WO2013094403A1 - Transparent conductive film laminate, method for producing same, thin-film solar cell, and method for producing same - Google Patents

Transparent conductive film laminate, method for producing same, thin-film solar cell, and method for producing same Download PDF

Info

Publication number
WO2013094403A1
WO2013094403A1 PCT/JP2012/081478 JP2012081478W WO2013094403A1 WO 2013094403 A1 WO2013094403 A1 WO 2013094403A1 JP 2012081478 W JP2012081478 W JP 2012081478W WO 2013094403 A1 WO2013094403 A1 WO 2013094403A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent conductive
conductive film
oxide
film
based transparent
Prior art date
Application number
PCT/JP2012/081478
Other languages
French (fr)
Japanese (ja)
Inventor
健太郎 曽我部
山野辺 康徳
文彦 松村
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201280056855.5A priority Critical patent/CN104081534A/en
Publication of WO2013094403A1 publication Critical patent/WO2013094403A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/056Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means the light-reflecting means being of the back surface reflector [BSR] type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/076Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Definitions

  • the present invention provides a transparent conductive film laminate useful for producing a high-efficiency silicon-based thin film solar cell, excellent in contact with the Si layer, excellent in light confinement effect, and useful as a surface electrode of a solar cell, and
  • the present invention relates to a manufacturing method, a thin film solar cell, and a manufacturing method thereof.
  • Transparent conductive films with high conductivity and high transmittance in the visible light region are used for electrodes of solar cells, liquid crystal display elements, and other various light receiving elements, and in addition, heat ray reflection for automobile windows and buildings. It is also used as a transparent heating element for various types of antifogging, such as a film, an antistatic film, and a frozen showcase.
  • tin oxide (SnO 2 ) -based, zinc oxide (ZnO) -based, and indium oxide (In 2 O 3 ) -based thin films are known.
  • tin oxide those containing antimony as a dopant (ATO) and those containing fluorine as a dopant (FTO) are used.
  • ATO antimony as a dopant
  • FTO fluorine as a dopant
  • zinc oxide system those containing aluminum as a dopant (AZO) and those containing gallium as a dopant (GZO) are used.
  • the transparent conductive film most industrially used is an indium oxide type, and indium oxide containing tin as a dopant is referred to as an ITO (Indium-Tin-Oxide) film. Since it is obtained, it has been used widely.
  • ITO Indium-Tin-Oxide
  • a thin-film solar cell generally includes a transparent conductive film, one or more semiconductor thin-film photoelectric conversion units, and a back electrode, which are sequentially stacked on a light-transmitting substrate. Since silicon materials are abundant in resources, silicon-based thin-film solar cells using silicon-based thin films for photoelectric conversion units (light absorption layers) are quickly put into practical use, and research and development are expanding actively. Has been.
  • silicon-based thin film solar cells are further diversified.
  • fine crystalline silicon is mixed in amorphous silicon.
  • a microcrystalline thin film solar cell using the microcrystalline thin film and a crystalline thin film solar cell using a crystalline thin film made of crystalline silicon have been developed, and a hybrid thin film solar cell in which these are laminated has been put into practical use.
  • Such a photoelectric conversion unit or thin film solar cell has an amorphous photoelectric conversion layer that occupies the main part regardless of whether the p-type and n-type conductive semiconductor layers contained therein are amorphous, crystalline, or microcrystalline.
  • Those having a high quality are referred to as amorphous units or amorphous thin-film solar cells, and those having a crystalline photoelectric conversion layer are referred to as crystalline units or crystalline thin-film solar cells, and the photoelectric conversion layer is microcrystalline.
  • microcrystalline units or microcrystalline thin-film solar cells are called microcrystalline units or microcrystalline thin-film solar cells.
  • the transparent conductive film is used for the surface transparent electrode of the thin film solar cell, and in order to effectively confine the light incident from the translucent substrate side in the photoelectric conversion unit, the surface thereof is usually fine. Many irregularities are formed.
  • Haze rate is an index representing the degree of unevenness of this transparent conductive film. This is equivalent to the light that is transmitted when the light from a specific light source is incident on a transparent substrate with a transparent conductive film divided by the scattered component whose optical path is bent and divided by all components. Measured using a C light source containing Generally, the haze ratio increases as the height difference between the projections and depressions increases, or as the distance between the projections and depressions of the projections and projections increases, and the light incident into the photoelectric conversion unit is effectively confined. The effect is excellent.
  • the transparent conductive film If the haze ratio can be increased and sufficient light confinement can be performed, a high short-circuit current density (Jsc) can be realized, and a thin film solar cell with high conversion efficiency can be manufactured.
  • a metal oxide material mainly composed of tin oxide produced by a thermal CVD method is known as a transparent conductive film having a high haze ratio, and is generally used as a transparent electrode of a thin film solar cell.
  • the characteristics such as the haze ratio and the resistance value and the variation in film thickness are ⁇ 10. It is disadvantageous for forming a film having a large haze ratio as large as about% on a large area. Therefore, the haze ratio of the tin oxide-based transparent conductive film generally used for mass production as a surface electrode of a thin film solar cell is at most 10-13% in order to provide in-plane uniformity. With such a method, the yield is poor, and a film forming method capable of further improvement is required.
  • mass production of the surface electrode film by sputtering advantageous for large area film formation is required.
  • Non-Patent Document 1 proposes a method of obtaining a transparent conductive film having a surface roughness and having a high haze ratio, mainly composed of zinc oxide, by a sputtering method.
  • This method uses a zinc oxide sintered body target to which 2 wt% of Al 2 O 3 is added and performs sputtering film formation at a high gas pressure of 3 Pa to 12 Pa and a substrate temperature of 200 ° C. to 400 ° C. ing.
  • the film is formed by applying a power of DC 80 W to a 6 inch ⁇ target, and the input power density to the target is as extremely low as 0.442 W / cm 2 .
  • the film formation rate is as extremely low as 14 nm / min or more and 35 nm / min or less and industrially impractical.
  • arcing abnormal discharge
  • the uneven film formed under such a high gas pressure has many voids between the unevenness on the outermost surface of the film, and is used as a surface electrode of a thin film solar cell.
  • defects cracks, peeling, etc.
  • Non-Patent Document 2 after obtaining a transparent conductive film with zinc oxide as a main component and produced by a conventional sputtering method with small surface irregularities, the surface of the film is etched with acid to make the surface irregular.
  • a method for producing a transparent conductive film having a high haze ratio is disclosed.
  • this method after a film is manufactured by a sputtering method which is a vacuum process in a dry process, it is dried by performing acid etching in the air, and a semiconductor layer must be formed again by a CVD process in the dry process. There are problems such as complicated processes and high manufacturing costs.
  • Non-Patent Documents 1 and 2 address the problems such as in-plane uniformity and productivity that have been problems when using a tin oxide-based transparent conductive film by a CVD method as a surface electrode film of a thin-film Si-based solar cell.
  • problems such as generation of arcing and complicated processes due to a combination of dry and wet processes remain, and mass productivity has not been improved.
  • the present applicant has proposed a sputter target in which gallium oxide is mixed with zinc oxide as a main component and abnormal discharge is reduced by adding a third element (Ti, Ge, Al, Mg, In, Sn) (patent) Reference 1).
  • the GZO sintered body containing gallium as a dopant is composed of a ZnO phase in which at least one selected from the group consisting of Ga, Ti, Ge, Al, Mg, In, and Sn is dissolved in an amount of 2 wt% or more. It is a main constituent phase, and the other constituent phases are a ZnO phase in which at least one of the above is not dissolved, and an intermediate compound phase represented by ZnGa 2 O 4 (spinel phase).
  • abnormal discharge can be reduced, but it cannot be completely eliminated. If abnormal discharge occurs even once in the continuous film formation line, the product at the time of film formation becomes a defective product, which affects the manufacturing yield.
  • the present applicant optimizes the content of aluminum and gallium in an oxide sintered body containing zinc oxide as a main component and further containing aluminum and gallium as additive elements.
  • an oxide sintered body containing zinc oxide as a main component and further containing aluminum and gallium as additive elements By optimally controlling the type and composition of the crystalline phase produced during firing, especially the composition of the spinel crystalline phase, particles are unlikely to form even when film formation is continued for a long time with a sputtering device, even under high DC power input.
  • a target oxide sintered body that does not cause any abnormal discharge has been proposed (see Patent Document 2).
  • the present applicant forms a zinc oxide-based transparent conductive film on the indium oxide-based transparent conductive film using the sputtering target having the above composition, and can be obtained by high-speed film formation only by a sputtering method, and has a high haze.
  • a transparent conductive film having both high efficiency and high conductivity has been proposed (see Patent Document 3).
  • the productivity can be improved by the process of only the sputtering method as compared with the conventional method, and the in-plane uniformity of the obtained film can be improved, and it can be applied to the manufacture of a solar cell with high conversion efficiency.
  • the transparent conductive film obtained by this method is also an uneven film formed under high gas pressure as in Non-Patent Document 1, there are voids between the unevenness on the outermost surface of the film, There is a problem in that the yield is reduced because of the possibility of inducing defects in the Si layer formed on the transparent conductive film by the CVD method.
  • a transparent conductive film applicable to solar cells that achieve higher conversion efficiency without impairing electrode quality such as transparency and mass productivity.
  • the present invention is obtained only by a mass-productive and advantageous sputtering method that is useful in manufacturing a high-efficiency silicon-based thin film solar cell, and has no complicated voids in the outermost surface structure. Therefore, it is possible to prevent a decrease in the yield of solar cell manufacturing, improve the contactability with the Si layer, and provide a transparent conductive film laminate excellent in light confinement effect, a manufacturing method thereof, and a thin film solar cell and a manufacturing method thereof The purpose is to do.
  • the present inventors have conducted intensive research and studied various transparent conductive film materials as transparent conductive films for surface transparent electrodes of thin film solar cells.
  • Transparent structure in which a transparent conductive film (I) is used as a base, a zinc oxide-based transparent conductive film (II) composed of large crystal grains is formed thereon, and an oxide-based transparent conductive film (III) is further laminated It has been found that the conductive film laminate prevents the generation of defects in the Si power generation layer as the surface electrode of the thin-film solar cell, improves the contact property with the Si layer, and has an excellent light confinement effect. It came to complete.
  • the transparent conductive film laminate according to the present invention includes an indium oxide-based transparent conductive film (I) having a thickness of 50 nm to 600 nm formed on a light-transmitting substrate, and the indium oxide-based transparent conductive film ( I)
  • a certain oxide-based transparent conductive film (III) a certain oxide-based transparent conductive film
  • the manufacturing method of the transparent conductive film laminated body which concerns on this invention forms the indium oxide type transparent conductive film (I) whose film thickness is 50 nm or more and 600 nm or less on a translucent substrate by sputtering method.
  • the thin film solar cell according to the present invention is the thin film solar cell in which a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are sequentially formed on a translucent substrate.
  • the body is formed of the indium oxide-based transparent conductive film (I) having a thickness of 50 nm or more and 600 nm or less formed on the translucent substrate, and the thickness of the indium oxide-based transparent conductive film (I).
  • Zinc oxide-based transparent conductive film (II) having a thickness of 200 nm to 1000 nm and an oxide-based transparent conductive film (III) having a thickness of 5 nm to 200 nm formed on the zinc oxide-based transparent conductive film (II) ).
  • the manufacturing method of the thin film solar cell which concerns on this invention is a manufacturing method of the thin film solar cell which forms a transparent conductive film laminated body, a photoelectric converting layer unit, and a back surface electrode layer in order on a translucent board
  • the zinc oxide-based transparent conductive film (II) having a thickness of 200 nm to 1000 nm and the transparent conductive having a thickness of 5 nm to 200 nm.
  • the film (III) By laminating the film (III), there is no space between the irregularities on the outermost surface, a film characteristic with a haze ratio of 8% or more and a surface resistance of 25 ⁇ / ⁇ or less is obtained, and an Si layer that is a power generation layer of a solar cell Therefore, it is possible to provide a transparent conductive film laminate that is effective in preventing the occurrence of defects and has an excellent light confinement effect.
  • the transparent conductive film laminate according to the present invention can be produced only by a sputtering method, it is not only excellent in conductivity and the like for a surface transparent electrode of a thin film solar cell, but also by a conventional thermal CVD method. Cost reduction is possible compared to a transparent conductive film. Therefore, since a highly efficient silicon-based thin film solar cell can be provided at a low cost by a simple process, it is extremely useful industrially.
  • FIG. 1 is a graph showing the relationship between the contents of aluminum and gallium in the zinc oxide-based transparent conductive film (II).
  • FIG. 2 is a cross-sectional view illustrating a configuration example of a thin film solar cell using an amorphous silicon thin film as a photoelectric conversion unit.
  • FIG. 3 is a cross-sectional view showing a configuration example of a hybrid thin film solar cell in which an amorphous silicon thin film and a crystalline silicon thin film are stacked as a photoelectric conversion unit.
  • FIG. 4 is a surface SEM photograph of the transparent conductive thin film.
  • Transparent conductive film laminate 1-1 Indium oxide-based transparent conductive film (I) 1-2. Zinc oxide based transparent conductive film (II) 1-3. Oxide-based transparent conductive film (III) 1-4.
  • Properties of transparent conductive film laminate 2. Method for producing transparent conductive film laminate 2-1. Film formation of indium oxide based transparent conductive film (I) 2-2. Formation of zinc oxide based transparent conductive film (II) 2-3. 2. Formation of oxide-based transparent conductive film (III) Thin film solar cell and manufacturing method thereof
  • the transparent conductive film laminate according to the present embodiment is based on an indium oxide-based transparent conductive film (I) formed on a light-transmitting substrate, and a zinc oxide-based transparent conductive film excellent in unevenness thereon. (II) and then a three-layer laminated structure in which an oxide-based transparent conductive film (III) is sequentially formed.
  • the haze ratio is high, the so-called light confinement effect is excellent, and the resistance is low.
  • defects in the Si layer which is a photoelectric conversion layer of the thin film solar cell, can be prevented, it is very useful as a surface electrode material for a thin film solar cell.
  • the transparent conductive film laminate according to the present embodiment can be manufactured only by the sputtering method and has high productivity.
  • the indium oxide-based transparent conductive film (I) is a crystal film containing indium oxide as a main component and one or more metal elements selected from Sn, Ti, W, Mo, Zr, Ce, or Ga.
  • a crystal film in which an additive element of Sn, Ti, W, Mo, Zr, Ce, or Ga is contained in indium oxide is useful because of its excellent conductivity.
  • an element of Ti, W, Mo, Zr, Ce, or Ga is included, a film with high mobility can be obtained. Therefore, since the resistance is reduced without increasing the carrier concentration, a low resistance film having a high transmittance in the visible region to the near infrared region can be realized.
  • the content ratio is preferably 15 atomic% or less in terms of the Sn / (In + Sn) atomic ratio.
  • the content rate is 5.5 atomic% or less in Ti / (In + Ti) atomic ratio.
  • W it is preferable that the content rate is 4.3 atomic% or less in W / (In + W) atomic ratio.
  • the content rate is 6.5 atomic% or less by Zr / (In + Zr) atomic ratio.
  • the content rate when it contains Mo, it is preferable that the content rate is 6.7 atomic% or less by Mo / (In + Mo) atomic number ratio. Moreover, when it contains Ce, it is preferable that the content rate is 6.5 atomic% or less by Ce / (In + Ce) atomic ratio. Moreover, when it contains Ga, it is preferable that the content rate is 6.5 atomic% or less by Ga / (In + Ga) atomic ratio. If the content exceeds this range, the resistance becomes high, which is not useful.
  • an ITO film containing Sn as a dopant and an ITiO film containing Ti as a dopant are preferably used in the present embodiment.
  • the film thickness of the zinc oxide-based transparent conductive film (II) is 200 nm or more and 1000 nm or less. When the film thickness is less than 200 nm, it is difficult to obtain a high haze ratio. When the film thickness exceeds 1000 nm, characteristics such as the haze ratio can be maintained, but it is disadvantageous in terms of permeability and productivity. In addition, if the proposed manufacturing method is used, a sufficient haze ratio can be obtained with a film thickness of 1000 nm or less.
  • a more preferable film thickness of the zinc oxide-based transparent conductive film (II) is 300 nm or more and 600 nm or less.
  • the zinc oxide-based transparent conductive film (II) may not contain an additive element, but may contain an additive element such as aluminum or gallium for the purpose of imparting conductivity to the oxide film.
  • the aluminum content and the gallium content are expressed by the following formulas: It is preferable that it exists in the range shown by (1).
  • [Al] is the aluminum content expressed by the atomic ratio (%) of Al / (Zn + Al)
  • [Ga] is expressed by the atomic ratio (%) of Ga / (Zn + Ga).
  • the zinc oxide-based transparent conductive film (II) in the present embodiment includes a case where no additive element is included.
  • the additive element is not included, there is a concern that the conductivity may be insufficient, but the presence of the indium oxide-based transparent conductive film (I) as a base film, and the zinc oxide-based transparent conductive film (II)
  • the electrical contact property between the transparent conductive film laminate and the Si layer is improved, which is useful.
  • the zinc oxide based transparent conductive film (II) includes other elements (for example, indium, titanium, germanium, silicon, tungsten, molybdenum, iridium, ruthenium, rhenium, cerium, (Magnesium, silicon, fluorine, etc.) may be contained as long as the object of the present invention is not impaired.
  • the oxide-based transparent conductive film (III) is a metal oxide and contains one or more elements selected from Mg, Al, Si, Ti, Zn, Ga, In, Sn, W, and Ce. Is preferred.
  • the composition of the oxide-based transparent conductive film (III) is not limited as long as it is a combination of the above elements.
  • a transparent conductive oxide mainly composed of In 2 O 3 or ZnO is preferable from the viewpoint of transparency and conductivity including work function.
  • oxide-based transparent conductive film (III) examples include, for example, gallium / aluminum-doped zinc oxide (GAZO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and magnesium-doped zinc oxide (ZMgO).
  • GAZO gallium / aluminum-doped zinc oxide
  • AZO aluminum-doped zinc oxide
  • GZO gallium-doped zinc oxide
  • ZMgO magnesium-doped zinc oxide
  • IGO gallium / aluminum-doped zinc oxide
  • IGO gallium doped indium oxide
  • ICO cerium doped indium oxide
  • IWO tungsten doped indium oxide
  • In 2 O 3 oxides are concerned about hydrogen plasma resistance, but if the film thickness is 200 nm or less as defined in this proposal, the influence of hydrogen plasma is very small, and the surface electrode It is a level that is safe to use.
  • indium oxide added with Ga has a result that the decrease in transmittance due to hydrogen plasma is smaller than that of fluorine-doped tin oxide (FTO).
  • the oxide-based transparent conductive film (III) is a thin film having a thickness of 10 nm or less
  • the oxide-based transparent conductive film (III) is mainly composed of zinc oxide and Mg in view of hydrogen plasma resistance. It is preferable to contain one or more elements selected from Al, Si, Ga, Sn, and W.
  • the film thickness of the indium oxide-based transparent conductive film (I) is 50 nm to 600 nm and the thickness of the zinc oxide-based transparent conductive film (II) is 200 nm to 1000 nm. It is.
  • the film thickness of the indium oxide-based transparent conductive film (I) is more preferably 300 nm to 500 n, and the film thickness of the zinc oxide-based transparent conductive film (II) is 300 nm to 600 nm.
  • the thickness of the oxide-based transparent conductive film (III) is 5 nm or more and 200 nm or less.
  • the thickness of the oxide-based transparent conductive film (III) is less than 5 nm, it becomes difficult to completely cover the surface of the zinc oxide-based transparent conductive film (II), and the generation of defects in the Si layer cannot be prevented.
  • the thickness of the oxide-based transparent conductive film (III) exceeds 200 nm, there is a possibility that the productivity is lowered and the characteristics are deteriorated.
  • the total film thickness of the indium oxide-based transparent conductive film (I), the zinc oxide-based transparent conductive film (II), and the oxide-based transparent conductive film (III) is not particularly limited as long as the above-described film thickness is satisfied. However, it is preferably from 355 nm to 1800 nm, particularly from 600 nm to 1500 nm, depending on the composition of the material.
  • the work function of the oxide-based transparent conductive film (III) which is the outermost surface is preferably 4.5 eV or more.
  • the work function is less than 4.5 eV, the role as an electrode for extracting holes from the p-type Si layer cannot be functioned, and as a result, the conversion efficiency is lowered.
  • the work function needs to be 4.5 eV or more on the outermost surface of the transparent conductive film laminate, and more preferably 5.0 eV or more.
  • the surface resistance of the oxide-based transparent conductive film (III) is preferably 25 ⁇ / ⁇ or less. When the surface resistance exceeds 25 ⁇ / ⁇ , when used as a surface electrode of a solar cell, power loss at the surface electrode increases, and a highly efficient solar cell cannot be realized. Since the transparent conductive film laminate according to the present embodiment has the laminated structure as described above, the surface resistance can be 25 ⁇ / ⁇ or less.
  • the surface resistance of the transparent conductive film laminate according to the present embodiment is preferably 20 ⁇ / ⁇ or less, more preferably 13 ⁇ / ⁇ or less, still more preferably 10 ⁇ / ⁇ or less, and most preferably 8 ⁇ / ⁇ or less.
  • a solar cell of at least 5 cm ⁇ can be realized, and if it is 20 ⁇ / ⁇ or less, a solar cell of at least 8 cm ⁇ can be realized. Furthermore, if it is 13 ⁇ / ⁇ or less, a cell of at least 15cm ⁇ can be realized, if it is 10 ⁇ / ⁇ or less, a cell of at least 17cm ⁇ can be realized, and if it is 8 ⁇ / ⁇ or less, a cell of at least 20cm ⁇ can be realized. realizable.
  • the cell spacing can be reduced. Therefore, when cells are connected to produce a module, not only the amount of power generation per unit area of one module is increased, but also the manufacturing cost per area of the cell can be reduced. Further, by reducing the surface resistance as described above, it becomes possible to ignore the influence of the power loss at the surface electrode.
  • the haze ratio of the surface of the oxide-based transparent conductive film (III) is preferably 8% or more, more preferably 12% or more, still more preferably 16% or more, and most preferably 20% or more. is there.
  • a haze ratio of 12% or more is indispensable in order to achieve a conversion efficiency of 10% or more.
  • the transparent conductive film laminate according to the present embodiment includes the above-described zinc oxide-based transparent conductive film (II) and oxide transparent conductive film in addition to the indium oxide-based transparent conductive film (I) inserted in the base.
  • the transparent conductive film laminate according to the present embodiment is not only excellent in the light confinement effect, but also the oxide-based transparent conductive film (III) improves the voids between the irregularities of the film surface structure, Generation of defects in the Si layer can be prevented. Moreover, since it has a high work function of 4.5 eV or more on the surface of the oxide transparent conductive film (III), it becomes possible to smoothly extract holes from the Si layer as an electrode.
  • the transparent conductive film laminate according to the present embodiment has a low haze ratio and excellent conductivity, particularly from the viewpoint of defects in the Si layer and hole transport, and has a wavelength of 380 nm.
  • the light energy of sunlight including from the visible light of 1200 nm or less to the near infrared can be converted into electrical energy very effectively. Therefore, it is very useful as a surface electrode application of a high efficiency solar cell.
  • the manufacturing method of the transparent conductive film laminate according to the present embodiment is a first method in which an indium oxide-based transparent conductive film (I) having a thickness of 50 nm to 600 nm is formed on a light-transmitting substrate by a sputtering method.
  • a film By forming a film in this way, it has a high haze ratio, an excellent so-called light confinement effect and low resistance, and in addition, it prevents defects in the Si layer that is a photoelectric conversion layer of a thin film solar cell.
  • a transparent conductive film laminate can be obtained. Furthermore, since a transparent conductive film laminated body can be manufactured only by sputtering method, it has high productivity.
  • an indium oxide-based transparent conductive film (I) having a thickness of 50 nm to 600 nm is formed on a light-transmitting substrate by a sputtering method.
  • an oxide firing mainly composed of indium oxide containing one or more metal elements selected from Sn, Ti, W, Mo, Zr, Ce, or Ga is used for the formation of the indium oxide-based transparent conductive film (I).
  • a ligation target is used. Note that when an oxide film is obtained by sputtering using an oxide sintered body target, the composition of the oxide film is the same as that of the target unless a volatile substance is contained.
  • Sn is contained, and the content ratio is 15 atomic% or less in terms of the Sn / (In + Sn) atomic ratio, or Ti is contained, and the content ratio is Ti / Those having an atomic ratio of (In + Ti) of 5.5 atomic% or less are preferably used.
  • the indium oxide-based transparent conductive film (I) is formed by a first method in which an amorphous film is formed without heating the substrate and then crystallized by heat treatment, and a crystal is formed by heating the substrate.
  • a second method of forming a material film can be used.
  • the first method after forming an amorphous film under the conditions of a substrate temperature of 100 ° C. or less and a sputtering gas pressure of 0.1 or more and less than 1.0 Pa, heat treatment is subsequently performed to 200 ° C. or more and 600 ° C. or less, The amorphous film is crystallized to form an indium oxide-based transparent conductive film.
  • the indium oxide-based transparent conductive film is formed as a crystal film under conditions of a substrate temperature of 200 ° C. or more and 600 ° C. or less and a sputtering gas pressure of 0.1 Pa or more and less than 1.0 Pa.
  • the first method in which an amorphous film is formed without heating the substrate and then crystallized by heat treatment. This is because the first method provides a film having a larger haze ratio than the second method in which the crystalline film is formed by heating the substrate.
  • a zinc oxide-based transparent conductive film (II) having a film thickness of 200 nm or more and 1000 nm or less is formed on the indium oxide-based transparent conductive film (I) by a sputtering method.
  • an oxide sintered body target containing zinc oxide as a main component is used for the film formation of the zinc oxide-based transparent conductive film (II). Note that when an oxide film is obtained by sputtering using an oxide sintered body target, the composition of the oxide film is the same as that of the target unless a volatile substance is contained.
  • the oxide sintered compact target for forming the zinc oxide-based transparent conductive film (II) may not contain an additive element, but for the purpose of imparting conductivity to the oxide film, addition of aluminum, gallium or the like It may contain an element.
  • the aluminum content and the gallium content are expressed by the following formula ( It is preferable that it exists in the range shown by 1).
  • [Al] is the aluminum content expressed by the atomic ratio (%) of Al / (Zn + Al)
  • [Ga] is expressed by the atomic ratio (%) of Ga / (Zn + Ga).
  • the transparent conductive film having large surface irregularities and high haze ratio It is difficult to manufacture the film at a high speed by the sputtering method.
  • the zinc oxide-based transparent conductive film (II) under a condition where the sputtering gas pressure is 1.0 Pa or more and 15.0 Pa or less.
  • the sputtering gas pressure is less than 1.0 Pa, it is difficult to obtain a film having large surface irregularities, and a film having an Ra value of 35.0 nm or more cannot be obtained.
  • the film formation rate is slow, which is not preferable.
  • the sputtering gas pressure is 15. It is necessary to make it 0 Pa or less.
  • the mixing ratio (molar ratio) of hydrogen to be introduced is not particularly limited, but the haze ratio increases as the ratio increases, whereas the transmission ratio decreases as the ratio increases. Therefore, the mixing ratio of hydrogen to be introduced is more preferably set to H 2 / (Ar + H 2 ) ⁇ 0.43 in consideration of a decrease in transmittance.
  • the substrate temperature is preferably set to 200 ° C. or more and 600 ° C. or less when forming the zinc oxide-based transparent conductive film (II).
  • the crystallinity of the transparent conductive film is improved, the mobility of carrier electrons is increased, and excellent conductivity can be realized.
  • the substrate temperature is less than 200 ° C., the growth of film particles is inferior, so that a film having a large Ra value cannot be obtained.
