WO2013094038A1 - Cooler and method of manufacturing same - Google Patents

Cooler and method of manufacturing same Download PDF

Info

Publication number
WO2013094038A1
WO2013094038A1 PCT/JP2011/079689 JP2011079689W WO2013094038A1 WO 2013094038 A1 WO2013094038 A1 WO 2013094038A1 JP 2011079689 W JP2011079689 W JP 2011079689W WO 2013094038 A1 WO2013094038 A1 WO 2013094038A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat pipe
cooler
heat
fin
fins
Prior art date
Application number
PCT/JP2011/079689
Other languages
French (fr)
Japanese (ja)
Inventor
栄作 垣内
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/079689 priority Critical patent/WO2013094038A1/en
Publication of WO2013094038A1 publication Critical patent/WO2013094038A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/0233Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
    • F28D1/024Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels with an air driving element

Definitions

  • the technology disclosed in this specification relates to a cooler using a heat pipe and a manufacturing method thereof.
  • Heat pipes are often used to cool electronic components such as CPUs and semiconductor chips.
  • the heat pipe has a simple structure in which a plurality of sealed elongated holes are sealed and a small amount of working fluid is sealed in the elongated holes. Although it has a simple structure, various techniques for improving the heat pipe have been proposed (Patent Documents 1 to 5).
  • the heat pipe itself is a device for transporting heat, and a fin for heat dissipation is attached to the heat pipe, and a fan that sends air to the fin often constitutes a cooler (for example, Patent Document 1 and Patent Document 2). ).
  • JP 2004-039861 A Japanese Patent Laid-Open No. 2003-066569 JP 2003-302180 A JP 2007-062683 A JP 2004-125382 A
  • the technology disclosed in the present specification provides a cooler that effectively uses fins by applying heat pipes to two sides of the fin, and a method of manufacturing the same.
  • the novel cooler disclosed in this specification includes a bent heat pipe and a plurality of fins.
  • the heat pipe is L-shaped.
  • the heat pipe is L-shaped by a base plate to which a heating element is attached and a rib plate extending to the back side of the base plate.
  • the surface to which the heating element is attached is referred to as “front surface”, and the surface opposite to the surface to which the heating element is attached is referred to as “back surface”.
  • an L-shaped channel extending over both the base plate and the rib plate is formed inside the heat pipe.
  • the edge of the fin is in contact with both the back surface of the base plate and the surface of the rib plate.
  • the fin has one side in contact with the base plate and the other side in contact with the rib plate.
  • a gap is provided between a bent portion of the L-shaped heat pipe (a point where the base plate and the rib plate are connected) and the fin.
  • a heat source such as a semiconductor chip is attached to the front surface of the base plate.
  • the heat of the heat source is transferred to the fin in two paths: a path that is transmitted from the base plate to the fin and a path that is transmitted to the fin through the rib plate. Therefore, the heat of the heat source is efficiently transmitted to the fins. If the amount of heat transferred to the fins is large, the amount of heat released from the fins also increases.
  • the above-described cooler can effectively use fins and can achieve high cooling efficiency.
  • the L-shaped heat pipe is made by bending a flat heat pipe. A flat heat pipe can be made inexpensively by extrusion.
  • the cooler disclosed in the present specification may have a structure in which rib plates of two L-shaped heat pipes are coupled to each other.
  • two L-shaped heat pipes may have a structure in which the L-shaped bottom surfaces are coupled back to back so that they form a single plane.
  • the fin is preferably made of a metal plate having a slit.
  • the slit can be fitted to the rib plate.
  • the fins may be a plurality of thin plates, but may be a single corrugated plate. In that case, it is preferable that a ventilation hole is provided in the peak of the corrugated plate (the top of the wave). When the corrugated plate is attached so that the corrugated valley (the bottom of the wave) is in contact with the base plate, the corrugated peak corresponds to the tip of the fin. If a ventilation hole is provided there, the ventilation to the side surface of a fin will become good.
  • a plurality of flow paths extending in parallel may be formed inside the heat pipe, or one or several flow paths described below may be formed. That is, in a plurality of flow paths arranged in parallel, adjacent flow paths are alternately connected on one end side and the other end side, and between one end and the other end of the heat pipe.
  • a reciprocating flow path may be formed. If such a reciprocating flow path is provided, a self-excited vibration heat pipe can be configured.
  • This specification also provides a manufacturing method suitable for the above-described cooler.
  • the method includes the following steps.
  • One is a process of joining rib plates of two L-shaped heat pipes.
  • it is a step of joining two L-shaped vertical surfaces together so that the bottom surfaces of the two L-shapes form one plane.
  • the other is a process of fitting the slits of the fins with slits into the joining part of the two heat pipes.
  • the L-shaped heat pipe is typically formed by bending a flat heat pipe into an L-shape.
  • the above-described cooler itself can be made inexpensive by using a flat heat pipe that can be manufactured at low cost.
  • FIG. 1 is a perspective view of the cooler 100 of the first embodiment.
  • FIG. 2 is a side view of the cooler 100.
  • the cooler 100 includes two L-shaped heat pipes 2 and 3 and a plurality of fins 6.
  • the two L-shaped heat pipes 2 and 3 are joined back to back so that the bottom surfaces of the respective L-shapes form one plane, and form a T shape as a whole.
  • the portion corresponding to the L-shaped bottom side of the L-shaped heat pipe 2 (3) is referred to as a base plate 2a (3a), and the portion corresponding to the L-shaped vertical side is referred to as a rib plate 2b (3b).
  • the base plate 2a (3a) the side to which the semiconductor chip 90 (heat source) is attached is referred to as a front surface, and the side in contact with the fins 6 is referred to as a back surface.
  • a flow path 4 (see FIG. 2) is formed extending from one end to the other over the base plate 2a (3a) and the rib plate 2b (3b).
  • the channel 4 is a closed elongated hole.
  • the flow path 4 is folded at the end of the L shape and reciprocates between both ends of the L shape.
  • the flow path 4 is a flow path in which a working fluid is enclosed. The flow path 4 will be separately described later.
  • the fin 6 is a thin metal plate having a slit 6s formed at the center, and the slit 6s is fitted to the tip of the coupled rib plate 2b (3b) (see FIG. 2).
  • the edge 6a of the fin 6 is in contact with the back surface of the base plate 2a (3a), and the edge of the slit 6s is in contact with the rib plate 2b (3b). That is, the fin 6 is in contact with the heat pipe 2 (3) at two sides (a side indicated by reference numeral 6a in FIGS. 1 and 2 and a side indicated by reference numeral 6e).
  • the fin 6 is cut obliquely from the opening of the slit 6s toward the edge 6a (6c in FIG. 2).
  • a gap 5 is formed between the fin 6 and the portion where the base plate 2a (3a) and the rib plate 2b (3b) are connected, corresponding to the cut portion.
  • a portion where the base plate 2a (3a) and the rib plate 2b (3b) are connected corresponds to an L-shaped bent portion of the heat pipe.
  • FIG. 4 shows only the L-shaped heat pipe 2 in the configuration of the cooler 100.
  • the flow path 4 is bent along the L shape of the heat pipe 2 and reciprocates between both ends of the L shape of the heat pipe 2.
  • the front surface of the base plate 2a (3a) corresponding to the gap 5 corresponds to a mounting region of the semiconductor chip 90 (heat source).
  • a small amount of working fluid is sealed in the flow path 4 inside the heat pipe 2 (3), and the working fluid is vaporized and moved by the heat of the semiconductor chip 90.
  • the heat of the semiconductor chip 90 moves to the working fluid as heat of vaporization.
  • a part of the working fluid vaporized in the vicinity of the semiconductor chip 90 moves to the end of the base plate 2a (3a), where it returns to the liquid and releases heat.
  • the released heat moves to the fins 6.
  • An arrow A in FIG. 2 indicates the heat path.
  • the remainder of the working fluid vaporized in the vicinity of the semiconductor chip 90 moves to the end of the rib plate 2b (3b), where it returns to the liquid and releases heat.
  • the released heat moves to the fins 6.
  • An arrow B in FIG. 2 indicates the heat path.
  • this cooler 100 can efficiently transfer heat to the fins 6. Since the amount of heat transferred to the fin 6 is large, the amount of heat released from the fin 6 is also increased. The cooler 100 achieves a high cooling capacity.
  • the heat pipe 2 can also be used as a self-excited vibration heat pipe.
  • the self-excited vibration type heat pipe uses its own vibration force as a force for moving the working fluid (heat medium) in the pipe.
  • the flow channel portion (the flow channel portion in the vicinity of the L-shaped bent portion) located in the immediate vicinity of the semiconductor chip 90 corresponds to the evaporation portion of the self-excited vibration heat pipe.
  • the flow path portion near the L-shaped end corresponds to the condensing portion.
  • the flow path is in a state where gas phase portions and liquid phase portions exist alternately.
  • the working fluid takes away heat from the semiconductor chip 90 and evaporates to generate new bubbles (the heat medium takes away heat of vaporization).
  • the pressure increases due to the generation of bubbles.
  • the bubbles are liquefied by the cooling action (at this time, the heat medium releases the heat of condensation), and the pressure decreases.
