WO2015098116A1 - Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery - Google Patents

Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery Download PDF

Info

Publication number
WO2015098116A1
WO2015098116A1 PCT/JP2014/006464 JP2014006464W WO2015098116A1 WO 2015098116 A1 WO2015098116 A1 WO 2015098116A1 JP 2014006464 W JP2014006464 W JP 2014006464W WO 2015098116 A1 WO2015098116 A1 WO 2015098116A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
binder
secondary battery
positive electrode
material paste
Prior art date
Application number
PCT/JP2014/006464
Other languages
French (fr)
Japanese (ja)
Inventor
真弓 福峯
高橋 直樹
麻貴 片桐
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013273124A external-priority patent/JP6398191B2/en
Priority claimed from JP2014005329A external-priority patent/JP6413242B2/en
Priority claimed from JP2014066739A external-priority patent/JP6394027B2/en
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to KR1020167015523A priority Critical patent/KR102393257B1/en
Priority to CN201480067820.0A priority patent/CN105814718B/en
Publication of WO2015098116A1 publication Critical patent/WO2015098116A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a conductive paste for a secondary battery electrode, a method for producing a slurry for a secondary battery positive electrode, a method for producing a positive electrode for a secondary battery, and a secondary battery.
  • Secondary batteries especially lithium ion secondary batteries, are small and light, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications.
  • lithium ion secondary batteries have attracted attention as an energy source for electric vehicles (EV) and hybrid electric vehicles (HEV), and higher performance is required. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of secondary batteries such as lithium ion secondary batteries.
  • EV electric vehicles
  • HEV hybrid electric vehicles
  • improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of secondary batteries such as lithium ion secondary batteries.
  • it has been studied to improve the electrical characteristics by improving battery members such as electrodes.
  • an electrode for a lithium ion secondary battery usually includes a current collector and an electrode mixture layer formed on the current collector.
  • the electrode mixture layer for example, the positive electrode mixture layer is usually formed by dispersing a positive electrode slurry as an electrode slurry on a current collector, in which a positive electrode active material, a conductive material, a binder, and the like are dispersed or dissolved in a dispersion medium. It is formed by applying and drying and binding a positive electrode active material, a conductive material, and the like with a binder.
  • the composition of the electrode slurry and the manufacturing process thereof affect the properties of the obtained electrode slurry.
  • Patent Document 1 a mixture of a fluorine-based polymer and nitrile rubber or hydrogenated nitrile rubber is used as a binder to be blended in an electrode slurry for forming an electrode mixture layer, and nitrile rubber or hydrogenated nitrile rubber is used. It has been proposed to improve the performance of the electrode and improve the energy density and cycle characteristics of the secondary battery by a synergistic effect of having high adhesiveness and bonding of the fluoropolymer in the fiber state. Yes.
  • Patent Document 2 when preparing a slurry for a positive electrode containing a mixture of a fluorinated polymer and a hydrogenated nitrile rubber as a binder, an organic solvent solution of the fluorinated polymer, a hydrogenated nitrile rubber, and a conductive material are previously added. After mixing to obtain a conductive material paste, the conductive material paste and the positive electrode active material are mixed to prepare a positive electrode slurry, thereby improving the performance of the positive electrode and reducing the battery capacity in large current discharge. It has been proposed to provide fewer secondary batteries.
  • Patent Document 3 a lithium-containing transition metal oxide as a positive electrode active material, a first binder A such as a fluorine-based polymer and a paste A containing a dispersion medium, carbon black as a conductive material, hydrogenated nitrile rubber, and the like
  • the second binder B and the paste B (conductive material paste) containing the dispersion medium are prepared, and the positive electrode slurry obtained by mixing the paste A and the paste B is used for forming the positive electrode.
  • a hydrogenated nitrile rubber having a low affinity with a fluorine-based polymer is disposed on the surface to suppress aggregation of the conductive material due to the fluorine-based polymer.
  • Patent Document 4 a conductive material paste containing a conductive material and a binder is prepared, and the obtained conductive material paste is diluted with a solvent, and then a lithium-transition metal composite oxide as a positive electrode active material is added and stirred.
  • a lithium-transition metal composite oxide as a positive electrode active material is added and stirred.
  • the secondary battery is not only required to improve the low temperature characteristics by further reducing the internal resistance and ensure high output, but also, for example, the above-described electric vehicle (EV) or hybrid electric vehicle (HEV). It is required to ensure high-temperature storage characteristics and high-temperature cycle characteristics in order to fully exhibit its performance even in a high-temperature environment such as In order to improve the electrical characteristics of such a secondary battery, it is necessary to ensure durability (potential stability) with respect to voltage application of the electrode while ensuring conductivity in the electrode. Furthermore, when manufacturing a battery industrially, the dispersion stability of the electrode slurry and the conductive material paste used for preparing the electrode slurry is also very important.
  • an object of this invention is to provide the electrically conductive material paste for secondary battery electrodes which can form the electrode which is excellent in dispersion stability and excellent in electric potential stability. Moreover, an object of this invention is to provide the manufacturing method of the slurry for secondary battery positive electrodes which can improve the electrical property and can improve the performance of a secondary battery. Furthermore, an object of this invention is to provide the manufacturing method of the positive electrode for secondary batteries which can improve the electrical property and can improve the performance of a secondary battery. In addition, an object of the present invention is to provide a secondary battery having excellent electrical characteristics.
  • the present inventors have intensively studied for the purpose of solving the above-mentioned problems and found the following points.
  • the present inventors have excellent dispersion stability when a conductive material paste containing a binder having a specific repeating unit and the amount of the binder adsorbed on the conductive material is controlled within a predetermined range. I found out.
  • the conductive material paste for the preparation of secondary battery electrode slurry especially positive electrode slurry
  • the oxidation of the binder is suppressed and the potential stability is improved. It has been found that electrical characteristics such as high temperature storage characteristics can be enhanced.
  • the present inventors have formed the above conventional electrode slurry from an electrode slurry because the binder and the conductive material are sufficiently kneaded with a relatively high solid content. There is a possibility that a good conductive network may not be formed between the conductive materials due to excessive dispersion of the conductive material in the electrode mixture layer, and a secondary where the conductive network between the conductive materials is insufficient. It was further found that the battery may not be able to suppress capacity deterioration due to internal resistance, particularly capacity deterioration at low temperatures. Accordingly, the present inventors have repeatedly studied and have come up with the idea of forming a good conductive network between conductive materials by adjusting the manufacturing conditions and the like of electrode slurry (especially positive electrode slurry).
  • the inventors further studied and prepared a slurry for an electrode by mixing the solid content concentration of the conductive material paste containing the binder containing the specific repeating unit and the conductive material within a predetermined range. And / or by producing a slurry for a secondary battery electrode by a specific manufacturing process using a binder containing the specific repeating unit described above, it is possible to form a good conductive network between conductive materials, It has been found that the internal resistance of the secondary battery manufactured using the obtained secondary battery electrode slurry is reduced, and the high-temperature cycle characteristics and low-temperature characteristics are improved.
  • the conductive material paste for a secondary battery electrode of the present invention contains a conductive material and a binder A, and the binder A is an alkylene. It includes at least one of a structural unit and a (meth) acrylic acid ester monomer unit, and the binder adsorption amount of the conductive material is 100 mg / g or more and 600 mg / g or less.
  • the secondary battery containing the binder A containing the alkylene structural unit and / or the (meth) acrylic acid ester monomer unit, and the binder adsorption amount of the conductive material is 100 mg / g or more and 600 mg / g or less.
  • the electrode conductive material paste has excellent dispersion stability, and an electrode having excellent potential stability can be produced by using the conductive material paste.
  • the electrode obtained using the conductive material paste can exhibit excellent electrical characteristics for the secondary battery.
  • the “binder adsorption amount of the conductive material” can be measured by the method described in this specification.
  • the binder A preferably includes an alkylene structural unit.
  • the binder A contains an alkylene structural unit, the dispersion stability of the conductive material paste and the potential stability of the electrode can be further improved, and the electrical characteristics of the secondary battery can be further enhanced. Because.
  • the binder A includes both an alkylene structural unit and a (meth) acrylate monomer unit. If the binder A includes both an alkylene structural unit and a (meth) acrylic acid ester monomer unit, the dispersion stability of the conductive material paste and the potential stability of the electrode can be further improved. This is because the electrical characteristics of the battery can be further enhanced.
  • the binder A further contains 2% by mass to 50% by mass of a nitrile group-containing monomer unit. If the binder A contains a nitrile group-containing monomer unit in the range of 2% by mass to 50% by mass, the dispersion stability of the conductive material paste and the potential stability of the electrode can be further improved. Moreover, it is because the electrical property of a secondary battery can be improved further while improving the stability with respect to the electrolyte solution of the positive electrode for secondary batteries manufactured using the electrically conductive material paste.
  • the conductive material paste for a secondary battery electrode of the present invention preferably has a viscosity of 1000 mPa ⁇ s or more and 10,000 mPa ⁇ s or less.
  • the dispersion stability of the conductive material paste can be made excellent by setting the viscosity of the conductive material paste to 1000 mPa ⁇ s or more and 10,000 mPa ⁇ s or less.
  • the conductive material paste for a secondary battery electrode of the present invention preferably has a solid content concentration of 5% by mass or more and 15% by mass or less.
  • the conductive material is well dispersed in the obtained electrode mixture layer, and the electrical characteristics of the secondary battery are further enhanced. Because it can.
  • the conductive material is “dispersed well” means that the conductive material is appropriately dispersed without excessively dispersing or aggregating in the electrode mixture layer. It refers to a state where each other can form a conductive network.
  • the manufacturing method of the slurry for secondary battery positive electrodes of this invention uses the electrically conductive paste for any of the above-mentioned secondary battery electrodes. It includes a step (X) of preparing, and a step (Y) of mixing the conductive material paste for a secondary battery electrode and a positive electrode active material.
  • the secondary battery positive electrode slurry obtained by using any one of the above-described conductive pastes for secondary battery electrodes is excellent in dispersion stability, and if the positive electrode slurry is used, a positive electrode excellent in potential stability is produced. Thus, the secondary battery can exhibit excellent electrical characteristics.
  • the step (X) mixes and premixes the conductive material and the first binder component containing the binder A as a main component.
  • the positive electrode slurry is prepared using the conductive material paste through the first step and the second step, the electrical characteristics of the secondary battery can be further enhanced.
  • "it contains as a main component” shows containing in the ratio of 50 mass% or more in conversion of solid content.
  • the manufacturing method of the positive electrode for secondary batteries of this invention was obtained by the manufacturing method of the slurry for secondary battery positive electrodes mentioned above.
  • the method includes a step of applying a slurry for a secondary battery positive electrode to at least one surface of a current collector and drying to form a positive electrode mixture layer. If the positive electrode mixture layer is formed from the above-described slurry for the secondary battery positive electrode, a positive electrode having excellent potential stability can be produced, and the positive electrode can exhibit excellent electrical characteristics in the secondary battery. .
  • the secondary battery of this invention is a secondary battery which has a positive electrode, a negative electrode, a separator, and electrolyte solution, Comprising:
  • the said positive electrode is A secondary battery positive electrode manufactured by the above-described method for manufacturing a secondary battery positive electrode.
  • a secondary battery provided with the positive electrode for secondary batteries manufactured by the manufacturing method of the positive electrode for secondary batteries mentioned above is excellent in an electrical property.
  • the electrically conductive material paste for secondary battery electrodes which can form the electrode which is excellent in dispersion stability and is excellent in electric potential stability can be provided.
  • the manufacturing method of the slurry for secondary battery positive electrodes which can improve an electrical characteristic and can improve the performance of a secondary battery can be provided.
  • the manufacturing method of the positive electrode for secondary batteries which can improve an electrical characteristic and can improve the performance of a secondary battery can be provided.
  • a secondary battery having excellent electrical characteristics can be provided.
  • the conductive material paste for a secondary battery electrode of the present invention is used as a material for producing a slurry for a secondary battery electrode, preferably a slurry for a secondary battery positive electrode.
  • the manufacturing method of the slurry for secondary battery positive electrodes of this invention manufactures the slurry for secondary battery positive electrodes used for formation of the positive electrode of a secondary battery using the electrically conductive material paste for secondary battery electrodes of this invention.
  • the method for producing a positive electrode for a secondary battery according to the present invention is characterized in that a positive electrode mixture layer is formed from the slurry for a secondary battery positive electrode produced by using the method for producing a slurry for a secondary battery positive electrode according to the present invention.
  • the secondary battery of the present invention is characterized by using a positive electrode manufactured by the method for manufacturing a positive electrode for a secondary battery of the present invention.
  • the conductive material paste of the present invention comprises at least a conductive material and a binder A, and the binder A includes at least one of an alkylene structural unit and a (meth) acrylic acid ester monomer unit.
  • the binder adsorption amount of the conductive material is 100 mg / g or more and 600 mg / g or less.
  • the conductive material paste containing at least the binder A containing an alkylene structural unit and / or a (meth) acrylic acid ester monomer unit as a binder, and the binder adsorption amount of the conductive material is within a specific range, If the conductive material paste is excellent in dispersion stability, an electrode having excellent potential stability can be produced, and the secondary battery can exhibit excellent electrical characteristics.
  • “including an alkylene structural unit” means “a repeating structure composed only of an alkylene structure represented by the general formula —C n H 2n — [where n is an integer of 2 or more] in a polymer. It means "unit is included”.
  • including a monomer unit means “a repeating unit derived from a monomer is contained in a polymer obtained using the monomer”.
  • (meth) acryl means acryl and / or methacryl.
  • the conductive material is, for example, for ensuring electrical contact between the positive electrode active materials in the positive electrode mixture layer.
  • a well-known electrically conductive material can be used, without being specifically limited.
  • the conductive material acetylene black, ketjen black (registered trademark), furnace black, graphite, carbon fiber, carbon flake, carbon ultrashort fiber (for example, carbon nanotube, vapor grown carbon fiber, etc.), etc.
  • Conductive carbon materials various metal fibers, foils and the like can be used. Among these, from the viewpoint of sufficiently improving the rate characteristics while maintaining the battery capacity of the secondary battery, it is preferable to use acetylene black, ketjen black, or furnace black as the conductive material.
  • the specific surface area of the conductive material is preferably 10 m 2 / g or more, more preferably 50 m 2 / g or more, further preferably 65 m 2 / g or more, preferably 1500 m 2 / g or less, more preferably 1000 m 2 / g Hereinafter, it is more preferably 500 m 2 / g or less. If the specific surface area of the conductive material is 10 m 2 / g or more, the amount of binder adsorbed on the conductive material is easy to adjust, and if it is 1500 m 2 / g or less, the conductive due to excessive adsorption of the binder as an insulator. Sexual deterioration can be suppressed.
  • the “specific surface area of the conductive material” is a BET specific surface area by a nitrogen adsorption method, and can be measured in accordance with ASTM D3037-81.
  • Binder A is an electrode manufactured by forming an electrode mixture layer on a current collector with an electrode slurry containing the conductive material paste of the present invention, and the components contained in the electrode mixture layer are detached from the electrode mixture layer. It is a component that can be retained so as not to be present.
  • the binder in the electrode mixture layer for example, the positive electrode mixture layer, when immersed in the electrolytic solution absorbs the electrolytic solution and swells, while the positive electrode active materials are in contact with each other, the positive electrode active material and the conductive material, or The conductive materials are bound to each other to prevent the positive electrode active material and the like from dropping from the current collector.
  • the binder A used for the electrically conductive material paste of this invention needs to contain at least one of an alkylene structural unit and a (meth) acrylic acid ester monomer unit.
  • the binder A may optionally contain other monomer units other than the alkylene structural unit and the (meth) acrylate monomer unit.
  • the binder A contains an alkylene structural unit and / or a (meth) acrylic acid ester monomer unit, so that the adsorbing ability of the binder A to the conductive material is ensured, and the aggregation of the conductive material is suppressed and the conductive material is suppressed.
  • the dispersion stability of the paste can be improved.
  • the electrode slurry containing such a conductive material paste is also excellent in dispersion stability, the conductive material is well dispersed in the electrode mixture layer formed from the electrode slurry.
  • the binder A containing an alkylene structural unit and a (meth) acrylic acid ester monomer unit has excellent oxidation resistance, and ensures the potential stability of an electrode prepared using an electrode slurry containing a conductive material paste. Can do.
  • the internal resistance of the secondary battery including the electrode formed using the conductive material paste of the present invention is reduced.
  • the secondary battery can be improved in low temperature characteristics, high temperature cycle characteristics and high temperature storage characteristics, and excellent in electrical characteristics.
  • the binder A used in the conductive material paste of the present invention preferably includes at least an alkylene structural unit, and more preferably includes both an alkylene structural unit and a (meth) acrylic acid ester monomer unit.
  • the alkylene structural unit is included and when both the alkylene structural unit and the (meth) acrylate monomer unit are included, the dispersion stability of the conductive material paste and the potential stability of the electrode are further improved. This is because the electrical characteristics of a secondary battery including an electrode manufactured using a conductive material paste can be improved.
  • the alkylene structural unit may be linear or branched, but from the viewpoint of improving the dispersion stability of the conductive material paste and the potential stability of the electrode, the alkylene structural unit is linear. It is preferably a linear alkylene structural unit.
  • the method for introducing the alkylene structural unit into the binder A is not particularly limited.
  • the following methods (1) and (2) (1) A method of preparing a polymer from a monomer composition containing a conjugated diene monomer and converting the conjugated diene monomer unit to an alkylene structural unit by hydrogenating the polymer (2) Examples thereof include a method for preparing a polymer from a monomer composition containing a 1-olefin monomer.
  • the method (1) is preferable because the production of the binder A is easy.
  • examples of the conjugated diene monomer include conjugated diene compounds having 4 or more carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene. It is done. Of these, 1,3-butadiene is preferred. That is, the alkylene structural unit is preferably a structural unit (conjugated diene hydride unit) obtained by hydrogenating a conjugated diene monomer unit, and a structure obtained by hydrogenating a 1,3-butadiene monomer unit. More preferred are units (1,3-butadiene hydride units).
  • Examples of the 1-olefin monomer include ethylene, propylene, 1-butene and the like. These conjugated diene monomers and 1-olefin monomers can be used singly or in combination of two or more.
  • the content ratio of the alkylene structural unit in the binder A is preferably 30% by mass or more when all repeating units (total of monomer units and structural units) in the binder A are 100% by mass. 50 mass% or more is more preferable, 98 mass% or less is preferable, and 80 mass% or less is more preferable.
  • the dispersion stability of the conductive material paste is improved by suppressing the sedimentation of the conductive material in the conductive material paste, and in addition, the electrode Is ensured.
  • the conductive material is well dispersed and the conductive network is well formed. The electrical characteristics of the secondary battery having the layer are improved.
  • the solubility of the binder A in a solvent such as N-methylpyrrolidone (NMP) becomes excessively high.
  • NMP N-methylpyrrolidone
  • the binder A becomes conductive.
  • Dispersion stability declines by not being able to adsorb
  • the adsorption amount to the conductive material is reduced, the internal resistance of the secondary battery manufactured using them is increased, and the low temperature characteristics, the high temperature storage characteristics, and the high temperature cycle characteristics may be decreased.
  • Examples of the (meth) acrylate monomer that can form a (meth) acrylate monomer unit include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, Alkyl acrylates such as isobutyl acrylate, n-pentyl acrylate, isopentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate
  • the (meth) acrylic acid ester monomer is a non-carbonyl oxygen.
  • Acrylic acid alkyl ester having 4 to 10 carbon atoms in the alkyl group bonded to the atom is preferable, and specifically, ethyl acrylate, n-butyl acrylate and 2-ethylhexyl acrylate are preferable, and n-butyl acrylate is more preferable. preferable. These can be used alone or in combination of two or more.
  • the content rate of the (meth) acrylic acid ester monomer unit in the said binder A shall be 10 mass% or more and 40 mass% or less, when all the repeating units in the binder A are 100 mass%. Is preferred.
  • the content ratio of the (meth) acrylic acid ester monomer unit in the binder A 40% by mass or less, particularly the solubility of the binder A in a solvent such as NMP is improved, and the conductive material paste is dispersed. Stability can be further improved.
  • the content ratio of the (meth) acrylic acid ester monomer unit in the binder A is 10% by mass or more, thereby improving the stability of the electrode mixture layer formed using the conductive material paste with respect to the electrolytic solution.
  • the high temperature storage characteristic and high temperature cycling characteristic of the secondary battery manufactured using the electrically conductive material paste can be improved.
  • the content rate of the (meth) acrylic acid ester monomer unit in the binder A is less than 10% by mass, the strength of the electrode mixture layer formed using the conductive material paste is lowered, and the degree of swelling with respect to the electrolytic solution Increases and peel strength decreases. Therefore, there is a possibility that the high-temperature storage characteristics and high-temperature cycle characteristics of a secondary battery provided with such electrodes will deteriorate.
  • the content ratio of the (meth) acrylic acid ester monomer unit in the binder A exceeds 40% by mass, the solubility of the binder A particularly in a solvent such as NMP is lowered.
  • the conductive material paste and In the slurry for secondary battery electrodes the dispersion of the conductive material may be biased, and the dispersion stability thereof may be impaired. Therefore, the electrodes formed using them are inferior in uniformity, the internal resistance of the secondary battery including the electrodes is increased, and the low temperature characteristics, the high temperature storage characteristics, and the high temperature cycle characteristics may be decreased.
  • the binder A may contain other monomer units in addition to the above-described alkylene structural unit and (meth) acrylic acid ester monomer unit.
  • Such other monomer units include nitrile group-containing monomer units, hydrophilic group-containing monomer units, crosslinkable monomer units, aromatic vinyl monomer units, ethylenically unsaturated carboxylic acids. Examples thereof include an amide monomer unit and a fluorine-containing monomer unit.
  • the binder A contains a nitrile group containing monomer unit.
  • the binder A does not substantially contain a hydrophilic group-containing monomer unit.
  • Examples of the nitrile group-containing monomer that can form a nitrile group-containing monomer unit include ⁇ , ⁇ -ethylenically unsaturated nitrile monomers.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group.
  • the nitrile group-containing monomer is preferably acrylonitrile and methacrylonitrile, and more preferably acrylonitrile. These can be used alone or in combination of two or more.
  • the content ratio of the nitrile group-containing monomer unit in the binder A is preferably 2% by mass or more and more preferably 10% by mass or more when the total repeating unit in the binder A is 100% by mass. 12 mass% or more is particularly preferable, 50 mass% or less is preferable, 40 mass% or less is more preferable, 35 mass% or less is even more preferable, 30 mass% or less is particularly preferable, and 25 mass% or less is most preferable.
  • the stability of the electrode with respect to the electrolytic solution is improved, and the low-temperature characteristics, high-temperature storage characteristics, and high-temperature cycle characteristics of the secondary battery can be improved.
  • the nitrile group-containing monomer by setting the nitrile group-containing monomer to 35% by mass or less, the content ratio of the alkylene structural unit and / or the (meth) acrylic acid ester monomer unit can be sufficiently ensured. Can be improved.
  • the binder A when the content ratio of the nitrile group-containing monomer unit in the binder A exceeds 40% by mass, the binder A is easily dissolved in the electrolytic solution and cannot be stably adsorbed to the conductive material and dissociates in the solvent. As a result, the dispersion stability decreases. As a result, the high-temperature storage characteristics and high-temperature cycle characteristics of the secondary battery may be degraded. Moreover, the adsorption capacity of the binder A with respect to the conductive material is lowered, and it becomes difficult to adjust the binder adsorption amount of the conductive material.
  • the ratio of the nitrile group-containing monomer unit in the binder A is less than 2% by mass, the solubility of the binder A in a solvent such as NMP is particularly reduced, and the conductive material paste and the secondary battery electrode are used. There is a possibility that the dispersibility of the conductive material in the slurry may be lowered. Therefore, the internal resistance of the secondary battery including the electrode manufactured using them is increased, and the low temperature characteristics, the high temperature storage characteristics, and the high temperature cycle characteristics may be deteriorated.
  • hydrophilic group-containing monomer examples include a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphate group, and a hydroxyl group A monomer having can be used.
  • Examples of the monomer having a carboxylic acid group include monocarboxylic acids and derivatives thereof, dicarboxylic acids and acid anhydrides, and derivatives thereof.
  • Examples of monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
  • Examples of monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid, ⁇ -diaminoacrylic acid, and the like.
  • Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
  • Dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate And maleate esters such as octadecyl maleate and fluoroalkyl maleate.
  • the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • generates a carboxyl group by hydrolysis can also be used.
  • monoesters and diesters of ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acids such as monobutyl itaconate and dibutyl itaconate.
  • Examples of monomers having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid. In the present specification, “(meth) allyl” means allyl and / or methallyl.
  • Examples of the monomer having a phosphate group include 2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, ethyl phosphate- (meth) acryloyloxyethyl, and the like.
  • (meth) acryloyl means acryloyl and / or methacryloyl.
  • Examples of the monomer having a hydroxyl group include those described in International Publication No. 2013/088099.
  • (meth) acrylic acid ester monomer and nitrile group-containing monomer which can constitute binder A, crosslinkable monomer, aromatic vinyl monomer, and ethylenic unsaturation described later
  • the carboxylic acid amide monomer and the fluorine-containing monomer do not contain a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, or a hydroxyl group.
  • a hydrophilic group-containing monomer such as a monomer having a carboxylic acid group can contribute to an improvement in the production stability of the binder A, while a hydrophilic group-containing monomer unit is included in the binder A.
  • the dispersibility of the conductive material included in the binder A may be impaired. Therefore, from the viewpoint of ensuring the dispersion stability of the conductive material paste, the content ratio of the hydrophilic group-containing monomer unit in the binder A is 0 when the total repeating unit in the binder A is 100% by mass. Less than 0.05 mass% (substantially free) is preferable, and 0 mass% is more preferable.
  • the crosslinkable monomer that can form a crosslinkable monomer unit includes an epoxy group-containing monomer, a carbon-carbon double bond and an epoxy group-containing monomer, a halogen atom and an epoxy group.
  • aromatic vinyl monomer units examples include styrene, ⁇ -methylstyrene, pt-butylstyrene, vinyltoluene, and chlorostyrene.
  • Examples of the ethylenically unsaturated carboxylic acid amide monomer that can form an ethylenically unsaturated carboxylic acid amide monomer unit include acrylamide, methacrylamide, N, N-dimethylacrylamide, and the like.
  • fluorine-containing monomer unit As the fluorine-containing monomer that can form a fluorine-containing monomer unit, the same monomer as the fluorine-containing monomer that can form a fluorine-based polymer described later can be used. In addition, when the binder A contains a fluorine-containing unit, the ratio of the fluorine-containing unit is less than 70% when the total repeating unit of the binder A is 100% by weight.
  • the method for producing the binder A is not particularly limited.
  • a polymer is obtained by polymerizing a monomer composition containing the above-mentioned monomers, and optionally prepared by hydrogenating the obtained polymer. can do.
  • the content ratio of each monomer in the monomer composition in the present specification can be determined according to the content ratio of each monomer unit and structural unit (repeating unit) in the binder A.
  • the polymerization mode is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • the hydrogenation method is not particularly limited, and a general method using a catalyst (for example, see International Publication No. 2012/165120, International Publication No. 2013/088099 and Japanese Patent Application Laid-Open No. 2013-8485) may be used. it can.
  • the iodine value of the hydrogenated polymer is preferably 60 mg / 100 mg or less, more preferably 30 mg / 100 mg or less, and particularly preferably 20 mg / 100 mg or less. Further, the lower limit is preferably 3 mg / 100 mg or more, and more preferably 8 mg / 100 mg or more.
  • the iodine value is obtained by measuring the iodine value of a dried polymer obtained by coagulating 100 g of an aqueous dispersion of a polymer with 1 liter of methanol and then vacuum drying at 60 ° C. for 12 hours according to JIS K6235 (2006). Can be obtained.
  • the binder A is used in the state of a dispersion liquid or a dissolved solution dispersed in a dispersion medium.
  • the dispersion medium of the binder A is not particularly limited as long as the binder A can be uniformly dispersed or dissolved, and water or an organic solvent can be used, and an organic solvent is preferably used.
  • an organic solvent it does not specifically limit, The organic solvent used as a solvent of the electrically conductive material paste mentioned later can be used.
  • the blending amount of the binder A in the conductive material paste is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, preferably 200 parts by mass or less, more preferably 150 parts by mass or less, per 100 parts by mass of the conductive material. It is. When the blending amount of the binder A in the conductive material paste is within the above range, the dispersion stability of the conductive material paste becomes good.
  • the conductive material paste of the present invention may contain another binder different from the binder A (hereinafter referred to as the binder B).
  • the binder B for example, is held in a positive electrode produced by forming a positive electrode mixture layer on a current collector so that components contained in the positive electrode mixture layer are not detached from the positive electrode mixture layer.
  • the binder B it is preferable to use a fluoropolymer. This is because, as will be described later, by using a fluorine-based polymer, the temporal stability of the secondary battery positive electrode slurry can be further improved.
  • the fluorine polymer is a polymer containing a fluorine-containing monomer unit.
  • a fluorine-based polymer a homopolymer or copolymer of one or more kinds of fluorine-containing monomers, one or more kinds of fluorine-containing monomers and a monomer not containing fluorine (hereinafter referred to as “fluorine-containing monomers”) And a copolymer with “fluorine-free monomer”).
  • the ratio of the fluorine-containing monomer unit in a fluorine-type polymer is 70 mass% or more normally, Preferably it is 80 mass% or more.
  • the ratio of the fluorine-free monomer unit in the fluoropolymer is usually 30% by mass or less, preferably 20% by mass or less.
  • examples of the fluorine-containing monomer that can form a fluorine-containing monomer unit include vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, vinyl trifluoride chloride, vinyl fluoride, and perfluoroalkyl vinyl ether. It is done. Among these, as the fluorine-containing monomer, vinylidene fluoride is preferable.
  • fluorine-free monomer that can form a fluorine-free monomer unit
  • fluorine-free monomer examples include a fluorine-free monomer copolymerizable with the fluorine-containing monomer, such as ethylene, propylene, and 1-butene.
  • aromatic vinyl compounds such as styrene, ⁇ -methylstyrene, pt-butylstyrene, vinyltoluene, chlorostyrene; unsaturated nitrile compounds such as (meth) acrylonitrile; methyl (meth) acrylate, ( (Meth) acrylic acid ester compounds such as (meth) butyl acrylate and (meth) acrylic acid 2-ethylhexyl; (meth) acrylamides such as (meth) acrylamide, N-methylol (meth) acrylamide and N-butoxymethyl (meth) acrylamide Acrylamide compounds; (meth) acrylic acid, itaconic acid, fumaric acid, crotonic acid Vinyl compounds containing carboxyl groups such as maleic acid; epoxy group-containing unsaturated compounds such as allyl glycidyl ether and glycidyl (meth) acrylate; amino such as dimethylaminoethy
  • the fluorine-based polymer is preferably a polymer using vinylidene fluoride as the fluorine-containing monomer and a polymer using vinyl fluoride as the fluorine-containing monomer, and vinylidene fluoride as the fluorine-containing monomer.
  • a polymer using is more preferable.
  • the fluoropolymer a homopolymer of vinylidene fluoride (polyvinylidene fluoride), a copolymer of vinylidene fluoride and hexafluoropropylene, and polyvinyl fluoride are preferable, and polyvinylidene fluoride is more preferable.
  • the fluoropolymer mentioned above may be used individually by 1 type, and may use 2 or more types together.
  • the weight average molecular weight in terms of polystyrene by gel permeation chromatography of the fluoropolymer is preferably 100,000 to 2,000,000, more preferably 200,000 to 1,500,000, and particularly Preferably, it is 400,000 to 1,000,000.
  • the glass transition temperature (Tg) of the fluoropolymer is preferably 0 ° C. or lower, more preferably ⁇ 20 ° C. or lower, and particularly preferably ⁇ 30 ° C. or lower.
  • the lower limit of the Tg of the fluoropolymer is not particularly limited, but is preferably ⁇ 50 ° C. or higher, more preferably ⁇ 40 ° C. or higher.
  • Tg of a fluorine-type polymer can be adjusted by changing the kind of monomer used for superposition
  • the melting point (Tm) of the fluoropolymer is preferably 190 ° C. or lower, more preferably 150 to 180 ° C., and further preferably 160 to 170 ° C.
  • Tm of a fluoropolymer can be adjusted by changing the kind of monomer used for superposition
  • Tm can be measured based on JIS K7121; 1987 using a differential scanning calorimeter.
  • the method for producing the above-described fluoropolymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • a solution polymerization method emulsion polymerization method
  • addition polymerization such as ionic polymerization, radical polymerization, living radical polymerization and the like can be used.
  • a polymerization initiator a known polymerization initiator can be used as a known polymerization initiator.
  • the fluoropolymer is used in a state of a dispersion liquid or a dissolved solution dispersed in a dispersion medium.
  • the dispersion medium of the fluorine-based polymer is not particularly limited as long as the fluorine-based polymer can be uniformly dispersed or dissolved, and water or an organic solvent can be used, and an organic solvent is preferably used.
  • an organic solvent it does not specifically limit, The organic solvent used as a solvent of the electrically conductive material paste mentioned later can be used.
  • the blending amount of the binder B such as a fluoropolymer is preferably 10% by mass or less based on the blending amount of the binder A so that the binder A is suitably attached to the conductive material and the dispersion stability of the conductive material paste is improved. , More preferably 5% by mass or less, particularly preferably 0% by mass. That is, the conductive material paste preferably does not contain a binder B other than the binder A, such as a fluoropolymer, from the viewpoint of ensuring the dispersion stability of the conductive material paste.
  • the fluorine-based polymer has an advantage while there is a possibility that the dispersion stability of the conductive material paste may be lowered as described above.
  • the fluorine-based polymer can suppress the precipitation of the positive electrode active material having a relatively heavy specific gravity in the slurry for the positive electrode of the secondary battery, in the slurry for the positive electrode. Stability over time can be improved.
  • the conductive material paste may contain a fluorine-based polymer.
  • the blending amount of the fluoropolymer in the conductive material paste is preferably 50% by weight or more, based on 100% by weight of the total solid content of the binder (binder resin) in the conductive material paste, and 80% by weight. % Or more is more preferable.
  • the blending amount of the fluoropolymer is preferably 1 part by mass or more, more preferably 2 parts by mass or more per 100 parts by mass of the positive electrode active material. It is preferably 5 parts by mass or less, and more preferably 4 parts by mass or less. If the blending amount of the fluoropolymer is within such a range, it is possible to suppress the precipitation of the positive active material having a relatively high specific gravity in the secondary battery positive electrode slurry, and the secondary battery positive electrode slurry is stable over time. This is because the performance can be improved.
  • the blending amount of the binder A in the conductive material paste is the solid content of all the binders (binder resin) in the conductive material paste.
  • 100 mass% it is preferable that it is 10 mass% or more, It is more preferable that it is 15 mass% or more, It is preferable that it is 70 mass% or less, It is more preferable that it is 50 mass% or less.
  • Which of the conductive material paste and the positive electrode slurry is selected as the addition destination of the fluoropolymer may be appropriately determined according to the mode of implementation.
  • the conductive material paste preferably contains a solvent.
  • blended with an electrically conductive material paste the organic solvent which has the polarity which can melt
  • the organic solvent acetonitrile, N-methylpyrrolidone, acetylpyridine, cyclopentanone, N, N-dimethylacetamide, dimethylformamide, dimethyl sulfoxide, methylformamide, methyl ethyl ketone, furfural, ethylenediamine, or the like may be used. it can.
  • N-methylpyrrolidone (NMP) is most preferable as the organic solvent from the viewpoints of ease of handling, safety, and ease of synthesis.
  • these organic solvents may be used independently and may mix and use 2 or more types.
  • components such as a viscosity modifier, a reinforcing material, an antioxidant, and an electrolytic solution additive having a function of suppressing the decomposition of the electrolytic solution may be mixed in the conductive material paste.
  • a viscosity modifier for example, a viscosity modifier, a reinforcing material, an antioxidant, and an electrolytic solution additive having a function of suppressing the decomposition of the electrolytic solution may be mixed in the conductive material paste.
  • the binder adsorption amount of the conductive material needs to be 100 mg / g or more and 600 mg / g or less, preferably 150 mg / g or more, more preferably 170 mg / g or more, It is still more preferably 200 mg / g or more, particularly preferably 250 mg / g or more, preferably 400 mg / g or less, and more preferably 390 mg / g or less.
  • the binder adsorption amount of the conductive material is less than 100 mg / g, the conductive material aggregates and the dispersion stability of the conductive material paste cannot be ensured, and the interior of the secondary battery including the electrode obtained using the conductive material paste Resistance increases, and low temperature characteristics, high temperature storage characteristics, and high temperature cycle characteristics decrease.
  • the binder adsorption amount of the conductive material is more than 600 mg / g, the conductive material becomes excessively adsorbed with the binder as an insulator, and the inside of the secondary battery including the electrode obtained using the conductive material paste Resistance increases, and low temperature characteristics, high temperature storage characteristics, and high temperature cycle characteristics decrease.
  • the binder adsorption amount of the conductive material can be calculated by the following method. First, if necessary, a solvent is further added to the conductive material paste to adjust the solid content concentration (for example, 1% by mass) that can be easily centrifuged. In addition, since the binder once adsorbed to the conductive material is difficult to desorb from the conductive material, the influence on the measured value of the binder adsorption amount due to the adjustment of the solid content concentration can be ignored. Next, the conductive material paste or the diluted solution thereof is subjected to a centrifugal separation process until the supernatant and the precipitate are separated using a centrifuge, and the precipitate is collected.
  • the solid content concentration for example, 1% by mass
  • the precipitate is dried under conditions where the solvent is vaporized but the binder is not thermally decomposed until there is no change in weight, and the solvent remaining in the precipitate is removed to obtain a dried product (mainly composed of a binder and a conductive material). obtain.
  • the drying may be performed under reduced pressure.
  • the obtained dried product is gradually heated to a temperature at which the binder is sufficiently decomposed and vaporized using a thermobalance (for example, heated to 500 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere) in the dried product. Remove the binder.
  • the binder adsorption amount of the conductive material measured as described above is a value correlated with the amount of the total binder adsorbed per 1 g of the conductive material.
  • the binder adsorption amount of the conductive material is the composition of the binder A, the composition of the binder B other than the binder A, the specific surface area of the conductive material, the blending amount of the binder with respect to the conductive material, the viscosity of the conductive material paste, the solid content concentration, and It can be controlled by the preparation method. Specifically, for example, by increasing the ratio of the nitrile group-containing monomer in the binder A, the binder adsorption amount of the conductive material can be reduced.
  • the binder adsorption amount of the conductive material can be reduced by using a polymer having a low adsorption capacity for the conductive material, for example, the binder B made of polyvinylidene fluoride. Furthermore, the binder adsorption amount of the conductive material can be increased by increasing the specific surface area of the conductive material and the blending amount of the binder with respect to the conductive material.
  • the conductive material paste preferably has a viscosity of 1000 mPa ⁇ s or more, more preferably 3000 mPa ⁇ s or more, particularly preferably 4000 mPa ⁇ s or more, and preferably 10,000 mPa ⁇ s or less, and 8000 mPa ⁇ s. It is more preferably s or less, and particularly preferably 6000 mPa ⁇ s or less. When the viscosity of the conductive material paste is within the above range, the dispersion stability of the conductive material paste is good.
  • the viscosity of the conductive material paste can be adjusted by the amount of the solvent added during mixing, the solid content concentration of the conductive material paste, the type and molecular weight of the binder, and the like.
  • the upper limit of the viscosity of the conductive material paste exceeds 10,000 mPa ⁇ s, it can be dispersed only by using only a part of the mixing device, the dispersibility of the conductive material is inferior, and further, the conductive material paste is used. There is a possibility that the electric resistance of the formed electrode mixture layer is increased.
  • the lower limit value of the conductive material paste is less than 1000 mPa ⁇ s, the dispersion stability of the conductive material paste may be impaired.
  • the conductive material paste preferably has a solid content concentration of 5% by mass or more, more preferably 8% by mass or more, preferably 15% by mass or less, and more preferably 12% by mass or less.
  • the solid content concentration of the conductive material paste is preferably within the above range from the start of mixing to the end of mixing when preparing the conductive material paste.
  • the dispersion stability of the conductive material paste may be impaired, and the electric resistance of the obtained electrode may be increased.
  • the solid content concentration of the conductive material paste is less than 5% by mass, the conductive material is precipitated in the conductive material paste, and the dispersion stability of the conductive material paste may be impaired.
  • the concentration of the positive electrode slurry becomes too low, and sedimentation may occur.
  • ⁇ Method for preparing conductive paste> There are no particular restrictions on the mixing method for obtaining the conductive material paste by mixing the above-mentioned conductive material and binder A and, if necessary, binder B, solvent and other components. For example, disper, mill, kneader, etc.
  • the following general mixing apparatus can be used. For example, when using a disper, it is preferable to stir at 2000 rpm or more and 5000 rpm or less, preferably 5 minutes or more, more preferably 10 minutes or more, and preferably 60 minutes or less.
  • the conductive material paste may be prepared by employing the steps (X-1) and (X-2) described later in the section “Method for producing slurry for secondary battery positive electrode”.
  • the slurry for the secondary battery positive electrode includes the above-described conductive material paste for the secondary battery electrode and the positive electrode active material, and more specifically includes at least the conductive material, the binder A, and the positive electrode active material.
  • the secondary battery positive electrode slurry containing the conductive material paste described above is excellent in stability over time, and a positive electrode excellent in potential stability can be produced by using the positive electrode slurry.
  • the positive electrode formed from the positive electrode slurry can reduce the internal resistance of the secondary battery, and can improve the low temperature characteristics, high temperature cycle characteristics, and high temperature storage characteristics. The characteristics can be exhibited.
  • blended with the slurry for secondary battery positive electrodes it is not specifically limited, A known positive electrode active material can be used.
  • a positive electrode active material used for a lithium ion secondary battery is not particularly limited, and lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2).
  • Lithium-containing composite oxide of Co—Ni—Mn Lithium-containing composite oxide of Co—Ni—Mn, lithium-containing composite oxide of Ni—Mn—Al, lithium-containing composite oxide of Ni—Co—Al, olivine type lithium iron phosphate (LiFePO 4 ), olivine Type lithium manganese phosphate (LiMnPO 4 ), Li 1 + x Mn 2 ⁇ x O 4 (0 ⁇ X ⁇ 2), an excess lithium spinel compound, Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 , LiNi 0.5 Mn 1.5 O 4 and the like.
  • lithium-containing cobalt oxide LiCoO 2
  • lithium-containing nickel oxide LiNiO 2
  • Co—Ni—Mn lithium-containing cobalt oxide
  • the compounding quantity and particle size of a positive electrode active material are not specifically limited, It can be made to be the same as that of the positive electrode active material used conventionally.
  • the blending ratio of the positive electrode active material and the conductive material is not particularly limited, but the blending amount of the conductive material is preferably 1 part by mass or more per 100 parts by mass of the positive electrode active material, and is 2 parts by mass or more. Is more preferably 3 parts by mass or more, preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and particularly preferably 4 parts by mass or less.
  • the amount of the conductive material is too small, sufficient electrical contact between the positive electrode active materials cannot be ensured, the internal resistance of the secondary battery increases, and the low temperature characteristics cannot be sufficiently improved. There is.
  • the slurry for secondary battery positive electrode may contain the components mentioned in the section of “conductive material paste for secondary battery electrode” in addition to the conductive material, binder A, and positive electrode active material.
  • a positive electrode is produced using the positive electrode slurry, a good conductive network can be formed between the conductive materials, and capacity deterioration due to internal resistance can be suppressed. As a result, the electrical characteristics of the secondary battery produced using the secondary battery positive electrode slurry can be improved.
  • step (X) a conductive material paste is prepared.
  • a method for preparing the conductive material paste the method described above in “Preparation Method of Conductive Material Paste” can be used.