  • the substrate temperature exceeds 600 ° C. not only does the problem arise such that the amount of electric power required for heating increases and the manufacturing cost increases, but when the glass substrate is used as the substrate, the softening point is exceeded. This is not preferable because problems such as deterioration of the glass also occur.
  • the film formation rate is increased and the productivity of the film is improved.
  • sputtering film formation is performed by increasing the input power to the target to 2.76 W / cm 2 or more, for example, a film formation speed of 90 nm / min or more can be realized in static facing film formation, surface irregularities are large, and high haze is achieved.
  • a zinc oxide-based transparent conductive film can be obtained.
  • the pass-type film formation transfer film formation
  • the film was formed at a similar input power density of 5.1 nm ⁇ m / min (transfer speed (m / min)).
  • rate in this case will not be restrict
  • the haze ratio is 8% or more, A transparent conductive film laminate having a surface irregularity having a resistance of 25 ⁇ / ⁇ or less can be produced.
  • oxide-based transparent conductive film (III) Formation of oxide-based transparent conductive film (III)> Next, an oxide-based transparent conductive film (III) having a thickness of 5 nm to 200 nm is formed on the zinc oxide-based transparent conductive film (II) by a sputtering method.
  • the film formation of the oxide transparent conductive film (III) is a metal oxide and contains one or more elements selected from Mg, Al, Si, Ti, Zn, Ga, In, Sn, W, and Ce.
  • An oxide sintered compact target is used. Note that when an oxide film is obtained by sputtering using an oxide sintered body target, the composition of the oxide film is the same as that of the target unless a volatile substance is contained.
  • Sputtering targets for forming the oxide-based transparent conductive film (III) include gallium / aluminum-doped zinc oxide (GAZO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and magnesium-doped zinc oxide ( ZMgO), silicon-doped zinc oxide (SZO), tin-doped zinc oxide (ZTO), titanium / tin-doped indium oxide (ITiTO), gallium-doped indium oxide (IGO), cerium-doped indium oxide (ICO), tungsten-doped indium oxide (IWO) Etc.
  • GAZO gallium / aluminum-doped zinc oxide
  • AZO aluminum-doped zinc oxide
  • GZO gallium-doped zinc oxide
  • ZMgO magnesium-doped zinc oxide
  • SZO silicon-doped zinc oxide
  • ZTO tin-doped zinc oxide
  • IGO titanium / tin-doped indium oxide
  • the film thickness of the oxide-based transparent conductive film (III) is a thin film of 10 nm or less
  • the sputtering target for forming the oxide-based transparent conductive film (III) is oxidized from the viewpoint of hydrogen plasma resistance.
  • zinc is a main component and contains one or more elements selected from Mg, Al, Si, Ga, Sn, and W.
  • the film formation of the oxide transparent conductive film (III) includes a first method of forming an amorphous film without heating the substrate, and heating after forming the amorphous film without heating the substrate.
  • a second method of crystallizing by treatment and a third method of forming a crystalline film by heating the substrate can be used.
  • an amorphous film is formed under conditions of a substrate temperature of 100 ° C. or lower and a sputtering gas pressure of 0.1 or higher and lower than 1.0 Pa.
  • the amorphous film is crystallized by subsequently performing heat treatment at 200 ° C. or more and 600 ° C. or less to form an oxide transparent conductive film. Is done.
  • the oxide-based transparent conductive film is formed as a crystal film under conditions of a substrate temperature of 200 ° C. or more and 600 ° C. or less and a sputtering gas pressure of 0.1 Pa or more and less than 1.0 Pa.
  • the second or third method is preferred.
  • the surface of the obtained transparent conductive film laminate may be subjected to a surface cleaning treatment using UV / ozone cleaning, plasma processing, or the like.
  • a work function improves by removing the contaminating component which remains on the transparent conductive film laminated body surface.
  • the oxide-based transparent conductive film (III) having a film thickness of 5 nm to 200 nm is formed, thereby forming the light
  • a transparent conductive film laminate can be produced only by sputtering, it is not only excellent in conductivity etc. for the surface transparent electrode of thin film solar cells, but also compared with conventional conductive films using thermal CVD. Cost reduction is possible. Therefore, since a highly efficient silicon-based thin film solar cell can be provided at a low cost by a simple process, it is extremely useful industrially.
  • a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are sequentially formed on a translucent substrate.
  • the thin film solar cell according to the present embodiment is a photoelectric conversion element using the above-described transparent conductive film laminate as an electrode.
  • the structure of the solar cell element is not particularly limited, and includes a PN junction type in which a p-type semiconductor and an n-type semiconductor are stacked, a PIN junction type in which an insulating layer (I layer) is interposed between the p-type semiconductor and the n-type semiconductor, and the like. Can be mentioned.
  • Thin film solar cells are roughly classified according to the type of semiconductor. Silicon solar cells using a silicon-based semiconductor thin film such as microcrystalline silicon and / or amorphous silicon as a photoelectric conversion element, CuInSe-based or Cu (In, Ga) Se-based , Ag (In, Ga) Se, CuInS, Cu (In, Ga) S, Ag (In, Ga) S and their solid solutions, GaAs, CdTe, and other compound semiconductor thin films Although it is classified into a compound thin film solar cell used as a photoelectric conversion element, and a dye-sensitized solar cell using an organic dye (also referred to as a Gretzel cell solar cell), the solar cell according to the present embodiment is In any case, high efficiency can be realized by using the above-described transparent conductive film laminate as an electrode.
  • a silicon-based semiconductor thin film such as microcrystalline silicon and / or amorphous silicon
  • CuInSe-based or Cu (In, Ga) Se-based Ag (In, Ga) Se, CuInS,
  • a transparent conductive film is indispensable for an electrode on which sunlight is incident (light receiving unit side, front side), and the transparent conductive film lamination according to the present embodiment
  • the body By using the body, high conversion efficiency characteristics can be exhibited.
  • the p-type and n-type conductive semiconductor layers in the photoelectric conversion unit serve to generate an internal electric field in the photoelectric conversion unit.
  • the value of the open circuit voltage (Voc) which is one of the important characteristics of the thin film solar cell, depends on the magnitude of the internal electric field.
  • the i-type layer is a substantially intrinsic semiconductor layer and occupies most of the thickness of the photoelectric conversion unit. The photoelectric conversion action mainly occurs in this i-type layer. Therefore, the i-type layer is usually called an i-type photoelectric conversion layer or simply a photoelectric conversion layer.
  • the photoelectric conversion layer is not limited to an intrinsic semiconductor layer, and may be a layer doped with a small amount of p-type or n-type as long as loss of light absorbed by a doped impurity (dopant) does not become a problem. .
  • FIG. 2 is a diagram showing an example of the structure of a silicon-based amorphous thin film solar cell.
  • silicon thin film solar cells that use silicon thin films for photoelectric conversion units include microcrystalline thin film solar cells and crystalline thin film solar cells.
  • Laminated hybrid thin film solar cells have also been put into practical use.
  • the photoelectric conversion unit or thin film solar cell when the photoelectric conversion layer which occupies the principal part is amorphous, it is called the amorphous unit or the amorphous thin film solar cell.
  • a crystalline photoelectric conversion layer is called a crystalline unit or a crystalline thin film solar cell.
  • the one having a microcrystalline photoelectric conversion layer is referred to as a microcrystalline unit or a crystalline thin film solar cell.
  • a method for improving the conversion efficiency of such a thin film solar cell there is a method of stacking two or more photoelectric conversion units into a tandem solar cell.
  • a front unit including a photoelectric conversion layer having a large band gap is disposed on the light incident side of the thin film solar cell, and a rear unit including a photoelectric conversion layer having a small band gap is sequentially disposed behind the front unit.
  • photoelectric conversion is enabled over the wide wavelength range of incident light, and the conversion efficiency as the whole solar cell can be improved.
  • tandem solar cells those in which an amorphous photoelectric conversion unit and a crystalline or microcrystalline photoelectric conversion unit are stacked are called hybrid thin film solar cells.
  • FIG. 3 is a diagram showing an example of the structure of a hybrid thin film solar cell.
  • the wavelength range of light that can be photoelectrically converted by i-type amorphous silicon is up to about 800 nm on the long wavelength side, but i-type crystalline or microcrystalline silicon is longer than that.
  • Light up to a wavelength of about 1150 nm can be photoelectrically converted.
  • the transparent conductive film 21 which is the above-described indium oxide-based transparent conductive film (I)
  • the transparent conductive film 22 which is the zinc oxide-based transparent conductive film (II)
  • the transparent conductive film laminated body 2 which consists of the transparent conductive film 23 which is an oxide transparent conductive film (III) is formed.
  • the translucent substrate 1 As the translucent substrate 1, a plate-like member or a sheet-like member made of glass, transparent resin or the like is used.
  • An amorphous photoelectric conversion unit 3 is formed on the transparent conductive film laminate 2.
  • the amorphous photoelectric conversion unit 3 includes an amorphous p-type silicon carbide layer 31, a non-doped amorphous i-type silicon photoelectric conversion layer 32, and an n-type silicon-based interface layer 33.
  • the amorphous p-type silicon carbide layer 31 is formed at a substrate temperature of 180 ° C. or lower in order to prevent a decrease in transmittance due to reduction of the transparent conductive film stack 2.
  • the crystalline photoelectric conversion unit 4 is formed on the amorphous photoelectric conversion unit 3.
  • the crystalline photoelectric conversion unit 4 includes a crystalline p-type silicon layer 41, a crystalline i-type silicon photoelectric conversion layer 42, and a crystalline n-type silicon layer 43.
  • a high frequency plasma CVD method is suitable for forming the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4 (hereinafter, both units are simply referred to as “photoelectric conversion unit”).
  • the substrate temperature is 100 ° C. or higher and 250 ° C. or lower (however, the amorphous p-type silicon carbide layer 31 is 180 ° C.
  • the pressure is 30 Pa or higher and 1500 Pa or lower
  • the high frequency power density is 0.01 W / cm. 2 or more and 0.5 W / cm 2 or less are preferably used.
  • a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and H 2 is used.
  • a dopant gas for forming the p-type or n-type layer in the photoelectric conversion unit B 2 H 6 or PH 3 is preferably used.
  • the back electrode 5 is formed on the n-type silicon-based interface layer 33 shown in FIG. 2 or on the n-type silicon-based interface layer 43 shown in FIG.
  • the back electrode 5 includes a transparent reflective layer 51 and a back reflective layer 52.
  • the transparent reflective layer 51 is preferably made of a metal oxide such as ZnO or ITO.
  • For the back reflective layer 52 it is preferable to use Ag, Al, or an alloy thereof.
  • the back electrode 5 In forming the back electrode 5, a method such as sputtering or vapor deposition is preferably used.
  • the back electrode 5 has a thickness of usually 0.5 ⁇ m to 5 ⁇ m, preferably 1 ⁇ m to 3 ⁇ m.
  • the solar cell is completed by heating to near atmospheric pressure at an atmospheric temperature equal to or higher than the formation temperature of the amorphous p-type silicon carbide layer 31.
  • the gas used in the heating atmosphere air, nitrogen, a mixture of nitrogen and oxygen, or the like is preferably used.
  • the vicinity of atmospheric pressure generally indicates a range of 0.5 atm or more and 1.5 atm or less.
  • the method for manufacturing a thin-film solar cell according to the present embodiment it is possible to provide a silicon-based thin-film solar cell using the transparent conductive film laminate 2 as an electrode.
  • the indium oxide-based transparent conductive film (I) formed on the light-transmitting substrate is used as a base, and the zinc oxide-based excellent in unevenness is formed thereon.
  • a thin film capable of achieving high conversion efficiency by forming a transparent conductive film (II) and then a transparent conductive film laminate having a three-layer structure in which an oxide transparent conductive film (III) having a high work function is sequentially formed.
  • a transparent conductive film for a surface transparent electrode of a solar cell can be obtained. Furthermore, the transparent conductive film laminate can be provided at a lower cost than a transparent conductive film formed by a conventional thermal CVD method.
  • the method for manufacturing a thin-film solar cell according to the present embodiment is extremely useful industrially because a highly efficient silicon-based thin-film solar cell can be provided at a low cost by a simple process.
  • FIG. 3 shows the structure of the hybrid thin film solar cell.
  • the number of photoelectric conversion units is not necessarily two, but an amorphous or crystalline single structure, a stacked solar cell structure having three or more layers. It may be.
  • the film thickness was measured by the following procedure. Before forming a film, apply a part of the substrate with oil-based magic ink, wipe the magic with ethanol after film formation, and form a film-free part. It was determined by measuring with a shape measuring instrument (Alpha-Step IQ manufactured by KLA Tencor).
  • haze ratio of the film was evaluated with a haze meter (HM-150 manufactured by Murakami Color Research Laboratory Co., Ltd.) based on JIS standard K7136.
  • the Si layer laminated on the transparent conductive film laminate is subjected to cross-sectional observation with a scanning electron microscope (SEM, Carl Zeiss ULTRA55) to determine whether defects such as cracks and peeling exist. went. Specifically, for each sample, cross sections were observed at 10 points at intervals of 20 mm or more in the length direction of the substrate, and the presence or absence of defects was determined.
  • SEM scanning electron microscope
  • Example 1 GAZO / GAZO / ITO Transparent conductive film laminate with a large surface irregularity having a structure in which a zinc oxide-based transparent conductive film (II) and an oxide-based transparent conductive film (III) are formed on an indium oxide-based transparent conductive film (I) by the following procedure Was prepared by sputtering.
  • Example 1 Preparation of indium oxide-based transparent conductive film (I)
  • an indium oxide-based transparent conductive film (I) as a base was formed on a light-transmitting substrate under the conditions shown in Table 1.
  • the composition of the target manufactured by Sumitomo Metal Mining Co., Ltd.
  • Ti / (In + Ti) was 0. .50 atomic% or less.
  • the purity of the target was 99.999%, and the size was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • This sputtering target is applied to a cathode for a ferromagnetic target of a DC magnetron sputtering apparatus (SPF503K manufactured by Tokki Co., Ltd.) (maximum horizontal magnetic field strength at a position 1 cm away from the target surface is about 80 kA / m (1 kG)).
  • SPF503K DC magnetron sputtering apparatus
  • maximum horizontal magnetic field strength at a position 1 cm away from the target surface is about 80 kA / m (1 kG)
  • a Corning 7059 glass substrate having a thickness of 1.1 mm was attached to the opposite surface of the sputtering target.
  • the average light transmittance of the Corning 7059 glass substrate itself in the visible light wavelength region is 92%.
  • the distance between the sputtering target and the substrate was 50 mm.
  • Example 1 Preparation of zinc oxide-based transparent conductive film (II)]
  • a zinc oxide-based sintered body target manufactured by Sumitomo Metal Mining Co., Ltd.
  • a transparent conductive film (II) was formed.
  • the composition of the target was 0.30 atomic% for Al / (Zn + Al) and 0.30 atomic% for Ga / (Zn + Ga).
  • the purity of each target was 99.999%, and the target size was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 ⁇ 10 ⁇ 4 Pa or less, Ar gas having a purity of 99.9999 mass% is placed in the chamber.
  • the gas pressure was 4.0 Pa.
  • sputtering film formation was carried out with the substrate still immediately above the center of the target to form a 400 nm-thick zinc oxide transparent conductive film (II) Then, a transparent conductive film laminate was obtained.
  • Example 1 Production of oxide-based transparent conductive film (III)
  • a zinc oxide based sintered target made by Sumitomo Metal Mining Co., Ltd.
  • aluminum and gallium as additive elements was used on the zinc oxide based transparent conductive film (II) under the conditions shown in Tables 1 and 2.
  • an oxide-based transparent conductive film (III) was formed.
  • the composition of the target was 2.00 atomic% for Al / (Zn + Al) and 2.00 atomic% for Ga / (Zn + Ga).
  • the purity of each target was 99.999%, and the target size was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 ⁇ 10 ⁇ 4 Pa or less, Ar gas having a purity of 99.9999 mass% is introduced into the chamber.
  • the gas pressure was 0.3 Pa.
  • sputtering film formation was performed while the substrate was left just above the center of the target to form an oxide-based transparent conductive film (III) with a film thickness of 50 nm. Then, a transparent conductive film laminate was obtained.
  • Example 1 GAZO / ITO The transparent conductive film was prepared in the same manner as in Example 1 except that the indium oxide-based transparent conductive film (I) and the zinc oxide-based transparent conductive film (II) were prepared and the oxide-based transparent conductive film (III) was not formed. A film laminate was obtained.
  • Example 1 The film thickness and resistance value of the transparent conductive thin film laminates of Example 1 and Comparative Example 1 were measured by the methods (1) and (3). Further, the total light transmittance and the haze ratio of the transparent conductive thin film laminate at a wavelength of 400 to 1200 nm were measured by the methods (4) and (5). Moreover, the work function of the obtained transparent conductive film laminated body outermost surface was measured by the method of said (6).
  • the film thickness of the transparent conductive film laminate of Example 1 was 750 nm.
  • the total light transmittance at a wavelength of 400 to 1200 nm was 80.8%, and the haze ratio was as high as 20.3%.
  • the surface resistance was 9.9 ⁇ / ⁇ , indicating high conductivity.
  • the work function of the transparent conductive film laminated body outermost surface is 4.8 eV, and it can obtain the transparent conductive film laminated body which has a target high work function, and has a high haze rate and a low resistance value at high speed. It was confirmed that it was possible.
  • the film thickness of the transparent conductive film laminate of Comparative Example 1 was 700 nm.
  • the total light transmittance at a wavelength of 400 to 1200 nm was 81.0%, and the haze ratio was 19.6%.
  • the surface resistance was 10.1 ⁇ / ⁇ .
  • the work function of the transparent conductive film laminated body outermost surface was 4.7 eV.
  • FIG. 4 shows a surface SEM photograph of the transparent conductive thin film after the formation of the zinc oxide-based transparent conductive film (II).
  • the zinc oxide-based transparent conductive film (II) there is a steep recess as shown in the circle of FIG.
  • the oxide-based transparent conductive film (III) is formed on the zinc oxide-based transparent conductive film (II), and such a steep recess is eliminated.
  • Comparative Example 1 since the oxide-based transparent conductive film (III) is not formed, the Si layer is laminated on the steep concave portion.
  • Example 1 On each transparent conductive film laminate of Example 1 and Comparative Example 1, a Si layer was formed by the CVD method, and the Si layer was observed. As a result, although no defect was present in Example 1, cracks and partial peeling occurred in the Si layer in Comparative Example 1. Therefore, it was found that the three-layer structure including the oxide-based transparent conductive film (III) as in Example 1 is effective for preventing defects in the Si layer.
  • the respective film thicknesses are set as shown in Tables 1 and 2. It changed and produced the transparent conductive film laminated body.
  • Other film forming conditions were the same as in Example 1. The characteristics evaluation of the produced transparent conductive film laminated body was implemented by the same item and method as Example 1.
  • Comparative Example 3 in which the film thickness of the oxide-based transparent conductive film (III) is 3 nm does not sufficiently cover the surface gap of the zinc oxide-based transparent conductive film (II), and the Si layer is laminated. As a result, cracks in the Si layer occurred.
  • Comparative Example 4 in which the thickness of the oxide-based transparent conductive film (III) was 230 nm, the total light transmittance was as low as 74.8%.
  • Comparative Example 5 in which the film thickness of the indium oxide-based transparent conductive film (I) was 30 nm, the conductivity was not sufficient, and the sheet resistance value as the obtained transparent conductive film laminate was 30.1 ⁇ / ⁇ . It was high.
  • Comparative Example 6 in which the film thickness of the indium oxide-based transparent conductive film (I) was 700 nm, the total light transmittance was as low as 73.8%.
  • the transparent conductive film laminates as in Comparative Examples 2 to 6 are not useful for the surface transparent electrode of the thin film solar cell.
  • the transparent conductive film laminates in Examples 2 to 7 it was confirmed that no defects in the Si layer were generated because there were no complicated voids in the surface structure. Moreover, since it has a high haze rate and a low resistance value, it was confirmed that it was useful for the surface transparent electrode of a thin film solar cell.
  • Example 8 AZO / AZO / ITO As shown in Tables 1 and 2, as in Example 1, except that the zinc oxide-based transparent conductive film (II) and the oxide-based transparent conductive film (III) in Example 1 were aluminum-containing zinc oxide (AZO).
  • a transparent conductive film laminate was prepared according to the items and conditions.
  • the composition of the target used for producing the zinc oxide-based transparent conductive film (II) and the oxide transparent conductive film (III) was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000). Zn + Al) was 0.50 atomic% or less. Moreover, the purity of the target was 99.999%, and the size was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • Example 7 AZO / ITO As shown in Tables 1 and 2, a transparent conductive film laminate was produced in the same manner as in Example 8 except that the oxide-based transparent conductive film (III) in Example 8 was not formed.
  • Example 8 Comparative Example 7
  • Table 3 the characteristic evaluation result of the transparent conductive film laminated body of Example 8 and Comparative Example 7 is shown.
  • the characteristics of the transparent conductive thin film laminate were measured by the same items and methods as in Example 1.
  • the film thickness of the transparent conductive film laminate of Example 8 was 750 nm.
  • the total light transmittance at a wavelength of 400 to 1200 nm was 81.0%, and the haze ratio was as high as 16.8%.
  • the surface resistance was 11.4 ⁇ / ⁇ , indicating high conductivity.
  • the work function of the transparent conductive film laminated body outermost surface is 4.5 eV, and it can obtain the transparent conductive film laminated body which has a target high work function, and has a high haze rate and a low resistance value at high speed. It was confirmed that it was possible.
  • the film thickness of the transparent conductive film laminate of Comparative Example 7 was 700 nm.
  • the total light transmittance at a wavelength of 400 to 1200 nm was 81.2%, and the haze ratio was 17.0%.
  • the surface resistance was 11.5 ⁇ / ⁇ .
  • the work function of the transparent conductive film laminated body outermost surface was 4.6 eV.
  • the Si layer was formed by the CVD method on the transparent conductive film laminate obtained in Example 8 and Comparative Example 7, and observed. As a result, although no defect was present in Example 8, cracks and partial peeling occurred in the Si layer in Comparative Example 7. Therefore, it was found that the three-layer structure including the oxide-based transparent conductive film (III) is effective for preventing defects in the Si layer.
  • Example 9 GZO / GZO / ITO As shown in Tables 1 and 2, except that the zinc oxide-based transparent conductive film (II) and the oxide-based transparent conductive film (III) in Example 1 were zinc oxide containing gallium, A transparent conductive film laminate was produced under the conditions.
  • the composition of the target used for the production of the zinc oxide-based transparent conductive film (II) and the oxide transparent conductive film (III) was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000). Ga + Al) was 0.50 atomic% or less. Moreover, the purity of the target was 99.999%, and the size was 6 inches ( ⁇ ) ⁇ 5 mm (thickness).
  • Example 8 GZO / ITO As shown in Tables 1 and 2, a transparent conductive film laminate was produced in the same manner as in Example 9 except that the oxide-based transparent conductive film (III) in Example 9 was not formed.
  • Example 9, Comparative Example 8 In Table 3, the characteristic evaluation result of the transparent conductive film laminated body of Example 9 and Comparative Example 8 is shown.
  • the characteristics of the transparent conductive thin film laminate were measured by the same items and methods as in Example 1.
  • the film thickness of the transparent conductive film laminate of Example 9 was 750 nm.
  • the total light transmittance at a wavelength of 400 to 1200 nm was 80.2%, and the haze ratio was as high as 19.9%.
  • the surface resistance was 9.5 ⁇ / ⁇ , indicating high conductivity.
  • the work function of the outermost surface of the transparent conductive film laminate is 4.7 eV, and a transparent conductive film laminate having a target high work function, a high haze ratio, and a low resistance value can be obtained at high speed. It was confirmed that it was possible.
  • the film thickness of the transparent conductive film laminate of Comparative Example 8 was 700 nm.
  • the total light transmittance at a wavelength of 400 to 1200 nm was 80.3%, and the haze ratio was as high as 20.3%.
  • the surface resistance was 9.2 ⁇ / ⁇ .
  • the work function of the transparent conductive film laminated body outermost surface was 4.7 eV.
  • Example 10 Comparative Examples 9 to 11
  • the oxide-based transparent conductive film (III) in Example 1 was 3.00 atomic% (Example 10: ZMgO) in Mg / (Zn + Mg) and 3 in Si / (Zn + Si), respectively.
  • Example 11 SZO
  • Sn / (Zn + Sn) at 6.00 atomic% Example 12: ZTO
  • Ti / (In + Ti) at 2.00 atomic% and Sn / (In + Sn) at 0 0.05 atomic% Example 13: ITiTO
  • Ga / (In + Ga) at 15.0 atomic% Example 14: IGO
  • Ce / (In + Ce) at 10.0 atomic% Example 15: ICO
  • Example 1 except that W / (In + W) was 1.00 atomic%
  • Example 16 IWO
  • V 2 O 5 Comparative Example 9
  • Al Comparative Example 10
  • Ni Comparative Example 11
  • Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 10 to 16 and Comparative Examples 9 to 11.
  • the characteristics of the transparent conductive thin film laminate were measured by the same items and methods as in Example 1.
  • the transparent conductive film laminate of Comparative Example 9 in which the composition of the oxide-based transparent conductive film (III) was V 2 O 5 had a surface work function as good as 5.4 eV, but the film could be confirmed with the naked eye.
  • the total light transmittance was very low at 70.4%.
  • the transparent conductive film laminates of Comparative Example 10 and Comparative Example 11 in which the composition of the oxide-based transparent conductive film (III) is a metal film have a reflectance due to carrier scattering unique to the metal film as compared with the oxide film.
  • the total light transmittance was very low at 67.3% (Comparative Example 10) and 68.2% (Comparative Example 11), respectively.
  • the transparent conductive film laminates as in Comparative Examples 9 to 11 are not useful for the surface transparent electrode of the thin film solar cell.
  • the transparent conductive film laminates in Examples 10 to 16 since no complicated voids exist in the surface structure, it was confirmed that Si layer defects do not occur. Moreover, since it has a high haze rate and a low resistance value, it was confirmed that it was useful for the surface transparent electrode of a thin film solar cell.
  • Example 17 to 21 As shown in Tables 1 and 2, the indium oxide-based transparent conductive film (I) in Example 1 was 1.00 atomic% (Example 17) in terms of W / (In + W) and 1.00 in terms of Mo / (In + Mo), respectively. Atomic% (Example 18), Zr / (In + Zr) at 1.00 atomic% (Example 19), Ce / (In + Ce) at 10.0 atomic% (Example 20), Ga / (In + Ga) at 15. A transparent conductive film laminate was produced under the same items and conditions as in Example 1 except that the content was 0 atomic% (Example 21).
  • Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 17 to 21.
  • the characteristics of the transparent conductive thin film laminate were measured by the same items and methods as in Example 1.
  • Si layer defects do not occur.
  • it since it has a high haze rate and a low resistance value, it was confirmed that it was useful for the surface transparent electrode of a thin film solar cell.
  • Example 22 to 25 GAZO / GAZO / ITOO
  • the indium oxide-based transparent conductive film (I) in Example 1 is used as a base, and hydrogen (H 2 ) gas is further added thereon in a molar ratio of H 2 / (Ar + H 2 ).
  • H 2 hydrogen
  • Example 22 0.25
  • Example 23 0.43
  • Example 24 0.50 atomic%
  • Example 25 A zinc oxide-based transparent conductive film (II) was formed in the same manner as in Example 1 to produce a transparent conductive film laminate.
  • Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 22 to 25.
  • the characteristics evaluation of the transparent conductive film laminate was carried out using the same items and methods as in Example 1.
  • the film characteristics of the transparent conductive film laminate although the haze ratio and the surface resistance tend to increase as the H 2 ratio of the film forming gas increases, the transparent conductive film laminates of Examples 22 to 25 The haze rate was not only sufficiently high at 8% or more, but also the surface resistance was as low as 25 ⁇ / ⁇ or less.
  • Example 26 GAZO / GAZO / ITOO As shown in Tables 1 and 2, when forming the indium oxide-based transparent conductive film (I) (Example 26), forming the zinc oxide-based transparent conductive film (II) (Example 27), or oxidizing, respectively.
  • Example 1 except that when the physical transparent conductive film (III) was formed (Example 28), the substrate was not heated and an amorphous film was formed at room temperature, followed by heat treatment at 300 ° C. In the same manner, a transparent conductive film laminate was produced.
  • Example 29 when forming the oxide-based transparent conductive film (III), an amorphous film was formed at room temperature without heating the substrate, and no heat treatment was performed. In the same manner as in Example 1, a transparent conductive film laminate was produced.
  • Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 26 to 29.
  • the characteristics of the transparent conductive thin film laminate were measured by the same items and methods as in Example 1.
  • it has a high haze rate and a low resistance value it was confirmed that it was useful for the surface transparent electrode of a thin film solar cell.