  • a self-excited pressure oscillation occurs due to the pressure difference between the evaporation section and the condensation section, and the heat medium in the gas phase and the liquid phase in the flow path moves from the evaporation section having a high pressure to the condensation section having a low pressure. This movement of the heat medium causes both latent heat and sensible heat to be transported simultaneously.
  • the L-shaped heat pipes 2 and 3 are made of flat multi-hole tubes.
  • a multi-hole tube is a tube having a large number of through-holes made by an extrusion method.
  • FIG. 4 shows a perspective view of the multi-hole tube 50.
  • FIG. 4 in order to facilitate understanding of the drawing, a part of broken lines indicating through holes are omitted.
  • description will be made by paying attention to the four through holes 51a, 51b, 51c, and 51d. Accordingly, in the subsequent drawings, illustration of the through holes other than the through holes 51a to 51d is omitted. Note that some of the through holes 51a and 51d are also omitted.
  • FIG. 5 is a perspective view of the multi-hole tube 50 with the openings at both ends closed.
  • the openings at both ends of the multi-hole tube 50 are closed, adjacent through holes are alternately connected at one end side and the other end side.
  • the through holes 51a and 51b are connected at the front end (see reference numeral 53a).
  • the through holes 51b and 51c are connected at the end on the back side (see reference numeral 53b).
  • the through holes 51c and 51d are connected again at the front end (see reference numeral 53c).
  • the flow path 4 reciprocating the both ends of the multi-hole tube 50 is completed.
  • the multi-hole tube 50 becomes a flat heat pipe 55.
  • a heat pipe having a flow path that reciprocates a plurality of times between both ends is a self-excited vibration type heat pipe.
  • the flat heat pipe 55 is bent into an L shape (see FIG. 6).
  • the heat pipe 2 that is bent in an L shape and has a flow path 4 that reciprocates between both ends of the L shape is completed.
  • the portion corresponding to the L-shaped bottom side corresponds to the base plate 2a, and the portion corresponding to the L-shaped vertical side corresponds to the rib plate 2b.
  • the two heat pipes 2 and 3 are joined back to back (FIG. 7). “Back-to-back” means that the L-shaped vertical surfaces are joined so that the L-shaped bottom surfaces of the two heat pipes 2 and 3 form a single plane.
  • the two heat pipes are joined by brazing.
  • brazing for example, a brazing method using a chamber is employed.
  • the heat pipes 2 and 3 are made of a clad material in which two kinds of metals are bonded together, and may be joined using an outer metal as a brazing material.
  • the clad material used here is typically a laminate of two types of metals having different melting points.
  • a material whose melting point of the metal corresponding to the outside of the heat pipes 2 and 3 is lower than the melting point of the metal corresponding to the inside is used.
  • the outer metal is used as the brazing material. That is, after the two L-shaped heat pipes 2 and 3 are back to back, the heat pipe is heated to a temperature at which the inner metal does not melt but the outer metal melts, and then cooled. Then, the two heat pipes 2 and 3 are joined by melting and solidifying the outer metal.
  • the outer metal is aluminum containing silicon
  • the inner metal is aluminum not containing silicon.
  • the melting point of silicon-containing aluminum is lower than the melting point of aluminum not containing silicon. Further, since the outer metal is used as a brazing material, its thickness may be about 0.1 mm to 0.5 mm.
  • One of the two heat pipes 2 and 3 may be made of the clad material described above.
  • the heat pipe having the base plates 2a and 3a and the rib plates 2b and 3b extending from the back surface of the base plate and having the L-shaped flow path 4 extending over both the inside of the base plate and the inside of the rib plate is completed.
  • a flow path that reciprocates between both ends is also formed inside the heat pipe 3.
  • the fins 6 are coupled to the heat pipes 2 and 3 (FIG. 8).
  • the fin 6 is provided with the slit 6s at substantially the center, and the slit 6s is fitted into the tips of the rib plates 2b and 3b.
  • the fin 6 and the heat pipes 2 and 3 are joined by brazing, for example.
  • the fin 6 may be fixed using a metal outside the clad material as a brazing material.
  • FIG. 9 shows a perspective view of a cooler 100b using the corrugated plate 206 as a fin.
  • the corrugated plate 206 is provided with slits 206 s similar to the fins 6.
  • the corrugated plate 206 has a shape that reciprocates along the Z-axis direction of FIG. 9 with respect to the heat pipe in which the vertical surfaces of the two L-shaped heat pipes 2 and 3 are coupled to each other.
  • the corrugated plate 206 has a crest (wave top) and a trough (wave bottom) that are the return of the wave.
  • the trough (the bottom of the wave) is in contact with the base plate 2a (3a). No valley is formed in the gap 5 or the slit 206s, but it is possible to form the valley by forming it as “margin” or by using another member.
  • the slit 206s penetrates the corrugated plate in a direction crossing the repeated wave of the corrugated plate.
  • the tips of the two rib plates 2b and 3b that are joined are fitted into the slit 206s, and the corrugated plate 206 is fixed to the heat pipe. At this time, the height from the bottom of the wave to the top of the wave is higher than the height from the base plate 2a (3a) to the tip of the rib plate 2b (3b).
  • a vent hole 206 d is provided on the top of the corrugated plate 206. External air passes through the vent hole 206d and contacts the side surface of the corrugated plate. Ventilation is improved by the vent hole 206d, and cooling efficiency is improved.
  • FIG. 10 shows a plurality of narrow L-shaped heat pipes 302.
  • a protrusion 302a is formed on one side of the heat pipe 302
  • a groove 302b is formed on the other side of the heat pipe 302 .
  • the size of the protrusion 302a is substantially equal to the size of the groove 302b.
  • the protrusions 302a of the two adjacent heat pipes 302 are press-fitted into the groove 302b to couple the two heat pipes. Repeat the same to join the three heat pipes. Thus, a wide heat pipe can be obtained.
  • FIG. 11 shows a perspective view of a cooler 100c of the second embodiment.
  • the cooler 100 c includes one L-shaped heat pipe 402 and a plurality of fins 6.
  • the plurality of fins 6 have one edge 6a in contact with the base plate 402a and the other edge 6b in contact with the rib plate 402b.
  • the corner between the edge 6a and the edge 6b is cut, so that a gap 5 is formed between the coupling portion of the base plate 402a and the rib plate 402b and the fin 6.
  • a heat source such as a semiconductor chip is attached to the back side of the gap 5.
  • the heat of the heat source is finned in two paths: a path via the base plate 402a and the edge 6a, and a path via the rib plate 402b and the edge 6b. It is transmitted to 6.
  • the fins 6 and the heat pipes 402 may be joined by brazing or may be joined by other methods.
  • FIG. 12 shows a side view of a cooler 100d of the third embodiment.
  • the cooler 100 d is obtained by assembling the cooler 100 and the fan 13 of the first embodiment to the case 12.
  • the fan 13 is attached so as to blow air from the back surface of the base plate 2a (3a).
  • the wind flowing toward the base plate 2a (3a) by the fan 13 passes between the plurality of fins 6 and flows outward from the holes 12a provided on the sides of the case 12.
  • air smoothly passes between the fins 6 to increase the cooling capacity.
  • FIG. 13 shows a side view of a cooler 100e of the fourth embodiment.
  • the cooler 100 e is obtained by assembling the cooler 100 and the fan 13 of the first embodiment to the case 22.
  • FIG. 131 only the case 22 is shown in cross section.
  • the fan 13 is attached to the side of the case 22.
  • Inside the case 22 is provided a blower passage 24 that directs the direction of the air blown out by the fan 13 toward the back surface of the base plate 2a (3a).
  • the air passage 24 By adopting the air passage 24, the degree of freedom of arrangement of the fan 13 for blowing air to the back surface of the base plate 2a (3a) is expanded.
  • the L-shaped heat pipe is preferably a self-excited vibration type, but is not limited thereto.
  • the heat pipe having the flow path 4 reciprocating between both ends has been described.
  • a heat pipe having a plurality of parallel elongated holes filled with a working fluid may be adopted.
  • the heat pipe and the heat pipe, or the heat pipe and the fin may be coupled by a method other than brazing. For example, they may be joined by an adhesive or welding.
  • the flow path that reciprocates both ends of the multi-hole tube can also be made by the following process.
  • the walls separating the openings are cut out.
  • the walls separating the openings are alternately cut out at both ends of the through-hole so that the plurality of through-holes arranged in parallel form one reciprocating flow path. For example, if a wall between one through hole and the right adjacent through hole is cut out, the wall between the left through hole is cut out at the other end of the one through hole.
  • both ends of the multi-hole tube are closed. In order to close both ends, it may be closed by crimping the end of the multi-hole tube, or it may be closed by attaching a cover.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Provided is a cooler which has heat pipes and fins and which effectively utilizes the fins. The cooler (100) disclosed in the description is provided with bent heat pipes (2 and 3) and multiple fins (6). The heat pipes (2 and 3) form an L-shape and are configured from base plates (2a, 3a), which are attached to a heat-generating body, and from rib plates (2b, 3b), which extend towards the back surface of the base plates. Inside of the heat pipes, a flow path (4) is formed which extends across both the base plates and the rib plates. Further, the edges of the fins are in contact with the back surface of the base plates and with both rib plates. Heat from the heat-generating body is transferred to the fins by two paths, namely, a path via the base plates to the fins and a path via the rib plates to the fins. Therefore, more heat can be transferred to the fins.

