peptide type gelling agent is 0.1 to 30% by mass of the total mass of the gel-like solid electrolyte to be obtained, preferably 0.5 to 20% by mass, more preferably 1 to 5% by mass.
<水溶性ポリマー>
 上記ゲル状の固体電解質には水溶性のポリマーを含んでいても良い。水溶性ポリマーを使用することにより、ゲル状の固体電解質の機械的強度を高めることができ、またゲルの離水防止剤としての役割をも担えることから有用である。
 前記水溶性ポリマーとしては例えば、ゼラチン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉等の多糖類、セルロース及びその誘導体、ポリエチレンオキサイド、ポリサッカライド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース等が挙げられる。
<Water-soluble polymer>
The gel-like solid electrolyte may contain a water-soluble polymer. Use of the water-soluble polymer is useful because it can increase the mechanical strength of the gel-like solid electrolyte and can also serve as a water separation inhibitor for the gel.
Examples of the water-soluble polymer include gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch and other polysaccharides, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinylamine, chitosan, polylysine, polyacrylic acid, Examples include polyalginic acid, polyhyaluronic acid, carboxycellulose, and the like.
 前記水溶性ポリマーの中でも、ポリビニルアルコール(PVA)及びポリビニルピロリドンであることが好ましく、特にポリビニルアルコール(PVA)が好ましい。 Among the water-soluble polymers, polyvinyl alcohol (PVA) and polyvinyl pyrrolidone are preferable, and polyvinyl alcohol (PVA) is particularly preferable.
 本発明における水系リチウムイオン二次電池に用いるゲル状の固体電解質において、前記水溶性ポリマーが使用される場合のその割合は、得られるゲル状の固体電解質の総質量の0.1乃至30質量%、好ましくは、0.5乃至20質量%、より好ましくは、1乃至5質量%である。 In the gel-like solid electrolyte used in the aqueous lithium ion secondary battery in the present invention, the proportion when the water-soluble polymer is used is 0.1 to 30% by mass of the total mass of the gel-like solid electrolyte obtained. The content is preferably 0.5 to 20% by mass, more preferably 1 to 5% by mass.
<非水系溶媒>
 上記ゲル状の固体電解質には非水系の溶媒を含んでいても良い。本発明の脂質ペプチド型ゲル化剤は、親水性部位と疎水性部位を含んでいる。このため、水単独で溶解(及び分散)させる場合と比較して、少量の非水系溶媒を混合させることにより、より均一に溶解(及び分散)させることが可能となる。後述のゲル状の固体電解質の前駆体溶液(脂質ペプチド型ゲル化剤を、固体電解質及び必要に応じて水溶性ポリマー等を溶解させた水溶液に分散させた分散液を加熱した溶液))が不均一な溶液であると、不均一なゲル化(不十分なゲル化)につながり、得られたゲルのゲル強度が部分的に低くなることが懸念される。そしてゲル化が不十分な部分から離水や崩壊等がおこり、ゲル電解質全体の機械強度を低下させる要因となり得る。これに対して、均一な前駆体溶液からゲルを作製した場合、ゲル全体が均一にゲル化するため、上記のようなゲルの離水や崩壊が原因となる機械強度の低下を防ぐことが可能となる。
 前記非水系の溶媒としては、例えば、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドン、テトラヒドロフラン等の非プロトン性極性溶媒;メタノール、エタノール、n-プロパノール、イソプロパノール等の低級脂肪族アルコール系溶媒;1,2-ジエトキシエタン(エチレングリコールジエチルエーテル)等のエーテル系溶媒;酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート等の脂肪族エステル又は脂肪族エステルエーテル系溶媒;ジエチルカーボネート、ジエチルカーボネート等の鎖状炭酸エステル系溶媒;エチレンカーボネート、プロピレンカーボネート等の環状炭酸エステル系溶媒;そして、アセトニトリル等が挙げられる。
<Non-aqueous solvent>
The gel-like solid electrolyte may contain a non-aqueous solvent. The lipid peptide type gelling agent of the present invention includes a hydrophilic site and a hydrophobic site. For this reason, it is possible to dissolve (and disperse) more uniformly by mixing a small amount of non-aqueous solvent as compared with the case of dissolving (and dispersing) with water alone. The gel solid electrolyte precursor solution described later (a solution obtained by heating a dispersion obtained by dispersing a lipid peptide type gelling agent in an aqueous solution in which a solid electrolyte and, if necessary, a water-soluble polymer or the like are dissolved) is not available. If the solution is uniform, it may lead to non-uniform gelation (insufficient gelation), and the gel strength of the resulting gel may be partially reduced. And water separation, collapse, etc. occur from a portion where gelation is insufficient, which may be a factor of reducing the mechanical strength of the entire gel electrolyte. On the other hand, when a gel is prepared from a uniform precursor solution, the entire gel is gelled uniformly, so that it is possible to prevent a decrease in mechanical strength caused by water separation or collapse of the gel as described above. Become.
Examples of the non-aqueous solvent include N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, and tetrahydrofuran. Aprotic polar solvent; lower aliphatic alcohol solvent such as methanol, ethanol, n-propanol, isopropanol; ether solvent such as 1,2-diethoxyethane (ethylene glycol diethyl ether); ethyl acetate, butyl acetate, methoxy Aliphatic esters or aliphatic ester ether solvents such as butyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate and propylene glycol monomethyl ether acetate; chain carbonate esters such as diethyl carbonate and diethyl carbonate System solvent; ethylene carbonate, cyclic carbonate-based solvent such as propylene carbonate; and acetonitrile.
 前記非水系溶媒の中でも、特にN-メチル-ピロリドンであることが好ましい。 Among the non-aqueous solvents, N-methyl-pyrrolidone is particularly preferable.
 本発明における水系リチウムイオン二次電池に用いるゲル状の固体電解質において、非水系溶媒が使用される場合のその割合は、得られるゲル状の固体電解質の総質量の0.1乃至30質量%、好ましくは、0.5乃至20質量%、より好ましくは、1乃至10質量%である。 In the gel-like solid electrolyte used for the aqueous lithium ion secondary battery in the present invention, the proportion when a non-aqueous solvent is used is 0.1 to 30% by mass of the total mass of the obtained gel-like solid electrolyte, Preferably, it is 0.5 to 20% by mass, more preferably 1 to 10% by mass.
<固体電解質塩>
 本発明においてゲル状の固体電解質に用いられる固体電解質塩としては、従来よりリチウムイオン二次電池に使用可能であるとして提案されている固体電解質塩が使用できる。具体例としては、例えば、LiNO3、LiOH、LiF、LiCl、LiBr、LiI、LiClO4、Li2SO4、Li(CH3COO)、LiBF4、LiPF6、LiN(CF3SO22、LiN(C25SO22、Li2O、Li2CO3等のリチウム塩及びこれらの混合物が挙げられる。
<Solid electrolyte salt>
As the solid electrolyte salt used for the gel-like solid electrolyte in the present invention, a solid electrolyte salt that has been conventionally proposed as being usable for a lithium ion secondary battery can be used. As specific examples, for example, LiNO 3 , LiOH, LiF, LiCl, LiBr, LiI, LiClO 4 , Li 2 SO 4 , Li (CH 3 COO), LiBF 4 , LiPF 6 , LiN (CF 3 SO 2 ) 2 , Examples thereof include lithium salts such as LiN (C 2 F 5 SO 2 ) 2 , Li 2 O, Li 2 CO 3 and mixtures thereof.
 本発明におけるゲル状の固体電解質に用いられる固体電解質塩(リチウム塩)としては、特にLiClO4又はLi2SO4であることが好ましい。 The solid electrolyte salt (lithium salt) used for the gel solid electrolyte in the present invention is particularly preferably LiClO 4 or Li 2 SO 4 .
 本発明におけるゲル状の固体電解質において、固体電解質塩は、得られるゲル状の固体電解質に0.01乃至5mol/kg、好ましくは、1乃至3mol/kgの濃度で用いられる。 In the gel solid electrolyte of the present invention, the solid electrolyte salt is used in the obtained gel solid electrolyte at a concentration of 0.01 to 5 mol / kg, preferably 1 to 3 mol / kg.
<溶媒>
 ゲル状の固体電解質に用いられる溶媒は、本発明においては水である。
 すなわち、本発明のゲル状の固体電解質は、上述のリチウム塩である固体電解質塩を含有するものとなる。
<Solvent>
In the present invention, the solvent used for the gel solid electrolyte is water.
That is, the gel-like solid electrolyte of the present invention contains the solid electrolyte salt that is the above-described lithium salt.
<ゲル状の固体電解質の製造方法>
 本発明の水系リチウムイオン二次電池で用いるゲル状の固体電解質は、種々の方法によって得ることができる。例えば、まず、上記脂質ペプチド型ゲル化剤を、上記の固体電解質塩及び必要に応じて上記水溶性ポリマーや上記非水系溶媒をそれぞれ溶解させた水溶液に分散させ、ゲル状の固体電解質の前駆体分散液を得る。そしてこの前駆体分散液を加熱して前駆体溶液(キャスティング液)を得る。加熱時の温度は、溶媒である水の沸点である100℃以下であれば良い。
 次にこの前駆体溶液を、必要に応じて、例えば平滑な面に適当量を滴下、或いは、適当な型に注入した後、室温以下で冷却し、静置することにより、ゲル状の固体電解質を得ることができる。
<Method for producing gel-like solid electrolyte>
