JP2014157661A - Process of manufacturing composite particle for positive electrode of electrochemical element - Google Patents

Process of manufacturing composite particle for positive electrode of electrochemical element Download PDF

Info

Publication number
JP2014157661A
JP2014157661A JP2013026527A JP2013026527A JP2014157661A JP 2014157661 A JP2014157661 A JP 2014157661A JP 2013026527 A JP2013026527 A JP 2013026527A JP 2013026527 A JP2013026527 A JP 2013026527A JP 2014157661 A JP2014157661 A JP 2014157661A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
slurry
conductive agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013026527A
Other languages
Japanese (ja)
Other versions
JP6070243B2 (en
Inventor
Taku Matsumura
卓 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Nippon Zeon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Zeon Co Ltd filed Critical Nippon Zeon Co Ltd
Priority to JP2013026527A priority Critical patent/JP6070243B2/en
Publication of JP2014157661A publication Critical patent/JP2014157661A/en
Application granted granted Critical
Publication of JP6070243B2 publication Critical patent/JP6070243B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a process of manufacturing a composite particle for a positive electrode of an electrochemical element, excellent in dispersion of a conductive agent even when a water type slurry is used, and having low resistivity when it is made to be a battery.SOLUTION: The process of manufacturing a composite particle for a positive electrode of an electrochemical element includes the steps of: obtaining a slurry by dispersing a positive electrode active material, a conductive agent, and a binder into water; and obtaining a granulation particle by spray drying and granulating the slurry, wherein a ratio of degree of hydrophobicity (a positive electrode active material/a conductive agent) of the positive electrode active material and the conductive agent obtained by a methanol method is 0.5 or more and 1.5 or less.

Description

本発明は、リチウムイオン二次電池やリチウムイオンキャパシタ等の電気化学素子の正極の作製に用いることができる電気化学素子正極用複合粒子の製造方法に関するものである。   The present invention relates to a method for producing composite particles for an electrochemical device positive electrode that can be used for producing a positive electrode of an electrochemical device such as a lithium ion secondary battery or a lithium ion capacitor.

小型で軽量であり、エネルギー密度が高く、さらに繰り返し充放電が可能なリチウムイオン二次電池などの電気化学素子は、その特性を活かして急速に需要を拡大している。リチウムイオン二次電池は、エネルギー密度が比較的に大きいことから携帯電話やノート型パーソナルコンピュータ、電気自動車などの分野で利用されているが、電気化学素子の用途の拡大や発展に伴い、低抵抗化、高容量化、機械的特性や生産性の向上など、より一層の改善が求められている。このような状況において、電気化学素子電極に関してもより生産性の高い製造方法が求められており、高速成形可能な製造方法およびこの製造方法に適合する電気化学素子電極用材料について様々な改善が行われている。   Electrochemical elements such as lithium ion secondary batteries that are small and lightweight, have high energy density, and can be repeatedly charged and discharged are rapidly expanding their demands by taking advantage of their characteristics. Lithium ion secondary batteries are used in fields such as mobile phones, notebook personal computers, and electric vehicles because of their relatively high energy density. However, with the expansion and development of electrochemical device applications, low resistance There is a need for further improvements, such as higher capacity, higher capacity, and improved mechanical properties and productivity. Under such circumstances, there is a demand for a more productive manufacturing method for electrochemical element electrodes, and various improvements have been made regarding a manufacturing method capable of high-speed molding and a material for electrochemical element electrodes suitable for this manufacturing method. It has been broken.

電気化学素子電極は、通常、電極活物質と、必要に応じて用いられる導電剤とを結着剤で結着することにより形成された電極活物質層を集電体上に積層してなるものである。例えば、特許文献1では、電極活物質、ゴム粒子及び分散媒を含むスラリーを噴霧乾燥することにより粒子状の電極材料を得て、得られた電極材料を用いて電極活物質層を形成している。
しかし、特許文献1においては、粒子状の電極材料中において導電剤が表面に偏在し、その結果、その粒子状電極材料を使用して得られた電極を用いた電池の抵抗が低下するという問題が生じていた。
Electrochemical element electrodes are usually formed by laminating an electrode active material layer formed by binding an electrode active material and a conductive agent used as necessary with a binder on a current collector. It is. For example, in Patent Document 1, a particulate electrode material is obtained by spray drying a slurry containing an electrode active material, rubber particles, and a dispersion medium, and an electrode active material layer is formed using the obtained electrode material. Yes.
However, in Patent Document 1, the conductive agent is unevenly distributed on the surface in the particulate electrode material, and as a result, the resistance of the battery using the electrode obtained by using the particulate electrode material is lowered. Has occurred.

一方、電気化学素子電極において、特に正極は、水分による活物質の性能低下を防止する目的で、正極活物質にカップリング剤処理を行う技術が特許文献2に提案されている。しかし、サイクル特性の向上を目的としてリチウムイオン二次電池の電極等の構成要素を形成する際の結着剤として水系の結着剤を用いる場合があるが、水系の結着剤を含むスラリーを用いて正極活物質層を形成することは考慮されていなかった。   On the other hand, Patent Document 2 proposes a technique for treating a positive electrode active material with a coupling agent for the purpose of preventing deterioration of the performance of the active material due to moisture, particularly in an electrochemical element electrode. However, an aqueous binder may be used as a binder when forming a component such as an electrode of a lithium ion secondary battery for the purpose of improving cycle characteristics, but a slurry containing an aqueous binder is used. It was not considered that the positive electrode active material layer was used to form the positive electrode active material layer.

特許第4219705号公報Japanese Patent No. 4219705 特開2007−18874号公報JP 2007-18874 A

本発明の目的は、水系のスラリーを用いた場合であっても導電剤の分散に優れ、電池としたときに抵抗が低い電気化学素子正極用複合粒子の製造方法を提供することである。   An object of the present invention is to provide a method for producing composite particles for an electrochemical device positive electrode that is excellent in dispersion of a conductive agent even when an aqueous slurry is used and has a low resistance when used as a battery.

本発明者は、鋭意検討の結果、水系のスラリーを用いて得られる粒子状電極材料における導電材の分散不良が、電極活物質と導電剤との疏水化度の差が大きいことに最も起因するものであることをつきとめ、電極活物質と導電剤との、両者の疏水化度の比を特定範囲にすることにより、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies, the inventor found that the poor dispersion of the conductive material in the particulate electrode material obtained by using the aqueous slurry is most attributable to the large difference in the degree of flooding between the electrode active material and the conductive agent. As a result, the inventors have found that the above object can be achieved by setting the ratio of the degree of water repellency between the electrode active material and the conductive agent within a specific range, and have completed the present invention.

即ち、本発明によれば、
(1) 正極活物質、導電剤および結着剤を水に分散してスラリーを得る工程と、前記スラリーを噴霧乾燥して造粒することにより造粒粒子を得る工程とを含み、前記正極活物質と、前記導電剤との、メタノール法から得られた疎水化度の比(正極活物質/導電剤)が0.5以上1.5未満であることを特徴とする電気化学素子正極用複合粒子の製造方法、
(2) 前記正極活物質は、撥水処理がされた正極活物質であることを特徴とする(1)記載の電気化学素子正極用複合粒子の製造方法、
(3) 前記撥水処理は、カップリング剤処理であることを特徴とする(2)記載の電気化学素子正極用複合粒子の製造方法、
(4) 前記カップリング剤処理は、シランカップリング剤処理であって、前記シランカップリング剤の導入量が前記正極活物質の重量に対して0.1%以上3.0%未満であることを特徴とする(3)記載の電気化学素子正極用複合粒子の製造方法
が提供される。
That is, according to the present invention,
(1) including a step of dispersing a positive electrode active material, a conductive agent and a binder in water to obtain a slurry; and a step of obtaining granulated particles by spray-drying the slurry to obtain granulated particles. Electrochemical element positive electrode composite, characterized in that the ratio of the degree of hydrophobicity obtained by the methanol method (positive electrode active material / conductive agent) between the substance and the conductive agent is 0.5 or more and less than 1.5 Particle manufacturing method,
(2) The method for producing composite particles for electrochemical element positive electrodes according to (1), wherein the positive electrode active material is a positive electrode active material that has been subjected to water repellent treatment.
(3) The method for producing composite particles for electrochemical element positive electrodes according to (2), wherein the water repellent treatment is a coupling agent treatment,
(4) The coupling agent treatment is a silane coupling agent treatment, and the introduction amount of the silane coupling agent is 0.1% or more and less than 3.0% with respect to the weight of the positive electrode active material. (3) The manufacturing method of the composite particle for electrochemical element positive electrodes as described in this invention is provided.

本発明によれば、水系のスラリーを用いた場合であっても導電剤の分散に優れ、電池としたときに抵抗が低い電気化学素子正極用複合粒子の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, even if it is a case where an aqueous slurry is used, the manufacturing method of the composite particle for electrochemical element positive electrodes which is excellent in dispersion | distribution of a electrically conductive agent and has low resistance when it is set as a battery can be provided.

以下、本発明の実施の形態に係る電気化学素子正極用複合粒子の製造方法について説明する。本発明の電気化学素子正極用複合粒子は、正極活物質、導電剤および結着剤を水に分散してスラリーを得る工程と、前記スラリーを噴霧乾燥して造粒することにより造粒粒子を得る工程とを含み、前記正極活物質と、前記導電剤との、メタノール法から得られた疎水化度の比(正極活物質/導電剤)が0.5以上1.5未満であることを特徴とする。
また、正極活物質と導電剤との疎水化度の比を前記範囲とするために、前記正極活物質は、撥水処理がされた正極活物質であることが好ましい。
Hereinafter, the manufacturing method of the composite particle for electrochemical element positive electrodes which concerns on embodiment of this invention is demonstrated. The composite particle for an electrochemical device positive electrode of the present invention comprises a step of obtaining a slurry by dispersing a positive electrode active material, a conductive agent and a binder in water, and spray-drying the slurry to granulate the granulated particles. The ratio of the degree of hydrophobicity obtained by the methanol method (positive electrode active material / conductive agent) between the positive electrode active material and the conductive agent is 0.5 or more and less than 1.5. Features.
Moreover, in order to make the ratio of the degree of hydrophobicity between the positive electrode active material and the conductive agent within the above range, the positive electrode active material is preferably a positive electrode active material that has been subjected to water repellent treatment.

(正極活物質)
本発明の電気化学素子正極用複合粒子に用いる正極活物質としては、リチウムイオンの吸蔵放出可能な活物質が用いられ、リチウムイオン二次電池用正極用電極活物質(正極活物質)は、無機化合物からなるものと有機化合物からなるものとに大別される。
(Positive electrode active material)
As the positive electrode active material used for the composite particle for the electrochemical device positive electrode of the present invention, an active material capable of occluding and releasing lithium ions is used, and the electrode active material for positive electrode for lithium ion secondary battery (positive electrode active material) is inorganic. They are roughly classified into those composed of compounds and those composed of organic compounds.

無機化合物からなる正極活物質としては、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属とのリチウム含有複合金属酸化物などが挙げられる。上記の遷移金属としては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が使用される。   Examples of the positive electrode active material made of an inorganic compound include transition metal oxides, transition metal sulfides, lithium-containing composite metal oxides of lithium and transition metals, and the like. Examples of the transition metal include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.

遷移金属酸化物としては、MnO、MnO2、V25、V613、TiO2、Cu223、非晶質V2O−P25、MoO3等が挙げられ、中でも得られる二次電池のサイクル安定性と容量からMnO、V25、V613、TiO2が好ましい。 Examples of transition metal oxides include MnO, MnO 2 , V 2 O 5 , V 6 O 13 , TiO 2 , Cu 2 V 2 O 3 , amorphous V 2 O—P 2 O 5 , MoO 3 and the like. Among these, MnO, V 2 O 5 , V 6 O 13 , and TiO 2 are preferable from the viewpoint of cycle stability and capacity of the obtained secondary battery.

遷移金属硫化物としては、TiS2、TiS3、非晶質MoS2、FeS等が挙げられる。リチウム含有複合金属酸化物としては、層状構造を有するリチウム含有複合金属酸化物、スピネル構造を有するリチウム含有複合金属酸化物、オリビン型構造を有するリチウム含有複合金属酸化物などが挙げられる。 The transition metal sulfide, TiS 2, TiS 3, amorphous MoS 2, FeS, and the like. Examples of the lithium-containing composite metal oxide include a lithium-containing composite metal oxide having a layered structure, a lithium-containing composite metal oxide having a spinel structure, and a lithium-containing composite metal oxide having an olivine structure.