Description

冷却器及びその製造方法Cooler and manufacturing method thereof
 本明細書が開示する技術は、ヒートパイプを用いた冷却器とその製造方法に関する。 The technology disclosed in this specification relates to a cooler using a heat pipe and a manufacturing method thereof.
 CPUや半導体チップなどの電子部品を冷却するのにヒートパイプがよく用いられる。ヒートパイプは、密閉された複数の細長孔を有し、その細長孔に少量の作動液を封入した簡単な構造を有している。簡単な構造ではあるが、ヒートパイプの改良に関して様々な技術が提案されている(特許文献1乃至5)。ヒートパイプ自体は熱を輸送するデバイスであり、ヒートパイプに放熱用のフィンが取り付けられるとともに、フィンに空気を送るファンがセットで冷却器を構成することも多い(例えば特許文献1、特許文献2)。 Heat pipes are often used to cool electronic components such as CPUs and semiconductor chips. The heat pipe has a simple structure in which a plurality of sealed elongated holes are sealed and a small amount of working fluid is sealed in the elongated holes. Although it has a simple structure, various techniques for improving the heat pipe have been proposed (Patent Documents 1 to 5). The heat pipe itself is a device for transporting heat, and a fin for heat dissipation is attached to the heat pipe, and a fan that sends air to the fin often constitutes a cooler (for example, Patent Document 1 and Patent Document 2). ).
特開2004-039861号公報JP 2004-039861 A 特開2003-065689号公報Japanese Patent Laid-Open No. 2003-066569 特開2003-302180号公報JP 2003-302180 A 特開2007-062683号公報JP 2007-062683 A 特開2004-125382号公報JP 2004-125382 A
 従来の冷却器は、平坦なヒートパイプにフィンの一辺が固定されているだけであった。しかしながら、そのような構造では、フィンの先端(ヒートパイプから遠い側)は、有効に使われない。本明細書が開示する技術は、フィンの2辺にヒートパイプを当て、フィンを有効に利用する冷却器とその製造方法を提供する。 In the conventional cooler, only one side of the fin is fixed to a flat heat pipe. However, in such a structure, the tip of the fin (the side far from the heat pipe) is not used effectively. The technology disclosed in the present specification provides a cooler that effectively uses fins by applying heat pipes to two sides of the fin, and a method of manufacturing the same.
 本明細書が開示する新規な冷却器は、屈曲したヒートパイプと複数のフィンを備える。ヒートパイプは、L字型をなしている。別言すると、ヒートパイプは、発熱体を取り付けるベースプレートと、ベースプレートの裏面側へ延びるリブプレートによってL字型をなしている。ここで、発熱体を取り付ける面を「おもて面」と称し、発熱体を取り付ける面とは反対側の面を「裏面」と称する。また、ヒートパイプの内部には、ベースプレートとリブプレートの双方にわたって延びるL字型の流路が形成されている。そして、フィンは、その縁がベースプレートの裏面とリブプレートの表面の双方に接している。別言すれば、フィンは、その一辺がベースプレートと接触し、別の辺がリブプレートと接触する。L字型のヒートパイプの屈曲部(ベースプレートとリブプレートが繋がるポイント)とフィンとの間には隙間が設けられている。 The novel cooler disclosed in this specification includes a bent heat pipe and a plurality of fins. The heat pipe is L-shaped. In other words, the heat pipe is L-shaped by a base plate to which a heating element is attached and a rib plate extending to the back side of the base plate. Here, the surface to which the heating element is attached is referred to as “front surface”, and the surface opposite to the surface to which the heating element is attached is referred to as “back surface”. In addition, an L-shaped channel extending over both the base plate and the rib plate is formed inside the heat pipe. And the edge of the fin is in contact with both the back surface of the base plate and the surface of the rib plate. In other words, the fin has one side in contact with the base plate and the other side in contact with the rib plate. A gap is provided between a bent portion of the L-shaped heat pipe (a point where the base plate and the rib plate are connected) and the fin.
 上記の冷却器では、ベースプレートのおもて面に半導体チップなどの熱源が取り付けられる。熱源の熱は、2つの経路、即ち、ベースプレートからフィンに伝わる経路と、リブプレートを経てフィンに伝わる経路でフィンに伝わる。従って熱源の熱が効率よくフィンに伝えられる。フィンに伝わる熱量が大きければ、フィンから放出される熱量も大きくなる。上記の冷却器は、フィンを有効に使うことができ、高い冷却効率を達成できる。また、L字型ヒートパイプは、平坦なヒートパイプを屈曲して作られる。平坦なヒートパイプは、押出成形で安価に作ることができる。 In the above cooler, a heat source such as a semiconductor chip is attached to the front surface of the base plate. The heat of the heat source is transferred to the fin in two paths: a path that is transmitted from the base plate to the fin and a path that is transmitted to the fin through the rib plate. Therefore, the heat of the heat source is efficiently transmitted to the fins. If the amount of heat transferred to the fins is large, the amount of heat released from the fins also increases. The above-described cooler can effectively use fins and can achieve high cooling efficiency. The L-shaped heat pipe is made by bending a flat heat pipe. A flat heat pipe can be made inexpensively by extrusion.
 本明細書が開示する冷却器は、2つのL字型のヒートパイプのリブプレート同士を結合した構造を有していてもよい。別言すれば、2つのL字型のヒートパイプが、夫々のL字の底面が一つの平面をなすように背中合わせに結合した構造を有していてもよい。 The cooler disclosed in the present specification may have a structure in which rib plates of two L-shaped heat pipes are coupled to each other. In other words, two L-shaped heat pipes may have a structure in which the L-shaped bottom surfaces are coupled back to back so that they form a single plane.
 フィンは、スリットを有している金属板でできているとよい。そのスリットをリブプレートに嵌めて取り付けることができる。フィンは、複数の薄い板でもよいが、一枚の波板であってもよい。その場合、波板の山(波の頂上)に通風孔が設けられているとよい。波板の谷(波の底)がベースプレートに接するように波板を取り付けると、波板の山はフィンの先端に相当する。そこに通風孔を設ければ、フィンの側面への風通しが良くなる。 The fin is preferably made of a metal plate having a slit. The slit can be fitted to the rib plate. The fins may be a plurality of thin plates, but may be a single corrugated plate. In that case, it is preferable that a ventilation hole is provided in the peak of the corrugated plate (the top of the wave). When the corrugated plate is attached so that the corrugated valley (the bottom of the wave) is in contact with the base plate, the corrugated peak corresponds to the tip of the fin. If a ventilation hole is provided there, the ventilation to the side surface of a fin will become good.
 ヒートパイプの内部には平行に延びる複数の流路が形成されていてもよいし、次に述べる1本あるいは数本の流路が形成されていてもよい。即ち、平行に並んだ複数の流路において、隣接する流路が、一方の端部側と他方の端部側で交互に連結しており、ヒートパイプの一方の端と他方の端の間で往復する流路が形成されているとよい。そのような往復流路を備えれば、自励振動式のヒートパイプを構成することができる。 A plurality of flow paths extending in parallel may be formed inside the heat pipe, or one or several flow paths described below may be formed. That is, in a plurality of flow paths arranged in parallel, adjacent flow paths are alternately connected on one end side and the other end side, and between one end and the other end of the heat pipe. A reciprocating flow path may be formed. If such a reciprocating flow path is provided, a self-excited vibration heat pipe can be configured.
 本明細書は、上記した冷却器に適した製造方法も提供する。その方法は、次の工程を含む。一つは、2つのL字型のヒートパイプのリブプレート同士を結合する工程である。別言すれば、2つのL字の底面が一つの平面をなすように2つのL字の垂直面同士を接合する工程である。他の一つは、スリットつきフィンのスリットを、2つのヒートパイプの結合部分に嵌め込む工程である。L字型のヒートパイプは、典型的には、平坦なヒートパイプをL字型に曲げて形成される。前述したように、安価に製造できる平坦なヒートパイプを利用することで、上記した冷却器自体を安価にすることができる。 This specification also provides a manufacturing method suitable for the above-described cooler. The method includes the following steps. One is a process of joining rib plates of two L-shaped heat pipes. In other words, it is a step of joining two L-shaped vertical surfaces together so that the bottom surfaces of the two L-shapes form one plane. The other is a process of fitting the slits of the fins with slits into the joining part of the two heat pipes. The L-shaped heat pipe is typically formed by bending a flat heat pipe into an L-shape. As described above, the above-described cooler itself can be made inexpensive by using a flat heat pipe that can be manufactured at low cost.
 本明細書が開示する技術の詳細、及び、さらなる改良は、発明の実施の形態で説明する。 Details of the technology disclosed in this specification and further improvements will be described in the embodiments of the invention.
第1実施例の冷却器の斜視図である。It is a perspective view of the cooler of the 1st example. 第1実施例の冷却器の側面図である。It is a side view of the cooler of the 1st example. L字型ヒートパイプの斜視図である。It is a perspective view of an L-shaped heat pipe. 多穴管の斜視図である。It is a perspective view of a multi-hole pipe. 開口を閉じた多穴管の斜視図である。It is a perspective view of the multi-hole pipe | tube which closed opening. L字型ヒートパイプの完成図を示す斜視図である。It is a perspective view which shows the completion figure of an L-shaped heat pipe. 2つのL字型ヒートパイプを結合する様子を示す図である。It is a figure which shows a mode that two L-shaped heat pipes are couple | bonded. フィンを取り付ける様子を示す図である。It is a figure which shows a mode that a fin is attached. フィンとして波板を使った冷却器の斜視図である。It is a perspective view of the cooler using a corrugated sheet as a fin. 複数のヒートパイプを連結する様子を示す図である。It is a figure which shows a mode that a some heat pipe is connected. 第2実施例の冷却器の斜視図である。It is a perspective view of the cooler of the 2nd example. 第3実施例の冷却器の側面図である。It is a side view of the cooler of the 3rd example. 第4実施例の冷却器の側面図である。It is a side view of the cooler of the 4th example.