Abstract

Provided is a transparent conductive film laminate which exhibits excellent contact properties with an Si layer, exerts an excellent light confinement effect, and is useful as the surface electrode of a solar cell. Also provided are a method for producing said transparent conductive film laminate, a thin-film solar cell, and a method for producing same. The transparent conductive film laminate is formed as a three-layer laminate structure in which an indium oxide transparent conductive film (I) (21) formed on a translucent substrate (1) functions as a base, and a zinc oxide transparent conductive film (II) (22) exhibiting excellent concavo-convex properties and a transparent conductive film (III) (23) having a high work function are formed in said order on the indium oxide transparent conductive film (I) (21).

Description

透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
 本発明は、高効率のシリコン系薄膜太陽電池を製造する際に有用な、Si層とのコンタクト性に優れ、且つ光閉じ込め効果に優れ、太陽電池の表面電極として有用な透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法に関する。本出願は、日本国において2011年12月20日に出願された日本特許出願番号特願2011-278748を基礎として優先権を主張するものであり、この出願を参照することにより、本出願に援用される。 The present invention provides a transparent conductive film laminate useful for producing a high-efficiency silicon-based thin film solar cell, excellent in contact with the Si layer, excellent in light confinement effect, and useful as a surface electrode of a solar cell, and The present invention relates to a manufacturing method, a thin film solar cell, and a manufacturing method thereof. This application claims priority on the basis of Japanese Patent Application No. 2011-278748 filed on December 20, 2011 in Japan, and is incorporated herein by reference. Is done.
 高い導電性と可視光領域での高い透過率とを有する透明導電膜は、太陽電池や液晶表示素子、その他各種受光素子の電極などに利用されており、その他、自動車窓や建築用の熱線反射膜、帯電防止膜、冷凍ショーケースなど各種の防曇用の透明発熱体としても利用されている。 Transparent conductive films with high conductivity and high transmittance in the visible light region are used for electrodes of solar cells, liquid crystal display elements, and other various light receiving elements, and in addition, heat ray reflection for automobile windows and buildings. It is also used as a transparent heating element for various types of antifogging, such as a film, an antistatic film, and a frozen showcase.
 透明導電膜としては、酸化錫(SnO)系、酸化亜鉛(ZnO)系、酸化インジウム(In)系の薄膜が知られている。酸化錫系には、アンチモンをドーパントとして含むもの(ATO)やフッ素をドーパントとして含むもの(FTO)が利用されている。
酸化亜鉛系には、アルミニウムをドーパントとして含むもの(AZO)やガリウムをドーパントとして含むもの(GZO)が利用されている。
As transparent conductive films, tin oxide (SnO 2 ) -based, zinc oxide (ZnO) -based, and indium oxide (In 2 O 3 ) -based thin films are known. As the tin oxide, those containing antimony as a dopant (ATO) and those containing fluorine as a dopant (FTO) are used.
As the zinc oxide system, those containing aluminum as a dopant (AZO) and those containing gallium as a dopant (GZO) are used.
 最も工業的に利用されている透明導電膜は、酸化インジウム系であり、中でも錫をドーパントとして含む酸化インジウムは、ITO(Indium-Tin-Oxide)膜と称され、特に低抵抗の膜が容易に得られることから、これまで幅広く利用されている。 The transparent conductive film most industrially used is an indium oxide type, and indium oxide containing tin as a dopant is referred to as an ITO (Indium-Tin-Oxide) film. Since it is obtained, it has been used widely.
 近年、二酸化炭素の増加などによる地球環境問題と化石燃料の価格高騰という問題がクローズアップされ、比較的低コストで製造しうる薄膜太陽電池が注目されている。薄膜太陽電池は、一般に、透光性基板上に順に積層された透明導電膜、1つ以上の半導体薄膜光電変換ユニット、及び裏面電極を含んでいる。シリコン材料は、資源が豊富なことから、薄膜太陽電池の中でもシリコン系薄膜を光電変換ユニット(光吸収層)に用いたシリコン系薄膜太陽電池がいち早く実用化され、ますます活発に研究開発が展開されている。 In recent years, the global environmental problems due to the increase in carbon dioxide and the problem of rising prices of fossil fuels have been highlighted, and thin film solar cells that can be manufactured at a relatively low cost are attracting attention. A thin-film solar cell generally includes a transparent conductive film, one or more semiconductor thin-film photoelectric conversion units, and a back electrode, which are sequentially stacked on a light-transmitting substrate. Since silicon materials are abundant in resources, silicon-based thin-film solar cells using silicon-based thin films for photoelectric conversion units (light absorption layers) are quickly put into practical use, and research and development are expanding actively. Has been.
 そして、シリコン系薄膜太陽電池の種類もさらに多様化し、従来の光吸収層にアモルファスシリコンなどの非晶質薄膜を用いた非晶質薄膜太陽電池の他に、アモルファスシリコンに微細な結晶シリコンが混在した微晶質薄膜を用いた微結晶質薄膜太陽電池や結晶シリコンからなる結晶質薄膜を用いた結晶質薄膜太陽電池も開発され、これらを積層したハイブリッド薄膜太陽電池も実用化されている。 And the types of silicon-based thin film solar cells are further diversified. In addition to amorphous thin film solar cells using amorphous thin films such as amorphous silicon in the conventional light absorption layer, fine crystalline silicon is mixed in amorphous silicon. A microcrystalline thin film solar cell using the microcrystalline thin film and a crystalline thin film solar cell using a crystalline thin film made of crystalline silicon have been developed, and a hybrid thin film solar cell in which these are laminated has been put into practical use.
 このような光電変換ユニット又は薄膜太陽電池は、それに含まれるp型とn型の導電型半導体層が非晶質か結晶質か微結晶にかかわらず、その主要部を占める光電変換層が非晶質のものは、非晶質ユニット又は非晶質薄膜太陽電池と称され、光電変換層が結晶質のものは、結晶質ユニット又は結晶質薄膜太陽電池と称され、光電変換層が微結晶質のものは、微結晶質ユニット又は微結晶質薄膜太陽電池と称されている。 Such a photoelectric conversion unit or thin film solar cell has an amorphous photoelectric conversion layer that occupies the main part regardless of whether the p-type and n-type conductive semiconductor layers contained therein are amorphous, crystalline, or microcrystalline. Those having a high quality are referred to as amorphous units or amorphous thin-film solar cells, and those having a crystalline photoelectric conversion layer are referred to as crystalline units or crystalline thin-film solar cells, and the photoelectric conversion layer is microcrystalline. Are called microcrystalline units or microcrystalline thin-film solar cells.
 ところで、透明導電膜は、薄膜太陽電池の表面透明電極用として用いられており、透光性基板側から入射された光を有効に光電変換ユニット内に閉じ込めるために、その表面には通常微細な凹凸が多数形成されている。 By the way, the transparent conductive film is used for the surface transparent electrode of the thin film solar cell, and in order to effectively confine the light incident from the translucent substrate side in the photoelectric conversion unit, the surface thereof is usually fine. Many irregularities are formed.
 この透明導電膜の凹凸の度合いを表す指標としてヘイズ率がある。これは特定の光源の光を透明導電膜が付いた透光性基板に入射した際に透過する光のうち、光路が曲げられた散乱成分を全成分で割ったものに相当し、通常可視光を含むC光源を用いて測定される。一般的には凹凸の高低差を大きくするほど、または凹凸の凸部と凸部の間隔が大きくなるほどヘイズ率が高くなり、光電変換ユニット内に入射された光は有効に閉じ込められ、いわゆる光閉じ込め効果が優れている。 Haze rate is an index representing the degree of unevenness of this transparent conductive film. This is equivalent to the light that is transmitted when the light from a specific light source is incident on a transparent substrate with a transparent conductive film divided by the scattered component whose optical path is bent and divided by all components. Measured using a C light source containing Generally, the haze ratio increases as the height difference between the projections and depressions increases, or as the distance between the projections and depressions of the projections and projections increases, and the light incident into the photoelectric conversion unit is effectively confined. The effect is excellent.
 薄膜太陽電池が非晶質シリコン、結晶質シリコン、微結晶質シリコンを単層の光吸収層とする薄膜太陽電池であるか、前述のハイブリッド薄膜太陽電池であるかによらず、透明導電膜のヘイズ率を高くして十分な光閉じ込めを行うことができれば、高い短絡電流密度(Jsc)を実現することができ、高い変換効率の薄膜太陽電池を製造することができる。 Regardless of whether the thin-film solar cell is a thin-film solar cell having a single light absorption layer of amorphous silicon, crystalline silicon, or microcrystalline silicon or the above-described hybrid thin-film solar cell, the transparent conductive film If the haze ratio can be increased and sufficient light confinement can be performed, a high short-circuit current density (Jsc) can be realized, and a thin film solar cell with high conversion efficiency can be manufactured.
 上記目的から、ヘイズ率の高い透明導電膜として、熱CVD法によって製造される酸化錫を主成分とした金属酸化物材料が知られており、薄膜太陽電池の透明電極として一般に利用されている。 For the above purpose, a metal oxide material mainly composed of tin oxide produced by a thermal CVD method is known as a transparent conductive film having a high haze ratio, and is generally used as a transparent electrode of a thin film solar cell.
 しかしながら、熱CVD法による成膜方法は大面積の基板に成膜する際、特に高ヘイズ率を有する膜を成膜した場合には、ヘイズ率や抵抗値といった特性及び膜厚のバラつきが±10%程度と大きく、高ヘイズ率の膜を大面積に成膜するには不利である。従って一般に量産で薄膜太陽電池の表面電極として使用されている酸化錫系透明導電膜のヘイズ率は、面内の均一性を持たせるために、高くても10-13%となっている。このような方法では歩留まりも悪く、更なる改善が可能な成膜方法が求められる。ここで、大面積成膜に有利なスパッタリングによる表面電極膜量産が求められる。 However, in the film formation method by the thermal CVD method, when a film having a high haze ratio is formed, particularly when a film having a high haze ratio is formed, the characteristics such as the haze ratio and the resistance value and the variation in film thickness are ± 10. It is disadvantageous for forming a film having a large haze ratio as large as about% on a large area. Therefore, the haze ratio of the tin oxide-based transparent conductive film generally used for mass production as a surface electrode of a thin film solar cell is at most 10-13% in order to provide in-plane uniformity. With such a method, the yield is poor, and a film forming method capable of further improvement is required. Here, mass production of the surface electrode film by sputtering advantageous for large area film formation is required.
 一方、非特許文献1には、酸化亜鉛を主成分として、表面凹凸を有し、高いヘイズ率の透明導電膜をスパッタリング法で得る方法が提案されている。この方法は、2wt%のAlを添加した酸化亜鉛の焼結体ターゲットを用いて、3Pa以上12Pa以下の高ガス圧にて、基板温度を200℃以上400℃以下としてスパッタリング成膜している。しかし、6inchφのターゲットへDC80Wの電力を投入して成膜しており、ターゲットへの投入電力密度が0.442W/cmと極めて低い。そのため、成膜速度は14nm/min以上35nm/min以下と極めて遅く工業的には実用性がない。本出願人の経験からも、AZOターゲットを用いて直流スパッタリング成膜を行う際、高速で成膜を行うためにターゲットに投入する電力密度を高めて直流スパッタリング成膜を行うと、アーキング(異常放電)が多発してしまう。成膜ラインの生産工程においてアーキングが発生すると、膜の欠陥が生じたり、所定の膜厚の膜が得られなくなったりして、高品位の透明導電膜を安定に製造することが不可能になる。 On the other hand, Non-Patent Document 1 proposes a method of obtaining a transparent conductive film having a surface roughness and having a high haze ratio, mainly composed of zinc oxide, by a sputtering method. This method uses a zinc oxide sintered body target to which 2 wt% of Al 2 O 3 is added and performs sputtering film formation at a high gas pressure of 3 Pa to 12 Pa and a substrate temperature of 200 ° C. to 400 ° C. ing. However, the film is formed by applying a power of DC 80 W to a 6 inch φ target, and the input power density to the target is as extremely low as 0.442 W / cm 2 . For this reason, the film formation rate is as extremely low as 14 nm / min or more and 35 nm / min or less and industrially impractical. According to the applicant's experience, when performing DC sputtering film formation using an AZO target, if DC sputtering film formation is performed by increasing the power density applied to the target in order to perform film formation at high speed, arcing (abnormal discharge) ) Occur frequently. When arcing occurs in the production process of a film forming line, a film defect occurs or a film having a predetermined film thickness cannot be obtained, making it impossible to stably manufacture a high-quality transparent conductive film. .
 また、このような高ガス圧下で成膜された凹凸性の膜は、膜最表面の凹凸間に空隙が多数存在しており、薄膜太陽電池の表面電極として用い、この透明導電膜上にCVD法でSi層を形成すると、Si層の欠陥(クラック、剥がれ等)発生の原因となってしまうという課題があった。 In addition, the uneven film formed under such a high gas pressure has many voids between the unevenness on the outermost surface of the film, and is used as a surface electrode of a thin film solar cell. When the Si layer is formed by the method, there is a problem that defects (cracks, peeling, etc.) occur in the Si layer.
 また、非特許文献2では、酸化亜鉛を主成分として、従来のスパッタリング法で作製される、表面凹凸の小さな透明導電膜を得た後で、膜の表面を酸でエッチングして表面を凹凸化し、ヘイズ率の高い透明導電膜を製造する方法が開示されている。しかし、この方法では、乾式工程で、真空プロセスであるスパッタリング法で膜を製造した後に、大気中で酸エッチングを行って乾燥し、再び乾式工程のCVD法で半導体層を形成しなければならず、工程が複雑となり製造コストが高くなるなどの課題があった。 In Non-Patent Document 2, after obtaining a transparent conductive film with zinc oxide as a main component and produced by a conventional sputtering method with small surface irregularities, the surface of the film is etched with acid to make the surface irregular. A method for producing a transparent conductive film having a high haze ratio is disclosed. However, in this method, after a film is manufactured by a sputtering method which is a vacuum process in a dry process, it is dried by performing acid etching in the air, and a semiconductor layer must be formed again by a CVD process in the dry process. There are problems such as complicated processes and high manufacturing costs.
 以上から、薄膜Si系太陽電池の表面電極膜としてCVD法による酸化錫系透明導電膜を用いる際に課題となっていた面内均一性や生産性といった課題に対して、非特許文献1及び2で提案されているようなスパッタリング法による酸化亜鉛系透明導電膜形成では、アーキングの発生や乾式と湿式プロセスの組み合わせによるプロセスの複雑化といった課題が残っており、量産性の改善には至っていない。 From the above, Non-Patent Documents 1 and 2 address the problems such as in-plane uniformity and productivity that have been problems when using a tin oxide-based transparent conductive film by a CVD method as a surface electrode film of a thin-film Si-based solar cell. In the formation of a zinc oxide-based transparent conductive film by the sputtering method proposed in the above, problems such as generation of arcing and complicated processes due to a combination of dry and wet processes remain, and mass productivity has not been improved.
 本出願人は、酸化亜鉛を主成分として酸化ガリウムを混合するとともに、第三元素(Ti、Ge、Al、Mg、In、Sn)の添加により異常放電を低減させたスパッタターゲットを提案した(特許文献1参照)。ここで、ガリウムをドーパントとして含むGZO焼結体は、Ga、Ti、Ge、Al、Mg、In、Snからなる群より選ばれた少なくとも1種類を2重量%以上固溶したZnO相が組織の主な構成相であり、他の構成相には上記少なくとも1種が固溶していないZnO相や、ZnGa(スピネル相)で表される中間化合物相である。このようなAlなどの第三元素を添加したGZOターゲットでは、異常放電は低減できるが、完全に消失させることはできなかった。成膜の連続ラインにおいて、一度でも異常放電が生じれば、その成膜時の製品は欠陥品となってしまい製造歩留まりに影響を及ぼす。 The present applicant has proposed a sputter target in which gallium oxide is mixed with zinc oxide as a main component and abnormal discharge is reduced by adding a third element (Ti, Ge, Al, Mg, In, Sn) (patent) Reference 1). Here, the GZO sintered body containing gallium as a dopant is composed of a ZnO phase in which at least one selected from the group consisting of Ga, Ti, Ge, Al, Mg, In, and Sn is dissolved in an amount of 2 wt% or more. It is a main constituent phase, and the other constituent phases are a ZnO phase in which at least one of the above is not dissolved, and an intermediate compound phase represented by ZnGa 2 O 4 (spinel phase). In such a GZO target to which a third element such as Al is added, abnormal discharge can be reduced, but it cannot be completely eliminated. If abnormal discharge occurs even once in the continuous film formation line, the product at the time of film formation becomes a defective product, which affects the manufacturing yield.
 本出願人は、この問題点を解決するために、酸化亜鉛を主成分とし、さらに添加元素のアルミニウムとガリウムを含有する酸化物焼結体において、アルミニウムとガリウムの含有量を最適化するとともに、焼成中に生成される結晶相の種類と組成、特にスピネル結晶相の組成を最適に制御することで、スパッタリング装置で連続長時間成膜を行ってもパーティクルが生じにくく、高い直流電力投入下でも異常放電が全く生じないターゲット用酸化物焼結体を提案した(特許文献2参照)。 In order to solve this problem, the present applicant optimizes the content of aluminum and gallium in an oxide sintered body containing zinc oxide as a main component and further containing aluminum and gallium as additive elements. By optimally controlling the type and composition of the crystalline phase produced during firing, especially the composition of the spinel crystalline phase, particles are unlikely to form even when film formation is continued for a long time with a sputtering device, even under high DC power input. A target oxide sintered body that does not cause any abnormal discharge has been proposed (see Patent Document 2).
 このような酸化亜鉛系焼結体を用いれば、従来よりも低抵抗で高透過性の高品質な透明導電膜の成膜が可能となる。ここで本出願人は、酸化インジウム系透明導電膜上に、上記組成のスパッタリングターゲットを用いて酸化亜鉛系透明導電膜を形成することによって、スパッタリング法のみで高速成膜により得られる、且つ高ヘイズ率及び高導電性を兼ね備えた透明導電膜を提案した(特許文献3参照)。 By using such a zinc oxide-based sintered body, it becomes possible to form a high-quality transparent conductive film having a lower resistance and higher permeability than in the past. Here, the present applicant forms a zinc oxide-based transparent conductive film on the indium oxide-based transparent conductive film using the sputtering target having the above composition, and can be obtained by high-speed film formation only by a sputtering method, and has a high haze. A transparent conductive film having both high efficiency and high conductivity has been proposed (see Patent Document 3).
 この製造方法を用いれば従来の方法と比較して、スパッタリング法のみのプロセスにより生産性、ひいては得られる膜の面内均一性で改善が可能であり、高変換効率の太陽電池製造に適用できる。しかし、この方法において得られる透明導電膜も、非特許文献1と同様に高ガス圧下で成膜される凹凸性の膜であることから、膜最表面の凹凸間に空隙が存在しており、この透明導電膜上にCVD法で形成するSi層への欠陥発生を誘発する可能性から、歩留まり低下を招くという課題があった。透明性といった電極の品質や、量産性を損なうことなく、より高い変換効率を実現する太陽電池に適用可能な透明導電膜が必要とされている。 If this manufacturing method is used, the productivity can be improved by the process of only the sputtering method as compared with the conventional method, and the in-plane uniformity of the obtained film can be improved, and it can be applied to the manufacture of a solar cell with high conversion efficiency. However, since the transparent conductive film obtained by this method is also an uneven film formed under high gas pressure as in Non-Patent Document 1, there are voids between the unevenness on the outermost surface of the film, There is a problem in that the yield is reduced because of the possibility of inducing defects in the Si layer formed on the transparent conductive film by the CVD method. There is a need for a transparent conductive film applicable to solar cells that achieve higher conversion efficiency without impairing electrode quality such as transparency and mass productivity.
特開平10-306367号公報Japanese Patent Laid-Open No. 10-306367 特開2008-110911号公報JP 2008-110911 A 国際公開第2010/104111号公報International Publication No. 2010/104111
 本発明は、上述のような状況に鑑み、高効率のシリコン系薄膜太陽電池を製造する際に有用な、量産性で有利なスパッタリング法のみによって得られ、且つ最表面組織の複雑な空隙が無いため太陽電池製造の歩留まり低下防止が可能で、またSi層とのコンタクト性が改善され、且つ光閉じ込め効果に優れた透明導電膜積層体及びその製造方法、並びに薄膜太陽電池及びその製造方法を提供することを目的とする。 In view of the situation as described above, the present invention is obtained only by a mass-productive and advantageous sputtering method that is useful in manufacturing a high-efficiency silicon-based thin film solar cell, and has no complicated voids in the outermost surface structure. Therefore, it is possible to prevent a decrease in the yield of solar cell manufacturing, improve the contactability with the Si layer, and provide a transparent conductive film laminate excellent in light confinement effect, a manufacturing method thereof, and a thin film solar cell and a manufacturing method thereof The purpose is to do.
 本発明者らは、かかる従来技術の問題を解決するために、鋭意研究を重ね、薄膜太陽電池の表面透明電極用となる透明導電膜として種々の透明導電膜材料を検討した結果、酸化インジウム系透明導電膜(I)を下地として、その上に大きな結晶粒で構成された酸化亜鉛系透明導電膜(II)が形成され、さらに酸化物系透明導電膜(III)が積層された構造の透明導電膜積層体が、薄膜系太陽電池の表面電極としてSi発電層の欠陥発生を防ぎ、Si層とのコンタクト性が改善され、且つ光閉じ込め効果にも優れた構造となることを見出し、本発明を完成するに至った。 In order to solve the problems of the prior art, the present inventors have conducted intensive research and studied various transparent conductive film materials as transparent conductive films for surface transparent electrodes of thin film solar cells. Transparent structure in which a transparent conductive film (I) is used as a base, a zinc oxide-based transparent conductive film (II) composed of large crystal grains is formed thereon, and an oxide-based transparent conductive film (III) is further laminated It has been found that the conductive film laminate prevents the generation of defects in the Si power generation layer as the surface electrode of the thin-film solar cell, improves the contact property with the Si layer, and has an excellent light confinement effect. It came to complete.
 すなわち、本発明に係る透明導電膜積層体は、透光性基板上に形成された膜厚が50nm以上600nm以下である酸化インジウム系透明導電膜(I)と、上記酸化インジウム系透明導電膜(I)上に形成された膜厚が200nm以上1000nm以下である酸化亜鉛系透明導電膜(II)と、上記酸化亜鉛系透明導電膜(II)上に形成された膜厚が5nm以上200nm以下である酸化物系透明導電膜(III)とを備えることを特徴とする。 That is, the transparent conductive film laminate according to the present invention includes an indium oxide-based transparent conductive film (I) having a thickness of 50 nm to 600 nm formed on a light-transmitting substrate, and the indium oxide-based transparent conductive film ( I) The zinc oxide-based transparent conductive film (II) formed on the zinc oxide-based transparent conductive film (II) having a thickness of 200 nm to 1,000 nm and the film thickness formed on the zinc oxide-based transparent conductive film (II) of 5 nm to 200 nm And a certain oxide-based transparent conductive film (III).
 また、本発明に係る透明導電膜積層体の製造方法は、透光性基板上に膜厚が50nm以上600nm以下である酸化インジウム系透明導電膜(I)をスパッタリング法により成膜する第1の成膜工程と、上記酸化インジウム系透明導電膜(I)上に、スパッタリング法により膜厚が200nm以上1000nm以下である酸化亜鉛系透明導電膜(II)を成膜する第2の成膜工程と、上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が5nm以上200nm以下である酸化物系透明導電膜(III)を成膜する第3の成膜工程とを有することを特徴とする。 Moreover, the manufacturing method of the transparent conductive film laminated body which concerns on this invention forms the indium oxide type transparent conductive film (I) whose film thickness is 50 nm or more and 600 nm or less on a translucent substrate by sputtering method. A film-forming step, and a second film-forming step of forming a zinc oxide-based transparent conductive film (II) having a thickness of 200 nm or more and 1000 nm or less on the indium oxide-based transparent conductive film (I) by sputtering. And a third film-forming step of forming an oxide-based transparent conductive film (III) having a thickness of 5 nm to 200 nm on the zinc oxide-based transparent conductive film (II) by a sputtering method. Features.
 また、本発明に係る薄膜太陽電池は、透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とが順に形成された薄膜太陽電池において、上記透明導電膜積層体は、上記透光性基板上に形成された膜厚が50nm以上600nm以下である酸化インジウム系透明導電膜(I)と、上記酸化インジウム系透明導電膜(I)上に形成された膜厚が200nm以上1000nm以下である酸化亜鉛系透明導電膜(II)と、上記酸化亜鉛系透明導電膜(II)上に形成された膜厚が5nm以上200nm以下である酸化物系透明導電膜(III)とを備えることを特徴とする。 Moreover, the thin film solar cell according to the present invention is the thin film solar cell in which a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are sequentially formed on a translucent substrate. The body is formed of the indium oxide-based transparent conductive film (I) having a thickness of 50 nm or more and 600 nm or less formed on the translucent substrate, and the thickness of the indium oxide-based transparent conductive film (I). Zinc oxide-based transparent conductive film (II) having a thickness of 200 nm to 1000 nm and an oxide-based transparent conductive film (III) having a thickness of 5 nm to 200 nm formed on the zinc oxide-based transparent conductive film (II) ).
 また、本発明に係る薄膜太陽電池の製造方法は、透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とを順に形成する薄膜太陽電池の製造方法において、上記透光性基板上に膜厚が50nm以上600nm以下である酸化インジウム系透明導電膜(I)をスパッタリング法により成膜する第1の成膜工程と、上記酸化インジウム系透明導電膜(I)上に、スパッタリング法により膜厚が200nm以上1000nm以下である酸化亜鉛系透明導電膜(II)を成膜する第2の成膜工程と、上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が5nm以上200nm以下である酸化物系透明導電膜(III)を成膜する第3の成膜工程とを有することを特徴とする。 Moreover, the manufacturing method of the thin film solar cell which concerns on this invention is a manufacturing method of the thin film solar cell which forms a transparent conductive film laminated body, a photoelectric converting layer unit, and a back surface electrode layer in order on a translucent board | substrate, A first film forming step of forming an indium oxide-based transparent conductive film (I) having a thickness of 50 nm to 600 nm on the light-transmitting substrate by a sputtering method; and the indium oxide-based transparent conductive film (I) A second film forming step of forming a zinc oxide-based transparent conductive film (II) having a film thickness of 200 nm or more and 1000 nm or less by sputtering, and sputtering on the zinc oxide-based transparent conductive film (II) And a third film formation step of forming an oxide-based transparent conductive film (III) having a film thickness of 5 nm to 200 nm by a method.
 本発明によれば、酸化インジウム系透明導電膜(I)の上に、膜厚が200nm以上1000nm以下である酸化亜鉛系透明導電膜(II)、及び膜厚が5nm以上200nm以下である透明導電膜(III)を積層することで、最表面の凹凸間空隙が無く、ヘイズ率が8%以上、且つ表面抵抗が25Ω/□以下の膜特性が得られ、太陽電池の発電層であるSi層の欠陥発生防止に有効で、光閉じ込め効果にも優れた透明導電膜積層体を提供することができる。 According to the present invention, on the indium oxide-based transparent conductive film (I), the zinc oxide-based transparent conductive film (II) having a thickness of 200 nm to 1000 nm and the transparent conductive having a thickness of 5 nm to 200 nm. By laminating the film (III), there is no space between the irregularities on the outermost surface, a film characteristic with a haze ratio of 8% or more and a surface resistance of 25Ω / □ or less is obtained, and an Si layer that is a power generation layer of a solar cell Therefore, it is possible to provide a transparent conductive film laminate that is effective in preventing the occurrence of defects and has an excellent light confinement effect.
 また、本発明に係る透明導電膜積層体は、スパッタリング法のみで製造することができるため、薄膜太陽電池の表面透明電極用として導電性等に優れているだけでなく、従来の熱CVD法による透明導電膜と比較してコスト削減が可能となる。したがって、高効率のシリコン系薄膜太陽電池を簡単なプロセスで安価に提供することができるため工業的に極めて有用である。 Moreover, since the transparent conductive film laminate according to the present invention can be produced only by a sputtering method, it is not only excellent in conductivity and the like for a surface transparent electrode of a thin film solar cell, but also by a conventional thermal CVD method. Cost reduction is possible compared to a transparent conductive film. Therefore, since a highly efficient silicon-based thin film solar cell can be provided at a low cost by a simple process, it is extremely useful industrially.
図1は、酸化亜鉛系透明導電膜(II)におけるアルミニウムとガリウムとの含有量の関係を示すグラフである。FIG. 1 is a graph showing the relationship between the contents of aluminum and gallium in the zinc oxide-based transparent conductive film (II). 図2は、光電変換ユニットとして非晶質シリコン薄膜を用いた薄膜太陽電池の構成例を示す断面図である。FIG. 2 is a cross-sectional view illustrating a configuration example of a thin film solar cell using an amorphous silicon thin film as a photoelectric conversion unit. 図3は、光電変換ユニットとして非晶質シリコン薄膜と結晶質シリコン薄膜を積層したハイブリッド薄膜太陽電池の構成例を示す断面図である。FIG. 3 is a cross-sectional view showing a configuration example of a hybrid thin film solar cell in which an amorphous silicon thin film and a crystalline silicon thin film are stacked as a photoelectric conversion unit. 図4は、透明導電性薄膜膜の表面SEM写真である。FIG. 4 is a surface SEM photograph of the transparent conductive thin film.
 以下、本発明の実施の形態(以下、「本実施の形態」という)について、図面を参照しながら下記順序にて詳細に説明する。
 1.透明導電膜積層体
  1-1.酸化インジウム系透明導電膜(I)
  1-2.酸化亜鉛系透明導電膜(II)
  1-3.酸化物系透明導電膜(III)
  1-4.透明導電膜積層体の特性
 2.透明導電膜積層体の製造方法
  2-1.酸化インジウム系透明導電膜(I)の成膜
  2-2.酸化亜鉛系透明導電膜(II)の成膜
  2-3.酸化物系透明導電膜(III)の成膜
 3.薄膜太陽電池及びその製造方法
Hereinafter, embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail in the following order with reference to the drawings.
1. 1. Transparent conductive film laminate 1-1. Indium oxide-based transparent conductive film (I)
1-2. Zinc oxide based transparent conductive film (II)
1-3. Oxide-based transparent conductive film (III)
1-4. 1. Properties of transparent conductive film laminate 2. Method for producing transparent conductive film laminate 2-1. Film formation of indium oxide based transparent conductive film (I) 2-2. Formation of zinc oxide based transparent conductive film (II) 2-3. 2. Formation of oxide-based transparent conductive film (III) Thin film solar cell and manufacturing method thereof
 <1.透明導電膜積層体>
 本実施の形態に係る透明導電膜積層体は、透光性基板上に形成された酸化インジウム系透明導電膜(I)を下地として、その上に、凹凸性に優れた酸化亜鉛系透明導電膜(II)、次いで酸化物系透明導電膜(III)が順次形成された三層積層構造を有する。この積層構造を採用することにより、高いヘイズ率を有し、いわゆる光閉じ込め効果が優れており、かつ低抵抗である。加えて、薄膜系太陽電池の光電変換層であるSi層の欠陥を防止できることから、薄膜太陽電池用の表面電極材料として非常に有用である。さらに、本実施の形態に係る透明導電膜積層体は、スパッタリング法のみで製造することができ、高い生産性を有する。
<1. Transparent conductive film laminate>
The transparent conductive film laminate according to the present embodiment is based on an indium oxide-based transparent conductive film (I) formed on a light-transmitting substrate, and a zinc oxide-based transparent conductive film excellent in unevenness thereon. (II) and then a three-layer laminated structure in which an oxide-based transparent conductive film (III) is sequentially formed. By adopting this laminated structure, the haze ratio is high, the so-called light confinement effect is excellent, and the resistance is low. In addition, since defects in the Si layer, which is a photoelectric conversion layer of the thin film solar cell, can be prevented, it is very useful as a surface electrode material for a thin film solar cell. Furthermore, the transparent conductive film laminate according to the present embodiment can be manufactured only by the sputtering method and has high productivity.
 <1-1.酸化インジウム系透明導電膜(I)>