The gel-like solid electrolyte used in the aqueous lithium ion secondary battery of the present invention can be obtained by various methods. For example, first, the lipid peptide type gelling agent is dispersed in an aqueous solution in which the solid electrolyte salt and, if necessary, the water-soluble polymer and the non-aqueous solvent are dissolved, respectively, to obtain a gel-like solid electrolyte precursor. A dispersion is obtained. And this precursor dispersion liquid is heated and a precursor solution (casting liquid) is obtained. The temperature at the time of heating should just be 100 degrees C or less which is the boiling point of the water which is a solvent.
Next, if necessary, for example, an appropriate amount of this precursor solution is dropped on a smooth surface or poured into an appropriate mold, and then cooled to room temperature or lower and allowed to stand, whereby a gel-like solid electrolyte is obtained. Can be obtained.
 本発明において、上記ゲル状の固体電解質の前駆体分散液を得る方法としては、例えば、脂質ペプチド型ゲル化剤及び固体電解質塩の水溶液等からなる混合物に湿式粉砕方法を適用することにより、脂質ペプチド型ゲル化剤を水等に分散させる方法が挙げられる。
 上述のゲル状の固体電解質前駆体分散液の製造時に適用する湿式粉砕方法としては、例えば、ホモディスパー、ホモミキサー、ホモジナイザー、超音波ホモジナイザー、パイプミキサー、対向衝突法、ビーズミル、アニューラーミル、媒体撹拌ミルなどの湿式粉砕に適する装置を使用することができる。その中でも簡便性及び分散安定性の観点から、ビーズミル又はアニューラーミル、或いはホモミキサー及又はホモミキサーが好ましい。
In the present invention, the method for obtaining the gel-like solid electrolyte precursor dispersion is, for example, by applying a wet pulverization method to a mixture comprising a lipid peptide type gelling agent and an aqueous solution of a solid electrolyte salt to obtain a lipid. A method of dispersing a peptide-type gelling agent in water or the like can be mentioned.
Examples of the wet pulverization method applied during the production of the gel solid electrolyte precursor dispersion described above include, for example, a homodisper, a homomixer, a homogenizer, an ultrasonic homogenizer, a pipe mixer, a counter collision method, a bead mill, an annular mill, and a medium. An apparatus suitable for wet grinding such as a stirring mill can be used. Among these, from the viewpoint of simplicity and dispersion stability, a bead mill or an annular mill, a homomixer and a homomixer are preferable.
 上記ビーズミル、アニューラーミル等の粉砕装置は、従来よりセラミック等の無機物質の粉砕に用いられる。これらは装置(容器)内に内蔵した粉砕媒体(ビーズ)が回転翼(ローター)によって強制撹拌されて強烈に運動し、この粉砕媒体同士の摩砕作用によって対象物を粉砕させるものである。無機物質は硬く靱性に乏しいので、媒体と無機物質との衝突時において媒体同士の摩砕作用で、割れ現象を来たして微細化が達成される。一方、有機物質において割れ現象はほとんど起こることはないが、ビーズミル、アニューラーミル等は、本発明に用いられる脂質ペプチド型ゲル化剤を極めて顕著な微細化にすることができる。 The pulverizers such as the above bead mill and annular mill are conventionally used for pulverizing inorganic substances such as ceramics. In these devices, the grinding media (beads) contained in the apparatus (container) are forcibly stirred by the rotor blades (rotor) and move intensely, and the object is ground by the grinding action of the grinding media. Since the inorganic substance is hard and poor in toughness, a fine phenomenon is achieved by causing a cracking phenomenon due to the grinding action between the medium and the medium when the medium collides with the inorganic substance. On the other hand, the cracking phenomenon hardly occurs in the organic substance, but the bead mill, the annular mill, etc. can make the lipid peptide type gelling agent used in the present invention extremely remarkably fine.
 またホモディスパー及びホモミキサーのような高せん断力分断機も、凝集を防ぐことができるため好ましく、中でも処理液をより強く流動させることができるホモミキサーが特に好ましい。なお、脂質ペプチド型ゲル化剤を十分に分散させるために、ホモミキサーの回転数は好ましくは3,000rpm以上、より好ましくは6,000rpm以上が必要である。 Also, a high shearing breaker such as a homodisper and a homomixer is preferable because it can prevent aggregation, and among them, a homomixer that can flow the treatment liquid more strongly is particularly preferable. In order to sufficiently disperse the lipid peptide type gelling agent, the rotational speed of the homomixer is preferably 3,000 rpm or more, more preferably 6,000 rpm or more.
 ここで、ゲル状の固体電解質の前駆体分散液の製造方法に関して、使用する粉砕装置としてビーズミル(図2)を用いた場合を例に詳しく説明する。図2(a)に示すビーズミル1は、回転翼(ローター)3が高速で回転することで微細化が実施される。なお図2(b)に回転翼3付近の断面図を示す。
 詳細には、図2(a)に示すビーズミル容器2に粉砕媒体であるビーズと、脂質ペプチド型ゲル化剤及び固体電解質塩を溶解させた水、必要に応じて、水溶性ポリマーと非水系溶媒を入れ、内蔵する回転翼3を高速で回転させる。この回転翼3の高速回転による撹拌により粉砕媒体に強制的な運動を与え、該分散媒体は脂質ペプチド型ゲル化剤に衝突して微細化させ、該ゲル化剤を前記固体電解質塩を溶解させた水への分散を可能にする。
Here, the manufacturing method of the gel-like solid electrolyte precursor dispersion will be described in detail by taking as an example the case where a bead mill (FIG. 2) is used as the pulverizing apparatus to be used. The bead mill 1 shown in FIG. 2A is miniaturized by rotating a rotor blade (rotor) 3 at a high speed. FIG. 2B shows a cross-sectional view in the vicinity of the rotary blade 3.
Specifically, the beads as a grinding medium in the bead mill container 2 shown in FIG. 2A, water in which the lipid peptide type gelling agent and the solid electrolyte salt are dissolved, and if necessary, a water-soluble polymer and a non-aqueous solvent And the built-in rotor 3 is rotated at high speed. The agitation by the high-speed rotation of the rotor blade 3 gives a forcible motion to the grinding medium, the dispersion medium collides with the lipid peptide type gelling agent to make it fine, and the gelling agent dissolves the solid electrolyte salt. Enables dispersion in water.
 前記粉砕媒体は、直径0.3乃至6.0mmのセラミックス製又は金属製ビーズが好ましい。ビーズの直径をより細かく微細化することで、脂質ペプチド型ゲル化剤の分散性が向上すると考えられるため、粉砕媒体の直径は0.3乃至1.0mmがさらに好ましい。また、粉砕媒体の材質は、特に硬度の高いセラミックス又は金属、例えばアルミナビーズ、炭化ケイ素ビーズ、チッ化ケイ素ビーズ、ジルコンビーズ、ジルコニアビーズや超硬ステンレスビーズ等が好ましいが、ガラス製ビーズも使用できる。
 前記回転翼3の形状は、ピンタイプのものやディスクタイプのもの等、種々の形状のものが可能である。回転翼は高速で回転するが、その周速は5乃至9m/秒の範囲がより好ましい。
The grinding medium is preferably ceramic or metal beads having a diameter of 0.3 to 6.0 mm. Since it is considered that the dispersibility of the lipid peptide type gelling agent is improved by making the diameter of the beads finer and finer, the diameter of the grinding medium is more preferably 0.3 to 1.0 mm. Further, the material of the grinding medium is preferably a ceramic or metal having a high hardness, such as alumina beads, silicon carbide beads, silicon nitride beads, zircon beads, zirconia beads, carbide stainless beads, etc., but glass beads can also be used. .
The rotor blade 3 may have various shapes such as a pin type and a disk type. The rotor blades rotate at a high speed, and the peripheral speed is more preferably in the range of 5 to 9 m / sec.
 このようなビーズミル容器2の中に、粉砕媒体であるビーズを10乃至40%の容量、脂質ペプチド型ゲル化剤、固体電解質塩を溶解させた水及びその他水溶性ポリマー等を合せて10乃至40%の容量に充填し、空隙を10乃至40%の容量程度にする。回転翼3を回転させることにより粉砕媒体同士が強烈に運動し、この摩砕作用によって脂質ペプチド型ゲル化剤が微細化される。 In such a bead mill container 2, 10 to 40% of the volume of beads as a grinding medium, a lipid peptide type gelling agent, water in which a solid electrolyte salt is dissolved, and other water-soluble polymers are combined. % Of the volume to fill the voids to a volume of about 10 to 40%. By rotating the rotor 3, the grinding media move intensely, and the lipid peptide type gelling agent is refined by this grinding action.
 脂質ペプチド型ゲル化剤は、容器内で強烈な摩砕効果を受けて微細化されるが、同時に撹拌熱も発生して温度が上昇する。従ってこの発熱を吸収して温度を上昇させない方が好ましい場合には、容器の外側には冷却水の入口5と出口6、ビーズミル容器内壁4の内部には冷却水ジャケットが取り付けられている。連続運転の場合、1回の通過で微細化が不十分な場合は、繰り返し処理を行ってもよい。 The lipid peptide type gelling agent is refined by receiving a strong grinding effect in the container, but at the same time, heat of stirring is generated and the temperature rises. Therefore, when it is preferable not to increase the temperature by absorbing this heat generation, a cooling water inlet 5 and outlet 6 are attached to the outside of the container, and a cooling water jacket is attached to the inside of the bead mill container inner wall 4. In the case of continuous operation, if miniaturization is insufficient with a single pass, repeated processing may be performed.