  • (X) is a first step (X-1) in which a conductive material and a first binder component containing binder A as a main component are mixed to obtain a premixed paste; It is preferable to include a second step (X-2) of adding a second binder component containing a polymer as a main component to obtain the conductive material paste for a secondary battery electrode.
  • the material is properly dispersed. Therefore, if a positive electrode is manufactured using the slurry for a secondary battery positive electrode, a better conductive network can be formed between the conductive materials, and in particular, capacity deterioration at a low temperature can be suppressed. And the electrical characteristic of the secondary battery manufactured using the slurry for secondary battery positive electrodes can further be improved.
  • First step (X-1) In the first step (X-1) of the step (X), the conductive material and the first binder component containing the binder A as a main component are mixed in a solvent as necessary, and a premixed paste Get. In addition, as long as the 1st binder component contains the binder A as a main component, binders (binder resin) other than the binder A may be included.
  • the ratio of the binder A in the first binder component blended in the first step (X-1) is the solid content of the binder (binder resin) constituting the first binder component contained in the premixed paste.
  • the amount is 100% by mass, it is necessary to be 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more.
  • the ratio of binder A in the first binder component is 100% by mass.
  • the secondary battery manufactured using this pre-mixing paste and conductive material paste is excellent in electrical characteristics (low temperature characteristics, cycle characteristics, etc.).
  • binders other than the binder A which can be used as a binder which comprises a 1st binder component A well-known binder, the fluorine-type polymer mentioned above, etc. are mentioned.
  • the blending amount of the binder A in the premixed paste is preferably 5% by mass or more, and more preferably 15% by mass or more. 100 wt% or less, and more preferably 50 wt% or less, the binder A content within the above range, the binder A is sufficiently adsorbed to the conductive material, the premixed paste Dispersion stability is improved. And the secondary battery manufactured using this pre-mixed paste is excellent in electrical characteristics (low temperature characteristics, high temperature cycle characteristics, etc.).
  • the first binder component and the second binder component are added in the first step (X-1) and the second step (X-2), respectively.
  • the total amount of the first binder component and the second binder component is 1 part by mass or more and 5 parts by mass when the amount of the positive electrode active material added in the step (Y) described later is 100 parts by mass. Part or less, preferably 2 parts by mass or more and 4 parts by mass or less. This is because if the amount of the binder is too small, the strength of the positive electrode is impaired, and if it is too large, the resistance of the positive electrode becomes too high.
  • the compounding ratio of the 1st binder component with respect to the total compounding quantity of a 1st binder component and a 2nd binder component is 10 mass parts or more by making the total compounding quantity of these binder components into 100 mass parts. 90 parts by mass or less is preferable.
  • solvent that can be used in the first step (X-1) for example, an organic solvent having a polarity capable of dissolving the binder A described above in the section of “conductive material paste for secondary battery electrode” can be used.
  • a component such as a viscosity modifier, a reinforcing material, an antioxidant, an electrolytic solution additive having a function of suppressing decomposition of the electrolytic solution, and the like. You may mix.
  • known ones can be used.
  • the conductive material and the first binder component described above, and optionally the solvent and other components are mixed in the first step (X-1) to obtain a premixed paste.
  • a general mixing device such as a disper, a mill, or a kneader can be used.
  • binder A and binders other than binder A may mix with a electrically conductive material after premixing.
  • the conductive material may be mixed without premixing.
  • the solvent in which the binder A is dispersed may be used as it is, or a solvent may be added separately.
  • the viscosity of the premixed paste obtained in the first step (X-1) is a viscosity that can be mixed by the general mixing method as described above, and the viscosity range of the conductive material paste is within the above range.
  • the viscosity is not particularly limited as long as the viscosity can be set as follows.
  • a conductive material paste is prepared by adding a second binder component containing a fluoropolymer as a main component to the premixed paste prepared in the first step.
  • the second binder component may contain a binder (binder resin) other than the fluoropolymer as long as it contains the fluoropolymer as a main component.
  • the proportion of the fluoropolymer in the second binder component to be blended in the second step is 50% by mass or more, where the solid content of the binder (binder resin) constituting the second binder is 100% by mass. It is necessary to be 80% by mass or more. Most preferably, the ratio of the fluoropolymer in the second binder component is 100% by mass.
  • the blending amount of the fluoropolymer in the second binder component is within the above range, and the first binder component is adsorbed on the conductive material by adding the fluoropolymer in such a ratio in the second step. It is possible to improve the stability of the conductive material paste without hindering the operation.
  • the binder other than the fluoropolymer that can be used as the binder constituting the second binder component is not particularly limited, and examples thereof include a known binder and the above-described binder A.
  • the blending ratio of the second binder component to the total blending amount of the first binder component and the second binder component is the total blending amount of the binder (binder resin) from the viewpoint of the stability of the positive electrode slurry.
  • binder binder resin
  • 100 mass parts 50 mass parts or more and 90 mass parts or less are preferable.
  • a solvent may be added.
  • Usable solvents include the same solvents as those described above with respect to the first step (X-1).
  • a solvent may be, for example, an organic solvent having a polarity capable of dissolving the above-described second binder component.
  • the conductive material paste is added with, for example, a viscosity modifier, a reinforcing material, an antioxidant, and an electrolytic solution having a function of suppressing decomposition of the electrolytic solution. You may mix components, such as an agent. As these other components, known ones can be used.
  • the second binder component is added to the premixed paste to obtain a conductive material paste, and there is no particular limitation on the mixing method.
  • disper mill, kneader
  • a general mixing apparatus such as can be used.
  • a disper it is preferable to stir at 2000 rpm to 5000 rpm for 20 minutes to 120 minutes.
  • the second step (X-2) by adding and mixing the second binder component to the premixed paste obtained by mixing the conductive material and the first binder component in advance, A plurality of types of binders (binder resins) having different properties can be mixed, and the positive electrode active material added in the step (Y) described later can be favorably dispersed in the positive electrode slurry. Thereby, the battery capacity of the secondary battery can be increased.
  • step (Y) the conductive material paste prepared in step (X), the positive electrode active material described above, and, in some cases, a solvent and other components are mixed.
  • the solvent the same solvents as those described above with respect to the first step (X-1) and the second step (X-2) in the step (X) can be used.
  • the slurry for the secondary battery positive electrode includes, for example, a viscosity modifier, a reinforcing material, an antioxidant, and an electrolytic solution additive having a function of suppressing decomposition of the electrolytic solution in addition to the above components.
  • the components may be mixed. As these other components, known ones can be used.
  • the mixing method is not particularly limited, and for example, a general mixing device such as a disper, mill, kneader or the like is used. be able to. For example, when a disper is used, it is preferable to stir at 2000 rpm to 5000 rpm for 20 minutes to 120 minutes.
  • step (X) by mixing the positive electrode active material not in the step (X) but in the step (Y), in the step (X), a good network between the conductive materials is formed, and in the secondary battery positive electrode slurry. Dispersibility of the positive electrode active material can be improved. Note that the step (Y) does not affect the network between the conductive materials formed as a result of the step (X). Further, by mixing the positive electrode active material in the step (Y) instead of the step (X), it is possible to prevent the decrease in the binder adsorption amount of the conductive material due to the binder A preferentially adsorbing to the positive electrode active material, The deterioration of the stability with time of the battery positive electrode slurry can be suppressed.
  • the conductive material is coordinated via the binder in the vicinity of the positive electrode active material during the dispersion process.
  • electrical characteristics such as low temperature characteristics of the obtained secondary battery are improved.
  • the viscosity of the secondary battery positive electrode slurry is preferably 1500 mPa ⁇ s or more and 10,000 mPa ⁇ s or less, and the solid content concentration is 50% by mass or more and 90% or less. It is preferable that it is below mass%.
  • the viscosity of the secondary battery positive electrode slurry can be measured by the same method as that of the conductive material paste. The ratio between the amount of conductive material paste (corresponding to solid content) and the amount of positive electrode active material can be adjusted as appropriate.
  • the secondary battery positive electrode manufacturing method of the present invention is obtained by applying the secondary battery positive electrode slurry obtained by the secondary battery positive electrode slurry manufacturing method of the present invention to at least one surface of the current collector and drying. And forming a positive electrode mixture layer. More specifically, the manufacturing method includes a step of applying the slurry for a secondary battery positive electrode to at least one surface of the current collector (application step), and a secondary battery applied to at least one surface of the current collector. A step of drying the positive electrode slurry to form a positive electrode mixture layer on the current collector (drying step).
  • the positive electrode for secondary battery manufactured in this way since the positive electrode mixture layer is formed using the slurry for secondary battery positive electrode described above, if the positive electrode for secondary battery is used, the secondary battery The internal resistance of the battery can be reduced, and the low temperature characteristics, high temperature storage characteristics, and high temperature cycle characteristics can be improved, and excellent electrical characteristics can be exhibited in the secondary battery.
  • a method for applying the slurry for a secondary battery positive electrode on the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the secondary battery positive electrode slurry may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the positive electrode mixture layer obtained by drying.
  • an electrically conductive and electrochemically durable material is used as the current collector to which the slurry for the secondary battery positive electrode is applied.
  • a current collector made of aluminum or an aluminum alloy can be used as the current collector.
  • aluminum and an aluminum alloy may be used in combination, or different types of aluminum alloys may be used in combination.
  • Aluminum and aluminum alloys are excellent current collector materials because they have heat resistance and are electrochemically stable.
  • a method for drying the slurry for the secondary battery positive electrode on the current collector is not particularly limited, and a known method can be used. For example, drying with hot air, hot air, low-humidity air, vacuum drying, infrared rays, electron beam, etc. And a drying method by irradiation.
  • a positive electrode mixture layer is formed on the current collector, and a positive electrode for a secondary battery comprising the current collector and the positive electrode mixture layer is provided. Obtainable.
  • the positive electrode mixture layer may be subjected to pressure treatment using a die press or a roll press. By the pressure treatment, the adhesion between the positive electrode mixture layer and the current collector can be improved. Furthermore, when the positive electrode mixture layer contains a curable polymer, the polymer is preferably cured after the positive electrode mixture layer is formed.
  • the secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the positive electrode for a secondary battery obtained by the method for producing a positive electrode for a secondary battery of the present invention is used as the positive electrode. It is. Since the secondary battery of the present invention uses the positive electrode manufactured by the method for manufacturing the positive electrode for secondary battery of the present invention, the internal resistance is reduced, and the low temperature characteristics, high temperature storage characteristics, and high temperature cycle characteristics are reduced. Excellent and high performance.
  • a lithium ion secondary battery will be described in detail as an example of the secondary battery of the present invention.
  • a known negative electrode used as a negative electrode for a secondary battery can be used.
  • the negative electrode for example, a negative electrode made of a thin plate of metallic lithium or a negative electrode formed by forming a negative electrode mixture layer on a current collector can be used.
  • a collector what consists of metal materials, such as iron, copper, aluminum, nickel, stainless steel, titanium, a tantalum, gold
  • the negative electrode mixture layer a layer containing a negative electrode active material and a binder can be used.
  • the binder is not particularly limited, and any known material can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because it is easily dissolved in a solvent and exhibits a high degree of dissociation.
  • electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • carbonates because they have a high dielectric constant and a wide stable potential region, and it is more preferable to use a mixture of ethylene carbonate and ethyl methyl carbonate.
  • concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. For example, it is preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and 5 to 10% by mass. Is more preferable.
  • known additives such as fluoroethylene carbonate and ethyl methyl sulfone may be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, those described in JP 2012-204303 A can be used. Among these, since the film thickness of the entire separator can be reduced, and the ratio of the electrode active material in the secondary battery can be increased, and the capacity per volume can be increased.
  • a microporous film made of a resin such as polyethylene, polypropylene, polybutene, or polyvinyl chloride is preferable.
  • the secondary battery of the present invention includes, for example, a positive electrode and a negative electrode that are overlapped with a separator, wound in accordance with the battery shape as necessary, folded into a battery container, and electrolyzed in the battery container. It can be manufactured by injecting and sealing the liquid. In order to prevent an increase in pressure inside the secondary battery, overcharge / discharge, and the like, a fuse, an overcurrent prevention element such as a PTC element, an expanded metal, a lead plate, and the like may be provided as necessary.
  • the shape of the secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
  • This diluted solution was centrifuged for 10 minutes at a rotational speed of 1000 rpm using a centrifuge.
  • the obtained precipitate was dried in a vacuum dryer at 150 ° C. for 3 hours to obtain a dried product. At this time, it was confirmed that there was no weight change due to drying.
  • This dried product was heated to 500 ° C. in a nitrogen atmosphere at a heating rate of 10 ° C./min using a thermobalance, and the weight W1 (g) before the heat treatment (dry product) by the thermobalance was measured.
  • volume average particle diameter D50 (that is, the closer to the average particle diameter of the conductive material in the state where the binder is not adsorbed), the smaller the cohesiveness and the better the dispersion stability of the conductive material paste.
  • Volume average particle diameter D50 is from 10 ⁇ m to less than 15 ⁇ m
  • E Volume average Particle diameter D50 is 15 ⁇ m or more ⁇ Dispersion stability of conductive material paste [Evaluation method 2]>
  • the conductive material paste was put to a height of 5 cm in a glass test tube having an inner diameter of 8 mm, and allowed to stand for one week.
  • ⁇ Potential stability of conductive paste The conductive material paste is applied on an aluminum foil (thickness 20 ⁇ m) as a current collector with a comma coater so that the weight per unit area after drying is 10 mg / cm 2 , 20 minutes at 90 ° C., 20 minutes at 120 ° C. After drying, heat treatment was further performed at 60 ° C.
  • This laminate A has a conductive material coating film on the current collector.
  • This laminate A is cut into a circle having a diameter of 12 mm, and a circular polypropylene porous film (diameter 18 mm, thickness 25 ⁇ m), metallic lithium (diameter 14 mm), and expanded are formed on the cut-out laminate A on the conductive material coating film side.
  • Metals were laminated in this order to obtain a laminate B.
  • This laminate B was accommodated in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with polypropylene packing.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • a 0.2 mm thick stainless steel cap is placed on the outer container via a polypropylene packing, and the battery can is sealed to produce a coin cell having a diameter of 20 mm and a thickness of about 2 mm. did.
  • a voltage of 4.4 V was applied to the obtained coin cell for 10 hours in an atmosphere at 25 ° C.
  • the current density per unit mass (mA / g) of the conductive material flowing after 10 hours was determined and used as the oxidation current density. As the oxidation current density is smaller, the oxidation reaction of the binder when a voltage is applied is suppressed, that is, the potential stability of the electrode using the conductive material paste is excellent.
  • Viscosity change rate (%) ⁇ (BA) / A ⁇ ⁇ 100
  • the IV resistance was measured as follows. After charging to 50% of SOC (State Of Charge: Depth of Charge) at 1C (C is a numerical value expressed by rated capacity (mA) / 1h (hour)) in a 25 ° C atmosphere, focusing on 50% of SOC Charging for 20 seconds and discharging for 20 seconds at 0.5C, 1.0C, 1.5C, and 2.0C, respectively, and the battery voltage after 20 seconds in each case (charging side and discharging side) with respect to the current value The slope was obtained as IV resistance ( ⁇ ) (IV resistance during charging and IV resistance during discharging). The obtained IV resistance value ( ⁇ ) was evaluated according to the following criteria.
  • IV resistance is 2 ⁇ or less
  • B IV resistance is more than 2 ⁇ , 2.3 ⁇ or less
  • C IV resistance is more than 2.3 ⁇ , 2.5 ⁇ or less
  • D IV resistance is more than 2.5 ⁇ , 3.0 ⁇ or less
  • E IV resistance is 3 More than 0 ⁇ ⁇ Low-temperature characteristics of secondary battery>
  • the IV resistance was measured as follows.
  • IV resistance is 10 ⁇ or less
  • E: IV resistance is more than 20 ⁇ ⁇ high temperature cycle characteristics of secondary battery [ Evaluation method 1] >> The secondary battery was charged to 4.2 V by a constant current method of 0.5 C in an atmosphere of 45 ° C., and charging / discharging to discharge to 3.0 V was repeated 200 cycles. Charge / discharge capacity retention represented by the ratio of the electric capacity at the end of 200 cycles to the electric capacity at the end of 5 cycles ( (electric capacity at the end of 200 cycles / electric capacity at the end of 5 cycles) ⁇ 100) (%) The rate was determined.
  • the rate was determined. It shows that it is excellent in high temperature cycling characteristics, so that this value is large.
  • the obtained value (%) was evaluated according to the following criteria.
  • the secondary battery was charged to a cell voltage of 4.2 V by a constant current method of 0.5 C in an atmosphere of 25 ° C., then discharged to 3.0 V, and an initial discharge capacity C 0 was measured. Thereafter, the battery was charged to a cell voltage of 4.2 V by a constant current method of 0.5 C in a 25 ° C.
  • Example 1-1 Preparation of binder A1>
  • 240 parts of ion-exchanged water, 2.5 parts of sodium alkylbenzenesulfonate as an emulsifier, 35 parts of n-butyl acrylate (BA) as a (meth) acrylate monomer, a nitrile group-containing monomer 20 parts of acrylonitrile (AN) are added in this order, and the inside of the bottle is replaced with nitrogen.
  • BD 1,3-butadiene
  • ammonium persulfate as a polymerization initiator and polymerization reaction at a reaction temperature of 40 ° C.
  • the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate was dissolved in 60 ml of ion-exchanged water added with 4-fold mol of nitric acid with respect to Pd as a hydrogenation reaction catalyst. After the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. under pressure with hydrogen gas up to 3 MPa and subjected to hydrogenation reaction (second stage hydrogenation reaction) for 6 hours. .
  • binder aqueous dispersion 320 parts of NMP is added to 100 parts of this binder aqueous dispersion, water is evaporated under reduced pressure, and a polymer containing an alkylene structural unit, a (meth) acrylate monomer unit and a nitrile group-containing monomer unit An NMP solution of binder A1 was obtained.
  • ⁇ Manufacture of conductive material paste > 3.0 parts of acetylene black (Denka black powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle size 35 nm) as a conductive material, and an NMP solution of binder A1 obtained as described above corresponding to solid content Then, 3.0 parts (100 parts per 100 parts of the conductive material) and an appropriate amount of NMP are stirred with a disper (3000 rpm, 10 minutes), and then the solid content concentration of the conductive material paste is 10% by mass. An appropriate amount of NMP was added and stirred with a disper (3000 rpm, 10 minutes) to prepare a conductive material paste.
  • acetylene black Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle size 35 nm
  • the binder adsorption amount of the conductive material was 375 mg / g, and the viscosity was 5500 mPa ⁇ s.
  • Dispersion stability [Evaluation Method 1] and potential stability of the conductive material paste were evaluated using the produced conductive material paste. The results are shown in Table 1.
  • Example 1-2 Binder A2 was produced in the same manner as in Example 1-1 except that 49 parts of BD, 27 parts of BA, and 24 parts of AN were used as the monomer composition during the production of the binder. Then, a conductive material paste having a solid content concentration of 10% was produced in the same manner as in Example 1-1 except that binder A2 was used instead of binder A1.
  • the obtained conductive material paste had a binder adsorption amount of 390 mg / g and a viscosity of 4000 mPa ⁇ s. Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
  • Binder A3 was produced in the same manner as in Example 1-1 except that 30 parts of BD, 30 parts of BA, and 40 parts of AN were used as the monomer composition during the production of the binder.
  • a conductive material paste having a solid content concentration of 10% was produced in the same manner as in Example 1-1, except that binder A3 was used instead of binder A1.
  • the obtained conductive material paste had a binder adsorption amount of 250 mg / g and a viscosity of 7000 mPa ⁇ s.
  • Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
  • Example 1-4 At the time of manufacturing the binder, except that 30 parts of BD, 25 parts of BA, 40 parts of AN, and 5 parts of monobutyl maleate (MBM) as a hydrophilic group-containing monomer were used as the monomer composition.
  • Binder A4 was produced in the same manner as Example 1-1. Then, a conductive material paste having a solid content concentration of 10% was produced in the same manner as in Example 1-1 except that binder A4 was used instead of binder A1.
  • the obtained conductive material paste had a binder adsorption amount of 170 mg / g and a viscosity of 6000 mPa ⁇ s. Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
  • Binder A5 was produced in the same manner as in Example 1-1, except that 56 parts of BD and 44 parts of AN were used as the monomer composition during the production of the binder, and that BA was not used.
  • a conductive material paste having a solid content concentration of 10% was produced in the same manner as in Example 1-1, except that binder A5 was used instead of binder A1.
  • the obtained conductive material paste had a binder adsorption amount of 150 mg / g and a viscosity of 3000 mPa ⁇ s.
  • Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
  • Example 1-6 In a reactor equipped with a stirrer, 70 parts of ion exchange water, 0.2 part of sodium dodecylbenzenesulfonate and 0.3 part of potassium persulfate were respectively supplied, the gas phase part was replaced with nitrogen gas, and the temperature was changed to 60 ° C. The temperature rose. Meanwhile, in a separate container, 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate, 82 parts of BA, 15 parts of AN, 3 parts of methacrylic acid (MAA) (above, monomer composition with BA, AN, MAA) To obtain a mixture. This mixture was continuously added to the reactor over 4 hours for polymerization.
  • MAA methacrylic acid
  • An NMP solution of binder A6 made of a polymer containing was obtained.
  • a conductive material paste having a solid content concentration of 10% was produced in the same manner as in Example 1-1, except that binder A6 was used instead of binder A1.
  • the obtained conductive material paste had a binder adsorption amount of 115 mg / g and a viscosity of 7500 mPa ⁇ s.
  • Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
  • Binder A7 was produced in the same manner as in Example 1-6, except that 2-ethylhexyl acrylate (2-HEA) was used instead of BA during the production of the binder. Then, a conductive material paste having a solid content concentration of 10% was manufactured in the same manner as in Example 1-1 except that binder A7 was used instead of binder A1.
  • the obtained conductive material paste had a binder adsorption amount of 80 mg / g and a viscosity of 8500 mPa ⁇ s.
  • Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
  • the binder adsorption amount of the conductive material can be controlled by changing the composition of the binder, which improves the dispersion stability and potential stability of the conductive material paste.
  • a binder containing both an alkylene structural unit and a (meth) acrylate monomer unit is used.
  • the dispersion stability and potential stability of the conductive material paste were further improved as compared with the case where a binder containing only one of them was used.
  • Example 1-4 From the comparison of Example 1-4, by using a binder that does not contain a hydrophilic group-containing monomer unit, compared with the case where a binder that contains a hydrophilic group-containing monomer unit is used, the conductive material paste is dispersed. It can be seen that the stability is further improved.
  • Example 2-1 Provide of secondary battery positive electrode slurry and positive electrode> 100 parts of a ternary active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) (average particle size: 10 ⁇ m) having a layered structure as a positive electrode active material in the conductive material paste (including binder A6) of Example 1-6 Then, an appropriate amount of NMP was added as a solvent and stirred with a disper (3000 rpm, 20 minutes) to prepare a positive electrode slurry. The amount of NMP added was adjusted so that the solid content concentration of the positive electrode slurry was 65% by mass.
  • a ternary active material LiNi 0.5 Co 0.2 Mn 0.3 O 2
  • NMP disper
  • An aluminum foil with a thickness of 20 ⁇ m was prepared as a current collector.
  • the positive electrode slurry obtained as described above was applied onto an aluminum foil with a comma coater so that the basis weight after drying was 20 mg / cm 2 , dried at 90 ° C. for 20 minutes, and 120 ° C. for 20 minutes, A positive electrode raw material was obtained by heat treatment at 10 ° C. for 10 hours.
  • This positive electrode original fabric was rolled by a roll press to produce a positive electrode comprising a positive electrode mixture layer having a density of 3.2 g / cm 3 and an aluminum foil.
  • the positive electrode had a thickness of 70 ⁇ m.
  • the slurry for the negative electrode was applied on a copper foil having a thickness of 20 ⁇ m as a current collector by a comma coater so that the film thickness after drying was about 150 ⁇ m and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, the negative electrode original fabric was obtained by heat-processing at 120 degreeC for 2 minute (s). This negative electrode original fabric was rolled with a roll press to obtain a negative electrode having a negative electrode mixture layer with a thickness of 80 ⁇ m.
  • An aluminum packaging exterior was prepared as the battery exterior.
  • the positive electrode obtained above was cut into a 4 cm ⁇ 4 cm square and arranged so that the current collector-side surface was in contact with the aluminum packaging exterior.
  • the square separator obtained above was disposed on the surface of the positive electrode mixture layer of the positive electrode.
  • the negative electrode obtained above was cut into a square of 4.2 cm ⁇ 4.2 cm, and this was arranged on the separator so that the surface on the negative electrode mixture layer side faces the separator.
  • vinylene carbonate (VC) containing 1.5% was charged with LiPF 6 solution having a concentration of 1.0 M.
  • the amount of NMP added was adjusted so that the solid content concentration of the positive electrode slurry was 65% by mass.
  • a positive electrode and a secondary battery were produced in the same manner as in Example 2-1, except that this positive electrode slurry was used, and the high-temperature storage characteristics of the secondary battery were evaluated. The results are shown in Table 2.
  • Table 2 shows that the secondary battery of Example 2-1 including the positive electrode formed using the conductive material paste of the present invention is obtained by mixing the conductive material, the binder, and the positive electrode active material all together without passing through the conductive material paste. It can be seen that it has excellent high-temperature storage characteristics as compared with the secondary battery of Comparative Example 2-1, which comprises a positive electrode formed from the prepared positive electrode slurry.
  • Example 3-1 Manufacture of binder A8> Except that the amount of AN used as a nitrile group-containing monomer was changed to 18.6 parts and the amount of BD used as a conjugated diene monomer was changed to 46.4 parts, the same as in Example 1-1, A polymer comprising a conjugated diene monomer unit, a (meth) acrylate monomer unit, and a nitrile group-containing monomer unit was obtained. The polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg. In addition, the measurement procedure of iodine value is as follows.
  • the resulting polymer was subjected to a first stage hydrogenation reaction in the same manner as in Example 1-1. At this time, the iodine value of the polymer was 35 mg / 100 mg.
  • binder aqueous dispersion 320 parts of NMP is added to 100 parts of this binder aqueous dispersion, water is evaporated under reduced pressure, and a polymer containing an alkylene structural unit, a (meth) acrylate monomer unit and a nitrile group-containing monomer unit An NMP solution of binder A8 was obtained.
  • ⁇ Manufacture of conductive material paste > 3.0 parts of acetylene black (Denka black powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle size 35 nm) as a conductive material, and an NMP solution of binder A8 obtained as described above corresponding to solid content Then, 0.6 part and an appropriate amount of NMP are stirred with a disper (3000 rpm, 10 minutes), and then PVdF (KF polymer # 7200, manufactured by Kureha Co., Ltd.) is used as binder B in a solid equivalent amount).
  • acetylene black Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle size 35 nm
  • a positive electrode composed of a positive electrode mixture layer having a density of 3.2 g / cm 3 and an aluminum foil was produced in the same manner as in Example 2-1, except that the positive electrode slurry obtained above was used.
  • the positive electrode had a thickness of 70 ⁇ m.
  • Example 2-1 ⁇ Manufacture of slurry for negative electrode and negative electrode>
  • a negative electrode slurry was prepared, and a negative electrode having a negative electrode mixture layer having a thickness of 80 ⁇ m was obtained.
  • a lithium ion secondary battery was produced in the same manner as in Example 2-1, except that the positive electrode obtained above was used.
  • the obtained lithium ion secondary battery was evaluated for internal resistance and high-temperature cycle characteristics [Evaluation Method 1]. The results are shown in Table 3.
  • Example 3-2 A conductive material paste was manufactured in the same manner as in Example 3-1, except that the blending ratio of the binder A8 and the binder B was changed as shown in Table 3 when the conductive material paste was manufactured.
  • the binder amount of the conductive material of the obtained conductive material paste was 190 mg / g, and the viscosity was 7000 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 3-1, and evaluation was performed on each evaluation item. The results are shown in Table 3.
  • Example 3-3 A conductive material paste was manufactured in the same manner as in Example 3-1, except that the blending ratio of the binder A8 and the binder B was changed as shown in Table 3 when the conductive material paste was manufactured.
  • the binder amount of the conductive material of the obtained conductive material paste was 250 mg / g, and the viscosity was 3000 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 3-1, and evaluation was performed on each evaluation item. The results are shown in Table 3.
  • Example 3-4 A conductive material paste was manufactured in the same manner as in Example 3-1, except that the solid content concentration was 13% and the blending ratio of binder A8 and binder B was changed as shown in Table 3 when the conductive material paste was manufactured.
  • the binder amount of the conductive material of the obtained conductive material paste was 270 mg / g, and the viscosity was 7500 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 3-1, and evaluation was performed on each evaluation item. The results are shown in Table 3.
  • Example 3-5 At the time of production of the conductive material paste, first, acetylene black (DENKA BLACK powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle size 35 nm) 3.0 parts as a conductive material, and PVdF (KF polymer) as a binder B # 7200 (manufactured by Kureha Co., Ltd.) was 2.4 parts by solid equivalent, and an appropriate amount of NMP solution was stirred with a disper (3000 rpm, 10 minutes).
  • acetylene black DENKA BLACK powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle size 35 nm
  • PVdF KF polymer
  • an NMP solution of binder A8 is added in an amount of NMP corresponding to the solid content (solid content concentration 8.0% by mass) and the solid content concentration is 7% by mass, and stirred with a disper. (3000 rpm, 10 minutes) to prepare a conductive material paste.
  • the binder amount of the conductive material of the obtained conductive material paste was 170 mg / g, and the viscosity was 2000 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were prepared in the same manner as in Example 3-1, except that the conductive material paste thus obtained was used, and each evaluation item was evaluated. The results are shown in Table 3.
  • binder A9 produced as follows was used. In the production of binder A9, n-butyl acrylate (BA) as a (meth) acrylic acid ester monomer is not blended, 37 parts of acrylonitrile (AN) as a nitrile group-containing monomer, and as a conjugated diene monomer A binder A9 was obtained in the same manner as in Example 3-1, except that 63 parts of 1,3-butadiene (BD) was used. The density
  • BA n-butyl acrylate
  • AN acrylonitrile
  • BD 1,3-butadiene
  • a conductive material paste was prepared in the same manner as in Example 3-1, except that the solid content concentration was 13% by mass during the production of the conductive material paste and the obtained binder A9 was used.
  • the amount of binder adsorbed on the conductive material of the obtained conductive material paste was 130 mg / g, and the viscosity was 5000 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were prepared in the same manner as in Example 3-1, except that the conductive material paste obtained as described above was used, and each evaluation item was evaluated. The results are shown in Table 3.
  • a conductive material paste was prepared in the same manner as in Example 3-1, except that the binder A10 obtained as described above was used.
  • the conductive material of the obtained conductive material paste had a binder adsorption amount of 105 mg / g and a viscosity of 9300 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were prepared in the same manner as in Example 3-1, except that the conductive material paste obtained as described above was used, and each evaluation item was evaluated. The results are shown in Table 3.
  • the polymerization conversion rate determined from the solid content concentration was approximately 99%. 320 parts of NMP was added to 100 parts of this latex, and water was evaporated under reduced pressure to obtain a binder A11. The density
  • a conductive material paste was prepared in the same manner as in Example 3-1, except that the binder A11 obtained as described above was used.
  • the binder amount of the conductive material of the obtained conductive material paste was 103 mg / g, and the viscosity was 9150 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were prepared in the same manner as in Example 3-1, except that the conductive material paste obtained as described above was used, and each evaluation item was evaluated. The results are shown in Table 3.
  • Example 3-9 Example 3 except that the amount of the binder A8 was changed to 0.8 part, the binder B, PVdF, 3.2 parts, and the conductive material, acetylene black, 2.0 parts at the time of producing the conductive material paste.
  • a conductive material paste, a positive electrode slurry, a positive electrode, and a secondary battery were prepared, and evaluation was performed on each evaluation item.
  • the binder amount of the conductive material of the obtained conductive material paste was 240 mg / g, and the viscosity was 5000 mPa ⁇ s.
  • Example 3-1 A conductive material paste was produced in the same manner as in Example 3-1, except that the binder A9 produced in the same manner as in Example 3-6 was used and the solid content concentration was changed to 3% during the production of the conductive material paste.
  • the binder adsorption amount of the conductive material of the obtained conductive material paste was 50 mg / g, and the viscosity was lower than the detection lower limit of the apparatus. Evaluation was made for each evaluation item in the same manner as in Example 3-1, except that the conductive material paste thus obtained was used. The conductive material paste settled in 3 days, and the internal resistance of the secondary battery was reduced. Further, the high-temperature cycle characteristics [Evaluation Method 1] could not be evaluated. The results are shown in Table 3.
  • Binder A9 produced in the same manner as in Example 3-6, 0.6 part, PVdF (KF Polymer # 7200, manufactured by Kureha Co., Ltd.) as binder B, 2.4 parts corresponding to the solid content, and conductive material Of acetylene black (Denka black powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle size 35 nm) and ternary active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) (average particle size: 10 parts) and an appropriate amount of NMP as a solvent were stirred with a planetary mixer (3000 rpm, 40 minutes) to prepare a positive electrode slurry. The solid content concentration of the obtained slurry was the same as in Example 3-1.
  • a positive electrode and a secondary battery were produced in the same manner as in Example 3-1, except that the positive electrode slurry obtained as described above was used, and each evaluation item was evaluated. The results are shown in Table 3.
  • Example 3-3 Conductive material paste was prepared in the same manner as in Example 3-1, except that binder A was not used at the time of production of the conductive material paste, 3 parts by mass of PVdF was used as binder B, and the solid concentration was 7%. Manufactured. The binder amount of the conductive material of the obtained conductive material paste was 37 mg / g, and the viscosity was 8000 mPa ⁇ s. Except for using such a conductive material paste, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 3-1, and evaluation was performed on each evaluation item. The results are shown in Table 3.
  • the conductive material paste of Examples 3-1 to 3-9, the slurry for secondary battery positive electrode, and the secondary battery are the conductive material paste of Comparative Examples 3-1 to 3-3, slurry for secondary battery positive electrode It can be seen that the internal resistance is low and the high-temperature cycle characteristics are good as compared with the secondary battery.
  • the aging stability of the secondary battery positive electrode slurry is improved, and the interior of the secondary battery is increased. It can be seen that the resistance can be reduced and the high-temperature cycle characteristics can be improved.
  • Example 3 by adjusting the blending ratio of the three types of monomer units blended in the binder A, the dispersion stability of the conductive material paste and the secondary It can be seen that the time stability of the battery positive electrode slurry can be increased, the internal resistance of the secondary battery can be decreased, and the high-temperature cycle characteristics can be improved.
  • Example 3-6 since acrylonitrile was not blended in binder A, the cycle characteristics of the secondary battery positive electrode were relatively low, and the viscosity of the conductive paste was relatively high. It can be seen that the internal resistance of the secondary battery positive electrode is relatively high.
  • Example 3-1 and Comparative Example 3-2 in Table 3 the conductive material, the binder, and the positive electrode active material are mixed together, resulting in insufficient dispersion of the conductive material in the slurry. It can be seen that not only the cycle characteristics but also the time stability of the slurry was deteriorated.
  • Example 4-1 Manufacture of binder A8> In the same manner as in Example 3-1, an NMP solution of binder A8 was obtained.
  • Premix paste production 3.0 parts of acetylene black (Denka black powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle diameter 35 nm) as a conductive material, and NMP solution of the binder A8 as a first binder component corresponding to a solid content 0.6 parts (solid content concentration 8.0% by mass) and an appropriate amount of NMP such that the solid content concentration of the premixed paste becomes 10% by mass is stirred with a disper (3000 rpm, 10 minutes) and premixed. A paste was obtained.
  • acetylene black Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle diameter 35 nm
  • NMP solution of the binder A8 as a first binder component corresponding to a solid content 0.6 parts (solid content concentration 8.0% by mass) and an appropriate amount of NMP such that the solid content concentration of the premixed paste becomes 10% by mass is stirred with a disper
  • the blending ratio of binder A8 to acetylene black, which is a conductive material, in the premixed paste was 20% when the blending amount of the conductive material was 100%. Further, the blending ratio of the binder A8 was 100% when the solid content of the total binder resin of the first binder component contained in the premix paste was 100%.
  • the binder amount of the conductive material of the obtained conductive material paste was 200 mg / g, and the viscosity was 5000 mPa ⁇ s.
  • the dispersion stability [Evaluation Method 1] of the conductive material paste was evaluated using the produced conductive material paste. The results are shown in Table 4.
  • a positive electrode composed of a positive electrode mixture layer having a density of 3.2 g / cm 3 and an aluminum foil was produced in the same manner as in Example 2-1, except that the positive electrode slurry obtained above was used.
  • the positive electrode had a thickness of 70 ⁇ m.
  • Example 2-1 ⁇ Manufacture of slurry for negative electrode and negative electrode>
  • a negative electrode slurry was prepared, and a negative electrode having a negative electrode mixture layer having a thickness of 80 ⁇ m was obtained.
  • a lithium ion secondary battery was produced in the same manner as in Example 2-1, except that the positive electrode obtained above was used.
  • the obtained lithium ion secondary battery was evaluated for high-temperature cycle characteristics [Evaluation Method 2] and low-temperature characteristics. The results are shown in Table 4.
  • Binder A8 blending ratio when binder A8 and fluoropolymer (PVdF) are used as the first binder component at the time of manufacturing the premixed paste, and the solid content of the first binder component is 100% was prepared in the same manner as in Example 4-1, except that the blending ratio of the fluoropolymer was changed to 70% (0.42 parts) and the blending ratio of the fluoropolymer was changed to 30% (0.18 parts).
  • the blending ratio of the binder A8 to the acetylene black as the conductive material in the premixed paste at this time was 14% when the blending amount of the conductive material was 100%.
  • a conductive material paste was prepared in the same manner as in Example 4-1, except for the above.
  • the binder amount of the conductive material of the obtained conductive material paste was 192 mg / g, and the viscosity was 6000 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
  • Binder A8 blending ratio when binder A8 and fluoropolymer (PVdF) are used as the first binder component at the time of manufacturing the premixed paste, and the solid content of the first binder component is 100% was mixed in the same manner as in Example 4-1, except that the blending ratio of the fluoropolymer was changed to 50% (0.3 part). Note that the blending ratio of the binder A8 to the acetylene black as the conductive material in the premixed paste at this time was 10% when the blending amount of the conductive material was 100%.
  • the first binder resin A1 is 0.3 parts corresponding to the solid content
  • the second binder resin (PVdF) is equivalent to the solid content 2.
  • a conductive material paste was prepared in the same manner as in Example 4-1, except that 1 part was added.
  • the binder amount of the conductive material of the obtained conductive material paste was 185 mg / g, and the viscosity was 7000 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
  • Example 4-4 In preparing a conductive material paste using a pre-mixed paste manufactured in the same manner as in Example 4-1, NMP was added so that the solid content concentration of the conductive material paste was 14% by mass, and a planetary mixer was used. Stirred (60 rpm, 60 minutes). The binder amount of the conductive material of the obtained conductive material paste was 190 mg / g, and the viscosity was 9000 mPa ⁇ s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
  • Example 4-5 In preparing a conductive material paste using a premixed paste produced in the same manner as in Example 4-1, NMP was added so that the solid content concentration of the conductive material paste was 7% by mass, and Example 4-1. And stirred under the same conditions.
  • the binder amount of the conductive material of the obtained conductive material paste was 175 mg / g, and the viscosity was 2500 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
  • Example 4-6 At the time of manufacturing the premixed paste, the blending ratio of the binder A8 to the acetylene black as the conductive material in the premixed paste is 5% (0.15 when 3 parts as the blended amount of the conductive material is 100%) Part). Further, an appropriate amount of NMP was added so that the solid content concentration of the premixed paste was 12% by mass. A premixed paste was obtained in the same manner as in Example 4-1. Example 4-1 except that 0.45 part of binder A8 and 2.4 parts of a fluoropolymer (PVdF) were added as a second binder component to the premixed paste obtained. Thus, a conductive material paste was obtained.
  • PVdF fluoropolymer
  • the binder amount of the conductive material of the obtained conductive material paste was 102 mg / g, and the viscosity was 8000 mPa ⁇ s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
  • Example 4-7 At the time of manufacturing the premixed paste, the blending ratio of the binder A8 to the acetylene black that is the conductive material in the premixed paste is 50% (1.5% when 3 parts that is the blended amount of the conductive material is 100%). Part). Further, an appropriate amount of NMP was added so that the solid content concentration of the premixed paste was 8% by mass. Others were the same as in Example 1, and a premixed paste was obtained. A conductive material paste was obtained in the same manner as in Example 4-1, except that 1.5 parts of a fluoropolymer (PVdF) was added as a second binder component to the obtained premixed paste.
  • PVdF fluoropolymer
  • the conductive material of the obtained conductive material paste had a binder adsorption amount of 290 mg / g and a viscosity of 3500 mPa ⁇ s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
  • a premixed paste 1 and a conductive material paste were produced in the same manner as in Example 4-1, except that the binder A9 obtained as described above was used.
  • the binder amount of the conductive material of the obtained conductive material paste was 130 mg / g, and the viscosity was 4000 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
  • a premixed paste and 2 were produced in the same manner as in Example 4-1, except that the binder A10 obtained as described above was used.
  • the binder amount of the conductive material of the obtained conductive material paste was 105 mg / g, and the viscosity was 8000 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
  • Comparative Example 4-1 A conductive material paste was produced in the same manner as in Comparative Example 3-3.
  • the binder amount of the conductive material of the obtained conductive material paste was 37 mg / g, and the viscosity was 8000 mPa ⁇ s.
  • a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
  • Comparative Example 4-2 0.6 parts of the above-mentioned binder A9, acetylene black (DENKA BLACK powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle diameter 35 nm) as a conductive material, 3.0 parts, and solid content concentration of the premix paste was stirred with a disper (3000 rpm, 10 minutes) to obtain a premixed paste.
  • the binder adsorption amount of the conductive material in this premixed paste was less than 100 mg / g.
  • 100 parts of active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) (average particle size: 10 ⁇ m) and an appropriate amount of NMP were stirred to obtain a positive electrode active material paste.
  • active material LiNi 0.5 Co 0.2 Mn 0.3 O 2
  • NMP average particle size: 10 ⁇ m
  • These premixed paste and positive electrode active material paste were mixed to obtain a positive electrode slurry.
  • a positive electrode and a secondary battery were prepared, and each evaluation item was evaluated. The results are shown in Table 4.
  • the conductive material paste of Examples 4-1 to 4-9, the slurry for secondary battery positive electrode, and the secondary battery are the conductive material paste of Comparative Examples 4-1 to 4-2, slurry for secondary battery positive electrode It can be seen that the dispersion stability of the conductive material paste is excellent as compared with the secondary battery, and the high-temperature cycle characteristics and low-temperature characteristics of the secondary battery are good.
  • the conductive material paste was dispersed by adjusting the blending ratio of binder A in the first binder component of the premixed paste and the viscosity of the conductive material paste. It can be seen that the stability and low temperature characteristics of the secondary battery can be improved.
  • Examples 4-1 and 4-4 to 4-5 in Table 4 by adjusting the viscosity and solid content concentration of the conductive material paste, the dispersion stability of the conductive material paste and the low-temperature characteristics of the secondary battery and It can be seen that the high-temperature cycle characteristics can be improved. Further, from Examples 4-1 and 4-6 to 4-7 in Table 4, the binder A having a specific property is blended mainly in the first step (X-1) of the step (X), and the blending thereof. It can be seen that by adjusting the amount, the dispersion stability of the conductive material paste and the low-temperature characteristics and high-temperature cycle characteristics of the secondary battery can be improved.
  • Example 4-1 and 4-8 to 4-9 in Table 4 the dispersion stability of the conductive material paste is improved by adjusting the composition of the binder A, and the high-temperature cycle characteristics of the secondary battery and It can be seen that the low temperature characteristics can be improved. Further, from Example 4-1 in Table 4 and Comparative Example 4-1 using only PVdF as the first binder component, the content of binder A in the first binder component is If it is insufficient, it can be seen that the low temperature characteristics and the high temperature cycle characteristics deteriorate. Further, from Example 4-1 and Comparative Example 4-2 in Table 4, the process (X) (first process (X-1) and second process (X-2)) and process (Y) were performed.
  • the slurry for the positive electrode is manufactured without the conductive material paste being sufficiently dispersible in the conductive material paste, the dispersion stability of the conductive material paste and the low-temperature characteristics and high-temperature cycle characteristics of the secondary battery may be deteriorated. I understand that.
  • the electrically conductive material paste for secondary battery electrodes which can form the electrode which is excellent in dispersion stability and is excellent in electric potential stability can be provided.
  • the manufacturing method of the slurry for secondary battery positive electrodes which can improve an electrical characteristic and can improve the performance of a secondary battery can be provided.
  • the manufacturing method of the positive electrode for secondary batteries which can improve an electrical characteristic and can improve the performance of a secondary battery can be provided.
  • a secondary battery having excellent electrical characteristics can be provided.