 透光性基板上に形成された酸化インジウム系透明導電膜(I)の膜厚は、50nm以上600nm以下である。酸化インジウム系透明導電膜(I)の膜厚が50nm以上600nm以下範囲にあることにより、良好な透過率、ヘイズ率、及び表面抵抗を得ることができる。より好ましい酸化インジウム系透明導電膜(I)の膜厚は、300nm以上500nm以下である。
<1-1. Indium oxide-based transparent conductive film (I)>
The film thickness of the indium oxide-based transparent conductive film (I) formed on the translucent substrate is 50 nm or more and 600 nm or less. When the film thickness of the indium oxide-based transparent conductive film (I) is in the range of 50 nm or more and 600 nm or less, good transmittance, haze ratio, and surface resistance can be obtained. A more preferable film thickness of the indium oxide-based transparent conductive film (I) is 300 nm or more and 500 nm or less.
 また、酸化インジウム系透明導電膜(I)は、酸化インジウムを主成分としてSn、Ti、W、Mo、Zr、Ce又はGaから選ばれる1種以上の金属元素を含有した結晶膜である。酸化インジウムにSn、Ti、W、Mo、Zr、Ce又はGaの添加元素が含まれた結晶膜は、導電性に優れるため有用である。特に、Ti、W、Mo、Zr、Ce又はGaの元素が含まれると、移動度の高い膜が得られる。よって、キャリア濃度を増加させずに低抵抗となるため、可視域~近赤外域での透過率の高い低抵抗膜が実現できる。 The indium oxide-based transparent conductive film (I) is a crystal film containing indium oxide as a main component and one or more metal elements selected from Sn, Ti, W, Mo, Zr, Ce, or Ga. A crystal film in which an additive element of Sn, Ti, W, Mo, Zr, Ce, or Ga is contained in indium oxide is useful because of its excellent conductivity. In particular, when an element of Ti, W, Mo, Zr, Ce, or Ga is included, a film with high mobility can be obtained. Therefore, since the resistance is reduced without increasing the carrier concentration, a low resistance film having a high transmittance in the visible region to the near infrared region can be realized.
 また、酸化インジウム系透明導電膜(I)が酸化インジウムを主成分としてSnを含有する場合は、その含有割合がSn/(In+Sn)原子数比で15原子%以下であることが好ましい。また、Tiを含有する場合は、その含有割合がTi/(In+Ti)原子数比で5.5原子%以下であることが好ましい。また、Wを含有する場合は、その含有割合がW/(In+W)原子数比で4.3原子%以下であることが好ましい。また、Zrを含有する場合は、その含有割合がZr/(In+Zr)原子数比で6.5原子%以下であることが好ましい。また、Moを含有する場合は、その含有割合がMo/(In+Mo)原子数比で6.7原子%以下であることが好ましい。また、Ceを含有する場合は、その含有割合がCe/(In+Ce)原子数比で6.5原子%以下であることが好ましい。また、Gaを含有する場合は、その含有割合がGa/(In+Ga)原子数比で6.5原子%以下であることが好ましい。この範囲を超えて多く含有されると、高抵抗となるため有用でない。 Further, when the indium oxide-based transparent conductive film (I) contains Sn containing indium oxide as a main component, the content ratio is preferably 15 atomic% or less in terms of the Sn / (In + Sn) atomic ratio. Moreover, when it contains Ti, it is preferable that the content rate is 5.5 atomic% or less in Ti / (In + Ti) atomic ratio. Moreover, when it contains W, it is preferable that the content rate is 4.3 atomic% or less in W / (In + W) atomic ratio. Moreover, when it contains Zr, it is preferable that the content rate is 6.5 atomic% or less by Zr / (In + Zr) atomic ratio. Moreover, when it contains Mo, it is preferable that the content rate is 6.7 atomic% or less by Mo / (In + Mo) atomic number ratio. Moreover, when it contains Ce, it is preferable that the content rate is 6.5 atomic% or less by Ce / (In + Ce) atomic ratio. Moreover, when it contains Ga, it is preferable that the content rate is 6.5 atomic% or less by Ga / (In + Ga) atomic ratio. If the content exceeds this range, the resistance becomes high, which is not useful.
 このような酸化インジウム系透明導電膜(I)の中でも、本実施の形態では、Snをドーパントとして含むITO膜、Tiをドーパントとして含むITiO膜が好適に用いられる。 Among such indium oxide based transparent conductive films (I), an ITO film containing Sn as a dopant and an ITiO film containing Ti as a dopant are preferably used in the present embodiment.
 <1-2.酸化亜鉛系透明導電膜(II)>
 酸化亜鉛系透明導電膜(II)の膜厚は、200nm以上1000nm以下である。膜厚が200nm未満であると、高いヘイズ率を得るのが困難となり、膜厚が1000nmを超えると、ヘイズ率等の特性は維持できるものの透過性及び生産性の点で不利となる。また、本提案の製法を用いれば1000nm以下の膜厚で十分なヘイズ率が得られることから、1000nm以下を採用する。より好ましい酸化亜鉛系透明導電膜(II)の膜厚は、300nm以上600nm以下である。
<1-2. Zinc Oxide Transparent Conductive Film (II)>
The film thickness of the zinc oxide-based transparent conductive film (II) is 200 nm or more and 1000 nm or less. When the film thickness is less than 200 nm, it is difficult to obtain a high haze ratio. When the film thickness exceeds 1000 nm, characteristics such as the haze ratio can be maintained, but it is disadvantageous in terms of permeability and productivity. In addition, if the proposed manufacturing method is used, a sufficient haze ratio can be obtained with a film thickness of 1000 nm or less. A more preferable film thickness of the zinc oxide-based transparent conductive film (II) is 300 nm or more and 600 nm or less.
 また、酸化亜鉛系透明導電膜(II)は、添加元素を含まなくてもよいが、酸化物膜に導電性を付与する目的で、アルミニウム、ガリウムなどの添加元素を含んでいてもよい。 The zinc oxide-based transparent conductive film (II) may not contain an additive element, but may contain an additive element such as aluminum or gallium for the purpose of imparting conductivity to the oxide film.
 具体的には、図1に示すように、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素が含まれる場合、アルミニウムの含有量とガリウムの含有量が下記の式(1)で示される範囲内にあることが好ましい。
 [Al]≦[Ga]≦―2.68×[Al]+1.74 ・・・(1)
(但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。また、[Al]≧0、[Ga]≧0である。)
Specifically, as shown in FIG. 1, when zinc oxide is a main component and one or more additive metal elements selected from aluminum or gallium are included, the aluminum content and the gallium content are expressed by the following formulas: It is preferable that it exists in the range shown by (1).
[Al] ≦ [Ga] ≦ −2.68 × [Al] +1.74 (1)
(However, [Al] is the aluminum content expressed by the atomic ratio (%) of Al / (Zn + Al), while [Ga] is expressed by the atomic ratio (%) of Ga / (Zn + Ga). (Al) ≧ Al and [Ga] ≧ 0.)
 酸化亜鉛系透明導電膜(II)中のアルミニウム及びガリウムの含有量が式(1)で規定される範囲より多くなると、表面凹凸が大きくてヘイズ率の高い透明導電膜をスパッタリング法で高速に製造すること困難となる。 When the content of aluminum and gallium in the zinc oxide-based transparent conductive film (II) exceeds the range defined by the formula (1), a transparent conductive film with large surface irregularities and a high haze ratio is produced at high speed by the sputtering method. It becomes difficult to do.
 本実施の形態における酸化亜鉛系透明導電膜(II)は、国際公開第2010/104111号に開示された酸化亜鉛系透明導電膜とは異なり、添加元素を含まない場合も包含する。添加元素を含まない場合は、導電性が不十分になることも懸念されるが、下地膜として酸化インジウム系透明導電膜(I)が存在することと、酸化亜鉛系透明導電膜(II)とSi層との間に下記酸化物系透明導電膜(III)を積層することで、透明導電膜積層体とSi層との電気的なコンタクト性が改善されるため、有用となる。 Unlike the zinc oxide-based transparent conductive film disclosed in International Publication No. 2010/104111, the zinc oxide-based transparent conductive film (II) in the present embodiment includes a case where no additive element is included. When the additive element is not included, there is a concern that the conductivity may be insufficient, but the presence of the indium oxide-based transparent conductive film (I) as a base film, and the zinc oxide-based transparent conductive film (II) By laminating the following oxide-based transparent conductive film (III) between the Si layer and the Si layer, the electrical contact property between the transparent conductive film laminate and the Si layer is improved, which is useful.
 なお、酸化亜鉛系透明導電膜(II)には、亜鉛、アルミニウム、ガリウム及び酸素以外に、他の元素(例えば、インジウム、チタン、ゲルマニウム、シリコン、タングステン、モリブデン、イリジウム、ルテニウム、レニウム、セリウム、マグネシウム、珪素、フッ素など)が、本発明の目的を損なわない範囲で含まれていてもかまわない。 In addition to zinc, aluminum, gallium and oxygen, the zinc oxide based transparent conductive film (II) includes other elements (for example, indium, titanium, germanium, silicon, tungsten, molybdenum, iridium, ruthenium, rhenium, cerium, (Magnesium, silicon, fluorine, etc.) may be contained as long as the object of the present invention is not impaired.
 <1-3.酸化物透明導電膜(III)>
 酸化物系透明導電膜(III)の膜厚は、5nm以上200nm以下である。膜厚が5nm未満であると、酸化亜鉛系透明導電膜(II)に対する表面被覆が不十分となる事態が発生し、その上に形成されるSi層の欠陥の発生を防ぐことができない。一方、膜厚が200nmを超えると、透過性の低下のみならず、凹凸性が損なわれることからヘイズ率の低下及び生産性の低下を招いてしまう。
<1-3. Oxide transparent conductive film (III)>
The film thickness of the oxide-based transparent conductive film (III) is 5 nm or more and 200 nm or less. When the film thickness is less than 5 nm, a situation occurs in which the surface coating on the zinc oxide-based transparent conductive film (II) becomes insufficient, and the generation of defects in the Si layer formed thereon cannot be prevented. On the other hand, if the film thickness exceeds 200 nm, not only the permeability is lowered but also the unevenness is impaired, leading to a reduction in haze rate and a reduction in productivity.
 また、酸化物系透明導電膜(III)は、金属酸化物であり、Mg、Al、Si、Ti、Zn、Ga、In、Sn、W、Ceから選ばれる1種以上の元素を含有することが好ましい。これにより、酸化物系透明導電膜(III)は、Si光電変換層との接触層として、正孔を取り出す電極として機能することができ、高仕事関数(φ=4.5eV~5.5eV)が得られる。また、この場合でも、膜厚が5nm未満であると、安定して高い仕事関数が得られない。 The oxide-based transparent conductive film (III) is a metal oxide and contains one or more elements selected from Mg, Al, Si, Ti, Zn, Ga, In, Sn, W, and Ce. Is preferred. Thus, the oxide-based transparent conductive film (III) can function as an electrode for extracting holes as a contact layer with the Si photoelectric conversion layer, and has a high work function (φ = 4.5 eV to 5.5 eV). Is obtained. Even in this case, if the film thickness is less than 5 nm, a stable high work function cannot be obtained.
 ここで、酸化物系透明導電膜(III)の組成については上記元素の組み合わせであれば配合比も限定されない。仕事関数を含め透明性、導電性の観点からInやZnOを主体とする透明導電性酸化物が好ましい。 Here, the composition of the oxide-based transparent conductive film (III) is not limited as long as it is a combination of the above elements. A transparent conductive oxide mainly composed of In 2 O 3 or ZnO is preferable from the viewpoint of transparency and conductivity including work function.
 酸化物系透明導電膜(III)の具体例としては、例えば、ガリウム/アルミニウムドープ酸化亜鉛(GAZO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、マグネシウムドープ酸化亜鉛(ZMgO)、シリコンドープ酸化亜鉛(SZO)、スズドープ酸化亜鉛(ZTO)、チタン/スズドープ酸化インジウム(ITiTO)、ガリウムドープ酸化インジウム(IGO)、セリウムドープ酸化インジウム(ICO)、タングステンドープ酸化インジウム(IWO)などが挙げられる。 Specific examples of the oxide-based transparent conductive film (III) include, for example, gallium / aluminum-doped zinc oxide (GAZO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and magnesium-doped zinc oxide (ZMgO). Silicon doped zinc oxide (SZO), tin doped zinc oxide (ZTO), titanium / tin doped indium oxide (ITiTO), gallium doped indium oxide (IGO), cerium doped indium oxide (ICO), tungsten doped indium oxide (IWO), etc. Can be mentioned.
 一般的にIn系酸化物は、耐水素プラズマ性が懸念されるが、本提案で規定している200nm以下の膜厚であれば、水素プラズマの影響も非常に小さく、表面電極として使用しても問題ないレベルである。また、特に、本発明者の知見において、Gaを添加したインジウム酸化物は、フッ素ドープ酸化スズ(FTO)と比較して水素プラズマによる透過率の低下が小さいという結果も得られている。 In general, In 2 O 3 oxides are concerned about hydrogen plasma resistance, but if the film thickness is 200 nm or less as defined in this proposal, the influence of hydrogen plasma is very small, and the surface electrode It is a level that is safe to use. In particular, according to the knowledge of the present inventors, indium oxide added with Ga has a result that the decrease in transmittance due to hydrogen plasma is smaller than that of fluorine-doped tin oxide (FTO).
 ただし、酸化物系透明導電膜(III)の膜厚を10nm以下の薄膜とする場合、酸化物系透明導電膜(III)は、耐水素プラズマ性の観点から、酸化亜鉛を主成分とし、Mg、Al、Si、Ga、Sn、Wをから選ばれる1種以上の元素を含有することが好ましい。 However, when the oxide-based transparent conductive film (III) is a thin film having a thickness of 10 nm or less, the oxide-based transparent conductive film (III) is mainly composed of zinc oxide and Mg in view of hydrogen plasma resistance. It is preferable to contain one or more elements selected from Al, Si, Ga, Sn, and W.
 <1-4.透明導電膜積層体の特性>
 本実施の形態に係る透明導電膜積層体において、その膜厚は、酸化インジウム系透明導電膜(I)が、50nm以上600nm以下であり、酸化亜鉛系透明導電膜(II)が200nm以上1000nm以下である。より好ましい酸化インジウム系透明導電膜(I)の膜厚は、300nm以上500n以下であり、酸化亜鉛系透明導電膜(II)の膜厚は、300nm以上600nm以下である。
<1-4. Characteristics of transparent conductive film laminate>
In the transparent conductive film laminate according to the present embodiment, the film thickness of the indium oxide-based transparent conductive film (I) is 50 nm to 600 nm and the thickness of the zinc oxide-based transparent conductive film (II) is 200 nm to 1000 nm. It is. The film thickness of the indium oxide-based transparent conductive film (I) is more preferably 300 nm to 500 n, and the film thickness of the zinc oxide-based transparent conductive film (II) is 300 nm to 600 nm.
 また、酸化物系透明導電膜(III)の厚さは、5nm以上200nm以下である。酸化物系透明導電膜(III)の厚さが5nm未満となると、酸化亜鉛系透明導電膜(II)の表面を完全に覆うことが困難となり、Si層の欠陥発生を防ぐことができない。また、酸化物系透明導電膜(III)の厚さが200nmを超えると、生産性の低下及び特性の劣化を招くおそれがある。 The thickness of the oxide-based transparent conductive film (III) is 5 nm or more and 200 nm or less. When the thickness of the oxide-based transparent conductive film (III) is less than 5 nm, it becomes difficult to completely cover the surface of the zinc oxide-based transparent conductive film (II), and the generation of defects in the Si layer cannot be prevented. On the other hand, when the thickness of the oxide-based transparent conductive film (III) exceeds 200 nm, there is a possibility that the productivity is lowered and the characteristics are deteriorated.
 酸化インジウム系透明導電膜(I)、酸化亜鉛系透明導電膜(II)、及び酸化物系透明導電膜(III)の総膜厚は、上述した膜厚を満足すれば特に制限されるわけではなく、材料の組成などに応じて355nm以上1800nm以下、特に600nm以上1500nm以下であることが好ましい。 The total film thickness of the indium oxide-based transparent conductive film (I), the zinc oxide-based transparent conductive film (II), and the oxide-based transparent conductive film (III) is not particularly limited as long as the above-described film thickness is satisfied. However, it is preferably from 355 nm to 1800 nm, particularly from 600 nm to 1500 nm, depending on the composition of the material.
 また、最表面である酸化物系透明導電膜(III)の仕事関数は、4.5eV以上であることが好ましい。仕事関数が4.5eV未満の場合は、特にp型Si層から正孔を取り出す電極としての役割を機能させることができず、結果として変換効率の低下を招く。十分な正孔の取り出しを果たすために、透明導電膜積層体の最表面では仕事関数が4.5eV以上であることが必要であり、5.0eV以上であることがより好ましい。 Further, the work function of the oxide-based transparent conductive film (III) which is the outermost surface is preferably 4.5 eV or more. When the work function is less than 4.5 eV, the role as an electrode for extracting holes from the p-type Si layer cannot be functioned, and as a result, the conversion efficiency is lowered. In order to achieve sufficient extraction of holes, the work function needs to be 4.5 eV or more on the outermost surface of the transparent conductive film laminate, and more preferably 5.0 eV or more.
 また、酸化物系透明導電膜(III)の表面抵抗は、25Ω/□以下であることが好ましい。表面抵抗が25Ω/□を超えると、太陽電池の表面電極に利用したときに、表面電極での電力損失が大きくなり、高効率の太陽電池を実現することができない。本実施の形態に係る透明導電膜積層体は、上述のような積層構造であるため、表面抵抗を25Ω/□以下とすることができる。本実施の形態に係る透明導電膜積層体の表面抵抗は、好ましくは20Ω/□以下、より好ましくは13Ω/□以下、さらに好ましくは10Ω/□以下、最も好ましくは8Ω/□以下である。 The surface resistance of the oxide-based transparent conductive film (III) is preferably 25Ω / □ or less. When the surface resistance exceeds 25Ω / □, when used as a surface electrode of a solar cell, power loss at the surface electrode increases, and a highly efficient solar cell cannot be realized. Since the transparent conductive film laminate according to the present embodiment has the laminated structure as described above, the surface resistance can be 25 Ω / □ or less. The surface resistance of the transparent conductive film laminate according to the present embodiment is preferably 20Ω / □ or less, more preferably 13Ω / □ or less, still more preferably 10Ω / □ or less, and most preferably 8Ω / □ or less.
 酸化物系透明導電膜(III)の表面抵抗は、低いほど表面電極部での電力損失が小さいため、大きなセル面積でも高効率の太陽電池を実現できるので好ましい。逆に表面電極の表面抵抗が高いと、太陽電池のセルが大きい場合、表面電極での電力損失が無視できないレベルに大きくなるため、セル面積を小さくして、抵抗の低い金属配線で多くの小型セルを配線して面積を増加させる必要がある。 The lower the surface resistance of the oxide-based transparent conductive film (III), the smaller the power loss at the surface electrode portion, so that a highly efficient solar cell can be realized even with a large cell area. Conversely, if the surface resistance of the surface electrode is high, the power loss at the surface electrode increases to a level that cannot be ignored if the cell of the solar battery is large. It is necessary to increase the area by wiring the cells.
 表面抵抗が25Ω/□以下であれば、少なくとも5cm□の太陽電池セルを実現でき、20Ω/□以下であれば、少なくとも8cm□の太陽電池セルを実現できる。さらに、13Ω/□以下であれば、少なくとも15cm□のセルを実現でき、10Ω/□以下であれば、少なくとも17cm□のセルを実現でき、8Ω/□以下であれば少なくとも、20cm□のセルを実現できる。 If the surface resistance is 25Ω / □ or less, a solar cell of at least 5 cm □ can be realized, and if it is 20Ω / □ or less, a solar cell of at least 8 cm □ can be realized. Furthermore, if it is 13Ω / □ or less, a cell of at least 15cm □ can be realized, if it is 10Ω / □ or less, a cell of at least 17cm □ can be realized, and if it is 8Ω / □ or less, a cell of at least 20cm □ can be realized. realizable.
 セル面積が大きい太陽電池は、金属配線によって接続する必要がないため、セルの間隔を小さくすることができる。したがって、セルを接続してモジュールを作製すると、一つのモジュールの単位面積当たり発電量が大きくなるだけでなく、セルの面積当たりの製造コストも削減することができる。また、上述のように表面抵抗を低くすることにより、表面電極での電力損失の影響を無視することが可能となる。 Since solar cells with a large cell area do not need to be connected by metal wiring, the cell spacing can be reduced. Therefore, when cells are connected to produce a module, not only the amount of power generation per unit area of one module is increased, but also the manufacturing cost per area of the cell can be reduced. Further, by reducing the surface resistance as described above, it becomes possible to ignore the influence of the power loss at the surface electrode.
 また、酸化物系透明導電膜(III)の表面のヘイズ率は、8%以上であることが好ましく、より好ましくは12%以上、さらに好ましくは16%以上であり、最も好ましくは20%以上である。シングル構造の標準的な薄膜シリコン系太陽電池セルにおいて、変換効率10%以上を実現するためには、ヘイズ率12%以上が必要不可欠である。また、同様の評価で、変換効率12%以上を実現するためには、ヘイズ率16%以上の表面電極を用いることが有効である。本実施の形態に係る透明導電膜積層体は、下地に酸化インジウム系透明導電膜(I)を挿入していることに加え、上述した酸化亜鉛系透明導電膜(II)及び酸化物透明導電膜(III)を積層していることにより、高いヘイズ率を実現することができる。 The haze ratio of the surface of the oxide-based transparent conductive film (III) is preferably 8% or more, more preferably 12% or more, still more preferably 16% or more, and most preferably 20% or more. is there. In a standard thin film silicon solar cell having a single structure, a haze ratio of 12% or more is indispensable in order to achieve a conversion efficiency of 10% or more. In order to realize a conversion efficiency of 12% or more in the same evaluation, it is effective to use a surface electrode having a haze ratio of 16% or more. The transparent conductive film laminate according to the present embodiment includes the above-described zinc oxide-based transparent conductive film (II) and oxide transparent conductive film in addition to the indium oxide-based transparent conductive film (I) inserted in the base. By laminating (III), a high haze ratio can be realized.
 以上説明したように、本実施の形態に係る透明導電膜積層体は、光閉じ込め効果にも優れるだけでなく、酸化物系透明導電膜(III)が膜表面組織の凹凸間空隙を改善し、Si層の欠陥発生を防ぐことができる。また、酸化物透明導電膜(III)の表面において4.5eV以上の高い仕事関数を有しているため、電極として円滑にSi層から正孔を取り出すことが可能となる。 As described above, the transparent conductive film laminate according to the present embodiment is not only excellent in the light confinement effect, but also the oxide-based transparent conductive film (III) improves the voids between the irregularities of the film surface structure, Generation of defects in the Si layer can be prevented. Moreover, since it has a high work function of 4.5 eV or more on the surface of the oxide transparent conductive film (III), it becomes possible to smoothly extract holes from the Si layer as an electrode.
 また、本実施の形態に係る透明導電膜積層体は、特にSi層の欠陥や正孔輸送といった観点からコンタクト抵抗を低減し、かつ高いヘイズ率及び優れた導電性を有しており、波長380nm以上1200nm以下の可視光線から近赤外線までを含む太陽光の光エネルギーを極めて有効に電気エネルギーに変換することができる。したがって、高効率太陽電池の表面電極用途として非常に有用である。 In addition, the transparent conductive film laminate according to the present embodiment has a low haze ratio and excellent conductivity, particularly from the viewpoint of defects in the Si layer and hole transport, and has a wavelength of 380 nm. The light energy of sunlight including from the visible light of 1200 nm or less to the near infrared can be converted into electrical energy very effectively. Therefore, it is very useful as a surface electrode application of a high efficiency solar cell.
 <2.透明導電膜積層体の製造方法>
 本実施の形態に係る透明導電膜積層体の製造方法は、透光性基板上に膜厚が50nm以上600nm以下である酸化インジウム系透明導電膜(I)をスパッタリング法により成膜する第1の成膜工程と、酸化インジウム系透明導電膜(I)上に、スパッタリング法により膜厚が200nm以上1000nm以下である酸化亜鉛系透明導電膜(II)を成膜する第2の成膜工程と、酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が5nm以上200nm以下である酸化物系透明導電膜(III)を成膜する第3の成膜工程とを有するものである。
<2. Manufacturing method of transparent conductive film laminate>
The manufacturing method of the transparent conductive film laminate according to the present embodiment is a first method in which an indium oxide-based transparent conductive film (I) having a thickness of 50 nm to 600 nm is formed on a light-transmitting substrate by a sputtering method. A film-forming step, and a second film-forming step of forming a zinc oxide-based transparent conductive film (II) having a thickness of 200 nm or more and 1000 nm or less on the indium oxide-based transparent conductive film (I) by a sputtering method; And a third film-forming step of forming an oxide-based transparent conductive film (III) having a thickness of 5 nm to 200 nm on the zinc oxide-based transparent conductive film (II) by a sputtering method.
 このように成膜することにより、高いヘイズ率を有し、いわゆる光閉じ込め効果が優れており、かつ低抵抗であり、加えて、薄膜系太陽電池の光電変換層であるSi層の欠陥を防止できる透明導電膜積層体を得ることができる。さらに、スパッタリング法のみで透明導電膜積層体を製造することができるため、高い生産性を有する。 By forming a film in this way, it has a high haze ratio, an excellent so-called light confinement effect and low resistance, and in addition, it prevents defects in the Si layer that is a photoelectric conversion layer of a thin film solar cell. A transparent conductive film laminate can be obtained. Furthermore, since a transparent conductive film laminated body can be manufactured only by sputtering method, it has high productivity.
 以下、各透明導電膜の成膜方法について詳細に説明する。 Hereinafter, a method for forming each transparent conductive film will be described in detail.
 <2-1.酸化インジウム系透明導電膜(I)の成膜>
 先ず、透光性基板上に膜厚が50nm以上600nm以下である酸化インジウム系透明導電膜(I)をスパッタリング法により成膜する。酸化インジウム系透明導電膜(I)の成膜には、Sn、Ti、W、Mo、Zr、Ce又はGaから選ばれる1種以上の金属元素を含有した酸化インジウムを主成分とする酸化物焼結体ターゲットが用いられる。なお、酸化物焼結体ターゲットを用いてスパッタ法で酸化物膜を得ると、揮発性物質を含まない限り、酸化物膜の組成はターゲットと同等である。
<2-1. Formation of Indium Oxide-Based Transparent Conductive Film (I)>
First, an indium oxide-based transparent conductive film (I) having a thickness of 50 nm to 600 nm is formed on a light-transmitting substrate by a sputtering method. For the formation of the indium oxide-based transparent conductive film (I), an oxide firing mainly composed of indium oxide containing one or more metal elements selected from Sn, Ti, W, Mo, Zr, Ce, or Ga is used. A ligation target is used. Note that when an oxide film is obtained by sputtering using an oxide sintered body target, the composition of the oxide film is the same as that of the target unless a volatile substance is contained.
 このような酸化物焼結体ターゲットの中でも、Snを含有し、その含有割合がSn/(In+Sn)原子数比で15原子%以下であるものや、Tiを含有し、その含有割合がTi/(In+Ti)原子数比で5.5原子%以下であるものが好適に用いられる。 Among such oxide sintered compact targets, Sn is contained, and the content ratio is 15 atomic% or less in terms of the Sn / (In + Sn) atomic ratio, or Ti is contained, and the content ratio is Ti / Those having an atomic ratio of (In + Ti) of 5.5 atomic% or less are preferably used.
 この酸化インジウム系透明導電膜(I)の形成方法には、基板を加熱せずに非晶質膜を形成した後に、加熱処理して結晶化する第1の方法と、基板を加熱して結晶質膜を形成する第2の方法を用いることができる。 The indium oxide-based transparent conductive film (I) is formed by a first method in which an amorphous film is formed without heating the substrate and then crystallized by heat treatment, and a crystal is formed by heating the substrate. A second method of forming a material film can be used.
 第1の方法では、基板温度100℃以下、スパッタリングガス圧0.1以上1.0Pa未満の条件で、非晶質膜を形成した後に、引き続き、200℃以上600℃以下に加熱処理して、非晶質膜が結晶化され、酸化インジウム系透明導電膜が形成される。また、第2の方法では、基板温度200℃以上600℃以下、スパッタリングガス圧0.1Pa以上1.0Pa未満の条件で、酸化インジウム系透明導電膜が結晶膜として形成される。 In the first method, after forming an amorphous film under the conditions of a substrate temperature of 100 ° C. or less and a sputtering gas pressure of 0.1 or more and less than 1.0 Pa, heat treatment is subsequently performed to 200 ° C. or more and 600 ° C. or less, The amorphous film is crystallized to form an indium oxide-based transparent conductive film. In the second method, the indium oxide-based transparent conductive film is formed as a crystal film under conditions of a substrate temperature of 200 ° C. or more and 600 ° C. or less and a sputtering gas pressure of 0.1 Pa or more and less than 1.0 Pa.
 本実施の形態においては、基板を加熱せずに非晶質膜を形成した後に、加熱処理して結晶化する第1の方法を用いることが好ましい。これは、第1の方法のほうが、基板を加熱して結晶質膜を形成する第2の方法よりもヘイズ率がより大きな膜が得られるためである。 In the present embodiment, it is preferable to use the first method in which an amorphous film is formed without heating the substrate and then crystallized by heat treatment. This is because the first method provides a film having a larger haze ratio than the second method in which the crystalline film is formed by heating the substrate.
 <2-2.酸化亜鉛系透明導電膜(II)の成膜>
 次に、酸化インジウム系透明導電膜(I)上に、スパッタリング法により膜厚が200nm以上1000nm以下である酸化亜鉛系透明導電膜(II)を成膜する。酸化亜鉛系透明導電膜(II)の成膜には、酸化亜鉛を主成分とする酸化物焼結体ターゲットが用いられる。なお、酸化物焼結体ターゲットを用いてスパッタ法で酸化物膜を得ると、揮発性物質を含まない限り、酸化物膜の組成はターゲットと同等である。
<2-2. Formation of Zinc Oxide Transparent Conductive Film (II)>
Next, a zinc oxide-based transparent conductive film (II) having a film thickness of 200 nm or more and 1000 nm or less is formed on the indium oxide-based transparent conductive film (I) by a sputtering method. For the film formation of the zinc oxide-based transparent conductive film (II), an oxide sintered body target containing zinc oxide as a main component is used. Note that when an oxide film is obtained by sputtering using an oxide sintered body target, the composition of the oxide film is the same as that of the target unless a volatile substance is contained.
 酸化亜鉛系透明導電膜(II)を形成するための酸化物焼結体ターゲットは、添加元素を含まなくてもよいが、酸化物膜に導電性を付与する目的で、アルミニウム、ガリウムなどの添加元素を含んでいてもよい。 The oxide sintered compact target for forming the zinc oxide-based transparent conductive film (II) may not contain an additive element, but for the purpose of imparting conductivity to the oxide film, addition of aluminum, gallium or the like It may contain an element.
 具体的には、図1に示すように酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素が含まれる場合、アルミニウムの含有量とガリウムの含有量が下記の式(1)で示される範囲内にあることが好ましい。
 [Al]≦[Ga]≦―2.68×[Al]+1.74 ・・・(1)
(但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、一方、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。また、[Al]≧0、[Ga]≧0である。)
Specifically, as shown in FIG. 1, when zinc oxide is the main component and one or more additive metal elements selected from aluminum or gallium are included, the aluminum content and the gallium content are expressed by the following formula ( It is preferable that it exists in the range shown by 1).
[Al] ≦ [Ga] ≦ −2.68 × [Al] +1.74 (1)
(However, [Al] is the aluminum content expressed by the atomic ratio (%) of Al / (Zn + Al), while [Ga] is expressed by the atomic ratio (%) of Ga / (Zn + Ga). (Al) ≧ Al and [Ga] ≧ 0.)
 酸化亜鉛系透明導電膜(II)を形成するためのスパッタリングターゲット中のアルミニウム及びガリウムの含有量が式(1)で規定される範囲より多くなると、表面凹凸が大きくてヘイズ率の高い透明導電膜をスパッタリング法で高速に製造すること困難となる。 When the content of aluminum and gallium in the sputtering target for forming the zinc oxide-based transparent conductive film (II) exceeds the range defined by the formula (1), the transparent conductive film having large surface irregularities and high haze ratio It is difficult to manufacture the film at a high speed by the sputtering method.
 本実施の形態では、スパッタリングガス圧が1.0Pa以上15.0Pa以下の条件で酸化亜鉛系透明導電膜(II)を成膜することが好ましい。スパッタリングガス圧が1.0Pa未満の場合、表面凹凸の大きい膜が得られ難く、Ra値が35.0nm以上の膜が得られなくなってしまう。一方、15.0Paを超えると成膜速度が遅くなってしまい好ましくない。例えば、静止対向成膜において、ターゲットへの直流投入電力密度が1.66W/cm以上の高い電力を投入して40nm/min以上の成膜速度を得るためには、スパッタリングガス圧を15.0Pa以下とする必要がある。 In the present embodiment, it is preferable to form the zinc oxide-based transparent conductive film (II) under a condition where the sputtering gas pressure is 1.0 Pa or more and 15.0 Pa or less. When the sputtering gas pressure is less than 1.0 Pa, it is difficult to obtain a film having large surface irregularities, and a film having an Ra value of 35.0 nm or more cannot be obtained. On the other hand, if it exceeds 15.0 Pa, the film formation rate is slow, which is not preferable. For example, in static facing film formation, in order to obtain a film formation rate of 40 nm / min or more by applying high power with a DC input power density of 1.66 W / cm 2 or more to the target, the sputtering gas pressure is 15. It is necessary to make it 0 Pa or less.
 また、酸化亜鉛系透明導電膜(II)の成膜時において、ヘイズ率を高めるために有効な水素ガスを導入してもよい。この際、導入する水素の混合割合(モル比)については、特に限定されないが、割合が多くなるほどヘイズ率が高くなる一方、多すぎると透過率が低下する。したがって、導入する水素の混合割合は、透過率の低下を考慮し、H/(Ar+H)≦0.43とすることがより好ましい。 Moreover, you may introduce | transduce hydrogen gas effective in order to raise a haze rate at the time of film-forming of a zinc oxide type transparent conductive film (II). At this time, the mixing ratio (molar ratio) of hydrogen to be introduced is not particularly limited, but the haze ratio increases as the ratio increases, whereas the transmission ratio decreases as the ratio increases. Therefore, the mixing ratio of hydrogen to be introduced is more preferably set to H 2 / (Ar + H 2 ) ≦ 0.43 in consideration of a decrease in transmittance.