層状構造を有するリチウム含有複合金属酸化物としては、リチウム含有コバルト酸化物(LiCoO2)、リチウム含有ニッケル酸化物(LiNiO2)、Co−Ni−Mnのリチウム複合酸化物、Ni−Mn−Alのリチウム複合酸化物、Ni−Co−Alのリチウム複合酸化物、LiMaO2とLi2MbO3の固溶体である、xLiMaO2・(1−x)Li2MbO3 (0<x<1、Maは平均酸化状態が3+である一つ以上の遷移金属、Mbは平均酸化状態が4+である一つ以上の遷移金属)等が挙げられる。二次電池のサイクル特性を向上させるという観点からは、LiCoO2、を用いることが好ましく、二次電池のエネルギー密度を向上させるという観点からは、LiMaO2とLi2MbO3の固溶体が好ましい。また、LiMaO2とLi2MbO3の固溶体としては、特に、xLiMaO2・(1−x)Li2MbO3(0<x<1、Ma=Ni,Co,Mn,Fe,Ti等、Mb=Mn、Zr、Ti等)が好ましく、中でもxLiMaO2・(1−x)Li2MnO3(0<x<1、Ma=Ni,Co,Mn,Fe,Ti等)が好ましい。また、容量が高く、入手しやすいという観点から、Co−Ni−Mnのリチウム複合酸化物を用いることが好ましい。 Examples of the lithium-containing composite metal oxide having a layered structure include lithium-containing cobalt oxide (LiCoO 2 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium composite oxide, and Ni—Mn—Al. Lithium composite oxide, lithium composite oxide of Ni—Co—Al, solid solution of LiMaO 2 and Li 2 MbO 3 , xLiMaO 2. (1-x) Li 2 MbO 3 (0 <x <1, Ma is average And one or more transition metals having an oxidation state of 3+, and Mb is one or more transition metals having an average oxidation state of 4+). From the viewpoint of improving the cycle characteristics of the secondary battery, LiCoO 2 is preferably used, and from the viewpoint of improving the energy density of the secondary battery, a solid solution of LiMaO 2 and Li 2 MbO 3 is preferable. Further, as a solid solution of LiMaO 2 and Li 2 MbO 3 , in particular, xLiMaO 2 · (1-x) Li 2 MbO 3 (0 <x <1, Ma = Ni, Co, Mn, Fe, Ti, etc., Mb = Mn, Zr, Ti, etc.) are preferable, and xLiMaO 2. (1-x) Li 2 MnO 3 (0 <x <1, Ma = Ni, Co, Mn, Fe, Ti, etc.) is particularly preferable. From the viewpoint of high capacity and easy availability, it is preferable to use a lithium composite oxide of Co—Ni—Mn.

スピネル構造を有するリチウム含有複合金属酸化物としては、マンガン酸リチウム(LiMn24)のMnの一部を他の遷移金属で置換したLia[Mn2-xMdx]O4(ここでMdは平均酸化状態が4+である1つ以上の遷移金属、Md=Ni,Co,Fe,Cu,Cr等、0<x<1、0≦a≦1)等が挙げられる。スピネル構造を有するリチウム含有金属酸化物の中でも、MnをFeで置換したLiaFexMn2-x4-z(0≦a≦1、0<x<1、0≦z≦0.1)は、コストが安価であることから好ましい。また、MnをNiで置換したLiNi0.5Mn1.54などは構造劣化の因子と考えられているMn3+を全て置換することができ、Ni2+からNi4+への電気化学反応が行われることから高い作動電圧を有し、かつ、高い容量を有するため好ましい。 As the lithium-containing composite metal oxide having a spinel structure, Li a [Mn 2−x Md x ] O 4 in which a part of Mn of lithium manganate (LiMn 2 O 4 ) is substituted with another transition metal Md includes one or more transition metals having an average oxidation state of 4+, Md = Ni, Co, Fe, Cu, Cr, etc., 0 <x <1, 0 ≦ a ≦ 1), and the like. Among the lithium-containing metal oxide having a spinel structure, Li a was replaced with Mn in Fe Fe x Mn 2-x O 4-z (0 ≦ a ≦ 1,0 <x <1,0 ≦ z ≦ 0.1 ) Is preferable because of its low cost. In addition, LiNi 0.5 Mn 1.5 O 4 and the like in which Mn is replaced with Ni can replace all Mn 3+ which is considered to be a structural deterioration factor, and an electrochemical reaction from Ni 2+ to Ni 4+ is performed. Therefore, it is preferable because it has a high operating voltage and a high capacity.

オリビン型構造を有するリチウム含有複合金属酸化物としては、LiyMcPO4(式中、Mcは平均酸化状態が3+である1つ以上の遷移金属、Mc=Mn,Co,Fe等、0≦y≦2)であらわされるオリビン型燐酸リチウム化合物が挙げられる。Mn,CoまたはFeは他の金属で一部置換されていてもよく、置換しうる金属としてはCu,Mg,Zn,V,Ca,Sr,Ba,Ti,Al,Si,B及びMoなどが挙げられる。 Examples of lithium-containing composite metal oxides having an olivine structure include Li y McPO 4 (wherein Mc is one or more transition metals having an average oxidation state of 3+, Mc = Mn, Co, Fe, etc., 0 ≦ y An olivine type lithium phosphate compound represented by ≦ 2) may be mentioned. Mn, Co or Fe may be partially substituted with other metals, and examples of metals that can be substituted include Cu, Mg, Zn, V, Ca, Sr, Ba, Ti, Al, Si, B, and Mo. Can be mentioned.

その他、Li2MeSiO4(ここでMeは、Fe,Mn)等のポリアニオン構造を有する正極活物質や、ペロブスカイト構造を有するLiFeF3、斜方晶構造を有するLi2Cu24などが挙げられる。 Other examples include a positive electrode active material having a polyanion structure such as Li 2 MeSiO 4 (where Me is Fe, Mn), LiFeF 3 having a perovskite structure, Li 2 Cu 2 O 4 having an orthorhombic structure, and the like. .

リチウムイオン二次電池用の正極活物質は、上記の無機化合物と有機化合物の混合物であってもよい。正極活物質の粒子径は、電池の他の構成要件との兼ね合いで適宜選択されるが、負荷特性、サイクル特性、さらに充放電容量が大きい二次電池を得るなどの電池特性の向上の観点及び電極用スラリーおよび電極を製造する際の取扱いが容易である観点から、50%体積累積粒子径が、好ましくは0.1〜50μm、より好ましくは1〜20μmである。50%体積累積粒子径は、レーザー回折で粒度分布を測定することにより求めることができる。   The positive electrode active material for a lithium ion secondary battery may be a mixture of the above inorganic compound and organic compound. The particle diameter of the positive electrode active material is appropriately selected in consideration of other constituent elements of the battery, but the load characteristics, cycle characteristics, and the viewpoint of improving battery characteristics such as obtaining a secondary battery having a large charge / discharge capacity and From the viewpoint of easy handling when producing an electrode slurry and an electrode, the 50% volume cumulative particle diameter is preferably 0.1 to 50 μm, more preferably 1 to 20 μm. The 50% volume cumulative particle size can be determined by measuring the particle size distribution by laser diffraction.

リチウムイオンキャパシタ用の正極活物質としては、アニオンおよび/またはカチオンを可逆的にドープ・脱ドープ可能な活性炭、ポリアセン系有機半導体(PAS)、カーボンナノチューブ、カーボンウィスカー、グラファイト等が挙げられる。好ましい正極活物質は活性炭、カーボンナノチューブである。リチウムイオンキャパシタに用いる正極活物質の体積平均粒子径は、好ましくは0.1〜100μm、より好ましくは0.5〜50μm、さらに好ましくは0.8〜20μmである。   Examples of the positive electrode active material for a lithium ion capacitor include activated carbon, polyacene organic semiconductor (PAS), carbon nanotube, carbon whisker, and graphite that can be reversibly doped and dedoped with anions and / or cations. Preferred positive electrode active materials are activated carbon and carbon nanotubes. The volume average particle diameter of the positive electrode active material used for the lithium ion capacitor is preferably 0.1 to 100 μm, more preferably 0.5 to 50 μm, and still more preferably 0.8 to 20 μm.

(撥水処理)
本発明の電気化学素子正極用複合粒子に用いる正極活物質は、撥水処理が行われた正極活物質であることが好ましい。撥水処理の方法としては特に限定されないが、カップリング剤を用いて撥水処理を行うことが好ましい。カップリング剤としては、シランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤等を用いることができる。
(Water repellent treatment)
The positive electrode active material used for the composite particles for electrochemical device positive electrodes of the present invention is preferably a positive electrode active material that has been subjected to water repellent treatment. The method for the water repellent treatment is not particularly limited, but it is preferable to perform the water repellent treatment using a coupling agent. As the coupling agent, a silane coupling agent, a titanate coupling agent, an aluminate coupling agent, or the like can be used.

シランカップリング剤としては、例えばアルキルシラン、アルコキシシラン、ジシラザン等が挙げられる。   Examples of the silane coupling agent include alkyl silane, alkoxy silane, and disilazane.

アルキルシランとしては、メチルトリクロロシラン、エチルトリクロロシラン、トリメチルクロロシラン、トリエチルクロロシラン、トリプロピルクロロシラン、トリヘキシルクロロシラン、ビニルトリクロロシラン等が挙げられる。   Examples of the alkylsilane include methyltrichlorosilane, ethyltrichlorosilane, trimethylchlorosilane, triethylchlorosilane, tripropylchlorosilane, trihexylchlorosilane, vinyltrichlorosilane, and the like.

アルコキシシランとしては、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、イソブチルトリメトキシシラン、ペンチルトリメトキシシラン、ヘキシルトリメトキシシラン、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ジヘキシルジメトキシシラン、トリメチルメトキシシラン、トリエチルメトキシシラン、トリプロピルメトキシシラン、ノニルトリエトキシシラン、デシルトリエトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン、ジヘキシルジエトキシシラン、トリメチルエトキシシラン、トリエチルエトキシシラン、トリプロピルエトキシシラン、トリヘキシルエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン等が挙げられる。   Alkoxysilanes include methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, isobutyltrimethoxysilane, pentyltrimethoxysilane, hexyltrimethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, and dihexyldimethoxy. Silane, trimethylmethoxysilane, triethylmethoxysilane, tripropylmethoxysilane, nonyltriethoxysilane, decyltriethoxysilane, dimethyldiethoxysilane, diethyldiethoxysilane, dihexyldiethoxysilane, trimethylethoxysilane, triethylethoxysilane, tripropyl Ethoxysilane, trihexylethoxysilane, tetramethoxysilane, tetraethoxysilane, γ- Taku Lilo trimethoxysilane and the like.

ジシラザンとしては、ヘキサメチルジシラザン、テトラメチルジシラザン、ジビニルテトラメチルジシラザン、ヘキサメチルシクロトリシラザン、オクタメチルシクロテトラシラザン等が挙げられる。   Examples of the disilazane include hexamethyldisilazane, tetramethyldisilazane, divinyltetramethyldisilazane, hexamethylcyclotrisilazane, and octamethylcyclotetrasilazane.

また、チタネートカップリング剤としては、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピルトリステアロイルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルジアクリルチタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネートなどが挙げられる。市販品として入手可能なチタネートカップリング剤としては、KR TTS、KR36B、KR55、KR41B、KR38S、KR138S、KR238S、338X、KR 44、KR 9SA(いずれも味の素ファインテクノ社製、商品名「プレンアクト(登録商標)」)等が挙げられる。   Titanate coupling agents include isopropyl trioctanoyl titanate, isopropyl dimethacrylisostearoyl titanate, isopropyl tristearoyl titanate, isopropyl triisostearoyl titanate, isopropyl diacryl titanate, dicumylphenyloxyacetate titanate, diisostearoyl ethylene titanate. Etc. Commercially available titanate coupling agents include KR TTS, KR36B, KR55, KR41B, KR38S, KR138S, KR238S, 338X, KR 44, KR 9SA (all from Ajinomoto Fine Techno Co., Ltd. Trademark)))) and the like.

また、アルミネートカップリング剤としては、トリメトキシアルミニウム、トリエトキシアルミニウム、トリプロポキシアルミニウム、トリイソプロポキシアルミニウム、トリブトキシアルミニウム、アセトルコキシアルミニウムジイソプロピレート(市販品としては、味の素ファインテクノ社製、「プレンアクトAL−M」)等のアルコキシアルミニウムなどが挙げられる。   In addition, as an aluminate coupling agent, trimethoxyaluminum, triethoxyaluminum, tripropoxyaluminum, triisopropoxyaluminum, tributoxyaluminum, aceturoxyaluminum diisopropylate (commercially available from Ajinomoto Fine Techno Co., Ltd., And alkoxyaluminum such as “Plenact AL-M”).

これらの中でも反応性が良い観点から、シランカップリング剤を用いることが好ましく、ジシラザンを用いることがより好ましい。   Among these, from the viewpoint of good reactivity, it is preferable to use a silane coupling agent, and it is more preferable to use disilazane.

また、これらのカップリング剤を1種類のみ用いてもよいし、2種類以上併用してもよい。2種類以上併用して用いる場合には、反応点を増やす観点から、テトラエトキシシランを併用することが好ましい。   Moreover, only one type of these coupling agents may be used, or two or more types may be used in combination. When two or more types are used in combination, tetraethoxysilane is preferably used in combination from the viewpoint of increasing the reaction point.