 (第1実施例)図面を参照して実施例の冷却器を説明する。図1は、第1実施例の冷却器100の斜視図である。図2は、冷却器100の側面図である。冷却器100は、2つのL字型のヒートパイプ2、3と、複数のフィン6で構成される。2つのL字型ヒートパイプ2、3は、夫々のL字の底面が一つの平面をなすように背中合わせに結合しており、全体でT字型をなしている。L字型ヒートパイプ2(3)のL字の底辺に相当する部分をベースプレート2a(3a)と称し、L字の垂直辺に相当する部分をリブプレート2b(3b)と称する。説明のため、ベースプレート2a(3a)において、半導体チップ90(熱源)が取り付けられる側をおもて面と称し、フィン6が接する側を裏面と称する。 (First Embodiment) The cooler of the embodiment will be described with reference to the drawings. FIG. 1 is a perspective view of the cooler 100 of the first embodiment. FIG. 2 is a side view of the cooler 100. The cooler 100 includes two L- shaped heat pipes 2 and 3 and a plurality of fins 6. The two L- shaped heat pipes 2 and 3 are joined back to back so that the bottom surfaces of the respective L-shapes form one plane, and form a T shape as a whole. The portion corresponding to the L-shaped bottom side of the L-shaped heat pipe 2 (3) is referred to as a base plate 2a (3a), and the portion corresponding to the L-shaped vertical side is referred to as a rib plate 2b (3b). For explanation, in the base plate 2a (3a), the side to which the semiconductor chip 90 (heat source) is attached is referred to as a front surface, and the side in contact with the fins 6 is referred to as a back surface.
 L字型ヒートパイプ2(3)の内部には、ベースプレート2a(3a)とリブプレート2b(3b)にわたってL字の端から端まで延びる流路4(図2参照)が形成されている。流路4は、別言すれば、閉じた細長孔である。後述するように、流路4は、L字の端で折り返し、L字の両端の間を往復している。流路4は、内部に作動液が封入される流路である。流路4については後に別途説明する。 Inside the L-shaped heat pipe 2 (3), a flow path 4 (see FIG. 2) is formed extending from one end to the other over the base plate 2a (3a) and the rib plate 2b (3b). In other words, the channel 4 is a closed elongated hole. As will be described later, the flow path 4 is folded at the end of the L shape and reciprocates between both ends of the L shape. The flow path 4 is a flow path in which a working fluid is enclosed. The flow path 4 will be separately described later.
 フィン6は、中央にスリット6sが形成された金属薄板であり、そのスリット6sが、結合したリブプレート2b(3b)の先端に嵌合する(図2参照)。フィン6の縁6aはベースプレート2a(3a)の裏面に接触し、スリット6sの縁がリブプレート2b(3b)に接している。即ち、フィン6は2辺(図1及び図2において符号6aが示す辺と、符号6eが示す辺)でヒートパイプ2(3)に接している。フィン6は、スリット6sの開口から縁6aに向けて斜めにカットされている(図2の6c)。カットされた部分に対応して、ベースプレート2a(3a)とリブプレート2b(3b)が繋がった箇所とフィン6との間に隙間5が形成される。ベースプレート2a(3a)とリブプレート2b(3b)が繋がった箇所は、ヒートパイプのL字の屈曲部に相当する。 The fin 6 is a thin metal plate having a slit 6s formed at the center, and the slit 6s is fitted to the tip of the coupled rib plate 2b (3b) (see FIG. 2). The edge 6a of the fin 6 is in contact with the back surface of the base plate 2a (3a), and the edge of the slit 6s is in contact with the rib plate 2b (3b). That is, the fin 6 is in contact with the heat pipe 2 (3) at two sides (a side indicated by reference numeral 6a in FIGS. 1 and 2 and a side indicated by reference numeral 6e). The fin 6 is cut obliquely from the opening of the slit 6s toward the edge 6a (6c in FIG. 2). A gap 5 is formed between the fin 6 and the portion where the base plate 2a (3a) and the rib plate 2b (3b) are connected, corresponding to the cut portion. A portion where the base plate 2a (3a) and the rib plate 2b (3b) are connected corresponds to an L-shaped bent portion of the heat pipe.
 流路4の構造を示すため、図4に、冷却器100の構成のうち、L字型のヒートパイプ2のみを示す。図4に示されているように、流路4は、ヒートパイプ2のL字型に沿って屈曲しており、ヒートパイプ2のL字の両端の間を往復している。 In order to show the structure of the flow path 4, FIG. 4 shows only the L-shaped heat pipe 2 in the configuration of the cooler 100. As shown in FIG. 4, the flow path 4 is bent along the L shape of the heat pipe 2 and reciprocates between both ends of the L shape of the heat pipe 2.
 冷却器100の機能を説明する。隙間5に対応したベースプレート2a(3a)のおもて面が、半導体チップ90(熱源)の取り付け領域に相当する。ヒートパイプ2(3)の内部の流路4には少量の作動液が封入されており、半導体チップ90の熱により作動液は気化し移動する。半導体チップ90の熱は気化熱として作動液に移動する。半導体チップ90の付近で気化した作動液の一部は、ベースプレート2a(3a)の端へ移動し、そこで液体に戻り、熱を放出する。放出された熱はフィン6へ移動する。図2の矢印Aがその熱の経路を示している。他方、半導体チップ90の付近で気化した作動液の残りは、リブプレート2b(3b)の端へ移動し、そこで液体に戻り、熱を放出する。放出された熱はフィン6へ移動する。図2の矢印Bがその熱の経路を示している。このように、半導体チップ90の熱は、2つの経路を通ってフィン6の2箇所からフィン6に伝達される。それゆえ、この冷却器100は、効率よくフィン6へ熱を移動させることができる。フィン6へ移動する熱量が多いので、フィン6から放出される熱量も多くなる。この冷却器100は、高い冷却能力を達成する。 The function of the cooler 100 will be described. The front surface of the base plate 2a (3a) corresponding to the gap 5 corresponds to a mounting region of the semiconductor chip 90 (heat source). A small amount of working fluid is sealed in the flow path 4 inside the heat pipe 2 (3), and the working fluid is vaporized and moved by the heat of the semiconductor chip 90. The heat of the semiconductor chip 90 moves to the working fluid as heat of vaporization. A part of the working fluid vaporized in the vicinity of the semiconductor chip 90 moves to the end of the base plate 2a (3a), where it returns to the liquid and releases heat. The released heat moves to the fins 6. An arrow A in FIG. 2 indicates the heat path. On the other hand, the remainder of the working fluid vaporized in the vicinity of the semiconductor chip 90 moves to the end of the rib plate 2b (3b), where it returns to the liquid and releases heat. The released heat moves to the fins 6. An arrow B in FIG. 2 indicates the heat path. Thus, the heat of the semiconductor chip 90 is transferred to the fin 6 from two locations of the fin 6 through two paths. Therefore, this cooler 100 can efficiently transfer heat to the fins 6. Since the amount of heat transferred to the fin 6 is large, the amount of heat released from the fin 6 is also increased. The cooler 100 achieves a high cooling capacity.
 ヒートパイプ2は、自励振動式ヒートパイプとして利用することもできる。自励振動式ヒートパイプは、パイプ内の作動液(熱媒体)を移動させる力として自身の振動力を用いる。その場合、半導体チップ90の直近に位置する流路部分(L字の屈曲部付近の流路部分)が、自励振動式ヒートパイプの蒸発部に相当する。L字の端部付近の流路部分が、凝縮部に相当する。流路内は、気相部と液相部が交互に存在する状態となる。蒸発部にて、作動液は半導体チップ90の熱を奪い蒸発し新たな気泡が発生する(熱媒体は気化熱を奪う)。蒸発部では気泡発生により圧力が上昇する。一方、凝縮部では、冷却作用により気泡が液化し(このとき、熱媒体は凝縮熱を放出する)、圧力が低下する。蒸発部と凝縮部の圧力差により、自励的な圧力振動が発生し、流路内の気相と液相の熱媒体が、圧力の高い蒸発部から圧力の低い凝縮部へと移動する。熱媒体のこの移動により、潜熱と顕熱の両方の熱の輸送が同時に行われる。 The heat pipe 2 can also be used as a self-excited vibration heat pipe. The self-excited vibration type heat pipe uses its own vibration force as a force for moving the working fluid (heat medium) in the pipe. In that case, the flow channel portion (the flow channel portion in the vicinity of the L-shaped bent portion) located in the immediate vicinity of the semiconductor chip 90 corresponds to the evaporation portion of the self-excited vibration heat pipe. The flow path portion near the L-shaped end corresponds to the condensing portion. The flow path is in a state where gas phase portions and liquid phase portions exist alternately. In the evaporation section, the working fluid takes away heat from the semiconductor chip 90 and evaporates to generate new bubbles (the heat medium takes away heat of vaporization). In the evaporation section, the pressure increases due to the generation of bubbles. On the other hand, in the condensing part, the bubbles are liquefied by the cooling action (at this time, the heat medium releases the heat of condensation), and the pressure decreases. A self-excited pressure oscillation occurs due to the pressure difference between the evaporation section and the condensation section, and the heat medium in the gas phase and the liquid phase in the flow path moves from the evaporation section having a high pressure to the condensation section having a low pressure. This movement of the heat medium causes both latent heat and sensible heat to be transported simultaneously.