 また、酸化亜鉛系透明導電膜(II)の成膜時において、基板温度は、200℃以上600℃以下とすることが好ましい。これにより、透明導電膜の結晶性が良くなり、キャリア電子の移動度が増大し、優れた導電性を実現することができる。基板温度が200℃未満であると、膜の粒子の成長が劣るためRa値の大きな膜を得ることができない。また、基板温度が600℃を超えると、加熱に要する電力量が多くなり製造コストが増加するなどの問題が生じるだけでなく、基板としてガラス基板を用いた場合にはその軟化点を超えてしまい、ガラスが劣化してしまうなどの問題も生じるため好ましくない。 In addition, the substrate temperature is preferably set to 200 ° C. or more and 600 ° C. or less when forming the zinc oxide-based transparent conductive film (II). Thereby, the crystallinity of the transparent conductive film is improved, the mobility of carrier electrons is increased, and excellent conductivity can be realized. When the substrate temperature is less than 200 ° C., the growth of film particles is inferior, so that a film having a large Ra value cannot be obtained. In addition, when the substrate temperature exceeds 600 ° C., not only does the problem arise such that the amount of electric power required for heating increases and the manufacturing cost increases, but when the glass substrate is used as the substrate, the softening point is exceeded. This is not preferable because problems such as deterioration of the glass also occur.
 透明導電膜の成膜において、スパッタリングターゲットへの投入電力を増大させると、成膜速度が増加し、膜の生産性が向上する。ターゲットへの投入電力を2.76W/cm以上に増加させてスパッタリング成膜を行うと、例えば、静止対向成膜において90nm/min以上の成膜速度が実現でき、表面凹凸が大きくて高ヘイズ率の酸化亜鉛系透明導電膜を得ることができる。また、ターゲット上を基板が通過しながら成膜する通過型成膜(搬送成膜)においても、例えば同様の投入電力密度において成膜した5.1nm・m/min(搬送速度(m/min)で割ると、得られる膜厚(nm)が算出される)の高速搬送成膜においても表面凹凸性が優れて、ヘイズ率の高い酸化亜鉛系透明導電膜を得ることができる。なお、この場合の成膜速度は、本発明の目的を達成できれば特に制限されない。 In the film formation of the transparent conductive film, when the input power to the sputtering target is increased, the film formation rate is increased and the productivity of the film is improved. When sputtering film formation is performed by increasing the input power to the target to 2.76 W / cm 2 or more, for example, a film formation speed of 90 nm / min or more can be realized in static facing film formation, surface irregularities are large, and high haze is achieved. A zinc oxide-based transparent conductive film can be obtained. Also, in the pass-type film formation (transfer film formation) in which the substrate is passed over the target, for example, the film was formed at a similar input power density of 5.1 nm · m / min (transfer speed (m / min)). In the high-speed transport film formation of the obtained film thickness (nm), it is possible to obtain a zinc oxide-based transparent conductive film having excellent surface irregularity and a high haze ratio. In addition, the film-forming speed | rate in this case will not be restrict | limited especially if the objective of this invention can be achieved.
 本実施の形態では、上述した条件で成膜することによって、ターゲットへの投入電力密度を2.760W/cm以上に増加させた高速成膜を試みても、ヘイズ率が8%以上、表面抵抗が25Ω/□以下の表面凹凸性を有する透明導電膜積層体を製造することができる。 In this embodiment, even if high-speed film formation is attempted by increasing the input power density to the target to 2.760 W / cm 2 or more by forming the film under the above-described conditions, the haze ratio is 8% or more, A transparent conductive film laminate having a surface irregularity having a resistance of 25Ω / □ or less can be produced.
 <2-3.酸化物系透明導電膜(III)の成膜>
 次に、酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が5nm以上200nm以下である酸化物系透明導電膜(III)を成膜する。酸化物透明導電膜(III)の成膜には、金属酸化物であり、Mg、Al、Si、Ti、Zn、Ga、In、Sn、W、Ceから選ばれる1種以上の元素を含有する酸化物焼結体ターゲットが用いられる。なお、酸化物焼結体ターゲットを用いてスパッタ法で酸化物膜を得ると、揮発性物質を含まない限り、酸化物膜の組成はターゲットと同等である。
<2-3. Formation of oxide-based transparent conductive film (III)>
Next, an oxide-based transparent conductive film (III) having a thickness of 5 nm to 200 nm is formed on the zinc oxide-based transparent conductive film (II) by a sputtering method. The film formation of the oxide transparent conductive film (III) is a metal oxide and contains one or more elements selected from Mg, Al, Si, Ti, Zn, Ga, In, Sn, W, and Ce. An oxide sintered compact target is used. Note that when an oxide film is obtained by sputtering using an oxide sintered body target, the composition of the oxide film is the same as that of the target unless a volatile substance is contained.
 酸化物系透明導電膜(III)を形成するためのスパッタリングターゲットとしては、ガリウム/アルミニウムドープ酸化亜鉛(GAZO)、アルミニウムドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)、マグネシウムドープ酸化亜鉛(ZMgO)、シリコンドープ酸化亜鉛(SZO)、スズドープ酸化亜鉛(ZTO)、チタン/スズドープ酸化インジウム(ITiTO)、ガリウムドープ酸化インジウム(IGO)、セリウムドープ酸化インジウム(ICO)、タングステンドープ酸化インジウム(IWO)などが挙げられる。 Sputtering targets for forming the oxide-based transparent conductive film (III) include gallium / aluminum-doped zinc oxide (GAZO), aluminum-doped zinc oxide (AZO), gallium-doped zinc oxide (GZO), and magnesium-doped zinc oxide ( ZMgO), silicon-doped zinc oxide (SZO), tin-doped zinc oxide (ZTO), titanium / tin-doped indium oxide (ITiTO), gallium-doped indium oxide (IGO), cerium-doped indium oxide (ICO), tungsten-doped indium oxide (IWO) Etc.
 また、酸化物系透明導電膜(III)の膜厚を10nm以下の薄膜とする場合、酸化物系透明導電膜(III)を形成するためのスパッタリングターゲットは、耐水素プラズマ性の観点から、酸化亜鉛を主成分とし、Mg、Al、Si、Ga、Sn、Wをから選ばれる1種以上の元素を含有することが好ましい。 Moreover, when the film thickness of the oxide-based transparent conductive film (III) is a thin film of 10 nm or less, the sputtering target for forming the oxide-based transparent conductive film (III) is oxidized from the viewpoint of hydrogen plasma resistance. It is preferable that zinc is a main component and contains one or more elements selected from Mg, Al, Si, Ga, Sn, and W.
 この酸化物透明導電膜(III)の成膜には、基板を加熱せずに非晶質膜を形成する第1の方法と、基板を加熱せずに非晶質膜を形成した後に、加熱処理して結晶化する第2の方法と、基板を加熱して結晶質膜を形成する第3の方法を用いることができる。 The film formation of the oxide transparent conductive film (III) includes a first method of forming an amorphous film without heating the substrate, and heating after forming the amorphous film without heating the substrate. A second method of crystallizing by treatment and a third method of forming a crystalline film by heating the substrate can be used.
 第1の方法では、基板温度100℃以下、スパッタリングガス圧0.1以上1.0Pa未満の条件で、非晶質膜を形成する。第2の方法では、第1の方法で非晶質膜を形成した後に、引き続き、200℃以上600℃以下に加熱処理して、非晶質膜が結晶化され、酸化物透明導電膜が形成される。また、第3の方法では、基板温度200℃以上600℃以下、スパッタリングガス圧0.1Pa以上1.0Pa未満の条件で、酸化物系透明導電膜が結晶膜として形成される。本製法では、第1から第3の方法全てを用いることが可能であるが、Si層を積層する際に200℃以上の温度で加熱されることを想定すると、結晶化により化合物層を安定させておく第2または第3の方法が好ましい。 In the first method, an amorphous film is formed under conditions of a substrate temperature of 100 ° C. or lower and a sputtering gas pressure of 0.1 or higher and lower than 1.0 Pa. In the second method, after the amorphous film is formed by the first method, the amorphous film is crystallized by subsequently performing heat treatment at 200 ° C. or more and 600 ° C. or less to form an oxide transparent conductive film. Is done. In the third method, the oxide-based transparent conductive film is formed as a crystal film under conditions of a substrate temperature of 200 ° C. or more and 600 ° C. or less and a sputtering gas pressure of 0.1 Pa or more and less than 1.0 Pa. In this manufacturing method, it is possible to use all of the first to third methods. However, assuming that the Si layer is heated at a temperature of 200 ° C. or higher, the compound layer is stabilized by crystallization. The second or third method is preferred.
 さらに、この酸化物透明導電膜(III)を形成した後では、得られた透明導電膜積層体の表面を、UV/オゾン洗浄やプラズマ処理などを用いて表面洗浄処理しても良い。これにより、透明導電膜積層体表面に残存している汚染成分を取り除くことで仕事関数が向上する。 Furthermore, after the formation of the oxide transparent conductive film (III), the surface of the obtained transparent conductive film laminate may be subjected to a surface cleaning treatment using UV / ozone cleaning, plasma processing, or the like. Thereby, a work function improves by removing the contaminating component which remains on the transparent conductive film laminated body surface.
 以上説明したように、本実施の形態に係る透明導電膜積層体の製造方法によれば、膜厚が5nm以上200nm以下である酸化物系透明導電膜(III)を成膜することにより、光閉じ込め効果にも優れるだけでなく膜表面組織の凹凸間空隙を改善し、Si層の欠陥発生を防ぐことができる透明導電膜積層体を得ることができる。 As described above, according to the method for manufacturing the transparent conductive film laminate according to the present embodiment, the oxide-based transparent conductive film (III) having a film thickness of 5 nm to 200 nm is formed, thereby forming the light In addition to being excellent in the confinement effect, it is possible to obtain a transparent conductive film laminate that can improve the voids between the irregularities of the film surface structure and prevent the generation of defects in the Si layer.
 また、スパッタリング法のみで透明導電膜積層体を製造することができるため、薄膜太陽電池の表面透明電極用として導電性等に優れているだけでなく、従来の熱CVD法による透明導電膜と比較してコスト削減が可能となる。したがって、高効率のシリコン系薄膜太陽電池を簡単なプロセスで安価に提供することができるため工業的に極めて有用である。 In addition, since a transparent conductive film laminate can be produced only by sputtering, it is not only excellent in conductivity etc. for the surface transparent electrode of thin film solar cells, but also compared with conventional conductive films using thermal CVD. Cost reduction is possible. Therefore, since a highly efficient silicon-based thin film solar cell can be provided at a low cost by a simple process, it is extremely useful industrially.
 <3.薄膜太陽電池及びその製造方法>
 本実施の形態に係る薄膜太陽電池は、透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とが順に形成されている。
<3. Thin Film Solar Cell and Manufacturing Method Thereof>
In the thin film solar cell according to the present embodiment, a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are sequentially formed on a translucent substrate.
 本実施の形態に係る薄膜太陽電池は、上述した透明導電膜積層体を電極として用いていることを特徴とする光電変換素子である。太陽電池素子の構造は特に限定されず、p型半導体とn型半導体を積層したPN接合型、p型半導体とn型半導体の間に絶縁層(I層)を介在させたPIN接合型等が挙げられる。 The thin film solar cell according to the present embodiment is a photoelectric conversion element using the above-described transparent conductive film laminate as an electrode. The structure of the solar cell element is not particularly limited, and includes a PN junction type in which a p-type semiconductor and an n-type semiconductor are stacked, a PIN junction type in which an insulating layer (I layer) is interposed between the p-type semiconductor and the n-type semiconductor, and the like. Can be mentioned.
 薄膜太陽電池は、半導体の種類によって大別され、微結晶シリコン又は/及びアモルファスシリコン等のシリコン系半導体薄膜を光電変換素子として用いたシリコン系太陽電池、CuInSe系やCu(In,Ga)Se系、Ag(In,Ga)Se系、CuInS系、Cu(In,Ga)S系、Ag(In,Ga)S系やこれらの固溶体、GaAs系、CdTe系等で代表される化合物半導体の薄膜を光電変換素子として用いた化合物薄膜系太陽電池、及び、有機色素を用いた色素増感型太陽電池(グレッツェルセル型太陽電池とも呼ばれる)に分類されるが、本実施の形態に係る太陽電池は、何れの場合も含まれ、上述した透明導電膜積層体を電極として用いることで高効率を実現できる。特に、シリコン系太陽電池や化合物薄膜系太陽電池では、太陽光が入射する側(受光部側、表側)の電極には透明導電膜が必要不可欠であり、本実施の形態に係る透明導電膜積層体を用いることで高い変換効率の特性を発揮することができる。 Thin film solar cells are roughly classified according to the type of semiconductor. Silicon solar cells using a silicon-based semiconductor thin film such as microcrystalline silicon and / or amorphous silicon as a photoelectric conversion element, CuInSe-based or Cu (In, Ga) Se-based , Ag (In, Ga) Se, CuInS, Cu (In, Ga) S, Ag (In, Ga) S and their solid solutions, GaAs, CdTe, and other compound semiconductor thin films Although it is classified into a compound thin film solar cell used as a photoelectric conversion element, and a dye-sensitized solar cell using an organic dye (also referred to as a Gretzel cell solar cell), the solar cell according to the present embodiment is In any case, high efficiency can be realized by using the above-described transparent conductive film laminate as an electrode. In particular, in a silicon-based solar cell and a compound thin-film solar cell, a transparent conductive film is indispensable for an electrode on which sunlight is incident (light receiving unit side, front side), and the transparent conductive film lamination according to the present embodiment By using the body, high conversion efficiency characteristics can be exhibited.
 光電変換ユニットにおけるp型やn型の導電型半導体層は、光電変換ユニット内に内部電界を生じさせる役目を果たしている。この内部電界の大きさによって、薄膜太陽電池の重要な特性の1つである開放電圧(Voc)の値が左右される。i型層は、実質的に真性の半導体層であって光電変換ユニットの厚さの大部分を占めている。光電変換作用は、主としてこのi型層内で生じる。そのため、i型層は、通常i型光電変換層又は単に光電変換層と呼ばれる。光電変換層は、真性半導体層に限らず、ドープされた不純物(ドーパント)によって吸収される光の損失が問題にならない範囲で、微量にp型又はn型にドープされた層であってもよい。 The p-type and n-type conductive semiconductor layers in the photoelectric conversion unit serve to generate an internal electric field in the photoelectric conversion unit. The value of the open circuit voltage (Voc), which is one of the important characteristics of the thin film solar cell, depends on the magnitude of the internal electric field. The i-type layer is a substantially intrinsic semiconductor layer and occupies most of the thickness of the photoelectric conversion unit. The photoelectric conversion action mainly occurs in this i-type layer. Therefore, the i-type layer is usually called an i-type photoelectric conversion layer or simply a photoelectric conversion layer. The photoelectric conversion layer is not limited to an intrinsic semiconductor layer, and may be a layer doped with a small amount of p-type or n-type as long as loss of light absorbed by a doped impurity (dopant) does not become a problem. .
 図2は、シリコン系非晶質薄膜太陽電池の構造の一例を示す図である。シリコン系薄膜を光電変換ユニット(光吸収層)に用いたシリコン系薄膜太陽電池には、非晶質薄膜太陽電池の他に、微結晶質薄膜太陽電池や結晶質薄膜太陽電池のほか、これらを積層したハイブリッド薄膜太陽電池も実用化されている。なお、前記の通り、光電変換ユニット又は薄膜太陽電池において、その主要部を占める光電変換層が非晶質のものは、非晶質ユニット又は非晶質薄膜太陽電池と称されている。また、光電変換層が結晶質のものは、結晶質ユニット又は結晶質薄膜太陽電池と称されている。さらに、光電変換層が微結晶質のものは、微結晶質ユニット又は結晶質薄膜太陽電池と称されている。 FIG. 2 is a diagram showing an example of the structure of a silicon-based amorphous thin film solar cell. In addition to amorphous thin film solar cells, silicon thin film solar cells that use silicon thin films for photoelectric conversion units (light absorption layers) include microcrystalline thin film solar cells and crystalline thin film solar cells. Laminated hybrid thin film solar cells have also been put into practical use. In addition, as above-mentioned, in the photoelectric conversion unit or thin film solar cell, when the photoelectric conversion layer which occupies the principal part is amorphous, it is called the amorphous unit or the amorphous thin film solar cell. A crystalline photoelectric conversion layer is called a crystalline unit or a crystalline thin film solar cell. Furthermore, the one having a microcrystalline photoelectric conversion layer is referred to as a microcrystalline unit or a crystalline thin film solar cell.
 このような薄膜太陽電池の変換効率を向上させる方法として、2以上の光電変換ユニットを積層してタンデム型太陽電池にする方法がある。例えば、この方法においては、薄膜太陽電池の光入射側に大きなバンドギャップを有する光電変換層を含む前方ユニットを配置し、その後方に順に小さなバンドギャップを有する光電変換層を含む後方ユニットを配置する。これにより、入射光の広い波長範囲にわたって光電変換を可能にし、太陽電池全体としての変換効率の向上を図ることができる。このタンデム型太陽電池の中でも、特に非晶質光電変換ユニットと、結晶質或いは微結晶質光電変換ユニットを積層したものはハイブリッド薄膜太陽電池と称される。 As a method for improving the conversion efficiency of such a thin film solar cell, there is a method of stacking two or more photoelectric conversion units into a tandem solar cell. For example, in this method, a front unit including a photoelectric conversion layer having a large band gap is disposed on the light incident side of the thin film solar cell, and a rear unit including a photoelectric conversion layer having a small band gap is sequentially disposed behind the front unit. . Thereby, photoelectric conversion is enabled over the wide wavelength range of incident light, and the conversion efficiency as the whole solar cell can be improved. Among these tandem solar cells, those in which an amorphous photoelectric conversion unit and a crystalline or microcrystalline photoelectric conversion unit are stacked are called hybrid thin film solar cells.
 図3は、ハイブリッド薄膜太陽電池の構造の一例を示す図である。ハイブリッド薄膜太陽電池において、例えば、i型非晶質シリコンが光電変換し得る光の波長域は長波長側では800nm程度までであるが、i型結晶質或いは微結晶質シリコンは、それより長い約1150nm程度の波長までの光を光電変換することができる。 FIG. 3 is a diagram showing an example of the structure of a hybrid thin film solar cell. In a hybrid thin-film solar cell, for example, the wavelength range of light that can be photoelectrically converted by i-type amorphous silicon is up to about 800 nm on the long wavelength side, but i-type crystalline or microcrystalline silicon is longer than that. Light up to a wavelength of about 1150 nm can be photoelectrically converted.
 次に、図2、3を用いて、本実施の形態に係る薄膜太陽電池の構成について、より具体的に説明する。図2、3において、透光性基板1上に、上述した酸化インジウム系透明導電膜(I)である透明導電膜21と、酸化亜鉛系透明導電膜(II)である透明導電膜22と、酸化物透明導電膜(III)である透明導電膜23とからなる透明導電膜積層体2が形成されている。 Next, the configuration of the thin-film solar cell according to the present embodiment will be described more specifically with reference to FIGS. 2 and 3, on the translucent substrate 1, the transparent conductive film 21 which is the above-described indium oxide-based transparent conductive film (I), the transparent conductive film 22 which is the zinc oxide-based transparent conductive film (II), The transparent conductive film laminated body 2 which consists of the transparent conductive film 23 which is an oxide transparent conductive film (III) is formed.
 透光性基板1としては、ガラス、透明樹脂等から成る板状部材やシート状部材が用いられる。透明導電膜積層体2上には、非晶質光電変換ユニット3が形成されている。非晶質光電変換ユニット3は、非晶質p型シリコンカーバイド層31と、ノンドープ非晶質i型シリコン光電変換層32と、n型シリコン系界面層33とから構成されている。非晶質p型シリコンカーバイド層31は、透明導電膜積層体2の還元による透過率低下を防止するため、基板温度180℃以下で形成されている。 As the translucent substrate 1, a plate-like member or a sheet-like member made of glass, transparent resin or the like is used. An amorphous photoelectric conversion unit 3 is formed on the transparent conductive film laminate 2. The amorphous photoelectric conversion unit 3 includes an amorphous p-type silicon carbide layer 31, a non-doped amorphous i-type silicon photoelectric conversion layer 32, and an n-type silicon-based interface layer 33. The amorphous p-type silicon carbide layer 31 is formed at a substrate temperature of 180 ° C. or lower in order to prevent a decrease in transmittance due to reduction of the transparent conductive film stack 2.
 図3に示すハイブリッド薄膜太陽電池おいては、非晶質光電変換ユニット3の上に結晶質光電変換ユニット4が形成されている。結晶質光電変換ユニット4は、結晶質p型シリコン層41と、結晶質i型シリコン光電変換層42と、結晶質n型シリコン層43とから構成されている。非晶質光電変換ユニット3及び結晶質光電変換ユニット4(以下、この両方のユニットをまとめて単に「光電変換ユニット」と称する)の形成には、高周波プラズマCVD法が適している。光電変換ユニットの形成条件としては、基板温度100℃以上250℃以下(ただし、非晶質p型シリコンカーバイド層31は、180℃以下)、圧力30Pa以上1500Pa以下、高周波パワー密度0.01W/cm以上0.5W/cm以下が好ましく用いられる。光電変換ユニット形成に使用する原料ガスとしては、SiH、Si等のシリコン含有ガス、又は、それらのガスとHを混合したものが用いられる。光電変換ユニットにおけるp型又はn型層を形成するためのドーパントガスとしては、B又はPH等が好ましく用いられる。 In the hybrid thin film solar cell shown in FIG. 3, the crystalline photoelectric conversion unit 4 is formed on the amorphous photoelectric conversion unit 3. The crystalline photoelectric conversion unit 4 includes a crystalline p-type silicon layer 41, a crystalline i-type silicon photoelectric conversion layer 42, and a crystalline n-type silicon layer 43. A high frequency plasma CVD method is suitable for forming the amorphous photoelectric conversion unit 3 and the crystalline photoelectric conversion unit 4 (hereinafter, both units are simply referred to as “photoelectric conversion unit”). As conditions for forming the photoelectric conversion unit, the substrate temperature is 100 ° C. or higher and 250 ° C. or lower (however, the amorphous p-type silicon carbide layer 31 is 180 ° C. or lower), the pressure is 30 Pa or higher and 1500 Pa or lower, and the high frequency power density is 0.01 W / cm. 2 or more and 0.5 W / cm 2 or less are preferably used. As a raw material gas used for forming the photoelectric conversion unit, a silicon-containing gas such as SiH 4 or Si 2 H 6 or a mixture of these gases and H 2 is used. As a dopant gas for forming the p-type or n-type layer in the photoelectric conversion unit, B 2 H 6 or PH 3 is preferably used.
 図2に示すn型シリコン系界面層33上又は図3に示すn型シリコン系界面層43上には、裏面電極5が形成される。裏面電極5は、透明反射層51と、裏面反射層52とから構成されている。透明反射層51には、ZnO、ITO等の金属酸化物を用いることが好ましい。裏面反射層52には、Ag、Al又はそれらの合金を用いることが好ましい。 The back electrode 5 is formed on the n-type silicon-based interface layer 33 shown in FIG. 2 or on the n-type silicon-based interface layer 43 shown in FIG. The back electrode 5 includes a transparent reflective layer 51 and a back reflective layer 52. The transparent reflective layer 51 is preferably made of a metal oxide such as ZnO or ITO. For the back reflective layer 52, it is preferable to use Ag, Al, or an alloy thereof.
 裏面電極5の形成においては、スパッタリング、蒸着等の方法が好ましく用いられる。裏面電極5は、通常、0.5μm以上5μm以下、好ましくは1μm以上3μm以下の厚さとされる。裏面電極5の形成後、非晶質p型シリコンカーバイド層31の形成温度以上の雰囲気温度で大気圧近傍下に加熱することにより、太陽電池が完成する。加熱雰囲気に用いられる気体としては、大気、窒素、窒素と酸素の混合物等が好ましく用いられる。また、大気圧近傍とは概ね0.5気圧以上1.5気圧以下の範囲を示す。 In forming the back electrode 5, a method such as sputtering or vapor deposition is preferably used. The back electrode 5 has a thickness of usually 0.5 μm to 5 μm, preferably 1 μm to 3 μm. After the back surface electrode 5 is formed, the solar cell is completed by heating to near atmospheric pressure at an atmospheric temperature equal to or higher than the formation temperature of the amorphous p-type silicon carbide layer 31. As the gas used in the heating atmosphere, air, nitrogen, a mixture of nitrogen and oxygen, or the like is preferably used. Moreover, the vicinity of atmospheric pressure generally indicates a range of 0.5 atm or more and 1.5 atm or less.
 以上説明したように、本実施の形態に係る薄膜太陽電池の製造方法によれば、透明導電膜積層体2を電極としたシリコン系薄膜太陽電池を提供することができる。また、本実施の形態に係る薄膜太陽電池の製造方法では、透光性基板上に形成された酸化インジウム系透明導電膜(I)を下地として、その上に、凹凸性に優れた酸化亜鉛系透明導電膜(II)、次いで高仕事関数を有する酸化物透明導電膜(III)が順次形成された三層積層構造を有する透明導電膜積層体とすることにより、高い変換効率を達成し得る薄膜太陽電池の表面透明電極用の透明導電膜を得ることができる。さらに、透明導電膜積層体は、従来の熱CVD法による透明導電膜と比べて安価に提供することができる。本実施の形態に係る薄膜太陽電池の製造方法は、高効率のシリコン系薄膜太陽電池を簡単なプロセスで安価に提供することができるため、工業的に極めて有用である。 As described above, according to the method for manufacturing a thin-film solar cell according to the present embodiment, it is possible to provide a silicon-based thin-film solar cell using the transparent conductive film laminate 2 as an electrode. Moreover, in the manufacturing method of the thin film solar cell according to the present embodiment, the indium oxide-based transparent conductive film (I) formed on the light-transmitting substrate is used as a base, and the zinc oxide-based excellent in unevenness is formed thereon. A thin film capable of achieving high conversion efficiency by forming a transparent conductive film (II) and then a transparent conductive film laminate having a three-layer structure in which an oxide transparent conductive film (III) having a high work function is sequentially formed. A transparent conductive film for a surface transparent electrode of a solar cell can be obtained. Furthermore, the transparent conductive film laminate can be provided at a lower cost than a transparent conductive film formed by a conventional thermal CVD method. The method for manufacturing a thin-film solar cell according to the present embodiment is extremely useful industrially because a highly efficient silicon-based thin-film solar cell can be provided at a low cost by a simple process.
 なお、図3にはハイブリッド薄膜太陽電池の構造を示しているが、光電変換ユニットは必ずしも2つである必要はなく、非晶質又は結晶質のシングル構造、3層以上の積層型太陽電池構造であってもよい。 FIG. 3 shows the structure of the hybrid thin film solar cell. However, the number of photoelectric conversion units is not necessarily two, but an amorphous or crystalline single structure, a stacked solar cell structure having three or more layers. It may be.
 以下、本発明に係る三層積層構造の透明導電膜について、実施例を比較例と対比しながら説明する。なお、本発明は、この実施例によって限定されるものではない。 Hereinafter, examples of the transparent conductive film having a three-layer structure according to the present invention will be described in comparison with comparative examples. In addition, this invention is not limited by this Example.
 [評価]
 (1)膜厚は、以下の手順で測定した。成膜前に基板の一部を予め油性マジックインクを塗布しておき、成膜後にエタノールでマジックをふき取り、膜の無い部分を形成し、膜の有る部分と無い部分の段差を、接触式表面形状測定器(KLA Tencor社製 Alpha-StepIQ)で測定して求めた。
[Evaluation]
(1) The film thickness was measured by the following procedure. Before forming a film, apply a part of the substrate with oil-based magic ink, wipe the magic with ethanol after film formation, and form a film-free part. It was determined by measuring with a shape measuring instrument (Alpha-Step IQ manufactured by KLA Tencor).
 (2)透明導電膜の作製に用いたターゲットは、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析した。 (2) The target used for the production of the transparent conductive film was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000).
 (3)透明導電性薄膜の抵抗値は、抵抗率計ロレスタEP(ダイアインスツルメンツ社製 MCP-T360型)による四探針法で測定した。 (3) The resistance value of the transparent conductive thin film was measured by a four-probe method using a resistivity meter Loresta EP (Dia Instruments MCP-T360 type).
 (4)透明導電膜積層体の波長400-1200nmにおける全光線光透過率を分光光度計(日立製作所社製 U-4000)で測定した。 (4) The total light transmittance at a wavelength of 400 to 1200 nm of the transparent conductive film laminate was measured with a spectrophotometer (U-4000 manufactured by Hitachi, Ltd.).
 (5)膜のヘイズ率は、JIS規格K7136に基づいてヘイズメーター(村上色彩技術研究所社製HM-150)で評価した。 (5) The haze ratio of the film was evaluated with a haze meter (HM-150 manufactured by Murakami Color Research Laboratory Co., Ltd.) based on JIS standard K7136.
 (6)透明導電膜積層体の仕事関数は、大気中光電子分光装置(理研計器製、AC-2)で測定した。 (6) The work function of the transparent conductive film laminate was measured with an atmospheric photoelectron spectrometer (manufactured by Riken Keiki Co., Ltd., AC-2).
 (7)透明導電膜積層体の表面組織は、走査型電子顕微鏡(SEM、Carl Zeiss社製 ULTRA55)により観察を行った。 (7) The surface texture of the transparent conductive film laminate was observed with a scanning electron microscope (SEM, ULTRA55 manufactured by Carl Zeiss).
 (8)透明導電膜積層体へ積層したSi層は、走査型電子顕微鏡(SEM、Carl Zeiss社製 ULTRA55)により断面観察を行い、クラックや剥離等の欠陥が存在しているか否かの判定を行った。具体的には、1枚のサンプルにつき、基板の長さ方向で20mm以上の間隔をあけて、10点の箇所について断面観察を行い、欠陥の有無を判定した。 (8) The Si layer laminated on the transparent conductive film laminate is subjected to cross-sectional observation with a scanning electron microscope (SEM, Carl Zeiss ULTRA55) to determine whether defects such as cracks and peeling exist. went. Specifically, for each sample, cross sections were observed at 10 points at intervals of 20 mm or more in the length direction of the substrate, and the presence or absence of defects was determined.
 [実施例1] GAZO/GAZO/ITiO
 以下の手順で、酸化インジウム系透明導電膜(I)の上に酸化亜鉛系透明導電膜(II)、酸化物系透明導電膜(III)を形成した構造の表面凹凸の大きな透明導電膜積層体をスパッタリング法で作製した。
Example 1 GAZO / GAZO / ITO
Transparent conductive film laminate with a large surface irregularity having a structure in which a zinc oxide-based transparent conductive film (II) and an oxide-based transparent conductive film (III) are formed on an indium oxide-based transparent conductive film (I) by the following procedure Was prepared by sputtering.
 [実施例1:酸化インジウム系透明導電膜(I)の作製]
 最初に、表1に示す条件で透光性基板上に下地となる酸化インジウム系透明導電膜(I)の成膜を行った。下地の酸化インジウム系透明導電膜の作製に用いたターゲット(住友金属鉱山株式会社製)の組成をICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Ti/(In+Ti)で0.50原子%以下であった。また、ターゲットの純度は99.999%であり、大きさは6インチ(Φ)×5mm(厚さ)であった。
[Example 1: Preparation of indium oxide-based transparent conductive film (I)]
First, an indium oxide-based transparent conductive film (I) as a base was formed on a light-transmitting substrate under the conditions shown in Table 1. When the composition of the target (manufactured by Sumitomo Metal Mining Co., Ltd.) used for the production of the underlying indium oxide-based transparent conductive film was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000), Ti / (In + Ti) was 0. .50 atomic% or less. Moreover, the purity of the target was 99.999%, and the size was 6 inches (Φ) × 5 mm (thickness).
 このスパッタリングターゲットを、直流マグネトロンスパッタリング装置(トッキ社製、SPF503K)の強磁性体ターゲット用カソード(ターゲット表面上から1cm離れた位置での水平磁場強度が、最大で約80kA/m(1kG))に取り付け、該スパッタリングターゲットの対向面に、厚み1.1mmのコーニング7059ガラス基板を取り付けた。なお、コーニング7059ガラス基板自体の可視光波長領域での平均光透過率は、92%である。スパッタリングターゲットと基板との距離を50mmとした。 This sputtering target is applied to a cathode for a ferromagnetic target of a DC magnetron sputtering apparatus (SPF503K manufactured by Tokki Co., Ltd.) (maximum horizontal magnetic field strength at a position 1 cm away from the target surface is about 80 kA / m (1 kG)). A Corning 7059 glass substrate having a thickness of 1.1 mm was attached to the opposite surface of the sputtering target. The average light transmittance of the Corning 7059 glass substrate itself in the visible light wavelength region is 92%. The distance between the sputtering target and the substrate was 50 mm.
 チャンバ内の真空度が、2×10-4Pa以下に達した時点で、6vol.%のOガスを混合したArガスをチャンバ内に導入して、ガス圧0.6Paとし、基板を300℃まで加熱してから、直流投入電力300W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=300W÷181cm=1.660W/cm)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、膜厚300nmの酸化インジウム系透明導電膜(I)を基板上に形成した。 When the degree of vacuum in the chamber reaches 2 × 10 −4 Pa or less, 6 vol. Ar gas mixed with 2 % O 2 gas was introduced into the chamber to a gas pressure of 0.6 Pa, the substrate was heated to 300 ° C., and then DC input power 300 W (input power density to target = DC input power) ÷ Target surface area = 300 W ÷ 181 cm 2 = 1.660 W / cm 2 ) was introduced between the target and the substrate to generate DC plasma. After performing pre-sputtering for 10 minutes for cleaning the target surface, sputtering film formation was carried out while the substrate was left stationary immediately above the center of the target, and an indium oxide-based transparent conductive film (I) having a film thickness of 300 nm was formed on the substrate. Formed on top.