正極活物質を撥水処理する方法に特に制限はないが、例えば、カップリング剤を正極活物質の表面と直接接触させる乾式法、カップリング剤を溶媒に溶解してなる溶液に正極活物質を添加し混合する湿式法などが挙げられる。工程が簡単で効率的であることから、乾式法が好ましい。その後40〜200℃で乾燥することにより撥水処理を行った正極活物質を得ることができる。   There is no particular limitation on the method for water-repellent treatment of the positive electrode active material. For example, a dry method in which a coupling agent is brought into direct contact with the surface of the positive electrode active material, or a solution obtained by dissolving the coupling agent in a solvent is used. The wet method of adding and mixing is mentioned. The dry method is preferred because the process is simple and efficient. The positive electrode active material which performed the water-repellent process by drying at 40-200 degreeC after that can be obtained.

この場合、正極活物質100重量部に対してカップリング剤が好ましくは0.01〜5重量部、より好ましくは0.05〜3重量部、さらに好ましくは0.1〜2重量部となるようにカップリング剤を加える。カップリング剤の量が多すぎると電池の副反応が起こるため好ましくなく、カップリング剤の量が少なすぎると撥水効果を十分に得ることができない。   In this case, the coupling agent is preferably 0.01 to 5 parts by weight, more preferably 0.05 to 3 parts by weight, and even more preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of the positive electrode active material. Add coupling agent to. If the amount of the coupling agent is too large, a side reaction of the battery occurs, which is not preferable. If the amount of the coupling agent is too small, the water repellent effect cannot be sufficiently obtained.

撥水処理された正極活物質のメタノール法で測定される疎水化度は、好ましくは20〜90%である。また、後述する導電剤の疎水化度との比が(正極活物質の疎水化度/導電剤の疎水化度)の値で0.5以上1.5未満、好ましくは0.7以上1.3未満、より好ましくは0.8以上1.2未満である。   The degree of hydrophobicity of the positive electrode active material subjected to water repellency treatment as measured by the methanol method is preferably 20 to 90%. Further, the ratio of the hydrophobization degree of the conductive agent, which will be described later, is 0.5 or more and less than 1.5, preferably 0.7 or more and 1. It is less than 3, more preferably 0.8 or more and less than 1.2.

(導電剤)
本発明の電気化学素子正極用複合粒子に用いる導電剤は、導電性を有し、電気二重層を形成し得る細孔を有さない粒子状の炭素の同素体からなり、具体的には、ファーネスブラック、アセチレンブラック、及びケッチェンブラック(アクゾノーベル ケミカルズ ベスローテン フェンノートシャップ社の登録商標)などの導電性カーボンブラックが挙げられる。これらの中でも、アセチレンブラックおよびファーネスブラックが好ましい。
(Conductive agent)
The conductive agent used for the composite particle for an electrochemical device positive electrode of the present invention is composed of an allotrope of particulate carbon that has conductivity and does not have pores that can form an electric double layer. Examples thereof include conductive carbon black such as black, acetylene black, and ketjen black (registered trademark of Akzo Nobel Chemicals Bethloten Fennaut Shap). Among these, acetylene black and furnace black are preferable.

本発明の電気化学素子正極用複合粒子に用いる導電剤の体積平均粒子径は、正極活物質の体積平均粒子径よりも小さいものが好ましく、より少ない使用量で高い導電性が得られる観点から、好ましくは0.001〜10μm、より好ましくは0.05〜5μm、さらに好ましくは0.01〜1μmである。これらの導電剤は、単独でまたは二種類以上を組み合わせて用いることができる。導電剤の量は、得られる電気化学素子正極用複合粒子を使用したリチウムイオン二次電池の容量を高く且つ内部抵抗を低くすることができる観点から、正極活物質100重量部に対して好ましくは0.1〜50重量部、より好ましくは0.5〜15重量部、さらに好ましくは1〜10重量部である。   The volume average particle diameter of the conductive agent used in the composite particles for electrochemical device positive electrode of the present invention is preferably smaller than the volume average particle diameter of the positive electrode active material, from the viewpoint of obtaining high conductivity with a smaller amount of use, Preferably it is 0.001-10 micrometers, More preferably, it is 0.05-5 micrometers, More preferably, it is 0.01-1 micrometer. These conductive agents can be used alone or in combination of two or more. The amount of the conductive agent is preferably based on 100 parts by weight of the positive electrode active material from the viewpoint of increasing the capacity of the lithium ion secondary battery using the obtained composite particles for electrochemical device positive electrodes and reducing the internal resistance. It is 0.1-50 weight part, More preferably, it is 0.5-15 weight part, More preferably, it is 1-10 weight part.

(結着剤)
本発明の電気化学素子正極用複合粒子に用いる結着剤は、正極活物質を相互に結着させることができる化合物であれば特に制限はない。結着剤を用いることにより正極中の正極活物質層の結着性が向上し、電極の捲回時等の工程上においてかかる機械的な力に対する強度が向上し、また正極中の正極活物質層が脱離しにくくなることから、脱離物による短絡等の危険性が小さくなる。
(Binder)
The binder used in the composite particle for electrochemical device positive electrode of the present invention is not particularly limited as long as it is a compound capable of binding positive electrode active materials to each other. By using the binder, the binding property of the positive electrode active material layer in the positive electrode is improved, the strength against mechanical force applied during the process of winding the electrode is improved, and the positive electrode active material in the positive electrode Since the layer is difficult to be detached, the risk of a short circuit due to the desorbed material is reduced.

結着剤としては様々な樹脂成分を用いることができる。例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体などを用いることができる。これらは単独で用いてもよく、2種以上を組み合わせて用いてもよい。
さらに、下に例示する軟質重合体も結着剤として使用することができる。
Various resin components can be used as the binder. For example, polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives, and the like can be used. These may be used alone or in combination of two or more.
Furthermore, the soft polymer illustrated below can also be used as a binder.

ポリブチルアクリレート、ポリブチルメタクリレート、ポリヒドロキシエチルメタクリレート、ポリアクリルアミド、ポリアクリロニトリル、ブチルアクリレート・スチレン共重合体、ブチルアクリレート・アクリロニトリル共重合体、ブチルアクリレート・アクリロニトリル・グリシジルメタクリレート共重合体などの、アクリル酸またはメタクリル酸誘導体の単独重合体またはそれと共重合可能な単量体との共重合体である、アクリル系軟質重合体;
ポリイソブチレン、イソブチレン・イソプレンゴム、イソブチレン・スチレン共重合体などのイソブチレン系軟質重合体;
ポリブタジエン、ポリイソプレン、ブタジエン・スチレンランダム共重合体、イソプレン・スチレンランダム共重合体、アクリロニトリル・ブタジエン共重合体、アクリロニトリル・ブタジエン・スチレン共重合体、ブタジエン・スチレン・ブロック共重合体、スチレン・ブタジエン・スチレン・ブロック共重合体、イソプレン・スチレン・ブロック共重合体、スチレン・イソプレン・スチレン・ブロック共重合体などジエン系軟質重合体;
ジメチルポリシロキサン、ジフェニルポリシロキサン、ジヒドロキシポリシロキサンなどのケイ素含有軟質重合体;
液状ポリエチレン、ポリプロピレン、ポリ−1−ブテン、エチレン・α−オレフィン共重合体、プロピレン・α−オレフィン共重合体、エチレン・プロピレン・ジエン共重合体(EPDM)、エチレン・プロピレン・スチレン共重合体などのオレフィン系軟質重合体;
ポリビニルアルコール、ポリ酢酸ビニル、ポリステアリン酸ビニル、酢酸ビニル・スチレン共重合体などビニル系軟質重合体;
ポリエチレンオキシド、ポリプロピレンオキシド、エピクロルヒドリンゴムなどのエポキシ系軟質重合体;
フッ化ビニリデン系ゴム、四フッ化エチレン−プロピレンゴムなどのフッ素含有軟質重合体;
天然ゴム、ポリペプチド、蛋白質、ポリエステル系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマーなどのその他の軟質重合体などが挙げられる。これらの軟質重合体は、架橋構造を有したものであってもよく、また、変性により官能基を導入したものであってもよい。
Acrylic acid such as polybutyl acrylate, polybutyl methacrylate, polyhydroxyethyl methacrylate, polyacrylamide, polyacrylonitrile, butyl acrylate / styrene copolymer, butyl acrylate / acrylonitrile copolymer, butyl acrylate / acrylonitrile / glycidyl methacrylate copolymer Or an acrylic soft polymer which is a homopolymer of a methacrylic acid derivative or a copolymer with a monomer copolymerizable therewith;
Isobutylene-based soft polymers such as polyisobutylene, isobutylene-isoprene rubber, isobutylene-styrene copolymer;
Polybutadiene, polyisoprene, butadiene / styrene random copolymer, isoprene / styrene random copolymer, acrylonitrile / butadiene copolymer, acrylonitrile / butadiene / styrene copolymer, butadiene / styrene / block copolymer, styrene / butadiene / Diene-based soft polymers such as styrene block copolymer, isoprene / styrene block copolymer, styrene / isoprene / styrene block copolymer;
Silicon-containing soft polymers such as dimethylpolysiloxane, diphenylpolysiloxane, dihydroxypolysiloxane;
Liquid polyethylene, polypropylene, poly-1-butene, ethylene / α-olefin copolymer, propylene / α-olefin copolymer, ethylene / propylene / diene copolymer (EPDM), ethylene / propylene / styrene copolymer, etc. Olefinic soft polymers of
Vinyl-based soft polymers such as polyvinyl alcohol, polyvinyl acetate, polyvinyl stearate, vinyl acetate / styrene copolymer;
Epoxy-based soft polymers such as polyethylene oxide, polypropylene oxide, epichlorohydrin rubber;
Fluorine-containing soft polymers such as vinylidene fluoride rubber and tetrafluoroethylene-propylene rubber;
Examples thereof include other soft polymers such as natural rubber, polypeptide, protein, polyester-based thermoplastic elastomer, vinyl chloride-based thermoplastic elastomer, and polyamide-based thermoplastic elastomer. These soft polymers may have a cross-linked structure or may have a functional group introduced by modification.

正極活物質層において用いる結着剤(正極活物質層用結着剤)の量は、電池反応を阻害せずに、電極からの正極活物質の脱落を防止する観点から、正極活物質100重量部に対して、好ましくは0.1〜5重量部、より好ましくは0.2〜4重量部、特に好ましくは0.5〜3重量部である。   The amount of the binder used in the positive electrode active material layer (the binder for the positive electrode active material layer) is 100 wt% of the positive electrode active material from the viewpoint of preventing the positive electrode active material from falling off the electrode without inhibiting the battery reaction. The amount is preferably 0.1 to 5 parts by weight, more preferably 0.2 to 4 parts by weight, and particularly preferably 0.5 to 3 parts by weight with respect to parts.

正極活物質層用結着剤は、電極を作製するために溶液もしくは分散液として調製される。この溶液もしくは分散液の粘度は、好ましくは1〜300,000mPa・S、より好ましくは50〜10,000mPa・Sである。前記粘度は、B型粘度計を用いて25℃、回転数60rpmで測定した時の値である。   The binder for the positive electrode active material layer is prepared as a solution or a dispersion to produce an electrode. The viscosity of this solution or dispersion is preferably 1 to 300,000 mPa · S, more preferably 50 to 10,000 mPa · S. The viscosity is a value measured using a B-type viscometer at 25 ° C. and a rotation speed of 60 rpm.

(電気化学素子正極用複合粒子の製造)
電気化学素子正極用複合粒子(以下、単に「複合粒子」ということがある。)は、正極活物質、導電剤、結着剤および必要に応じて添加される他の成分を用いて造粒することにより得られ、正極活物質、導電剤および結着剤を含んでなるが、前記のそれぞれが個別に独立した粒子として存在するのではなく、構成成分である正極活物質、導電剤および結着剤を含む3成分以上によって一粒子を形成するものである。具体的には、前記3成分以上の個々の粒子の複数個が結合して二次粒子を形成しており、複数個(好ましくは数個〜数十個)の上記正極活物質が、結着剤によって結着されて粒子を形成しているものが好ましい。
(Manufacture of composite particles for electrochemical device cathode)
Electrochemical element positive electrode composite particles (hereinafter sometimes simply referred to as “composite particles”) are granulated using a positive electrode active material, a conductive agent, a binder, and other components added as necessary. A positive electrode active material, a conductive agent, and a binder, each of which is not present as an individual particle, but is a constituent component of a positive electrode active material, a conductive agent, and a binder. One particle is formed by three or more components including an agent. Specifically, a plurality of individual particles of three or more components are combined to form secondary particles, and a plurality of (preferably several to several tens) positive electrode active materials are bound. Those that are bound by an agent to form particles are preferred.

複合粒子の形状は、実質的に球形であることが好ましい。すなわち、複合粒子の短軸径をLs、長軸径をLl、La=(Ls+Ll)/2とし、(1−(Ll−Ls)/La)×100の値を球形度(%)としたとき、球形度が80%以上であることが好ましく、90%以上であることがより好ましい。ここで、短軸径Lsおよび長軸径Llは、走査型電子顕微鏡写真像より測定される値である。 The shape of the composite particles is preferably substantially spherical. That is, the short axis diameter of the composite particles is L s , the long axis diameter is L l , L a = (L s + L l ) / 2, and a value of (1− (L l −L s ) / L a ) × 100 Is a sphericity (%), the sphericity is preferably 80% or more, and more preferably 90% or more. Here, the minor axis diameter L s and the major axis diameter L l are values measured from a scanning electron micrograph image.