 粉砕後、粉砕媒体と一緒に微細化されたゲルを容器から排出し、容器外部でスクリーンにより粉砕媒体を分離し、目的とゲル状の固体電解質の前駆体分散液のみを得ることができる。 After pulverization, the gel refined together with the pulverization medium is discharged from the container, and the pulverization medium is separated by a screen outside the container to obtain only the target and gel-like solid electrolyte precursor dispersion.
 以下、実施例を挙げて、本発明を更に詳しく説明するが、本発明は、これら実施例に限定されるものではない。
 なお、実施例で用いる略記号の意味及びビーズミルの条件は、次の通りである。
・Gly:グリシン
・His:ヒスチジン
[ビーズミル条件]
・使用機器:バッチ式レディーミル(アイメックス株式会社製)
・使用ベッセル:950cc(08型ジルコニアベッセル)(内側の容積:800cc)
・粉砕条件
  回転速度:2760rpm
  ビーズ:ジルコニアビーズ(φ500μm)(ジルコニア粉砕ボールYTZ[登録商標]:東ソー株式会社製)
  ビーズ使用量:320cc
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these Examples.
The meanings of the abbreviations used in the examples and the bead mill conditions are as follows.
-Gly: Glycine-His: Histidine [Bead mill conditions]
・ Equipment used: Batch-type ready mill (manufactured by Imex Corporation)
・ Used vessel: 950cc (08-type zirconia vessel) (inside volume: 800cc)
・ Crushing condition Rotational speed: 2760 rpm
Beads: Zirconia beads (φ500 μm) (Zirconia ground ball YTZ [registered trademark]: manufactured by Tosoh Corporation)
Bead usage: 320cc
[脂質ペプチドの合成]
 本実施例において、ゲル化剤として用いた脂質ペプチドを、以下に示す方法で合成した。
<合成例1:N-パルミトイル-Gly-Hisの合成>
 500mLの四つ口フラスコに、ヒスチジン14.2g(91.6mmol)、N-パルミトイル-Gly-メチル30.0g(91.6mmol)、トルエン300gを投入し、塩基であるナトリウムメトキシド 28%メタノール溶液35.3g(183.2mmol)を加え、湯浴で60℃で加熱し1時間撹拌を続けた。その後、湯浴を外し、25℃まで放冷し、この溶液をアセトン600gで再沈殿し、濾取した。ここで得られた固体を、水600gとメタノール750gの混合溶液に溶解し、ここに6規定の塩酸30.5mL(183.2mmol)を加えて中和し固体を析出させ、濾過した。次に、得られた固体をテトラヒドロフラン120gと水30gの混合液に60℃で溶解させ、酢酸エチル150gを加え、60℃から30℃まで冷却した。その後、析出した固体を濾過した。さらに得られた固体を、テトラヒドロフラン120gとアセトニトリル60g溶剤中に溶解し、60℃に加熱し、1時間撹拌した後に冷却し、濾過した。ここで得られた固体を水120gで洗浄し、濾過後に減圧乾燥を行いN-パルミトイル-Gly-Hisフリー体(以下、単にN-パルミトイル-Gly-Hisとも称する)の白色の結晶、26.9g(収率65%)を得た。
[Synthesis of lipid peptides]
In this example, a lipid peptide used as a gelling agent was synthesized by the following method.
<Synthesis Example 1: Synthesis of N-palmitoyl-Gly-His>
A 500 mL four-necked flask was charged with 14.2 g (91.6 mmol) of histidine, 30.0 g (91.6 mmol) of N-palmitoyl-Gly-methyl and 300 g of toluene, and a sodium methoxide 28% methanol solution as a base. 35.3 g (183.2 mmol) was added, and the mixture was heated in a hot water bath at 60 ° C. and stirred for 1 hour. Thereafter, the hot water bath was removed and the mixture was allowed to cool to 25 ° C. This solution was reprecipitated with 600 g of acetone and collected by filtration. The solid obtained here was dissolved in a mixed solution of 600 g of water and 750 g of methanol, and 30.5 mL (183.2 mmol) of 6N hydrochloric acid was added thereto for neutralization to precipitate a solid, followed by filtration. Next, the obtained solid was dissolved in a mixed solution of 120 g of tetrahydrofuran and 30 g of water at 60 ° C., 150 g of ethyl acetate was added, and the mixture was cooled from 60 ° C. to 30 ° C. Thereafter, the precipitated solid was filtered. Further, the obtained solid was dissolved in a solvent of 120 g of tetrahydrofuran and 60 g of acetonitrile, heated to 60 ° C., stirred for 1 hour, cooled, and filtered. The solid obtained here was washed with 120 g of water, filtered and dried under reduced pressure to give white crystals of N-palmitoyl-Gly-His free form (hereinafter also simply referred to as N-palmitoyl-Gly-His), 26.9 g (Yield 65%) was obtained.
 上記合成で得た脂質ペプチドであるN-パルミトイル-Gly-Hisを脂質ペプチド型ゲル化剤(以下、低分子ゲル化剤とも称する)として用いて、以下の実施例を行った。 The following examples were carried out using N-palmitoyl-Gly-His, a lipid peptide obtained by the above synthesis, as a lipid peptide type gelling agent (hereinafter also referred to as a low molecular gelling agent).
[ゲル状の固体電解質の前駆体分散液の製造]
<製造例1:ゲル状の固体電解質の前駆体分散液Aの製造>
 500mLのメスフラスコにLiClO4(シグマ アルドリッチ社製)159.2gと蒸留水を添加し、3mol/LのLiClO4水溶液を作製した。
 ビーズミル専用の容器に低分子ゲル化剤3.2g、上記の方法で作製した3mol/L LiClO4水溶液320.4gを投入した。さらに、この混合物に対して、ジルコニアビーズ(φ500μm)を320cc投入後、2760rpmで30分間撹拌した。撹拌後、ジルコニアビーズと内容物を分離することで、ゲル状の固体電解質の前駆体分散液A(回収量280.8g、回収率86.8%)を取り出した。
[Preparation of precursor dispersion of gelled solid electrolyte]
<Production Example 1: Production of Precursor Dispersion A of Gel-Shaped Solid Electrolyte>
To a 500 mL volumetric flask, 159.2 g of LiClO 4 (manufactured by Sigma Aldrich) and distilled water were added to prepare a 3 mol / L LiClO 4 aqueous solution.
3.2 g of a low molecular weight gelling agent and 320.4 g of a 3 mol / L LiClO 4 aqueous solution prepared by the above method were put into a container dedicated to a bead mill. Further, after adding 320 cc of zirconia beads (φ500 μm) to this mixture, the mixture was stirred at 2760 rpm for 30 minutes. After stirring, the zirconia beads and the content were separated, and a gel-like solid electrolyte precursor dispersion A (recovered amount 280.8 g, recovery rate 86.8%) was taken out.
<製造例2:ゲル状の固体電解質の前駆体分散液Bの製造>
 500mLのメスフラスコにLi2SO4・H2O(関東化学株式会社製)128.0gと蒸留水を添加し、2mol/LのLi2SO4水溶液を作製した。
 ビーズミル専用の容器に低分子ゲル化剤6.5g、上記の方法で作製した2mol/L Li2SO4水溶液320.4gを投入した。以下は、<製造例1>と同様の方法で実施し、ゲル状の固体電解質の前駆体分散液B(回収量170.0g、回収率52.0%)を取り出した。
<Production Example 2: Production of Precursor Dispersion B of Gelled Solid Electrolyte>
125.0 g of Li 2 SO 4 .H 2 O (manufactured by Kanto Chemical Co., Ltd.) and distilled water were added to a 500 mL volumetric flask to prepare a 2 mol / L Li 2 SO 4 aqueous solution.
6.5 g of the low-molecular gelling agent and 320.4 g of the 2 mol / L Li 2 SO 4 aqueous solution prepared by the above method were put into a container dedicated to the bead mill. The following was carried out in the same manner as in <Production Example 1>, and a gel-like solid electrolyte precursor dispersion B (recovered amount 170.0 g, recovery rate 52.0%) was taken out.
<製造例3:ゲル状の固体電解質の前駆体分散液Cの製造>
 フラスコにポリビニルアルコール(日本酢ビ・ポバール株式会社製 JC-25(ケン化度:99.0モル%以上)、以下PVAとする)26.3gと蒸留水500.2gを添加し、30分間100℃で加熱・撹拌することでPVA水溶液を作製した。
 500mLメスフラスコに、LiClO4(シグマ アルドリッチ社製)159.6gと上記の方法で作製したPVA水溶液を添加し、3mol/L LiClO4を含むPVA水溶液を作製した。
 ビーズミル専用の容器に低分子ゲル化剤15.2g、上記の方法で作製した3mol/L LiClO4を含むPVA水溶液288.0g、さらにN-メチル-2-ピロリドン32.1gを投入した。以下は、<製造例1>と同様の方法で実施し、ゲル状の固体電解質の前駆体分散液C(回収量283.4g、回収率84.5%)を取り出した。
<Production Example 3: Production of precursor dispersion C of gel-like solid electrolyte>
To the flask, 26.3 g of polyvinyl alcohol (JC-25 (saponification degree: 99.0 mol% or more), hereinafter referred to as PVA) manufactured by Nihon Vitamin Poval Co., Ltd., hereinafter referred to as PVA) and 500.2 g of distilled water are added, and 100 minutes is added. A PVA aqueous solution was prepared by heating and stirring at ° C.
To a 500 mL volumetric flask, 159.6 g of LiClO 4 (manufactured by Sigma Aldrich) and the PVA aqueous solution prepared by the above method were added to prepare a PVA aqueous solution containing 3 mol / L LiClO 4 .