Abstract

The objective of the present invention is to provide a conductive material paste that is for a secondary battery electrode and that can form an electrode having superior electrical potential stability and superior dispersion stability. The conductive material paste for a secondary battery electrode contains a conductive material and a binder (A), the binder (A) contains an alkylene structural unit and/or a (meth)acrylate ester monomer unit, and the binder adsorption amount of the conductive material is 100-600 mg/g inclusive.

Description

二次電池電極用導電材ペースト、二次電池正極用スラリーの製造方法、二次電池用正極の製造方法および二次電池Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and secondary battery
 本発明は、二次電池電極用導電材ペースト、二次電池正極用スラリーの製造方法、二次電池用正極の製造方法および二次電池に関するものである。 The present invention relates to a conductive paste for a secondary battery electrode, a method for producing a slurry for a secondary battery positive electrode, a method for producing a positive electrode for a secondary battery, and a secondary battery.
 二次電池、なかでもリチウムイオン二次電池は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。特に近年、リチウムイオン二次電池は、電気自動車(EV)やハイブリッド電気自動車(HEV)のエネルギー源として注目されており、一層の高性能化が求められている。そのため、近年では、リチウムイオン二次電池などの二次電池の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。具体的には、二次電池の高性能化のために、電極などの電池部材を改良して、電気的特性を向上させることが検討されている。 Secondary batteries, especially lithium ion secondary batteries, are small and light, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications. In particular, in recent years, lithium ion secondary batteries have attracted attention as an energy source for electric vehicles (EV) and hybrid electric vehicles (HEV), and higher performance is required. Therefore, in recent years, improvement of battery members such as electrodes has been studied for the purpose of further improving the performance of secondary batteries such as lithium ion secondary batteries. Specifically, in order to improve the performance of the secondary battery, it has been studied to improve the electrical characteristics by improving battery members such as electrodes.
 ここで、例えばリチウムイオン二次電池用の電極は、通常、集電体と、集電体上に形成された電極合材層とを備えている。そして、電極合材層、例えば正極合材層は、通常、正極活物質、導電材、バインダーなどを分散媒に分散また溶解させてなる、電極用スラリーとしての正極用スラリーを集電体上に塗布し、乾燥させて正極活物質および導電材などをバインダーで結着することにより形成されている。
 また、一般に、電極用スラリーの配合およびその製造工程は、得られる電極用スラリーの性状に影響を与える。そして、電極用スラリーの性状は、かかる電極用スラリーを用いて形成される電極合材層を備える二次電池の電気的特性に影響を与える。
 そこで、二次電池の更なる性能向上を達成すべく、従来から、電極用スラリーを改良する試みがなされている(例えば特許文献1参照)。
Here, for example, an electrode for a lithium ion secondary battery usually includes a current collector and an electrode mixture layer formed on the current collector. The electrode mixture layer, for example, the positive electrode mixture layer is usually formed by dispersing a positive electrode slurry as an electrode slurry on a current collector, in which a positive electrode active material, a conductive material, a binder, and the like are dispersed or dissolved in a dispersion medium. It is formed by applying and drying and binding a positive electrode active material, a conductive material, and the like with a binder.
In general, the composition of the electrode slurry and the manufacturing process thereof affect the properties of the obtained electrode slurry. And the property of the slurry for electrodes influences the electrical property of a secondary battery provided with the electrode compound-material layer formed using this slurry for electrodes.
Thus, attempts have been made to improve the slurry for electrodes in order to achieve further improvement in performance of the secondary battery (see, for example, Patent Document 1).
 特許文献1では、電極合材層を形成するための電極用スラリーに配合するバインダーとして、フッ素系重合体と、ニトリルゴム又は水素添加ニトリルゴムとの混合物を使用し、ニトリルゴム又は水素添加ニトリルゴムが高い接着性を有することと、フッ素系重合体が繊維状態で結合することとの相乗効果により電極の性能を改善して、二次電池のエネルギー密度およびサイクル特性を向上させることが提案されている。 In Patent Document 1, a mixture of a fluorine-based polymer and nitrile rubber or hydrogenated nitrile rubber is used as a binder to be blended in an electrode slurry for forming an electrode mixture layer, and nitrile rubber or hydrogenated nitrile rubber is used. It has been proposed to improve the performance of the electrode and improve the energy density and cycle characteristics of the secondary battery by a synergistic effect of having high adhesiveness and bonding of the fluoropolymer in the fiber state. Yes.
 一方で、電極用スラリーの製造手順を変更することで、二次電池の更なる性能向上を図る試みもなされている。具体的には、バインダーと導電材とが溶剤中に溶解又は分散してなる導電材ペーストを調製し、当該導電材ペーストと正極活物質をあわせて得られる電極用スラリーを用いることで、二次電池の各種性能を向上させる技術が報告されている(例えば、特許文献2~4参照)。
 特許文献2では、フッ素系重合体と、水素添加ニトリルゴムとの混合物をバインダーとして含む正極用スラリーの調製に際し、フッ素系重合体の有機溶剤溶液と、水素添加ニトリルゴムと、導電材とを予め混合して導電材ペーストを得た後、当該導電材ペーストと正極活物質とを混合して正極用スラリーを調製することにより、正極の性能を改善して大電流放電での電池容量の減少が少ない二次電池を提供することが提案されている。
On the other hand, attempts have been made to further improve the performance of secondary batteries by changing the manufacturing procedure of the slurry for electrodes. Specifically, by preparing a conductive material paste in which a binder and a conductive material are dissolved or dispersed in a solvent, and using an electrode slurry obtained by combining the conductive material paste and the positive electrode active material, Techniques for improving various performances of batteries have been reported (see, for example, Patent Documents 2 to 4).
In Patent Document 2, when preparing a slurry for a positive electrode containing a mixture of a fluorinated polymer and a hydrogenated nitrile rubber as a binder, an organic solvent solution of the fluorinated polymer, a hydrogenated nitrile rubber, and a conductive material are previously added. After mixing to obtain a conductive material paste, the conductive material paste and the positive electrode active material are mixed to prepare a positive electrode slurry, thereby improving the performance of the positive electrode and reducing the battery capacity in large current discharge. It has been proposed to provide fewer secondary batteries.
 また特許文献3では、正極活物質としてのリチウム含有遷移金属酸化物、フッ素系重合体などの第1のバインダーAおよび分散媒を含むペーストAと、導電材としてのカーボンブラック、水素添加ニトリルゴムなどの第2のバインダーBおよび分散媒を含むペーストB(導電材ペースト)とをそれぞれ調製し、ペーストAとペーストBを混合して得られる正極用スラリーを正極の形成に用いることによって、導電材の表面にフッ素系重合体との親和性の低い水素添加ニトリルゴムを配置し、フッ素系重合体による導電材の凝集を抑制することが提案されている。 In Patent Document 3, a lithium-containing transition metal oxide as a positive electrode active material, a first binder A such as a fluorine-based polymer and a paste A containing a dispersion medium, carbon black as a conductive material, hydrogenated nitrile rubber, and the like The second binder B and the paste B (conductive material paste) containing the dispersion medium are prepared, and the positive electrode slurry obtained by mixing the paste A and the paste B is used for forming the positive electrode. It has been proposed that a hydrogenated nitrile rubber having a low affinity with a fluorine-based polymer is disposed on the surface to suppress aggregation of the conductive material due to the fluorine-based polymer.
 さらに特許文献4では、導電材およびバインダーを含む導電材ペーストを調製し、得られた導電材ペーストを溶剤で希釈した後、正極活物質としてのリチウム-遷移金属の複合酸化物を投入し、攪拌して正極用スラリーを調製することにより、正極合材層中の導電材の分散性を向上させると共に電解液が浸透しうる微細な空孔を増加させ、正極のイオン導電性を確保することが提案されている。 Further, in Patent Document 4, a conductive material paste containing a conductive material and a binder is prepared, and the obtained conductive material paste is diluted with a solvent, and then a lithium-transition metal composite oxide as a positive electrode active material is added and stirred. Thus, by preparing the positive electrode slurry, it is possible to improve the dispersibility of the conductive material in the positive electrode mixture layer and increase the fine pores through which the electrolyte can permeate, thereby ensuring the ionic conductivity of the positive electrode. Proposed.
特開平9-63590号公報Japanese Patent Laid-Open No. 9-63590 特許第4502311号公報Japanese Patent No. 4502311 特許第3585122号公報Japanese Patent No. 3585122 特開2001-283831号公報JP 2001-238331 A
 ここで二次電池には、内部抵抗を一層低減させるなどして低温特性を向上させ、高い出力を確保することが求められるのみならず、例えば上述の電気自動車(EV)やハイブリッド電気自動車(HEV)中のような高温環境下においても十分にその性能を発揮すべく、高温保存特性や高温サイクル特性を確保することが求められる。このような二次電池の電気的特性を向上させるには、電極における導電性を確保しつつ、当該電極の電圧印加に対する耐久性(電位安定性)を優れたものとする必要がある。さらには工業的に電池を製造していく上では、電極用スラリー、そして当該電極用スラリーの調製に用いられる導電材ペーストの分散安定性も非常に重要である。
 しかしながら、上記特許文献1の技術を用いても、電極の十分な電位安定性が得られなかった。さらに、上記特許文献2~4における導電材ペーストを採用した技術を用いても、同様に電極の十分な電位安定性は得られず、加えて、導電材ペーストの分散安定性も満足のいくものではなかった。
 したがって、上記従来の技術には、導電材ペーストの分散安定性を向上させつつ電極の電位安定性を向上させ、そして二次電池に優れた電気的特性を発揮させるという点において未だ改善の余地があった。
Here, the secondary battery is not only required to improve the low temperature characteristics by further reducing the internal resistance and ensure high output, but also, for example, the above-described electric vehicle (EV) or hybrid electric vehicle (HEV). It is required to ensure high-temperature storage characteristics and high-temperature cycle characteristics in order to fully exhibit its performance even in a high-temperature environment such as In order to improve the electrical characteristics of such a secondary battery, it is necessary to ensure durability (potential stability) with respect to voltage application of the electrode while ensuring conductivity in the electrode. Furthermore, when manufacturing a battery industrially, the dispersion stability of the electrode slurry and the conductive material paste used for preparing the electrode slurry is also very important.
However, even if the technique of Patent Document 1 is used, sufficient potential stability of the electrode cannot be obtained. Further, even if the technique using the conductive material paste in the above Patent Documents 2 to 4 is used, sufficient potential stability of the electrode is not obtained, and in addition, the dispersion stability of the conductive material paste is satisfactory. It wasn't.
Therefore, the above conventional technology still has room for improvement in terms of improving the potential stability of the electrode while improving the dispersion stability of the conductive material paste, and exhibiting excellent electrical characteristics in the secondary battery. there were.
 そこで、本発明は、分散安定性に優れ、かつ、電位安定性に優れる電極を形成可能な二次電池電極用導電材ペーストを提供することを目的とする。
 また、本発明は、電気的特性を向上させて、二次電池の性能を向上させることができる二次電池正極用スラリーの製造方法を提供することを目的とする。
 さらに、本発明は、電気的特性を向上させて、二次電池の性能を向上させることができる二次電池用正極の製造方法を提供することを目的とする。
 加えて、本発明は、電気的特性に優れる二次電池を提供することを目的とする。
Then, an object of this invention is to provide the electrically conductive material paste for secondary battery electrodes which can form the electrode which is excellent in dispersion stability and excellent in electric potential stability.
Moreover, an object of this invention is to provide the manufacturing method of the slurry for secondary battery positive electrodes which can improve the electrical property and can improve the performance of a secondary battery.
Furthermore, an object of this invention is to provide the manufacturing method of the positive electrode for secondary batteries which can improve the electrical property and can improve the performance of a secondary battery.
In addition, an object of the present invention is to provide a secondary battery having excellent electrical characteristics.
 本発明者らは、上記課題を解決することを目的として鋭意検討を行い、以下の点を見出した。 The present inventors have intensively studied for the purpose of solving the above-mentioned problems and found the following points.
 第一に、本発明者らは、特定の繰り返し単位を備えるバインダーを含み、かつ、導電材に吸着しているバインダーの量が所定範囲内に制御された導電材ペーストが、分散安定性に優れることを見出した。加えて、当該導電材ペーストを二次電池電極用スラリー(特に正極用スラリー)の調製に使用することで、当該電極用スラリーから形成される電極において、バインダーの酸化を抑制して電位安定性を高め、そして高温保存特性などの電気的特性を高めることができることを見出した。 First, the present inventors have excellent dispersion stability when a conductive material paste containing a binder having a specific repeating unit and the amount of the binder adsorbed on the conductive material is controlled within a predetermined range. I found out. In addition, by using the conductive material paste for the preparation of secondary battery electrode slurry (especially positive electrode slurry), in the electrode formed from the electrode slurry, the oxidation of the binder is suppressed and the potential stability is improved. It has been found that electrical characteristics such as high temperature storage characteristics can be enhanced.
 第二に、本発明者らは、上記従来の電極用スラリーは、バインダーと導電材とを、固形分濃度が比較的高い状態で十分に混練して製造しているため、電極用スラリーから形成した電極合材層中で導電材が分散しすぎてしまうなどの原因により、導電材間で良好な導電ネットワークが形成されない虞があること、および、導電材間の導電ネットワークが不十分な二次電池は、内部抵抗による容量劣化、特に低温での容量劣化を抑制できない虞があることをさらに見出した。
 そこで、本発明者らは検討を重ね、電極用スラリー(特に正極用スラリー)の製造条件等を調整することにより、導電材間で良好な導電ネットワークを形成することに着想した。そして、本発明者らはさらに検討を重ね、上述の特定の繰り返し単位を含有するバインダーと導電材とを含む導電材ペーストの固形分濃度を所定範囲として混合して電極用スラリーを調製することで、および/または、上述の特定の繰り返し単位を含有するバインダーを使用した特定の製造工程により二次電池電極用スラリーを製造することで、導電材間での良好な導電ネットワークの形成を可能にし、得られる二次電池電極用スラリーを用いて製造した二次電池の内部抵抗を低減させるとともに、高温サイクル特性及び低温特性などを向上させることを見出した。
Second, the present inventors have formed the above conventional electrode slurry from an electrode slurry because the binder and the conductive material are sufficiently kneaded with a relatively high solid content. There is a possibility that a good conductive network may not be formed between the conductive materials due to excessive dispersion of the conductive material in the electrode mixture layer, and a secondary where the conductive network between the conductive materials is insufficient. It was further found that the battery may not be able to suppress capacity deterioration due to internal resistance, particularly capacity deterioration at low temperatures.
Accordingly, the present inventors have repeatedly studied and have come up with the idea of forming a good conductive network between conductive materials by adjusting the manufacturing conditions and the like of electrode slurry (especially positive electrode slurry). The inventors further studied and prepared a slurry for an electrode by mixing the solid content concentration of the conductive material paste containing the binder containing the specific repeating unit and the conductive material within a predetermined range. And / or by producing a slurry for a secondary battery electrode by a specific manufacturing process using a binder containing the specific repeating unit described above, it is possible to form a good conductive network between conductive materials, It has been found that the internal resistance of the secondary battery manufactured using the obtained secondary battery electrode slurry is reduced, and the high-temperature cycle characteristics and low-temperature characteristics are improved.
 上記のような新たに見出した知見をもとに、本発明者らは、本発明を完成させた。 Based on the newly found findings as described above, the present inventors have completed the present invention.
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池電極用導電材ペーストは、導電材およびバインダーAを含有し、前記バインダーAが、アルキレン構造単位および(メタ)アクリル酸エステル単量体単位の少なくとも一方を含み、前記導電材のバインダー吸着量が100mg/g以上600mg/g以下であることを特徴とする。このように、アルキレン構造単位および/または(メタ)アクリル酸エステル単量体単位を含むバインダーAを含有し、かつ、導電材のバインダー吸着量が100mg/g以上600mg/g以下である二次電池電極用導電材ペーストは、分散安定性に優れ、かつ、当該導電材ペーストを用いることで電位安定性に優れる電極を製造することができる。加えて、当該導電材ペーストを用いて得られる電極は、二次電池に優れた電気的特性を発揮させることができる。
 なお、「導電材のバインダー吸着量」は、本明細書に記載の方法で測定することができる。
That is, this invention aims to solve the above-mentioned problems advantageously, and the conductive material paste for a secondary battery electrode of the present invention contains a conductive material and a binder A, and the binder A is an alkylene. It includes at least one of a structural unit and a (meth) acrylic acid ester monomer unit, and the binder adsorption amount of the conductive material is 100 mg / g or more and 600 mg / g or less. Thus, the secondary battery containing the binder A containing the alkylene structural unit and / or the (meth) acrylic acid ester monomer unit, and the binder adsorption amount of the conductive material is 100 mg / g or more and 600 mg / g or less. The electrode conductive material paste has excellent dispersion stability, and an electrode having excellent potential stability can be produced by using the conductive material paste. In addition, the electrode obtained using the conductive material paste can exhibit excellent electrical characteristics for the secondary battery.
The “binder adsorption amount of the conductive material” can be measured by the method described in this specification.
 ここで、本発明の二次電池電極用導電材ペーストは、前記バインダーAがアルキレン構造単位を含むことが好ましい。バインダーAがアルキレン構造単位を含有することで、導電材ペーストの分散安定性および電極の電位安定性をさらに良好なものとすることができ、また二次電池の電気的特性を一層高めることができるからである。 Here, in the conductive material paste for a secondary battery electrode of the present invention, the binder A preferably includes an alkylene structural unit. When the binder A contains an alkylene structural unit, the dispersion stability of the conductive material paste and the potential stability of the electrode can be further improved, and the electrical characteristics of the secondary battery can be further enhanced. Because.
 そして、本発明の二次電池電極用導電材ペーストは、前記バインダーAがアルキレン構造単位および(メタ)アクリル酸エステル単量体単位の双方を含むことが好ましい。バインダーAがアルキレン構造単位および(メタ)アクリル酸エステル単量体単位の双方を含めば、導電材ペーストの分散安定性および電極の電位安定性をさらに良好なものとすることができ、また二次電池の電気的特性を一層高めることができるからである。 In the conductive material paste for secondary battery electrodes of the present invention, it is preferable that the binder A includes both an alkylene structural unit and a (meth) acrylate monomer unit. If the binder A includes both an alkylene structural unit and a (meth) acrylic acid ester monomer unit, the dispersion stability of the conductive material paste and the potential stability of the electrode can be further improved. This is because the electrical characteristics of the battery can be further enhanced.
 また、本発明の二次電池電極用導電材ペーストは、前記バインダーAが、さらに、ニトリル基含有単量体単位を2質量%以上50質量%以下含むことが好ましい。バインダーAがニトリル基含有単量体単位を2質量%以上50質量%以下の範囲内で含めば、導電材ペーストの分散安定性および電極の電位安定性をさらに良好なものとすることができ、また導電材ペーストを用いて製造した二次電池用正極の電解液に対する安定性を向上させると共に、二次電池の電気的特性を一層高めることができるからである。 In the conductive material paste for secondary battery electrodes of the present invention, it is preferable that the binder A further contains 2% by mass to 50% by mass of a nitrile group-containing monomer unit. If the binder A contains a nitrile group-containing monomer unit in the range of 2% by mass to 50% by mass, the dispersion stability of the conductive material paste and the potential stability of the electrode can be further improved. Moreover, it is because the electrical property of a secondary battery can be improved further while improving the stability with respect to the electrolyte solution of the positive electrode for secondary batteries manufactured using the electrically conductive material paste.
 さらに、本発明の二次電池電極用導電材ペーストは、粘度が1000mPa・s以上10000mPa・s以下であることが好ましい。このように、導電材ペーストの粘度を1000mPa・s以上10000mPa・s以下とすることで、導電材ペーストの分散安定性を優れたものとすることができるからである。
 なお、本明細書において、導電材ペーストの粘度は、JIS Z 8803:1991に準じて単一円筒形回転粘度計(25℃、回転数=60rpm、スピンドル形状:4)により測定することができる。
Furthermore, the conductive material paste for a secondary battery electrode of the present invention preferably has a viscosity of 1000 mPa · s or more and 10,000 mPa · s or less. Thus, the dispersion stability of the conductive material paste can be made excellent by setting the viscosity of the conductive material paste to 1000 mPa · s or more and 10,000 mPa · s or less.
In the present specification, the viscosity of the conductive material paste can be measured with a single cylindrical rotational viscometer (25 ° C., rotational speed = 60 rpm, spindle shape: 4) according to JIS Z 8803: 1991.
 加えて、本発明の二次電池電極用導電材ペーストは、固形分濃度が5質量%以上15質量%以下であることが好ましい。このように、導電材ペーストの固形分濃度が5質量%以上15質量%以下であれば、得られる電極合材層中において導電材が良好に分散し、二次電池の電気的特性を一層高めることができるからである。
 なお、本明細書において、導電材が「良好に分散」する、とは、電極合材層中において導電材同士が過度に分散又は凝集することなく、適度に分散した状態であって、導電材同士が相互に導電ネットワークを形成しうる状態を指す。
In addition, the conductive material paste for a secondary battery electrode of the present invention preferably has a solid content concentration of 5% by mass or more and 15% by mass or less. Thus, if the solid content concentration of the conductive material paste is 5% by mass or more and 15% by mass or less, the conductive material is well dispersed in the obtained electrode mixture layer, and the electrical characteristics of the secondary battery are further enhanced. Because it can.
In the present specification, the conductive material is “dispersed well” means that the conductive material is appropriately dispersed without excessively dispersing or aggregating in the electrode mixture layer. It refers to a state where each other can form a conductive network.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池正極用スラリーの製造方法は、上述のいずれかの二次電池電極用導電材ペーストを調製する工程(X)と、前記二次電池電極用導電材ペーストと正極活物質とを混合する工程(Y)とを含むことを特徴とする。上述のいずれかの二次電池電極用導電材ペーストを用いて得られる二次電池正極用スラリーは分散安定性に優れ、かつ当該正極用スラリーを用いれば、電位安定性に優れる正極を製造することができ、二次電池に優れた電気的特性を発揮させることが可能となる。 Moreover, this invention aims at solving the said subject advantageously, The manufacturing method of the slurry for secondary battery positive electrodes of this invention uses the electrically conductive paste for any of the above-mentioned secondary battery electrodes. It includes a step (X) of preparing, and a step (Y) of mixing the conductive material paste for a secondary battery electrode and a positive electrode active material. The secondary battery positive electrode slurry obtained by using any one of the above-described conductive pastes for secondary battery electrodes is excellent in dispersion stability, and if the positive electrode slurry is used, a positive electrode excellent in potential stability is produced. Thus, the secondary battery can exhibit excellent electrical characteristics.
 ここで、本発明の二次電池正極用スラリーの製造方法において、前記工程(X)が、前記導電材と、前記バインダーAを主成分として含む第一結着材成分とを混合して予混合ペーストを得る第一の工程(X-1)と、前記予混合ペーストに、フッ素系重合体を主成分として含む第二結着材成分を添加して、前記二次電池電極用導電材ペーストを得る第二の工程(X-2)と、を含むことが好ましい。上述の第一の工程と第二の工程とを経て導電材ペーストを用いて正極用スラリーを調製すれば、二次電池の電気的特性を一層高めることができるからである。
 なお、本明細書において、「主成分として含む」とは、固形分換算において50質量%以上の割合で含むことを示す。
Here, in the method for producing a slurry for a secondary battery positive electrode of the present invention, the step (X) mixes and premixes the conductive material and the first binder component containing the binder A as a main component. A first step (X-1) for obtaining a paste; and adding a second binder component containing a fluorine-based polymer as a main component to the premixed paste to obtain the conductive material paste for a secondary battery electrode Second step (X-2) to be obtained. This is because if the positive electrode slurry is prepared using the conductive material paste through the first step and the second step, the electrical characteristics of the secondary battery can be further enhanced.
In addition, in this specification, "it contains as a main component" shows containing in the ratio of 50 mass% or more in conversion of solid content.
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池用正極の製造方法は、上述の二次電池正極用スラリーの製造方法により得られた二次電池正極用スラリーを、集電体の少なくとも一方の面に塗布し、乾燥して正極合材層を形成する工程を含むことを特徴とする。上述の二次電池正極用スラリーから正極合材層を形成すれば、電位安定性に優れる正極を製造することができ、当該正極は、二次電池に優れた電気的特性を発揮させることができる。 Moreover, this invention aims at solving the said subject advantageously, The manufacturing method of the positive electrode for secondary batteries of this invention was obtained by the manufacturing method of the slurry for secondary battery positive electrodes mentioned above. The method includes a step of applying a slurry for a secondary battery positive electrode to at least one surface of a current collector and drying to form a positive electrode mixture layer. If the positive electrode mixture layer is formed from the above-described slurry for the secondary battery positive electrode, a positive electrode having excellent potential stability can be produced, and the positive electrode can exhibit excellent electrical characteristics in the secondary battery. .
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池は、正極、負極、セパレーターおよび電解液を有する二次電池であって、前記正極が、上述の二次電池用正極の製造方法で製造された二次電池用正極であることを特徴とする。上述の二次電池用正極の製造方法で製造された二次電池用正極を備える二次電池は、電気的特性に優れる。 Moreover, this invention aims at solving the said subject advantageously, The secondary battery of this invention is a secondary battery which has a positive electrode, a negative electrode, a separator, and electrolyte solution, Comprising: The said positive electrode is A secondary battery positive electrode manufactured by the above-described method for manufacturing a secondary battery positive electrode. A secondary battery provided with the positive electrode for secondary batteries manufactured by the manufacturing method of the positive electrode for secondary batteries mentioned above is excellent in an electrical property.
 本発明によれば、分散安定性に優れ、かつ、電位安定性に優れる電極を形成可能な二次電池電極用導電材ペーストを提供することができる。
 また、本発明によれば、電気的特性を向上させて、二次電池の性能を向上させることができる二次電池正極用スラリーの製造方法を提供することができる。
 さらに、本発明によれば、電気的特性を向上させて、二次電池の性能を向上させることができる二次電池用正極の製造方法を提供することができる。
 加えて、本発明によれば、電気的特性に優れる二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the electrically conductive material paste for secondary battery electrodes which can form the electrode which is excellent in dispersion stability and is excellent in electric potential stability can be provided.
Moreover, according to this invention, the manufacturing method of the slurry for secondary battery positive electrodes which can improve an electrical characteristic and can improve the performance of a secondary battery can be provided.
Furthermore, according to this invention, the manufacturing method of the positive electrode for secondary batteries which can improve an electrical characteristic and can improve the performance of a secondary battery can be provided.
In addition, according to the present invention, a secondary battery having excellent electrical characteristics can be provided.
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の二次電池電極用導電材ペーストは、二次電池電極用スラリー、好ましくは二次電池正極用スラリーを製造する際の材料として用いられる。そして、本発明の二次電池正極用スラリーの製造方法は、本発明の二次電池電極用導電材ペーストを使用して、二次電池の正極の形成に用いられる二次電池正極用スラリーを製造する際に用いられる。加えて、本発明の二次電池用正極の製造方法は、本発明の二次電池正極用スラリーの製造方法を用いて製造した二次電池正極用スラリーにより正極合材層を形成することを特徴とする。また、本発明の二次電池は、本発明の二次電池用正極の製造方法により製造した正極を用いることを特徴とする。
Hereinafter, embodiments of the present invention will be described in detail.
Here, the conductive material paste for a secondary battery electrode of the present invention is used as a material for producing a slurry for a secondary battery electrode, preferably a slurry for a secondary battery positive electrode. And the manufacturing method of the slurry for secondary battery positive electrodes of this invention manufactures the slurry for secondary battery positive electrodes used for formation of the positive electrode of a secondary battery using the electrically conductive material paste for secondary battery electrodes of this invention. Used when In addition, the method for producing a positive electrode for a secondary battery according to the present invention is characterized in that a positive electrode mixture layer is formed from the slurry for a secondary battery positive electrode produced by using the method for producing a slurry for a secondary battery positive electrode according to the present invention. And The secondary battery of the present invention is characterized by using a positive electrode manufactured by the method for manufacturing a positive electrode for a secondary battery of the present invention.
(二次電池電極用導電材ペースト)
 本発明の導電材ペーストは、少なくとも導電材およびバインダーAを含有してなるものであり、前記バインダーAが、アルキレン構造単位および(メタ)アクリル酸エステル単量体単位の少なくとも一方を含み、加えて、前記導電材のバインダー吸着量が100mg/g以上600mg/g以下である、ことを特徴とする。
 このように、バインダーとして、アルキレン構造単位および/または(メタ)アクリル酸エステル単量体単位を含むバインダーAを少なくとも含有し、かつ導電材のバインダー吸着量が特定の範囲内である導電材ペーストは、分散安定性に優れ、かつ当該導電材ペーストを使用すれば、電位安定性に優れる電極を製造することができ、そして二次電池に優れた電気的特性を発揮させることが可能となる。
 なお、本明細書において「アルキレン構造単位を含む」とは、「重合体中に一般式-Cn2n-[但し、nは2以上の整数]で表わされるアルキレン構造のみで構成される繰り返し単位が含まれている」ことを意味する。
 また、本明細書において「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。
 そして、本明細書において「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
(Conductive material paste for secondary battery electrode)
The conductive material paste of the present invention comprises at least a conductive material and a binder A, and the binder A includes at least one of an alkylene structural unit and a (meth) acrylic acid ester monomer unit. The binder adsorption amount of the conductive material is 100 mg / g or more and 600 mg / g or less.
Thus, the conductive material paste containing at least the binder A containing an alkylene structural unit and / or a (meth) acrylic acid ester monomer unit as a binder, and the binder adsorption amount of the conductive material is within a specific range, If the conductive material paste is excellent in dispersion stability, an electrode having excellent potential stability can be produced, and the secondary battery can exhibit excellent electrical characteristics.
In the present specification, “including an alkylene structural unit” means “a repeating structure composed only of an alkylene structure represented by the general formula —C n H 2n — [where n is an integer of 2 or more] in a polymer. It means "unit is included".
Further, in the present specification, “including a monomer unit” means “a repeating unit derived from a monomer is contained in a polymer obtained using the monomer”.
In the present specification, “(meth) acryl” means acryl and / or methacryl.
<導電材>
 導電材は、例えば正極合材層中で正極活物質同士の電気的接触を確保するためのものである。そして、本発明の導電材ペーストに用いる導電材としては、特に限定されることなく、既知の導電材を用いることができる。具体的には、導電材としては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、グラファイト、炭素繊維、カーボンフレーク、炭素超短繊維(例えば、カーボンナノチューブや気相成長炭素繊維など)等の導電性炭素材料;各種金属のファイバー、箔などを用いることができる。これらの中でも、二次電池の電池容量を維持しつつレート特性を十分に向上させる観点からは、導電材として、アセチレンブラック、ケッチェンブラック、又はファーネスブラックを用いることが好ましい。
<Conductive material>
The conductive material is, for example, for ensuring electrical contact between the positive electrode active materials in the positive electrode mixture layer. And as a electrically conductive material used for the electrically conductive material paste of this invention, a well-known electrically conductive material can be used, without being specifically limited. Specifically, as the conductive material, acetylene black, ketjen black (registered trademark), furnace black, graphite, carbon fiber, carbon flake, carbon ultrashort fiber (for example, carbon nanotube, vapor grown carbon fiber, etc.), etc. Conductive carbon materials: various metal fibers, foils and the like can be used. Among these, from the viewpoint of sufficiently improving the rate characteristics while maintaining the battery capacity of the secondary battery, it is preferable to use acetylene black, ketjen black, or furnace black as the conductive material.
 導電材の比表面積は、好ましくは10m2/g以上、より好ましくは50m2/g以上、更に好ましくは65m2/g以上であり、好ましくは1500m2/g以下、より好ましくは1000m2/g以下、更に好ましくは500m2/g以下である。導電材の比表面積が10m2/g以上であれば、導電材へのバインダー吸着量が調整し易く、1500m2/g以下であることで、絶縁体であるバインダーが過度に吸着することによる導電性の悪化を抑制することができる。
 なお、本明細書において「導電材の比表面積」とは、窒素吸着法によるBET比表面積のことであり、ASTM D3037-81に準拠して測定することができる。
The specific surface area of the conductive material is preferably 10 m 2 / g or more, more preferably 50 m 2 / g or more, further preferably 65 m 2 / g or more, preferably 1500 m 2 / g or less, more preferably 1000 m 2 / g Hereinafter, it is more preferably 500 m 2 / g or less. If the specific surface area of the conductive material is 10 m 2 / g or more, the amount of binder adsorbed on the conductive material is easy to adjust, and if it is 1500 m 2 / g or less, the conductive due to excessive adsorption of the binder as an insulator. Sexual deterioration can be suppressed.
In the present specification, the “specific surface area of the conductive material” is a BET specific surface area by a nitrogen adsorption method, and can be measured in accordance with ASTM D3037-81.
<バインダーA>
 バインダーAは、本発明の導電材ペーストを含む電極用スラリーにより集電体上に電極合材層を形成して製造した電極において、電極合材層に含まれる成分が電極合材層から脱離しないように保持しうる成分である。一般的に、電極合材層、例えば正極合材層におけるバインダーは、電解液に浸漬された際に、電解液を吸収して膨潤しながらも正極活物質同士、正極活物質と導電材、或いは、導電材同士を結着させ、正極活物質等が集電体から脱落するのを防ぐ。
<Binder A>
Binder A is an electrode manufactured by forming an electrode mixture layer on a current collector with an electrode slurry containing the conductive material paste of the present invention, and the components contained in the electrode mixture layer are detached from the electrode mixture layer. It is a component that can be retained so as not to be present. In general, the binder in the electrode mixture layer, for example, the positive electrode mixture layer, when immersed in the electrolytic solution absorbs the electrolytic solution and swells, while the positive electrode active materials are in contact with each other, the positive electrode active material and the conductive material, or The conductive materials are bound to each other to prevent the positive electrode active material and the like from dropping from the current collector.
 そして、本発明の導電材ペーストに用いるバインダーAは、アルキレン構造単位および(メタ)アクリル酸エステル単量体単位の少なくとも一方を含むことを必要とする。なお、バインダーAは、任意に、アルキレン構造単位および(メタ)アクリル酸エステル単量体単位以外のその他の単量体単位を含んでいてもよい。
 このように、バインダーAがアルキレン構造単位および/または(メタ)アクリル酸エステル単量体単位を含むことで、導電材に対するバインダーAの吸着能が確保され、導電材の凝集が抑制されて導電材ペーストの分散安定性を向上させることができる。そしてこのような導電材ペーストを含む電極用スラリーも分散安定性に優れるため、当該電極用スラリーから形成される電極合材層中では、導電材が良好に分散している。加えて、アルキレン構造単位、(メタ)アクリル酸エステル単量体単位を含むバインダーAは耐酸化性に優れ、導電材ペーストを含む電極用スラリーを用いて作製した電極の電位安定性を確保することができる。そして電極合材層中の導電材の良好な分散状態、およびバインダーAの耐酸化性が相まって、本発明の導電材ペーストを用いて形成される電極を備える二次電池の内部抵抗を低減しつつ、低温特性、高温サイクル特性および高温保存特性を向上させることができ、電気的特性に優れる二次電池が得られる。
And the binder A used for the electrically conductive material paste of this invention needs to contain at least one of an alkylene structural unit and a (meth) acrylic acid ester monomer unit. The binder A may optionally contain other monomer units other than the alkylene structural unit and the (meth) acrylate monomer unit.
Thus, the binder A contains an alkylene structural unit and / or a (meth) acrylic acid ester monomer unit, so that the adsorbing ability of the binder A to the conductive material is ensured, and the aggregation of the conductive material is suppressed and the conductive material is suppressed. The dispersion stability of the paste can be improved. And since the electrode slurry containing such a conductive material paste is also excellent in dispersion stability, the conductive material is well dispersed in the electrode mixture layer formed from the electrode slurry. In addition, the binder A containing an alkylene structural unit and a (meth) acrylic acid ester monomer unit has excellent oxidation resistance, and ensures the potential stability of an electrode prepared using an electrode slurry containing a conductive material paste. Can do. And while the favorable dispersion state of the conductive material in the electrode mixture layer and the oxidation resistance of the binder A are combined, the internal resistance of the secondary battery including the electrode formed using the conductive material paste of the present invention is reduced. In addition, the secondary battery can be improved in low temperature characteristics, high temperature cycle characteristics and high temperature storage characteristics, and excellent in electrical characteristics.
 なお、本発明の導電材ペーストに用いるバインダーAは、少なくともアルキレン構造単位を含むことが好ましく、アルキレン構造単位および(メタ)アクリル酸エステル単量体単位の双方を含むことがより好ましい。アルキレン構造単位を含む場合、そしてアルキレン構造単位および(メタ)アクリル酸エステル単量体単位の双方を含む場合には特に、導電材ペーストの分散安定性並びに電極の電位安定性をさらに良好なものとすることができ、導電材ペーストを用いて作製した電極を備える二次電池の電気的特性を向上させることができるからである。 The binder A used in the conductive material paste of the present invention preferably includes at least an alkylene structural unit, and more preferably includes both an alkylene structural unit and a (meth) acrylic acid ester monomer unit. When the alkylene structural unit is included and when both the alkylene structural unit and the (meth) acrylate monomer unit are included, the dispersion stability of the conductive material paste and the potential stability of the electrode are further improved. This is because the electrical characteristics of a secondary battery including an electrode manufactured using a conductive material paste can be improved.
[アルキレン構造単位]
 アルキレン構造単位は、直鎖状であっても分岐状であってもよいが、導電材ペーストの分散安定性および電極の電位安定性を向上させる観点からは、アルキレン構造単位は直鎖状、すなわち直鎖アルキレン構造単位であることが好ましい。
 そして、バインダーAへのアルキレン構造単位の導入方法は、特に限定はされないが、例えば以下の(1)、(2)の方法:
(1)共役ジエン単量体を含む単量体組成物から重合体を調製し、当該重合体に水素添加することで、該共役ジエン単量体単位をアルキレン構造単位に変換する方法
(2)1-オレフィン単量体を含む単量体組成物から重合体を調製する方法
が挙げられる。これらの中でも、(1)の方法がバインダーAの製造が容易であり好ましい。
[Alkylene structural unit]
The alkylene structural unit may be linear or branched, but from the viewpoint of improving the dispersion stability of the conductive material paste and the potential stability of the electrode, the alkylene structural unit is linear. It is preferably a linear alkylene structural unit.
The method for introducing the alkylene structural unit into the binder A is not particularly limited. For example, the following methods (1) and (2):
(1) A method of preparing a polymer from a monomer composition containing a conjugated diene monomer and converting the conjugated diene monomer unit to an alkylene structural unit by hydrogenating the polymer (2) Examples thereof include a method for preparing a polymer from a monomer composition containing a 1-olefin monomer. Among these, the method (1) is preferable because the production of the binder A is easy.
 ここで、共役ジエン単量体としては、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの炭素数4以上の共役ジエン化合物が挙げられる。中でも、1,3-ブタジエンが好ましい。すなわち、アルキレン構造単位は、共役ジエン単量体単位を水素化して得られる構造単位(共役ジエン水素化物単位)であることが好ましく、1,3-ブタジエン単量体単位を水素化して得られる構造単位(1,3-ブタジエン水素化物単位)であることがより好ましい。
 また、1-オレフィン単量体としては、例えば、エチレン、プロピレン、1-ブテンなどが挙げられる。
 これらの共役ジエン単量体や1-オレフィン単量体は、一種単独で、または、2種以上を組み合わせて用いることができる
Here, examples of the conjugated diene monomer include conjugated diene compounds having 4 or more carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, and 1,3-pentadiene. It is done. Of these, 1,3-butadiene is preferred. That is, the alkylene structural unit is preferably a structural unit (conjugated diene hydride unit) obtained by hydrogenating a conjugated diene monomer unit, and a structure obtained by hydrogenating a 1,3-butadiene monomer unit. More preferred are units (1,3-butadiene hydride units).