複合粒子の平均粒子径は、電極を作製する際の目付けの均一性と複合粒子の流動性とのバランスが良好である観点から、好ましくは30〜100μm、より好ましくは35〜90μm、さらに好ましくは40〜80μmである。複合粒子の平均粒子径が大きすぎると複合粒子を用いて電極を作製する際に目付けのバラツキが大きくなり、複合粒子の平均粒子径が小さすぎると、複合粒子の流動性が悪くなる。   The average particle diameter of the composite particles is preferably 30 to 100 μm, more preferably 35 to 90 μm, and still more preferably, from the viewpoint of a good balance between the uniformity of the basis weight when producing the electrode and the fluidity of the composite particles. 40-80 μm. If the average particle diameter of the composite particles is too large, the variation in weight per unit area when the electrodes are produced using the composite particles will be large. If the average particle diameter of the composite particles is too small, the fluidity of the composite particles will be poor.

なお、複合粒子の平均粒子径は、レーザー回折式粒度分布測定装置(たとえば、SALD−3100;島津製作所製)にて測定し、算出される体積平均粒子径である。   The average particle size of the composite particles is a volume average particle size calculated by measuring with a laser diffraction particle size distribution measuring device (for example, SALD-3100; manufactured by Shimadzu Corporation).

複合粒子は、噴霧乾燥造粒法によって得ることができる。以下、噴霧乾燥造粒法について説明する。まず、正極活物質、導電剤、結着剤ならびに必要に応じて添加される他の成分を含有する複合粒子用スラリーを調製する。複合粒子用スラリーは、正極活物質、導電剤、結着剤、ならびに必要に応じて添加される他の成分を、溶媒である水に分散又は溶解させることにより調製することができる。なお、この場合において、結着剤が分散媒としての水に分散されたものである場合には、水に分散させた状態で添加することができる。   Composite particles can be obtained by spray drying granulation. Hereinafter, the spray drying granulation method will be described. First, a slurry for composite particles containing a positive electrode active material, a conductive agent, a binder, and other components added as necessary is prepared. The slurry for composite particles can be prepared by dispersing or dissolving a positive electrode active material, a conductive agent, a binder, and other components added as necessary in water as a solvent. In this case, when the binder is dispersed in water as a dispersion medium, it can be added in a state dispersed in water.

また、複合粒子用スラリーの室温における粘度は、噴霧乾燥造粒工程の生産性を上げる観点から、好ましくは10〜3,000mPa・s、より好ましくは30〜1,500mPa・s、さらに好ましくは50〜1,000mPa・sである。   Moreover, the viscosity at room temperature of the slurry for composite particles is preferably 10 to 3,000 mPa · s, more preferably 30 to 1,500 mPa · s, and still more preferably 50, from the viewpoint of increasing the productivity of the spray drying granulation step. ˜1,000 mPa · s.

また、本発明においては、複合粒子用スラリーを調製する際に、必要に応じて、分散剤や界面活性剤を添加してもよい。界面活性剤としては、アニオン性、カチオン性、ノニオン性、ノニオニックアニオン等の両性の界面活性剤が挙げられるが、アニオン性又はノニオン性界面活性剤で熱分解しやすいものが好ましい。界面活性剤の配合量は、正極活物質100重量部に対して、好ましくは50重量部以下であり、より好ましくは0.1〜10重量部、さらに好ましくは0.5〜5重量部である。   Moreover, in this invention, when preparing the slurry for composite particles, you may add a dispersing agent and surfactant as needed. Examples of the surfactant include amphoteric surfactants such as anionic, cationic, nonionic, and nonionic anions, and anionic or nonionic surfactants that are easily thermally decomposed are preferable. The compounding amount of the surfactant is preferably 50 parts by weight or less, more preferably 0.1 to 10 parts by weight, and further preferably 0.5 to 5 parts by weight with respect to 100 parts by weight of the positive electrode active material. .

複合粒子用スラリーを調製する際に使用する溶媒である水の量は、スラリー中に結着剤を均一に分散させる観点から、スラリーの固形分濃度が好ましくは1〜50重量%、より好ましくは5〜50重量%、さらに好ましくは10〜30重量%となる量である。   From the viewpoint of uniformly dispersing the binder in the slurry, the amount of water that is the solvent used when preparing the composite particle slurry is preferably 1 to 50% by weight, more preferably the solid content concentration of the slurry. The amount is 5 to 50% by weight, more preferably 10 to 30% by weight.

正極活物質、導電剤および結着剤、ならびに必要に応じて添加される他の成分を溶媒である水に分散又は溶解する方法又は順番は、特に限定されず、例えば、溶媒である水に上記正極活物質、導電剤、結着剤および分散剤を添加し混合する方法、溶媒である水に分散剤を溶解した後、溶媒(水)に分散させた結着剤(例えば、ラテックス)を添加して混合し、最後に上記正極活物質および導電剤を添加して混合する方法、溶媒である水に分散させた結着剤に上記正極活物質および導電剤を添加して混合し、この混合物に溶媒(水)に溶解させた分散剤を添加して混合する方法等が挙げられる。   The method or order of dispersing or dissolving the positive electrode active material, the conductive agent and the binder, and other components added as necessary in water as a solvent is not particularly limited. A method of adding and mixing a positive electrode active material, a conductive agent, a binder and a dispersant, dissolving a dispersant in water as a solvent, and then adding a binder (for example, latex) dispersed in the solvent (water) Finally, a method of adding and mixing the positive electrode active material and the conductive agent, and adding and mixing the positive electrode active material and the conductive agent to a binder dispersed in water as a solvent. And a method in which a dispersant dissolved in a solvent (water) is added and mixed.

また、混合装置としては、たとえば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等を用いることができる。混合は、室温〜80℃の範囲で、10分〜数時間行うことが好ましい。   Moreover, as a mixing apparatus, a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a homomixer, a planetary mixer, etc. can be used, for example. The mixing is preferably performed at room temperature to 80 ° C. for 10 minutes to several hours.

次いで、得られた複合粒子用スラリーを噴霧乾燥して造粒する。噴霧乾燥は、熱風中にスラリーを噴霧して乾燥する方法である。スラリーの噴霧に用いる装置としてアトマイザーが挙げられる。アトマイザーとしては、回転円盤方式と加圧方式との二種類の装置が挙げられ、回転円盤方式は、高速回転する円盤のほぼ中央にスラリーを導入し、円盤の遠心力によってスラリーが円盤の外に放たれ、その際にスラリーを霧状にする方式である。回転円盤方式において、円盤の回転速度は円盤の大きさに依存するが、好ましくは5,000〜30,000rpm、より好ましくは15,000〜30,000rpmである。円盤の回転速度が低いほど、噴霧液滴が大きくなり、得られる複合粒子の平均粒子径が大きくなる。回転円盤方式のアトマイザーとしては、ピン型とベーン型が挙げられるが、ピン型アトマイザーが好ましい。ピン型アトマイザーは、噴霧盤を用いた遠心式の噴霧装置の一種であり、該噴霧盤が上下取付円板の間にその周縁に沿ったほぼ同心円上に着脱自在に複数の噴霧用コロを取り付けたもので構成されている。複合粒子用スラリーは噴霧盤中央から導入され、遠心力によって噴霧用コロに付着し、コロ表面を外側へと移動し、最後にコロ表面から離れ噴霧される。一方、加圧方式は、複合粒子用スラリーを加圧してノズルから霧状にして乾燥する方式である。   Subsequently, the obtained slurry for composite particles is granulated by spray drying. Spray drying is a method of spraying and drying a slurry in hot air. An atomizer is used as an apparatus used for spraying slurry. There are two types of atomizers: a rotating disk system and a pressurizing system. In the rotating disk system, slurry is introduced almost at the center of a disk that rotates at high speed, and the slurry is removed from the disk by the centrifugal force of the disk. In this case, the slurry is atomized. In the rotating disk system, the rotational speed of the disk depends on the size of the disk, but is preferably 5,000 to 30,000 rpm, more preferably 15,000 to 30,000 rpm. The lower the rotational speed of the disk, the larger the spray droplets and the larger the average particle size of the resulting composite particles. Examples of the rotating disk type atomizer include a pin type and a vane type, and a pin type atomizer is preferable. A pin-type atomizer is a type of centrifugal spraying device that uses a spraying plate, and the spraying plate has a plurality of spraying rollers removably mounted on a concentric circle along its periphery between upper and lower mounting disks. It consists of The slurry for composite particles is introduced from the center of the spray disk, adheres to the spray roller by centrifugal force, moves outward on the roller surface, and finally sprays away from the roller surface. On the other hand, the pressurization method is a method in which the slurry for composite particles is pressurized and sprayed from a nozzle to be dried.

噴霧される複合粒子用スラリーの温度は、好ましくは室温であるが、加温して室温より高い温度としてもよい。また、噴霧乾燥時の熱風温度は、好ましくは25〜200℃、より好ましくは50〜150℃、さらに好ましくは80〜120℃である。噴霧乾燥法において、熱風の吹き込み方法は特に制限されず、たとえば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。   The temperature of the slurry for composite particles to be sprayed is preferably room temperature, but may be heated to a temperature higher than room temperature. Moreover, the hot air temperature at the time of spray drying becomes like this. Preferably it is 25-200 degreeC, More preferably, it is 50-150 degreeC, More preferably, it is 80-120 degreeC. In the spray drying method, the method of blowing hot air is not particularly limited. For example, the method in which the hot air and the spraying direction flow side by side, the method in which the hot air is sprayed at the top of the drying tower and descends with the hot air, and the sprayed droplets and hot air flow countercurrently Examples include a contact method, and a method in which sprayed droplets first flow in parallel with hot air, then drop by gravity and contact countercurrent.

なお、噴霧方法としては、正極活物質、導電剤および結着剤を有する複合粒子用スラリーを、一括して噴霧する方法以外にも、導電剤、結着剤および必要に応じてその他添加剤を含有するスラリーを、流動している上記正極活物質に噴霧する方法も用いることができる。粒子径制御の容易性、生産性、粒子径分布が小さくできるなどの観点から、複合粒子の成分等に応じて最適な方法を適宜選択すればよい。   In addition to the method of spraying the slurry for composite particles having the positive electrode active material, the conductive agent and the binder in a batch, the spraying method includes a conductive agent, a binder and other additives as required. A method of spraying the contained slurry onto the flowing positive electrode active material can also be used. From the viewpoint of ease of particle size control, productivity, and reduction in particle size distribution, an optimal method may be appropriately selected according to the components of the composite particles.

(電気化学素子正極)
本発明に用いる電気化学素子正極は、上述した電気化学素子正極用複合粒子からなる正極活物質層を集電体上に積層してなる。集電体用材料としては、たとえば、金属、炭素、導電性高分子などを用いることができ、好適には金属が用いられる。金属としては、通常、銅、アルミニウム、白金、ニッケル、タンタル、チタン、ステンレス鋼、その他の合金等が使用される。これらの中で導電性、耐電圧性の面から、銅、アルミニウム又はアルミニウム合金を使用するのが好ましい。また、高い耐電圧性が要求される場合には特開2001−176757号公報等で開示される高純度のアルミニウムを好適に用いることができる。集電体は、フィルム又はシート状であり、その厚みは、使用目的に応じて適宜選択されるが、好ましくは1〜200μm、より好ましくは5〜100μm、さらに好ましくは10〜50μmである。
(Electrochemical element positive electrode)
The electrochemical element positive electrode used in the present invention is formed by laminating a positive electrode active material layer composed of the above-described composite particle for an electrochemical element positive electrode on a current collector. As the current collector material, for example, metal, carbon, conductive polymer and the like can be used, and metal is preferably used. As the metal, copper, aluminum, platinum, nickel, tantalum, titanium, stainless steel, other alloys and the like are usually used. Among these, it is preferable to use copper, aluminum, or an aluminum alloy in terms of conductivity and voltage resistance. In addition, when high voltage resistance is required, high-purity aluminum disclosed in JP 2001-176757 A can be suitably used. The current collector is in the form of a film or a sheet, and the thickness thereof is appropriately selected according to the purpose of use, but is preferably 1 to 200 μm, more preferably 5 to 100 μm, and still more preferably 10 to 50 μm.