A bead mill dedicated container was charged with 15.2 g of a low molecular weight gelling agent, 288.0 g of a PVA aqueous solution containing 3 mol / L LiClO 4 prepared by the above method, and 32.1 g of N-methyl-2-pyrrolidone. The following was carried out in the same manner as in <Production Example 1>, and a gel-like solid electrolyte precursor dispersion C (recovered amount 283.4 g, recovery rate 84.5%) was taken out.
<製造例4:正極活物質 LiFePO4の製造>
 炭酸リチウム(和光純薬工業株式会社)0.933g、シュウ酸鉄二水和物(和光純薬工業株式会社)5.00g、リン酸水素アンモニウム(和光純薬工業株式会社)3.33gを秤量し、乳鉢で混合した。これらを、アルミナるつぼを用い、雰囲気制御横型管状炉(株式会社チノー製)を用いてアルゴン雰囲気下で400℃3時間(昇・降温速度200℃/時間)仮焼成し、大気中で擂潰(らいかい:摺り混ぜること)させた。その後、擂潰させた粉末をさらに雰囲気制御横型管状炉を用いてアルゴン雰囲気下で670℃5時間(昇・降温速度200℃/時間)焼成を行った。焼成後、空間群Pnmaを有するLiFePO4粉末を得た。
<Production Example 4: Production of Positive Electrode Active Material LiFePO 4 >
Weigh 0.933 g of lithium carbonate (Wako Pure Chemical Industries, Ltd.), iron oxalate dihydrate (Wako Pure Chemical Industries, Ltd.) 5.00 g, and ammonium hydrogen phosphate (Wako Pure Chemical Industries, Ltd.) 3.33 g. And mixed in a mortar. These were calcined at 400 ° C. for 3 hours (increase / decrease rate of 200 ° C./hour) in an argon atmosphere using an alumina crucible and an atmosphere-controlled horizontal tubular furnace (manufactured by Chino Corporation), and crushed in the atmosphere ( (Raikai: mixing). Thereafter, the crushed powder was further baked at 670 ° C. for 5 hours (increase / decrease rate of 200 ° C./hour) in an argon atmosphere using an atmosphere-controlled horizontal tubular furnace. After firing, LiFePO 4 powder having a space group Pnma was obtained.
<製造例5:負極活物質 LiTi2(PO43の製造>
 チタニウムテトラブトキシド(Titanium(IV)butoxide)(アルドリッチ社製)3.50gを、アルミナるつぼを用いて秤量し、30%の過酸化水素水(キシダ化学株式会社)40mL、28%のアンモニア水(和光純薬工業株式会社)15mLの混合溶液を作製し、この溶液に無水クエン酸(ナカライテスク株式会社)(3.88g)を添加した。この混合物をホットスターラー(REMIX、RSH-4DR、アズワン株式会社)とマグネット式スターラーチップを用いて室温、400rpmで30分間撹拌し、黄色の溶液1を得た。
 次に、炭酸リチウム(和光純薬工業株式会社)0.187gを60%硝酸(ナカライテスク株式会社)10mlに溶かし、溶液2を得た。
 さらに、リン酸二水素アンモニウム(ナカライテスク株式会社)1.74gをイオン交換水10mLに溶かし、溶液3を得た。
 上記の方法で作製した溶液1の撹拌を開始し、撹拌しながら、上記方法で作製した溶液2、溶液3、及びエチレングリコール(ナカライテスク株式会社)1.25gを加え、橙色の溶液4を得た。この溶液4を60℃、400rpmで2時間撹拌した。
 その後、溶液4を同じホットスターラー上で昇温速度10℃/10minで140℃まで昇温させた。昇温後、140℃、400rpmでゲルが得られるまで約5時間乾燥させた。このゲルを、卓上マッフル炉(株式会社デンケン製)を用いて、350℃、3時間(昇・降温速度200℃/時間)、大気中にて焼成し、粉末を得た。
 焼成後、得られた粉末をメノー乳鉢で十分粉砕し、油圧プレス機を用いて300kgf/cm2でペレット状に圧縮成形した。このペレット状の圧縮粉末をアルミナるつぼの中に移送し、卓上マッフル炉で800℃、12時間(昇・降温速度200℃/時間)、大気中で焼成することでLiTi2(PO43を得た。
<Production Example 5: Production of negative electrode active material LiTi 2 (PO 4 ) 3 >
Titanium tetrabutoxide (Titanium (IV) butoxide) (Aldrich) 3.50 g was weighed using an alumina crucible, 30% hydrogen peroxide solution (Kishida Chemical Co., Ltd.) 40 mL, 28% ammonia water (sum) (Kogaku Pharmaceutical Co., Ltd.) A 15 mL mixed solution was prepared, and anhydrous citric acid (Nacalai Tesque) (3.88 g) was added to this solution. This mixture was stirred at room temperature and 400 rpm for 30 minutes using a hot stirrer (REMIX, RSH-4DR, ASONE Corporation) and a magnetic stirrer chip to obtain a yellow solution 1.
Next, 0.187 g of lithium carbonate (Wako Pure Chemical Industries, Ltd.) was dissolved in 10 ml of 60% nitric acid (Nacalai Tesque) to obtain Solution 2.
Furthermore, 1.74 g of ammonium dihydrogen phosphate (Nacalai Tesque Co., Ltd.) was dissolved in 10 mL of ion-exchanged water to obtain a solution 3.
The stirring of the solution 1 prepared by the above method is started, and while stirring, the solution 2, the solution 3 prepared by the above method, and 1.25 g of ethylene glycol (Nacalai Tesque) are added to obtain an orange solution 4 It was. This solution 4 was stirred at 60 ° C. and 400 rpm for 2 hours.
Thereafter, the temperature of the solution 4 was increased to 140 ° C. at a temperature increase rate of 10 ° C./10 min on the same hot stirrer. After raising the temperature, the gel was dried at 140 ° C. and 400 rpm for about 5 hours until a gel was obtained. This gel was baked in the atmosphere using a desktop muffle furnace (manufactured by Denken Co., Ltd.) at 350 ° C. for 3 hours (increase / decrease rate of 200 ° C./hour) to obtain a powder.
After firing, the obtained powder was sufficiently pulverized in a menor mortar and compressed into a pellet at 300 kgf / cm 2 using a hydraulic press. This pellet-shaped compressed powder is transferred into an alumina crucible, and LiTi 2 (PO 4 ) 3 is calcined in the air at 800 ° C. for 12 hours (increase / decrease rate of 200 ° C./hour) in a desktop muffle furnace. Obtained.
[実施例1:ゲル状の固体電解質の前駆体分散液Aを用いた水系リチウムイオン二次電池の製造]
<正極:LiFePO4/アセチレンブラック/PTFE=75/25/5(質量比)>
 製造例4で製造したLiFePO4(280mg)、アセチレンブラック(電気化学工業株式会社、100mg)をそれぞれ秤量し、ジルコニア製ミルポットとボール(φ20mm-2個、φ15mm-4個、φ10mm-15個、φ3mm-30g)を用い、遊星ボールミル(株式会社伊藤製作所製、実験用遊星ポットLP-4/2)を用いて乾式混合を行った。回転速度は200rpm、処理時間は1時間で行った。
 得られた混合粉末(90mg)にPTFE(ポリテトラフルオロエチレン、ダイキン工業株式会社、10mg)を添加し、さらに乳鉢で混合した。混合後、得られたペレット(30mg)を、円形に成形した集電体(ニッケルエキスパンドメタル、株式会社サンクメタル、直径15mm)に圧着することによって、正極を作製した。その後、集電体とリード線を溶接した。
<負極:LiTi2(PO43/アセチレンブラック/PTFE=75/25/5(質量比)>
 製造例5で製造したLiTi2(PO43(280mg)を用いて、上記の正極と同様の方法でアセチレンブラック(電気化学工業株式会社、100mg)をそれぞれ秤量し、ジルコニア製ミルポットとボール(φ20mm-2個、φ15mm-4個、φ10mm-15個、φ3mm-30g)を用い、遊星ボールミル(株式会社伊藤製作所製、実験用遊星ポットLP-4/2)を用いて乾式混合を行った。回転速度は200rpm、処理時間は1時間で行った。
 得られた混合粉末をアルミナるつぼに移し、小型チューブ炉(光洋サーモシステム株式会社)を用いN2雰囲気下、800℃で1時間(昇・降温速度200℃/時間)アニール処理を行った。得られた混合粉末(90mg)にPTFE(ポリテトラフルオロエチレン、ダイキン工業株式会社、10mg)を添加し、さらに乳鉢で混合した。混合後、得られたペレット(45mg)を、円形に成形した集電体(ニッケルエキスパンドメタル、株式会社サンクメタル、直径15mm)に圧着することによって、負極を作製した。その後、集電体とリード線を溶接した。
<水系リチウムイオン二次電池(1)>
 上部が大気開放されたビーカーセルを用いて、後述する充放電試験に供す水系リチウムイオン二次電池10を作成した(図1参照)。
 まず、上記の方法で作製したペレット12、14を圧着した正極11及び負極13が互いに対向するようにセル17内に設置した。
 次に、製造例1で作製したゲル状の固体電解質前駆体分散液A35gを80℃に加熱し溶解させゲル前駆体溶液を作製し、このゲル前躯体溶液を正・負極が設置されたセル17内に添加した。このゲル前躯体溶液は、室温に冷却することでゲル化し、ゲル状の固体電解質15となった。その後、ゲル状の固体電解質15の上部に溶媒(水)の蒸発防止のための流動パラフィン(和光純薬工業株式会社、5g)16を添加し、ゲル状の固体電解質を備えた水系リチウムイオン二次電池(1)を得た。
[Example 1: Production of water-based lithium ion secondary battery using precursor dispersion A of gelled solid electrolyte]
<Positive electrode: LiFePO 4 / acetylene black / PTFE = 75/25/5 (mass ratio)>
LiFePO 4 (280 mg) and acetylene black (Electrochemical Industry Co., Ltd., 100 mg) produced in Production Example 4 were weighed, and zirconia mill pots and balls (φ20 mm-2 pieces, φ15 mm-4 pieces, φ10 mm-15 pieces, φ3 mm) -30 g) was used, and dry mixing was performed using a planetary ball mill (manufactured by Ito Manufacturing Co., Ltd., experimental planetary pot LP-4 / 2). The rotation speed was 200 rpm, and the treatment time was 1 hour.
PTFE (polytetrafluoroethylene, Daikin Industries, Ltd., 10 mg) was added to the obtained mixed powder (90 mg), and further mixed in a mortar. After mixing, the resulting pellet (30 mg) was pressure-bonded to a circularly shaped current collector (nickel expanded metal, Sank Metal Co., Ltd., diameter 15 mm) to produce a positive electrode. Thereafter, the current collector and the lead wire were welded.
<Negative electrode: LiTi 2 (PO 4 ) 3 / acetylene black / PTFE = 75/25/5 (mass ratio)>
Using LiTi 2 (PO 4 ) 3 (280 mg) produced in Production Example 5, acetylene black (Electrochemical Co., Ltd., 100 mg) was weighed in the same manner as the above positive electrode, and a zirconia mill pot and ball ( Dry mixing was performed using a planetary ball mill (manufactured by Ito Seisakusho, experimental planetary pot LP-4 / 2) using φ20 mm-2 pieces, φ15 mm-4 pieces, φ10 mm-15 pieces, φ3 mm-30 g). The rotation speed was 200 rpm, and the treatment time was 1 hour.