Examples of the 1-olefin monomer include ethylene, propylene, 1-butene and the like.
These conjugated diene monomers and 1-olefin monomers can be used singly or in combination of two or more.
 そして、上記バインダーA中でのアルキレン構造単位の含有割合は、バインダーA中の全繰り返し単位(単量体単位と構造単位との合計)を100質量%とした場合に、30質量%以上が好ましく、50質量%以上がより好ましく、98質量%以下が好ましく、80質量%以下がより好ましい。バインダーA中でのアルキレン構造単位の含有割合を上記範囲内とすることで、導電材ペースト中における導電材の沈降が抑制される等して導電材ペーストの分散安定性が向上し、加えて電極の電位安定性が確保される。さらに、導電材ペーストから得られる二次電池正極用スラリーを用いて形成した電極合材層中で、導電材が良好に分散し、導電ネットワークが良好に形成されるようになり、かかる電極合材層を有する二次電池の電気的特性が向上する。 The content ratio of the alkylene structural unit in the binder A is preferably 30% by mass or more when all repeating units (total of monomer units and structural units) in the binder A are 100% by mass. 50 mass% or more is more preferable, 98 mass% or less is preferable, and 80 mass% or less is more preferable. By setting the content ratio of the alkylene structural unit in the binder A within the above range, the dispersion stability of the conductive material paste is improved by suppressing the sedimentation of the conductive material in the conductive material paste, and in addition, the electrode Is ensured. Furthermore, in the electrode mixture layer formed using the slurry for the secondary battery positive electrode obtained from the conductive material paste, the conductive material is well dispersed and the conductive network is well formed. The electrical characteristics of the secondary battery having the layer are improved.
 なお、バインダーA中のアルキレン構造単位の含有割合が30質量%を下回ると、特にN-メチルピロリドン(NMP)のような溶剤に対するバインダーAの溶解性が過剰に高くなり、その結果バインダーAが導電材に安定的に吸着できず溶剤中に解離することで分散安定性が低下する。加えて、導電材への吸着量が小さくなることでそれらを用いて製造した二次電池の内部抵抗が上昇し、また、低温特性、高温保存特性および高温サイクル特性が低下する虞がある。一方、バインダーA中のアルキレン構造単位の含有割合が98質量%を上回ると、特にNMPのような溶剤に対するバインダーAの溶解性が過剰に低くなり、その結果、導電材ペーストおよび二次電池電極用スラリー中において導電材の分散に偏りが生じてしまい、それらを用いて製造した二次電池の内部抵抗が上昇し、また、低温特性、高温保存特性および高温サイクル特性が劣化する虞がある。 When the content ratio of the alkylene structural unit in the binder A is less than 30% by mass, the solubility of the binder A in a solvent such as N-methylpyrrolidone (NMP) becomes excessively high. As a result, the binder A becomes conductive. Dispersion stability declines by not being able to adsorb | suck stably to a material but dissociating in a solvent. In addition, since the adsorption amount to the conductive material is reduced, the internal resistance of the secondary battery manufactured using them is increased, and the low temperature characteristics, the high temperature storage characteristics, and the high temperature cycle characteristics may be decreased. On the other hand, when the content ratio of the alkylene structural unit in the binder A exceeds 98% by mass, the solubility of the binder A particularly in a solvent such as NMP becomes excessively low. As a result, for the conductive material paste and the secondary battery electrode There is a bias in dispersion of the conductive material in the slurry, the internal resistance of the secondary battery manufactured using them increases, and there is a risk that the low temperature characteristics, the high temperature storage characteristics and the high temperature cycle characteristics will deteriorate.
[(メタ)アクリル酸エステル単量体単位]
 (メタ)アクリル酸エステル単量体単位を形成しうる(メタ)アクリル酸エステル単量体としては、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、イソブチルアクリレート、n-ペンチルアクリレート、イソペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレートなどのアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、イソブチルメタクリレート、n-ペンチルメタクリレート、イソペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、グリシジルメタクリレートなどのメタクリル酸アルキルエステル;などが挙げられる。これらの中でも、導電材ペーストの分散安定性や、電極合材層中の導電材の分散性を良好なものとする観点からは、(メタ)アクリル酸エステル単量体としては、非カルボニル性酸素原子に結合するアルキル基の炭素数が4~10のアクリル酸アルキルエステルが好ましく、その中でも、具体的には、エチルアクリレート、n-ブチルアクリレート、2-エチルヘキシルアクリレートが好ましく、n-ブチルアクリレートがより好ましい。
 これらは一種単独で、または、2種以上を組み合わせて用いることができる。
[(Meth) acrylic acid ester monomer unit]
Examples of the (meth) acrylate monomer that can form a (meth) acrylate monomer unit include methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylate, Alkyl acrylates such as isobutyl acrylate, n-pentyl acrylate, isopentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; Methyl methacrylate, ethyl methacrylate, n-propyl methacrylate, isopropyl methacrylate, n-butyl meta Relate, t-butyl methacrylate, isobutyl methacrylate, n-pentyl methacrylate, isopentyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, lauryl methacrylate, n-tetradecyl methacrylate, stearyl methacrylate Methacrylic acid alkyl esters such as glycidyl methacrylate; and the like. Among these, from the viewpoint of improving the dispersion stability of the conductive material paste and the dispersibility of the conductive material in the electrode mixture layer, the (meth) acrylic acid ester monomer is a non-carbonyl oxygen. Acrylic acid alkyl ester having 4 to 10 carbon atoms in the alkyl group bonded to the atom is preferable, and specifically, ethyl acrylate, n-butyl acrylate and 2-ethylhexyl acrylate are preferable, and n-butyl acrylate is more preferable. preferable.
These can be used alone or in combination of two or more.
 そして、上記バインダーA中での(メタ)アクリル酸エステル単量体単位の含有割合は、バインダーA中の全繰り返し単位を100質量%とした場合に、10質量%以上40質量%以下であることが好ましい。バインダーA中での(メタ)アクリル酸エステル単量体単位の含有割合を40質量%以下とすることで、特に、NMP等の溶剤中におけるバインダーAの溶解性を向上させ、導電材ペーストの分散安定性を一層良好なものとすることができる。さらに、バインダーA中での(メタ)アクリル酸エステル単量体単位の含有割合を10質量%以上とすることで、導電材ペーストを用いて形成した電極合材層の電解液に対する安定性を向上させることができ、導電材ペーストを用いて製造した二次電池の高温保存特性および高温サイクル特性を向上させることができる。 And the content rate of the (meth) acrylic acid ester monomer unit in the said binder A shall be 10 mass% or more and 40 mass% or less, when all the repeating units in the binder A are 100 mass%. Is preferred. By making the content ratio of the (meth) acrylic acid ester monomer unit in the binder A 40% by mass or less, particularly the solubility of the binder A in a solvent such as NMP is improved, and the conductive material paste is dispersed. Stability can be further improved. Furthermore, the content ratio of the (meth) acrylic acid ester monomer unit in the binder A is 10% by mass or more, thereby improving the stability of the electrode mixture layer formed using the conductive material paste with respect to the electrolytic solution. The high temperature storage characteristic and high temperature cycling characteristic of the secondary battery manufactured using the electrically conductive material paste can be improved.
 なお、バインダーA中の(メタ)アクリル酸エステル単量体単位の含有割合が10質量%を下回ると、導電材ペーストを用いて形成した電極合材層の強度が低下し、電解液に対する膨潤度が上昇し、ピール強度が低下する。したがって、かかる電極を備える二次電池の高温保存特性および高温サイクル特性が劣化する虞がある。一方、バインダーA中の(メタ)アクリル酸エステル単量体単位の含有割合が40質量%を上回ると、特にNMPのような溶剤に対するバインダーAの溶解性が低下し、その結果、導電材ペーストおよび二次電池電極用スラリー中において導電材の分散に偏りが生じてしまい、それらの分散安定性が損なわれる虞がある。従ってそれらを用いて形成した電極は均一性に劣り、当該電極を備える二次電池の内部抵抗が上昇し、また、低温特性、高温保存特性および高温サイクル特性が低下する虞がある。 In addition, when the content rate of the (meth) acrylic acid ester monomer unit in the binder A is less than 10% by mass, the strength of the electrode mixture layer formed using the conductive material paste is lowered, and the degree of swelling with respect to the electrolytic solution Increases and peel strength decreases. Therefore, there is a possibility that the high-temperature storage characteristics and high-temperature cycle characteristics of a secondary battery provided with such electrodes will deteriorate. On the other hand, when the content ratio of the (meth) acrylic acid ester monomer unit in the binder A exceeds 40% by mass, the solubility of the binder A particularly in a solvent such as NMP is lowered. As a result, the conductive material paste and In the slurry for secondary battery electrodes, the dispersion of the conductive material may be biased, and the dispersion stability thereof may be impaired. Therefore, the electrodes formed using them are inferior in uniformity, the internal resistance of the secondary battery including the electrodes is increased, and the low temperature characteristics, the high temperature storage characteristics, and the high temperature cycle characteristics may be decreased.
[その他の単量体単位]
 バインダーAは、上述したアルキレン構造単位、(メタ)アクリル酸エステル単量体単位以外に、その他の単量体単位を含んでいてもよい。そのようなその他の単量体単位としては、ニトリル基含有単量体単位、親水性基含有単量体単位、架橋性単量体単位、芳香族ビニル単量体単位、エチレン性不飽和カルボン酸アミド単量体単位、およびフッ素含有単量体単位などが挙げられる。
 そしてバインダーAは、ニトリル基含有単量体単位を含むことが好ましい。一方バインダーAは、親水性基含有単量体単位を実質的に含まないことが好ましい。
[Other monomer units]
The binder A may contain other monomer units in addition to the above-described alkylene structural unit and (meth) acrylic acid ester monomer unit. Such other monomer units include nitrile group-containing monomer units, hydrophilic group-containing monomer units, crosslinkable monomer units, aromatic vinyl monomer units, ethylenically unsaturated carboxylic acids. Examples thereof include an amide monomer unit and a fluorine-containing monomer unit.
And it is preferable that the binder A contains a nitrile group containing monomer unit. On the other hand, it is preferable that the binder A does not substantially contain a hydrophilic group-containing monomer unit.
[[ニトリル基含有単量体単位]]
 ニトリル基含有単量体単位を形成しうるニトリル基含有単量体としては、α,β-エチレン性不飽和ニトリル単量体が挙げられる。そして、α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリル、α-エチルアクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。なかでも、バインダーAの結着力を高め、電極の機械的強度を高める観点からは、ニトリル基含有単量体としては、アクリロニトリルおよびメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。
 これらは一種単独で、または、2種以上を組み合わせて用いることができる。
[[Nitrile group-containing monomer unit]]
Examples of the nitrile group-containing monomer that can form a nitrile group-containing monomer unit include α, β-ethylenically unsaturated nitrile monomers. The α, β-ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an α, β-ethylenically unsaturated compound having a nitrile group. For example, acrylonitrile; α-chloroacrylonitrile, α-bromo Α-halogenoacrylonitrile such as acrylonitrile; α-alkylacrylonitrile such as methacrylonitrile and α-ethylacrylonitrile; and the like. Among these, from the viewpoint of increasing the binding force of the binder A and increasing the mechanical strength of the electrode, the nitrile group-containing monomer is preferably acrylonitrile and methacrylonitrile, and more preferably acrylonitrile.
These can be used alone or in combination of two or more.
 そして、上記バインダーA中でのニトリル基含有単量体単位の含有割合は、バインダーA中の全繰り返し単位を100質量%とした場合に、2質量%以上が好ましく、10質量%以上がより好ましく、12質量%以上が特に好ましく、50質量%以下が好ましく、40質量%以下がより好ましく、35質量%以下がさらにより好ましく、30質量%以下が特に好ましく、25質量%以下が最も好ましい。バインダーA中のニトリル基含有単量体単位の含有割合を上述の範囲内とすることで、本発明の導電材ペーストを用いて形成した電極の電極合材層中で導電材が良好に分散し、かかる正極合材層を有する二次電池の内部抵抗が低くなる。さらに当該電極の電解液に対する安定性が向上し、二次電池の低温特性、高温保存特性および高温サイクル特性を向上させることができる。特に、ニトリル基含有単量体を35質量%以下とすることで、アルキレン構造単位および/または(メタ)アクリル酸エステル単量体単位の含有割合を十分に確保することができるため、電位安定性を向上させうる。 The content ratio of the nitrile group-containing monomer unit in the binder A is preferably 2% by mass or more and more preferably 10% by mass or more when the total repeating unit in the binder A is 100% by mass. 12 mass% or more is particularly preferable, 50 mass% or less is preferable, 40 mass% or less is more preferable, 35 mass% or less is even more preferable, 30 mass% or less is particularly preferable, and 25 mass% or less is most preferable. By making the content ratio of the nitrile group-containing monomer unit in the binder A within the above range, the conductive material is well dispersed in the electrode mixture layer of the electrode formed using the conductive material paste of the present invention. The internal resistance of the secondary battery having such a positive electrode mixture layer is lowered. Furthermore, the stability of the electrode with respect to the electrolytic solution is improved, and the low-temperature characteristics, high-temperature storage characteristics, and high-temperature cycle characteristics of the secondary battery can be improved. In particular, by setting the nitrile group-containing monomer to 35% by mass or less, the content ratio of the alkylene structural unit and / or the (meth) acrylic acid ester monomer unit can be sufficiently ensured. Can be improved.
 なお、バインダーA中のニトリル基含有単量体単位の含有割合が40質量%を上回ると、バインダーAが電解液に対して溶解しやすくなり、導電材に安定的に吸着できず溶剤中に解離することで分散安定性が低下する。その結果、二次電池の高温保存特性および高温サイクル特性が低下する虞がある。また、導電材に対するバインダーAの吸着能が低下して導電材のバインダー吸着量を調整し難くなる。一方、バインダーA中のニトリル基含有単量体単位の割合が、2質量%を下回ると、特に、NMPのような溶剤に対するバインダーAの溶解性が低下し、導電材ペーストおよび二次電池電極用スラリー中における導電材の分散性が低下する虞がある。したがって、それらを用いて製造した電極を備える二次電池の内部抵抗が上昇し、また、低温特性、高温保存特性および高温サイクル特性が劣化する虞がある。 In addition, when the content ratio of the nitrile group-containing monomer unit in the binder A exceeds 40% by mass, the binder A is easily dissolved in the electrolytic solution and cannot be stably adsorbed to the conductive material and dissociates in the solvent. As a result, the dispersion stability decreases. As a result, the high-temperature storage characteristics and high-temperature cycle characteristics of the secondary battery may be degraded. Moreover, the adsorption capacity of the binder A with respect to the conductive material is lowered, and it becomes difficult to adjust the binder adsorption amount of the conductive material. On the other hand, when the ratio of the nitrile group-containing monomer unit in the binder A is less than 2% by mass, the solubility of the binder A in a solvent such as NMP is particularly reduced, and the conductive material paste and the secondary battery electrode are used. There is a possibility that the dispersibility of the conductive material in the slurry may be lowered. Therefore, the internal resistance of the secondary battery including the electrode manufactured using them is increased, and the low temperature characteristics, the high temperature storage characteristics, and the high temperature cycle characteristics may be deteriorated.
[[親水性基含有単量体単位]]
 親水性基含有単量体単位を形成しうる親水性基含有単量体としては、カルボン酸基を有する単量体、スルホン酸基を有する単量体、リン酸基を有する単量体および水酸基を有する単量体を用いることができる。
[[Hydrophilic group-containing monomer unit]]
Examples of the hydrophilic group-containing monomer that can form a hydrophilic group-containing monomer unit include a monomer having a carboxylic acid group, a monomer having a sulfonic acid group, a monomer having a phosphate group, and a hydroxyl group A monomer having can be used.
 カルボン酸基を有する単量体としては、モノカルボン酸およびその誘導体や、ジカルボン酸およびその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸、β-ジアミノアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸メチルアリル、マレイン酸ジフェニル、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸エステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 また、カルボン酸基を有する化合物としては、加水分解によりカルボキシル基を生成する酸無水物も使用できる。
 その他、マレイン酸モノエチル、マレイン酸ジエチル、マレイン酸モノブチル、マレイン酸ジブチル、フマル酸モノエチル、フマル酸ジエチル、フマル酸モノブチル、フマル酸ジブチル、フマル酸モノシクロヘキシル、フマル酸ジシクロヘキシル、イタコン酸モノエチル、イタコン酸ジエチル、イタコン酸モノブチル、イタコン酸ジブチルなどのα,β-エチレン性不飽和多価カルボン酸のモノエステルおよびジエステルも挙げられる。
Examples of the monomer having a carboxylic acid group include monocarboxylic acids and derivatives thereof, dicarboxylic acids and acid anhydrides, and derivatives thereof.
Examples of monocarboxylic acids include acrylic acid, methacrylic acid, and crotonic acid.
Examples of monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, α-acetoxyacrylic acid, β-trans-aryloxyacrylic acid, α-chloro-β-E-methoxyacrylic acid, β-diaminoacrylic acid, and the like. Can be mentioned.
Examples of the dicarboxylic acid include maleic acid, fumaric acid, itaconic acid and the like.
Dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, methylallyl maleate, diphenyl maleate, nonyl maleate, decyl maleate, dodecyl maleate And maleate esters such as octadecyl maleate and fluoroalkyl maleate.
Examples of the acid anhydride of dicarboxylic acid include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
Moreover, as a compound which has a carboxylic acid group, the acid anhydride which produces | generates a carboxyl group by hydrolysis can also be used.
In addition, monoethyl maleate, diethyl maleate, monobutyl maleate, dibutyl maleate, monoethyl fumarate, diethyl fumarate, monobutyl fumarate, dibutyl fumarate, monocyclohexyl fumarate, dicyclohexyl fumarate, monoethyl itaconate, diethyl itaconate Also included are monoesters and diesters of α, β-ethylenically unsaturated polyvalent carboxylic acids such as monobutyl itaconate and dibutyl itaconate.
 スルホン酸基を有する単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 なお、本明細書において「(メタ)アリル」とは、アリルおよび/またはメタリルを意味する。
 リン酸基を有する単量体としては、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
 なお、本明細書において「(メタ)アクリロイル」とは、アクリロイルおよび/またはメタクリロイルを意味する。
Examples of monomers having a sulfonic acid group include vinyl sulfonic acid, methyl vinyl sulfonic acid, (meth) allyl sulfonic acid, styrene sulfonic acid, (meth) acrylic acid-2-ethyl sulfonate, 2-acrylamido-2-methyl. Examples thereof include propanesulfonic acid and 3-allyloxy-2-hydroxypropanesulfonic acid.
In the present specification, “(meth) allyl” means allyl and / or methallyl.
Examples of the monomer having a phosphate group include 2- (meth) acryloyloxyethyl phosphate, methyl-2- (meth) acryloyloxyethyl phosphate, ethyl phosphate- (meth) acryloyloxyethyl, and the like. .
In the present specification, “(meth) acryloyl” means acryloyl and / or methacryloyl.
 水酸基を有する単量体としては、国際公開第2013/080989号に記載のものが挙げられる。 Examples of the monomer having a hydroxyl group include those described in International Publication No. 2013/088099.
 本明細書において、バインダーAを構成しうる(メタ)アクリル酸エステル単量体およびニトリル基含有単量体、並びに後述する架橋性有単量体、芳香族ビニル有単量体、エチレン性不飽和カルボン酸アミド単量体、およびフッ素含有単量体には、カルボン酸基、スルホン酸基、リン酸基および水酸基は含まれないものとする。
 ここで、特にカルボン酸基を有する単量体などの親水性基含有単量体は、バインダーAの製造安定性の向上に寄与し得る一方、親水性基含有単量体単位をバインダーAに含めると、バインダーAが有する導電材の分散能が損なわれる虞がある。したがって、導電材ペーストの分散安定性を確保する観点から、バインダーA中での親水性基含有単量体単位の含有割合は、バインダーA中の全繰り返し単位を100質量%とした場合に、0.05質量%未満(実質的に含まない)が好ましく、0質量%がより好ましい。
In this specification, (meth) acrylic acid ester monomer and nitrile group-containing monomer which can constitute binder A, crosslinkable monomer, aromatic vinyl monomer, and ethylenic unsaturation described later The carboxylic acid amide monomer and the fluorine-containing monomer do not contain a carboxylic acid group, a sulfonic acid group, a phosphoric acid group, or a hydroxyl group.
Here, in particular, a hydrophilic group-containing monomer such as a monomer having a carboxylic acid group can contribute to an improvement in the production stability of the binder A, while a hydrophilic group-containing monomer unit is included in the binder A. In addition, the dispersibility of the conductive material included in the binder A may be impaired. Therefore, from the viewpoint of ensuring the dispersion stability of the conductive material paste, the content ratio of the hydrophilic group-containing monomer unit in the binder A is 0 when the total repeating unit in the binder A is 100% by mass. Less than 0.05 mass% (substantially free) is preferable, and 0 mass% is more preferable.
[[架橋性有単量体単位]]
 架橋性単量体単位を形成しうる架橋性単量体としては、エポキシ基を含有する単量体、炭素-炭素二重結合およびエポキシ基を含有する単量体、ハロゲン原子およびエポキシ基を含有する単量体、オキセタニル基を含有する単量体、オキサゾリン基を含有する単量体、2以上のオレフィン性二重結合を持つ多官能性単量体などが挙げられる。
[[Crosslinkable monomer unit]]
The crosslinkable monomer that can form a crosslinkable monomer unit includes an epoxy group-containing monomer, a carbon-carbon double bond and an epoxy group-containing monomer, a halogen atom and an epoxy group. A monomer containing an oxetanyl group, a monomer containing an oxazoline group, a polyfunctional monomer having two or more olefinic double bonds, and the like.
[[芳香族ビニル有単量体単位]]
 芳香族ビニル有単量体単位を形成しうる芳香族ビニル単量体としては、スチレン、α-メチルスチレン、p-t-ブチルスチレン、ビニルトルエン、クロロスチレンなどが挙げられる。
[[Aromatic vinyl monomer units]]
Examples of the aromatic vinyl monomer that can form an aromatic vinyl monomer unit include styrene, α-methylstyrene, pt-butylstyrene, vinyltoluene, and chlorostyrene.
[[エチレン性不飽和カルボン酸アミド単量体単位]]
 エチレン性不飽和カルボン酸アミド単量体単位を形成しうるエチレン性不飽和カルボン酸アミド単量体としては、アクリルアミド、メタクリルアミド、N,N-ジメチルアクリルアミドなどが挙げられる。
[[Ethylenically unsaturated carboxylic acid amide monomer unit]]
Examples of the ethylenically unsaturated carboxylic acid amide monomer that can form an ethylenically unsaturated carboxylic acid amide monomer unit include acrylamide, methacrylamide, N, N-dimethylacrylamide, and the like.
[[フッ素含有単量体単位]]
フッ素含有単量体単位を形成しうるフッ素含有単量体としては、後述するフッ素系重合体を形成しうるフッ素含有単量体と同様の単量体を使用することができる。なお、バインダーAがフッ素含有単量単位を含有する場合には、バインダーAの全繰り返し単位を100質量%とした場合に、フッ素含有単量単位の割合は70質量%未満である。
[[Fluorine-containing monomer unit]]
As the fluorine-containing monomer that can form a fluorine-containing monomer unit, the same monomer as the fluorine-containing monomer that can form a fluorine-based polymer described later can be used. In addition, when the binder A contains a fluorine-containing unit, the ratio of the fluorine-containing unit is less than 70% when the total repeating unit of the binder A is 100% by weight.
[バインダーAの調製方法]
 バインダーAの製造方法は特に限定されないが、例えば、上述した単量体を含む単量体組成物を重合して重合体を得て、任意に、得られた重合体を水素添加することで調製することができる。
 ここで、本明細書において単量体組成物中の各単量体の含有割合は、バインダーAおける各単量体単位および構造単位(繰り返し単位)の含有割合に準じて定めることができる。
 重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。各重合法において、必要に応じて既知の乳化剤や重合開始剤を使用することができる。
 水素添加の方法は、特に制限なく、触媒を用いる一般的な方法(例えば、国際公開第2012/165120号、国際公開第2013/080989号および特開2013-8485号公報参照)を使用することができる。
 なお、水素添加した重合体のヨウ素価は60mg/100mg以下であることが好ましく、30mg/100mg以下であることがさらに好ましく、20mg/100mg以下であることが特に好ましい。また、下限としては3mg/100mg以上であることが好ましく、8mg/100mg以上であることがさらに好ましい。なお、ヨウ素価は、重合体の水分散液100gを、メタノール1リットルで凝固した後、60℃で12時間真空乾燥して得られる乾燥重合体のヨウ素価を、JIS K6235(2006)に従って測定することで得ることができる。
[Method for preparing binder A]
The method for producing the binder A is not particularly limited. For example, a polymer is obtained by polymerizing a monomer composition containing the above-mentioned monomers, and optionally prepared by hydrogenating the obtained polymer. can do.
Here, the content ratio of each monomer in the monomer composition in the present specification can be determined according to the content ratio of each monomer unit and structural unit (repeating unit) in the binder A.
The polymerization mode is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used. In each polymerization method, known emulsifiers and polymerization initiators can be used as necessary.
The hydrogenation method is not particularly limited, and a general method using a catalyst (for example, see International Publication No. 2012/165120, International Publication No. 2013/088099 and Japanese Patent Application Laid-Open No. 2013-8485) may be used. it can.
The iodine value of the hydrogenated polymer is preferably 60 mg / 100 mg or less, more preferably 30 mg / 100 mg or less, and particularly preferably 20 mg / 100 mg or less. Further, the lower limit is preferably 3 mg / 100 mg or more, and more preferably 8 mg / 100 mg or more. The iodine value is obtained by measuring the iodine value of a dried polymer obtained by coagulating 100 g of an aqueous dispersion of a polymer with 1 liter of methanol and then vacuum drying at 60 ° C. for 12 hours according to JIS K6235 (2006). Can be obtained.
 そして、バインダーAは、分散媒に分散された分散液または溶解された溶液の状態で使用される。バインダーAの分散媒としては、バインダーAを均一に分散または溶解し得るものであれば、特に制限されず、水や有機溶媒を用いることができ、有機溶媒を用いることが好ましい。なお、有機溶媒としては、特に限定されることなく、後述する導電材ペーストの溶剤として用いる有機溶媒を用いることができる。 The binder A is used in the state of a dispersion liquid or a dissolved solution dispersed in a dispersion medium. The dispersion medium of the binder A is not particularly limited as long as the binder A can be uniformly dispersed or dissolved, and water or an organic solvent can be used, and an organic solvent is preferably used. In addition, as an organic solvent, it does not specifically limit, The organic solvent used as a solvent of the electrically conductive material paste mentioned later can be used.
[バインダーAの配合量]
 導電材ペースト中におけるバインダーAの配合量は、導電材100質量部当たり、好ましくは20質量部以上、より好ましくは50質量部以上であり、好ましくは200質量部以下、より好ましくは150質量部以下である。導電材ペースト中のバインダーAの配合量が上述の範囲内であることで、導電材ペーストの分散安定性が良好となる。
[Binder A content]
The blending amount of the binder A in the conductive material paste is preferably 20 parts by mass or more, more preferably 50 parts by mass or more, preferably 200 parts by mass or less, more preferably 150 parts by mass or less, per 100 parts by mass of the conductive material. It is. When the blending amount of the binder A in the conductive material paste is within the above range, the dispersion stability of the conductive material paste becomes good.
<他のバインダー>
 なお、本発明の導電材ペーストは、上述のバインダーAに加えて、バインダーAとは異なる他のバインダー(以下、バインダーBと称する)を含有してもよい。バインダーBもバインダーAと同様に、例えば集電体上に正極合材層を形成して製造した正極において、正極合材層に含まれる成分が正極合材層から脱離しないように保持する。
 ここで、バインダーBとしては、フッ素系重合体を使用することが好ましい。後述するように、フッ素系重合体を使用することで、二次電池正極用スラリーの経時安定性を一層優れたものとすることができるからである。
<Other binders>
In addition to the binder A described above, the conductive material paste of the present invention may contain another binder different from the binder A (hereinafter referred to as the binder B). Similarly to the binder A, the binder B, for example, is held in a positive electrode produced by forming a positive electrode mixture layer on a current collector so that components contained in the positive electrode mixture layer are not detached from the positive electrode mixture layer.
Here, as the binder B, it is preferable to use a fluoropolymer. This is because, as will be described later, by using a fluorine-based polymer, the temporal stability of the secondary battery positive electrode slurry can be further improved.
[フッ素系重合体]
 フッ素系重合体は、フッ素含有単量体単位を含む重合体である。具体的には、フッ素系重合体としては、1種類以上のフッ素含有単量体の単独重合体または共重合体や、1種類以上のフッ素含有単量体とフッ素を含有しない単量体(以下、「フッ素非含有単量体」と称する。)との共重合体が挙げられる。
 なお、フッ素系重合体におけるフッ素含有単量体単位の割合は、通常70質量%以上、好ましくは80質量%以上である。また、フッ素系重合体におけるフッ素非含有単量体単位の割合は、通常30質量%以下、好ましくは20質量%以下である。
[Fluoropolymer]
The fluorine polymer is a polymer containing a fluorine-containing monomer unit. Specifically, as the fluorine-based polymer, a homopolymer or copolymer of one or more kinds of fluorine-containing monomers, one or more kinds of fluorine-containing monomers and a monomer not containing fluorine (hereinafter referred to as “fluorine-containing monomers”) And a copolymer with “fluorine-free monomer”).
In addition, the ratio of the fluorine-containing monomer unit in a fluorine-type polymer is 70 mass% or more normally, Preferably it is 80 mass% or more. Moreover, the ratio of the fluorine-free monomer unit in the fluoropolymer is usually 30% by mass or less, preferably 20% by mass or less.
 ここで、フッ素含有単量体単位を形成し得るフッ素含有単量体としては、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、三フッ化塩化ビニル、フッ化ビニル、パーフルオロアルキルビニルエーテルなどが挙げられる。これらの中でも、フッ素含有単量体としては、フッ化ビニリデンが好ましい。 Here, examples of the fluorine-containing monomer that can form a fluorine-containing monomer unit include vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, vinyl trifluoride chloride, vinyl fluoride, and perfluoroalkyl vinyl ether. It is done. Among these, as the fluorine-containing monomer, vinylidene fluoride is preferable.
 また、フッ素非含有単量体単位を形成し得るフッ素非含有単量体としては、フッ素含有単量体と共重合可能なフッ素を含まない単量体、例えば、エチレン、プロピレン、1-ブテンなどの1-オレフィン;スチレン、α-メチルスチレン、p-t-ブチルスチレン、ビニルトルエン、クロロスチレンなどの芳香族ビニル化合物;(メタ)アクリロニトリルなどの不飽和ニトリル化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシルなどの(メタ)アクリル酸エステル化合物;(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ブトキシメチル(メタ)アクリルアミドなどの(メタ)アクリルアミド化合物;(メタ)アクリル酸、イタコン酸、フマル酸、クロトン酸、マレイン酸などのカルボキシル基を含有するビニル化合物;アリルグリシジルエーテル、(メタ)アクリル酸グリシジルなどのエポキシ基含有不飽和化合物;(メタ)アクリル酸ジメチルアミノエチル、(メタ)アクリル酸ジエチルアミノエチルなどのアミノ基含有不飽和化合物;スチレンスルホン酸、ビニルスルホン酸、(メタ)アリルスルホン酸などのスルホン酸基含有不飽和化合物;3-アリロキシ-2-ヒドロキシプロパン硫酸などの硫酸基含有不飽和化合物;(メタ)アクリル酸-3-クロロ-2-リン酸プロピル、3-アリロキシ-2-ヒドロキシプロパンリン酸などのリン酸基含有不飽和化合物などが挙げられる。 Examples of the fluorine-free monomer that can form a fluorine-free monomer unit include a fluorine-free monomer copolymerizable with the fluorine-containing monomer, such as ethylene, propylene, and 1-butene. 1-olefin; aromatic vinyl compounds such as styrene, α-methylstyrene, pt-butylstyrene, vinyltoluene, chlorostyrene; unsaturated nitrile compounds such as (meth) acrylonitrile; methyl (meth) acrylate, ( (Meth) acrylic acid ester compounds such as (meth) butyl acrylate and (meth) acrylic acid 2-ethylhexyl; (meth) acrylamides such as (meth) acrylamide, N-methylol (meth) acrylamide and N-butoxymethyl (meth) acrylamide Acrylamide compounds; (meth) acrylic acid, itaconic acid, fumaric acid, crotonic acid Vinyl compounds containing carboxyl groups such as maleic acid; epoxy group-containing unsaturated compounds such as allyl glycidyl ether and glycidyl (meth) acrylate; amino such as dimethylaminoethyl (meth) acrylate and diethylaminoethyl (meth) acrylate Group-containing unsaturated compounds; sulfonic acid group-containing unsaturated compounds such as styrene sulfonic acid, vinyl sulfonic acid and (meth) allyl sulfonic acid; sulfate group-containing unsaturated compounds such as 3-allyloxy-2-hydroxypropanesulfuric acid; And phosphate group-containing unsaturated compounds such as acrylic acid-3-chloro-2-propyl phosphate and 3-allyloxy-2-hydroxypropane phosphoric acid.
 そして、フッ素系重合体としては、フッ素含有単量体としてフッ化ビニリデンを用いた重合体およびフッ素含有単量体としてフッ化ビニルを用いた重合体が好ましく、フッ素含有単量体としてフッ化ビニリデンを用いた重合体がより好ましい。
 具体的には、フッ素系重合体としては、フッ化ビニリデンの単独重合体(ポリフッ化ビニリデン)、フッ化ビニリデンとヘキサフルオロプロピレンとの共重合体およびポリフッ化ビニルが好ましく、ポリフッ化ビニリデンがより好ましい。
 なお、上述したフッ素系重合体は、一種単独で用いてもよく、また、2種以上を併用してもよい。
The fluorine-based polymer is preferably a polymer using vinylidene fluoride as the fluorine-containing monomer and a polymer using vinyl fluoride as the fluorine-containing monomer, and vinylidene fluoride as the fluorine-containing monomer. A polymer using is more preferable.
Specifically, as the fluoropolymer, a homopolymer of vinylidene fluoride (polyvinylidene fluoride), a copolymer of vinylidene fluoride and hexafluoropropylene, and polyvinyl fluoride are preferable, and polyvinylidene fluoride is more preferable. .
In addition, the fluoropolymer mentioned above may be used individually by 1 type, and may use 2 or more types together.
 ここで、フッ素系重合体のゲル・パーミエーション・クロマトグラフィによるポリスチレン換算値の重量平均分子量は、好ましくは100,000~2,000,000、より好ましくは200,000~1,500,000、特に好ましくは400,000~1,000,000である。
 フッ素系重合体の重量平均分子量を上記範囲とすることで、電極活物質や導電材などの電極合材層からの脱離(粉落ち)が抑制され、また導電材ペーストの粘度調整が容易になる。
Here, the weight average molecular weight in terms of polystyrene by gel permeation chromatography of the fluoropolymer is preferably 100,000 to 2,000,000, more preferably 200,000 to 1,500,000, and particularly Preferably, it is 400,000 to 1,000,000.
By setting the weight average molecular weight of the fluoropolymer within the above range, detachment (powder off) from the electrode mixture layer such as the electrode active material or the conductive material is suppressed, and the viscosity of the conductive material paste can be easily adjusted. Become.
 また、フッ素系重合体のガラス転移温度(Tg)は、好ましくは0℃以下、より好ましくは-20℃以下、特に好ましくは-30℃以下である。フッ素系重合体のTgの下限は特に限定されないが、好ましくは-50℃以上、より好ましくは-40℃以上である。フッ素系重合体のTgが上記範囲にあることにより、電極活物質、導電材などの電極合材層からの脱離(粉落ち)が抑制できる。なお、フッ素系重合体のTgは、重合に用いる単量体の種類を変更することによって調整可能である。なお、Tgは、示差走査熱量分析計を用いて、JIS K7121;1987に準拠して測定することができる。 Further, the glass transition temperature (Tg) of the fluoropolymer is preferably 0 ° C. or lower, more preferably −20 ° C. or lower, and particularly preferably −30 ° C. or lower. The lower limit of the Tg of the fluoropolymer is not particularly limited, but is preferably −50 ° C. or higher, more preferably −40 ° C. or higher. When the Tg of the fluoropolymer is in the above range, detachment (powder off) from the electrode mixture layer such as an electrode active material or a conductive material can be suppressed. In addition, Tg of a fluorine-type polymer can be adjusted by changing the kind of monomer used for superposition | polymerization. Tg can be measured in accordance with JIS K7121; 1987 using a differential scanning calorimeter.
 フッ素系重合体の融点(Tm)は、好ましくは190℃以下、より好ましくは150~180℃、さらに好ましくは160~170℃である。フッ素系重合体のTmが上記範囲にあることにより、柔軟性と密着強度に優れる電極を得ることができる。なお、フッ素系重合体のTmは、重合に用いる単量体の種類を変更すること、若しくは重合温度を制御することなどによって調整可能である。なお、Tmは、示差走査熱量分析計を用いて、JIS K7121;1987に準拠して測定することができる。 The melting point (Tm) of the fluoropolymer is preferably 190 ° C. or lower, more preferably 150 to 180 ° C., and further preferably 160 to 170 ° C. When the Tm of the fluoropolymer is in the above range, an electrode excellent in flexibility and adhesion strength can be obtained. In addition, Tm of a fluoropolymer can be adjusted by changing the kind of monomer used for superposition | polymerization or controlling superposition | polymerization temperature. In addition, Tm can be measured based on JIS K7121; 1987 using a differential scanning calorimeter.
 ここで、上述したフッ素系重合体の製造方法は特に限定はされず、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。
 また、重合方法としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。また、重合開始剤としては、既知の重合開始剤を用いることができる。
Here, the method for producing the above-described fluoropolymer is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
As the polymerization method, addition polymerization such as ionic polymerization, radical polymerization, living radical polymerization and the like can be used. Moreover, as a polymerization initiator, a known polymerization initiator can be used.
 そして、フッ素系重合体は、分散媒に分散された分散液または溶解された溶液の状態で使用される。フッ素系重合体の分散媒としては、フッ素系重合体を均一に分散または溶解し得るものであれば、特に制限されず、水や有機溶媒を用いることができ、有機溶媒を用いることが好ましい。なお、有機溶媒としては、特に限定されることなく、後述する導電材ペーストの溶剤として用いる有機溶媒を用いることができる。 The fluoropolymer is used in a state of a dispersion liquid or a dissolved solution dispersed in a dispersion medium. The dispersion medium of the fluorine-based polymer is not particularly limited as long as the fluorine-based polymer can be uniformly dispersed or dissolved, and water or an organic solvent can be used, and an organic solvent is preferably used. In addition, as an organic solvent, it does not specifically limit, The organic solvent used as a solvent of the electrically conductive material paste mentioned later can be used.
[バインダーBの配合量]
 フッ素系重合体などのバインダーBの配合量は、バインダーAを導電材に好適に付着させ、導電材ペーストの分散安定性を良好にすべく、バインダーAの配合量に対し好ましくは10質量%以下、より好ましくは5質量%以下、特に好ましくは0質量%である。すなわち導電材ペーストは、導電材ペーストの分散安定性を確保するという観点からは、フッ素系重合体などの、バインダーA以外のバインダーBを含まないことが好ましい。
 一方で、フッ素系重合体は、上述のように導電材ペーストの分散安定性を低下させる虞がある一方、利点も有している。具体的には、フッ素系重合体は、正極用スラリー中において、比較的比重の重い正極活物質が二次電池正極用スラリー中で沈降することを抑えることができ、二次電池正極用スラリーの経時安定性を向上させることができる。
 このように、得られる二次電池正極用スラリーの経時安定性を確保する観点からは、導電材ペーストにフッ素系重合体を含めてもよい。かかる場合、導電材ペースト中のフッ素系重合体の配合量は、導電材ペースト中の全バインダー(結着樹脂)の固形分量を100質量%として、50質量%以上であることが好ましく、80質量%以上であることがより好ましい。また、後述する二次電池正極用スラリー中において、フッ素系重合体の配合量は、正極活物質100質量部あたり、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、5質量部以下であることが好ましく、4質量部以下であることがより好ましい。
 フッ素系重合体の配合量がかかる範囲内であれば、比較的比重の重い正極活物質が二次電池正極用スラリー中で沈降することを抑えることができ、二次電池正極用スラリーの経時安定性を向上させることができるからである。
[Binder B content]
The blending amount of the binder B such as a fluoropolymer is preferably 10% by mass or less based on the blending amount of the binder A so that the binder A is suitably attached to the conductive material and the dispersion stability of the conductive material paste is improved. , More preferably 5% by mass or less, particularly preferably 0% by mass. That is, the conductive material paste preferably does not contain a binder B other than the binder A, such as a fluoropolymer, from the viewpoint of ensuring the dispersion stability of the conductive material paste.
On the other hand, the fluorine-based polymer has an advantage while there is a possibility that the dispersion stability of the conductive material paste may be lowered as described above. Specifically, the fluorine-based polymer can suppress the precipitation of the positive electrode active material having a relatively heavy specific gravity in the slurry for the positive electrode of the secondary battery, in the slurry for the positive electrode. Stability over time can be improved.
As described above, from the viewpoint of securing the temporal stability of the obtained secondary battery positive electrode slurry, the conductive material paste may contain a fluorine-based polymer. In such a case, the blending amount of the fluoropolymer in the conductive material paste is preferably 50% by weight or more, based on 100% by weight of the total solid content of the binder (binder resin) in the conductive material paste, and 80% by weight. % Or more is more preferable. Moreover, in the slurry for secondary battery positive electrode described later, the blending amount of the fluoropolymer is preferably 1 part by mass or more, more preferably 2 parts by mass or more per 100 parts by mass of the positive electrode active material. It is preferably 5 parts by mass or less, and more preferably 4 parts by mass or less.
If the blending amount of the fluoropolymer is within such a range, it is possible to suppress the precipitation of the positive active material having a relatively high specific gravity in the secondary battery positive electrode slurry, and the secondary battery positive electrode slurry is stable over time. This is because the performance can be improved.
 なお、同様に二次電池正極用スラリーの経時安定性を向上させるという観点からは、導電材ペースト中のバインダーAの配合量は、導電材ペースト中の全バインダー(結着樹脂)の固形分量を100質量%として、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、70質量%以下であることが好ましく、50質量%以下であることがより好ましい。
 フッ素系重合体の添加先として導電材ペーストおよび正極用スラリーの何れを選択するかは、実施する態様に応じて適宜決定すればよい。
Similarly, from the viewpoint of improving the temporal stability of the secondary battery positive electrode slurry, the blending amount of the binder A in the conductive material paste is the solid content of all the binders (binder resin) in the conductive material paste. As 100 mass%, it is preferable that it is 10 mass% or more, It is more preferable that it is 15 mass% or more, It is preferable that it is 70 mass% or less, It is more preferable that it is 50 mass% or less.
Which of the conductive material paste and the positive electrode slurry is selected as the addition destination of the fluoropolymer may be appropriately determined according to the mode of implementation.
<溶剤>
 導電材ペーストは、溶剤を含むことが好ましい。ここで、導電材ペーストに配合する溶剤としては、例えば、上述したバインダーAを溶解可能な極性を有する有機溶媒を用いることができる。
 具体的には、有機溶媒としては、アセトニトリル、N-メチルピロリドン、アセチルピリジン、シクロペンタノン、N,N-ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、メチルホルムアミド、メチルエチルケトン、フルフラール、エチレンジアミンなどを用いることができる。これらの中でも、取扱い易さ、安全性、合成の容易さなどの観点から、有機溶媒としてはN-メチルピロリドン(NMP)が最も好ましい。
 なお、これらの有機溶媒は、単独で使用してもよいし、2種以上を混合して使用してもよい。