 [実施例1:酸化亜鉛系透明導電膜(II)の作製]
 次に、酸化インジウム系透明導電膜(I)上に、アルミニウムとガリウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、表面凹凸の大きい酸化亜鉛系透明導電膜(II)を形成した。ターゲットの組成は、Al/(Zn+Al)で0.30原子%であり、Ga/(Zn+Ga)で0.30原子%であった。
何れのターゲットとも純度は、99.999%であり、ターゲットの大きさは、6インチ(Φ)×5mm(厚さ)であった。
[Example 1: Preparation of zinc oxide-based transparent conductive film (II)]
Next, on the indium oxide-based transparent conductive film (I), a zinc oxide-based sintered body target (manufactured by Sumitomo Metal Mining Co., Ltd.) containing aluminum and gallium as additive elements is used. A transparent conductive film (II) was formed. The composition of the target was 0.30 atomic% for Al / (Zn + Al) and 0.30 atomic% for Ga / (Zn + Ga).
The purity of each target was 99.999%, and the target size was 6 inches (Φ) × 5 mm (thickness).
 酸化亜鉛系透明導電膜(II)の成膜は、チャンバ内を真空引きし、その真空度が2×10-4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧4.0Paとした。基板温度は400℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm=2.210W/cm)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、膜厚400nmの酸化亜鉛系透明導電膜(II)を形成し、透明導電膜積層体を得た。 In forming the zinc oxide-based transparent conductive film (II), the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 × 10 −4 Pa or less, Ar gas having a purity of 99.9999 mass% is placed in the chamber. The gas pressure was 4.0 Pa. The substrate temperature was set to 400 ° C., and DC input power of 400 W (input power density to target = DC input power ÷ target surface area = 400 W ÷ 181 cm 2 = 2.210 W / cm 2 ) was input between the target and the substrate, Plasma was generated. After pre-sputtering for 10 minutes to clean the target surface, sputtering film formation was carried out with the substrate still immediately above the center of the target to form a 400 nm-thick zinc oxide transparent conductive film (II) Then, a transparent conductive film laminate was obtained.
 [実施例1:酸化物系透明導電膜(III)の作製]
 最後に、表1、2に示す条件で酸化亜鉛系透明導電膜(II)の上に、アルミニウムとガリウムを添加元素として含有した酸化亜鉛系焼結体ターゲット(住友金属鉱山株式会社製)を用いて、酸化物系透明導電膜(III)を形成した。ターゲットの組成は、Al/(Zn+Al)で2.00原子%であり、Ga/(Zn+Ga)で2.00原子%であった。何れのターゲットとも純度は、99.999%であり、ターゲットの大きさは、6インチ(Φ)×5mm(厚さ)であった。
[Example 1: Production of oxide-based transparent conductive film (III)]
Finally, a zinc oxide based sintered target (made by Sumitomo Metal Mining Co., Ltd.) containing aluminum and gallium as additive elements was used on the zinc oxide based transparent conductive film (II) under the conditions shown in Tables 1 and 2. Thus, an oxide-based transparent conductive film (III) was formed. The composition of the target was 2.00 atomic% for Al / (Zn + Al) and 2.00 atomic% for Ga / (Zn + Ga). The purity of each target was 99.999%, and the target size was 6 inches (Φ) × 5 mm (thickness).
 透明導電膜(III)の成膜は、チャンバ内を真空引きし、その真空度が2×10-4Pa以下に達した時点で、純度99.9999質量%のArガスをチャンバ内に導入して、ガス圧0.3Paとした。基板温度は300℃とし、直流投入電力400W(ターゲットへの投入電力密度=直流投入電力÷ターゲット表面積=400W÷181cm=2.210W/cm)を、ターゲットと基板の間に投入し、直流プラズマを発生させた。ターゲット表面のクリーニングのため10分間プリスパッタを行った後で、基板をターゲット中心の直上部に静止したまま、スパッタリング成膜を実施し、膜厚50nmの酸化物系透明導電膜(III)を形成し、透明導電膜積層体を得た。 In forming the transparent conductive film (III), the inside of the chamber is evacuated, and when the degree of vacuum reaches 2 × 10 −4 Pa or less, Ar gas having a purity of 99.9999 mass% is introduced into the chamber. The gas pressure was 0.3 Pa. The substrate temperature is set to 300 ° C., and DC input power of 400 W (input power density to target = DC input power ÷ target surface area = 400 W ÷ 181 cm 2 = 2.210 W / cm 2 ) is input between the target and the substrate, Plasma was generated. After pre-sputtering for 10 minutes to clean the target surface, sputtering film formation was performed while the substrate was left just above the center of the target to form an oxide-based transparent conductive film (III) with a film thickness of 50 nm. Then, a transparent conductive film laminate was obtained.
 [比較例1] GAZO/ITiO
 酸化インジウム系透明導電膜(I)及び酸化亜鉛系透明導電膜(II)の作製を行い、酸化物系透明導電膜(III)を形成しなかった以外は、実施例1と同様にして透明導電膜積層体を得た。
[Comparative Example 1] GAZO / ITO
The transparent conductive film was prepared in the same manner as in Example 1 except that the indium oxide-based transparent conductive film (I) and the zinc oxide-based transparent conductive film (II) were prepared and the oxide-based transparent conductive film (III) was not formed. A film laminate was obtained.
 [特性評価:実施例1、比較例1]
 実施例1及び比較例1の透明導電性薄膜積層体の膜厚及び抵抗値を、前記(1)、(3)の方法で測定した。また、透明導電性薄膜積層体の波長400-1200nmにおける全光線光透過率及び膜のヘイズ率を、前記(4)、(5)の方法で測定した。また、得られた透明導電膜積層体最表面の仕事関数を前記(6)の方法で測定した。
[Characteristic Evaluation: Example 1, Comparative Example 1]
The film thickness and resistance value of the transparent conductive thin film laminates of Example 1 and Comparative Example 1 were measured by the methods (1) and (3). Further, the total light transmittance and the haze ratio of the transparent conductive thin film laminate at a wavelength of 400 to 1200 nm were measured by the methods (4) and (5). Moreover, the work function of the obtained transparent conductive film laminated body outermost surface was measured by the method of said (6).
 表3に示すように実施例1の透明導電膜積層体の膜厚は750nmであった。波長400-1200nmにおける全光線透過率は80.8%であり、ヘイズ率も20.3%と高かった。また、表面抵抗は9.9Ω/□であり、高い導電性を示した。また、透明導電膜積層体最表面の仕事関数は4.8eVであり、目標とする高い仕事関数を有し、高ヘイズ率及び低抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。 As shown in Table 3, the film thickness of the transparent conductive film laminate of Example 1 was 750 nm. The total light transmittance at a wavelength of 400 to 1200 nm was 80.8%, and the haze ratio was as high as 20.3%. The surface resistance was 9.9Ω / □, indicating high conductivity. Moreover, the work function of the transparent conductive film laminated body outermost surface is 4.8 eV, and it can obtain the transparent conductive film laminated body which has a target high work function, and has a high haze rate and a low resistance value at high speed. It was confirmed that it was possible.
 また、比較例1の透明導電膜積層体の膜厚は700nmであった。波長400-1200nmにおける全光線透過率は81.0%であり、ヘイズ率は19.6%であった。また、表面抵抗は10.1Ω/□であった。また、透明導電膜積層体最表面の仕事関数は4.7eVであった。 The film thickness of the transparent conductive film laminate of Comparative Example 1 was 700 nm. The total light transmittance at a wavelength of 400 to 1200 nm was 81.0%, and the haze ratio was 19.6%. The surface resistance was 10.1Ω / □. Moreover, the work function of the transparent conductive film laminated body outermost surface was 4.7 eV.
 図4に酸化亜鉛系透明導電膜(II)を形成後の透明導電性薄膜の表面SEM写真を示す。酸化亜鉛系透明導電膜(II)上には、図4の円内に示すような急峻な凹部が存在する。実施例1では、酸化亜鉛系透明導電膜(II)の上に酸化物系透明導電膜(III)を形成し、このような急峻な凹部を解消している。一方、比較例1では、酸化物系透明導電膜(III)を形成していないため、急峻な凹部上にSi層が積層されることとなる。 FIG. 4 shows a surface SEM photograph of the transparent conductive thin film after the formation of the zinc oxide-based transparent conductive film (II). On the zinc oxide-based transparent conductive film (II), there is a steep recess as shown in the circle of FIG. In Example 1, the oxide-based transparent conductive film (III) is formed on the zinc oxide-based transparent conductive film (II), and such a steep recess is eliminated. On the other hand, in Comparative Example 1, since the oxide-based transparent conductive film (III) is not formed, the Si layer is laminated on the steep concave portion.
 実施例1及び比較例1のそれぞれの透明導電膜積層体の上に、CVD法によりSi層を形成し、Si層の観察を行った。その結果、実施例1では欠陥が存在していなかったものの、比較例1においてはSi層におけるクラック、部分的な剥離が発生していた。したがって、実施例1のように酸化物系透明導電膜(III)を含めた三層構造であることが、Si層の欠陥防止に有効であることがわかった。 On each transparent conductive film laminate of Example 1 and Comparative Example 1, a Si layer was formed by the CVD method, and the Si layer was observed. As a result, although no defect was present in Example 1, cracks and partial peeling occurred in the Si layer in Comparative Example 1. Therefore, it was found that the three-layer structure including the oxide-based transparent conductive film (III) as in Example 1 is effective for preventing defects in the Si layer.
 [実施例2~7、比較例2~6 :GAZO/GAZO/ITiO]
 実施例1に示した酸化インジウム系透明導電膜(I)、酸化亜鉛系透明導電膜(II)及び酸化物系透明導電膜(III)について、表1、2に示すようにそれぞれの膜厚を変えて、透明導電膜積層体の作製を実施した。その他の成膜条件は、実施例1と同様にして行った。作製した透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。
[Examples 2 to 7, Comparative Examples 2 to 6: GAZO / GAZO / ITO]
For the indium oxide-based transparent conductive film (I), the zinc oxide-based transparent conductive film (II) and the oxide-based transparent conductive film (III) shown in Example 1, the respective film thicknesses are set as shown in Tables 1 and 2. It changed and produced the transparent conductive film laminated body. Other film forming conditions were the same as in Example 1. The characteristics evaluation of the produced transparent conductive film laminated body was implemented by the same item and method as Example 1.
 [特性評価:実施例2~7、比較例2~6]
 表3に、得られた透明導電膜積層体の特性評価結果を示す。酸化亜鉛系透明導電膜(II)の膜厚を150nmとした比較例2では、結晶粒が十分な高ヘイズ率を得るには十分に成長しておらず、ヘイズ率が7.0%と低かった。
[Characteristic evaluation: Examples 2 to 7, Comparative examples 2 to 6]
In Table 3, the characteristic evaluation result of the obtained transparent conductive film laminated body is shown. In Comparative Example 2 in which the thickness of the zinc oxide-based transparent conductive film (II) was 150 nm, the crystal grains did not grow sufficiently to obtain a sufficiently high haze ratio, and the haze ratio was as low as 7.0%. It was.
 また、酸化物系透明導電膜(III)の膜厚を3nmとした比較例3は、酸化亜鉛系透明導電膜(II)の表面空隙を十分にカバーしきれておらず、Si層の積層を行った結果、Si層へのクラックが発生していた。一方、酸化物系透明導電膜(III)の膜厚を230nmとした比較例4においては、全光線透過率が74.8%と低かった。 Further, Comparative Example 3 in which the film thickness of the oxide-based transparent conductive film (III) is 3 nm does not sufficiently cover the surface gap of the zinc oxide-based transparent conductive film (II), and the Si layer is laminated. As a result, cracks in the Si layer occurred. On the other hand, in Comparative Example 4 in which the thickness of the oxide-based transparent conductive film (III) was 230 nm, the total light transmittance was as low as 74.8%.
 次に、酸化インジウム系透明導電膜(I)の膜厚を30nmとした比較例5は、導電性が十分でなく、得られた透明導電膜積層体としてのシート抵抗値が30.1Ω/□と高かった。一方、酸化インジウム系透明導電膜(I)の膜厚を700nmとした比較例6においては、全光線透過率が73.8%と低かった。 Next, in Comparative Example 5 in which the film thickness of the indium oxide-based transparent conductive film (I) was 30 nm, the conductivity was not sufficient, and the sheet resistance value as the obtained transparent conductive film laminate was 30.1Ω / □. It was high. On the other hand, in Comparative Example 6 in which the film thickness of the indium oxide-based transparent conductive film (I) was 700 nm, the total light transmittance was as low as 73.8%.
 したがって、上記比較例2~6のような透明導電膜積層体は、薄膜太陽電池の表面透明電極用として有用ではない。実施例2~7における透明導電膜積層体は、表面組織に複雑な空隙が存在していないことから、Si層の欠陥も発生しないことが確認された。また、高ヘイズ率及び低抵抗値を有することから、薄膜太陽電池の表面透明電極用として有用であることが確認された。 Therefore, the transparent conductive film laminates as in Comparative Examples 2 to 6 are not useful for the surface transparent electrode of the thin film solar cell. In the transparent conductive film laminates in Examples 2 to 7, it was confirmed that no defects in the Si layer were generated because there were no complicated voids in the surface structure. Moreover, since it has a high haze rate and a low resistance value, it was confirmed that it was useful for the surface transparent electrode of a thin film solar cell.
 [実施例8] AZO/AZO/ITiO
 表1、2に示すように実施例1における酸化亜鉛系透明導電膜(II)及び酸化物系透明導電膜(III)をアルミニウム含有の酸化亜鉛(AZO)とした以外は、実施例1と同様の項目及び条件にて透明導電膜積層体を作製した。この酸化亜鉛系透明導電膜(II)及び酸化物透明導電膜(III)の作製に用いたターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Al/(Zn+Al)で0.50原子%以下であった。また、ターゲットの純度は99.999%であり、大きさは6インチ(Φ)×5mm(厚さ)であった。
Example 8 AZO / AZO / ITO
As shown in Tables 1 and 2, as in Example 1, except that the zinc oxide-based transparent conductive film (II) and the oxide-based transparent conductive film (III) in Example 1 were aluminum-containing zinc oxide (AZO). A transparent conductive film laminate was prepared according to the items and conditions. The composition of the target used for producing the zinc oxide-based transparent conductive film (II) and the oxide transparent conductive film (III) was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000). Zn + Al) was 0.50 atomic% or less. Moreover, the purity of the target was 99.999%, and the size was 6 inches (Φ) × 5 mm (thickness).
 [比較例7] AZO/ITiO
 表1、2に示すように実施例8における酸化物系透明導電膜(III)を成膜しなかった以外は、実施例8と同様にして透明導電膜積層体を作製した。
[Comparative Example 7] AZO / ITO
As shown in Tables 1 and 2, a transparent conductive film laminate was produced in the same manner as in Example 8 except that the oxide-based transparent conductive film (III) in Example 8 was not formed.
 [特性評価:実施例8、比較例7]
 表3に、実施例8及び比較例7の透明導電膜積層体の特性評価結果を示す。透明導電性薄膜積層体の特性は、実施例1と同様の項目及び方法にて測定した。実施例8の透明導電膜積層体の膜厚は750nmであった。波長400-1200nmにおける全光線透過率は81.0%であり、ヘイズ率も16.8%と高かった。また、表面抵抗は11.4Ω/□であり、高い導電性を示した。また、透明導電膜積層体最表面の仕事関数は4.5eVであり、目標とする高い仕事関数を有し、高ヘイズ率及び低抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。
[Characteristic Evaluation: Example 8, Comparative Example 7]
In Table 3, the characteristic evaluation result of the transparent conductive film laminated body of Example 8 and Comparative Example 7 is shown. The characteristics of the transparent conductive thin film laminate were measured by the same items and methods as in Example 1. The film thickness of the transparent conductive film laminate of Example 8 was 750 nm. The total light transmittance at a wavelength of 400 to 1200 nm was 81.0%, and the haze ratio was as high as 16.8%. The surface resistance was 11.4Ω / □, indicating high conductivity. Moreover, the work function of the transparent conductive film laminated body outermost surface is 4.5 eV, and it can obtain the transparent conductive film laminated body which has a target high work function, and has a high haze rate and a low resistance value at high speed. It was confirmed that it was possible.
 また、比較例7の透明導電膜積層体の膜厚は700nmであった。波長400-1200nmにおける全光線透過率は81.2%であり、ヘイズ率も17.0%であった。また、表面抵抗は11.5Ω/□であった。また、透明導電膜積層体最表面の仕事関数は4.6eVであった。 The film thickness of the transparent conductive film laminate of Comparative Example 7 was 700 nm. The total light transmittance at a wavelength of 400 to 1200 nm was 81.2%, and the haze ratio was 17.0%. The surface resistance was 11.5Ω / □. Moreover, the work function of the transparent conductive film laminated body outermost surface was 4.6 eV.
 次に、実施例8及び比較例7で得られた透明導電膜積層体の上にCVD法によるSi層形成を行い、観察を行った。その結果、実施例8では欠陥が存在していなかったものの、比較例7においてはSi層におけるクラック、部分的な剥離が発生していた。したがって、酸化物系透明導電膜(III)を含めた三層構造であることが、Si層の欠陥防止に有効であることがわかった。 Next, the Si layer was formed by the CVD method on the transparent conductive film laminate obtained in Example 8 and Comparative Example 7, and observed. As a result, although no defect was present in Example 8, cracks and partial peeling occurred in the Si layer in Comparative Example 7. Therefore, it was found that the three-layer structure including the oxide-based transparent conductive film (III) is effective for preventing defects in the Si layer.
 [実施例9] GZO/GZO/ITiO
 表1、2に示すように実施例1における酸化亜鉛系透明導電膜(II)及び酸化物系透明導電膜(III)をガリウム含有の酸化亜鉛とした以外は、実施例1と同様の項目及び条件にて透明導電膜積層体を作製した。この酸化亜鉛系透明導電膜(II)及び酸化物透明導電膜(III)の作製に用いたターゲットの組成は、ICP発光分光分析(セイコーインスツルメンツ社製、SPS4000)で定量分析したところ、Ga/(Ga+Al)で0.50原子%以下であった。また、ターゲットの純度は99.999%であり、大きさは6インチ(Φ)×5mm(厚さ)であった。
Example 9 GZO / GZO / ITO
As shown in Tables 1 and 2, except that the zinc oxide-based transparent conductive film (II) and the oxide-based transparent conductive film (III) in Example 1 were zinc oxide containing gallium, A transparent conductive film laminate was produced under the conditions. The composition of the target used for the production of the zinc oxide-based transparent conductive film (II) and the oxide transparent conductive film (III) was quantitatively analyzed by ICP emission spectroscopic analysis (manufactured by Seiko Instruments Inc., SPS4000). Ga + Al) was 0.50 atomic% or less. Moreover, the purity of the target was 99.999%, and the size was 6 inches (Φ) × 5 mm (thickness).
 [比較例8] GZO/ITiO
 表1、2に示すように実施例9における酸化物系透明導電膜(III)を成膜しなかった以外は、実施例9と同様にして透明導電膜積層体を作製した。
[Comparative Example 8] GZO / ITO
As shown in Tables 1 and 2, a transparent conductive film laminate was produced in the same manner as in Example 9 except that the oxide-based transparent conductive film (III) in Example 9 was not formed.
 [特性評価:実施例9、比較例8]
 表3に、実施例9及び比較例8の透明導電膜積層体の特性評価結果を示す。透明導電性薄膜積層体の特性は、実施例1と同様の項目及び方法にて測定した。実施例9の透明導電膜積層体の膜厚は750nmであった。波長400-1200nmにおける全光線透過率は80.2%であり、ヘイズ率も19.9%と高かった。また、表面抵抗は9.5Ω/□であり、高い導電性を示した。また、透明導電膜積層体最表面の仕事関数は4.7eVであり、目標とする高い仕事関数を有し、高ヘイズ率及び低抵抗値を有する透明導電膜積層体を高速に得られることができることが確認された。
[Characteristic Evaluation: Example 9, Comparative Example 8]
In Table 3, the characteristic evaluation result of the transparent conductive film laminated body of Example 9 and Comparative Example 8 is shown. The characteristics of the transparent conductive thin film laminate were measured by the same items and methods as in Example 1. The film thickness of the transparent conductive film laminate of Example 9 was 750 nm. The total light transmittance at a wavelength of 400 to 1200 nm was 80.2%, and the haze ratio was as high as 19.9%. The surface resistance was 9.5Ω / □, indicating high conductivity. In addition, the work function of the outermost surface of the transparent conductive film laminate is 4.7 eV, and a transparent conductive film laminate having a target high work function, a high haze ratio, and a low resistance value can be obtained at high speed. It was confirmed that it was possible.
 また、比較例8の透明導電膜積層体の膜厚は700nmであった。波長400-1200nmにおける全光線透過率は80.3%であり、ヘイズ率も20.3%と高かった。また、表面抵抗は9.2Ω/□であった。また、透明導電膜積層体最表面の仕事関数は4.7eVであった。 The film thickness of the transparent conductive film laminate of Comparative Example 8 was 700 nm. The total light transmittance at a wavelength of 400 to 1200 nm was 80.3%, and the haze ratio was as high as 20.3%. The surface resistance was 9.2Ω / □. Moreover, the work function of the transparent conductive film laminated body outermost surface was 4.7 eV.
 次に、実施例9及び比較例8で得られた透明導電膜積層体の上にCVD法によるSi層形成を行い、観察を行った。その結果、実施例9では欠陥が存在していなかったものの、比較例8においてはSi層におけるクラック、部分的な剥離が発生していた。したがって、酸化物系透明導電膜(III)を含めた三層構造であることが、Si層の欠陥防止に有効であることがわかった。 Next, an Si layer was formed by CVD on the transparent conductive film laminate obtained in Example 9 and Comparative Example 8, and observed. As a result, although no defect was present in Example 9, cracks and partial peeling occurred in the Si layer in Comparative Example 8. Therefore, it was found that the three-layer structure including the oxide-based transparent conductive film (III) is effective for preventing defects in the Si layer.
 [実施例10~16、比較例9~11]
 表1、2に示すように実施例1における酸化物系透明導電膜(III)を、それぞれMg/(Zn+Mg)で3.00原子%(実施例10:ZMgO)、Si/(Zn+Si)で3.00原子%(実施例11:SZO)、Sn/(Zn+Sn)で6.00原子%(実施例12:ZTO)、Ti/(In+Ti)で2.00原子%及びSn/(In+Sn)で0.05原子%(実施例13:ITiTO)、Ga/(In+Ga)で15.0原子%(実施例14:IGO)、Ce/(In+Ce)で10.0原子%(実施例15:ICO)、W/(In+W)で1.00原子%(実施例16:IWO)、V(比較例9)、Al(比較例10)、Ni(比較例11)とした以外は、実施例1と同様の項目及び条件にて透明導電膜積層体を作製した。
[Examples 10 to 16, Comparative Examples 9 to 11]
As shown in Tables 1 and 2, the oxide-based transparent conductive film (III) in Example 1 was 3.00 atomic% (Example 10: ZMgO) in Mg / (Zn + Mg) and 3 in Si / (Zn + Si), respectively. 0.000 atomic% (Example 11: SZO), Sn / (Zn + Sn) at 6.00 atomic% (Example 12: ZTO), Ti / (In + Ti) at 2.00 atomic% and Sn / (In + Sn) at 0 0.05 atomic% (Example 13: ITiTO), Ga / (In + Ga) at 15.0 atomic% (Example 14: IGO), Ce / (In + Ce) at 10.0 atomic% (Example 15: ICO), Example 1 except that W / (In + W) was 1.00 atomic% (Example 16: IWO), V 2 O 5 (Comparative Example 9), Al (Comparative Example 10), and Ni (Comparative Example 11). Make a transparent conductive film laminate using the same items and conditions as Made.
 [特性評価:実施例10~16、比較例9~11]
 表3に、実施例10~16及び比較例9~11の透明導電膜積層体の特性評価結果を示す。透明導電性薄膜積層体の特性は、実施例1と同様の項目及び方法にて測定した。酸化物系透明導電膜(III)の組成をVとした比較例9の透明導電膜積層体は、表面の仕事関数が5.4eVと良好であったものの、膜が肉眼でも確認できるほど着色しており、全光線透過率が70.4%と非常に低かった。また、酸化物系透明導電膜(III)の組成を金属膜とした比較例10及び比較例11の透明導電膜積層体は、金属膜特有のキャリア散乱による反射率が酸化物膜と比較して高くなり、結果として全光線透過率がそれぞれ67.3%(比較例10)、68.2%(比較例11)と非常に低かった。
[Characteristic Evaluation: Examples 10 to 16, Comparative Examples 9 to 11]
Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 10 to 16 and Comparative Examples 9 to 11. The characteristics of the transparent conductive thin film laminate were measured by the same items and methods as in Example 1. The transparent conductive film laminate of Comparative Example 9 in which the composition of the oxide-based transparent conductive film (III) was V 2 O 5 had a surface work function as good as 5.4 eV, but the film could be confirmed with the naked eye. The total light transmittance was very low at 70.4%. In addition, the transparent conductive film laminates of Comparative Example 10 and Comparative Example 11 in which the composition of the oxide-based transparent conductive film (III) is a metal film have a reflectance due to carrier scattering unique to the metal film as compared with the oxide film. As a result, the total light transmittance was very low at 67.3% (Comparative Example 10) and 68.2% (Comparative Example 11), respectively.
 したがって、上記比較例9~11のような透明導電膜積層体は、薄膜太陽電池の表面透明電極用として有用ではない。実施例10~16における透明導電膜積層体は、表面組織に複雑な空隙が存在していないことから、Si層の欠陥も発生しないことが確認された。また、高ヘイズ率及び低抵抗値を有することから、薄膜太陽電池の表面透明電極用として有用であることが確認された。 Therefore, the transparent conductive film laminates as in Comparative Examples 9 to 11 are not useful for the surface transparent electrode of the thin film solar cell. In the transparent conductive film laminates in Examples 10 to 16, since no complicated voids exist in the surface structure, it was confirmed that Si layer defects do not occur. Moreover, since it has a high haze rate and a low resistance value, it was confirmed that it was useful for the surface transparent electrode of a thin film solar cell.
 [実施例17~21] 
 表1、2に示すように実施例1における酸化インジウム系透明導電膜(I)を、それぞれW/(In+W)で1.00原子%(実施例17)、Mo/(In+Mo)で1.00原子%(実施例18)、Zr/(In+Zr)で1.00原子%(実施例19)、Ce/(In+Ce)で10.0原子%(実施例20)、Ga/(In+Ga)で15.0原子%(実施例21)とした以外は、実施例1と同様の項目及び条件にて透明導電膜積層体を作製した。
[Examples 17 to 21]
As shown in Tables 1 and 2, the indium oxide-based transparent conductive film (I) in Example 1 was 1.00 atomic% (Example 17) in terms of W / (In + W) and 1.00 in terms of Mo / (In + Mo), respectively. Atomic% (Example 18), Zr / (In + Zr) at 1.00 atomic% (Example 19), Ce / (In + Ce) at 10.0 atomic% (Example 20), Ga / (In + Ga) at 15. A transparent conductive film laminate was produced under the same items and conditions as in Example 1 except that the content was 0 atomic% (Example 21).
 [特性評価:実施例17~21]
 表3に、実施例17~21の透明導電膜積層体の特性評価結果を示す。透明導電性薄膜積層体の特性は、実施例1と同様の項目及び方法にて測定した。実施例17~21における透明導電膜積層体は、表面組織に複雑な空隙が存在していないことから、Si層の欠陥も発生しないことが確認された。また、高ヘイズ率及び低抵抗値を有することから、薄膜太陽電池の表面透明電極用として有用であることが確認された。
[Characteristic evaluation: Examples 17 to 21]
Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 17 to 21. The characteristics of the transparent conductive thin film laminate were measured by the same items and methods as in Example 1. In the transparent conductive film laminates in Examples 17 to 21, since no complicated voids exist in the surface structure, it was confirmed that Si layer defects do not occur. Moreover, since it has a high haze rate and a low resistance value, it was confirmed that it was useful for the surface transparent electrode of a thin film solar cell.
 [実施例22~25] GAZO/GAZO/ITiO
 表1、2に示すように実施例1における酸化インジウム系透明導電膜(I)を下地として、その上に、水素(H)ガスをH/(Ar+H)のモル比においてそれぞれ、0.01(実施例22)、0.25(実施例23)、0.43(実施例24)、0.50原子%(実施例25)の割合で導入し、膜厚を300nmとした以外は実施例1と同様にして酸化亜鉛系透明導電膜(II)を形成し、透明導電膜積層体を作製した。
[Examples 22 to 25] GAZO / GAZO / ITOO
As shown in Tables 1 and 2, the indium oxide-based transparent conductive film (I) in Example 1 is used as a base, and hydrogen (H 2 ) gas is further added thereon in a molar ratio of H 2 / (Ar + H 2 ). .01 (Example 22), 0.25 (Example 23), 0.43 (Example 24), and 0.50 atomic% (Example 25) were introduced and the film thickness was changed to 300 nm. A zinc oxide-based transparent conductive film (II) was formed in the same manner as in Example 1 to produce a transparent conductive film laminate.
 [特性評価:実施例22~25]
 表3に、実施例22~25の透明導電膜積層体の特性評価結果を示す。透明導電膜積層体の特性評価は、実施例1と同様の項目及び方法で実施した。透明導電膜積層体の膜特性は、成膜ガスのH割合が増加するに伴い、ヘイズ率が増加し、表面抵抗も増加する傾向にあるものの、実施例22~25の透明導電膜積層体は、ヘイズ率が8%以上と十分に高いだけでなく、表面抵抗も25Ω/□以下と低かった。加えて、酸化物系透明導電膜(III)の積層により、透明導電膜積層体の表面組織に複雑な空隙が存在していないことから、Si層の欠陥も発生しないことが確認された。また、高ヘイズ率及び低抵抗値を有することから、薄膜太陽電池の表面透明電極用として有用であることが確認された。
[Characteristic evaluation: Examples 22 to 25]
Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 22 to 25. The characteristics evaluation of the transparent conductive film laminate was carried out using the same items and methods as in Example 1. Regarding the film characteristics of the transparent conductive film laminate, although the haze ratio and the surface resistance tend to increase as the H 2 ratio of the film forming gas increases, the transparent conductive film laminates of Examples 22 to 25 The haze rate was not only sufficiently high at 8% or more, but also the surface resistance was as low as 25Ω / □ or less. In addition, it was confirmed that no defects in the Si layer were generated due to the absence of complex voids in the surface structure of the transparent conductive film laminate due to the lamination of the oxide-based transparent conductive film (III). Moreover, since it has a high haze rate and a low resistance value, it was confirmed that it was useful for the surface transparent electrode of a thin film solar cell.
 [実施例26~29] GAZO/GAZO/ITiO
 表1、2に示すように、それぞれ酸化インジウム系透明導電膜(I)を形成する際(実施例26)、酸化亜鉛系透明導電膜(II)を形成する際(実施例27)、または酸化物系透明導電膜(III)を形成する際(実施例28)に、基板を加熱せず室温にて非晶質膜を形成した後に、300℃で加熱処理を施した以外は、実施例1と同様にして、透明導電膜積層体を作製した。加えて実施例29においては、酸化物系透明導電膜(III)を形成する際に、基板を加熱せず室温にて非晶質膜を形成し、加熱処理を加えないこととし、その他は実施例1と同様にして、透明導電膜積層体を作製した。
[Examples 26 to 29] GAZO / GAZO / ITOO
As shown in Tables 1 and 2, when forming the indium oxide-based transparent conductive film (I) (Example 26), forming the zinc oxide-based transparent conductive film (II) (Example 27), or oxidizing, respectively. Example 1 except that when the physical transparent conductive film (III) was formed (Example 28), the substrate was not heated and an amorphous film was formed at room temperature, followed by heat treatment at 300 ° C. In the same manner, a transparent conductive film laminate was produced. In addition, in Example 29, when forming the oxide-based transparent conductive film (III), an amorphous film was formed at room temperature without heating the substrate, and no heat treatment was performed. In the same manner as in Example 1, a transparent conductive film laminate was produced.
 [特性評価:実施例26~29]
 表3に、実施例26~29の透明導電膜積層体の特性評価結果を示す。透明導電性薄膜積層体の特性は、実施例1と同様の項目及び方法にて測定した。実施例26~29におかる透明導電膜積層体は、表面組織に複雑な空隙が存在していないことから、Si層の欠陥も発生しないことが確認された。また、高ヘイズ率及び低抵抗値を有することから、薄膜太陽電池の表面透明電極用として有用であることが確認された。
[Characteristic evaluation: Examples 26 to 29]
Table 3 shows the characteristic evaluation results of the transparent conductive film laminates of Examples 26 to 29. The characteristics of the transparent conductive thin film laminate were measured by the same items and methods as in Example 1. In the transparent conductive film laminates in Examples 26 to 29, it was confirmed that no defects in the Si layer were generated because there were no complicated voids in the surface structure. Moreover, since it has a high haze rate and a low resistance value, it was confirmed that it was useful for the surface transparent electrode of a thin film solar cell.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 1 透光性基板、 2 透明導電膜積層体、 3 非晶質光電変換ユニット、 4 結晶質光電変換ユニット、 5 裏面電極、 21 酸化インジウム系透明導電膜(I)、 22 酸化亜鉛系透明導電膜(II)、 23 酸化物系透明導電膜(III) DESCRIPTION OF SYMBOLS 1 Translucent board | substrate, 2 Transparent conductive film laminated body, 3 Amorphous photoelectric conversion unit, 4 Crystalline photoelectric conversion unit, 5 Back electrode, 21 Indium oxide type transparent conductive film (I), 22 Zinc oxide type transparent conductive film (II), 23 oxide-based transparent conductive film (III)