The obtained mixed powder was transferred to an alumina crucible and annealed at 800 ° C. for 1 hour (increase / decrease rate of 200 ° C./hour) in a N 2 atmosphere using a small tube furnace (Koyo Thermo System Co., Ltd.). PTFE (polytetrafluoroethylene, Daikin Industries, Ltd., 10 mg) was added to the obtained mixed powder (90 mg), and further mixed in a mortar. After mixing, the obtained pellet (45 mg) was pressure-bonded to a circularly shaped current collector (nickel expanded metal, Sank Metal Co., Ltd., diameter 15 mm) to produce a negative electrode. Thereafter, the current collector and the lead wire were welded.
<Water-based lithium ion secondary battery (1)>
Using a beaker cell whose upper part was opened to the atmosphere, an aqueous lithium ion secondary battery 10 to be used in a charge / discharge test described later was created (see FIG. 1).
First, it installed in the cell 17 so that the positive electrode 11 and the negative electrode 13 which pressure-bonded the pellets 12 and 14 produced by said method may mutually oppose.
Next, 35 g of the gel-like solid electrolyte precursor dispersion A prepared in Production Example 1 is heated and dissolved at 80 ° C. to prepare a gel precursor solution. This gel precursor solution is the cell 17 in which positive and negative electrodes are installed. Added inside. This gel precursor solution gelled by cooling to room temperature, and became a gel-like solid electrolyte 15. Thereafter, liquid paraffin (Wako Pure Chemical Industries, Ltd., 5 g) 16 for preventing evaporation of the solvent (water) is added to the upper part of the gel-like solid electrolyte 15, and aqueous lithium ion two provided with the gel-like solid electrolyte. A secondary battery (1) was obtained.
[試験例1:充放電試験(1)]
 実施例1で作製した水系リチウム二次電池(1)を用いて、充放電試験を定電流で実施し、充電および放電電流密度0.5A/cm2、電圧範囲0.6V~1.2Vとして25℃で充放電試験を行った。
 図3に水系リチウムイオン二次電池(1)の定電流充放電試験(50サイクル)の結果を示す。
[Test Example 1: Charge / Discharge Test (1)]
Using the water based lithium secondary battery (1) produced in Example 1, the charge / discharge test was performed at a constant current, and the charge and discharge current density was 0.5 A / cm 2 and the voltage range was 0.6 V to 1.2 V. A charge / discharge test was conducted at 25 ° C.
FIG. 3 shows the results of a constant current charge / discharge test (50 cycles) of the water based lithium ion secondary battery (1).
[実施例2:ゲル状の固体電解質の前駆体分散液Bを用いた水系リチウムイオン二次電池の製造]
 製造例1で製造したゲル状の固体電解質の前駆体分散液Aを製造例2で製造したゲル状の固体電解質の前駆体分散液Bに変更した以外は、実施例1と同様の手順にて水系リチウムイオン二次電池(2)を製造した。
[Example 2: Production of aqueous lithium ion secondary battery using precursor dispersion B of gelled solid electrolyte]
The same procedure as in Example 1 was followed except that the gel-like solid electrolyte precursor dispersion A produced in Production Example 1 was changed to the gel-like solid electrolyte precursor dispersion B produced in Production Example 2. An aqueous lithium ion secondary battery (2) was produced.
[試験例2:充放電試験(2)]
 実施例2で作製した水系リチウム二次電池(2)を用いて、実施例2と同様の手順にて充放電試験を実施した。
 図4に水系リチウムイオン二次電池(2)の定電流充放電試験(50サイクル)の結果を示す。
[Test Example 2: Charge / Discharge Test (2)]
Using the aqueous lithium secondary battery (2) produced in Example 2, a charge / discharge test was performed in the same procedure as in Example 2.
FIG. 4 shows the results of a constant current charge / discharge test (50 cycles) of the water based lithium ion secondary battery (2).
[実施例3:ゲル状の固体電解質の前駆体分散液Cを用いた水系リチウムイオン二次電池の製造]
 製造例1で製造したゲル状の固体電解質の前駆体分散液Aを製造例3で製造したゲル状の固体電解質の前駆体分散液Cに変更した以外は、実施例1と同様の手順にて水系リチウムイオン二次電池(3)を製造した。
[Example 3: Production of aqueous lithium ion secondary battery using precursor dispersion C of gel-like solid electrolyte]
The same procedure as in Example 1 was followed except that the gel-like solid electrolyte precursor dispersion A produced in Production Example 1 was changed to the gel-like solid electrolyte precursor dispersion C produced in Production Example 3. An aqueous lithium ion secondary battery (3) was produced.
[試験例3:充放電試験(3)]
 実施例3で作製した水系リチウム二次電池(3)を用いて、実施例2と同様の手順にて充放電試験を実施した。
 図3に水系リチウムイオン二次電池(3)の定電流充放電試験(50サイクル)の結果を示す。
[Test Example 3: Charge / Discharge Test (3)]
Using the water based lithium secondary battery (3) produced in Example 3, a charge / discharge test was carried out in the same procedure as in Example 2.
FIG. 3 shows the results of a constant current charge / discharge test (50 cycles) of the water based lithium ion secondary battery (3).
[比較例1:3mol/L LiClO4水溶液を用いた水系リチウムイオン二次電池の製造]
 製造例1で製造したゲル状の固体電解質の前駆体分散液Aを製造例1に記載の方法で製造した3mol/L LiClO4水溶液に変更した以外は、実施例1と同様の手順にて水系リチウムイオン二次電池(4)を製造した。
[Comparative Example 1: Production of water-based lithium ion secondary battery using 3 mol / L LiClO 4 aqueous solution]
A water system was prepared in the same manner as in Example 1, except that the gel-like solid electrolyte precursor dispersion A produced in Production Example 1 was changed to the 3 mol / L LiClO 4 aqueous solution produced by the method described in Production Example 1. A lithium ion secondary battery (4) was produced.
[比較試験例1:比較充放電試験(1)]
 比較例1で作製した水系リチウム二次電池(4)を用いて、実施例2と同様の手順にて充放電試験を実施した。
 図3に水系リチウムイオン二次電池(4)の定電流充放電試験(50サイクル)の結果を示す。
[Comparative Test Example 1: Comparative Charge / Discharge Test (1)]
Using the water based lithium secondary battery (4) prepared in Comparative Example 1, a charge / discharge test was performed in the same procedure as in Example 2.
FIG. 3 shows the results of a constant current charge / discharge test (50 cycles) of the water based lithium ion secondary battery (4).
[比較例2:2mol/L Li2SO4水溶液を用いた水系リチウムイオン二次電池の製造]
 製造例1で製造したゲル状の固体電解質の前駆体分散液Aを製造例2に記載の方法で製造した2mol/L Li2SO4水溶液に変更した以外は、実施例1と同様の手順にて水系リチウムイオン二次電池(5)を製造した。
[Comparative Example 2: Production of aqueous lithium ion secondary battery using 2 mol / L Li 2 SO 4 aqueous solution]
The procedure was the same as in Example 1 except that the gel-like solid electrolyte precursor dispersion A produced in Production Example 1 was changed to a 2 mol / L Li 2 SO 4 aqueous solution produced by the method described in Production Example 2. An aqueous lithium ion secondary battery (5) was manufactured.
[比較試験例2:比較充放電試験(2)]
 比較例2で作製した水系リチウム二次電池(5)を用いて、実施例2と同様の手順にて充放電試験を実施した。
 図4に水系リチウムイオン二次電池(5)の定電流充放電試験(50サイクル)の結果を示す。
[Comparative Test Example 2: Comparative Charge / Discharge Test (2)]
Using the water based lithium secondary battery (5) prepared in Comparative Example 2, a charge / discharge test was performed in the same procedure as in Example 2.
FIG. 4 shows the results of a constant current charge / discharge test (50 cycles) of the water based lithium ion secondary battery (5).
[試験例4:充放電試験(レート特性)]
 実施例1の水系リチウムイオン二次電池(1)、実施例2の水系リチウムイオン二次電池(2)及び実施例3の水系リチウムイオン二次電池(3)の充放電試験(レート特性)を実施した。充電及び放電電流密度0.5mA/cm2を、0.1mA/cm2、0.2mA/cm2、5mA/cm2、10mA/cm2に変更した以外は実施例1と同様の方法で充放電試験を実施した。
 図5に水系リチウムイオン二次電池(1)及び(3)、図6に水系リチウムイオン二次電池(2)の定電流充放電試験の結果をそれぞれ示す。
[Test Example 4: Charge / Discharge Test (Rate Characteristics)]
Charge / discharge tests (rate characteristics) of the aqueous lithium ion secondary battery (1) of Example 1, the aqueous lithium ion secondary battery (2) of Example 2, and the aqueous lithium ion secondary battery (3) of Example 3 are as follows. Carried out. The charge and discharge current density 0.5mA / cm 2, 0.1mA / cm 2, 0.2mA / cm 2, 5mA / cm 2, 10mA / cm 2 except for changing the charge in the same manner as in Example 1 A discharge test was performed.