<Solvent>
The conductive material paste preferably contains a solvent. Here, as a solvent mix | blended with an electrically conductive material paste, the organic solvent which has the polarity which can melt | dissolve the binder A mentioned above can be used, for example.
Specifically, as the organic solvent, acetonitrile, N-methylpyrrolidone, acetylpyridine, cyclopentanone, N, N-dimethylacetamide, dimethylformamide, dimethyl sulfoxide, methylformamide, methyl ethyl ketone, furfural, ethylenediamine, or the like may be used. it can. Among these, N-methylpyrrolidone (NMP) is most preferable as the organic solvent from the viewpoints of ease of handling, safety, and ease of synthesis.
In addition, these organic solvents may be used independently and may mix and use 2 or more types.
<その他の成分>
 導電材ペーストには、上記成分の他に、例えば、粘度調整剤、補強材、酸化防止剤、電解液の分解を抑制する機能を有する電解液添加剤などの成分を混合してもよい。これらの他の成分は、公知のものを使用することができる。
<Other ingredients>
In addition to the above components, for example, components such as a viscosity modifier, a reinforcing material, an antioxidant, and an electrolytic solution additive having a function of suppressing the decomposition of the electrolytic solution may be mixed in the conductive material paste. As these other components, known ones can be used.
<導電材のバインダー吸着量>
 導電材ペーストは、導電材のバインダー吸着量が、100mg/g以上600mg/g以下であることが必要であり、150mg/g以上であることが好ましく、170mg/g以上であることがより好ましく、200mg/g以上であることがさらにより好ましく、250mg/g以上であることが特に好ましく、400mg/g以下であることが好ましく、390mg/g以下であることがより好ましい。導電材のバインダー吸着量が100mg/g未満であると、導電材が凝集して導電材ペーストの分散安定性が確保できず、当該導電材ペーストを用いて得られる電極を備える二次電池の内部抵抗が上昇し、また、低温特性、高温保存特性および高温サイクル特性が低下する。一方、導電材のバインダー吸着量が600mg/g超であると、導電材に絶縁体であるバインダーが過度に吸着した状態となり、当該導電材ペーストを用いて得られる電極を備える二次電池の内部抵抗が上昇し、また、低温特性、高温保存特性および高温サイクル特性が低下する。
<Binder adsorption amount of conductive material>
In the conductive material paste, the binder adsorption amount of the conductive material needs to be 100 mg / g or more and 600 mg / g or less, preferably 150 mg / g or more, more preferably 170 mg / g or more, It is still more preferably 200 mg / g or more, particularly preferably 250 mg / g or more, preferably 400 mg / g or less, and more preferably 390 mg / g or less. When the binder adsorption amount of the conductive material is less than 100 mg / g, the conductive material aggregates and the dispersion stability of the conductive material paste cannot be ensured, and the interior of the secondary battery including the electrode obtained using the conductive material paste Resistance increases, and low temperature characteristics, high temperature storage characteristics, and high temperature cycle characteristics decrease. On the other hand, when the binder adsorption amount of the conductive material is more than 600 mg / g, the conductive material becomes excessively adsorbed with the binder as an insulator, and the inside of the secondary battery including the electrode obtained using the conductive material paste Resistance increases, and low temperature characteristics, high temperature storage characteristics, and high temperature cycle characteristics decrease.
 そして、導電材のバインダー吸着量は、以下の方法で算出することができる。
 まず、必要に応じて導電材ペーストに溶剤をさらに添加することで、遠心分離し易い固形分濃度(例えば1質量%)に調整する。なお、導電材に一度吸着したバインダーは導電材から脱離し難いので、固形分濃度の調整によるバインダー吸着量の測定値への影響は無視することができる。
 次いで、導電材ペーストまたはその希釈液に、遠心分離機を用いて上澄みと沈殿物とが分離するまで遠心分離処理を施し、沈殿物を採取する。当該沈殿物を、溶剤は気化するがバインダーは熱分解されない条件下で、重量変化がなくなるまで乾燥し、沈殿物に残存する溶剤を除去して乾燥物(主にバインダー+導電材よりなる)を得る。なお、当該乾燥は減圧下で行ってもよい。
 得られた乾燥物を、熱天秤を用いて、バインダーが十分に分解および気化する温度まで徐々に加熱(例えば窒素雰囲気下、昇温速度10℃/分で500℃まで加熱)し、乾燥物中のバインダーを除去する。
 この熱天秤による加熱処理前(乾燥物)の重量をW1(g)、加熱処理後の重量W2(g)として、下記の式から、導電材のバインダー吸着量を算出することができる。
 導電材のバインダー吸着量(mg/g)={(W1-W2)×1000}/W2
The binder adsorption amount of the conductive material can be calculated by the following method.
First, if necessary, a solvent is further added to the conductive material paste to adjust the solid content concentration (for example, 1% by mass) that can be easily centrifuged. In addition, since the binder once adsorbed to the conductive material is difficult to desorb from the conductive material, the influence on the measured value of the binder adsorption amount due to the adjustment of the solid content concentration can be ignored.
Next, the conductive material paste or the diluted solution thereof is subjected to a centrifugal separation process until the supernatant and the precipitate are separated using a centrifuge, and the precipitate is collected. The precipitate is dried under conditions where the solvent is vaporized but the binder is not thermally decomposed until there is no change in weight, and the solvent remaining in the precipitate is removed to obtain a dried product (mainly composed of a binder and a conductive material). obtain. The drying may be performed under reduced pressure.
The obtained dried product is gradually heated to a temperature at which the binder is sufficiently decomposed and vaporized using a thermobalance (for example, heated to 500 ° C. at a heating rate of 10 ° C./min in a nitrogen atmosphere) in the dried product. Remove the binder.
The binder adsorption amount of the conductive material can be calculated from the following formula, assuming that the weight before heat treatment (dried material) by this thermobalance is W1 (g) and the weight W2 (g) after heat treatment.
Binder adsorption amount of conductive material (mg / g) = {(W1-W2) × 1000} / W2
 ここで、上述のようにして測定される「導電材のバインダー吸着量」は、導電材1g当たりに吸着している全バインダーの量に相関する値である。そして、導電材のバインダー吸着量は、バインダーAの組成、バインダーA以外のバインダーBの組成、導電材の比表面積、導電材に対するバインダーの配合量、並びに、導電材ペーストの粘度、固形分濃度および調製方法などにより制御することができる。
 具体的には、例えば、バインダーA中のニトリル基含有単量体の割合を増加させることにより、導電材のバインダー吸着量を低下させることができる。また、導電材に対する吸着能が低い重合体、例えばポリフッ化ビニリデンよりなるバインダーBを使用することにより、導電材のバインダー吸着量を低下させることができる。さらに、導電材の比表面積や導電材に対するバインダーの配合量を増加させることにより、導電材のバインダー吸着量を増加させることができる。
Here, “the binder adsorption amount of the conductive material” measured as described above is a value correlated with the amount of the total binder adsorbed per 1 g of the conductive material. The binder adsorption amount of the conductive material is the composition of the binder A, the composition of the binder B other than the binder A, the specific surface area of the conductive material, the blending amount of the binder with respect to the conductive material, the viscosity of the conductive material paste, the solid content concentration, and It can be controlled by the preparation method.
Specifically, for example, by increasing the ratio of the nitrile group-containing monomer in the binder A, the binder adsorption amount of the conductive material can be reduced. Moreover, the binder adsorption amount of the conductive material can be reduced by using a polymer having a low adsorption capacity for the conductive material, for example, the binder B made of polyvinylidene fluoride. Furthermore, the binder adsorption amount of the conductive material can be increased by increasing the specific surface area of the conductive material and the blending amount of the binder with respect to the conductive material.
<導電材ペーストの粘度>
 導電材ペーストは、粘度が1000mPa・s以上であることが好ましく、3000mPa・s以上であることがより好ましく、4000mPa・s以上であることが特に好ましく、10000mPa・s以下であることが好ましく、8000mPa・s以下であることがより好ましく、6000mPa・s以下であることが特に好ましい。導電材ペーストの粘度が上記範囲内であれば、導電材ペーストの分散安定性が良好となる。
 ここで、導電材ペーストの粘度は、混合時に添加する溶剤の量、導電材ペーストの固形分濃度、並びにバインダーの種類及び分子量等によって調整可能である。
 なお、導電材ペーストの粘度の上限値が10000mPa・sを上回ると、ごく一部の混合装置を用いてしか分散ができなくなり、導電材の分散性に劣り、さらに、当該導電材ペーストを用いて形成した電極合材層の電気抵抗が高くなる虞がある。一方、導電材ペーストの下限値が1000mPa・sを下回ると、導電材ペーストの分散安定性が損なわれる虞がある。
<Viscosity of conductive paste>
The conductive material paste preferably has a viscosity of 1000 mPa · s or more, more preferably 3000 mPa · s or more, particularly preferably 4000 mPa · s or more, and preferably 10,000 mPa · s or less, and 8000 mPa · s. It is more preferably s or less, and particularly preferably 6000 mPa · s or less. When the viscosity of the conductive material paste is within the above range, the dispersion stability of the conductive material paste is good.
Here, the viscosity of the conductive material paste can be adjusted by the amount of the solvent added during mixing, the solid content concentration of the conductive material paste, the type and molecular weight of the binder, and the like.
In addition, when the upper limit of the viscosity of the conductive material paste exceeds 10,000 mPa · s, it can be dispersed only by using only a part of the mixing device, the dispersibility of the conductive material is inferior, and further, the conductive material paste is used. There is a possibility that the electric resistance of the formed electrode mixture layer is increased. On the other hand, when the lower limit value of the conductive material paste is less than 1000 mPa · s, the dispersion stability of the conductive material paste may be impaired.
<導電材ペーストの固形分濃度>
 導電材ペーストは、固形分濃度が5質量%以上であることが好ましく、8質量%以上がより好ましく、15質量%以下であることが好ましく、12質量%以下であることがより好ましい。特に、導電材ペーストの固形分濃度は、導電材ペーストの調製に際し混合開始時から混合終了時までを通じて上記範囲内であることが好ましい。
 導電材ペーストの固形分濃度を上記範囲内とすることで、電極合材層中において導電材が良好に分散し、二次電池の内部抵抗を低減し、また、低温特性、高温保存特性や高温サイクル特性を向上させることができる。
 なお、導電材ペーストの固形分濃度が15質量%を上回る場合、導電材ペーストの分散安定性が損なわれ、得られる電極の電気抵抗が高くなる虞がある。一方、導電材ペーストの固形分濃度が5質量%を下回る場合においては、導電材ペースト中で導電材の沈降が生じ、導電材ペーストの分散安定性が損なわれる虞がある。
 加えて、ペーストに正極活物質を添加した後の二次電池正極用スラリーにおいても、当該正極用スラリーの濃度が低くなりすぎてしまい、沈降が生じる虞がある。
<Solid content concentration of conductive material paste>
The conductive material paste preferably has a solid content concentration of 5% by mass or more, more preferably 8% by mass or more, preferably 15% by mass or less, and more preferably 12% by mass or less. In particular, the solid content concentration of the conductive material paste is preferably within the above range from the start of mixing to the end of mixing when preparing the conductive material paste.
By setting the solid content concentration of the conductive material paste within the above range, the conductive material is well dispersed in the electrode mixture layer, and the internal resistance of the secondary battery is reduced. Cycle characteristics can be improved.
When the solid content concentration of the conductive material paste exceeds 15% by mass, the dispersion stability of the conductive material paste may be impaired, and the electric resistance of the obtained electrode may be increased. On the other hand, when the solid content concentration of the conductive material paste is less than 5% by mass, the conductive material is precipitated in the conductive material paste, and the dispersion stability of the conductive material paste may be impaired.
In addition, even in the secondary battery positive electrode slurry after the positive electrode active material is added to the paste, the concentration of the positive electrode slurry becomes too low, and sedimentation may occur.
<導電材ペーストの調製方法>
 上述の導電材およびバインダーA、並びに必要に応じて、バインダーB、溶剤およびその他の成分を混合して導電材ペーストを得るにあたり、混合方法には特に制限は無く、例えば、ディスパー、ミル、ニーダーなどの一般的な混合装置を用いることができる。例えば、ディスパーを使用する場合には、2000rpm以上5000rpm以下で、好ましくは5分以上、より好ましくは10分以上、好ましくは60分以下攪拌することが好ましい。
 また、「二次電池正極用スラリーの製造方法」の項で後述する工程(X-1)、(X-2)を採用して導電材ペーストを調製してもよい。
<Method for preparing conductive paste>
There are no particular restrictions on the mixing method for obtaining the conductive material paste by mixing the above-mentioned conductive material and binder A and, if necessary, binder B, solvent and other components. For example, disper, mill, kneader, etc. The following general mixing apparatus can be used. For example, when using a disper, it is preferable to stir at 2000 rpm or more and 5000 rpm or less, preferably 5 minutes or more, more preferably 10 minutes or more, and preferably 60 minutes or less.
Further, the conductive material paste may be prepared by employing the steps (X-1) and (X-2) described later in the section “Method for producing slurry for secondary battery positive electrode”.
(二次電池正極用スラリー)
 上述した本発明の二次電池電極用ペーストを用いて、二次電池正極用スラリーを製造することができる。そして二次電池正極用スラリーは、上述した二次電池電極用導電材ペーストおよび正極活物質を含んでなり、より具体的には、少なくとも、導電材、バインダーA、および正極活物質を含有する。
 このように、上述した導電材ペーストを含む二次電池正極用スラリーは経時安定性に優れ、かつ当該正極用スラリーを用いることで電位安定性に優れる正極を製造することができる。くわえて、当該正極用スラリーから形成された正極は、二次電池の内部抵抗を低減し、また低温特性、高温サイクル特性、および高温保存特性を向上させ得り、二次電池に優れた電気的特性を発揮させることができる。
(Slurry for secondary battery positive electrode)
By using the secondary battery electrode paste of the present invention described above, a secondary battery positive electrode slurry can be produced. The slurry for the secondary battery positive electrode includes the above-described conductive material paste for the secondary battery electrode and the positive electrode active material, and more specifically includes at least the conductive material, the binder A, and the positive electrode active material.
Thus, the secondary battery positive electrode slurry containing the conductive material paste described above is excellent in stability over time, and a positive electrode excellent in potential stability can be produced by using the positive electrode slurry. In addition, the positive electrode formed from the positive electrode slurry can reduce the internal resistance of the secondary battery, and can improve the low temperature characteristics, high temperature cycle characteristics, and high temperature storage characteristics. The characteristics can be exhibited.
<正極活物質>
 二次電池正極用スラリーに配合する正極活物質としては、特に限定されることなく、既知の正極活物質を用いることができる。
 例えばリチウムイオン二次電池に用いられる正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(LiCoO2)、マンガン酸リチウム(LiMn24)、リチウム含有ニッケル酸化物(LiNiO2)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO4)、オリビン型リン酸マンガンリチウム(LiMnPO4)、Li1+xMn2-x4(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O2、LiNi0.5Mn1.54等が挙げられる。
<Positive electrode active material>
As a positive electrode active material mix | blended with the slurry for secondary battery positive electrodes, it is not specifically limited, A known positive electrode active material can be used.
For example, a positive electrode active material used for a lithium ion secondary battery is not particularly limited, and lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2). ), Lithium-containing composite oxide of Co—Ni—Mn, lithium-containing composite oxide of Ni—Mn—Al, lithium-containing composite oxide of Ni—Co—Al, olivine type lithium iron phosphate (LiFePO 4 ), olivine Type lithium manganese phosphate (LiMnPO 4 ), Li 1 + x Mn 2−x O 4 (0 <X <2), an excess lithium spinel compound, Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 , LiNi 0.5 Mn 1.5 O 4 and the like.
 上述した中でも、リチウムイオン二次電池の電池容量などを向上させる観点からは、正極活物質としてリチウム含有コバルト酸化物(LiCoO2)、リチウム含有ニッケル酸化物(LiNiO2)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、Li[Ni0.17Li0.2Co0.07Mn0.56]O2またはLiNi0.5Mn1.54を用いることが好ましい。
 なお、正極活物質の配合量や粒径は、特に限定されることなく、従来使用されている正極活物質と同様とすることができる。
Among the above, from the viewpoint of improving the battery capacity of the lithium ion secondary battery, lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), and Co—Ni—Mn are used as the positive electrode active material. It is preferable to use lithium-containing composite oxide, Ni—Co—Al lithium-containing composite oxide, Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 or LiNi 0.5 Mn 1.5 O 4 .
In addition, the compounding quantity and particle size of a positive electrode active material are not specifically limited, It can be made to be the same as that of the positive electrode active material used conventionally.
 また、正極活物質と導電材の配合量比は、特に限定されないが、導電材の配合量が、正極活物質100質量部あたり、1質量部以上であることが好ましく、2質量部以上であることがより好ましく、3質量部以上であることが特に好ましく、10質量部以下であることが好ましく、5質量部以下であることがより好ましく、4質量部以下であることが特に好ましい。導電材の配合量が少なすぎると、正極活物質同士の電気的接触を十分に確保することができず、二次電池の内部抵抗が上昇し、低温特性などを十分に向上させることができない場合がある。一方、導電材の配合量が多すぎると、二次電池正極用スラリーの経時安定性が低下する虞があると共に、二次電池用正極中の正極合材層の密度が低下し、二次電池を十分に高容量化することができない虞がある。 Further, the blending ratio of the positive electrode active material and the conductive material is not particularly limited, but the blending amount of the conductive material is preferably 1 part by mass or more per 100 parts by mass of the positive electrode active material, and is 2 parts by mass or more. Is more preferably 3 parts by mass or more, preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and particularly preferably 4 parts by mass or less. When the amount of the conductive material is too small, sufficient electrical contact between the positive electrode active materials cannot be ensured, the internal resistance of the secondary battery increases, and the low temperature characteristics cannot be sufficiently improved. There is. On the other hand, when the amount of the conductive material is too large, the stability of the secondary battery positive electrode slurry may deteriorate with time, and the density of the positive electrode mixture layer in the secondary battery positive electrode may decrease. There is a possibility that the capacity cannot be increased sufficiently.
<その他の成分>
 二次電池正極用スラリーは、導電材、バインダーA、および正極活物質の他に、「二次電池電極用導電材ペースト」の項で挙げた成分を含んでいてもよい。
<Other ingredients>
The slurry for secondary battery positive electrode may contain the components mentioned in the section of “conductive material paste for secondary battery electrode” in addition to the conductive material, binder A, and positive electrode active material.
(二次電池正極用スラリーの製造方法)
 そして、上述した二次電池正極用スラリーは、例えば、二次電池電極用導電材ペーストを調製する工程(X)と、二次電池電極用導電材ペーストと正極活物質とを混合する工程(Y)とを含む、本発明の二次電池正極用スラリーの製造方法を用いて製造される。
 このように、工程(X)において導電材ペーストを調製した後、工程(Y)において導電材ペーストと正極活物質とを混合して調製した正極用スラリーは、正極合材層を形成した際に、導電材の分散が、適度なレベルとなる。従って、当該正極用スラリーを用いて正極を製造すれば、導電材間で良好な導電ネットワークを形成させ、内部抵抗による容量劣化を抑制することができる。その結果、二次電池正極用スラリーを用いて製造した二次電池の電気的特性を向上させることができる。
(Method for producing secondary battery positive electrode slurry)
And the slurry for secondary battery positive electrodes mentioned above is the process (Y) which prepares the electrically conductive material paste for secondary battery electrodes, and the process (Y) which mixes the electrically conductive material paste for secondary battery electrodes, and a positive electrode active material, for example. And a slurry for a secondary battery positive electrode according to the present invention.
Thus, after preparing the conductive material paste in the step (X), the positive electrode slurry prepared by mixing the conductive material paste and the positive electrode active material in the step (Y) is formed when the positive electrode mixture layer is formed. The dispersion of the conductive material is at an appropriate level. Therefore, if a positive electrode is produced using the positive electrode slurry, a good conductive network can be formed between the conductive materials, and capacity deterioration due to internal resistance can be suppressed. As a result, the electrical characteristics of the secondary battery produced using the secondary battery positive electrode slurry can be improved.
<工程(X)>
 工程(X)においては、導電材ペーストを調製する。ここで、導電材ペーストを調製する方法としては、「導電材ペーストの調製方法」で上述した方法を使用することができるが、特に導電材ペーストにフッ素系重合体を含有させる場合には、工程(X)は、導電材と、バインダーAを主成分として含む第一結着材成分とを混合して予混合ペーストを得る第一の工程(X-1)と、予混合ペーストに、フッ素系重合体を主成分として含む第二結着材成分を添加して、前記二次電池電極用導電材ペーストを得る第二の工程(X-2)とを含むことが好ましい。
 このように、第一の工程(X-1)においてバインダーAを主成分として含む第一結着材成分と導電材とを混合して得られた予混合ペーストに対して、第二の工程(X-2)においてフッ素系重合体を主成分として含む第二結着材成分を添加し導電材ペーストを得ることで、後述する工程(Y)を経て得られる二次電池正極用スラリー中において導電材が適度に分散する。従って、当該二次電池正極用スラリーを用いて正極を製造すれば、導電材間でより良好な導電ネットワークを形成させ、特に、低温での容量劣化を抑制することができる。そして二次電池正極用スラリーを用いて製造した二次電池の電気的特性をさらに向上させることができる。
<Process (X)>
In step (X), a conductive material paste is prepared. Here, as a method for preparing the conductive material paste, the method described above in “Preparation Method of Conductive Material Paste” can be used. In particular, when the fluoropolymer is included in the conductive material paste, (X) is a first step (X-1) in which a conductive material and a first binder component containing binder A as a main component are mixed to obtain a premixed paste; It is preferable to include a second step (X-2) of adding a second binder component containing a polymer as a main component to obtain the conductive material paste for a secondary battery electrode.
As described above, the pre-mixed paste obtained by mixing the first binder component containing the binder A as a main component and the conductive material in the first step (X-1) with respect to the second step ( In X-2), a second binder component containing a fluorine-based polymer as a main component is added to obtain a conductive material paste, so that the conductive material is contained in the secondary battery positive electrode slurry obtained through the step (Y) described later. The material is properly dispersed. Therefore, if a positive electrode is manufactured using the slurry for a secondary battery positive electrode, a better conductive network can be formed between the conductive materials, and in particular, capacity deterioration at a low temperature can be suppressed. And the electrical characteristic of the secondary battery manufactured using the slurry for secondary battery positive electrodes can further be improved.
[第一の工程(X-1)]
 工程(X)における第一の工程(X-1)では、導電材と、バインダーAを主成分として含む第一結着材成分とを、必要に応じて溶剤中で混合して、予混合ペーストを得る。
 なお、第一結着材成分は、バインダーAを主成分として含んでいれば、バインダーA以外のバインダー(結着樹脂)を含んでいてもよい。
[First step (X-1)]
In the first step (X-1) of the step (X), the conductive material and the first binder component containing the binder A as a main component are mixed in a solvent as necessary, and a premixed paste Get.
In addition, as long as the 1st binder component contains the binder A as a main component, binders (binder resin) other than the binder A may be included.
[[バインダーAの割合]]
 第一の工程(X-1)で配合する第一結着材成分中のバインダーAの割合は、予混合ペースト中に含まれる第一結着材成分を構成するバインダー(結着樹脂)の固形分量を100質量%として、50質量%以上である必要があり、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。最も好ましくは、第一結着材成分中のバインダーAの割合は100質量%である。第一結着材成分中のバインダーAの配合量を上記範囲内とすることで、バインダーAが導電材に十分に吸着し、予混合ペーストおよび導電材ペーストの分散安定性が向上する。そして、かかる予混合ペーストおよび導電材ペーストを用いて製造した二次電池は、電気的特性(低温特性およびサイクル特性など)に優れる。
 なお、第一結着材成分を構成するバインダーとして使用し得るバインダーA以外のバインダーとしては、特に限定されることなく、既知のバインダーや、上述するフッ素系重合体などが挙げられる。
[[Binder A ratio]]
The ratio of the binder A in the first binder component blended in the first step (X-1) is the solid content of the binder (binder resin) constituting the first binder component contained in the premixed paste. When the amount is 100% by mass, it is necessary to be 50% by mass or more, preferably 70% by mass or more, and more preferably 80% by mass or more. Most preferably, the ratio of binder A in the first binder component is 100% by mass. By making the compounding quantity of the binder A in a 1st binder component into the said range, the binder A fully adsorb | sucks to a electrically conductive material, and the dispersion stability of a premix paste and a electrically conductive material paste improves. And the secondary battery manufactured using this pre-mixing paste and conductive material paste is excellent in electrical characteristics (low temperature characteristics, cycle characteristics, etc.).
In addition, it does not specifically limit as binders other than the binder A which can be used as a binder which comprises a 1st binder component, A well-known binder, the fluorine-type polymer mentioned above, etc. are mentioned.
 また、予混合ペースト中の導電材量を100質量%とした場合、予混合ペースト中のバインダーAの配合量は、5質量%以上であることが好ましく、15質量%以上であることがより好ましく、100質量%以下であることが好ましく、50質量%以下であることがより好ましいバインダーAの配合量を上記範囲内とすることで、バインダーAが導電材に十分に吸着し、予混合ペーストの分散安定性が向上する。そして、かかる予混合ペーストを用いて製造した二次電池は電気的特性(低温特性および高温サイクル特性など)に優れる。 Further, when the amount of the conductive material in the premixed paste is 100% by mass, the blending amount of the binder A in the premixed paste is preferably 5% by mass or more, and more preferably 15% by mass or more. 100 wt% or less, and more preferably 50 wt% or less, the binder A content within the above range, the binder A is sufficiently adsorbed to the conductive material, the premixed paste Dispersion stability is improved. And the secondary battery manufactured using this pre-mixed paste is excellent in electrical characteristics (low temperature characteristics, high temperature cycle characteristics, etc.).
[[第一結着材成分の配合量]]
 上述した態様では、第一の工程(X-1)および第二の工程(X-2)において、それぞれ第一結着材成分および第二結着材成分を添加する。第一結着材成分および第二結着材成分の合計配合量は、後述する工程(Y)で添加する正極活物質の配合量を100質量部とした場合に、1質量部以上、5質量部以下であることが好ましく、2質量部以上、4質量部以下であることが更に好ましい。バインダーの配合量が少なすぎれば、正極の強度が損なわれ、多すぎると正極の抵抗が大きくなりすぎるからである。
 そして、第一結着材成分および第二結着材成分の合計配合量に対する第一結着材成分の配合割合は、これら結着材成分の合計配合量を100質量部として、10質量部以上90質量部以下が好ましい。
[[Blend amount of first binder component]]
In the above-described embodiment, the first binder component and the second binder component are added in the first step (X-1) and the second step (X-2), respectively. The total amount of the first binder component and the second binder component is 1 part by mass or more and 5 parts by mass when the amount of the positive electrode active material added in the step (Y) described later is 100 parts by mass. Part or less, preferably 2 parts by mass or more and 4 parts by mass or less. This is because if the amount of the binder is too small, the strength of the positive electrode is impaired, and if it is too large, the resistance of the positive electrode becomes too high.
And the compounding ratio of the 1st binder component with respect to the total compounding quantity of a 1st binder component and a 2nd binder component is 10 mass parts or more by making the total compounding quantity of these binder components into 100 mass parts. 90 parts by mass or less is preferable.
[[溶剤およびその他の成分]]
 第一の工程(X-1)で使用しうる溶剤としては、例えば、「二次電池電極用導電材ペースト」の項で上述したバインダーAを溶解可能な極性を有する有機溶媒を用いることができる。
 また、第一の工程(X-1)において、上記成分の他に、例えば、粘度調整剤、補強材、酸化防止剤、電解液の分解を抑制する機能を有する電解液添加剤などの成分を混合してもよい。これらの他の成分は、公知のものを使用することができる。
[[Solvent and other ingredients]]
As the solvent that can be used in the first step (X-1), for example, an organic solvent having a polarity capable of dissolving the binder A described above in the section of “conductive material paste for secondary battery electrode” can be used. .
In addition, in the first step (X-1), in addition to the above components, for example, a component such as a viscosity modifier, a reinforcing material, an antioxidant, an electrolytic solution additive having a function of suppressing decomposition of the electrolytic solution, and the like. You may mix. As these other components, known ones can be used.
[[混合方法]]
 上述の導電材および第一結着材成分、並びに場合によっては溶剤およびその他の成分を、第一の工程(X-1)で混合して予混合ペーストを得るにあたり、混合方法には特に制限は無く、例えば、ディスパー、ミル、ニーダーなどの一般的な混合装置を用いることができる。
 なお、第一結着材成分としてバインダーAとバインダーA以外のバインダー(結着樹脂)とを用いる場合、バインダーAとバインダーA以外のバインダーとは、予混合してから導電材と混合してもよいし、予混合することなく導電材と混合してもよい。
 なお、バインダーAを分散させた溶媒をそのまま溶剤として利用しても良いし、それとは別途に溶剤を添加しても良い。
[[Mixing method]]
In the first step (X-1), the conductive material and the first binder component described above, and optionally the solvent and other components are mixed in the first step (X-1) to obtain a premixed paste. For example, a general mixing device such as a disper, a mill, or a kneader can be used.
In addition, when using binder (binding resin) other than binder A and binder A as a 1st binder component, binder A and binders other than binder A may mix with a electrically conductive material after premixing. Alternatively, the conductive material may be mixed without premixing.
The solvent in which the binder A is dispersed may be used as it is, or a solvent may be added separately.
 なお、第一の工程(X-1)で得られる予混合ペーストの粘度は、上述したような一般的な混合方法で混合可能な粘度であって、導電材ペーストの粘度範囲を上述の範囲内とすることができる粘度であれば特に限定されない。 The viscosity of the premixed paste obtained in the first step (X-1) is a viscosity that can be mixed by the general mixing method as described above, and the viscosity range of the conductive material paste is within the above range. The viscosity is not particularly limited as long as the viscosity can be set as follows.
[第二の工程]
 工程(X)における第二の工程(X-2)では、第一の工程で調製した予混合ペーストに、フッ素系重合体を主成分として含む第二結着材成分を添加して導電材ペーストを得る。
 なお、第二結着材成分は、フッ素系重合体を主成分として含んでいれば、フッ素系重合体以外のバインダー(結着樹脂)を含んでいてもよい。
[Second step]
In the second step (X-2) in the step (X), a conductive material paste is prepared by adding a second binder component containing a fluoropolymer as a main component to the premixed paste prepared in the first step. Get.
The second binder component may contain a binder (binder resin) other than the fluoropolymer as long as it contains the fluoropolymer as a main component.
[[フッ素系重合体の割合]]
 第二の工程で配合する第二結着材成分中のフッ素系重合体の割合は、第二のバインダーを構成するバインダー(結着樹脂)の固形分量を100質量%として、50質量%以上である必要があり、80質量%以上であることが好ましい。最も好ましくは、第二結着材成分中のフッ素系重合体の割合は100質量%である。第二結着材成分中のフッ素系重合体の配合量を上記範囲内とし、第二の工程においてフッ素系重合体をかかる比率で添加することで、第一結着材成分が導電材に吸着するのを阻害することがなく、導電材ペーストの安定性を向上させることができる。
 なお、第二結着材成分を構成するバインダーとして使用し得るフッ素系重合体以外のバインダーとしては、特に限定されることなく、既知のバインダーや、上述したバインダーAなどが挙げられる。
[[Ratio of fluoropolymer]]
The proportion of the fluoropolymer in the second binder component to be blended in the second step is 50% by mass or more, where the solid content of the binder (binder resin) constituting the second binder is 100% by mass. It is necessary to be 80% by mass or more. Most preferably, the ratio of the fluoropolymer in the second binder component is 100% by mass. The blending amount of the fluoropolymer in the second binder component is within the above range, and the first binder component is adsorbed on the conductive material by adding the fluoropolymer in such a ratio in the second step. It is possible to improve the stability of the conductive material paste without hindering the operation.
The binder other than the fluoropolymer that can be used as the binder constituting the second binder component is not particularly limited, and examples thereof include a known binder and the above-described binder A.
[[第二結着材成分の配合量]]
 第一結着材成分および第二結着材成分の合計配合量に対する第二結着材成分の配合割合は、正極用スラリーの安定性の観点から、バインダー(結着樹脂)の合計配合量を100質量部として、50質量部以上90質量部以下が好ましい。
[[Blend amount of second binder component]]
The blending ratio of the second binder component to the total blending amount of the first binder component and the second binder component is the total blending amount of the binder (binder resin) from the viewpoint of the stability of the positive electrode slurry. As 100 mass parts, 50 mass parts or more and 90 mass parts or less are preferable.
[[溶剤およびその他の成分]]
 第二の工程(X-2)において、溶剤を添加しても良い。使用可能な溶剤としては、第一の工程(X-1)に関して上述した溶剤と同様のものが挙げられる。そのような溶剤は、例えば、上述した第二結着材成分を溶解可能な極性を有する有機溶媒でありうる。
 また、第二の工程(X-2)において、導電材ペーストは、上記成分の他に、例えば、粘度調整剤、補強材、酸化防止剤、電解液の分解を抑制する機能を有する電解液添加剤などの成分を混合してもよい。これらの他の成分は、公知のものを使用することができる。
[[Solvent and other ingredients]]
In the second step (X-2), a solvent may be added. Usable solvents include the same solvents as those described above with respect to the first step (X-1). Such a solvent may be, for example, an organic solvent having a polarity capable of dissolving the above-described second binder component.
In the second step (X-2), in addition to the above components, the conductive material paste is added with, for example, a viscosity modifier, a reinforcing material, an antioxidant, and an electrolytic solution having a function of suppressing decomposition of the electrolytic solution. You may mix components, such as an agent. As these other components, known ones can be used.
[[混合方法]]
 第二の工程(X-2)で、予混合ペーストに対して第二結着材成分を添加して導電材ペーストを得るにあたり、混合方法には特に制限は無く、例えば、ディスパー、ミル、ニーダーなどの一般的な混合装置を用いることができる。例えば、ディスパーを使用する場合には、2000rpm以上5000rpm以下で、20分以上120分以下攪拌することが好ましい。
 予め導電材と第一結着材成分とを混合して得た予混合ペーストに対して、第二の工程(X-2)において、第二結着材成分を添加して混合することで、異なる性状を有する複数種のバインダー(結着樹脂)を混合して、後述する工程(Y)において添加する正極活物質を正極用スラリー内で良好に分散させることができる。これにより、二次電池の電池容量を増加させることができる。
[[Mixing method]]
In the second step (X-2), the second binder component is added to the premixed paste to obtain a conductive material paste, and there is no particular limitation on the mixing method. For example, disper, mill, kneader A general mixing apparatus such as can be used. For example, when a disper is used, it is preferable to stir at 2000 rpm to 5000 rpm for 20 minutes to 120 minutes.
In the second step (X-2), by adding and mixing the second binder component to the premixed paste obtained by mixing the conductive material and the first binder component in advance, A plurality of types of binders (binder resins) having different properties can be mixed, and the positive electrode active material added in the step (Y) described later can be favorably dispersed in the positive electrode slurry. Thereby, the battery capacity of the secondary battery can be increased.
<工程(Y)>
 工程(Y)では、工程(X)で調製した導電材ペーストと、上述した正極活物質と、場合によっては溶剤およびその他の成分とを混合する。
<Process (Y)>
In step (Y), the conductive material paste prepared in step (X), the positive electrode active material described above, and, in some cases, a solvent and other components are mixed.
[[溶剤およびその他の成分]]
 溶剤としては、工程(X)における第一の工程(X-1)および第二の工程(X-2)に関して上述した溶剤と同様のものを用いることができる。
 また工程(Y)において、二次電池正極用スラリーは、上記成分の他に、例えば、粘度調整剤、補強材、酸化防止剤、電解液の分解を抑制する機能を有する電解液添加剤などの成分を混合してもよい。これらの他の成分は、公知のものを使用することができる。
[[Solvent and other ingredients]]
As the solvent, the same solvents as those described above with respect to the first step (X-1) and the second step (X-2) in the step (X) can be used.
In the step (Y), the slurry for the secondary battery positive electrode includes, for example, a viscosity modifier, a reinforcing material, an antioxidant, and an electrolytic solution additive having a function of suppressing decomposition of the electrolytic solution in addition to the above components. The components may be mixed. As these other components, known ones can be used.
[[混合方法]]
 工程(Y)で、導電材ペーストおよび正極活物質を混合して、正極用スラリーを得るにあたり、混合方法には特に制限は無く、例えば、ディスパー、ミル、ニーダーなどの一般的な混合装置を用いることができる。例えば、ディスパーを使用する場合には、2000rpm以上5000rpm以下で、20分以上120分以下攪拌することが好ましい。
[[Mixing method]]
In the step (Y), when the conductive material paste and the positive electrode active material are mixed to obtain the positive electrode slurry, the mixing method is not particularly limited, and for example, a general mixing device such as a disper, mill, kneader or the like is used. be able to. For example, when a disper is used, it is preferable to stir at 2000 rpm to 5000 rpm for 20 minutes to 120 minutes.
 このように、工程(X)でなく工程(Y)にて正極活物質を混合することで、工程(X)において導電材間のネットワークを良好に形成するとともに、二次電池正極用スラリー中における正極活物質の分散性を向上させることができる。なお、工程(Y)は、工程(X)の結果形成された導電材間のネットワークには影響を与えない。
 また、工程(X)でなく工程(Y)にて正極活物質を混合することで、正極活物質にバインダーAが優先して吸着することによる導電材のバインダー吸着量の低下を防ぎ、二次電池正極用スラリーの経時安定性の悪化を抑制することができる。
 そして、導電材に対してバインダー(特にバインダーA)が予め吸着している状態で正極活物質と混合することで、分散工程中に正極活物質の近傍にバインダーを介して導電材が配位することで、得られる二次電池の低温特性などの電気的特性が向上する。
 また、工程(X)が上述した第一の工程(X-1)と第二の工程(X-2)とを含む場合には、第二の工程(X-2)にて得られる導電材ペースト中において、異なる性状を有するバインダー(結着樹脂)が予め均一に混合されている為、工程(Y)において正極活物質を混合することで、正極用スラリーの経時安定性が向上する。
In this way, by mixing the positive electrode active material not in the step (X) but in the step (Y), in the step (X), a good network between the conductive materials is formed, and in the secondary battery positive electrode slurry. Dispersibility of the positive electrode active material can be improved. Note that the step (Y) does not affect the network between the conductive materials formed as a result of the step (X).
Further, by mixing the positive electrode active material in the step (Y) instead of the step (X), it is possible to prevent the decrease in the binder adsorption amount of the conductive material due to the binder A preferentially adsorbing to the positive electrode active material, The deterioration of the stability with time of the battery positive electrode slurry can be suppressed.
Then, by mixing with the positive electrode active material in a state where the binder (particularly binder A) is pre-adsorbed to the conductive material, the conductive material is coordinated via the binder in the vicinity of the positive electrode active material during the dispersion process. Thus, electrical characteristics such as low temperature characteristics of the obtained secondary battery are improved.
When the step (X) includes the first step (X-1) and the second step (X-2), the conductive material obtained in the second step (X-2) In the paste, since binders (binder resins) having different properties are uniformly mixed in advance, the time-dependent stability of the positive electrode slurry is improved by mixing the positive electrode active material in the step (Y).
 また、集電体上への塗工性を確保する観点から、二次電池正極用スラリーの粘度は、1500mPa・s以上10000mPa・s以下であることが好ましく、固形分濃度は50質量%以上90質量%以下であることが好ましい。二次電池正極用スラリーの粘度は、導電材ペーストの粘度と同様の方法で測定することができる。
 なお、導電材ペーストの量(固形分相当量)と正極活物質の量との比率は、適宜に調整し得る。
In addition, from the viewpoint of ensuring applicability on the current collector, the viscosity of the secondary battery positive electrode slurry is preferably 1500 mPa · s or more and 10,000 mPa · s or less, and the solid content concentration is 50% by mass or more and 90% or less. It is preferable that it is below mass%. The viscosity of the secondary battery positive electrode slurry can be measured by the same method as that of the conductive material paste.
The ratio between the amount of conductive material paste (corresponding to solid content) and the amount of positive electrode active material can be adjusted as appropriate.
(二次電池用正極の製造方法)
 本発明の二次電池用正極の製造方法は、本発明の二次電池正極用スラリーの製造方法により得られる二次電池正極用スラリーを、集電体の少なくとも一方の面に塗布し、乾燥して正極合材層を形成する工程を含む。より詳細には、当該製造方法は、二次電池正極用スラリーを集電体の少なくとも一方の面に塗布する工程(塗布工程)と、集電体の少なくとも一方の面に塗布された二次電池正極用スラリーを乾燥して集電体上に正極合材層を形成する工程(乾燥工程)とを含む。
(Method for producing positive electrode for secondary battery)
The secondary battery positive electrode manufacturing method of the present invention is obtained by applying the secondary battery positive electrode slurry obtained by the secondary battery positive electrode slurry manufacturing method of the present invention to at least one surface of the current collector and drying. And forming a positive electrode mixture layer. More specifically, the manufacturing method includes a step of applying the slurry for a secondary battery positive electrode to at least one surface of the current collector (application step), and a secondary battery applied to at least one surface of the current collector. A step of drying the positive electrode slurry to form a positive electrode mixture layer on the current collector (drying step).