 次に、冷却器100の製造方法を説明する。L字型のヒートパイプ2、3は、平坦な多穴管から作られる。多穴管は、押出成形法で作られる、多数の貫通孔を有する管である。図4に多穴管50の斜視図を示す。図4では、図を理解し易くするために、貫通孔を示す破線を一部省略して描いてある。以下、4本の貫通孔51a、51b、51c、及び、51dに着目して説明する。従って以降の図では貫通孔51a~51d以外の貫通孔は図示を省略する。なお、貫通孔51a、51dについても、一部の図示を省略している。図5は、両端の開口を閉じた多穴管50の斜視図である。多穴管50の両端の開口を閉じる際、隣接する貫通孔を、一方の端部側と他方の端部側で交互に連結する。図5では、貫通孔51aと51bは、手前の端部で連結されている(符号53a参照)。貫通孔51bと51cは、奥側の端部で連結されている(符号53b参照)。貫通孔51cと51dは、再び手前側の端部で連結されている(符号53c参照)。同様にして全ての貫通孔を、その両端で交互に連結すると、多穴管50の両端を往復する流路4が完成する。なお、最後の開口を閉じる際には、流路4に少量の作動液を入れる。こうして、多穴管50は、平坦なヒートパイプ55となる。なお、両端の間を複数回往復する流路を有するヒートパイプは、自励振動式のヒートパイプとなる。 Next, a method for manufacturing the cooler 100 will be described. The L-shaped heat pipes 2 and 3 are made of flat multi-hole tubes. A multi-hole tube is a tube having a large number of through-holes made by an extrusion method. FIG. 4 shows a perspective view of the multi-hole tube 50. In FIG. 4, in order to facilitate understanding of the drawing, a part of broken lines indicating through holes are omitted. Hereinafter, description will be made by paying attention to the four through holes 51a, 51b, 51c, and 51d. Accordingly, in the subsequent drawings, illustration of the through holes other than the through holes 51a to 51d is omitted. Note that some of the through holes 51a and 51d are also omitted. FIG. 5 is a perspective view of the multi-hole tube 50 with the openings at both ends closed. When the openings at both ends of the multi-hole tube 50 are closed, adjacent through holes are alternately connected at one end side and the other end side. In FIG. 5, the through holes 51a and 51b are connected at the front end (see reference numeral 53a). The through holes 51b and 51c are connected at the end on the back side (see reference numeral 53b). The through holes 51c and 51d are connected again at the front end (see reference numeral 53c). Similarly, when all the through holes are alternately connected at both ends, the flow path 4 reciprocating the both ends of the multi-hole tube 50 is completed. When closing the last opening, a small amount of working fluid is put into the flow path 4. Thus, the multi-hole tube 50 becomes a flat heat pipe 55. A heat pipe having a flow path that reciprocates a plurality of times between both ends is a self-excited vibration type heat pipe.
 次に、平坦なヒートパイプ55をL字型に屈曲させる(図6参照)。こうして、L字型に屈曲しており、内部にL字の両端の間を往復する流路4を有するヒートパイプ2が完成する。なお、L字の底辺に対応する部分が、ベースプレート2aに相当し、L字の垂直辺に相当する部分がリブプレート2bに相当する。 Next, the flat heat pipe 55 is bent into an L shape (see FIG. 6). Thus, the heat pipe 2 that is bent in an L shape and has a flow path 4 that reciprocates between both ends of the L shape is completed. The portion corresponding to the L-shaped bottom side corresponds to the base plate 2a, and the portion corresponding to the L-shaped vertical side corresponds to the rib plate 2b.
 ヒートパイプ2と同じ形のヒートパイプ3を作成する。次に、2つのヒートパイプ2、3を背中合わせに結合する(図7)。「背中合わせ」とは、2つのヒートパイプ2、3のL字の底面が一つの平面をなすように、L字の垂直面同士を結合することである。なお、2つのヒートパイプは、ロウ付けにより結合される。ロウ付けは、例えば、チャンバを使ったロウ付け方法が採用される。あるいは、ヒートパイプ2と3は、2種類の金属を張り合わせたクラッド材で作られており、外側の金属をロウ材として用いて結合されてもよい。 Create a heat pipe 3 that has the same shape as the heat pipe 2. Next, the two heat pipes 2 and 3 are joined back to back (FIG. 7). “Back-to-back” means that the L-shaped vertical surfaces are joined so that the L-shaped bottom surfaces of the two heat pipes 2 and 3 form a single plane. The two heat pipes are joined by brazing. For brazing, for example, a brazing method using a chamber is employed. Alternatively, the heat pipes 2 and 3 are made of a clad material in which two kinds of metals are bonded together, and may be joined using an outer metal as a brazing material.
 ここで用いるクラッド材は、典型的には、融点の異なる2種類の金属を張り合わせものである。ここで用いるクラッド材は、ヒートパイプ2、3の外側に相当する金属の融点が内側に相当する金属の融点よりも低いものを用いる。そして、外側の金属をロウ材として用いる。即ち、2つのL字型ヒートパイプ2と3を背中合わせにした後、内側の金属は溶融しないが外側の金属が溶融する温度にヒートパイプを加熱し、その後冷却する。そうすると、外側の金属の溶融・凝固により、2つのヒートパイプ2、3が結合する。例えば、外側の金属はシリコンを含有したアルミであり、内側の金属はシリコンを含有しないアルミである。シリコン含有のアルミの融点は、シリコンを含有しないアルミの融点よりも低くなる。また、外側の金属はロウ材として利用するのでその厚みは0.1mm~0.5mm程度でよい。2つのヒートパイプ2、3のうち、一方が上記したクラッド材で作られているだけでもよい。 The clad material used here is typically a laminate of two types of metals having different melting points. As the clad material used here, a material whose melting point of the metal corresponding to the outside of the heat pipes 2 and 3 is lower than the melting point of the metal corresponding to the inside is used. The outer metal is used as the brazing material. That is, after the two L-shaped heat pipes 2 and 3 are back to back, the heat pipe is heated to a temperature at which the inner metal does not melt but the outer metal melts, and then cooled. Then, the two heat pipes 2 and 3 are joined by melting and solidifying the outer metal. For example, the outer metal is aluminum containing silicon, and the inner metal is aluminum not containing silicon. The melting point of silicon-containing aluminum is lower than the melting point of aluminum not containing silicon. Further, since the outer metal is used as a brazing material, its thickness may be about 0.1 mm to 0.5 mm. One of the two heat pipes 2 and 3 may be made of the clad material described above.
 こうして、ベースプレート2a、3aと、ベースプレートの裏面から延びるリブプレート2b、3bを有しており、ベースプレートの内部とリブプレートの内部の双方にわたって延びるL字型の流路4を有するヒートパイプが完成する。図示を省略しているが、ヒートパイプ3の内部にも、両端の間を往復する流路が形成されている。 Thus, the heat pipe having the base plates 2a and 3a and the rib plates 2b and 3b extending from the back surface of the base plate and having the L-shaped flow path 4 extending over both the inside of the base plate and the inside of the rib plate is completed. . Although not shown, a flow path that reciprocates between both ends is also formed inside the heat pipe 3.
 最後に、ヒートパイプ2、3にフィン6を結合する(図8)。前述したように、フィン6は、ほぼ中央にスリット6sが設けられており、そのスリット6sを、リブプレート2b、3bの先端に嵌め込む。フィン6とヒートパイプ2、3は、例えばロウ付けで結合される。ヒートパイプ2と3の少なくとも一方が上記したクラッド材で作られている場合、クラッド材の外側の金属をロウ材として使ってフィン6を固定してもよい。こうして、図1の冷却器100が完成する。 Finally, the fins 6 are coupled to the heat pipes 2 and 3 (FIG. 8). As described above, the fin 6 is provided with the slit 6s at substantially the center, and the slit 6s is fitted into the tips of the rib plates 2b and 3b. The fin 6 and the heat pipes 2 and 3 are joined by brazing, for example. When at least one of the heat pipes 2 and 3 is made of the above-described clad material, the fin 6 may be fixed using a metal outside the clad material as a brazing material. Thus, the cooler 100 of FIG. 1 is completed.
 冷却器100の変形例を説明する。図1の冷却器100は複数の薄板のフィン6を採用した。複数のフィン6に代えて、波板をフィンとして用いることができる。図9に、波板206をフィンとして用いた冷却器100bの斜視図を示す。波板206には、フィン6と同様にスリット206sが設けられている。波板206は、2つのL字型ヒートパイプ2、3の垂直面同士を結合したヒートパイプに対し、図9のZ軸方向に沿って往復する形状である。波板206には、波の折り返しである山部(波の頂上)と谷部(波の底)を有している。谷部(波の底)がベースプレート2a(3a)に接している。隙間5やスリット206sには谷部は形成されないが、「のりしろ」のように形成したり、別部材で構成することで、谷部を形成することは可能である。スリット206sは、波板の繰り返す波を横切る方向に波板を貫いている。結合した2つのリブプレート2bと3bの先端がスリット206sに嵌め込まれ、波板206がヒートパイプに固定される。このとき、波の底から波の頂上までの高さがベースプレート2a(3a)からリブプレート2b(3b)の先端までの高さよりも高くなる。また、波板206の波の頂上に通気孔206dが設けられている。外部の空気が通気孔206dを通り波板の側面に接する。通気孔206dにより通気が良くなり、冷却効率が向上する。 A modification of the cooler 100 will be described. The cooler 100 of FIG. 1 employs a plurality of thin plate fins 6. Instead of the plurality of fins 6, corrugated plates can be used as fins. FIG. 9 shows a perspective view of a cooler 100b using the corrugated plate 206 as a fin. The corrugated plate 206 is provided with slits 206 s similar to the fins 6. The corrugated plate 206 has a shape that reciprocates along the Z-axis direction of FIG. 9 with respect to the heat pipe in which the vertical surfaces of the two L-shaped heat pipes 2 and 3 are coupled to each other. The corrugated plate 206 has a crest (wave top) and a trough (wave bottom) that are the return of the wave. The trough (the bottom of the wave) is in contact with the base plate 2a (3a). No valley is formed in the gap 5 or the slit 206s, but it is possible to form the valley by forming it as “margin” or by using another member. The slit 206s penetrates the corrugated plate in a direction crossing the repeated wave of the corrugated plate. The tips of the two rib plates 2b and 3b that are joined are fitted into the slit 206s, and the corrugated plate 206 is fixed to the heat pipe. At this time, the height from the bottom of the wave to the top of the wave is higher than the height from the base plate 2a (3a) to the tip of the rib plate 2b (3b). In addition, a vent hole 206 d is provided on the top of the corrugated plate 206. External air passes through the vent hole 206d and contacts the side surface of the corrugated plate. Ventilation is improved by the vent hole 206d, and cooling efficiency is improved.
 幅の広いL字型のヒートパイプを作る場合、幅の狭いヒートパイプを連結することも好適である。図10に、複数の幅狭のL字型ヒートパイプ302を示す。ヒートパイプ302の一方の側方には、突条302aが形成されている。ヒートパイプ302の他方の側方には、溝302bが形成されている。突条302aの大きさは、溝302bの大きさにほぼ等しい。隣接する2つのヒートパイプ302の突条302aを溝302bに圧入し、2つのヒートパイプを結合する。同じことを繰り返し、3個のヒートパイプを結合する。こうして、幅の広いヒートパイプを得ることができる。 When making a wide L-shaped heat pipe, it is also preferable to connect a narrow heat pipe. FIG. 10 shows a plurality of narrow L-shaped heat pipes 302. On one side of the heat pipe 302, a protrusion 302a is formed. On the other side of the heat pipe 302, a groove 302b is formed. The size of the protrusion 302a is substantially equal to the size of the groove 302b. The protrusions 302a of the two adjacent heat pipes 302 are press-fitted into the groove 302b to couple the two heat pipes. Repeat the same to join the three heat pipes. Thus, a wide heat pipe can be obtained.