正極活物質層を集電体上に積層する際には、複合粒子をシート状に成形し、次いで集電体上に積層してもよいが、集電体上で複合粒子を直接加圧成形する方法が好ましい。加圧成形する方法としては、例えば、一対のロールを備えたロール式加圧成形装置を用い、集電体をロールで送りながら、スクリューフィーダー等の供給装置で複合粒子をロール式加圧成形装置に供給することで、集電体上に正極活物質層を成形するロール加圧成形法や、複合粒子を集電体上に散布し、複合粒子をブレード等でならして厚みを調整し、次いで加圧装置で成形する方法、複合粒子を金型に充填し、金型を加圧して成形する方法などが挙げられる。これらのなかでも、ロール加圧成形法が好ましい。特に、本発明の電気化学素子正極用複合粒子は、高い流動性を有しているため、その高い流動性により、ロール加圧成形による成形が可能であり、これにより、生産性の向上が可能となる。   When laminating the positive electrode active material layer on the current collector, the composite particles may be formed into a sheet shape and then laminated on the current collector, but the composite particles are directly pressure-molded on the current collector. Is preferred. As a method for pressure molding, for example, a roll type pressure molding apparatus provided with a pair of rolls is used, and a roll type pressure molding apparatus is used to feed composite particles with a feeder such as a screw feeder while feeding a current collector with the roll. By supplying to the roll pressure forming method for forming the positive electrode active material layer on the current collector, and dispersing the composite particles on the current collector, adjusting the thickness by smoothing the composite particles with a blade, Next, a method of forming with a pressurizing apparatus, a method of filling composite particles into a mold, and pressurizing the mold to form are included. Among these, the roll pressure molding method is preferable. In particular, since the composite particle for electrochemical device positive electrode of the present invention has high fluidity, it can be molded by roll press molding due to its high fluidity, thereby improving productivity. It becomes.

ロール加圧成形時の温度は、正極活物質層と集電体との接着性を十分なものとすることができる観点から、好ましくは25〜200℃、より好ましくは50〜150℃、さらに好ましくは80〜120℃である。また、ロール加圧成形時のロール間のプレス線圧は、正極活物質層の厚みの均一性を向上させることができる観点から、好ましくは10〜1000kN/m、より好ましくは200〜900kN/m、さらに好ましくは300〜600kN/mである。また、ロール加圧成形時の成形速度は、好ましくは0.1〜20m/分、より好ましくは4〜10m/分である。   The temperature at the time of roll press molding is preferably 25 to 200 ° C., more preferably 50 to 150 ° C., and still more preferably, from the viewpoint of sufficient adhesion between the positive electrode active material layer and the current collector. Is 80-120 ° C. Moreover, the press linear pressure between rolls at the time of roll press molding is preferably 10 to 1000 kN / m, more preferably 200 to 900 kN / m, from the viewpoint of improving the uniformity of the thickness of the positive electrode active material layer. More preferably, it is 300-600 kN / m. Moreover, the molding speed at the time of roll pressure molding is preferably 0.1 to 20 m / min, more preferably 4 to 10 m / min.

また、成形した電気化学素子正極の厚みのばらつきを無くし、正極活物質層の密度を上げて高容量化を図るために、必要に応じてさらに後加圧を行ってもよい。後加圧の方法は、ロールによるプレス工程が好ましい。ロールプレス工程では、2本の円柱状のロールをせまい間隔で平行に上下にならべ、それぞれを反対方向に回転させて、その間に電極をかみこませることにより加圧する。この際においては、必要に応じて、ロールは加熱又は冷却等、温度調節してもよい。   Further, post-pressurization may be further performed as necessary in order to eliminate variations in the thickness of the formed electrochemical device positive electrode and increase the density of the positive electrode active material layer to increase the capacity. The post-pressing method is preferably a pressing process using a roll. In the roll pressing step, two cylindrical rolls are arranged vertically in parallel with a narrow interval, each is rotated in the opposite direction, and pressure is applied by interposing an electrode therebetween. In this case, the temperature of the roll may be adjusted as necessary, such as heating or cooling.

(電気化学素子)
電気化学素子は、上述のようにして得られる電気化学素子正極、負極、セパレーターおよび電解液を備える。電気化学素子としては、例えば、リチウムイオン二次電池、リチウムイオンキャパシタ等が挙げられる。以下、電気化学素子がリチウムイオン二次電池である場合について説明する。
(Electrochemical element)
The electrochemical element includes an electrochemical element positive electrode, a negative electrode, a separator, and an electrolytic solution obtained as described above. Examples of the electrochemical element include a lithium ion secondary battery and a lithium ion capacitor. Hereinafter, a case where the electrochemical element is a lithium ion secondary battery will be described.

(電解液)
リチウムイオン二次電池用の電解液としては、例えば、非水溶媒に支持電解質を溶解した非水電解液が用いられる。支持電解質としては、リチウム塩が好ましく用いられる。リチウム塩としては、例えば、LiPF6、LiAsF6、LiBF4、LiSbF6、LiAlCl4、LiClO4、CF3SO3Li、C49SO3Li、CF3COOLi、(CF3CO)2NLi、(CF3SO22NLi、(C25SO2)NLiなどが挙げられる。中でも、溶媒に溶けやすく高い解離度を示すLiPF6、LiClO4、CF3SO3Liが好ましい。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。解離度の高い支持電解質を用いるほど、リチウムイオン伝導度が高くなるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
(Electrolyte)
As an electrolytic solution for a lithium ion secondary battery, for example, a nonaqueous electrolytic solution in which a supporting electrolyte is dissolved in a nonaqueous solvent is used. As the supporting electrolyte, a lithium salt is preferably used. Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like. Among these, LiPF 6 , LiClO 4 , and CF 3 SO 3 Li that are easily soluble in a solvent and exhibit a high degree of dissociation are preferable. One of these may be used alone, or two or more of these may be used in combination at any ratio. Since the lithium ion conductivity increases as the supporting electrolyte having a higher degree of dissociation is used, the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.

電解液における支持電解質の濃度は、支持電解質の種類に応じて、0.5〜2.5モル/Lの濃度で用いることが好ましい。支持電解質の濃度が低すぎても高すぎても、イオン導電度が低下する可能性がある。   The concentration of the supporting electrolyte in the electrolytic solution is preferably used at a concentration of 0.5 to 2.5 mol / L depending on the type of the supporting electrolyte. If the concentration of the supporting electrolyte is too low or too high, the ionic conductivity may decrease.

非水溶媒としては、支持電解質を溶解できるものであれば特に限定されない。非水溶媒の例を挙げると、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(MEC)などのカーボネート類;γ−ブチロラクトン、ギ酸メチルなどのエステル類;1,2−ジメトキシエタン、テトラヒドロフランなどのエーテル類;スルホラン、ジメチルスルホキシドなどの含硫黄化合物類;支持電解質としても使用されるイオン液体などが挙げられる。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。非水溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。一般に、非水溶媒の粘度が低いほどリチウムイオン伝導度が高くなり、誘電率が高いほど支持電解質の溶解度が上がるが、両者はトレードオフの関係にあるので、溶媒の種類や混合比によりリチウムイオン伝導度を調節して使用するのがよい。また、非水溶媒は全部あるいは一部の水素をフッ素に置き換えたものを併用あるいは全量用いてもよい。   The non-aqueous solvent is not particularly limited as long as it can dissolve the supporting electrolyte. Examples of non-aqueous solvents include carbonates such as dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), butylene carbonate (BC), methyl ethyl carbonate (MEC); Examples include esters such as γ-butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethyl sulfoxide; and ionic liquids used also as supporting electrolytes. Among these, carbonates are preferable because they have a high dielectric constant and a wide stable potential region. A non-aqueous solvent may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios. In general, the lower the viscosity of the non-aqueous solvent, the higher the lithium ion conductivity, and the higher the dielectric constant, the higher the solubility of the supporting electrolyte, but since both are in a trade-off relationship, the lithium ion conductivity depends on the type of solvent and the mixing ratio. It is recommended to adjust the conductivity. In addition, the nonaqueous solvent may be used in combination or in whole or in a form in which all or part of hydrogen is replaced with fluorine.

また、電解液には添加剤を含有させてもより。添加剤としては、例えば、ビニレンカーボネート(VC)などのカーボネート系;エチレンサルファイト(ES)などの含硫黄化合物;フルオロエチレンカーボネート(FEC)などのフッ素含有化合物が挙げられる。添加剤は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   Moreover, the electrolyte solution may contain an additive. Examples of the additive include carbonates such as vinylene carbonate (VC); sulfur-containing compounds such as ethylene sulfite (ES); and fluorine-containing compounds such as fluoroethylene carbonate (FEC). An additive may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

また、上記電解液の代わりとして、例えば、ポリエチレンオキシド、ポリアクリロニトリルなどの高分子電解質;前記高分子電解質に電解液を含浸したゲル状高分子電解質;LiI、Li3Nなどの無機固体電解質;などを用いてもよい。 Further, instead of the electrolyte solution, for example, a polymer electrolyte such as polyethylene oxide or polyacrylonitrile; a gel polymer electrolyte obtained by impregnating the polymer electrolyte with an electrolyte solution; an inorganic solid electrolyte such as LiI or Li 3 N; May be used.

(負極)
負極としては、通常、集電体と、集電体の表面に形成された負極活物質層とを備えるものを用いる。負極の集電体としては、例えば、正極の集電体と同様のものを用いてもよい。中でも、負極用の集電体としては、銅が好ましい。また、負極として集電体を用いず、例えばリチウム、シリコンなどの金属やそれらの合金を用いてもよい。
(Negative electrode)
As the negative electrode, one having a current collector and a negative electrode active material layer formed on the surface of the current collector is usually used. As the negative electrode current collector, for example, the same as the positive electrode current collector may be used. Among these, copper is preferable as the current collector for the negative electrode. Moreover, you may use metals, such as lithium and silicon, and those alloys, for example, without using a collector as a negative electrode.

負極活物質層は、負極活物質及び必要に応じてバインダーを含む層である。バインダーは必要なければ用いなくても良い。負極活物質としては、例えば、アモルファスカーボン、グラファイト、天然黒鉛、メソカーボンマイクロビーズ、ピッチ系炭素繊維等の炭素質材料;ポリアセン等の導電性高分子;ケイ素、錫、亜鉛、マンガン、鉄、ニッケル等の金属又はこれらの合金;前記金属又は合金の酸化物又は硫酸塩;金属リチウム;Li−Al、Li−Bi−Cd、Li−Sn−Cd等のリチウム合金;リチウム遷移金属窒化物;シリコン等が挙げられる。また、負極活物質として、当該負極活物質の粒子の表面に、例えば機械的改質法によって導電助剤を付着させたものを用いてもよい。また、負極活物質は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   The negative electrode active material layer is a layer containing a negative electrode active material and, if necessary, a binder. The binder may be omitted if not necessary. Examples of the negative electrode active material include carbonaceous materials such as amorphous carbon, graphite, natural graphite, mesocarbon microbeads, and pitch-based carbon fibers; conductive polymers such as polyacene; silicon, tin, zinc, manganese, iron, nickel Metals or alloys thereof; oxides or sulfates of the metals or alloys; metal lithium; lithium alloys such as Li—Al, Li—Bi—Cd, Li—Sn—Cd; lithium transition metal nitrides; silicon, etc. Is mentioned. Further, as the negative electrode active material, a material obtained by attaching a conductive additive to the surface of the negative electrode active material particles by, for example, a mechanical modification method may be used. Moreover, a negative electrode active material may be used individually by 1 type, and may be used combining two or more types by arbitrary ratios.

負極活物質の粒子の粒子径は、リチウムイオン二次電池の他の構成要素との兼ね合いで適宜選択される。中でも、初期効率、負荷特性、サイクル特性等の電池特性の向上の観点から、負極活物質の粒子径の50%体積累積粒子径は、好ましくは1〜50μm、より好ましくは15〜30μmである。   The particle diameter of the negative electrode active material particles is appropriately selected in view of other components of the lithium ion secondary battery. Among these, from the viewpoint of improving battery characteristics such as initial efficiency, load characteristics, and cycle characteristics, the 50% volume cumulative particle diameter of the negative electrode active material is preferably 1 to 50 μm, more preferably 15 to 30 μm.

負極活物質層における負極活物質の含有割合は、リチウムイオン二次電池の容量を大きくでき、また、負極の柔軟性、及び、集電体と負極活物質層との結着性を向上させることができる観点から、好ましくは90〜99.9重量%、より好ましくは95〜99重量%である。   The content ratio of the negative electrode active material in the negative electrode active material layer can increase the capacity of the lithium ion secondary battery, and also improve the flexibility of the negative electrode and the binding property between the current collector and the negative electrode active material layer. From the viewpoint of being able to achieve, it is preferably 90 to 99.9% by weight, more preferably 95 to 99% by weight.

必要に応じて負極活物質層に用いられるバインダーとしては、例えば、正極活物質層において用いた粒子状結着剤と同様のものを用いてもよい。また、例えば、ポリエチレン、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、ポリアクリル酸誘導体、ポリアクリロニトリル誘導体等の重合体;アクリル系軟質重合体、ジエン系軟質重合体、オレフィン系軟質重合体、ビニル系軟質重合体等の軟質重合体などを用いてもよい。また、これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。   As a binder used for a negative electrode active material layer as needed, you may use the thing similar to the particulate-form binder used in the positive electrode active material layer, for example. In addition, for example, polymers such as polyethylene, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), polyacrylic acid derivatives, polyacrylonitrile derivatives; acrylics A soft polymer such as a soft polymer, a diene-based soft polymer, an olefin-based soft polymer, or a vinyl-based soft polymer may be used. Moreover, these may be used individually by 1 type and may be used combining two or more types by arbitrary ratios.