 このようにして製造された二次電池用正極は、正極合材層が、上述した二次電池正極用スラリーを用いて形成されているので、当該二次電池用正極を用いれば、二次電池の内部抵抗を低減し、また低温特性、高温保存特性、および高温サイクル特性を向上させ得り、二次電池に優れた電気的特性を発揮させることができる。 In the positive electrode for secondary battery manufactured in this way, since the positive electrode mixture layer is formed using the slurry for secondary battery positive electrode described above, if the positive electrode for secondary battery is used, the secondary battery The internal resistance of the battery can be reduced, and the low temperature characteristics, high temperature storage characteristics, and high temperature cycle characteristics can be improved, and excellent electrical characteristics can be exhibited in the secondary battery.
[塗布工程]
 上記二次電池正極用スラリーを集電体上に塗布する方法としては、特に限定されず公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。この際、二次電池正極用スラリーを集電体の片面だけに塗布してもよいし、両面に塗布してもよい。塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる正極合材層の厚みに応じて適宜に設定しうる。
[Coating process]
A method for applying the slurry for a secondary battery positive electrode on the current collector is not particularly limited, and a known method can be used. Specifically, as a coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used. At this time, the secondary battery positive electrode slurry may be applied to only one side of the current collector, or may be applied to both sides. The thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the positive electrode mixture layer obtained by drying.
 ここで、二次電池正極用スラリーを塗布する集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、アルミニウムまたはアルミニウム合金からなる集電体を用い得る。この際、アルミニウムとアルミニウム合金とを組み合わせて用いてもよく、種類が異なるアルミニウム合金を組み合わせて用いてもよい。アルミニウムおよびアルミニウム合金は耐熱性を有し、電気化学的に安定であるため、優れた集電体材料である。 Here, as the current collector to which the slurry for the secondary battery positive electrode is applied, an electrically conductive and electrochemically durable material is used. Specifically, a current collector made of aluminum or an aluminum alloy can be used as the current collector. At this time, aluminum and an aluminum alloy may be used in combination, or different types of aluminum alloys may be used in combination. Aluminum and aluminum alloys are excellent current collector materials because they have heat resistance and are electrochemically stable.
[乾燥工程]
 集電体上の二次電池正極用スラリーを乾燥する方法としては、特に限定されず公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上の二次電池正極用スラリーを乾燥することで、集電体上に正極合材層を形成し、集電体と正極合材層とを備える二次電池用正極を得ることができる。
[Drying process]
A method for drying the slurry for the secondary battery positive electrode on the current collector is not particularly limited, and a known method can be used. For example, drying with hot air, hot air, low-humidity air, vacuum drying, infrared rays, electron beam, etc. And a drying method by irradiation. By drying the slurry for the secondary battery positive electrode on the current collector in this way, a positive electrode mixture layer is formed on the current collector, and a positive electrode for a secondary battery comprising the current collector and the positive electrode mixture layer is provided. Obtainable.
 なお、乾燥工程の後、金型プレスまたはロールプレスなどを用い、正極合材層に加圧処理を施してもよい。加圧処理により、正極合材層と集電体との密着性を向上させることができる。
 さらに、正極合材層が硬化性の重合体を含む場合は、正極合材層の形成後に前記重合体を硬化させることが好ましい。
Note that after the drying step, the positive electrode mixture layer may be subjected to pressure treatment using a die press or a roll press. By the pressure treatment, the adhesion between the positive electrode mixture layer and the current collector can be improved.
Furthermore, when the positive electrode mixture layer contains a curable polymer, the polymer is preferably cured after the positive electrode mixture layer is formed.
(二次電池)
 本発明の二次電池は、正極と、負極と、セパレーターと、電解液とを備え、正極として、本発明の二次電池用正極の製造方法により得られた二次電池用正極を用いたものである。そして、本発明の二次電池は、本発明の二次電池用正極の製造方法により製造した正極を用いているので、内部抵抗が低減され、また低温特性、高温保存特性、および高温サイクル特性に優れており、高性能である。以下、本発明の二次電池の一例として、リチウムイオン二次電池について詳述する。
(Secondary battery)
The secondary battery of the present invention includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the positive electrode for a secondary battery obtained by the method for producing a positive electrode for a secondary battery of the present invention is used as the positive electrode. It is. Since the secondary battery of the present invention uses the positive electrode manufactured by the method for manufacturing the positive electrode for secondary battery of the present invention, the internal resistance is reduced, and the low temperature characteristics, high temperature storage characteristics, and high temperature cycle characteristics are reduced. Excellent and high performance. Hereinafter, a lithium ion secondary battery will be described in detail as an example of the secondary battery of the present invention.
<負極>
 二次電池の負極としては、二次電池用負極として用いられる既知の負極を用いることができる。具体的には、負極としては、例えば、金属リチウムの薄板よりなる負極や、負極合材層を集電体上に形成してなる負極を用いることができる。
 なお、集電体としては、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金等の金属材料からなるものを用いることができる。また、負極合材層としては、負極活物質と結着材とを含む層を用いることができる。さらに、結着材としては、特に限定されず、任意の既知の材料を用いうる。
<Negative electrode>
As the negative electrode of the secondary battery, a known negative electrode used as a negative electrode for a secondary battery can be used. Specifically, as the negative electrode, for example, a negative electrode made of a thin plate of metallic lithium or a negative electrode formed by forming a negative electrode mixture layer on a current collector can be used.
In addition, as a collector, what consists of metal materials, such as iron, copper, aluminum, nickel, stainless steel, titanium, a tantalum, gold | metal | money, platinum, can be used. As the negative electrode mixture layer, a layer containing a negative electrode active material and a binder can be used. Furthermore, the binder is not particularly limited, and any known material can be used.
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF6、LiClO4、CF3SO3Liが好ましく、LiPF6が特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
<Electrolyte>
As the electrolytic solution, an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used. For example, a lithium salt is used as the supporting electrolyte. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Of these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because it is easily dissolved in a solvent and exhibits a high degree of dissociation. In addition, electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類を用いることが好ましく、エチレンカーボネートとエチルメチルカーボネートとの混合物を用いることがさらに好ましい。
 なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5~15質量%することが好ましく、2~13質量%とすることがより好ましく、5~10質量%とすることがさらに好ましい。また、電解液には、既知の添加剤、例えばフルオロエチレンカーボネートやエチルメチルスルホンなどを添加してもよい。
The organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte. For example, dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), Carbonates such as butylene carbonate (BC) and methyl ethyl carbonate (EMC); esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide Etc. are preferably used. Moreover, you may use the liquid mixture of these solvents. Among them, it is preferable to use carbonates because they have a high dielectric constant and a wide stable potential region, and it is more preferable to use a mixture of ethylene carbonate and ethyl methyl carbonate.
The concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. For example, it is preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and 5 to 10% by mass. Is more preferable. Further, known additives such as fluoroethylene carbonate and ethyl methyl sulfone may be added to the electrolytic solution.
<セパレーター>
 セパレーターとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレーター全体の膜厚を薄くすることができ、これにより、二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<Separator>
The separator is not particularly limited, and for example, those described in JP 2012-204303 A can be used. Among these, since the film thickness of the entire separator can be reduced, and the ratio of the electrode active material in the secondary battery can be increased, and the capacity per volume can be increased. A microporous film made of a resin such as polyethylene, polypropylene, polybutene, or polyvinyl chloride is preferable.
<二次電池の製造方法>
 本発明の二次電池は、例えば、正極と、負極とを、セパレーターを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
<Method for producing secondary battery>
The secondary battery of the present invention includes, for example, a positive electrode and a negative electrode that are overlapped with a separator, wound in accordance with the battery shape as necessary, folded into a battery container, and electrolyzed in the battery container. It can be manufactured by injecting and sealing the liquid. In order to prevent an increase in pressure inside the secondary battery, overcharge / discharge, and the like, a fuse, an overcurrent prevention element such as a PTC element, an expanded metal, a lead plate, and the like may be provided as necessary. The shape of the secondary battery may be any of, for example, a coin shape, a button shape, a sheet shape, a cylindrical shape, a square shape, and a flat shape.
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、導電材のバインダー吸着量、導電材ペーストの分散安定性、導電材ペーストの電位安定性、二次電池正極用スラリーの経時安定性、並びに二次電池の内部抵抗、低温特性、高温サイクル特性および高温保存特性は、それぞれ以下の方法を使用して評価した。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. In the following description, “%” and “part” representing amounts are based on mass unless otherwise specified.
In Examples and Comparative Examples, the binder adsorption amount of the conductive material, the dispersion stability of the conductive material paste, the potential stability of the conductive material paste, the temporal stability of the slurry for the secondary battery positive electrode, and the internal resistance of the secondary battery, the low temperature Characteristics, high temperature cycle characteristics and high temperature storage characteristics were evaluated using the following methods.
<導電材のバインダー吸着量>
 導電材ペーストに、固形分濃度が1質量%となるようにNMPを添加し、希釈液を得た。
 この希釈液を、遠心分離機を用いて、回転速度1000rpmで10分間遠心分離した。得られた沈殿物を真空乾燥機にて150℃で3時間乾燥させ乾燥物を得た。この時、乾燥による重量変化がなくなったことを確認した。
 この乾燥物を、熱天秤を用いて、窒素雰囲気下、昇温速度10℃/分で500℃まで加熱し、熱天秤による加熱処理前(乾燥物)の重量W1(g)、加熱処理後の重量W2(g)から、以下の式により導電材のバインダー吸着量を算出した。
 導電材のバインダー吸着量(mg/g)={(W1-W2)×1000}/W2
<導電材ペーストの分散安定性[評価法1]>
 導電材ペーストを15mLのガラス瓶中で一週間静置した。そして、レーザー回折式粒度分布測定装置を用いて、静置後の導電材ペースト中の粒子の分散粒子径を測定し、体積平均粒子径D50を求め、下記基準で分散性を判断した。体積平均粒子径D50が小さいほど(すなわち、バインダーが吸着していない状態での導電材の平均粒子径に近いほど)凝集性が小さく、導電材ペーストの分散安定性が良好であることを示す。
 A:体積平均粒子径D50が2μm未満
 B:体積平均粒子径D50が2μm以上5μm未満
 C:体積平均粒子径D50が5μm以上10μm未満
 D:体積平均粒子径D50が10μm以上15μm未満
 E:体積平均粒子径D50が15μm以上
<導電材ペーストの分散安定性[評価法2]>
 内径8mmのガラス製試験管の中に導電材ペーストを5cmの高さまで入れて一週間静置した。そして、静置中に上澄み液が確認された場合には、上澄み液が確認されるまでの静置日数を記録した。上澄み液が確認されるまでの静置日数が長いほど分散安定性に優れており、静置中に上澄み液が確認されない導電材ペーストは分散安定性が特に優れている。
<導電材ペーストの電位安定性>
 導電材ペーストを、コンマコーターで集電体としてのアルミ箔(厚さ20μm)上に乾燥後の目付量が10mg/cm2になるように塗布し、90℃で20分、120℃で20分間乾燥後、さらに60℃で10時間加熱処理して、集電体上に導電材コート膜を備える積層体Aを得た。
 この積層体Aを直径12mmの円形に切り抜いて、当該切り抜いた積層体Aの導電材コート膜側に、円形ポリプロピレン製多孔膜(直径18mm、厚さ25μm)、金属リチウム(直径14mm)、そしてエキスパンドメタルをこの順に積層し、積層体Bを得た。この積層体Bを、ポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器(直径20mm、高さ1.8mm、ステンレス鋼厚さ0.25mm)中に収納した。この容器中に電解液(エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(重量比でEC/EMC=3/7)にLiPF6を1mol/Lの濃度で溶解させた溶液)を空気が残らないように注入した。電解液の注入後、ポリプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ約2mmのコインセルを製造した。
 得られたコインセルに、25℃の雰囲気下、4.4Vの電圧を10時間印加した。10時間後に流れる導電材の単位質量当たりの電流密度(mA/g)を求め、酸化電流密度とした。酸化電流密度が小さいほど電圧を印加した際のバインダーの酸化反応が抑制されており、すなわち導電材ペーストを用いた電極の電位安定性に優れることを示す。
A:酸化電流密度が0.2mA/g未満
B:酸化電流密度が0.2mA/g以上0.3mA/g未満
C:酸化電流密度が0.3mA/g以上0.4mA/g未満
D:酸化電流密度が0.4mA/g以上0.5mA/g未満
E:酸化電流密度が0.5mA/g以上
<Binder adsorption amount of conductive material>
NMP was added to the conductive material paste so that the solid content concentration was 1% by mass to obtain a diluted solution.
This diluted solution was centrifuged for 10 minutes at a rotational speed of 1000 rpm using a centrifuge. The obtained precipitate was dried in a vacuum dryer at 150 ° C. for 3 hours to obtain a dried product. At this time, it was confirmed that there was no weight change due to drying.
This dried product was heated to 500 ° C. in a nitrogen atmosphere at a heating rate of 10 ° C./min using a thermobalance, and the weight W1 (g) before the heat treatment (dry product) by the thermobalance was measured. From the weight W2 (g), the binder adsorption amount of the conductive material was calculated by the following formula.
Binder adsorption amount of conductive material (mg / g) = {(W1-W2) × 1000} / W2
<Dispersion stability of conductive material paste [Evaluation Method 1]>
The conductive material paste was allowed to stand in a 15 mL glass bottle for one week. And the dispersion particle diameter of the particle | grains in the electrically conductive material paste after standing was measured using the laser diffraction type particle size distribution measuring apparatus, the volume average particle diameter D50 was calculated | required, and the dispersibility was judged on the following reference | standard. The smaller the volume average particle diameter D50 (that is, the closer to the average particle diameter of the conductive material in the state where the binder is not adsorbed), the smaller the cohesiveness and the better the dispersion stability of the conductive material paste.
A: Volume average particle diameter D50 is less than 2 μm B: Volume average particle diameter D50 is from 2 μm to less than 5 μm C: Volume average particle diameter D50 is from 5 μm to less than 10 μm D: Volume average particle diameter D50 is from 10 μm to less than 15 μm E: Volume average Particle diameter D50 is 15 μm or more <Dispersion stability of conductive material paste [Evaluation method 2]>
The conductive material paste was put to a height of 5 cm in a glass test tube having an inner diameter of 8 mm, and allowed to stand for one week. And when the supernatant liquid was confirmed during standing, the number of days of standing until the supernatant liquid was confirmed was recorded. The longer the standing time until the supernatant liquid is confirmed, the better the dispersion stability, and the conductive material paste in which the supernatant liquid is not confirmed during standing is particularly excellent in the dispersion stability.
<Potential stability of conductive paste>
The conductive material paste is applied on an aluminum foil (thickness 20 μm) as a current collector with a comma coater so that the weight per unit area after drying is 10 mg / cm 2 , 20 minutes at 90 ° C., 20 minutes at 120 ° C. After drying, heat treatment was further performed at 60 ° C. for 10 hours to obtain a laminate A having a conductive material coating film on the current collector.
This laminate A is cut into a circle having a diameter of 12 mm, and a circular polypropylene porous film (diameter 18 mm, thickness 25 μm), metallic lithium (diameter 14 mm), and expanded are formed on the cut-out laminate A on the conductive material coating film side. Metals were laminated in this order to obtain a laminate B. This laminate B was accommodated in a stainless steel coin-type outer container (diameter 20 mm, height 1.8 mm, stainless steel thickness 0.25 mm) provided with polypropylene packing. In this container, an electrolytic solution (a solution obtained by dissolving LiPF 6 at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) (EC / EMC = 3/7 by weight)) Was injected so that no air remained. After injecting the electrolyte, a 0.2 mm thick stainless steel cap is placed on the outer container via a polypropylene packing, and the battery can is sealed to produce a coin cell having a diameter of 20 mm and a thickness of about 2 mm. did.
A voltage of 4.4 V was applied to the obtained coin cell for 10 hours in an atmosphere at 25 ° C. The current density per unit mass (mA / g) of the conductive material flowing after 10 hours was determined and used as the oxidation current density. As the oxidation current density is smaller, the oxidation reaction of the binder when a voltage is applied is suppressed, that is, the potential stability of the electrode using the conductive material paste is excellent.
A: Oxidation current density of less than 0.2 mA / g B: Oxidation current density of 0.2 mA / g or more and less than 0.3 mA / g C: Oxidation current density of 0.3 mA / g or more and less than 0.4 mA / g D: Oxidation current density is 0.4 mA / g or more and less than 0.5 mA / g E: Oxidation current density is 0.5 mA / g or more
<二次電池正極用スラリーの経時安定性>
 JIS Z 8803:1991に準じて単一円筒形回転粘度計(25℃、回転数=60rpm、スピンドル形状:4)により正極用スラリーの粘度を測定し、測定開始後1分の値を求め、これをスラリー粘度Aとした。また、正極用スラリー作製1日後のスラリー粘度Bを測定した。正極用スラリーの粘性変化率を下記により算出し、以下の基準で評価した。粘性変化率が低いほどスラリー安定性に優れることを示す。
  粘性変化率(%)={(B-A)/A}×100
A:粘性変化率が10%未満
B:粘性変化率が10%以上20%未満
C:粘性変化率が20%以上50%未満
D:粘性変化率が50%以上100%未満
E:粘性変化率が100%以上
<Stability of secondary battery positive electrode slurry over time>
According to JIS Z 8803: 1991, the viscosity of the slurry for positive electrode was measured with a single cylindrical rotational viscometer (25 ° C., rotational speed = 60 rpm, spindle shape: 4), and a value of 1 minute was obtained after the measurement was started. The slurry viscosity was A. Moreover, the slurry viscosity B 1 day after preparation of the positive electrode slurry was measured. The viscosity change rate of the positive electrode slurry was calculated as follows and evaluated according to the following criteria. It shows that it is excellent in slurry stability, so that a viscosity change rate is low.
Viscosity change rate (%) = {(BA) / A} × 100
A: Viscosity change rate is less than 10% B: Viscosity change rate is 10% or more and less than 20% C: Viscosity change rate is 20% or more and less than 50% D: Viscosity change rate is 50% or more and less than 100% E: Viscosity change rate Is over 100%
<二次電池の内部抵抗>
 二次電池の内部抵抗を評価するために、以下のようにしてIV抵抗を測定した。25℃雰囲気下、1C(Cは定格容量(mA)/1h(時間)で表される数値)でSOC(State Of Charge:充電深度)の50%まで充電した後、SOCの50%を中心として0.5C、1.0C、1.5C、2.0Cで20秒間充電と20秒間放電とをそれぞれ行い、それぞれの場合(充電側および放電側)における20秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗(Ω)(充電時IV抵抗および放電時IV抵抗)として求めた。得られたIV抵抗の値(Ω)について、以下の基準で評価した。IV抵抗の値が小さいほど、内部抵抗が少ないことを示す。
A:IV抵抗が2Ω以下
B:IV抵抗が2Ω超2.3Ω以下
C:IV抵抗が2.3Ω超2.5Ω以下
D:IV抵抗が2.5Ω超3.0Ω以下
E:IV抵抗が3.0Ω超
<二次電池の低温特性>
 二次電池の低温特性を評価するために、以下のようにしてIV抵抗を測定した。-10℃雰囲気下、1C(Cは定格容量(mA)/1h(時間)で表される数値)でSOC(State Of Charge:充電深度)の50%まで充電した後、SOCの50%を中心として0.5C、1.0C、1.5C、2.0Cで15秒間充電と15秒間放電とをそれぞれ行い、それぞれの場合(充電側および放電側)における15秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗(Ω)(充電時IV抵抗および放電時IV抵抗)として求めた。得られたIV抵抗の値(Ω)について、以下の基準で評価した。IV抵抗の値が小さいほど、特に低温における内部抵抗が少なく、低温特性に優れていることを示す。
A:IV抵抗が10Ω以下
B:IV抵抗が10Ω超12Ω以下
C:IV抵抗が12Ω超15Ω以下
D:IV抵抗が15Ω超20Ω以下
E:IV抵抗が20Ω超
<二次電池の高温サイクル特性[評価法1]>
 二次電池を45℃雰囲気下、0.5Cの定電流法によって4.2Vに充電し、3.0Vまで放電する充放電を、200サイクル繰り返した。200サイクル終了時の電気容量と5サイクル終了時の電気容量の比(=(200サイクル終了時の電気容量/5サイクル終了時の電気容量)×100)(%)で表される充放電容量保持率を求めた。この値が大きいほど高温サイクル特性に優れることを示す。得られた値(%)について、以下の基準で評価した。
A:充放電容量保持率が95%以上
B:充放電容量保持率が90%以上95%未満
C:充放電容量保持率が85%以上90%未満
D:充放電容量保持率が80%以上85%未満
E:充放電容量保持率が80%未満
<二次電池の高温サイクル特性[評価法2]>
 5セルの二次電池を45℃雰囲気下、1.0Cの定電流法によって4.2Vに充電し、3.0Vまで放電する充放電を、100サイクル繰り返した。100サイクル終了時の電気容量と5サイクル終了時の電気容量の比(=(100サイクル終了時の電気容量/5サイクル終了時の電気容量)×100)(%)で表される充放電容量保持率を求めた。この値が大きいほど高温サイクル特性に優れることを示す。得られた値(%)について、以下の基準で評価した。
A:充放電容量保持率が95%以上
B:充放電容量保持率が90%以上95%未満
C:充放電容量保持率が85%以上90%未満
D:充放電容量保持率が80%以上85%未満
E:充放電容量保持率が80%未満
<二次電池の高温保存特性>
 二次電池を25℃雰囲気下、0.5Cの定電流法によってセル電圧4.2Vまで充電し、次いで3.0Vまで放電して、初期放電容量C0を測定した。その後、25℃雰囲気下、0.5Cの定電流法によってセル電圧4.2Vまで充電し、60℃雰囲気下で4週間保存(高温保存)した。高温保存後、25℃雰囲気下、0.5Cの定電流法3.0Vまで放電して高温保存後の残存容量C1を測定した。そして、下記式にしたがって容量維持率△Csを算出した。△Csが大きいほど、高温保存特性に優れることを示す。
 △Cs(%)=(C1/C0)×100
<Internal resistance of secondary battery>
In order to evaluate the internal resistance of the secondary battery, the IV resistance was measured as follows. After charging to 50% of SOC (State Of Charge: Depth of Charge) at 1C (C is a numerical value expressed by rated capacity (mA) / 1h (hour)) in a 25 ° C atmosphere, focusing on 50% of SOC Charging for 20 seconds and discharging for 20 seconds at 0.5C, 1.0C, 1.5C, and 2.0C, respectively, and the battery voltage after 20 seconds in each case (charging side and discharging side) with respect to the current value The slope was obtained as IV resistance (Ω) (IV resistance during charging and IV resistance during discharging). The obtained IV resistance value (Ω) was evaluated according to the following criteria. It shows that internal resistance is so small that the value of IV resistance is small.
A: IV resistance is 2Ω or less B: IV resistance is more than 2Ω, 2.3Ω or less C: IV resistance is more than 2.3Ω, 2.5Ω or less D: IV resistance is more than 2.5Ω, 3.0Ω or less E: IV resistance is 3 More than 0Ω <Low-temperature characteristics of secondary battery>
In order to evaluate the low temperature characteristics of the secondary battery, the IV resistance was measured as follows. After charging to 50% of SOC (State Of Charge: Charging Depth) at 1C (C is a numerical value expressed by rated capacity (mA) / 1h (hours)) at -10 ° C atmosphere, centering on 50% of SOC As a result, charging for 15 seconds and discharging for 15 seconds at 0.5C, 1.0C, 1.5C, and 2.0C, respectively, and the battery voltage after 15 seconds in each case (charging side and discharging side) as current values The slope was determined as IV resistance (Ω) (IV resistance during charging and IV resistance during discharging). The obtained IV resistance value (Ω) was evaluated according to the following criteria. The smaller the IV resistance value, the lower the internal resistance, especially at low temperatures, and the better the low temperature characteristics.
A: IV resistance is 10Ω or less B: IV resistance is more than 10Ω and 12Ω or less C: IV resistance is more than 12Ω and less than 15Ω D: IV resistance is more than 15Ω and less than 20Ω E: IV resistance is more than 20Ω <high temperature cycle characteristics of secondary battery [ Evaluation method 1] >>
The secondary battery was charged to 4.2 V by a constant current method of 0.5 C in an atmosphere of 45 ° C., and charging / discharging to discharge to 3.0 V was repeated 200 cycles. Charge / discharge capacity retention represented by the ratio of the electric capacity at the end of 200 cycles to the electric capacity at the end of 5 cycles (= (electric capacity at the end of 200 cycles / electric capacity at the end of 5 cycles) × 100) (%) The rate was determined. It shows that it is excellent in high temperature cycling characteristics, so that this value is large. The obtained value (%) was evaluated according to the following criteria.
A: Charge / discharge capacity retention is 95% or more B: Charge / discharge capacity retention is 90% or more and less than 95% C: Charge / discharge capacity retention is 85% or more and less than 90% D: Charge / discharge capacity retention is 80% or more Less than 85% E: Charge / discharge capacity retention is less than 80% <High-temperature cycle characteristics of secondary battery [Evaluation Method 2]>
Charging / discharging which charged the 5-cell secondary battery to 4.2V by the constant-current method of 1.0C in 45 degreeC atmosphere, and discharged to 3.0V was repeated 100 cycles. Charge / discharge capacity retention represented by the ratio of the electric capacity at the end of 100 cycles to the electric capacity at the end of 5 cycles (= (electric capacity at the end of 100 cycles / electric capacity at the end of 5 cycles) × 100) (%) The rate was determined. It shows that it is excellent in high temperature cycling characteristics, so that this value is large. The obtained value (%) was evaluated according to the following criteria.
A: Charge / discharge capacity retention is 95% or more B: Charge / discharge capacity retention is 90% or more and less than 95% C: Charge / discharge capacity retention is 85% or more and less than 90% D: Charge / discharge capacity retention is 80% or more Less than 85% E: Charge / discharge capacity retention is less than 80% <High temperature storage characteristics of secondary battery>
The secondary battery was charged to a cell voltage of 4.2 V by a constant current method of 0.5 C in an atmosphere of 25 ° C., then discharged to 3.0 V, and an initial discharge capacity C 0 was measured. Thereafter, the battery was charged to a cell voltage of 4.2 V by a constant current method of 0.5 C in a 25 ° C. atmosphere, and stored for 4 weeks (high temperature storage) in a 60 ° C. atmosphere. After high temperature storage, under 25 ° C. atmosphere to measure the residual capacity C 1 after high-temperature storage was discharged to a constant current method 3.0V of 0.5 C. And capacity retention ratio (DELTA) Cs was computed according to the following formula. It shows that it is excellent in high temperature storage characteristics, so that (triangle | delta) Cs is large.
ΔCs (%) = (C 1 / C 0 ) × 100
-実験1-
 実験1では、導電材ペーストにおける導電材ペーストの吸着量およびバインダーAの組成などが、導電材ペーストの分散安定性および電位安定性に与える影響について検討を行った。
-Experiment 1
In Experiment 1, the influence of the conductive material paste adsorption amount in the conductive material paste and the composition of the binder A on the dispersion stability and potential stability of the conductive material paste was examined.
(実施例1-1)
<バインダーA1の調製>
 撹拌機付きのオートクレーブに、イオン交換水240部、乳化剤としてアルキルベンゼンスルホン酸ナトリウム2.5部、(メタ)アクリル酸エステル単量体としてn-ブチルアクリレート(BA)35部、ニトリル基含有単量体としてアクリロニトリル(AN)20部をこの順で入れ、ボトル内を窒素で置換した後、共役ジエン単量体として1,3-ブタジエン(BD)45部(以上BA、AN,BDで単量体組成物を構成)を圧入し、重合開始剤として過硫酸アンモニウム0.25部を添加して反応温度40℃で重合反応させ、共役ジエン単量体単位、(メタ)アクリル酸エステル単量体単位およびニトリル基含有単量体単位を含んでなる重合体を得た。重合転化率は85%であった。
Example 1-1
<Preparation of binder A1>
In an autoclave equipped with a stirrer, 240 parts of ion-exchanged water, 2.5 parts of sodium alkylbenzenesulfonate as an emulsifier, 35 parts of n-butyl acrylate (BA) as a (meth) acrylate monomer, a nitrile group-containing monomer 20 parts of acrylonitrile (AN) are added in this order, and the inside of the bottle is replaced with nitrogen. Then, 45 parts of 1,3-butadiene (BD) as a conjugated diene monomer (monomer composition of BA, AN, and BD) And 0.25 parts of ammonium persulfate as a polymerization initiator and polymerization reaction at a reaction temperature of 40 ° C. to give a conjugated diene monomer unit, a (meth) acrylate monomer unit and a nitrile A polymer comprising a group-containing monomer unit was obtained. The polymerization conversion rate was 85%.
 得られた重合体に対してイオン交換水を添加して全固形分濃度を12質量%に調整した400ミリリットル(全固形分48グラム)の溶液を、撹拌機付きの1リットルオートクレーブに投入し、窒素ガスを10分間流して溶液中の溶存酸素を除去した後、水素添加反応触媒として、酢酸パラジウム75mgを、パラジウム(Pd)に対して4倍モルの硝酸を添加したイオン交換水180mLに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(第一段階の水素添加反応)させた。 400 ml (total solid content 48 grams) of a solution obtained by adding ion-exchanged water to the obtained polymer to adjust the total solid content concentration to 12% by mass was charged into a 1 liter autoclave equipped with a stirrer. After removing dissolved oxygen in the solution by flowing nitrogen gas for 10 minutes, as a hydrogenation reaction catalyst, 75 mg of palladium acetate was dissolved in 180 mL of ion-exchanged water added with 4-fold molar nitric acid with respect to palladium (Pd). And added. After the inside of the system was replaced with hydrogen gas twice, the content of the autoclave was heated to 50 ° C. while being pressurized with hydrogen gas to 3 MPa, and subjected to hydrogenation reaction (first stage hydrogenation reaction) for 6 hours. .
 次いで、オートクレーブを大気圧にまで戻し、さらに水素添加反応触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加したイオン交換水60mlに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(第二段階の水素添加反応)させた。 Next, the autoclave was returned to atmospheric pressure, and 25 mg of palladium acetate was dissolved in 60 ml of ion-exchanged water added with 4-fold mol of nitric acid with respect to Pd as a hydrogenation reaction catalyst. After the system was replaced twice with hydrogen gas, the contents of the autoclave were heated to 50 ° C. under pressure with hydrogen gas up to 3 MPa and subjected to hydrogenation reaction (second stage hydrogenation reaction) for 6 hours. .
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、アルキレン構造単位、(メタ)アクリル酸エステル単量体単位およびニトリル基含有単量体単位を含む重合体よりなるバインダーA1のNMP溶液を得た。 Thereafter, the contents were returned to room temperature, the inside of the system was changed to a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion. Further, 320 parts of NMP is added to 100 parts of this binder aqueous dispersion, water is evaporated under reduced pressure, and a polymer containing an alkylene structural unit, a (meth) acrylate monomer unit and a nitrile group-containing monomer unit An NMP solution of binder A1 was obtained.
<導電材ペーストの製造>
 導電材としてのアセチレンブラック(デンカブラック粉:電気化学工業、比表面積68m2/g、平均粒子径35nm)3.0部と、上述のようにして得たバインダーA1のNMP溶液を固形分相当量で3.0部(導電材100部当たり100部)と、適量のNMPとをディスパーにて攪拌(3000rpm、10分)し、その後、導電材ペーストの固形分濃度が10質量%になるように適量のNMPを入れてディスパーで撹拌(3000rpm、10分)して導電材ペーストを調製した。得られた導電材ペーストの、導電材のバインダー吸着量は375mg/g、粘度は5500mPa・sであった。作製した導電材ペーストを用いて導電材ペーストの分散安定性[評価法1]および電位安定性を評価した。結果を表1に示す。
<Manufacture of conductive material paste>
3.0 parts of acetylene black (Denka black powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle size 35 nm) as a conductive material, and an NMP solution of binder A1 obtained as described above corresponding to solid content Then, 3.0 parts (100 parts per 100 parts of the conductive material) and an appropriate amount of NMP are stirred with a disper (3000 rpm, 10 minutes), and then the solid content concentration of the conductive material paste is 10% by mass. An appropriate amount of NMP was added and stirred with a disper (3000 rpm, 10 minutes) to prepare a conductive material paste. In the obtained conductive material paste, the binder adsorption amount of the conductive material was 375 mg / g, and the viscosity was 5500 mPa · s. Dispersion stability [Evaluation Method 1] and potential stability of the conductive material paste were evaluated using the produced conductive material paste. The results are shown in Table 1.
(実施例1-2)
 バインダーの製造時に、単量体組成物として、BDを49部、BAを27部、ANを24部使用した以外は、実施例1-1と同様にして、バインダーA2を製造した。そして、バインダーA1に替えてバインダーA2を使用した以外は、実施例1-1と同様にして、固形分濃度10%の導電材ペーストを製造した。得られた導電材ペーストは、導電材のバインダー吸着量が390mg/g、粘度が4000mPa・sであった。得られた導電材ペーストの分散安定性[評価法1]および電位安定性について評価を行った。結果を表1に示す。
Example 1-2
Binder A2 was produced in the same manner as in Example 1-1 except that 49 parts of BD, 27 parts of BA, and 24 parts of AN were used as the monomer composition during the production of the binder. Then, a conductive material paste having a solid content concentration of 10% was produced in the same manner as in Example 1-1 except that binder A2 was used instead of binder A1. The obtained conductive material paste had a binder adsorption amount of 390 mg / g and a viscosity of 4000 mPa · s. Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
(実施例1-3)
 バインダーの製造時に、単量体組成物として、BDを30部、BAを30部、ANを40部使用した以外は、実施例1-1と同様にして、バインダーA3を製造した。そして、バインダーA1に替えてバインダーA3を使用した以外は、実施例1-1と同様にして、固形分濃度10%の導電材ペーストを製造した。得られた導電材ペーストは、導電材のバインダー吸着量が250mg/g、粘度が7000mPa・sであった。得られた導電材ペーストの分散安定性[評価法1]および電位安定性について評価を行った。結果を表1に示す。
(Example 1-3)
Binder A3 was produced in the same manner as in Example 1-1 except that 30 parts of BD, 30 parts of BA, and 40 parts of AN were used as the monomer composition during the production of the binder. A conductive material paste having a solid content concentration of 10% was produced in the same manner as in Example 1-1, except that binder A3 was used instead of binder A1. The obtained conductive material paste had a binder adsorption amount of 250 mg / g and a viscosity of 7000 mPa · s. Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
(実施例1-4)
 バインダーの製造時に、単量体組成物として、BDを30部、BAを25部、ANを40部、さらに親水性基含有単量体としてマレイン酸モノブチル(MBM)を5部使用した以外は、実施例1-1と同様にして、バインダーA4を製造した。そして、バインダーA1に替えてバインダーA4を使用した以外は、実施例1-1と同様にして、固形分濃度10%の導電材ペーストを製造した。得られた導電材ペーストは、導電材のバインダー吸着量が170mg/g、粘度が6000mPa・sであった。得られた導電材ペーストの分散安定性[評価法1]および電位安定性について評価を行った。結果を表1に示す。
(Example 1-4)
At the time of manufacturing the binder, except that 30 parts of BD, 25 parts of BA, 40 parts of AN, and 5 parts of monobutyl maleate (MBM) as a hydrophilic group-containing monomer were used as the monomer composition. Binder A4 was produced in the same manner as Example 1-1. Then, a conductive material paste having a solid content concentration of 10% was produced in the same manner as in Example 1-1 except that binder A4 was used instead of binder A1. The obtained conductive material paste had a binder adsorption amount of 170 mg / g and a viscosity of 6000 mPa · s. Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
(実施例1-5)
 バインダーの製造時に、単量体組成物として、BDを56部、ANを44部使用し、BAを使用しなかった以外は、実施例1-1と同様にして、バインダーA5を製造した。そして、バインダーA1に替えてバインダーA5を使用した以外は、実施例1-1と同様にして、固形分濃度10%の導電材ペーストを製造した。得られた導電材ペーストは、導電材のバインダー吸着量が150mg/g、粘度が3000mPa・sであった。得られた導電材ペーストの分散安定性[評価法1]および電位安定性について評価を行った。結果を表1に示す。
(Example 1-5)
Binder A5 was produced in the same manner as in Example 1-1, except that 56 parts of BD and 44 parts of AN were used as the monomer composition during the production of the binder, and that BA was not used. A conductive material paste having a solid content concentration of 10% was produced in the same manner as in Example 1-1, except that binder A5 was used instead of binder A1. The obtained conductive material paste had a binder adsorption amount of 150 mg / g and a viscosity of 3000 mPa · s. Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
(実施例1-6)
 撹拌機を備えた反応器に、イオン交換水70部、ドデシルベンゼンスルホン酸ナトリウム0.2部および過硫酸カリウム0.3部をそれぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。一方、別の容器でイオン交換水50部、ドデシルベンゼンスルホン酸ナトリウム0.5部、およびBA82部、AN15部、メタクリル酸(MAA)3部(以上、BA、AN、MAAで単量体組成物を構成)を混合して混合物を得た。この混合物を4時間かけて前記反応器に連続的に添加して重合を行った。添加中は、60℃で反応を行った。添加終了後、さらに70℃で3時間撹拌して反応を終了した。重合転化率は99%であった。得られた重合反応液を25℃に冷却後、アンモニア水を添加してpHを7に調整し、その後スチームを導入して未反応の単量体を除去し40%水分散液を得た。また、この水分散液100部にNMP320部を加え、減圧下で水を蒸発させて、(メタ)アクリル酸エステル単量体単位、ニトリル基含有単量体単位および親水性基含有単量体単位を含む重合体よりなるバインダーA6のNMP溶液を得た。
 そして、バインダーA1に替えてバインダーA6を使用した以外は、実施例1-1と同様にして、固形分濃度10%の導電材ペーストを製造した。得られた導電材ペーストは、導電材のバインダー吸着量が115mg/g、粘度が7500mPa・sであった。得られた導電材ペーストの分散安定性[評価法1]および電位安定性について評価を行った。結果を表1に示す。
(Example 1-6)
In a reactor equipped with a stirrer, 70 parts of ion exchange water, 0.2 part of sodium dodecylbenzenesulfonate and 0.3 part of potassium persulfate were respectively supplied, the gas phase part was replaced with nitrogen gas, and the temperature was changed to 60 ° C. The temperature rose. Meanwhile, in a separate container, 50 parts of ion-exchanged water, 0.5 part of sodium dodecylbenzenesulfonate, 82 parts of BA, 15 parts of AN, 3 parts of methacrylic acid (MAA) (above, monomer composition with BA, AN, MAA) To obtain a mixture. This mixture was continuously added to the reactor over 4 hours for polymerization. During the addition, the reaction was carried out at 60 ° C. After completion of the addition, the reaction was further completed by stirring at 70 ° C. for 3 hours. The polymerization conversion rate was 99%. After cooling the obtained polymerization reaction liquid to 25 ° C., ammonia water was added to adjust the pH to 7, and then steam was introduced to remove unreacted monomers to obtain a 40% aqueous dispersion. In addition, NMP (320 parts) was added to 100 parts of this aqueous dispersion, and water was evaporated under reduced pressure to obtain a (meth) acrylate monomer unit, a nitrile group-containing monomer unit, and a hydrophilic group-containing monomer unit. An NMP solution of binder A6 made of a polymer containing was obtained.
A conductive material paste having a solid content concentration of 10% was produced in the same manner as in Example 1-1, except that binder A6 was used instead of binder A1. The obtained conductive material paste had a binder adsorption amount of 115 mg / g and a viscosity of 7500 mPa · s. Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
(比較例1-1)
 導電材ペーストの製造時に、バインダーA1のNMP溶液を固形分相当量で0.6部に替えてPVdF(KFポリマー#7200、株式会社クレハ社製)のNMP溶液を固形分相当量で0.6部使用した以外は、実施例1-1と同様にして、固形分濃度10%の導電材ペーストを製造した。得られた導電材ペーストは、導電材のバインダー吸着量が37mg/g、導電材ペーストの粘度が9400mPa・sであった。得られた導電材ペーストの分散安定性[評価法1]および電位安定性について評価を行った。結果を表1に示す。
(Comparative Example 1-1)
At the time of producing the conductive material paste, the NMP solution of binder A1 was changed to 0.6 part in solid equivalent, and the NMP solution of PVdF (KF Polymer # 7200, manufactured by Kureha Co., Ltd.) was 0.6 in solid equivalent. A conductive material paste having a solid content concentration of 10% was produced in the same manner as in Example 1-1 except that a part of the conductive material paste was used. In the obtained conductive material paste, the binder adsorption amount of the conductive material was 37 mg / g, and the viscosity of the conductive material paste was 9400 mPa · s. Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
(比較例1-2)
 バインダーの製造時に、BAに替えて2-エチルヘキシルアクリレート(2-HEA)を用いた以外は、実施例1-6と同様にしてバインダーA7を製造した。そして、バインダーA1に替えてバインダーA7を使用した以外は、実施例1-1と同様にして、固形分濃度10%の導電材ペーストを製造した。得られた導電材ペーストは、導電材のバインダー吸着量が80mg/g、粘度が8500mPa・sであった。得られた導電材ペーストの分散安定性[評価法1]および電位安定性について評価を行った。結果を表1に示す。
(Comparative Example 1-2)
Binder A7 was produced in the same manner as in Example 1-6, except that 2-ethylhexyl acrylate (2-HEA) was used instead of BA during the production of the binder. Then, a conductive material paste having a solid content concentration of 10% was manufactured in the same manner as in Example 1-1 except that binder A7 was used instead of binder A1. The obtained conductive material paste had a binder adsorption amount of 80 mg / g and a viscosity of 8500 mPa · s. Dispersion stability [Evaluation Method 1] and potential stability of the obtained conductive material paste were evaluated. The results are shown in Table 1.
 なお、表1および表2中、バインダーの構造単位および各単量体単位の欄における「○」は、バインダーがその構造単位又は単量体単位を含むことを意味し、「―」は、バインダーがその構造単位又は単量体単位を含まないことを意味する。