FIG. 5 shows the results of a constant current charge / discharge test of the aqueous lithium ion secondary battery (1) and (3), and FIG. 6 shows the aqueous lithium ion secondary battery (2).
[比較試験例3:比較充放電試験(レート特性)]
 比較例1の水系リチウムイオン二次電池(4)及び比較例2の水系リチウムイオン二次電池(5)の充放電試験(レート特性)を実施した。充電及び放電電流密度は実施例7と同様の条件で実施した。
 図5に水系リチウムイオン二次電池(4)、図6に水系リチウムイオン二次電池(5)の定電流充放電試験の結果をそれぞれ示す。
[Comparative Test Example 3: Comparative Charge / Discharge Test (Rate Characteristics)]
The charge / discharge test (rate characteristic) of the aqueous lithium ion secondary battery (4) of Comparative Example 1 and the aqueous lithium ion secondary battery (5) of Comparative Example 2 was carried out. The charge and discharge current densities were performed under the same conditions as in Example 7.
FIG. 5 shows the results of a constant current charge / discharge test of the aqueous lithium ion secondary battery (4), and FIG. 6 shows the aqueous lithium ion secondary battery (5).
[試験結果の考察:実施例1乃至実施例3、比較例1及び比較例2:サイクル特性評価]
 図3に示すように、3mol/L LiClO4水溶液を用いた実施例1の水系リチウムイオン二次電池(1)及び実施例3の水系リチウムイオン二次電池(3)(いずれも低分子ゲル化剤添加)、並びに比較例1の水系リチウムイオン二次電池(4)(低分子ゲル化剤未添加)においては、50サイクルに渡ってゲル化剤を添加した水系リチウムイオン二次電池(1)及び(3)の放電容量が、ゲル化剤未添加の水系リチウムイオン二次電池(4)の放電容量を上回っており、低分子ゲル化剤の添加によりサイクル特性が向上するという驚くべき結果が得られた。
 また図4に示すように、2mol/L Li2SO4水溶液を用いた実施例2の水系リチウムイオン二次電池(2)(ゲル化剤添加)及び比較例2の水系リチウムイオン二次電池(5)(ゲル化剤未添加)を比較すると、両者のサイクル特性はほぼ同じような傾向を示し、従来のポリマーゲル化剤を使用した際に見られたゲル化による電池性能の劣化は認められないとする結果が得られた。
[Consideration of Test Results: Example 1 to Example 3, Comparative Example 1 and Comparative Example 2: Cycle Characteristic Evaluation]
As shown in FIG. 3, the aqueous lithium ion secondary battery (1) of Example 1 and the aqueous lithium ion secondary battery (3) of Example 3 using a 3 mol / L LiClO 4 aqueous solution (both are low molecular gels). In addition, and in the aqueous lithium ion secondary battery (4) of Comparative Example 1 (no low molecular gelling agent added), the aqueous lithium ion secondary battery (1) added with the gelling agent over 50 cycles. And the discharge capacity of (3) exceeds the discharge capacity of the water-based lithium ion secondary battery (4) to which no gelling agent is added, and the surprising result is that the cycle characteristics are improved by the addition of the low molecular weight gelling agent. Obtained.
Moreover, as shown in FIG. 4, the aqueous lithium ion secondary battery (2) of Example 2 using a 2 mol / L Li 2 SO 4 aqueous solution (addition of a gelling agent) and the aqueous lithium ion secondary battery of Comparative Example 2 ( 5) When comparing (with no gelling agent added), the cycle characteristics of the two show almost the same tendency, and the deterioration of battery performance due to gelation observed when using the conventional polymer gelling agent is recognized. No results were obtained.
[試験結果の考察:実施例1乃至実施例3、比較例1及び比較例2:レート特性評価]
 図5に示すように、3mol/L LiClO4水溶液を用いた実施例1の水系リチウムイオン二次電池(1)及び実施例3の水系リチウムイオン二次電池(3)(いずれも低分子ゲル化剤添加)、並びに比較例1の水系リチウムイオン二次電池(4)(低分子ゲル化剤未添加)においては、試験を実施した電流密度0.1~10mA/cm2の全てに渡って、ゲル化剤を添加した水系リチウムイオン二次電池(1)及び(3)の放電容量が、ゲル化剤未添加の水系リチウムイオン二次電池(4)の放電容量を上回るとする結果となり、低分子ゲル化剤の添加により幅広いレートでの放電特性が向上するという驚くべき結果が得られた。
 また図6に示すように、2mol/L Li2SO4水溶液を用いた実施例2の水系リチウムイオン二次電池(2)(ゲル化剤添加)、及び比較例2の水系リチウムイオン二次電池(5)(ゲル化剤未添加)を比較すると、電流密度10mA/cm2での放電容量は、ゲル化剤を添加した水系リチウムイオン二次電池(2)の方が、ゲル化剤未添加の水系リチウムイオン二次電池(5)を僅かながら上回っており、低分子ゲル化剤の添加により高レートでの放電特性が向上しているという結果が得られた。
[Consideration of Test Results: Examples 1 to 3, Comparative Example 1 and Comparative Example 2: Rate Characteristic Evaluation]
As shown in FIG. 5, the aqueous lithium ion secondary battery (1) of Example 1 and the aqueous lithium ion secondary battery (3) of Example 3 using a 3 mol / L LiClO 4 aqueous solution (both are low molecular gels). In addition to the water-based lithium ion secondary battery (4) of Comparative Example 1 (without addition of a low-molecular gelling agent), over the entire current density of 0.1 to 10 mA / cm 2 in which the test was performed, As a result, the discharge capacity of the water-based lithium ion secondary batteries (1) and (3) to which the gelling agent is added exceeds the discharge capacity of the water-based lithium ion secondary battery (4) to which the gelling agent is not added. The surprising result was obtained that the discharge characteristics at a wide rate were improved by the addition of the molecular gelling agent.
Moreover, as shown in FIG. 6, the aqueous lithium ion secondary battery (2) of Example 2 using a 2 mol / L Li 2 SO 4 aqueous solution (addition of a gelling agent) and the aqueous lithium ion secondary battery of Comparative Example 2 were used. (5) Comparing (no gelling agent added), the discharge capacity at a current density of 10 mA / cm 2 is higher in the aqueous lithium ion secondary battery (2) to which the gelling agent is added. The water-based lithium ion secondary battery (5) was slightly exceeded, and the result was that the discharge characteristics at a high rate were improved by the addition of the low molecular gelling agent.
 このように実施例及び比較例に示す結果は、ゲル化剤の存在そして溶液の粘度が高くなることに起因するリチウムイオンの移動の低下、これによる電気伝導度の低下や充放電容量の劣化という、従来のゲル電解質を用いた二次電池で得られた知見から導きだされる予測を全く覆すものであった。
 このように、本発明の水系リチウムイオン二次電池において、ゲル化剤未添加の液体電界質を用いた二次電池と同等若しくはそれを上回る放電容量が得られるとする結果が得られた要因は定かではないが、その一つとして、本発明で用いる脂質ペプチド型低分子ゲル化剤中に存在するカルボキシル基及びイミダゾール基の作用によってリチウム塩からのリチウムイオンの存在比率を上げることにつながり、これにより充放電を低下させずに電気伝導を向上させ、水系リチウムイオン二次電池における電池性能の向上につながったことが考えられる。
Thus, the results shown in the examples and comparative examples are the decrease in lithium ion movement due to the presence of the gelling agent and the increase in the viscosity of the solution, the decrease in electrical conductivity and the decrease in charge / discharge capacity due to this. This completely overturned the predictions derived from the knowledge obtained with secondary batteries using conventional gel electrolytes.
In this way, in the aqueous lithium ion secondary battery of the present invention, the factor that resulted in the discharge capacity being equivalent to or exceeding that of a secondary battery using a liquid electrolyte with no gelling agent added is Although it is not certain, as one of them, it leads to increasing the abundance ratio of lithium ions from the lithium salt by the action of carboxyl group and imidazole group present in the lipid peptide type low molecular gelling agent used in the present invention. It is conceivable that the electric conduction was improved without lowering the charge / discharge, and the battery performance in the aqueous lithium ion secondary battery was improved.
1 ビーズミル
2 ビーズミル容器
3 回転翼(ローター)
4 ビーズミル容器内壁
5 冷却水の入口
6 冷却水の出口
10 水系リチウムイオン二次電池
11 正極
12 ペレット
13 負極
14 ペレット
15 ゲル状の固体電解質
16 流動パラフィン
17 セル
1 Bead mill 2 Bead mill container 3 Rotor blade
4 Bead mill container inner wall 5 Cooling water inlet 6 Cooling water outlet 10 Water based lithium ion secondary battery 11 Positive electrode 12 Pellet 13 Negative electrode 14 Pellet 15 Gel-like solid electrolyte 16 Liquid paraffin 17 Cell