また、負極活物質層には、必要に応じて、負極活物質及びバインダー以外の成分が含まれていてもよい。負極活物質及びバインダー以外の成分としては、例えば、カルボキシメチルセルロース、メチルセルロース、(変性)ポリ(メタ)アクリル酸、(変性)ポリビニルアルコール、アクリル酸又はアクリル酸塩とビニルアルコールの共重合体、ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプン、アクリロニトリル−ブタジエン共重合体水素化物、無水マレイン酸又はマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類等の水溶性高分子が挙げられる。なお、「(変性)ポリ」は「未変性ポリ」又は「変性ポリ」を意味する。   In addition, the negative electrode active material layer may contain components other than the negative electrode active material and the binder as necessary. As components other than the negative electrode active material and the binder, for example, carboxymethyl cellulose, methyl cellulose, (modified) poly (meth) acrylic acid, (modified) polyvinyl alcohol, acrylic acid or a copolymer of acrylate and vinyl alcohol, polyethylene glycol , Polyethylene oxide, polyvinyl pyrrolidone, modified polyacrylic acid, oxidized starch, phosphate starch, casein, various modified starches, acrylonitrile-butadiene copolymer hydride, maleic anhydride or maleic acid or copolymer of fumaric acid and vinyl alcohol And water-soluble polymers such as polyvinyl alcohols. “(Modified) poly” means “unmodified poly” or “modified poly”.

負極の厚みは、集電体と負極活物質層との合計で、負荷特性及びエネルギー密度の両方を良好にできる観点から、好ましくは5〜300μm、より好ましくは10〜250μmである。   The thickness of the negative electrode is preferably 5 to 300 μm, more preferably 10 to 250 μm, from the viewpoint that the load collector and the energy density can be improved satisfactorily with the total of the current collector and the negative electrode active material layer.

負極は、例えば、負極活物質、バインダー及び溶媒を含む負極用スラリーを用意し、この負極用スラリーの層を集電体上に形成し、その層を乾燥させて製造してもよい。溶媒としては、例えば水、N−メチル−2−ピロリドン(NMP)などが挙げられる。   For example, the negative electrode may be manufactured by preparing a negative electrode slurry containing a negative electrode active material, a binder, and a solvent, forming a layer of the negative electrode slurry on a current collector, and drying the layer. Examples of the solvent include water and N-methyl-2-pyrrolidone (NMP).

(セパレーター)
セパレーターとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂や、芳香族ポリアミド樹脂を含んでなる微孔膜または不織布;無機セラミック粉末を含む多孔質の樹脂コート;などを用いてもよい。具体例を挙げると、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)、及びこれらの混合物あるいは共重合体等の樹脂からなる微多孔膜;ポリエチレンテレフタレート、ポリシクロオレフィン、ポリエーテルスルフォン、ポリアミド、ポリイミド、ポリイミドアミド、ポリアラミド、ポリシクロオレフィン、ナイロン、ポリテトラフルオロエチレン等の樹脂からなる微多孔膜;ポリオレフィン系の繊維を織ったもの又はその不織布;絶縁性物質粒子の集合体等が挙げられる。これらの中でも、セパレーター全体の膜厚を薄くしリチウムイオン二次電池内の活物質比率を上げて体積あたりの容量を上げることができるため、ポリオレフィン系の樹脂からなる微多孔膜が好ましい。
(separator)
As the separator, for example, a polyolefin resin such as polyethylene or polypropylene, or a microporous film or nonwoven fabric containing an aromatic polyamide resin; a porous resin coat containing an inorganic ceramic powder; Specific examples include microporous membranes made of polyolefin resins (polyethylene, polypropylene, polybutene, polyvinyl chloride), and resins such as mixtures or copolymers thereof; polyethylene terephthalate, polycycloolefin, polyether sulfone, polyamide, Examples thereof include a microporous film made of a resin such as polyimide, polyimide amide, polyaramid, polycycloolefin, nylon, and polytetrafluoroethylene; a polyolefin fiber woven or non-woven fabric thereof; an aggregate of insulating substance particles, and the like. Among these, a microporous film made of a polyolefin-based resin is preferable because the entire separator can be thinned to increase the active material ratio in the lithium ion secondary battery and increase the capacity per volume.

セパレーターの厚さは、リチウムイオン二次電池内でのセパレーターによる抵抗が小さくなり、またリチウムイオン二次電池を製造する時の作業性に優れる観点から、好ましくは0.5〜40μm、より好ましくは1〜30μm、さらに好ましくは1〜25μmである。   The thickness of the separator is preferably 0.5 to 40 μm, more preferably from the viewpoint of reducing resistance due to the separator in the lithium ion secondary battery and excellent workability when manufacturing the lithium ion secondary battery. It is 1-30 micrometers, More preferably, it is 1-25 micrometers.

(リチウムイオン二次電池の製造方法)
リチウムイオン二次電池の具体的な製造方法としては、例えば、正極と負極とをセパレーターを介して重ね合わせ、これを電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口する方法が挙げられる。さらに、必要に応じてエキスパンドメタル;ヒューズ、PTC素子などの過電流防止素子;リード板などを入れ、電池内部の圧力上昇、過充放電を防止してもよい。リチウムイオン二次電池の形状は、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。電池容器の材質は、電池内部への水分の侵入を阻害するものであればよく、金属製、アルミニウムなどのラミネート製など特に限定されない。
(Method for producing lithium ion secondary battery)
As a specific method for producing a lithium ion secondary battery, for example, a positive electrode and a negative electrode are overlapped via a separator, and this is wound into a battery container according to the shape of the battery. A method of injecting and sealing the liquid can be mentioned. Further, if necessary, an expanded metal; an overcurrent prevention element such as a fuse or a PTC element; a lead plate or the like may be inserted to prevent an increase in pressure inside the battery or overcharge / discharge. The shape of the lithium ion secondary battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like. The material of the battery container is not particularly limited as long as it inhibits the penetration of moisture into the battery, and is not particularly limited, such as a metal or a laminate such as aluminum.

本発明によれば、水系において導電剤の分散が良く、電池としたときに抵抗が低い電気化学素子正極用複合粒子の製造方法を提供することができる。また、撥水処理を行った正極活物質を用いるため、複合粒子表面付近での結着剤および導電剤の偏在を抑制した複合粒子を得ることができる。また、偏在を抑制することにより電池としたときの抵抗が低くなる。また、結着剤の偏在を防ぐことができるため、複合粒子の流動性が向上する。さらに、導電材の偏在を防ぐことができるため、複合粒子内での導電材のマイグレーションを抑制することができる。   ADVANTAGE OF THE INVENTION According to this invention, the dispersion | distribution of a conductive agent is good in an aqueous system, and the manufacturing method of the composite particle for electrochemical element positive electrodes with low resistance when it is set as a battery can be provided. In addition, since the positive electrode active material that has been subjected to water repellent treatment is used, composite particles in which the uneven distribution of the binder and the conductive agent near the surface of the composite particles can be obtained. Moreover, resistance when it is set as a battery by suppressing uneven distribution becomes low. Moreover, since the uneven distribution of the binder can be prevented, the fluidity of the composite particles is improved. Furthermore, since uneven distribution of the conductive material can be prevented, migration of the conductive material in the composite particles can be suppressed.

以下、実施例を示して本発明について具体的に説明するが、本発明は以下の実施例に限定されるものではなく、本発明の要旨及び均等の範囲を逸脱しない範囲において任意に変更して実施できる。なお、以下の説明において量を表す「%」及び「部」は、特に断らない限り、重量基準である。
実施例及び比較例において、導電剤分散性、電解液注液性、電池抵抗及び容量維持率の評価はそれぞれ以下のように行った。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples, and may be arbitrarily changed without departing from the gist and equivalent scope of the present invention. Can be implemented. In the following description, “%” and “parts” representing amounts are based on weight unless otherwise specified.
In the examples and comparative examples, the conductive agent dispersibility, the electrolyte solution pouring property, the battery resistance, and the capacity retention rate were evaluated as follows.

(導電剤分散性)
日立ハイテク社製イオンミリング装置(E−3500)を用いて実施例および比較例で製造したリチウムイオン二次電池正極の断面の加工を行った。加工した正極の断面についてSEM(日立ハイテク社製S−3400N)で観察しながら、EDX(オックスフォードインスツルメンツ製INCA Energy350)を用いて炭素原子の含有量の検出を行った。
(Conductive agent dispersibility)
The cross section of the lithium ion secondary battery positive electrode manufactured by the Example and the comparative example was processed using the Hitachi High-Tech ion milling device (E-3500). While observing the cross section of the processed positive electrode with SEM (S-3400N manufactured by Hitachi High-Tech), the content of carbon atoms was detected using EDX (INCA Energy 350 manufactured by Oxford Instruments).

具体的には、観察領域中で一片の長さが50μmの正方形の観察領域を選択し、さらに一片の長さが10μmの正方形25領域に分割した。その後、25領域中の炭素原子含有量の最大値と最小値の比(最小値/最大値)を算出した。結果を下記の基準により評価し、表1に示した。
A:0.9以上1.0未満
B:0.7以上0.9未満
C:0.4以上0.7未満
D:0.1以上0.4未満
E:0.1未満
Specifically, a square observation region having a length of 50 μm was selected in the observation region, and further divided into 25 square regions having a length of 10 μm. Thereafter, the ratio (minimum value / maximum value) between the maximum value and the minimum value of the carbon atom content in the 25 region was calculated. The results were evaluated according to the following criteria and are shown in Table 1.
A: 0.9 or more and less than 1.0 B: 0.7 or more and less than 0.9 C: 0.4 or more and less than 0.7 D: 0.1 or more and less than 0.4 E: Less than 0.1

(電解液注液性)
実施例および比較例で製造したリチウムイオン二次電池正極に電解液(溶媒:EC/DEC=1/2、電解質:濃度1モル/LのLiPF6)を2μL滴下し、滴下後から完全に液滴がなくなるまでの時間の測定を行った。この値が小さいほど、電解液注液性が高いことを示す。結果を下記の基準により評価し、表1に示した。
A:1分未満
B:1分以上2分未満
C:2分以上3分未満
D:3分以上
(Electrolytic solution injection)
2 μL of electrolytic solution (solvent: EC / DEC = 1/2, electrolyte: LiPF 6 with a concentration of 1 mol / L) was dropped onto the positive electrode of the lithium ion secondary battery produced in the examples and comparative examples, and the liquid was completely liquid after the dropping. The time until the drop disappeared was measured. It shows that electrolyte solution pouring property is so high that this value is small. The results were evaluated according to the following criteria and are shown in Table 1.
A: Less than 1 minute B: 1 minute or more and less than 2 minutes C: 2 minutes or more and less than 3 minutes D: 3 minutes or more

(電池抵抗)
実施例および比較例で製造したリチウムイオン二次電池を、24時間静置した後に4.2V、0.5Cの充放電レートにて充放電の操作を行った。その後、−35℃の環境下で充放電の操作を行い、放電開始10秒後の電圧を測定した。この値が小さいほど内部抵抗が小さく、高速充放電が可能であることを示す。測定結果を下記の基準により評価し、表1に示した。
A:0.15V未満
B:0.15V以上0.25V未満
C:0.25V以上0.45V未満
D:0.45V以上0.65V未満
E:0.65V以上
(Battery resistance)
The lithium ion secondary batteries produced in the examples and comparative examples were allowed to stand for 24 hours, and then charged and discharged at a charge / discharge rate of 4.2 V and 0.5 C. Thereafter, charging and discharging operations were performed in an environment of −35 ° C., and the voltage 10 seconds after the start of discharge was measured. The smaller this value, the smaller the internal resistance, indicating that high-speed charge / discharge is possible. The measurement results were evaluated according to the following criteria and are shown in Table 1.
A: Less than 0.15 V B: 0.15 V or more and less than 0.25 V C: 0.25 V or more and less than 0.45 V D: 0.45 V or more and less than 0.65 V E: 0.65 V or more

(容量維持率)
実施例および比較例で製造したリチウムイオン二次電池を、24時間静置した後に4.2V、0.1Cの充放電レートにて充放電の操作を行い、初期容量C0を測定した。さらに、4.2Vに充電し、60℃、28日間保存した後、4.2V、0.1Cの充放電レートにて充放電の操作を行い、高温保存後の容量C1を測定した。次に、△C=C1/C0×100(%)で示す容量変化率を算出した。容量変化率が高いほど高温保存特性に優れることを示す。算出した容量変化率を下記の基準により評価し、表1に示した。
A:85%以上
B:70%以上85%未満
C:60%以上70%未満
D:50%以上60%未満
E:50%未満
(Capacity maintenance rate)
The lithium ion secondary batteries produced in the examples and comparative examples were allowed to stand for 24 hours, and then charged and discharged at a charge / discharge rate of 4.2 V and 0.1 C, and the initial capacity C 0 was measured. Furthermore, after charging to 4.2 V and storing at 60 ° C. for 28 days, charge / discharge operation was performed at a charge / discharge rate of 4.2 V and 0.1 C, and the capacity C 1 after storage at high temperature was measured. Next, the capacity change rate represented by ΔC = C 1 / C 0 × 100 (%) was calculated. The higher the capacity change rate, the better the high temperature storage characteristics. The calculated capacity change rate was evaluated according to the following criteria and shown in Table 1.
A: 85% or more B: 70% or more and less than 85% C: 60% or more and less than 70% D: 50% or more and less than 60% E: Less than 50%

(疎水化度)
また、活物質及び導電材の疎水化度は以下の通り測定した。イオン交換水50ml及び試料(活物質または導電剤)0.2gをビーカーに入れ、マグネティックスターラーで攪拌しながらビュレットからメタノールを滴下し、試料全量が沈んだ終点におけるメタノール・水混合溶液中のメタノール質量分率を疎水化度とした。
(Hydrophobicity)
Moreover, the hydrophobicity of the active material and the conductive material was measured as follows. Put 50 ml of ion-exchanged water and 0.2 g of sample (active material or conductive agent) in a beaker, add methanol dropwise from the burette while stirring with a magnetic stirrer, and the mass of methanol in the methanol / water mixed solution at the end of the sample The fraction was defined as the degree of hydrophobicity.