In Tables 1 and 2, “◯” in the column of the structural unit of the binder and each monomer unit means that the binder includes the structural unit or the monomer unit, and “−” indicates the binder. Means that the structural unit or monomer unit is not included.


Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1-1~1-6では、分散安定性に優れ、かつ電位安定性に優れる正極を形成可能な導電材ペーストが得られることが分かる。
 一方、表1より、比較例1-1では、バインダーとしてアルキレン構造単位および(メタ)アクリル酸エステル単量体単位のいずれも含まないPVdFを使用しており、導電材のバインダー吸着量の値も小さいため、導電材ペーストの分散安定性および電位安定性に劣っていることがわかる。また比較例1-2では、(メタ)アクリル酸エステル単量体単位を含むバインダーA7を用いているが、導電材のバインダー吸着量の値が小さく、導電材ペーストの分散安定性および電位安定性に劣っていることがわかる。
From Table 1, it can be seen that in Examples 1-1 to 1-6, a conductive material paste capable of forming a positive electrode having excellent dispersion stability and potential stability is obtained.
On the other hand, from Table 1, in Comparative Example 1-1, PVdF containing neither an alkylene structural unit nor a (meth) acrylic acid ester monomer unit is used as a binder. Since it is small, it turns out that it is inferior to the dispersion stability and electric potential stability of electrically conductive material paste. In Comparative Example 1-2, the binder A7 containing a (meth) acrylic acid ester monomer unit is used, but the value of the binder adsorption amount of the conductive material is small, and the dispersion stability and potential stability of the conductive material paste. It turns out that it is inferior to.
 ここで、実施例1-1~1-6から、バインダーの組成を変更することで、導電材のバインダー吸着量を制御することができ、導電材ペーストの分散安定性および電位安定性を向上させうることがわかる。より具体的には、実施例1-1~1-4と実施例1-5、1-6の比較から、アルキレン構造単位および(メタ)アクリル酸エステル単量体単位の双方を含むバインダーを用いることで、それらいずれかのみを含むバインダーを用いた場合に比して、導電材ペーストの分散安定性および電位安定性がさらに優れたものとなることがわかり、また、実施例1-3と実施例1-4の比較から、親水性基含有単量体単位を含まないバインダーを用いることで、親水性基含有単量体単位を含むバインダーを用いた場合に比して、導電材ペーストの分散安定性がさらに優れたものとなることがわかる。 Here, from Examples 1-1 to 1-6, the binder adsorption amount of the conductive material can be controlled by changing the composition of the binder, which improves the dispersion stability and potential stability of the conductive material paste. I can understand. More specifically, based on a comparison between Examples 1-1 to 1-4 and Examples 1-5 and 1-6, a binder containing both an alkylene structural unit and a (meth) acrylate monomer unit is used. As a result, it was found that the dispersion stability and potential stability of the conductive material paste were further improved as compared with the case where a binder containing only one of them was used. From the comparison of Example 1-4, by using a binder that does not contain a hydrophilic group-containing monomer unit, compared with the case where a binder that contains a hydrophilic group-containing monomer unit is used, the conductive material paste is dispersed. It can be seen that the stability is further improved.
-実験2-
 さらに、導電材ペーストを用いて作製した二次電池の高温保存特性が良好になることを確認するため、以下の比較実験を行なった。
-Experiment 2-
Furthermore, in order to confirm that the high-temperature storage characteristics of the secondary battery produced using the conductive material paste were improved, the following comparative experiment was performed.
(実施例2-1)
<二次電池正極用スラリーおよび正極の製造>
 実施例1-6の導電材ペースト(バインダーA6を含む)中に、正極活物質として層状構造を有する三元系活物質(LiNi0.5Co0.2Mn0.32)(平均粒子径:10μm)100部と、溶剤として適量のNMPとを添加し、ディスパーにて攪拌し(3000rpm、20分)、正極用スラリーを調製した。NMPの添加量は、正極用スラリーの固形分濃度が65質量%となるように調整した。
Example 2-1
<Production of secondary battery positive electrode slurry and positive electrode>
100 parts of a ternary active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) (average particle size: 10 μm) having a layered structure as a positive electrode active material in the conductive material paste (including binder A6) of Example 1-6 Then, an appropriate amount of NMP was added as a solvent and stirred with a disper (3000 rpm, 20 minutes) to prepare a positive electrode slurry. The amount of NMP added was adjusted so that the solid content concentration of the positive electrode slurry was 65% by mass.
 集電体として、厚さ20μmのアルミ箔を準備した。上述のようにして得た正極用スラリーをコンマコーターでアルミ箔上に乾燥後の目付量が20mg/cm2になるように塗布し、90℃で20分、120℃で20分間乾燥後、60℃で10時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、密度が3.2g/cm3の正極合材層とアルミ箔とからなる正極を作製した。なお、正極の厚みは70μmであった。 An aluminum foil with a thickness of 20 μm was prepared as a current collector. The positive electrode slurry obtained as described above was applied onto an aluminum foil with a comma coater so that the basis weight after drying was 20 mg / cm 2 , dried at 90 ° C. for 20 minutes, and 120 ° C. for 20 minutes, A positive electrode raw material was obtained by heat treatment at 10 ° C. for 10 hours. This positive electrode original fabric was rolled by a roll press to produce a positive electrode comprising a positive electrode mixture layer having a density of 3.2 g / cm 3 and an aluminum foil. The positive electrode had a thickness of 70 μm.
<負極用スラリーおよび負極の製造>
 ディスパー付きのプラネタリーミキサーに、負極活物質として比表面積4m2/gの人造黒鉛(体積平均粒子径:24.5μm)を100部、分散剤としてカルボキシメチルセルロースの1%水溶液(第一工業製薬株式会社製「BSH-12」)を固形分相当で1部加え、イオン交換水で固形分濃度55%に調整した後、25℃で60分混合した。次に、イオン交換水で固形分濃度52%に調整した。その後、さらに25℃で15分混合し混合液を得た。
<Manufacture of slurry for negative electrode and negative electrode>
In a planetary mixer with a disper, 100 parts of artificial graphite (volume average particle size: 24.5 μm) having a specific surface area of 4 m 2 / g as a negative electrode active material, and a 1% aqueous solution of carboxymethyl cellulose as a dispersant (Daiichi Kogyo Seiyaku Co., Ltd.) 1 part of “BSH-12” produced by the company was added in an amount corresponding to the solid content, adjusted to a solid content concentration of 55% with ion-exchanged water, and then mixed at 25 ° C. for 60 minutes. Next, the solid content concentration was adjusted to 52% with ion-exchanged water. Thereafter, the mixture was further mixed at 25 ° C. for 15 minutes to obtain a mixed solution.
 上述のようにして得た混合液に、スチレン-ブタジエン共重合体(ガラス転移点温度が-15℃)の40%水分散液を固形分相当量で1.0部、およびイオン交換水を入れ、最終固形分濃度が50%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して、流動性の良い負極用のスラリーを得た。 Into the mixed solution obtained as described above, 1.0 part of a 40% aqueous dispersion of a styrene-butadiene copolymer (with a glass transition temperature of −15 ° C.) in an amount corresponding to a solid content, and ion-exchanged water are added. The final solid content concentration was adjusted to 50%, and the mixture was further mixed for 10 minutes. This was defoamed under reduced pressure to obtain a slurry for a negative electrode having good fluidity.
 上記負極用のスラリーを、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して負極原反を得た。この負極原反をロールプレスで圧延して、厚み80μmの負極合材層を有する負極を得た。 The slurry for the negative electrode was applied on a copper foil having a thickness of 20 μm as a current collector by a comma coater so that the film thickness after drying was about 150 μm and dried. This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Then, the negative electrode original fabric was obtained by heat-processing at 120 degreeC for 2 minute (s). This negative electrode original fabric was rolled with a roll press to obtain a negative electrode having a negative electrode mixture layer with a thickness of 80 μm.
<セパレーターの用意>
 単層のポリプロピレン製セパレーター(幅65mm、長さ500mm、厚さ25μm、乾式法により製造、気孔率55%)を、5cm×5cmの正方形に切り抜いた。
<Preparation of separator>
A single-layer polypropylene separator (width 65 mm, length 500 mm, thickness 25 μm, produced by a dry method, porosity 55%) was cut into a 5 cm × 5 cm square.
<二次電池の製造>
 電池の外装として、アルミニウム包材外装を用意した。上記で得られた正極を、4cm×4cmの正方形に切り出し、集電体側の表面がアルミニウム包材外装に接するように配置した。正極の正極合材層の面上に、上記で得られた正方形のセパレーターを配置した。さらに、上記で得られた負極を、4.2cm×4.2cmの正方形に切り出し、これをセパレーター上に、負極合材層側の表面がセパレーターに向かい合うよう配置した。さらに、ビニレンカーボネート(VC)を1.5%含有する、濃度1.0MのLiPF6溶液を充填した。このLiPF6溶液の溶媒はエチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合溶媒(EC/EMC=3/7(体積比))である。さらに、アルミニウム包材の開口を密封するために、150℃のヒートシールをしてアルミニウム外装を閉口し、リチウムイオン二次電池を製造した。得られたリチウムイオン二次電池について高温保存特性を評価した。結果を表2に示す。
<Manufacture of secondary batteries>
An aluminum packaging exterior was prepared as the battery exterior. The positive electrode obtained above was cut into a 4 cm × 4 cm square and arranged so that the current collector-side surface was in contact with the aluminum packaging exterior. The square separator obtained above was disposed on the surface of the positive electrode mixture layer of the positive electrode. Furthermore, the negative electrode obtained above was cut into a square of 4.2 cm × 4.2 cm, and this was arranged on the separator so that the surface on the negative electrode mixture layer side faces the separator. Further, vinylene carbonate (VC) containing 1.5%, was charged with LiPF 6 solution having a concentration of 1.0 M. The solvent of this LiPF 6 solution is a mixed solvent (EC / EMC = 3/7 (volume ratio)) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC). Furthermore, in order to seal the opening of the aluminum packaging material, heat sealing at 150 ° C. was performed to close the aluminum exterior, and a lithium ion secondary battery was manufactured. The obtained lithium ion secondary battery was evaluated for high-temperature storage characteristics. The results are shown in Table 2.
(比較例2-1)
 導電材ペーストを経ず、導電材としてのアセチレンブラック(デンカブラック粉:電気化学工業、比表面積68m2/g、平均粒子径35nm)を3.0部、バインダーA6のNMP溶液を固形分相当量で3.0部、正極活物質としての層状構造を有する三元系活物質(LiNi0.5Co0.2Mn0.32)を100部、および溶剤として適量のNMPとを添加し、ディスパーにて攪拌し(3000rpm、60分)、正極用スラリーを調製した。NMPの添加量は、正極用スラリーの固形分濃度が65質量%となるように調整した。かかる正極用スラリーを使用した以外は実施例2-1と同様にして正極および二次電池を作製し、二次電池の高温保存特性について評価した。結果を表2に示す。
(Comparative Example 2-1)
Without passing through the conductive material paste, 3.0 parts of acetylene black (Denka black powder: Denki Kagaku, specific surface area 68 m 2 / g, average particle size 35 nm) as the conductive material, and NMP solution of binder A6 corresponding to the solid content In addition, add 100 parts of a ternary active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) having a layered structure as a positive electrode active material and an appropriate amount of NMP as a solvent, and stir with a disper. (3000 rpm, 60 minutes), a slurry for positive electrode was prepared. The amount of NMP added was adjusted so that the solid content concentration of the positive electrode slurry was 65% by mass. A positive electrode and a secondary battery were produced in the same manner as in Example 2-1, except that this positive electrode slurry was used, and the high-temperature storage characteristics of the secondary battery were evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明の導電材ペーストを用いて形成した正極を備える実施例2-1の二次電池が、導電材ペーストを経ず、導電材、バインダーおよび正極活物質を一括混合することより調製した正極用スラリーから形成した正極を備える比較例2-1の二次電池に比して、優れた高温保存特性を有することが分かる。 Table 2 shows that the secondary battery of Example 2-1 including the positive electrode formed using the conductive material paste of the present invention is obtained by mixing the conductive material, the binder, and the positive electrode active material all together without passing through the conductive material paste. It can be seen that it has excellent high-temperature storage characteristics as compared with the secondary battery of Comparative Example 2-1, which comprises a positive electrode formed from the prepared positive electrode slurry.
-実験3-
 実験3では、導電材ペーストの固形分濃度、バインダーAの組成、バインダーAおよびバインダーBの配合量比、並びに正極用スラリーの製造方法などが、導電材ペーストの分散安定性、正極用スラリーの経時安定性、並びに二次電池の内部抵抗および高温サイクル特性に与える影響について検討を行った。
-Experiment 3
In Experiment 3, the solid content concentration of the conductive material paste, the composition of the binder A, the blending ratio of the binder A and the binder B, the manufacturing method of the positive electrode slurry, and the like were determined. The effects on stability and the internal resistance and high-temperature cycle characteristics of the secondary battery were investigated.
(実施例3-1)
<バインダーA8の製造>
 ニトリル基含有単量体としてのANの使用量を18.6部、共役ジエン単量体としてのBDの使用量を46.4部に変更した以外は、実施例1-1と同様にして、共役ジエン単量体単位、(メタ)アクリル酸エステル単量体単位、およびニトリル基含有単量体単位を含んでなる重合体を得た。重合転化率は85%、ヨウ素価は280mg/100mgであった。
 なお、ヨウ素価の測定手順は以下の通りである。まず、重合体の水分散液100gを、メタノール1リットルで凝固した後、60℃で12時間真空乾燥し、得られた乾燥重合体のヨウ素価を、JIS K6235(2006)に従って測定した。
Example 3-1
<Manufacture of binder A8>
Except that the amount of AN used as a nitrile group-containing monomer was changed to 18.6 parts and the amount of BD used as a conjugated diene monomer was changed to 46.4 parts, the same as in Example 1-1, A polymer comprising a conjugated diene monomer unit, a (meth) acrylate monomer unit, and a nitrile group-containing monomer unit was obtained. The polymerization conversion was 85%, and the iodine value was 280 mg / 100 mg.
In addition, the measurement procedure of iodine value is as follows. First, 100 g of an aqueous dispersion of a polymer was coagulated with 1 liter of methanol and then vacuum-dried at 60 ° C. for 12 hours. The iodine value of the obtained dried polymer was measured according to JIS K6235 (2006).
 得られた重合体に対して、実施例1-1と同様にして、第一段階の水素添加反応を行った。このとき、重合体のヨウ素価は35mg/100mgであった。 The resulting polymer was subjected to a first stage hydrogenation reaction in the same manner as in Example 1-1. At this time, the iodine value of the polymer was 35 mg / 100 mg.
 次いで、実施例1-1と同様にして、第二段階の水素添加反応を行った。 Subsequently, a second stage hydrogenation reaction was performed in the same manner as in Example 1-1.
 その後、内容物を常温に戻し、系内を窒素雰囲気とした後、エバポレータを用いて、固形分濃度が40%となるまで濃縮してバインダー水分散液を得た。また、このバインダー水分散液100部にNMP320部を加え、減圧下に水を蒸発させて、アルキレン構造単位、(メタ)アクリル酸エステル単量体単位およびニトリル基含有単量体単位を含む重合体よりなるバインダーA8のNMP溶液を得た。 Thereafter, the contents were returned to room temperature, the inside of the system was changed to a nitrogen atmosphere, and then concentrated using an evaporator until the solid concentration was 40% to obtain a binder aqueous dispersion. Further, 320 parts of NMP is added to 100 parts of this binder aqueous dispersion, water is evaporated under reduced pressure, and a polymer containing an alkylene structural unit, a (meth) acrylate monomer unit and a nitrile group-containing monomer unit An NMP solution of binder A8 was obtained.
<導電材ペーストの製造>
 導電材としてのアセチレンブラック(デンカブラック粉:電気化学工業、比表面積68m2/g、平均粒子径35nm)3.0部と、上述のようにして得たバインダーA8のNMP溶液を固形分相当量で0.6部と、適量のNMPとをディスパーにて攪拌(3000rpm、10分)し、その後、バインダーBとして、PVdF(KFポリマー#7200、株式会社クレハ社製)を固形分相当量)で2.4部と、導電材ペーストの固形分濃度が10質量%になるように適量のNMPを入れてディスパーで撹拌(3000rpm、10分)して導電材ペーストを調製した。得られた導電材ペーストの導電材のバインダー吸着量は200mg/gであり、粘度は、5000mPa・sであった。作製した導電材ペーストを用いて導電材ペーストの分散安定性[評価法2]を評価した。結果を表3に示す。
<Manufacture of conductive material paste>
3.0 parts of acetylene black (Denka black powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle size 35 nm) as a conductive material, and an NMP solution of binder A8 obtained as described above corresponding to solid content Then, 0.6 part and an appropriate amount of NMP are stirred with a disper (3000 rpm, 10 minutes), and then PVdF (KF polymer # 7200, manufactured by Kureha Co., Ltd.) is used as binder B in a solid equivalent amount). An appropriate amount of NMP was added to 2.4 parts and the solid content concentration of the conductive material paste was 10% by mass, and stirred with a disper (3000 rpm, 10 minutes) to prepare a conductive material paste. The binder amount of the conductive material of the obtained conductive material paste was 200 mg / g, and the viscosity was 5000 mPa · s. The dispersion stability [Evaluation Method 2] of the conductive material paste was evaluated using the produced conductive material paste. The results are shown in Table 3.
<二次電池正極用スラリーおよび正極の製造>
 上述のようにして得た導電材ペースト中に、正極活物質として層状構造を有する三元系活物質(LiNi0.5Co0.2Mn0.32)(平均粒子径:10μm)100部と、溶剤として適量のNMPとを添加し、ディスパーにて攪拌し(3000rpm、20分)、正極用スラリーを調製した。NMPの添加量は、正極用スラリーの固形分濃度が65質量%となるように調整した。作製した正極用スラリーを用いてスラリーの経時安定性の評価を行った。結果を表3に示す。
<Production of secondary battery positive electrode slurry and positive electrode>
In the conductive material paste obtained as described above, 100 parts of a ternary active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) (average particle size: 10 μm) having a layered structure as a positive electrode active material and an appropriate amount as a solvent Of NMP was added and stirred with a disper (3000 rpm, 20 minutes) to prepare a positive electrode slurry. The amount of NMP added was adjusted so that the solid content concentration of the positive electrode slurry was 65% by mass. Using the prepared positive electrode slurry, the temporal stability of the slurry was evaluated. The results are shown in Table 3.
 そして、上記で得られた正極用スラリーを使用した以外は実施例2-1と同様にして、密度が3.2g/cm3の正極合材層とアルミ箔とからなる正極を作製した。なお、正極の厚みは70μmであった。 A positive electrode composed of a positive electrode mixture layer having a density of 3.2 g / cm 3 and an aluminum foil was produced in the same manner as in Example 2-1, except that the positive electrode slurry obtained above was used. The positive electrode had a thickness of 70 μm.
<負極用スラリーおよび負極の製造>
 実施例2-1と同様にして、負極用スラリーを調製し、そして厚み80μmの負極合材層を有する負極を得た。
<Manufacture of slurry for negative electrode and negative electrode>
In the same manner as in Example 2-1, a negative electrode slurry was prepared, and a negative electrode having a negative electrode mixture layer having a thickness of 80 μm was obtained.
<セパレーターの用意>
 実施例2-1と同様にして、セパレーターを用意した。
<Preparation of separator>
A separator was prepared in the same manner as in Example 2-1.
<二次電池の製造>
 上記で得られた正極を使用した以外は実施例2-1と同様にして、リチウムイオン二次電池を製造した。
 得られたリチウムイオン二次電池について、内部抵抗および高温サイクル特性[評価法1]を評価した。結果を表3に示す。
<Manufacture of secondary batteries>
A lithium ion secondary battery was produced in the same manner as in Example 2-1, except that the positive electrode obtained above was used.
The obtained lithium ion secondary battery was evaluated for internal resistance and high-temperature cycle characteristics [Evaluation Method 1]. The results are shown in Table 3.
(実施例3-2)
 導電材ペーストの製造時に、バインダーA8およびバインダーBの配合比率を表3のように変更した以外は実施例3-1と同様にして、導電材ペーストを製造した。得られた導電材ペーストの導電材のバインダー吸着量は190mg/gであり、粘度は7000mPa・sであった。かかる導電材ペーストを使用した以外は実施例3-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表3に示す。
(Example 3-2)
A conductive material paste was manufactured in the same manner as in Example 3-1, except that the blending ratio of the binder A8 and the binder B was changed as shown in Table 3 when the conductive material paste was manufactured. The binder amount of the conductive material of the obtained conductive material paste was 190 mg / g, and the viscosity was 7000 mPa · s. Except for using such a conductive material paste, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 3-1, and evaluation was performed on each evaluation item. The results are shown in Table 3.
(実施例3-3)
 導電材ペーストの製造時に、バインダーA8およびバインダーBの配合比率を表3のように変更した以外は実施例3-1と同様にして、導電材ペーストを製造した。得られた導電材ペーストの導電材のバインダー吸着量は250mg/gであり、粘度は3000mPa・sであった。かかる導電材ペーストを使用した以外は実施例3-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表3に示す。
(Example 3-3)
A conductive material paste was manufactured in the same manner as in Example 3-1, except that the blending ratio of the binder A8 and the binder B was changed as shown in Table 3 when the conductive material paste was manufactured. The binder amount of the conductive material of the obtained conductive material paste was 250 mg / g, and the viscosity was 3000 mPa · s. Except for using such a conductive material paste, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 3-1, and evaluation was performed on each evaluation item. The results are shown in Table 3.
(実施例3-4)
 導電材ペーストの製造時に、固形分濃度を13%とし、バインダーA8およびバインダーBの配合比率を表3のように変更した以外は実施例3-1と同様にして、導電材ペーストを製造した。得られた導電材ペーストの導電材のバインダー吸着量は270mg/gであり、粘度は、7500mPa・sであった。かかる導電材ペーストを使用した以外は実施例3-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表3に示す。
(Example 3-4)
A conductive material paste was manufactured in the same manner as in Example 3-1, except that the solid content concentration was 13% and the blending ratio of binder A8 and binder B was changed as shown in Table 3 when the conductive material paste was manufactured. The binder amount of the conductive material of the obtained conductive material paste was 270 mg / g, and the viscosity was 7500 mPa · s. Except for using such a conductive material paste, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 3-1, and evaluation was performed on each evaluation item. The results are shown in Table 3.
(実施例3-5)
 導電材ペーストの製造時に、先ず、導電材としてのアセチレンブラック(デンカブラック粉:電気化学工業、比表面積68m2/g、平均粒子径35nm)3.0部と、バインダーBとして、PVdF(KFポリマー#7200、株式会社クレハ社製)を固形分相当量で2.4部と、適量のNMP溶液をディスパーにて攪拌(3000rpm、10分)した。その後、バインダーA8のNMP溶液を固形分相当量で0.6部(固形分濃度8.0質量%)と、固形分濃度が7質量%となるように、適量のNMPを入れてディスパーで撹拌(3000rpm、10分)して導電材ペーストを調製した。得られた導電材ペーストの導電材のバインダー吸着量は170mg/gであり、粘度は、2000mPa・sであった。このようにして得た導電材ペーストを用いた以外は実施例3-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表3に示す。なお、得られた導電材ペーストの分散安定性[評価法2]を評価したところ、5日目に沈降が確認されたが、内部抵抗および高温サイクル特性の評価に使用した二次電池には、調製当日の導電材ペーストを使用した。
 なお、バインダーBと導電材とを先に混合してから、バインダーA8を混合することで、比較的分散能が高いバインダーA8が導電材に吸着しにくくなるため、導電材の分散性が低下すると共に、導電材ペーストの粘度が比較的高くなる。
(Example 3-5)
At the time of production of the conductive material paste, first, acetylene black (DENKA BLACK powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle size 35 nm) 3.0 parts as a conductive material, and PVdF (KF polymer) as a binder B # 7200 (manufactured by Kureha Co., Ltd.) was 2.4 parts by solid equivalent, and an appropriate amount of NMP solution was stirred with a disper (3000 rpm, 10 minutes). Thereafter, an NMP solution of binder A8 is added in an amount of NMP corresponding to the solid content (solid content concentration 8.0% by mass) and the solid content concentration is 7% by mass, and stirred with a disper. (3000 rpm, 10 minutes) to prepare a conductive material paste. The binder amount of the conductive material of the obtained conductive material paste was 170 mg / g, and the viscosity was 2000 mPa · s. A positive electrode slurry, a positive electrode, and a secondary battery were prepared in the same manner as in Example 3-1, except that the conductive material paste thus obtained was used, and each evaluation item was evaluated. The results are shown in Table 3. In addition, when the dispersion stability [Evaluation Method 2] of the obtained conductive material paste was evaluated, sedimentation was confirmed on the fifth day, but the secondary battery used for evaluation of internal resistance and high-temperature cycle characteristics was The conductive material paste on the day of preparation was used.
In addition, by mixing the binder B and the conductive material first, and then mixing the binder A8, the binder A8 having a relatively high dispersibility becomes difficult to be adsorbed to the conductive material, so that the dispersibility of the conductive material is lowered. At the same time, the viscosity of the conductive material paste becomes relatively high.
(実施例3-6)
 バインダーAとして、以下のようにして製造したバインダーA9を用いた。バインダーA9の製造にあたり、(メタ)アクリル酸エステル単量体としてのn-ブチルアクリレート(BA)を配合せず、ニトリル基含有単量体としてアクリロニトリル(AN)37部、および共役ジエン単量体として1,3-ブタジエン(BD)63部を使用した以外は、実施例3-1と同様にして、バインダーA9を得た。得られたバインダーA9のNMP溶液の濃度は、12質量%であった。
 導電材ペーストの製造時に、固形分濃度を13質量%とし、得られたバインダーA9を使用した以外は実施例3-1と同様にして、導電材ペーストを調製した。得られた導電材ペーストの導電材のバインダー吸着量は130mg/gであり、粘度は5000mPa・sであった。上述のようにして得た導電材ペーストを用いた以外は実施例3-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表3に示す。
(Example 3-6)
As binder A, binder A9 produced as follows was used. In the production of binder A9, n-butyl acrylate (BA) as a (meth) acrylic acid ester monomer is not blended, 37 parts of acrylonitrile (AN) as a nitrile group-containing monomer, and as a conjugated diene monomer A binder A9 was obtained in the same manner as in Example 3-1, except that 63 parts of 1,3-butadiene (BD) was used. The density | concentration of the NMP solution of obtained binder A9 was 12 mass%.
A conductive material paste was prepared in the same manner as in Example 3-1, except that the solid content concentration was 13% by mass during the production of the conductive material paste and the obtained binder A9 was used. The amount of binder adsorbed on the conductive material of the obtained conductive material paste was 130 mg / g, and the viscosity was 5000 mPa · s. A positive electrode slurry, a positive electrode, and a secondary battery were prepared in the same manner as in Example 3-1, except that the conductive material paste obtained as described above was used, and each evaluation item was evaluated. The results are shown in Table 3.
(実施例3-7)
<バインダーA10の製造>
 撹拌機付きのオートクレーブに、イオン交換水300部、(メタ)アクリル酸エステル単量体としてn-ブチルアクリレート82部およびメタクリル酸3.0部、ニトリル基含有単量体としてアクリロニトリル15部、並びに分子量調整剤としてt-ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。このラテックス100部にNMP320部を加え、減圧下に水を蒸発させて、バインダーA10を得た。得られたバインダーA10のNMP溶液の濃度は、12質量%であった。
(Example 3-7)
<Manufacture of binder A10>
In an autoclave equipped with a stirrer, 300 parts of ion exchange water, 82 parts of n-butyl acrylate and 3.0 parts of methacrylic acid as a (meth) acrylic acid ester monomer, 15 parts of acrylonitrile as a nitrile group-containing monomer, and molecular weight 0.05 part of t-dodecyl mercaptan as a regulator and 0.3 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, followed by polymerization by heating to 70 ° C. to obtain an aqueous dispersion. The polymerization conversion rate determined from the solid content concentration was approximately 99%. 320 parts of NMP was added to 100 parts of this latex, and water was evaporated under reduced pressure to obtain Binder A10. The density | concentration of the NMP solution of obtained binder A10 was 12 mass%.
 上述のようにして得たバインダーA10を使用した以外は実施例3-1と同様にして、導電材ペーストを調製した。得られた導電材ペーストの導電材のバインダー吸着量は105mg/gであり、粘度は9300mPa・sであった。上述のようにして得た導電材ペーストを用いた以外は実施例3-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表3に示す。 A conductive material paste was prepared in the same manner as in Example 3-1, except that the binder A10 obtained as described above was used. The conductive material of the obtained conductive material paste had a binder adsorption amount of 105 mg / g and a viscosity of 9300 mPa · s. A positive electrode slurry, a positive electrode, and a secondary battery were prepared in the same manner as in Example 3-1, except that the conductive material paste obtained as described above was used, and each evaluation item was evaluated. The results are shown in Table 3.
(実施例3-8)
<バインダーA11の製造>
 撹拌機付きのオートクレーブに、イオン交換水300部、(メタ)アクリル酸エステル単量体としてn-ブチルアクリレート72部およびメタクリル酸3.0部、ニトリル基含有単量体としてアクリロニトリル25部、並びに分子量調整剤としてt-ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に撹拌した後、70℃に加温して重合し、水分散液を得た。固形分濃度から求めた重合転化率はほぼ99%であった。このラテックス100部にNMP320部を加え、減圧下に水を蒸発させて、バインダーA11を得た。得られたバインダーA11のNMP溶液の濃度は、12質量%であった。
(Example 3-8)
<Manufacture of binder A11>
In an autoclave equipped with a stirrer, 300 parts of ion-exchanged water, 72 parts of n-butyl acrylate as a (meth) acrylic acid ester monomer and 3.0 parts of methacrylic acid, 25 parts of acrylonitrile as a nitrile group-containing monomer, and molecular weight 0.05 part of t-dodecyl mercaptan as a regulator and 0.3 part of potassium persulfate as a polymerization initiator were added and stirred sufficiently, followed by polymerization by heating to 70 ° C. to obtain an aqueous dispersion. The polymerization conversion rate determined from the solid content concentration was approximately 99%. 320 parts of NMP was added to 100 parts of this latex, and water was evaporated under reduced pressure to obtain a binder A11. The density | concentration of the NMP solution of obtained binder A11 was 12 mass%.
 上述のようにして得たバインダーA11を使用した以外は実施例3-1と同様にして、導電材ペーストを調製した。得られた導電材ペーストの導電材のバインダー吸着量は103mg/gであり、粘度は9150mPa・sであった。上述のようにして得た導電材ペーストを用いた以外は実施例3-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表3に示す。 A conductive material paste was prepared in the same manner as in Example 3-1, except that the binder A11 obtained as described above was used. The binder amount of the conductive material of the obtained conductive material paste was 103 mg / g, and the viscosity was 9150 mPa · s. A positive electrode slurry, a positive electrode, and a secondary battery were prepared in the same manner as in Example 3-1, except that the conductive material paste obtained as described above was used, and each evaluation item was evaluated. The results are shown in Table 3.
(実施例3-9)
 導電材ペーストの製造時に、バインダーA8を0.8部、バインダーBであるPVdFを3.2部、導電材であるアセチレンブラックを2.0部に配合量を変更した以外は、実施例3-1と同様にして導電材ペースト、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。得られた導電材ペーストの導電材のバインダー吸着量は240mg/gであり、粘度は、5000mPa・sであった。
(Example 3-9)
Example 3 except that the amount of the binder A8 was changed to 0.8 part, the binder B, PVdF, 3.2 parts, and the conductive material, acetylene black, 2.0 parts at the time of producing the conductive material paste. In the same manner as in No. 1, a conductive material paste, a positive electrode slurry, a positive electrode, and a secondary battery were prepared, and evaluation was performed on each evaluation item. The binder amount of the conductive material of the obtained conductive material paste was 240 mg / g, and the viscosity was 5000 mPa · s.
(比較例3-1)
 実施例3-6と同様にして製造したバインダーA9を用い、導電材ペーストの製造時に、固形分濃度を3%とした以外は、実施例3-1と同様にして導電材ペーストを製造した。得られた導電材ペーストの導電材のバインダー吸着量は50mg/gであり、粘度は装置の検出下限値を下回った。このようにして得た導電材ペーストを用いた以外は実施例3-1と同様にして、各評価項目について評価を試みたが、導電材ペーストは3日で沈降し、二次電池の内部抵抗および高温サイクル特性[評価法1]は評価不能であった。結果を表3に示す。
(Comparative Example 3-1)
A conductive material paste was produced in the same manner as in Example 3-1, except that the binder A9 produced in the same manner as in Example 3-6 was used and the solid content concentration was changed to 3% during the production of the conductive material paste. The binder adsorption amount of the conductive material of the obtained conductive material paste was 50 mg / g, and the viscosity was lower than the detection lower limit of the apparatus. Evaluation was made for each evaluation item in the same manner as in Example 3-1, except that the conductive material paste thus obtained was used. The conductive material paste settled in 3 days, and the internal resistance of the secondary battery was reduced. Further, the high-temperature cycle characteristics [Evaluation Method 1] could not be evaluated. The results are shown in Table 3.
(比較例3-2)
 実施例3-6と同様にして製造したバインダーA9を0.6部と、バインダーBとしてPVdF(KFポリマー#7200、株式会社クレハ社製)を固形分相当で2.4部と、導電材としてのアセチレンブラック(デンカブラック粉:電気化学工業、比表面積68m2/g、平均粒子径35nm)3.0部と、三元系活物質(LiNi0.5Co0.2Mn0.32)(平均粒子径:10μm)100部と、溶剤として適量のNMPとをプラネタリーミキサーにて攪拌し(3000rpm、40分)、正極用スラリーを調製した。得られたスラリーの固形分濃度は、実施例3-1と同様であった。
(Comparative Example 3-2)
Binder A9 produced in the same manner as in Example 3-6, 0.6 part, PVdF (KF Polymer # 7200, manufactured by Kureha Co., Ltd.) as binder B, 2.4 parts corresponding to the solid content, and conductive material Of acetylene black (Denka black powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle size 35 nm) and ternary active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) (average particle size: 10 parts) and an appropriate amount of NMP as a solvent were stirred with a planetary mixer (3000 rpm, 40 minutes) to prepare a positive electrode slurry. The solid content concentration of the obtained slurry was the same as in Example 3-1.
 上述のようにして得られた正極用スラリーを使用した以外は実施例3-1と同様にして、正極、二次電池を作製し、各評価項目について評価を行った。結果を表3に示す。 A positive electrode and a secondary battery were produced in the same manner as in Example 3-1, except that the positive electrode slurry obtained as described above was used, and each evaluation item was evaluated. The results are shown in Table 3.
(比較例3-3)
 導電材ペーストの製造時に、バインダーAを使用せず、バインダーBとしてPVdFを3質量部使用して、固形分濃度を7%とした以外は、実施例3-1と同様にして、導電材ペーストを製造した。得られた導電材ペーストの導電材のバインダー吸着量は37mg/gであり、粘度は、8000mPa・sであった。かかる導電材ペーストを使用した以外は実施例3-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表3に示す。
(Comparative Example 3-3)
Conductive material paste was prepared in the same manner as in Example 3-1, except that binder A was not used at the time of production of the conductive material paste, 3 parts by mass of PVdF was used as binder B, and the solid concentration was 7%. Manufactured. The binder amount of the conductive material of the obtained conductive material paste was 37 mg / g, and the viscosity was 8000 mPa · s. Except for using such a conductive material paste, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 3-1, and evaluation was performed on each evaluation item. The results are shown in Table 3.
 なお、表3および4中、「導電材のバインダー吸着量」の欄における「―」は、導電材ペーストを調製していないことを意味する。 In Tables 3 and 4, “-” in the column “Binder adsorption amount of conductive material” means that a conductive material paste is not prepared.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3より、実施例3-1~3-9の導電材ペースト、二次電池正極用スラリーおよび二次電池は、比較例3-1~3-3の導電材ペースト、二次電池正極用スラリーおよび二次電池と比較し、内部抵抗が低く、高温サイクル特性が良好であることが分かる。
 特に、表3の実施例3-1~3-5より導電材ペーストの固形分濃度および粘度を調整することにより、二次電池正極用スラリーの経時安定性を向上させると共に、二次電池の内部抵抗を低減し、さらに、高温サイクル特性を向上させることができることが分かる。
 また、表3の実施例3-1、3-6~3-8より、バインダーAに配合する三種の単量体単位の配合割合を調整することで、導電材ペーストの分散安定性および二次電池正極用スラリーの経時安定性を高くし、二次電池の内部抵抗を低くし、高温サイクル特性を向上させることができることが分かる。なお、実施例3-6では、バインダーAにアクリロニトリルを配合しなかったことで、二次電池正極のサイクル特性が比較的低くなり、また、導電性ペーストの粘度が比較的高いことに起因して、二次電池正極の内部抵抗が比較的高くなったことが分かる。
 また、表3の実施例3-1および比較例3-2より、導電材、バインダー、および正極活物質を一括混合することで、スラリー中における導電材の分散が不十分となり、内部特性および高温サイクル特性のみならず、スラリーの経時安定性も劣化したことが分かる。
From Table 3, the conductive material paste of Examples 3-1 to 3-9, the slurry for secondary battery positive electrode, and the secondary battery are the conductive material paste of Comparative Examples 3-1 to 3-3, slurry for secondary battery positive electrode It can be seen that the internal resistance is low and the high-temperature cycle characteristics are good as compared with the secondary battery.
In particular, by adjusting the solid content concentration and viscosity of the conductive material paste from Examples 3-1 to 3-5 in Table 3, the aging stability of the secondary battery positive electrode slurry is improved, and the interior of the secondary battery is increased. It can be seen that the resistance can be reduced and the high-temperature cycle characteristics can be improved.
Further, from Examples 3-1 and 3-6 to 3-8 in Table 3, by adjusting the blending ratio of the three types of monomer units blended in the binder A, the dispersion stability of the conductive material paste and the secondary It can be seen that the time stability of the battery positive electrode slurry can be increased, the internal resistance of the secondary battery can be decreased, and the high-temperature cycle characteristics can be improved. In Example 3-6, since acrylonitrile was not blended in binder A, the cycle characteristics of the secondary battery positive electrode were relatively low, and the viscosity of the conductive paste was relatively high. It can be seen that the internal resistance of the secondary battery positive electrode is relatively high.
Further, from Example 3-1 and Comparative Example 3-2 in Table 3, the conductive material, the binder, and the positive electrode active material are mixed together, resulting in insufficient dispersion of the conductive material in the slurry. It can be seen that not only the cycle characteristics but also the time stability of the slurry was deteriorated.
-実験4-
 実験4では、導電材ペーストの調製方法、固形分濃度および粘度、バインダーAの組成、並びに正極用スラリーの製造方法などが、導電材ペーストの分散安定性、並びに二次電池の低温特性および高温サイクル特性に与える影響について検討を行った。
-Experiment 4
In Experiment 4, the preparation method of the conductive material paste, the solid content concentration and viscosity, the composition of the binder A, the production method of the slurry for the positive electrode, etc., the dispersion stability of the conductive material paste, the low temperature characteristics and the high temperature cycle of the secondary battery The effect on characteristics was examined.
(実施例4-1)
<バインダーA8の製造>
 実施例3-1と同様にして、バインダーA8のNMP溶液を得た。
Example 4-1
<Manufacture of binder A8>
In the same manner as in Example 3-1, an NMP solution of binder A8 was obtained.
<予混合ペーストの製造>
 導電材としてアセチレンブラック(デンカブラック粉:電気化学工業、比表面積68m2/g、平均粒子径35nm)3.0部と、第一結着材成分として上記バインダーA8のNMP溶液を固形分相当量で0.6部(固形分濃度8.0質量%)と、予混合ペーストの固形分濃度が10質量%となるような適量のNMPとをディスパーにて攪拌(3000rpm、10分)し予混合ペーストを得た。なお、表4に示す通り、予混合ペースト中における、導電材であるアセチレンブラックに対する、バインダーA8の配合比率は、導電材の配合量を100%とした場合に20%であった。また、予混合ペーストに含まれる第一結着材成分の全結着樹脂の固形分量を100%とした場合のバインダーA8の配合比率は100%であった。
<Premix paste production>
3.0 parts of acetylene black (Denka black powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle diameter 35 nm) as a conductive material, and NMP solution of the binder A8 as a first binder component corresponding to a solid content 0.6 parts (solid content concentration 8.0% by mass) and an appropriate amount of NMP such that the solid content concentration of the premixed paste becomes 10% by mass is stirred with a disper (3000 rpm, 10 minutes) and premixed. A paste was obtained. As shown in Table 4, the blending ratio of binder A8 to acetylene black, which is a conductive material, in the premixed paste was 20% when the blending amount of the conductive material was 100%. Further, the blending ratio of the binder A8 was 100% when the solid content of the total binder resin of the first binder component contained in the premix paste was 100%.
<導電材ペーストの製造>
 その後、第二結着材成分としてPVdF(KFポリマー#7200、株式会社クレハ社製)よりなるフッ素系重合体を固形分相当で2.4部と、導電材ペーストの固形分濃度が10質量%になるように適量のNMPとを入れてディスパーで撹拌(3000rpm、10分)して導電材ペーストを調製した。なお、表4に示す通り、導電材ペーストに含まれる全結着樹脂(第一結着材成分および第二結着材成分)の固形分量を100%とした場合のフッ素系重合体の配合比率は80%であった。得られた導電材ペーストの導電材のバインダー吸着量は200mg/gであり、粘度は5000mPa・sであった。作製した導電材ペーストを用いて導電材ペーストの分散安定性[評価法1]の評価を行った。結果を表4に示す。
<Manufacture of conductive material paste>
Thereafter, 2.4 parts of a fluoropolymer composed of PVdF (KF polymer # 7200, manufactured by Kureha Co., Ltd.) as the second binder component is equivalent to the solid content, and the solid content concentration of the conductive material paste is 10% by mass. A suitable amount of NMP was added so that the mixture was stirred with a disper (3000 rpm, 10 minutes) to prepare a conductive material paste. In addition, as shown in Table 4, the blending ratio of the fluoropolymer when the solid content of all the binder resins (first binder component and second binder component) contained in the conductive material paste is 100% Was 80%. The binder amount of the conductive material of the obtained conductive material paste was 200 mg / g, and the viscosity was 5000 mPa · s. The dispersion stability [Evaluation Method 1] of the conductive material paste was evaluated using the produced conductive material paste. The results are shown in Table 4.
<二次電池正極用スラリーおよび正極の製造>
 上述のようにして得た導電材ペースト中に、正極活物質として層状構造を有する三元系活物質(LiNi0.5Co0.2Mn0.32)(平均粒子径:10μm)100部と、溶剤として適量のNMPとを添加し、ディスパーにて攪拌し(3000rpm、20分)、正極用スラリーを調製した。
<Production of secondary battery positive electrode slurry and positive electrode>
In the conductive material paste obtained as described above, 100 parts of a ternary active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) (average particle size: 10 μm) having a layered structure as a positive electrode active material and an appropriate amount as a solvent Of NMP was added and stirred with a disper (3000 rpm, 20 minutes) to prepare a positive electrode slurry.
 そして、上記で得られた正極用スラリーを使用した以外は、実施例2-1と同様にして、密度が3.2g/cm3の正極合材層とアルミ箔とからなる正極を作製した。なお、正極の厚みは70μmであった。 A positive electrode composed of a positive electrode mixture layer having a density of 3.2 g / cm 3 and an aluminum foil was produced in the same manner as in Example 2-1, except that the positive electrode slurry obtained above was used. The positive electrode had a thickness of 70 μm.
<負極用スラリーおよび負極の製造>
 実施例2-1と同様にして、負極用スラリーを調製し、そして厚み80μmの負極合材層を有する負極を得た。
<Manufacture of slurry for negative electrode and negative electrode>
In the same manner as in Example 2-1, a negative electrode slurry was prepared, and a negative electrode having a negative electrode mixture layer having a thickness of 80 μm was obtained.
<セパレーターの用意>
 実施例2-1と同様にして、セパレーターを用意した。
<Preparation of separator>
A separator was prepared in the same manner as in Example 2-1.
<二次電池の製造>
 上記で得られた正極を使用した以外は、実施例2-1と同様にして、リチウムイオン二次電池を製造した。
 得られたリチウムイオン二次電池について、高温サイクル特性[評価法2]および低温特性を評価した。結果を表4に示す。
<Manufacture of secondary batteries>
A lithium ion secondary battery was produced in the same manner as in Example 2-1, except that the positive electrode obtained above was used.
The obtained lithium ion secondary battery was evaluated for high-temperature cycle characteristics [Evaluation Method 2] and low-temperature characteristics. The results are shown in Table 4.
(実施例4-2)
 予混合ペーストの製造時に、第一結着材成分としてバインダーA8とフッ素系重合体(PVdF)とを使用し、第一結着材成分の固形分量を100%とした場合のバインダーA8の配合比率を70%(0.42部)、フッ素系重合体の配合比率を30%(0.18部)にした以外は実施例4-1と同様にして、予混合ペーストを製造した。なお、このときの予混合ペースト中における、導電材であるアセチレンブラックに対するバインダーA8の配合比率は、導電材の配合量を100%とした場合に14%であった。
 そして、得られた予混合ペーストに対して、第二結着材成分として、バインダーA8を固形分相当で0.18部と、フッ素系重合体(PVdF)を固形分相当で2.22部添加した以外は、実施例4-1と同様にして導電材ペーストを調製した。得られた導電材ペーストの導電材のバインダー吸着量は192mg/gであり、粘度は6000mPa・sであった。そして、かかる導電材ペーストを用いた以外は実施例4-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表4に示す。
(Example 4-2)
Binder A8 blending ratio when binder A8 and fluoropolymer (PVdF) are used as the first binder component at the time of manufacturing the premixed paste, and the solid content of the first binder component is 100% Was prepared in the same manner as in Example 4-1, except that the blending ratio of the fluoropolymer was changed to 70% (0.42 parts) and the blending ratio of the fluoropolymer was changed to 30% (0.18 parts). The blending ratio of the binder A8 to the acetylene black as the conductive material in the premixed paste at this time was 14% when the blending amount of the conductive material was 100%.
Then, as a second binder component, 0.18 part of binder A8 corresponding to the solid content and 2.22 parts of fluoropolymer (PVdF) corresponding to the solid content are added to the obtained premixed paste. A conductive material paste was prepared in the same manner as in Example 4-1, except for the above. The binder amount of the conductive material of the obtained conductive material paste was 192 mg / g, and the viscosity was 6000 mPa · s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
(実施例4-3)
 予混合ペーストの製造時に、第一結着材成分としてバインダーA8とフッ素系重合体(PVdF)とを使用し、第一結着材成分の固形分量を100%とした場合のバインダーA8の配合比率を50%(0.3部)、フッ素系重合体の配合比率を50%(0.3部)にした以外は実施例4-1と同様にして、予混合ペーストを製造した。なお、このときの予混合ペースト中における、導電材であるアセチレンブラックに対するバインダーA8の配合比率は、導電材の配合量を100%とした場合に10%であった。
 そして、得られた予混合ペーストに対して、第二のバインダーとして、第一結着樹脂A1を固形分相当で0.3部と、第二結着樹脂(PVdF)を固形分相当で2.1部添加した以外は、実施例4-1と同様にして導電材ペーストを調製した。得られた導電材ペーストの導電材のバインダー吸着量は185mg/gであり、粘度は、7000mPa・sであった。そして、かかる導電材ペーストを用いた以外は実施例4-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表4に示す。
(Example 4-3)
Binder A8 blending ratio when binder A8 and fluoropolymer (PVdF) are used as the first binder component at the time of manufacturing the premixed paste, and the solid content of the first binder component is 100% Was mixed in the same manner as in Example 4-1, except that the blending ratio of the fluoropolymer was changed to 50% (0.3 part). Note that the blending ratio of the binder A8 to the acetylene black as the conductive material in the premixed paste at this time was 10% when the blending amount of the conductive material was 100%.
Then, with respect to the obtained premixed paste, as a second binder, the first binder resin A1 is 0.3 parts corresponding to the solid content, and the second binder resin (PVdF) is equivalent to the solid content 2. A conductive material paste was prepared in the same manner as in Example 4-1, except that 1 part was added. The binder amount of the conductive material of the obtained conductive material paste was 185 mg / g, and the viscosity was 7000 mPa · s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
(実施例4-4)
 実施例4-1と同様にして製造した予混合ペーストを用いて導電材ペーストを調製するにあたり、導電材ペーストの固形分濃度が14質量%となるようにNMPを添加し、プラネタリーミキサーにて攪拌した(60rpm、60分)。得られた導電材ペーストの導電材のバインダー吸着量は190mg/gであり、粘度は、9000mPa・sであった。そして、かかる導電材ペーストを用いた以外は実施例4-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表4に示す。
(Example 4-4)
In preparing a conductive material paste using a pre-mixed paste manufactured in the same manner as in Example 4-1, NMP was added so that the solid content concentration of the conductive material paste was 14% by mass, and a planetary mixer was used. Stirred (60 rpm, 60 minutes). The binder amount of the conductive material of the obtained conductive material paste was 190 mg / g, and the viscosity was 9000 mPa · s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
(実施例4-5)
 実施例4-1と同様にして製造した予混合ペーストを用いて導電材ペーストを調製するにあたり、導電材ペーストの固形分濃度が7質量%となるようにNMPを添加し、実施例4-1と同じ条件で攪拌した。得られた導電材ペーストの導電材のバインダー吸着量は175mg/gであり、粘度は、2500mPa・sであった。そして、かかる導電材ペーストを用いた以外は実施例4-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表4に示す。
(Example 4-5)
In preparing a conductive material paste using a premixed paste produced in the same manner as in Example 4-1, NMP was added so that the solid content concentration of the conductive material paste was 7% by mass, and Example 4-1. And stirred under the same conditions. The binder amount of the conductive material of the obtained conductive material paste was 175 mg / g, and the viscosity was 2500 mPa · s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
(実施例4-6)
 予混合ペーストの製造時に、予混合ペースト中における、導電材であるアセチレンブラックに対するバインダーA8の配合比率を、導電材の配合量である3部を100%とした場合に、5%(0.15部)とした。また、予混合ペーストの固形分濃度が12質量%となるような適量のNMPを添加した。その他は実施例4-1と同様にして、予混合ペーストを得た。得られた予混合ペーストに対して、第二結着材成分として、バインダーA8を0.45部と、フッ素系重合体(PVdF)を2.4部添加した以外は実施例4-1と同様にして、導電材ペーストを得た。得られた導電材ペーストの導電材のバインダー吸着量は102mg/gであり、粘度は、8000mPa・sであった。そして、かかる導電材ペーストを用いた以外は実施例4-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表4に示す。
(Example 4-6)
At the time of manufacturing the premixed paste, the blending ratio of the binder A8 to the acetylene black as the conductive material in the premixed paste is 5% (0.15 when 3 parts as the blended amount of the conductive material is 100%) Part). Further, an appropriate amount of NMP was added so that the solid content concentration of the premixed paste was 12% by mass. A premixed paste was obtained in the same manner as in Example 4-1. Example 4-1 except that 0.45 part of binder A8 and 2.4 parts of a fluoropolymer (PVdF) were added as a second binder component to the premixed paste obtained. Thus, a conductive material paste was obtained. The binder amount of the conductive material of the obtained conductive material paste was 102 mg / g, and the viscosity was 8000 mPa · s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
(実施例4-7)
 予混合ペーストの製造時に、予混合ペースト中における、導電材であるアセチレンブラックに対するバインダーA8の配合比率を、導電材の配合量である3部を100%とした場合に、50%(1.5部)とした。また、予混合ペーストの固形分濃度が8質量%となるような適量のNMPを添加した。その他は実施例1と同様にして、予混合ペーストを得た。得られた予混合ペーストに対して、第二結着材成分としてフッ素系重合体(PVdF)を1.5部添加した以外は実施例4-1と同様にして、導電材ペーストを得た。得られた導電材ペーストの導電材のバインダー吸着量は290mg/gであり、粘度は、3500mPa・sであった。そして、かかる導電材ペーストを用いた以外は実施例4-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表4に示す。
(Example 4-7)
At the time of manufacturing the premixed paste, the blending ratio of the binder A8 to the acetylene black that is the conductive material in the premixed paste is 50% (1.5% when 3 parts that is the blended amount of the conductive material is 100%). Part). Further, an appropriate amount of NMP was added so that the solid content concentration of the premixed paste was 8% by mass. Others were the same as in Example 1, and a premixed paste was obtained. A conductive material paste was obtained in the same manner as in Example 4-1, except that 1.5 parts of a fluoropolymer (PVdF) was added as a second binder component to the obtained premixed paste. The conductive material of the obtained conductive material paste had a binder adsorption amount of 290 mg / g and a viscosity of 3500 mPa · s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
(実施例4-8)
<バインダーA9の製造>
 実施例3-6と同様にして、バインダーA9のNMP溶液を得た。
(Example 4-8)
<Manufacture of binder A9>
In the same manner as in Example 3-6, an NMP solution of binder A9 was obtained.
<予混合ペーストおよび導電材ペーストの製造>
 上述のようにして得られたバインダーA9を使用した以外は、実施例4-1と同様にして、予混合ペースト1および導電材ペーストを製造した。得られた導電材ペーストの導電材のバインダー吸着量は130mg/gであり、粘度は、4000mPa・sであった。そして、かかる導電材ペーストを用いた以外は実施例4-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表4に示す。
<Manufacture of premixed paste and conductive material paste>
A premixed paste 1 and a conductive material paste were produced in the same manner as in Example 4-1, except that the binder A9 obtained as described above was used. The binder amount of the conductive material of the obtained conductive material paste was 130 mg / g, and the viscosity was 4000 mPa · s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
(実施例4-9)
<バインダーA10の製造>
 実施例3-7と同様にして、バインダーA10のNMP溶液を得た。
(Example 4-9)
<Manufacture of binder A10>
In the same manner as in Example 3-7, an NMP solution of binder A10 was obtained.
<予混合ペーストおよび導電材ペーストの製造>
 上述のようにして得たバインダーA10を使用した以外は、実施例4-1と同様にして、予混合ペーストおよび2を製造した。得られた導電材ペーストの導電材のバインダー吸着量は105mg/gであり、粘度は、8000mPa・sであった。そして、かかる導電材ペーストを用いた以外は実施例4-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表4に示す。
<Manufacture of premixed paste and conductive material paste>
A premixed paste and 2 were produced in the same manner as in Example 4-1, except that the binder A10 obtained as described above was used. The binder amount of the conductive material of the obtained conductive material paste was 105 mg / g, and the viscosity was 8000 mPa · s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
(比較例4-1)
 比較例3-3と同様にして導電材ペーストを製造した。得られた導電材ペーストの導電材のバインダー吸着量は37mg/gであり、粘度は、8000mPa・sであった。そして、かかる導電材ペーストを用いた以外は実施例4-1と同様にして、正極用スラリー、正極、二次電池を作製し、各評価項目について評価を行った。結果を表4に示す。
(Comparative Example 4-1)
A conductive material paste was produced in the same manner as in Comparative Example 3-3. The binder amount of the conductive material of the obtained conductive material paste was 37 mg / g, and the viscosity was 8000 mPa · s. Then, a positive electrode slurry, a positive electrode, and a secondary battery were produced in the same manner as in Example 4-1, except that such a conductive material paste was used, and each evaluation item was evaluated. The results are shown in Table 4.
(比較例4-2)
 上述のバインダーA9を0.6部と、導電材としてアセチレンブラック(デンカブラック粉:電気化学工業、比表面積68m2/g、平均粒子径35nm)3.0部と、予混合ペーストの固形分濃度が10質量%となるような適量のNMPとをディスパーにて攪拌(3000rpm、10分)し予混合ペーストを得た。なお、この予混合ペーストにおける導電材のバインダー吸着量は100mg/g未満であった。
 また、予混合ペーストとは別に、PVdF(KFポリマー#7200、株式会社クレハ社製)よりなるフッ素系重合体を固形分相当で2.4部と、正極活物質として層状構造を有する三元系活物質(LiNi0.5Co0.2Mn0.32)(平均粒子径:10μm)100部と、適量のNMPとを攪拌して正極活物質ペーストを得た。
 これらの予混合ペーストおよび正極活物質ペーストを混合し、正極用スラリーを得た。
 得られた正極用スラリーを用いて、正極、二次電池を作製し、各評価項目について評価を行った。結果を表4に示す。
(Comparative Example 4-2)
0.6 parts of the above-mentioned binder A9, acetylene black (DENKA BLACK powder: Denki Kagaku Kogyo, specific surface area 68 m 2 / g, average particle diameter 35 nm) as a conductive material, 3.0 parts, and solid content concentration of the premix paste Was stirred with a disper (3000 rpm, 10 minutes) to obtain a premixed paste. In addition, the binder adsorption amount of the conductive material in this premixed paste was less than 100 mg / g.
In addition to the premixed paste, a ternary system having a layered structure as a positive electrode active material and 2.4 parts of a fluorine-based polymer made of PVdF (KF polymer # 7200, manufactured by Kureha Co., Ltd.) corresponding to the solid content. 100 parts of active material (LiNi 0.5 Co 0.2 Mn 0.3 O 2 ) (average particle size: 10 μm) and an appropriate amount of NMP were stirred to obtain a positive electrode active material paste.
These premixed paste and positive electrode active material paste were mixed to obtain a positive electrode slurry.
Using the obtained slurry for positive electrode, a positive electrode and a secondary battery were prepared, and each evaluation item was evaluated. The results are shown in Table 4.
 なお、表4中、*1~*3の用語はそれぞれ以下の内容を意味する。
*1:予混合ペースト中の第一結着材成分の固形分量を100%とした場合の配合比率
*2:予混合ペースト中の導電材の含有量を100%とした場合の配合比率
*3:導電材ペースト中の全バインダーの固形分量を100%とした場合の配合比率
In Table 4, the terms * 1 to * 3 mean the following contents.
* 1: Mixing ratio when the solid content of the first binder component in the premixed paste is 100% * 2: Mixing ratio when the conductive material content in the premixed paste is 100% * 3 : Mixing ratio when the solid content of all binders in the conductive material paste is 100%
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4より、実施例4-1~4-9の導電材ペースト、二次電池正極用スラリーおよび二次電池は、比較例4-1~4-2の導電材ペースト、二次電池正極用スラリーおよび二次電池と比較し、導電材ペーストの分散安定性に優れ、二次電池の高温サイクル特性および低温特性が良好であることが分かる。
 特に、表4の実施例4-1~4-3より、予混合ペーストの第一結着材成分中のバインダーAの配合割合および導電材ペーストの粘度を調整することにより、導電材ペーストの分散安定性および二次電池の低温特性を向上させることができることが分かる。
 また、表4の実施例4-1、4-4~4-5より、導電材ペーストの粘度および固形分濃度を調整することにより、導電材ペーストの分散安定性および二次電池の低温特性および高温サイクル特性を向上させることができることが分かる。
 また、表4の実施例4-1、4-6~4-7より、特定の性状を有するバインダーAを主に工程(X)の第一の工程(X-1)において配合し、その配合量を調整することにより、導電材ペーストの分散安定性および二次電池の低温特性および高温サイクル特性を向上させることができることが分かる。
 また、表4の実施例4-1、4-8~4-9より、バインダーAの組成を調整することにより、導電材ペーストの分散安定性を向上させると共に、二次電池の高温サイクル特性および低温特性を向上させることができることが分かる。
 また、表4の実施例4-1、そして実質的な第一結着材成分としてPVdFのみを使用している比較例4-1より、第一結着材成分中のバインダーAの含有量が不十分であれば、低温特性および高温サイクル特性が劣化することが分かる。さらに、表4の実施例4-1および比較例4-2より、工程(X)(第一の工程(X-1)および第二の工程(X-2))並びに工程(Y)を経ずに正極用スラリーを製造した場合、導電材ペースト中における導電材の分散性が不十分となり、導電材ペーストの分散安定性、並びに二次電池の低温特性および高温サイクル特性が劣化する虞があることが分かる。
From Table 4, the conductive material paste of Examples 4-1 to 4-9, the slurry for secondary battery positive electrode, and the secondary battery are the conductive material paste of Comparative Examples 4-1 to 4-2, slurry for secondary battery positive electrode It can be seen that the dispersion stability of the conductive material paste is excellent as compared with the secondary battery, and the high-temperature cycle characteristics and low-temperature characteristics of the secondary battery are good.
In particular, from Examples 4-1 to 4-3 in Table 4, the conductive material paste was dispersed by adjusting the blending ratio of binder A in the first binder component of the premixed paste and the viscosity of the conductive material paste. It can be seen that the stability and low temperature characteristics of the secondary battery can be improved.
Also, from Examples 4-1 and 4-4 to 4-5 in Table 4, by adjusting the viscosity and solid content concentration of the conductive material paste, the dispersion stability of the conductive material paste and the low-temperature characteristics of the secondary battery and It can be seen that the high-temperature cycle characteristics can be improved.
Further, from Examples 4-1 and 4-6 to 4-7 in Table 4, the binder A having a specific property is blended mainly in the first step (X-1) of the step (X), and the blending thereof. It can be seen that by adjusting the amount, the dispersion stability of the conductive material paste and the low-temperature characteristics and high-temperature cycle characteristics of the secondary battery can be improved.
Further, from Examples 4-1 and 4-8 to 4-9 in Table 4, the dispersion stability of the conductive material paste is improved by adjusting the composition of the binder A, and the high-temperature cycle characteristics of the secondary battery and It can be seen that the low temperature characteristics can be improved.
Further, from Example 4-1 in Table 4 and Comparative Example 4-1 using only PVdF as the first binder component, the content of binder A in the first binder component is If it is insufficient, it can be seen that the low temperature characteristics and the high temperature cycle characteristics deteriorate. Further, from Example 4-1 and Comparative Example 4-2 in Table 4, the process (X) (first process (X-1) and second process (X-2)) and process (Y) were performed. If the slurry for the positive electrode is manufactured without the conductive material paste being sufficiently dispersible in the conductive material paste, the dispersion stability of the conductive material paste and the low-temperature characteristics and high-temperature cycle characteristics of the secondary battery may be deteriorated. I understand that.
 本発明によれば、分散安定性に優れ、かつ、電位安定性に優れる電極を形成可能な二次電池電極用導電材ペーストを提供することができる。
 また、本発明によれば、電気的特性を向上させて、二次電池の性能を向上させることができる二次電池正極用スラリーの製造方法を提供することができる。
 さらに、本発明によれば、電気的特性を向上させて、二次電池の性能を向上させることができる二次電池用正極の製造方法を提供することができる。
 加えて、本発明によれば、電気的特性に優れる二次電池を提供することができる。
ADVANTAGE OF THE INVENTION According to this invention, the electrically conductive material paste for secondary battery electrodes which can form the electrode which is excellent in dispersion stability and is excellent in electric potential stability can be provided.
Moreover, according to this invention, the manufacturing method of the slurry for secondary battery positive electrodes which can improve an electrical characteristic and can improve the performance of a secondary battery can be provided.
Furthermore, according to this invention, the manufacturing method of the positive electrode for secondary batteries which can improve an electrical characteristic and can improve the performance of a secondary battery can be provided.
In addition, according to the present invention, a secondary battery having excellent electrical characteristics can be provided.