Claims (19)

  1. 正極および負極と、ゲル状の固体電解質とを備える水系リチウムイオン二次電池であって、
    前記ゲル状の固体電解質は、固体電解質塩と、水と、下記式(1)乃至式(3):
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1は炭素原子数9乃至23の脂肪族基を表し、R2は水素原子、又は炭素原子数1若しくは2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基を表し、R3は-(CH2n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環若しくは6員環又は5員環と6員環から構成される縮合複素環を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、R4は炭素原子数9乃至23の脂肪族基を表し、R5乃至R7はそれぞれ独立して水素原子、炭素原子数1若しくは2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、又は-(CH2n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環若しくは6員環又は5員環と6員環から構成される縮合複素環を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R8は炭素原子数9乃至23の脂肪族基を表し、R9乃至R12はそれぞれ独立して水素原子、炭素原子数1若しくは2の分枝鎖を有し得る炭素原子数1乃至4のアルキル基、又は-(CH2n-X基を表し、nは1乃至4の数を表し、Xはアミノ基、グアニジノ基、-CONH2基、又は窒素原子を1乃至3個有し得る5員環若しくは6員環又は5員環と6員環から構成される縮合複素環を表す。)で表される化合物又はその薬学的に使用可能な塩のうちの少なくとも一種からなる脂質ペプチド型ゲル化剤とを含むことを特徴とする、水系リチウムイオン二次電池。
    An aqueous lithium ion secondary battery comprising a positive electrode and a negative electrode, and a gelled solid electrolyte,
    The gel-like solid electrolyte includes a solid electrolyte salt, water, and the following formulas (1) to (3):
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 represents an aliphatic group having 9 to 23 carbon atoms, and R 2 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms which may have a branched chain having 1 or 2 carbon atoms. R 3 represents a — (CH 2 ) n —X group, n represents a number of 1 to 4, X represents an amino group, a guanidino group, a —CONH 2 group, or 1 to 3 nitrogen atoms. And represents a condensed heterocyclic ring composed of a 5-membered ring or a 6-membered ring or a 5-membered ring and a 6-membered ring.)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein R 4 represents an aliphatic group having 9 to 23 carbon atoms, and R 5 to R 7 each independently represents a hydrogen atom or a carbon atom having a branched chain having 1 or 2 carbon atoms. 1 to 4 alkyl groups or — (CH 2 ) n —X group, n represents a number of 1 to 4, and X represents an amino group, a guanidino group, a —CONH 2 group, or a nitrogen atom of 1 to 3 This represents a 5-membered ring or 6-membered ring which may have one or a condensed heterocyclic ring composed of a 5-membered ring and a 6-membered ring.)
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 8 represents an aliphatic group having 9 to 23 carbon atoms, and R 9 to R 12 each independently represents a hydrogen atom, or a carbon atom number that can have a branched chain having 1 or 2 carbon atoms. 1 to 4 alkyl groups or — (CH 2 ) n —X group, n represents a number of 1 to 4, and X represents an amino group, a guanidino group, a —CONH 2 group, or a nitrogen atom of 1 to 3 A 5-membered ring or a 6-membered ring or a condensed heterocyclic ring composed of a 5-membered ring and a 6-membered ring.) Or a pharmaceutically usable salt thereof An aqueous lithium ion secondary battery comprising a lipid peptide type gelling agent.
  2. 前記ゲル状の固体電解質が、さらに水溶性のポリマーを含むことを特徴とする、請求項1記載の水系リチウムイオン二次電池。 The aqueous lithium ion secondary battery according to claim 1, wherein the gel-like solid electrolyte further contains a water-soluble polymer.
  3. 前記水溶性ポリマーが、ゼラチン、ポリビニルアルコール(PVA)、ポリビニルピロリドン(PVP)、澱粉、セルロース及びその誘導体、ポリエチレンオキサイド、ポリサッカライド、ポリビニルアミン、キトサン、ポリリジン、ポリアクリル酸、ポリアルギン酸、ポリヒアルロン酸、カルボキシセルロース及びこれらの混合物からなる群から選択されることを特徴とする、請求項2記載の水系リチウムイオン二次電池。 The water-soluble polymer is gelatin, polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), starch, cellulose and derivatives thereof, polyethylene oxide, polysaccharides, polyvinylamine, chitosan, polylysine, polyacrylic acid, polyalginic acid, polyhyaluronic acid. The aqueous lithium ion secondary battery according to claim 2, wherein the aqueous lithium ion secondary battery is selected from the group consisting of carboxycellulose and a mixture thereof.
  4. 前記水溶性ポリマーが、ポリビニルアルコール(PVA)であることを特徴とする、請求項3記載の水系リチウムイオン二次電池。 The water-based lithium ion secondary battery according to claim 3, wherein the water-soluble polymer is polyvinyl alcohol (PVA).
  5. 前記ゲル状の固体電解質がさらに非水系の溶媒を含むことを特徴とする、請求項1乃至請求項4のうち何れか一項に記載の水系リチウムイオン二次電池。 The aqueous lithium ion secondary battery according to any one of claims 1 to 4, wherein the gel-like solid electrolyte further contains a non-aqueous solvent.
  6. 前記非水系の溶媒が、N,N-ジメチルホルムアミド、ジメチルスルホキシド、N,N-ジメチルアセトアミド、1,3-ジメチル-2-イミダゾリジノン、N-メチル-2-ピロリドン、テトラヒドロフラン、メタノール、エタノール、n-プロパノール、イソプロパノール、1,2-ジエトキシエタン(エチレングリコールジエチルエーテル)、酢酸エチル、酢酸ブチル、メトキシブチルアセテート、メチルセロソルブアセテート、エチルセロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、アセトニトリル及びこれらの2種以上の混合物からなる群から選択される溶媒であることを特徴とする、請求項5記載の水系リチウムイオン二次電池。 The non-aqueous solvent is N, N-dimethylformamide, dimethyl sulfoxide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, N-methyl-2-pyrrolidone, tetrahydrofuran, methanol, ethanol, n-propanol, isopropanol, 1,2-diethoxyethane (ethylene glycol diethyl ether), ethyl acetate, butyl acetate, methoxybutyl acetate, methyl cellosolve acetate, ethyl cellosolve acetate, propylene glycol monomethyl ether acetate, diethyl carbonate, diethyl carbonate, 6. A solvent selected from the group consisting of ethylene carbonate, propylene carbonate, acetonitrile, and a mixture of two or more thereof. Aqueous lithium ion secondary battery.
  7. 前記非水系の溶媒が、N-メチル-2-ピロリドンであることを特徴とする、請求項6記載の水系リチウムイオン二次電池。 7. The aqueous lithium ion secondary battery according to claim 6, wherein the non-aqueous solvent is N-methyl-2-pyrrolidone.
  8. 前記正極が、正極活物質、導電補助材及びバインダーを含み、前記負極が、負極活物質、導電補助材及びバインダーを含むことを特徴とする、請求項1乃至請求項7のうち何れか一項に記載の水系リチウムイオン二次電池。 The said positive electrode contains a positive electrode active material, a conductive support material, and a binder, The said negative electrode contains a negative electrode active material, a conductive support material, and a binder, It is any one of Claim 1 thru | or 7 characterized by the above-mentioned. A water-based lithium ion secondary battery according to 1.
  9. 前記正極活物質及び前記負極活物質はともに、リチウムイオンを挿入および脱離可能なリチウム-遷移金属複合酸化物からなるが、両活物質は相異なるものであることを特徴とする、請求項8記載の水系リチウムイオン二次電池。 9. The positive electrode active material and the negative electrode active material are both composed of a lithium-transition metal composite oxide capable of inserting and removing lithium ions, but the two active materials are different from each other. The water based lithium ion secondary battery described.
  10. 前記正極活物質が、Co、Ni、Mn、Cr、V、Ti、及びFeから選ばれる1種以上の遷移金属元素を含有するリチウム-遷移金属複合酸化物からなることを特徴とする、請求項9記載の水系リチウムイオン二次電池。 The positive electrode active material is composed of a lithium-transition metal composite oxide containing one or more transition metal elements selected from Co, Ni, Mn, Cr, V, Ti, and Fe. The water based lithium ion secondary battery according to 9.
  11. 前記正極活物質が、LiFePO4であることを特徴とする、請求項10記載の水系リチウムイオン二次電池。 The water based lithium ion secondary battery according to claim 10, wherein the positive electrode active material is LiFePO 4 .
  12. 前記負極活物質が、V、Ti、及びFeから選ばれる1種以上の遷移金属元素を含有するリチウム-遷移金属複合酸化物からなることを特徴とする、請求項9記載の水系リチウムイオン二次電池。 10. The aqueous lithium ion secondary according to claim 9, wherein the negative electrode active material comprises a lithium-transition metal composite oxide containing one or more transition metal elements selected from V, Ti, and Fe. battery.
  13. 前記負極活物質が、LiTi2(PO43であることを特徴とする、請求項12記載の水系リチウムイオン二次電池。 The aqueous lithium ion secondary battery according to claim 12, wherein the negative electrode active material is LiTi 2 (PO 4 ) 3 .
  14. 前記導電補助材が、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウィスカー、炭素繊維、天然黒鉛、人造黒鉛、カーボンナノ粒子、カーボンナノチューブ、酸化チタン、酸化ルテニウム、アルミニウム、ニッケル及びこれらの混合物からなる群から選択されることを特徴とする、請求項8記載の水系リチウムイオン二次電池。 The conductive auxiliary material is made of carbon black, ketjen black, acetylene black, carbon whisker, carbon fiber, natural graphite, artificial graphite, carbon nanoparticles, carbon nanotube, titanium oxide, ruthenium oxide, aluminum, nickel, and a mixture thereof. The water based lithium ion secondary battery according to claim 8, wherein the water based lithium ion secondary battery is selected from the group.
  15. 前記導電補助材が、アセチレンブラックであることを特徴とする、請求項14記載の水系リチウムイオン二次電池。 The aqueous lithium ion secondary battery according to claim 14, wherein the conductive auxiliary material is acetylene black.
  16. 前記バインダーが、ポリエチレン、ポリプロピレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、スチレンブタジエンゴム、フッ素ゴム、テトラフルオロエチレン-ヘキサフルオロエチレン共重合体、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-パーフルオロアルキルビニルエーテル共重合体(PFA)、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-クロロトリフルオロエチレン共重合体、エチレン-テトラフルオロエチレン共重合体(ETFE樹脂)、ポリクロロトリフルオロエチレン(PCTFE)、フッ化ビニリデン-ペンタフルオロプロピレン共重合体、プロピレン-テトラフルオロエチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体(ECTFE)、フッ化ビニリデン-ヘキサフルオロプロピレン-テトラフルオロエチレン共重合体、フッ化ビニリデン-パーフルオロメチルビニルエーテル-テトラフルオロエチレン共重合体及びエチレン-アクリル酸共重合体からなる群から選択されることを特徴とする、請求項8記載の水系リチウムイオン二次電池。 The binder is polyethylene, polypropylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), styrene butadiene rubber, fluororubber, tetrafluoroethylene-hexafluoroethylene copolymer, tetrafluoroethylene-hexafluoropropylene copolymer Copolymer (FEP), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), vinylidene fluoride-hexafluoropropylene copolymer, vinylidene fluoride-chlorotrifluoroethylene copolymer, ethylene-tetrafluoroethylene copolymer Polymer (ETFE resin), polychlorotrifluoroethylene (PCTFE), vinylidene fluoride-pentafluoropropylene copolymer, propylene-tetrafluoroethylene copolymer, Tylene-chlorotrifluoroethylene copolymer (ECTFE), vinylidene fluoride-hexafluoropropylene-tetrafluoroethylene copolymer, vinylidene fluoride-perfluoromethyl vinyl ether-tetrafluoroethylene copolymer and ethylene-acrylic acid copolymer The water based lithium ion secondary battery according to claim 8, wherein the water based lithium ion secondary battery is selected from the group consisting of coalescence.
  17. 前記バインダーが、ポリテトラフルオロエチレン(PTFE)であることを特徴とする、請求項16記載の水系リチウムイオン二次電池。 The aqueous lithium ion secondary battery according to claim 16, wherein the binder is polytetrafluoroethylene (PTFE).
  18. 前記固体電解質塩が、LiNO3、LiOH、LiF、LiCl、LiBr、LiI、LiClO4、Li2SO4、Li(CH3COO)、LiBF4、LiPF6、LiN(CF3SO22、LiN(C25SO22、Li2O、Li2CO3及びこれらの混合物からなる群から選択されることを特徴とする、請求項1乃至請求項17のうち何れか一項に記載の水系リチウムイオン二次電池。 The solid electrolyte salt is LiNO 3 , LiOH, LiF, LiCl, LiBr, LiI, LiClO 4 , Li 2 SO 4 , Li (CH 3 COO), LiBF 4 , LiPF 6 , LiN (CF 3 SO 2 ) 2 , LiN. 18. The method according to claim 1, wherein the material is selected from the group consisting of (C 2 F 5 SO 2 ) 2 , Li 2 O, Li 2 CO 3 and mixtures thereof. Water based lithium ion secondary battery.
  19. 前記固体電解質塩がLiClO4又はLi2SO4であることを特徴とする、請求項18記載の水系リチウムイオン二次電池。 The aqueous lithium ion secondary battery according to claim 18, wherein the solid electrolyte salt is LiClO 4 or Li 2 SO 4 .
PCT/JP2012/083086 2011-12-21 2012-12-20 Aqueous lithium ion secondary battery WO2013094689A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013550333A JP6041813B2 (en) 2011-12-21 2012-12-20 Water-based lithium ion secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011279656 2011-12-21
JP2011-279656 2011-12-21