 (第2実施例)図11に第2実施例の冷却器100cの斜視図を示す。この冷却器100cは、一つのL字型のヒートパイプ402と、複数のフィン6で構成される。複数のフィン6は、一つの縁6aがベースプレート402aと接し、他の縁6bがリブプレート402bと接している。縁6aと縁6bの間のコーナーはカットされており、それゆえ、ベースプレート402aとリブプレート402bの結合部とフィン6の間には隙間5が形成される。隙間5の裏側に半導体チップなどの熱源が取り付けられる。この冷却器100cも、第1実施例の冷却器100と同様に、熱源の熱は、ベースプレート402aと縁6aを経由する経路と、リブプレート402bと縁6bを経由する経路の2つの経路でフィン6に伝わる。フィン6とヒートパイプ402は、ロウ付けによって接合してもよいし、他の方法で接合してもよい。 (Second Embodiment) FIG. 11 shows a perspective view of a cooler 100c of the second embodiment. The cooler 100 c includes one L-shaped heat pipe 402 and a plurality of fins 6. The plurality of fins 6 have one edge 6a in contact with the base plate 402a and the other edge 6b in contact with the rib plate 402b. The corner between the edge 6a and the edge 6b is cut, so that a gap 5 is formed between the coupling portion of the base plate 402a and the rib plate 402b and the fin 6. A heat source such as a semiconductor chip is attached to the back side of the gap 5. In the cooler 100c, similarly to the cooler 100 of the first embodiment, the heat of the heat source is finned in two paths: a path via the base plate 402a and the edge 6a, and a path via the rib plate 402b and the edge 6b. It is transmitted to 6. The fins 6 and the heat pipes 402 may be joined by brazing or may be joined by other methods.
 (第3実施例)図12に第3実施例の冷却器100dの側面図を示す。冷却器100dは、ケース12に第1実施例の冷却器100とファン13を組み付けたものである。図12では、ケース12のみを断面で示している。ファン13は、ベースプレート2a(3a)の裏面から風を吹き付けるように取り付けられている。ファン13によってベースプレート2a(3a)に向かって流れる風は、複数のフィン6の間を通り、ケース12の側方に設けられた孔12aから外へと流れる。この冷却器100dは、フィン6の間をスムーズに空気が通り、冷却能力を高めている。 (Third Embodiment) FIG. 12 shows a side view of a cooler 100d of the third embodiment. The cooler 100 d is obtained by assembling the cooler 100 and the fan 13 of the first embodiment to the case 12. In FIG. 12, only the case 12 is shown in cross section. The fan 13 is attached so as to blow air from the back surface of the base plate 2a (3a). The wind flowing toward the base plate 2a (3a) by the fan 13 passes between the plurality of fins 6 and flows outward from the holes 12a provided on the sides of the case 12. In the cooler 100d, air smoothly passes between the fins 6 to increase the cooling capacity.
 (第4実施例)図13に第4実施例の冷却器100eの側面図を示す。冷却器100eは、ケース22に第1実施例の冷却器100とファン13を組み付けたものである。図131でも、ケース22のみを断面で示している。ファン13は、ケース22の側方に取り付けられている。ケース22の内部には、ファン13が吹き出す空気の向きをベースプレート2a(3a)の裏面へ向ける送風路24が設けられている。送風路24を採用することによって、ベースプレート2a(3a)の裏面へ空気を吹き付けるためのファン13の配置の自由度が広がる。 (Fourth Embodiment) FIG. 13 shows a side view of a cooler 100e of the fourth embodiment. The cooler 100 e is obtained by assembling the cooler 100 and the fan 13 of the first embodiment to the case 22. In FIG. 131, only the case 22 is shown in cross section. The fan 13 is attached to the side of the case 22. Inside the case 22 is provided a blower passage 24 that directs the direction of the air blown out by the fan 13 toward the back surface of the base plate 2a (3a). By adopting the air passage 24, the degree of freedom of arrangement of the fan 13 for blowing air to the back surface of the base plate 2a (3a) is expanded.
 実施例の技術に関する留意点を述べる。L字型のヒートパイプは、自励振動式が望ましいが、それに限られるものではない。実施例では、両端の間を往復する流路4を有するヒートパイプを説明した。そのようなヒートパイプに代えて、作動液が封入された複数の平行な細長孔を有するヒートパイプを採用してもよい。ヒートパイプとヒートパイプ、あるいは、ヒートパイプとフィンは、ロウ付け以外の方法で結合してもよい。例えば、接着剤あるいは溶接によってそれらを結合してもよい。 留意 Points to keep in mind regarding the technology of the examples. The L-shaped heat pipe is preferably a self-excited vibration type, but is not limited thereto. In the embodiment, the heat pipe having the flow path 4 reciprocating between both ends has been described. Instead of such a heat pipe, a heat pipe having a plurality of parallel elongated holes filled with a working fluid may be adopted. The heat pipe and the heat pipe, or the heat pipe and the fin may be coupled by a method other than brazing. For example, they may be joined by an adhesive or welding.
 図10に示したように、複数のヒートパイプを連結する場合、突条302aと溝302bを有する平坦なヒートパイプを結合してからL字に屈曲させることも好適である。突条と溝の結合部が、屈曲によって塑性変形し、2つのヒートパイプが強固に連結される。 As shown in FIG. 10, when connecting a plurality of heat pipes, it is also preferable to join a flat heat pipe having protrusions 302 a and grooves 302 b and then bend it into an L shape. The joint between the protrusion and the groove is plastically deformed by bending, and the two heat pipes are firmly connected.
 多穴管の両端を往復する流路は、次の工程によって作ることもできる。隣接する貫通孔について、それらの開口部を隔てる壁を切り欠く。このとき、平行に並んでいる複数の貫通孔が、往復する一つの流路となるように、貫通孔の両端で交互に、開口部を隔てる壁を切り欠く。例えば、一つの貫通孔の一端側で右隣の貫通孔との間の壁を切り欠いたら、その一つの貫通孔の他端側では左隣の貫通孔との間の壁を切り欠く。次いで、多穴管の両端を塞ぐ。両端を塞ぐには、多穴管の端部を加締めることによって塞いでもよいし、カバーを取り付けて塞いでもよい。 The flow path that reciprocates both ends of the multi-hole tube can also be made by the following process. For adjacent through holes, the walls separating the openings are cut out. At this time, the walls separating the openings are alternately cut out at both ends of the through-hole so that the plurality of through-holes arranged in parallel form one reciprocating flow path. For example, if a wall between one through hole and the right adjacent through hole is cut out, the wall between the left through hole is cut out at the other end of the one through hole. Next, both ends of the multi-hole tube are closed. In order to close both ends, it may be closed by crimping the end of the multi-hole tube, or it may be closed by attaching a cover.
 本発明の代表的かつ非限定的な具体例について、図面を参照して詳細に説明した。この詳細な説明は、本発明の好ましい例を実施するための詳細を当業者に示すことを単純に意図しており、本発明の範囲を限定することを意図したものではない。また、開示された追加的な特徴ならびに発明は、さらに改善された冷却器を提供するために、他の特徴や発明とは別に、又は共に用いることができる。 Specific and non-limiting specific examples of the present invention have been described in detail with reference to the drawings. This detailed description is intended merely to present those skilled in the art with the details for practicing the preferred embodiments of the present invention and is not intended to limit the scope of the invention. Also, the disclosed additional features and inventions can be used separately from or in conjunction with other features and inventions to provide further improved coolers.
 また、上記の詳細な説明で開示された特徴や工程の組み合わせは、最も広い意味において本発明を実施する際に必須のものではなく、特に本発明の代表的な具体例を説明するためにのみ記載されるものである。さらに、上記の代表的な具体例の様々な特徴、ならびに、特許請求の範囲に記載されるものの様々な特徴は、本発明の追加的かつ有用な実施形態を提供するにあたって、ここに記載される具体例のとおりに、あるいは列挙された順番のとおりに組合せなければならないものではない。 Further, the combinations of features and steps disclosed in the above detailed description are not indispensable when practicing the present invention in the broadest sense, and are only for explaining representative specific examples of the present invention. It is described. Moreover, various features of the representative embodiments described above, as well as various features of what is recited in the claims, are described herein in providing additional and useful embodiments of the present invention. They do not have to be combined in the specific examples or in the order listed.
 本明細書及び/又は特許請求の範囲に記載された全ての特徴は、実施例及び/又は特許請求の範囲に記載された特徴の構成とは別に、出願当初の開示ならびに特許請求の範囲に記載された特定事項に対する限定として、個別に、かつ互いに独立して開示されることを意図するものである。さらに、全ての数値範囲及びグループ又は集団に関する記載は、出願当初の開示ならびに特許請求の範囲に記載された特定事項に対する限定として、それらの中間の構成を開示する意図を持ってなされている。 All the features described in the specification and / or claims are described in the disclosure and the claims at the beginning of the application separately from the configuration of the features described in the embodiments and / or claims. It is intended that the specific details provided be disclosed separately and independently of one another. Further, all numerical ranges and descriptions regarding groups or groups are intended to disclose intermediate configurations thereof as a limitation to the specific matters described in the original disclosure and the claims.
 以上、本発明の具体例を詳細に説明したが、これらは例示に過ぎず、特許請求の範囲を限定するものではない。特許請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。本明細書または図面に説明した技術要素は、単独であるいは各種の組合せによって技術的有用性を発揮するものであり、出願時請求項記載の組合せに限定されるものではない。また、本明細書または図面に例示した技術は複数目的を同時に達成し得るものであり、そのうちの一つの目的を達成すること自体で技術的有用性を持つものである。 Specific examples of the present invention have been described in detail above, but these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above. The technical elements described in this specification or the drawings exhibit technical usefulness alone or in various combinations, and are not limited to the combinations described in the claims at the time of filing. In addition, the technology exemplified in this specification or the drawings can achieve a plurality of objects at the same time, and has technical usefulness by achieving one of the objects.