Claims (22)

  1.  透光性基板上に形成された膜厚が50nm以上600nm以下である酸化インジウム系透明導電膜(I)と、
     上記酸化インジウム系透明導電膜(I)上に形成された膜厚が200nm以上1000nm以下である酸化亜鉛系透明導電膜(II)と、
     上記酸化亜鉛系透明導電膜(II)上に形成された膜厚が5nm以上200nm以下である酸化物系透明導電膜(III)と
     を備えることを特徴とする透明導電膜積層体。
    An indium oxide-based transparent conductive film (I) having a thickness of 50 nm or more and 600 nm or less formed on a light-transmitting substrate;
    A zinc oxide-based transparent conductive film (II) having a thickness of 200 nm to 1000 nm formed on the indium oxide-based transparent conductive film (I);
    A transparent conductive film laminate comprising: an oxide-based transparent conductive film (III) formed on the zinc oxide-based transparent conductive film (II) and having a thickness of 5 nm to 200 nm.
  2.  上記酸化物系透明導電膜(III)が、金属酸化物であり、Mg、Al、Si、Ti、Zn、Ga、In、Sn、W、Ceから選ばれる1種以上の元素を含有することを特徴とする請求項1に記載の透明導電膜積層体。 The oxide-based transparent conductive film (III) is a metal oxide and contains one or more elements selected from Mg, Al, Si, Ti, Zn, Ga, In, Sn, W, and Ce. The transparent conductive film laminate according to claim 1, wherein
  3.  上記酸化物系透明導電膜(III)が、ガリウム/アルミニウムドープ酸化亜鉛、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、マグネシウムドープ酸化亜鉛、シリコンドープ酸化亜鉛、スズドープ酸化亜鉛、チタン/スズドープ酸化インジウム、ガリウムドープ酸化インジウム、セリウムドープ酸化インジウム、タングステンドープ酸化インジウムから選ばれる1種からなることを特徴とする請求項1に記載の透明導電膜積層体。 The oxide-based transparent conductive film (III) is made of gallium / aluminum doped zinc oxide, aluminum doped zinc oxide, gallium doped zinc oxide, magnesium doped zinc oxide, silicon doped zinc oxide, tin doped zinc oxide, titanium / tin doped indium oxide, gallium. 2. The transparent conductive film laminate according to claim 1, comprising one kind selected from doped indium oxide, cerium-doped indium oxide, and tungsten-doped indium oxide.
  4.  上記酸化物系透明導電膜(III)が、酸化亜鉛を主成分とし、Mg、Al、Si、Ga、Sn、Wをから選ばれる1種以上の元素を含有することを特徴とする請求項1に記載の透明導電膜積層体。 The oxide-based transparent conductive film (III) contains zinc oxide as a main component and contains one or more elements selected from Mg, Al, Si, Ga, Sn, and W. The transparent conductive film laminated body as described in.
  5.  上記酸化物系透明導電膜(III)の表面が、仕事関数が4.5eV以上、波長400nm~1200nmにおける全光線透過率が75.0%以上、ヘイズ率が8%以上、及び表面抵抗が25Ω/□以下であることを特徴とする請求項1~4のいずれか1項に記載の透明導電膜積層体。 The surface of the oxide-based transparent conductive film (III) has a work function of 4.5 eV or more, a total light transmittance at a wavelength of 400 nm to 1200 nm of 75.0% or more, a haze ratio of 8% or more, and a surface resistance of 25Ω. The transparent conductive film laminate according to any one of Claims 1 to 4, wherein the transparent conductive film laminate is / □ or less.
  6.  上記酸化亜鉛系透明導電膜(II)が、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を、下記式(1)で示される範囲内で含有することを特徴とする請求項1~4のいずれか1項に記載の透明導電膜積層体。
     [Al]≦[Ga]≦―2.68×[Al]+1.74 ・・・(1)
    (但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。また、[Al]≧0、[Ga]≧0である。)
    The zinc oxide-based transparent conductive film (II) contains zinc oxide as a main component and contains one or more additive metal elements selected from aluminum or gallium within a range represented by the following formula (1). The transparent conductive film laminate according to any one of claims 1 to 4.
    [Al] ≦ [Ga] ≦ −2.68 × [Al] +1.74 (1)
    (However, [Al] is the aluminum content expressed by the atomic ratio (%) of Al / (Zn + Al), and [Ga] is the gallium expressed by the atomic ratio (%) of Ga / (Zn + Ga). And [Al] ≧ 0, [Ga] ≧ 0.)
  7.  上記酸化物系透明導電膜(III)の表面の仕事関数が、5.0eV以上であることを特徴とする請求項1~6のいずれか1項に記載の透明導電膜積層体。 The transparent conductive film laminate according to any one of claims 1 to 6, wherein a work function of the surface of the oxide-based transparent conductive film (III) is 5.0 eV or more.
  8.  酸化インジウム系透明導電膜(I)が、酸化インジウムを主成分とし、Sn、Ti、W、Mo、Zr、Ce又はGaから選ばれる1種以上の金属元素を含有した結晶膜であることを特徴とする請求項1~7のいずれか1項に記載の透明導電膜積層体。 The indium oxide-based transparent conductive film (I) is a crystalline film containing indium oxide as a main component and containing one or more metal elements selected from Sn, Ti, W, Mo, Zr, Ce or Ga. The transparent conductive film laminate according to any one of claims 1 to 7.
  9.  酸化インジウム系透明導電膜(I)が、酸化インジウムを主成分とし、かつSnを含有し、その含有割合がSn/(In+Sn)原子数比で15原子%以下であることを特徴とする請求項1~7のいずれか1項に記載の透明導電膜積層体。 The indium oxide-based transparent conductive film (I) contains indium oxide as a main component and contains Sn, and the content ratio is 15 atomic% or less in terms of the Sn / (In + Sn) atomic ratio. 8. The transparent conductive film laminate according to any one of 1 to 7.
  10.  酸化インジウム系透明導電膜(I)が、酸化インジウムを主成分とし、かつTiを含有し、その含有割合がTi/(In+Ti)原子数比で5.5原子%以下であることを特徴とする請求項1~7のいずれか1項に記載の透明導電膜積層体。 The indium oxide-based transparent conductive film (I) contains indium oxide as a main component and contains Ti, and the content ratio is 5.5 atomic% or less in terms of Ti / (In + Ti) atomic ratio. The transparent conductive film laminate according to any one of claims 1 to 7.
  11.  透光性基板上に膜厚が50nm以上600nm以下である酸化インジウム系透明導電膜(I)をスパッタリング法により成膜する第1の成膜工程と、
     上記酸化インジウム系透明導電膜(I)上に、スパッタリング法により膜厚が200nm以上1000nm以下である酸化亜鉛系透明導電膜(II)を成膜する第2の成膜工程と、
     上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が5nm以上200nm以下である酸化物系透明導電膜(III)を成膜する第3の成膜工程と
     を有する透明導電膜積層体の製造方法。
    A first film forming step of forming an indium oxide-based transparent conductive film (I) having a thickness of 50 nm or more and 600 nm or less on a light-transmitting substrate by a sputtering method;
    A second film-forming step of forming a zinc oxide-based transparent conductive film (II) having a thickness of 200 nm or more and 1000 nm or less on the indium oxide-based transparent conductive film (I) by a sputtering method;
    A transparent conductive film comprising: a third film-forming step of forming an oxide-based transparent conductive film (III) having a thickness of 5 nm to 200 nm on the zinc oxide-based transparent conductive film (II) by a sputtering method. A manufacturing method of a layered product.
  12.  上記酸化物系透明導電膜(III)を形成するためのスパッタリングターゲットが、金属酸化物であり、Mg、Al、Si、Ti、Zn、Ga、In、Sn、W、Ceから選ばれる1種以上の元素を含有することを特徴とする請求項11に記載の透明導電膜積層体の製造方法。 The sputtering target for forming the oxide-based transparent conductive film (III) is a metal oxide, and one or more selected from Mg, Al, Si, Ti, Zn, Ga, In, Sn, W, and Ce The process for producing a transparent conductive film laminate according to claim 11, comprising:
  13.  上記酸化物系透明導電膜(III)を形成するためのスパッタリングターゲットが、ガリウム/アルミニウムドープ酸化亜鉛、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、マグネシウムドープ酸化亜鉛、シリコンドープ酸化亜鉛、スズドープ酸化亜鉛、チタン/スズドープ酸化インジウム、ガリウムドープ酸化インジウム、セリウムドープ酸化インジウム、タングステンドープ酸化インジウムから選ばれる1種からなることを特徴とする請求項11に記載の透明導電膜積層体の製造方法。 Sputtering targets for forming the oxide-based transparent conductive film (III) are gallium / aluminum-doped zinc oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, magnesium-doped zinc oxide, silicon-doped zinc oxide, tin-doped zinc oxide, The method for producing a transparent conductive film laminate according to claim 11, comprising one kind selected from titanium / tin-doped indium oxide, gallium-doped indium oxide, cerium-doped indium oxide, and tungsten-doped indium oxide.
  14.  上記酸化物系透明導電膜(III)を形成するためのスパッタリングターゲットが、酸化亜鉛を主成分とし、Mg、Al、Si、Ga、Sn、Wをから選ばれる1種以上の元素を含有することを特徴とする請求項11に記載の透明導電膜積層体の製造方法。 A sputtering target for forming the oxide-based transparent conductive film (III) contains zinc oxide as a main component and contains one or more elements selected from Mg, Al, Si, Ga, Sn, and W. The manufacturing method of the transparent conductive film laminated body of Claim 11 characterized by these.
  15.  上記酸化物系透明導電膜(III)の表面が、仕事関数が4.5eV以上、波長400nm~1200nmにおける全光線透過率が75.0%以上、ヘイズ率が8%以上、及び表面抵抗が25Ω/□以下であることを特徴とする請求項11~14のいずれか1項に記載の透明導電膜積層体の製造方法。 The surface of the oxide-based transparent conductive film (III) has a work function of 4.5 eV or more, a total light transmittance at a wavelength of 400 nm to 1200 nm of 75.0% or more, a haze ratio of 8% or more, and a surface resistance of 25Ω. The method for producing a transparent conductive film laminate according to any one of claims 11 to 14, wherein:
  16.  上記酸化亜鉛系透明導電膜(II)を形成するためのスパッタリングターゲットが、酸化亜鉛を主成分とし、アルミニウム又はガリウムから選ばれる1種以上の添加金属元素を、下記式(1)で示される範囲内で含有することを特徴とする請求項11~15のいずれか1項に記載の透明導電膜積層体の製造方法。
     [Al]≦[Ga]≦―2.68×[Al]+1.74 ・・・(1)
        (但し、[Al]は、Al/(Zn+Al)の原子数比(%)で表したアルミニウム含有量であり、[Ga]は、Ga/(Zn+Ga)の原子数比(%)で表したガリウム含有量である。また、[Al]≧0、[Ga]≧0である。)
    A range in which the sputtering target for forming the zinc oxide-based transparent conductive film (II) includes zinc oxide as a main component and one or more additive metal elements selected from aluminum or gallium is represented by the following formula (1): The method for producing a transparent conductive film laminate according to any one of claims 11 to 15, wherein the transparent conductive film laminate is contained.
    [Al] ≦ [Ga] ≦ −2.68 × [Al] +1.74 (1)
    (However, [Al] is the aluminum content expressed by the atomic ratio (%) of Al / (Zn + Al), and [Ga] is the gallium expressed by the atomic ratio (%) of Ga / (Zn + Ga). And [Al] ≧ 0, [Ga] ≧ 0.)
  17.  上記第2の成膜工程において、スパッタリングガス種として、アルゴンと水素の混合ガスの混合割合をH/(Ar+H)≦0.43とすることを特徴とする請求項11~16のいずれか1項に記載の透明導電膜積層体の製造方法。 In the second film forming step, the mixing ratio of a mixed gas of argon and hydrogen as a sputtering gas species is set to H 2 / (Ar + H 2 ) ≦ 0.43. The manufacturing method of the transparent conductive film laminated body of 1 item | term.
  18.  上記第1の成膜工程では、スパッタリングガス圧を0.1Pa以上1.0Pa未満とし、上記第2の成膜工程では、スパッタリングガス圧を1.0Pa以上15.0Pa以下とし、上記第3の成膜工程では、スパッタリングガス圧を0.1Pa以上1.0Pa未満とすることを特徴とする請求項11~17のいずれか1項に記載の透明導電膜積層体の製造方法。 In the first film formation step, the sputtering gas pressure is set to 0.1 Pa or more and less than 1.0 Pa, and in the second film formation step, the sputtering gas pressure is set to 1.0 Pa or more and 15.0 Pa or less, The method for producing a transparent conductive film laminate according to any one of claims 11 to 17, wherein in the film forming step, a sputtering gas pressure is set to 0.1 Pa or more and less than 1.0 Pa.
  19.  上記第1の成膜工程において酸化インジウム系透明導電膜(I)が、基板温度100℃以下、スパッタリングガス圧0.1Pa以上1.0Pa未満の条件で、非晶質膜として形成された後、200℃以上600℃以下に加熱処理されて、上記透光性基板上に結晶化されることを特徴とする請求項11~18のいずれか1項に記載の透明導電膜積層体の製造方法。 After the indium oxide-based transparent conductive film (I) is formed as an amorphous film at a substrate temperature of 100 ° C. or less and a sputtering gas pressure of 0.1 Pa or more and less than 1.0 Pa in the first film forming step, 19. The method for producing a transparent conductive film laminate according to claim 11, wherein the transparent conductive film laminate is heat-treated at 200 ° C. or more and 600 ° C. or less and crystallized on the translucent substrate.
  20.  上記第1の成膜工程において酸化インジウム系透明導電膜(I)が、基板温度200℃以上600℃以下、スパッタリングガス圧0.1Pa以上1.0Pa未満の条件で、上記透光性基板上に結晶膜として形成されることを特徴とする請求項11~18のいずれか1項に記載の透明導電膜積層体の製造方法。 In the first film forming step, the indium oxide-based transparent conductive film (I) is formed on the translucent substrate under the conditions of a substrate temperature of 200 ° C. or more and 600 ° C. or less and a sputtering gas pressure of 0.1 Pa or more and less than 1.0 Pa. The method for producing a transparent conductive film laminate according to any one of claims 11 to 18, wherein the transparent conductive film laminate is formed as a crystal film.
  21.  透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とが順に形成された薄膜太陽電池において、
     上記透明導電膜積層体は、
     上記透光性基板上に形成された膜厚が50nm以上600nm以下である酸化インジウム系透明導電膜(I)と、
     上記酸化インジウム系透明導電膜(I)上に形成された膜厚が200nm以上1000nm以下である酸化亜鉛系透明導電膜(II)と、
     上記酸化亜鉛系透明導電膜(II)上に形成された膜厚が5nm以上200nm以下である酸化物系透明導電膜(III)と
     を備えることを特徴とする薄膜太陽電池。
    In a thin film solar cell in which a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are formed in order on a light-transmitting substrate,
    The transparent conductive film laminate is
    An indium oxide-based transparent conductive film (I) having a thickness of 50 nm to 600 nm formed on the light-transmitting substrate;
    A zinc oxide-based transparent conductive film (II) having a thickness of 200 nm to 1000 nm formed on the indium oxide-based transparent conductive film (I);
    A thin film solar cell comprising: an oxide-based transparent conductive film (III) formed on the zinc oxide-based transparent conductive film (II) and having a thickness of 5 nm to 200 nm.
  22.  透光性基板上に、透明導電膜積層体と、光電変換層ユニットと、裏面電極層とを順に形成する薄膜太陽電池の製造方法において、
     上記透光性基板上に膜厚が50nm以上600nm以下である酸化インジウム系透明導電膜(I)をスパッタリング法により成膜する第1の成膜工程と、
     上記酸化インジウム系透明導電膜(I)上に、スパッタリング法により膜厚が200nm以上1000nm以下である酸化亜鉛系透明導電膜(II)を成膜する第2の成膜工程と、
     上記酸化亜鉛系透明導電膜(II)上に、スパッタリング法により膜厚が5nm以上200nm以下である酸化物系透明導電膜(III)を成膜する第3の成膜工程と
     を有することを特徴とする薄膜太陽電池の製造方法。
    In the method for manufacturing a thin-film solar cell in which a transparent conductive film laminate, a photoelectric conversion layer unit, and a back electrode layer are formed in order on a light-transmitting substrate,
    A first film forming step of forming an indium oxide-based transparent conductive film (I) having a thickness of 50 nm or more and 600 nm or less on the translucent substrate by a sputtering method;
    A second film-forming step of forming a zinc oxide-based transparent conductive film (II) having a thickness of 200 nm or more and 1000 nm or less on the indium oxide-based transparent conductive film (I) by a sputtering method;
    And a third film forming step of forming an oxide-based transparent conductive film (III) having a thickness of 5 nm to 200 nm on the zinc oxide-based transparent conductive film (II) by a sputtering method. A method for producing a thin-film solar cell.
PCT/JP2012/081478 2011-12-20 2012-12-05 Transparent conductive film laminate, method for producing same, thin-film solar cell, and method for producing same WO2013094403A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280056855.5A CN104081534A (en) 2011-12-20 2012-12-05 Transparent conductive film laminate, method for producing same, thin-film solar cell, and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-278748 2011-12-20
JP2011278748A JP5252066B2 (en) 2011-12-20 2011-12-20 Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2013094403A1 true WO2013094403A1 (en) 2013-06-27