Publications (1)

Publication Number Publication Date
WO2013094689A1 true WO2013094689A1 (en) 2013-06-27

Family

ID=48668569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/083086 WO2013094689A1 (en) 2011-12-21 2012-12-20 Aqueous lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP6041813B2 (en)
WO (1) WO2013094689A1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601416B1 (en) * 2013-11-22 2014-10-08 東洋インキScホールディングス株式会社 Carbon black dispersion and use thereof
WO2016129668A1 (en) * 2015-02-12 2016-08-18 国立大学法人九州大学 Aqueous alkali-ion secondary battery
CN106601979A (en) * 2016-12-08 2017-04-26 德阳九鼎智远知识产权运营有限公司 Anode of secondary battery
KR20170094424A (en) * 2015-01-14 2017-08-17 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Aqueous electrolyte solution for electrical storage device, and electrical storage device including said aqueous electrolyte solution
CN107946667A (en) * 2018-01-25 2018-04-20 浙江中科立德新材料有限公司 A kind of water system solid lithium ion battery and preparation method thereof
JP2018067463A (en) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 Method for manufacturing negative electrode
EP3376583A1 (en) * 2017-03-17 2018-09-19 Kabushiki Kaisha Toshiba Secondary battery, battery pack and vehicle
US20180269534A1 (en) * 2017-03-17 2018-09-20 Kabushiki Kaisha Toshiba Secondary battery, battery pack and vehicle
JP2018156926A (en) * 2017-03-17 2018-10-04 株式会社東芝 Secondary battery, battery pack and vehicle
JP2018198131A (en) * 2017-05-23 2018-12-13 本田技研工業株式会社 Lithium ion secondary battery
JP2019145414A (en) * 2018-02-22 2019-08-29 公立大学法人大阪市立大学 Aqueous secondary battery
WO2020066263A1 (en) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Secondary battery positive electrode active material and secondary battery
CN110957488A (en) * 2019-11-07 2020-04-03 太原科技大学 Preparation method of peanut-like nickel cobalt lithium manganate positive electrode material
CN111697274A (en) * 2020-05-18 2020-09-22 复旦大学 Integrated industrial-grade preparation method of fibrous water-based secondary battery
CN112820951A (en) * 2021-01-06 2021-05-18 郑州大学 Electrolyte containing lignin and gelatin compound additive and water-based zinc ion battery using electrolyte
US11024879B2 (en) 2017-09-20 2021-06-01 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
KR20210087845A (en) * 2020-01-03 2021-07-13 세종대학교산학협력단 Battery electrolyte and manufacturing method for the same
WO2022030109A1 (en) * 2020-08-03 2022-02-10 パナソニックIpマネジメント株式会社 Lithium ion secondary battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7448998B2 (en) * 2020-02-20 2024-03-13 漢陽大学校エリカ産学協力団 Composite fiber, solid electrolyte containing the same, and metal-air battery containing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102086A (en) * 1999-09-30 2001-04-13 Kansai Research Institute Water system of lithium ion cell
JP2001210359A (en) * 2000-01-27 2001-08-03 Toyota Motor Corp Lithium ion second battery
WO2009005151A1 (en) * 2007-07-05 2009-01-08 Nissan Chemical Industries, Ltd. Novel lipid peptide and hydrogel
WO2009005152A1 (en) * 2007-07-05 2009-01-08 Nissan Chemical Industries, Ltd. Novel lipid-tripeptide based hydrogel-forming agent and hydrogel
WO2010013555A1 (en) * 2008-08-01 2010-02-04 日産化学工業株式会社 Novel lipid dipeptide and gel
JP2012186056A (en) * 2011-03-07 2012-09-27 Nissan Chem Ind Ltd Gel electrolyte
JP2012186055A (en) * 2011-03-07 2012-09-27 Nissan Chem Ind Ltd Gel electrolyte

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011124122A (en) * 2009-12-11 2011-06-23 Konica Minolta Holdings Inc Electrochemical device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001102086A (en) * 1999-09-30 2001-04-13 Kansai Research Institute Water system of lithium ion cell
JP2001210359A (en) * 2000-01-27 2001-08-03 Toyota Motor Corp Lithium ion second battery
WO2009005151A1 (en) * 2007-07-05 2009-01-08 Nissan Chemical Industries, Ltd. Novel lipid peptide and hydrogel
WO2009005152A1 (en) * 2007-07-05 2009-01-08 Nissan Chemical Industries, Ltd. Novel lipid-tripeptide based hydrogel-forming agent and hydrogel
WO2010013555A1 (en) * 2008-08-01 2010-02-04 日産化学工業株式会社 Novel lipid dipeptide and gel
JP2012186056A (en) * 2011-03-07 2012-09-27 Nissan Chem Ind Ltd Gel electrolyte
JP2012186055A (en) * 2011-03-07 2012-09-27 Nissan Chem Ind Ltd Gel electrolyte

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601416B1 (en) * 2013-11-22 2014-10-08 東洋インキScホールディングス株式会社 Carbon black dispersion and use thereof
JP2015101615A (en) * 2013-11-22 2015-06-04 東洋インキScホールディングス株式会社 Carbon black dispersion liquid and use of the same
KR101954600B1 (en) * 2015-01-14 2019-03-06 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Aqueous electrolyte solution for electrical storage device, and electrical storage device including said aqueous electrolyte solution
US10629958B2 (en) 2015-01-14 2020-04-21 The University Of Tokyo Aqueous electrolytic solution for power storage device and power storage device including said aqueous electrolytic solution
KR20170094424A (en) * 2015-01-14 2017-08-17 고쿠리츠다이가쿠호우진 도쿄다이가쿠 Aqueous electrolyte solution for electrical storage device, and electrical storage device including said aqueous electrolyte solution
WO2016129668A1 (en) * 2015-02-12 2016-08-18 国立大学法人九州大学 Aqueous alkali-ion secondary battery
JPWO2016129668A1 (en) * 2015-02-12 2017-11-24 国立大学法人九州大学 Water-based alkaline ion secondary battery
JP2018067463A (en) * 2016-10-19 2018-04-26 トヨタ自動車株式会社 Method for manufacturing negative electrode
JP6996840B2 (en) 2016-10-19 2022-02-03 トヨタ自動車株式会社 Negative electrode manufacturing method
CN106601979A (en) * 2016-12-08 2017-04-26 德阳九鼎智远知识产权运营有限公司 Anode of secondary battery
EP3376583A1 (en) * 2017-03-17 2018-09-19 Kabushiki Kaisha Toshiba Secondary battery, battery pack and vehicle
US20180269534A1 (en) * 2017-03-17 2018-09-20 Kabushiki Kaisha Toshiba Secondary battery, battery pack and vehicle
JP2018156926A (en) * 2017-03-17 2018-10-04 株式会社東芝 Secondary battery, battery pack and vehicle
US11431035B2 (en) 2017-03-17 2022-08-30 Kabushiki Kaisha Toshiba Secondary battery, battery pack and vehicle
JP2018198131A (en) * 2017-05-23 2018-12-13 本田技研工業株式会社 Lithium ion secondary battery
US11024879B2 (en) 2017-09-20 2021-06-01 Kabushiki Kaisha Toshiba Secondary battery, battery pack, and vehicle
CN107946667A (en) * 2018-01-25 2018-04-20 浙江中科立德新材料有限公司 A kind of water system solid lithium ion battery and preparation method thereof
JP2019145414A (en) * 2018-02-22 2019-08-29 公立大学法人大阪市立大学 Aqueous secondary battery
JP7321432B2 (en) 2018-02-22 2023-08-07 公立大学法人大阪 Aqueous secondary battery
WO2020066263A1 (en) * 2018-09-27 2020-04-02 パナソニックIpマネジメント株式会社 Secondary battery positive electrode active material and secondary battery
CN110957488A (en) * 2019-11-07 2020-04-03 太原科技大学 Preparation method of peanut-like nickel cobalt lithium manganate positive electrode material
KR20210087845A (en) * 2020-01-03 2021-07-13 세종대학교산학협력단 Battery electrolyte and manufacturing method for the same
KR102317345B1 (en) * 2020-01-03 2021-10-25 세종대학교산학협력단 Battery electrolyte and manufacturing method for the same
CN111697274A (en) * 2020-05-18 2020-09-22 复旦大学 Integrated industrial-grade preparation method of fibrous water-based secondary battery
CN111697274B (en) * 2020-05-18 2023-04-07 复旦大学 Integrated industrial-grade preparation method of fibrous water-based secondary battery
WO2022030109A1 (en) * 2020-08-03 2022-02-10 パナソニックIpマネジメント株式会社 Lithium ion secondary battery
CN112820951A (en) * 2021-01-06 2021-05-18 郑州大学 Electrolyte containing lignin and gelatin compound additive and water-based zinc ion battery using electrolyte

Also Published As

Publication number Publication date
JP6041813B2 (en) 2016-12-14
JPWO2013094689A1 (en) 2015-04-27

Similar Documents

Publication Publication Date Title
JP6041813B2 (en) Water-based lithium ion secondary battery
Chen et al. High-performance lithium ion batteries using SiO2-coated LiNi0. 5Co0. 2Mn0. 3O2 microspheres as cathodes
JP6574222B2 (en) Lithium nickel cobalt manganese composite oxide positive electrode material having a spherical or similar spherical layer structure, manufacturing method, positive electrode, lithium ion battery, energy storage power plant or portable memory equipment, and use
JP6493853B2 (en) Lithium nickel cobalt aluminum oxide composite positive electrode material, method for producing the same, and lithium ion secondary battery
US9202631B2 (en) Porous film and secondary battery electrode
JP6407754B2 (en) Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, lithium ion battery, and method for producing positive electrode active material for lithium ion battery
CN101969111B (en) Silicon-carbon alloy cathode material for lithium ion batteries and preparation method thereof
JP5499992B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery using the positive electrode active material
JP2016520251A (en) Electrode composition, electrochemical cell, and method for producing electrochemical cell
TW200841507A (en) Cathode active material and secondary battery comprising the same
JP6808988B2 (en) Negative electrode active material for lithium-ion batteries and lithium-ion batteries
WO2015098116A1 (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery
JP6645101B2 (en) Slurry composition for lithium ion secondary battery electrode, electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6540692B2 (en) Composite particle for electrochemical device electrode and method for producing composite particle for electrochemical device electrode
KR20150110482A (en) Method for manufacturing conductive adhesive composition for electrochemical element electrode
CN102569788B (en) Negative material of a kind of lithium ion battery and preparation method thereof and a kind of lithium ion battery
CN103326010A (en) Process for preparing nano-silicon-doped composite-lithium-titanate anode materials
CN105006555A (en) Preparation method of compound lithium titanate anode material doped with metallic tin
CN109713219A (en) Anode and the non-aqueous electrolyte secondary battery for having the anode
CN105393386A (en) Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell
JP2014157661A (en) Process of manufacturing composite particle for positive electrode of electrochemical element
JP6183027B2 (en) Production method of reduced particle size composite particles for electrochemical device electrodes and reduced particle size composite particles for electrochemical device electrodes
CN103579623B (en) Nanoscale lithium iron phosphate electrode material preparation method
CN103682294B (en) A kind of preparation method synthesizing lithium titanate nanosphere
CN107959011B (en) Hierarchical porous lithium titanate-titanium dioxide composite negative electrode material and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860383

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013550333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860383

Country of ref document: EP

Kind code of ref document: A1