Claims (10)

  1.  導電材およびバインダーAを含有し、
     前記バインダーAが、アルキレン構造単位および(メタ)アクリル酸エステル単量体単位の少なくとも一方を含み、
     前記導電材のバインダー吸着量が100mg/g以上600mg/g以下である、
     二次電池電極用導電材ペースト。
    Containing conductive material and binder A,
    The binder A includes at least one of an alkylene structural unit and a (meth) acrylic acid ester monomer unit,
    The binder adsorption amount of the conductive material is 100 mg / g or more and 600 mg / g or less,
    Conductive material paste for secondary battery electrodes.
  2.  前記バインダーAが、アルキレン構造単位を含む、請求項1に記載の二次電池電極用導電材ペースト。 The conductive material paste for a secondary battery electrode according to claim 1, wherein the binder A includes an alkylene structural unit.
  3.  前記バインダーAが、アルキレン構造単位および(メタ)アクリル酸エステル単量体単位の双方を含む、請求項1に記載の二次電池電極用導電材ペースト。 The conductive material paste for a secondary battery electrode according to claim 1, wherein the binder A includes both an alkylene structural unit and a (meth) acrylic acid ester monomer unit.
  4.  前記バインダーAが、さらに、ニトリル基含有単量体単位を2質量%以上50質量%以下含む、請求項1~3の何れかに記載の二次電池電極用導電材ペースト。 The conductive material paste for a secondary battery electrode according to any one of claims 1 to 3, wherein the binder A further contains 2% by mass to 50% by mass of a nitrile group-containing monomer unit.
  5.  粘度が1000mPa・s以上10000mPa・s以下である、請求項1~4の何れかに記載の二次電池電極用導電材ペースト。 The conductive material paste for a secondary battery electrode according to any one of claims 1 to 4, having a viscosity of 1000 mPa · s to 10,000 mPa · s.
  6.  固形分濃度が5質量%以上15質量%以下である、請求項1~5の何れかに記載の二次電池電極用導電材ペースト。 The conductive material paste for a secondary battery electrode according to any one of claims 1 to 5, wherein the solid content concentration is 5% by mass or more and 15% by mass or less.
  7.  請求項1~6の何れかに記載の二次電池電極用導電材ペーストを調製する工程(X)と、
     前記二次電池電極用導電材ペーストと正極活物質とを混合する工程(Y)とを含む、二次電池正極用スラリーの製造方法。
    A step (X) of preparing a conductive material paste for a secondary battery electrode according to any one of claims 1 to 6;
    The manufacturing method of the slurry for secondary battery positive electrodes including the process (Y) of mixing the said electrically conductive material paste for secondary battery electrodes, and a positive electrode active material.
  8.  前記工程(X)が、
     前記導電材と、前記バインダーAを主成分として含む第一結着材成分とを混合して予混合ペーストを得る第一の工程(X-1)と、
     前記予混合ペーストに、フッ素系重合体を主成分として含む第二結着材成分を添加して、前記二次電池電極用導電材ペーストを得る第二の工程(X-2)と、
    を含む、請求項7に記載の二次電池正極用スラリーの製造方法。
    The step (X)
    A first step (X-1) of mixing the conductive material and a first binder component containing the binder A as a main component to obtain a premixed paste;
    A second step (X-2) of obtaining a conductive material paste for a secondary battery electrode by adding a second binder component containing a fluorine-based polymer as a main component to the premixed paste;
    The manufacturing method of the slurry for secondary battery positive electrodes of Claim 7 containing these.
  9.  請求項7又は8に記載の製造方法により得られた二次電池正極用スラリーを、集電体の少なくとも一方の面に塗布し、乾燥して正極合材層を形成する工程を含む、二次電池用正極の製造方法。 The secondary battery positive electrode slurry obtained by the manufacturing method according to claim 7 or 8 is applied to at least one surface of the current collector and dried to form a positive electrode mixture layer. A method for producing a positive electrode for a battery.
  10.  正極、負極、セパレーターおよび電解液を有する二次電池であって、
     前記正極が、請求項9に記載の二次電池用正極の製造方法で製造された二次電池用正極である、二次電池。
    A secondary battery having a positive electrode, a negative electrode, a separator and an electrolyte,
    A secondary battery, wherein the positive electrode is a positive electrode for a secondary battery manufactured by the method for manufacturing a positive electrode for a secondary battery according to claim 9.
PCT/JP2014/006464 2013-12-27 2014-12-25 Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery WO2015098116A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167015523A KR102393257B1 (en) 2013-12-27 2014-12-25 Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery
CN201480067820.0A CN105814718B (en) 2013-12-27 2014-12-25 Conductive material paste for electrode, method for producing positive electrode slurry, method for producing positive electrode, and secondary battery

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2013273124A JP6398191B2 (en) 2013-12-27 2013-12-27 Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP2013-273124 2013-12-27
JP2014005329A JP6413242B2 (en) 2014-01-15 2014-01-15 Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP2014-005329 2014-01-15
JP2014066739A JP6394027B2 (en) 2014-03-27 2014-03-27 Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP2014-066739 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015098116A1 true WO2015098116A1 (en) 2015-07-02

Family

ID=53478012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006464 WO2015098116A1 (en) 2013-12-27 2014-12-25 Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery

Country Status (3)

Country Link
KR (1) KR102393257B1 (en)
CN (1) CN105814718B (en)
WO (1) WO2015098116A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010093A1 (en) 2015-07-14 2017-01-19 日本ゼオン株式会社 Binder composition for secondary battery electrodes, conductive material paste composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery
WO2018168615A1 (en) * 2017-03-13 2018-09-20 日本ゼオン株式会社 Conductive material dispersion liquid for electrochemical element electrodes, slurry composition for electrochemical element electrodes, method for producing same, electrode for electrochemical elements, and electrochemical element
CN110431697A (en) * 2017-03-22 2019-11-08 株式会社Lg化学 Prepare the method for anode of secondary battery paste compound, using the anode of secondary cell of this method preparation and comprising the lithium secondary battery of the anode
EP3340255B1 (en) 2015-09-25 2020-02-12 LG Chem, Ltd. Carbon black dispersion solution and manufacturing method thereof
JP6870769B1 (en) * 2020-08-31 2021-05-12 日本ゼオン株式会社 Conductive material dispersion for electrochemical elements, slurry composition for electrochemical element electrodes and manufacturing method thereof, electrodes for electrochemical elements, and electrochemical elements
US11283058B2 (en) 2017-03-22 2022-03-22 Lg Energy Solution, Ltd. Method of preparing slurry composition for secondary battery positive electrode, positive electrode for secondary battery prepared by using the same, and lithium secondary battery including the positive electrode
US11469421B2 (en) 2020-09-03 2022-10-11 Toyo Ink Sc Holdings Co., Ltd. Conductive material dispersion, binder resin-containing conductive material dispersion, slurry for electrode film, electrode film, and non-aqueous electrolyte secondary battery
CN115485886A (en) * 2020-08-31 2022-12-16 日本瑞翁株式会社 Dispersant composition for electrochemical device, conductive material dispersion for electrochemical device, slurry composition for electrochemical device electrode and method for producing same, electrode for electrochemical device, and electrochemical device
US11658303B2 (en) 2020-09-03 2023-05-23 Toyo Ink Sc Holdings Co., Ltd. Conductive material dispersion, binder resin-containing conductive material dispersion, slurry for electrode film, electrode film, and non-aqueous electrolyte secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102314626B1 (en) * 2016-12-26 2021-10-20 주식회사 엘지에너지솔루션 Electrode for secondary battery, method for preparing the same, and lithium secondary battery comprising the same
EP3525270B8 (en) * 2017-03-22 2022-01-19 LG Energy Solution Ltd. Positive electrode active material pre-dispersion composition, positive electrode for secondary battery, and lithium secondary battery including the positive electrode
US20220045329A1 (en) * 2018-12-28 2022-02-10 Zeon Corporation Conductive material paste for all-solid-state secondary battery electrode
JP6870771B1 (en) * 2020-08-31 2021-05-12 日本ゼオン株式会社 Conductive material dispersion for electrochemical elements, slurry for electrochemical element electrodes, electrodes for electrochemical elements and electrochemical elements

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085416A1 (en) * 2005-02-10 2006-08-17 Hitachi Chemical Company, Ltd. Binder resin emulsion for energy device electrode, and energy device electrode and energy device using the same
WO2013080989A1 (en) * 2011-11-28 2013-06-06 日本ゼオン株式会社 Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, secondary battery positive electrode, and secondary battery
WO2013129658A1 (en) * 2012-03-02 2013-09-06 日本ゼオン株式会社 Positive electrode for secondary battery, and secondary battery
JP2013206598A (en) * 2012-03-27 2013-10-07 Nippon Zeon Co Ltd Composite particle for secondary battery cathode, secondary battery cathode, and secondary battery

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS585122A (en) 1981-06-29 1983-01-12 国産電機株式会社 Cattlefish fishing machine
JP3598153B2 (en) 1995-08-28 2004-12-08 ソニー株式会社 Non-aqueous electrolyte secondary battery
JP3593776B2 (en) * 1996-02-02 2004-11-24 三菱化学株式会社 Method of manufacturing positive electrode for lithium secondary battery and lithium secondary battery
JP3620401B2 (en) 2000-04-04 2005-02-16 松下電器産業株式会社 Method for producing positive electrode for non-aqueous electrolyte secondary battery
JP4502311B2 (en) 2003-10-17 2010-07-14 日立マクセル株式会社 Method for manufacturing lithium secondary battery
CN101752548B (en) * 2008-12-09 2012-09-26 比亚迪股份有限公司 Conductive agent dispersion liquid, electrode slurry, electrode, battery, and preparation methods thereof
JP5609546B2 (en) * 2010-10-29 2014-10-22 日本ゼオン株式会社 Positive electrode for lithium secondary battery, conductive agent composition, composition for positive electrode of lithium secondary battery, and method for producing positive electrode for lithium secondary battery
CN103187555B (en) 2011-12-30 2016-12-07 万向电动汽车有限公司 The manufacture method of a kind of lithium ion power battery cathode pole piece and use the lithium-ion-power cell of this anode pole piece
CN103208631B (en) * 2012-01-17 2016-02-17 万向电动汽车有限公司 A kind of lithium battery anode slurry and preparation method thereof
JP2014022127A (en) 2012-07-13 2014-02-03 Sony Corp Positive electrode and method for producing the same, battery, battery pack, electronic apparatus, electric vehicle, electricity storage device and electric power system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006085416A1 (en) * 2005-02-10 2006-08-17 Hitachi Chemical Company, Ltd. Binder resin emulsion for energy device electrode, and energy device electrode and energy device using the same
WO2013080989A1 (en) * 2011-11-28 2013-06-06 日本ゼオン株式会社 Binder composition for secondary battery positive electrode, slurry composition for secondary battery positive electrode, secondary battery positive electrode, and secondary battery
WO2013129658A1 (en) * 2012-03-02 2013-09-06 日本ゼオン株式会社 Positive electrode for secondary battery, and secondary battery
JP2013206598A (en) * 2012-03-27 2013-10-07 Nippon Zeon Co Ltd Composite particle for secondary battery cathode, secondary battery cathode, and secondary battery

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017010093A1 (en) 2015-07-14 2017-01-19 日本ゼオン株式会社 Binder composition for secondary battery electrodes, conductive material paste composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery
EP3920285A1 (en) * 2015-07-14 2021-12-08 Zeon Corporation Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
EP3340255B1 (en) 2015-09-25 2020-02-12 LG Chem, Ltd. Carbon black dispersion solution and manufacturing method thereof
JPWO2018168615A1 (en) * 2017-03-13 2020-01-09 日本ゼオン株式会社 Conductive material dispersion for electrochemical device electrode, slurry composition for electrochemical device electrode and method for producing the same, electrode for electrochemical device, and electrochemical device
WO2018168615A1 (en) * 2017-03-13 2018-09-20 日本ゼオン株式会社 Conductive material dispersion liquid for electrochemical element electrodes, slurry composition for electrochemical element electrodes, method for producing same, electrode for electrochemical elements, and electrochemical element
JP7056642B2 (en) 2017-03-13 2022-04-19 日本ゼオン株式会社 Conductive material dispersion for electrochemical element electrodes, slurry composition for electrochemical element electrodes and their manufacturing methods, electrodes for electrochemical elements, and electrochemical elements
CN110431697A (en) * 2017-03-22 2019-11-08 株式会社Lg化学 Prepare the method for anode of secondary battery paste compound, using the anode of secondary cell of this method preparation and comprising the lithium secondary battery of the anode
US11283058B2 (en) 2017-03-22 2022-03-22 Lg Energy Solution, Ltd. Method of preparing slurry composition for secondary battery positive electrode, positive electrode for secondary battery prepared by using the same, and lithium secondary battery including the positive electrode
CN110431697B (en) * 2017-03-22 2022-07-19 株式会社Lg化学 Method for preparing slurry composition for secondary battery positive electrode, positive electrode prepared by the method, and lithium secondary battery comprising the positive electrode
JP6870769B1 (en) * 2020-08-31 2021-05-12 日本ゼオン株式会社 Conductive material dispersion for electrochemical elements, slurry composition for electrochemical element electrodes and manufacturing method thereof, electrodes for electrochemical elements, and electrochemical elements
WO2022045267A1 (en) * 2020-08-31 2022-03-03 日本ゼオン株式会社 Conductive material dispersion liquid for electrochemical element, slurry composition for electrochemical element electrode, method for manufacturing same, electrochemical element electrode, and electrochemical element
JP2022041227A (en) * 2020-08-31 2022-03-11 日本ゼオン株式会社 Conductive material dispersion liquid for electrochemical element, slurry composition for electrochemical element electrode and manufacturing method thereof, electrode for electrochemical element, and electrochemical element
CN115485886A (en) * 2020-08-31 2022-12-16 日本瑞翁株式会社 Dispersant composition for electrochemical device, conductive material dispersion for electrochemical device, slurry composition for electrochemical device electrode and method for producing same, electrode for electrochemical device, and electrochemical device
US11469421B2 (en) 2020-09-03 2022-10-11 Toyo Ink Sc Holdings Co., Ltd. Conductive material dispersion, binder resin-containing conductive material dispersion, slurry for electrode film, electrode film, and non-aqueous electrolyte secondary battery
US11658303B2 (en) 2020-09-03 2023-05-23 Toyo Ink Sc Holdings Co., Ltd. Conductive material dispersion, binder resin-containing conductive material dispersion, slurry for electrode film, electrode film, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
CN105814718A (en) 2016-07-27
CN105814718B (en) 2020-06-02
KR20160102404A (en) 2016-08-30
KR102393257B1 (en) 2022-04-29

Similar Documents

Publication Publication Date Title
WO2015098116A1 (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery cathode, method for producing secondary battery cathode, and secondary battery
JP6394593B2 (en) Binder composition for positive electrode of lithium ion secondary battery, slurry composition for positive electrode of lithium ion secondary battery and method for producing the same, method for producing positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6413242B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP6589857B2 (en) Method for producing positive electrode for lithium ion secondary battery provided with electrolytic solution
JP6369473B2 (en) Slurry composition for positive electrode of lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP6398191B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP6848862B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery and secondary battery
JP6601391B2 (en) Slurry for lithium ion secondary battery positive electrode, method for producing slurry for lithium ion secondary battery positive electrode, and method for producing positive electrode for lithium ion secondary battery
WO2019131210A1 (en) Binder composition for secondary battery positive electrodes, slurry composition for secondary battery positive electrodes and method for producing same, positive electrode for secondary batteries, and secondary battery
WO2020137594A1 (en) Binder composition for secondary battery electrodes, conductive material paste composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, and secondary battery
WO2019107463A1 (en) Conductive material paste for electrochemical elements, slurry composition for electrochemical element positive electrodes and method for producing same, positive electrode for electrochemical elements, and electrochemical element
JP6696534B2 (en) Method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP6870770B1 (en) Conductive material dispersion for electrochemical elements, slurry for electrochemical element electrodes, electrodes for electrochemical elements and electrochemical elements
JP2017069108A (en) Slurry composition for lithium ion secondary battery electrode, lithium ion secondary battery electrode and lithium ion secondary battery
WO2022045217A1 (en) Electrode for electrochemical element, and electrochemical element
JP6365181B2 (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
WO2020137591A1 (en) Binder composition for secondary battery electrode, conductive material paste composition for secondary battery electrode, slurry composition for secondary battery electrode, secondary battery electrode, and secondary battery
JP6394027B2 (en) Conductive material paste for secondary battery electrode, method for producing slurry for secondary battery positive electrode, method for producing positive electrode for secondary battery, and method for producing secondary battery
JP2014203805A (en) Particulate binder for lithium ion secondary battery negative electrode, slurry composition for lithium ion secondary battery negative electrode, and lithium ion secondary battery
WO2022045218A1 (en) Conductive material dispersion liquid for electrochemical element, slurry for electrochemical element electrode, electrochemical element electrode, and electrochemical element
WO2024018997A1 (en) Conductive material dispersion liquid for electrochemical elements, slurry for electrochemical element electrodes, electrode for electrochemical elements, and electrochemical element
JP2022041232A (en) Dispersant composition for electrochemical element, conductive material dispersion for electrochemical element, slurry for electrochemical element electrode, electrode for electrochemical element, and electrochemical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875880

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167015523

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875880

Country of ref document: EP

Kind code of ref document: A1