(実施例1)
(結着剤の製造)
攪拌機付きのオートクレーブにイオン交換水300部、n−ブチルアクリレート93.8部、アクリロニトリル2部、アリルグリシンエーテル1.0部、メタクリル酸2.0部、N−メチロールアクリルアミド1.2部および分子量調整剤としてt−ドデシルメルカプタン0.05部、重合開始剤として過硫酸カリウム0.3部を入れ、十分に攪拌した後、70℃に加温して重合し、結着剤として固形分濃度40%の結着剤の水分散液を得た。固形分濃度から求めた重合転化率は略99%であった。
Example 1
(Manufacture of binder)
In an autoclave equipped with a stirrer, 300 parts of ion exchange water, 93.8 parts of n-butyl acrylate, 2 parts of acrylonitrile, 1.0 part of allyl glycine ether, 2.0 parts of methacrylic acid, 1.2 parts of N-methylol acrylamide and molecular weight adjustment After adding 0.05 part of t-dodecyl mercaptan as an agent and 0.3 part of potassium persulfate as a polymerization initiator and stirring sufficiently, the mixture was heated to 70 ° C. for polymerization, and a solid content concentration of 40% as a binder. An aqueous dispersion of the binder was obtained. The polymerization conversion rate determined from the solid content concentration was approximately 99%.

(撥水処理)
ガラス容器に正極活物質としてLNM(組成:Li[Ni0.17Li0.2Co0.07Mn0.56]O2(粒子径:15μm))を100部、カップリング剤としてヘキサメチルジシラザン(略称:HMDS、信越シリコーン社製)を1部(正極活物質に対して1%)入れた。次いで、ガラス容器中に窒素を流しながら攪拌機を用いて15分間攪拌した。その後、イナートオーブンに入れ100℃で窒素を流しながら1時間乾燥させて、撥水処理が行われた正極活物質を得た。
(Water repellent treatment)
In a glass container, 100 parts of LNM (composition: Li [Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 (particle diameter: 15 μm)) as a positive electrode active material and hexamethyldisilazane (abbreviation: HMDS, Shin-Etsu Silicone) as a coupling agent 1 part (1% based on the positive electrode active material) was added. Subsequently, it stirred for 15 minutes using the stirrer, flowing nitrogen into the glass container. Then, it was put into an inert oven and dried for 1 hour while flowing nitrogen at 100 ° C. to obtain a positive electrode active material subjected to water repellent treatment.

(複合粒子の製造)
撥水処理が行われた正極活物質93部、上記結着剤を固形分換算量で2.0部、導電剤としてアセチレンブラック(AB35、電気化学工業社製デンカブラック粉状品:粒子径35nm、比表面積68m2/g)5.0部、さらにイオン交換水を固形分濃度が40%となるように加え、混合分散して正極用スラリーを得た。この正極用スラリーをスプレー乾燥機(大川原化工機社製)を使用し、回転円盤方式のアトマイザ(直径65nm)を用い、回転数25,000rpm、熱風温度120℃、粒子回収出口の温度を90℃として噴霧乾燥造粒を行い、複合粒子を得た。この複合粒子の平均体積粒子径は50μmであった。
(Manufacture of composite particles)
93 parts of a positive electrode active material subjected to water repellent treatment, 2.0 parts of the above binder in terms of solid content, acetylene black (AB35, Denka Black powder manufactured by Denki Kagaku Kogyo Co., Ltd .: particle diameter: 35 nm) Further, 5.0 parts by specific surface area of 68 m 2 / g) and ion-exchanged water were added so that the solid content concentration would be 40%, and mixed and dispersed to obtain a positive electrode slurry. This positive electrode slurry was sprayed using a spray dryer (Okawara Kako Co., Ltd.), a rotary disk type atomizer (diameter 65 nm), a rotational speed of 25,000 rpm, a hot air temperature of 120 ° C., and a particle recovery outlet temperature of 90 ° C. As a result, spray drying granulation was performed to obtain composite particles. The average volume particle diameter of the composite particles was 50 μm.

(リチウムイオン二次電池正極の製造)
次に、得られた複合粒子をロールプレス機(押し切り粗面熱ロール、ヒラノ技研工業社製)のロール(ロール温度100℃、プレス線圧4kN/cm)に供給し、成形速度20m/分で正極活物質層を厚さ15μmのアルミ箔上にシート状に成形し、厚さ60μmのリチウムイオン二次電池正極を得た。
(Manufacture of lithium ion secondary battery positive electrode)
Next, the obtained composite particles are supplied to a roll (roll temperature 100 ° C., press linear pressure 4 kN / cm) of a roll press machine (pressed rough surface heat roll, manufactured by Hirano Giken Kogyo Co., Ltd.) at a molding speed of 20 m / min. The positive electrode active material layer was formed into a sheet on an aluminum foil having a thickness of 15 μm to obtain a lithium ion secondary battery positive electrode having a thickness of 60 μm.

(負極用スラリーおよびリチウムイオン二次電池負極の製造)
負極活物質として人造黒鉛(平均粒子径:24.5μm、黒鉛層間距離(X線回折法による(002)面の面間隔(d値):0.354nm)96部、スチレン−ブタジエン共重合ラテックス(BM−400B)を固形分換算量で3.0部、分散剤としてカルボキシメチルセルロースの1.5%水溶液(DN−800H:ダイセル化学工業社製)を固形分換算量で1.0部混合し、さらにイオン交換水を固形分濃度が50%となるように加え、混合分散して負極用スラリーを得た。この負極用スラリーを厚さ18μmの銅箔に塗布し、120℃で30分間乾燥した後、ロールプレスして厚さ50μmの負極を得た。
(Manufacture of negative electrode slurry and lithium ion secondary battery negative electrode)
Artificial graphite as the negative electrode active material (average particle size: 24.5 μm, graphite interlayer distance ((002) plane spacing (d value): 0.354 nm by X-ray diffraction method) 96 parts, styrene-butadiene copolymer latex ( BM-400B) is 3.0 parts in terms of solid content, and 1.5 parts of a carboxymethylcellulose 1.5% aqueous solution (DN-800H: manufactured by Daicel Chemical Industries) as a dispersant is mixed in 1.0 part in terms of solid content. Further, ion exchange water was added so as to have a solid content concentration of 50%, and mixed and dispersed to obtain a negative electrode slurry, which was applied to a copper foil having a thickness of 18 μm and dried at 120 ° C. for 30 minutes. Thereafter, roll pressing was performed to obtain a negative electrode having a thickness of 50 μm.

(リチウムイオン二次電池の製造)
上記のリチウムイオン二次電池正極を直径13mm、上記のリチウムイオン二次電池負極を直径14mmの円形に切り抜いた。また、多孔膜を備えるセパレーターを直径18mmの円形に切り取った。正極の電極活物質層側の面にセパレーター、負極を順に積層し、ポリプロピレン製パッキンを設置したステンレス鋼製のコイン型外装容器中に収納した。この容器中に電解液(溶媒:EC/DEC=1/2、電解質:濃度1モル/LのLiPF6)を空気が残らないように注入し、ポロプロピレン製パッキンを介して外装容器に厚さ0.2mmのステンレス鋼のキャップをかぶせて固定し、電池缶を封止して、直径20mm、厚さ3.2mmのリチウムイオン二次電池(コインセルCR2032)を製造した。
(Manufacture of lithium ion secondary batteries)
The lithium ion secondary battery positive electrode was cut into a circle having a diameter of 13 mm, and the lithium ion secondary battery negative electrode was cut into a circle having a diameter of 14 mm. Moreover, the separator provided with the porous film was cut into a circle having a diameter of 18 mm. A separator and a negative electrode were sequentially laminated on the surface of the positive electrode on the electrode active material layer side, and stored in a stainless steel coin-type outer container provided with a polypropylene packing. An electrolytic solution (solvent: EC / DEC = 1/2, electrolyte: LiPF6 with a concentration of 1 mol / L) was poured into this container so that no air remained, and the thickness of the outer container was reduced to 0 through a polypropylene-made packing. A lithium-ion secondary battery (coin cell CR2032) having a diameter of 20 mm and a thickness of 3.2 mm was manufactured by covering with a 2 mm stainless steel cap and fixing the battery can.

(実施例2)
複合粒子の製造に用いる導電剤の種類をケッチェンブラック(ライオン株式会社製、商品名「EC300J」)とした以外は実施例1と同様にリチウムイオン二次電池正極の製造及びリチウムイオン二次電池の製造を行った。
(Example 2)
Production of lithium ion secondary battery positive electrode and lithium ion secondary battery in the same manner as in Example 1 except that the type of conductive agent used in the production of the composite particles was Ketjen Black (product name “EC300J” manufactured by Lion Corporation). Was manufactured.

(実施例3)
撥水処理に用いるカップリング剤の種類をヘキサメチルシクロトリシラザン(東京化成工業株式会社製)とした以外は、実施例1と同様にリチウムイオン二次電池正極の製造及びリチウムイオン二次電池の製造を行った。
(Example 3)
The production of the lithium ion secondary battery positive electrode and the lithium ion secondary battery in the same manner as in Example 1 except that the type of coupling agent used for the water repellent treatment was hexamethylcyclotrisilazane (manufactured by Tokyo Chemical Industry Co., Ltd.). Manufactured.

(実施例4)
撥水処理に用いるカップリング剤の種類をヘキシルトリエトキシシラン(信越シリコーン株式会社製、商品名「KBE−3063」)とした以外は、実施例1と同様にリチウムイオン二次電池正極の製造及びリチウムイオン二次電池の製造を行った。
Example 4
Except that the type of coupling agent used for the water repellent treatment was hexyltriethoxysilane (trade name “KBE-3063” manufactured by Shin-Etsu Silicone Co., Ltd.), A lithium ion secondary battery was manufactured.

(実施例5)
撥水処理に用いるカップリング剤の種類をデシルトリメトキシシラン(信越シリコーン株式会社製、商品名「KBE−3103」)とした以外は、実施例1と同様にリチウムイオン二次電池正極の製造及びリチウムイオン二次電池の製造を行った。
(Example 5)
The production of the positive electrode for the lithium ion secondary battery and the same as in Example 1 except that the type of coupling agent used for the water repellent treatment was decyltrimethoxysilane (manufactured by Shin-Etsu Silicone Co., Ltd., trade name “KBE-3103”) A lithium ion secondary battery was manufactured.

(実施例6)
撥水処理を行う際に用いるHMDSの量を0.1部とした以外は、実施例1と同様にリチウムイオン二次電池正極の製造及びリチウムイオン二次電池の製造を行った。
(Example 6)
A lithium ion secondary battery positive electrode and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the amount of HMDS used for the water repellent treatment was 0.1 parts.

(実施例7)
撥水処理を行う際に用いるHMDSの量を3部とした以外は、実施例1と同様にリチウムイオン二次電池正極の製造及びリチウムイオン二次電池の製造を行った。
(Example 7)
A lithium ion secondary battery positive electrode and a lithium ion secondary battery were produced in the same manner as in Example 1 except that the amount of HMDS used for the water repellent treatment was 3 parts.

(実施例8)
撥水処理に用いるカップリング剤の種類をチタネートカップリング剤(味の素ファインテクノ社製、商品名「KR TTS」)とした以外は、実施例1と同様にリチウムイオン二次電池正極の製造及びリチウムイオン二次電池の製造を行った。
(Example 8)
Production of lithium ion secondary battery positive electrode and lithium in the same manner as in Example 1 except that the type of coupling agent used in the water repellent treatment was titanate coupling agent (trade name “KR TTS” manufactured by Ajinomoto Fine Techno Co., Ltd.) An ion secondary battery was manufactured.

(実施例9)
撥水処理に用いるカップリング剤の種類をアルミネートカップリング剤(アセトアルコキシアルミニウムジイソプロピレート、味の素ファインテクノ社製、商品名「AL−M」)とした以外は、実施例1と同様にリチウムイオン二次電池正極の製造及びリチウムイオン二次電池の製造を行った。
Example 9
Lithium was the same as in Example 1 except that the type of coupling agent used for the water repellent treatment was an aluminate coupling agent (acetoalkoxyaluminum diisopropylate, Ajinomoto Fine Techno Co., Ltd., trade name “AL-M”). An ion secondary battery positive electrode and a lithium ion secondary battery were manufactured.