Family

ID=48668302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/081478 WO2013094403A1 (en) 2011-12-20 2012-12-05 Transparent conductive film laminate, method for producing same, thin-film solar cell, and method for producing same

Country Status (4)

Country Link
JP (1) JP5252066B2 (en)
CN (1) CN104081534A (en)
TW (1) TWI585783B (en)
WO (1) WO2013094403A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124289A (en) * 2014-07-22 2014-10-29 广东爱康太阳能科技有限公司 Copper electrode solar cell and preparation method thereof
CN105702757A (en) * 2016-04-07 2016-06-22 乐叶光伏科技有限公司 Transparent conducting assembly for crystalline silicon solar cell and preparation method thereof
WO2016208297A1 (en) * 2015-06-26 2016-12-29 住友金属鉱山株式会社 Transparent conductive oxide film, photoelectric conversion element, and method for producing photoelectric conversion element
US11384425B2 (en) * 2017-07-13 2022-07-12 Purdue Research Foundation Method of enhancing electrical conduction in gallium-doped zinc oxide films and films made therefrom

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014095098A (en) * 2012-11-07 2014-05-22 Sumitomo Metal Mining Co Ltd Transparent conductive film laminate, method of producing transparent conductive film laminate, thin-film solar cell and method of producing thin-film solar cell
JP2014095099A (en) * 2012-11-07 2014-05-22 Sumitomo Metal Mining Co Ltd Transparent conductive film laminate, method of producing transparent conductive film laminate, thin-film solar cell and method of producing thin-film solar cell
JP2015060847A (en) * 2013-09-17 2015-03-30 三洋電機株式会社 Solar battery
JP2015201525A (en) * 2014-04-07 2015-11-12 三菱電機株式会社 Photoelectric conversion device and manufacturing method of the same
CN104409637B (en) * 2014-11-20 2017-10-03 中国科学院半导体研究所 Solar battery structure based on trapezoidal aluminium nanometer gate-shaped electrode and preparation method thereof
US10483473B2 (en) * 2015-07-08 2019-11-19 Sony Corporation Electronic device and solid state imaging apparatus
JP2017193755A (en) * 2016-04-21 2017-10-26 住友金属鉱山株式会社 Method of manufacturing transparent conductive film, and transparent conductive film
JP6531718B2 (en) * 2016-05-19 2019-06-19 住友金属鉱山株式会社 Method for producing oxide sintered body, and oxide sintered body
EP3648180B1 (en) * 2017-06-28 2023-10-11 Kaneka Corporation Method for manufacturing photoelectric conversion device
CN109817731B (en) 2019-02-02 2021-10-12 京东方科技集团股份有限公司 Photodiode, manufacturing method thereof and electronic equipment
CN113451429B (en) * 2021-06-30 2023-05-12 安徽华晟新能源科技有限公司 Heterojunction solar cell and preparation method thereof
CN113488556A (en) * 2021-07-04 2021-10-08 北京载诚科技有限公司 Mixed metal oxide conductive thin film and heterojunction solar cell
CN113745358A (en) * 2021-09-15 2021-12-03 中威新能源(成都)有限公司 Transparent conductive oxide thin film and heterojunction solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034232A (en) * 2008-07-28 2010-02-12 Sumitomo Metal Mining Co Ltd Thin-film solar cell and surface electrode for thin-film solar cell
JP2010238894A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp SOLAR CELL WHOSE STRUCTURE LAYER IS (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER, AND ZnO-In2O3-Al BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI464159B (en) * 2008-09-01 2014-12-11 Semiconductor Energy Lab Triazole derivative, and light-emitting element, light-emitting device, and electronic device using triazole derivative
US8502066B2 (en) * 2009-11-05 2013-08-06 Guardian Industries Corp. High haze transparent contact including insertion layer for solar cells, and/or method of making the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010034232A (en) * 2008-07-28 2010-02-12 Sumitomo Metal Mining Co Ltd Thin-film solar cell and surface electrode for thin-film solar cell
JP2010238894A (en) * 2009-03-31 2010-10-21 Mitsubishi Materials Corp SOLAR CELL WHOSE STRUCTURE LAYER IS (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER, AND ZnO-In2O3-Al BASED SPUTTERING TARGET USED FOR FORMING THE (Zn, In, Al)O BASED TRANSPARENT ELECTRODE LAYER

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104124289A (en) * 2014-07-22 2014-10-29 广东爱康太阳能科技有限公司 Copper electrode solar cell and preparation method thereof
WO2016208297A1 (en) * 2015-06-26 2016-12-29 住友金属鉱山株式会社 Transparent conductive oxide film, photoelectric conversion element, and method for producing photoelectric conversion element
JP2017017047A (en) * 2015-06-26 2017-01-19 住友金属鉱山株式会社 Oxide transparent conductive film laminate, photoelectric conversion element, and method for manufacturing photoelectric conversion element
US10475939B2 (en) 2015-06-26 2019-11-12 Sumitomo Metal Mining Co., Ltd. Transparent conductive oxide film, photoelectric conversion element, and method for producing photoelectric conversion element
CN105702757A (en) * 2016-04-07 2016-06-22 乐叶光伏科技有限公司 Transparent conducting assembly for crystalline silicon solar cell and preparation method thereof
CN105702757B (en) * 2016-04-07 2018-02-23 隆基乐叶光伏科技有限公司 A kind of crystal silicon solar energy battery electrically conducting transparent assembly and preparation method thereof
US11384425B2 (en) * 2017-07-13 2022-07-12 Purdue Research Foundation Method of enhancing electrical conduction in gallium-doped zinc oxide films and films made therefrom

Also Published As

Publication number Publication date
JP5252066B2 (en) 2013-07-31
TWI585783B (en) 2017-06-01
TW201342397A (en) 2013-10-16
JP2013131560A (en) 2013-07-04
CN104081534A (en) 2014-10-01

Similar Documents

Publication Publication Date Title
JP5252066B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
JP5621764B2 (en) Transparent conductive film, transparent conductive film laminate, manufacturing method thereof, and silicon-based thin film solar cell
Wang et al. Growth of ZnO: Al films by RF sputtering at room temperature for solar cell applications
Lien Characterization and optimization of ITO thin films for application in heterojunction silicon solar cells
WO2014073329A1 (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
JP5445395B2 (en) Method for producing transparent conductive film and method for producing thin film solar cell
WO2012020682A1 (en) Crystalline silicon solar cell
WO2012093702A1 (en) Transparent electroconductive film laminate and method for manufacturing same, as well as thin-film solar cell and method for manufacturing same
TW201708612A (en) Transparent conductive oxide film, photoelectric conversion element, and method for producing photoelectric conversion element
JP5533448B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
WO2014073328A1 (en) Transparent-conductive-film laminate, manufacturing method therefor, thin-film solar cell, and manufacturing method therefor
Kang et al. Highly transparent Zn1− xMgxO/ITO multilayer for window of thin film solar cells
Kim et al. Morphological and electrical properties of self-textured aluminum-doped zinc oxide films prepared by direct current magnetron sputtering for application to amorphous silicon solar cells
CN113921656A (en) Heterojunction solar cell and preparation method thereof
Yan et al. GZO/IWO stacks with enhanced lateral transport capability for efficient and low cost SHJ solar cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12860606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12860606

Country of ref document: EP

Kind code of ref document: A1