Claims (17)

  1.  おもて面に発熱体を取り付けるベースプレートと、ベースプレートの裏面側へ延びるリブプレートによってL字型を成し、ベースプレートの内部とリブプレートの内部の双方にわたって延びる流路を有するヒートパイプと、
     縁がベースプレートの裏面とリブプレートの双方に接しているフィンと、
    を備えていることを特徴とする冷却器。
    A base plate for attaching a heating element to the front surface, and a heat pipe having a flow path extending over both the inside of the base plate and the inside of the rib plate, with a rib plate extending toward the back side of the base plate,
    Fins whose edges are in contact with both the back surface of the base plate and the rib plate;
    A cooler characterized by comprising:
  2.  L字型のヒートパイプの屈曲部とフィンとの間に隙間が設けられていることを特徴とする請求項1に記載の冷却器。 The cooler according to claim 1, wherein a gap is provided between a bent portion of the L-shaped heat pipe and the fin.
  3.  2つのL字型のヒートパイプのリブプレート同士が結合されていることを特徴とする請求項1または2に記載の冷却器。 The cooler according to claim 1 or 2, wherein rib plates of two L-shaped heat pipes are coupled to each other.
  4.  前記フィンは、スリットを有しており、そのスリットがリブプレートに嵌っていることを特徴とする請求項1から3のいずれか1項に記載の冷却器。 The cooler according to any one of claims 1 to 3, wherein the fin has a slit, and the slit is fitted in the rib plate.
  5.  フィンは、波板で構成されており、波板の山の部分に通気孔が設けられていることを特徴とする請求項1から4のいずれか1項に記載の冷却器。 The cooler according to any one of claims 1 to 4, wherein the fin is formed of a corrugated plate, and a vent is provided in a crest portion of the corrugated plate.
  6.  ベースプレートの裏面側からフィンに向けて空気を送るファンを備えていることを特徴とする請求項1から5のいずれか1項に記載の冷却器。 The cooler according to any one of claims 1 to 5, further comprising a fan that sends air toward the fins from the back side of the base plate.
  7.  ベースプレートの裏面側からフィンに向けて空気を送る送風路を備えていることを特徴とする請求項1から5のいずれか1項に記載の冷却器。 The cooler according to any one of claims 1 to 5, further comprising an air passage that sends air from the back side of the base plate toward the fins.
  8.  隣接する流路が相互に連結しており、ヒートパイプの一方の端と他方の端の間で往復する流路が形成されていることを特徴とする請求項1から7のいずれか1項に記載の冷却器。 The adjacent flow paths are connected to each other, and a flow path reciprocating between one end and the other end of the heat pipe is formed. The cooler described.
  9.  ヒートパイプは自励振動式であることを特徴とする請求項8に記載の冷却器。 The cooler according to claim 8, wherein the heat pipe is a self-excited vibration type.
  10.  側方に突条が形成されたL字型の第1ヒートパイプと側方に溝が形成されたL字型の第2ヒートパイプを備えており、隣接するヒートパイプの突条と溝が嵌合して連続するヒートパイプを構成していることを特徴とする請求項1から9のいずれか1項に記載の冷却器。 It has an L-shaped first heat pipe with ridges formed on the sides and an L-shaped second heat pipe with grooves formed on the sides, and the ridges and grooves of adjacent heat pipes are fitted. The cooler according to any one of claims 1 to 9, comprising a continuous heat pipe.
  11.  ヒートパイプにおいてフィンと接触する部分が、外側の金属の融点が内側の金属の融点よりも低いクラッド材で作られており、外側の金属の溶融によってフィンがヒートパイプに結合していることを特徴とする請求項1から10のいずれか1項に記載の冷却器。 The part of the heat pipe that contacts the fin is made of a clad material whose melting point of the outer metal is lower than the melting point of the inner metal, and the fin is bonded to the heat pipe by melting of the outer metal. The cooler according to any one of claims 1 to 10.
  12.  ヒートパイプ同士の結合部分が、外側の金属の融点が内側の金属の融点よりも低いクラッド材で作られており、外側の金属の溶融によってヒートパイプ同士が結合していることを特徴とする請求項1から11のいずれか1項に記載の冷却器。 The joint portion between the heat pipes is made of a clad material in which the melting point of the outer metal is lower than the melting point of the inner metal, and the heat pipes are bonded by melting of the outer metal. Item 12. The cooler according to any one of Items 1 to 11.
  13.  2つのL字型のヒートパイプのリブプレート同士を結合する工程と、
     スリットつきフィンのスリットを、2つのヒートパイプの結合部分に嵌め込む工程と、
    を備えていることを特徴とする冷却器の製造方法。
    Joining the rib plates of two L-shaped heat pipes;
    Fitting the slits of the fins with slits into the joint of the two heat pipes;
    The manufacturing method of the cooler characterized by including.
  14.  L字型のヒートパイプは、平坦なヒートパイプをL字型に曲げて形成されることを特徴とする請求項13に記載の製造方法。 The manufacturing method according to claim 13, wherein the L-shaped heat pipe is formed by bending a flat heat pipe into an L-shape.
  15.  L字型のヒートパイプは、側方に突条が形成された平坦な第1ヒートパイプと側方に溝が形成された平坦な第2ヒートパイプを準備し、隣接するヒートパイプの突条と溝を嵌合し、平坦な連続するヒートパイプをL字型に曲げて形成されることを特徴とする請求項14に記載の製造方法。 An L-shaped heat pipe is prepared by preparing a flat first heat pipe having a ridge on the side and a flat second heat pipe having a groove on the side, and a ridge of the adjacent heat pipe, The manufacturing method according to claim 14, wherein the groove is fitted and formed by bending a flat continuous heat pipe into an L shape.
  16.  ヒートパイプにおいてフィンと接触する部分が、外側の金属の融点が内側の金属の融点よりも低いクラッド材で作られており、外側の金属を溶融することによってフィンをヒートパイプに結合することを特徴とする請求項13から15のいずれか1項に記載の製造方法。 The part of the heat pipe that comes into contact with the fin is made of a clad material in which the melting point of the outer metal is lower than the melting point of the inner metal, and the fin is bonded to the heat pipe by melting the outer metal. The manufacturing method according to any one of claims 13 to 15.
  17.  ヒートパイプ同士の結合部分が、外側の金属の融点が内側の金属の融点よりも低いクラッド材で作られており、外側の金属を溶融することによってヒートパイプ同士を結合することを特徴とする請求項12から16のいずれか1項に記載の製造方法。 The joining portion between the heat pipes is made of a clad material in which the melting point of the outer metal is lower than the melting point of the inner metal, and the heat pipes are joined by melting the outer metal. Item 17. The production method according to any one of Items 12 to 16.
PCT/JP2011/079689 2011-12-21 2011-12-21 Cooler and method of manufacturing same WO2013094038A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079689 WO2013094038A1 (en) 2011-12-21 2011-12-21 Cooler and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/079689 WO2013094038A1 (en) 2011-12-21 2011-12-21 Cooler and method of manufacturing same