(比較例1)
撥水処理を行わない正極活物質を用いて複合粒子を製造した以外は、実施例1と同様にリチウムイオン二次電池正極の製造及びリチウムイオン二次電池の製造を行った。
(Comparative Example 1)
A lithium ion secondary battery positive electrode and a lithium ion secondary battery were produced in the same manner as in Example 1 except that composite particles were produced using a positive electrode active material that was not subjected to water repellent treatment.

(比較例2)
正極用スラリーを集電体上に塗布、乾燥することによりリチウムイオン二次電池正極を得た以外は、実施例1と同様にリチウムイオン二次電池の製造を行った。
(Comparative Example 2)
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the positive electrode slurry was applied onto a current collector and dried to obtain a lithium ion secondary battery positive electrode.

Figure 2014157661
Figure 2014157661

表1に示すように、正極活物質、導電剤および結着剤を水に分散してスラリーを得る工程と、前記スラリーを噴霧乾燥して造粒することにより造粒粒子を得る工程とを含み、正極活物質と、導電剤との、メタノール法から得られた疎水化度の比(正極活物質/導電剤)が0.5以上1.5未満である複合粒子を用いて作製したリチウムイオン二次電池用正極は、導電剤分散性及び電解液注液性が良好であり、また、このリチウムイオン二次電池用正極を用いて作製したリチウムイオン二次電池の電池抵抗及び容量維持率は良好であった。   As shown in Table 1, the method includes a step of dispersing a positive electrode active material, a conductive agent and a binder in water to obtain a slurry, and a step of obtaining granulated particles by spray-drying the slurry and granulating the slurry. Lithium ions prepared using composite particles having a ratio of the degree of hydrophobicity obtained from the methanol method (positive electrode active material / conductive agent) of 0.5 or more and less than 1.5 between the positive electrode active material and the conductive agent The positive electrode for the secondary battery has good conductive agent dispersibility and electrolyte solution pouring property, and the battery resistance and capacity retention rate of the lithium ion secondary battery produced using this positive electrode for the lithium ion secondary battery are It was good.

Claims (4)

正極活物質、導電剤および結着剤を水に分散してスラリーを得る工程と、
前記スラリーを噴霧乾燥して造粒することにより造粒粒子を得る工程と
を含み、
前記正極活物質と、前記導電剤との、メタノール法から得られた疎水化度の比(正極活物質/導電剤)が0.5以上1.5未満であることを特徴とする電気化学素子正極用複合粒子の製造方法。
A step of dispersing a positive electrode active material, a conductive agent and a binder in water to obtain a slurry;
A step of obtaining granulated particles by spray-drying and granulating the slurry,
An electrochemical device characterized in that the ratio of the degree of hydrophobicity obtained by the methanol method (positive electrode active material / conductive agent) between the positive electrode active material and the conductive agent is 0.5 or more and less than 1.5 A method for producing composite particles for a positive electrode.
前記正極活物質は、撥水処理がされた正極活物質であることを特徴とする請求項1記載の電気化学素子正極用複合粒子の製造方法。   The method for producing composite particles for an electrochemical device positive electrode according to claim 1, wherein the positive electrode active material is a positive electrode active material subjected to a water repellent treatment. 前記撥水処理は、カップリング剤処理であることを特徴とする請求項2記載の電気化学素子正極用複合粒子の製造方法。   The method for producing composite particles for an electrochemical device positive electrode according to claim 2, wherein the water repellent treatment is a coupling agent treatment. 前記カップリング剤処理は、シランカップリング剤処理であって、
前記シランカップリング剤の導入量が前記正極活物質の重量に対して0.1%以上3.0%未満であることを特徴とする請求項3記載の電気化学素子正極用複合粒子の製造方法。
The coupling agent treatment is a silane coupling agent treatment,
The method for producing composite particles for an electrochemical device positive electrode according to claim 3, wherein the amount of the silane coupling agent introduced is 0.1% or more and less than 3.0% based on the weight of the positive electrode active material. .
JP2013026527A 2013-02-14 2013-02-14 Method for producing composite particles for electrochemical device positive electrode Active JP6070243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013026527A JP6070243B2 (en) 2013-02-14 2013-02-14 Method for producing composite particles for electrochemical device positive electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013026527A JP6070243B2 (en) 2013-02-14 2013-02-14 Method for producing composite particles for electrochemical device positive electrode

Publications (2)

Publication Number Publication Date
JP2014157661A true JP2014157661A (en) 2014-08-28
JP6070243B2 JP6070243B2 (en) 2017-02-01

Family

ID=51578446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013026527A Active JP6070243B2 (en) 2013-02-14 2013-02-14 Method for producing composite particles for electrochemical device positive electrode

Country Status (1)

Country Link
JP (1) JP6070243B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136417A1 (en) * 2014-03-13 2015-09-17 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, electronic device, and method for fabricating electrode
WO2016080145A1 (en) * 2014-11-21 2016-05-26 日本ゼオン株式会社 Composite particles for electrochemical element electrodes
WO2016104679A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Nonaqueous electrolyte rechargeable battery and manufacturing method therefor
JP2017174692A (en) * 2016-03-24 2017-09-28 国立大学法人信州大学 Electrode and secondary battery
JP2018106944A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Method for manufacturing positive electrode for lithium ion secondary battery, and positive electrode for lithium ion secondary battery
CN114300677A (en) * 2021-12-09 2022-04-08 深圳市首通新能源科技有限公司 Preparation method of lithium ion battery aqueous slurry
CN115064694A (en) * 2022-06-27 2022-09-16 宜宾锂宝新材料有限公司 High-nickel material alcohol washing liquid, high-nickel material finished product, and preparation method and application thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111243A (en) * 1994-02-07 1996-04-30 Sumitomo Chem Co Ltd Lithium secondary battery
JPH08213022A (en) * 1995-02-09 1996-08-20 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000040504A (en) * 1998-07-21 2000-02-08 Sony Corp Manufacture of positive mix for organic electrolyte battery
JP2000264636A (en) * 1999-03-17 2000-09-26 Toda Kogyo Corp Lithium manganese spinel oxide particle powder and its production
JP2000281354A (en) * 1999-03-31 2000-10-10 Toda Kogyo Corp Layer rock salt type oxide particulate powder and its production
JP2003173777A (en) * 2001-12-07 2003-06-20 Hitachi Metals Ltd Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP2004039538A (en) * 2002-07-05 2004-02-05 Toda Kogyo Corp Positive electrode active material for secondary battery
JP2006303395A (en) * 2005-04-25 2006-11-02 Nippon Zeon Co Ltd Manufacturing method of composite particle for electrochemical element electrode
JP2007018828A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Lithium battery
JP2007109549A (en) * 2005-10-14 2007-04-26 Toyota Central Res & Dev Lab Inc Aqueous lithium secondary battery
JP2007273639A (en) * 2006-03-30 2007-10-18 Nippon Zeon Co Ltd Composite particle for electrode of electrochemical device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08111243A (en) * 1994-02-07 1996-04-30 Sumitomo Chem Co Ltd Lithium secondary battery
JPH08213022A (en) * 1995-02-09 1996-08-20 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000040504A (en) * 1998-07-21 2000-02-08 Sony Corp Manufacture of positive mix for organic electrolyte battery
JP2000264636A (en) * 1999-03-17 2000-09-26 Toda Kogyo Corp Lithium manganese spinel oxide particle powder and its production
JP2000281354A (en) * 1999-03-31 2000-10-10 Toda Kogyo Corp Layer rock salt type oxide particulate powder and its production
JP2003173777A (en) * 2001-12-07 2003-06-20 Hitachi Metals Ltd Combining method and its combining material of positive electrode active material for nonaqueous lithium secondary battery and conductive subsidiary material, and positive electrode and nonaqueous lithium secondary battery using the same
JP2004039538A (en) * 2002-07-05 2004-02-05 Toda Kogyo Corp Positive electrode active material for secondary battery
JP2006303395A (en) * 2005-04-25 2006-11-02 Nippon Zeon Co Ltd Manufacturing method of composite particle for electrochemical element electrode
JP2007018828A (en) * 2005-07-06 2007-01-25 Matsushita Electric Ind Co Ltd Lithium battery
JP2007109549A (en) * 2005-10-14 2007-04-26 Toyota Central Res & Dev Lab Inc Aqueous lithium secondary battery
JP2007273639A (en) * 2006-03-30 2007-10-18 Nippon Zeon Co Ltd Composite particle for electrode of electrochemical device

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015136417A1 (en) * 2014-03-13 2015-09-17 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, electronic device, and method for fabricating electrode
US10354810B2 (en) 2014-03-13 2019-07-16 Semiconductor Energy Laboratory Co., Ltd. Electrode, power storage device, electronic device, and method for fabricating electrode
WO2016080145A1 (en) * 2014-11-21 2016-05-26 日本ゼオン株式会社 Composite particles for electrochemical element electrodes
CN107078302B (en) * 2014-11-21 2021-04-06 日本瑞翁株式会社 Composite particle for electrochemical element electrode
CN107078302A (en) * 2014-11-21 2017-08-18 日本瑞翁株式会社 Composite particles for electrochemical element electrode
JPWO2016080145A1 (en) * 2014-11-21 2017-08-31 日本ゼオン株式会社 Composite particles for electrochemical device electrodes
KR101871134B1 (en) * 2014-12-26 2018-06-25 닛산 지도우샤 가부시키가이샤 Nonaqueous electrolyte rechargeable battery and manufacturing method therefor
JPWO2016104679A1 (en) * 2014-12-26 2017-11-16 日産自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
CN107112596B (en) * 2014-12-26 2019-06-28 日产自动车株式会社 Non-aqueous electrolyte secondary battery and its manufacturing method
CN107112596A (en) * 2014-12-26 2017-08-29 日产自动车株式会社 Rechargeable nonaqueous electrolytic battery and its manufacture method
US10431851B2 (en) 2014-12-26 2019-10-01 Nissan Motor Co., Ltd. Non-aqueous electrolyte secondary battery and method for manufacturing the same
WO2016104679A1 (en) * 2014-12-26 2016-06-30 日産自動車株式会社 Nonaqueous electrolyte rechargeable battery and manufacturing method therefor
JP2017174692A (en) * 2016-03-24 2017-09-28 国立大学法人信州大学 Electrode and secondary battery
JP2018106944A (en) * 2016-12-27 2018-07-05 トヨタ自動車株式会社 Method for manufacturing positive electrode for lithium ion secondary battery, and positive electrode for lithium ion secondary battery
CN114300677A (en) * 2021-12-09 2022-04-08 深圳市首通新能源科技有限公司 Preparation method of lithium ion battery aqueous slurry
CN115064694A (en) * 2022-06-27 2022-09-16 宜宾锂宝新材料有限公司 High-nickel material alcohol washing liquid, high-nickel material finished product, and preparation method and application thereof
CN115064694B (en) * 2022-06-27 2024-06-04 宜宾锂宝新材料有限公司 High-nickel material alcohol washing liquid, high-nickel material finished product, and preparation methods and applications thereof

Also Published As

Publication number Publication date
JP6070243B2 (en) 2017-02-01

Similar Documents

Publication Publication Date Title
KR102323929B1 (en) Cathode active material for lithium secondary battery, cathode, and secondary battery
JP5326567B2 (en) Positive electrode material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery equipped with the same, and method for producing the same
US7402184B2 (en) Secondary battery and method for producing the same
JP6070243B2 (en) Method for producing composite particles for electrochemical device positive electrode
JP5149920B2 (en) Method for producing electrode for lithium secondary battery
CN111433946B (en) Negative electrode for lithium metal battery and lithium metal battery including the same
KR101539843B1 (en) Anode Active Material of High Density and Methode for Preparation of The Same
CN106207250B (en) Lithium ion secondary battery
WO2015152113A1 (en) Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
US20160006020A1 (en) Composite active material for lithium secondary batteries and method for producing same
JP4672955B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP5375975B2 (en) Battery electrode, battery including the battery electrode, and method for manufacturing the battery electrode
JPWO2016129629A1 (en) Non-aqueous secondary battery
JP2013012410A (en) Cathode material for nonaqueous electrolyte secondary battery and method for producing the same
WO2013021843A1 (en) Sulfide-based solid-state battery
US9343745B1 (en) Surface passivation of active material particles for use in electrochemical cells
JP2008251221A (en) Manufacturing method of active material, and active material
JP2009110972A (en) Negative electrode material for lithium ion secondary battery and its manufacturing method
JP2014112560A (en) Nonaqueous electrolyte battery
JP2016219410A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016219408A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017183051A (en) Negative electrode active material for lithium ion secondary battery, lithium ion secondary battery negative electrode arranged by use thereof, and lithium ion secondary battery arranged by use thereof
JP2006318868A (en) Lithium secondary battery
JP6183027B2 (en) Production method of reduced particle size composite particles for electrochemical device electrodes and reduced particle size composite particles for electrochemical device electrodes
JP2023015188A (en) Method for manufacturing positive electrode active material for non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160609

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161219

R150 Certificate of patent or registration of utility model

Ref document number: 6070243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250