Publications (1)

Publication Number Publication Date
WO2013094038A1 true WO2013094038A1 (en) 2013-06-27

Family

ID=48667962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079689 WO2013094038A1 (en) 2011-12-21 2011-12-21 Cooler and method of manufacturing same

Country Status (1)

Country Link
WO (1) WO2013094038A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018531353A (en) * 2016-01-20 2018-10-25 レイセオン カンパニー Multi-level self-excited vibration heat pipe mounting in electronic circuit card module
CN113675499A (en) * 2021-07-31 2021-11-19 华南理工大学 Vehicle battery quick-charging thermal management system based on L-shaped pulsating heat pipe and temperature control method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320194A (en) * 1994-10-03 1996-12-03 Sumitomo Metal Ind Ltd Corrugated radiating fin for cooling lsi package
JP2001274304A (en) * 2000-03-23 2001-10-05 Furukawa Electric Co Ltd:The Heat sink
JP2004153001A (en) * 2002-10-30 2004-05-27 Denso Corp Cooling fin and boiling cooler using the same
JP2005525529A (en) * 2002-05-15 2005-08-25 リー, シェ−ウィン Vapor enhanced heat sink with multi-wick structure
JP2007532854A (en) * 2004-04-09 2007-11-15 エーヴィッド サーモロイ エルエルシー Multiple evaporator heat pipe assisted heat sink
JP2007317876A (en) * 2006-05-25 2007-12-06 Fujitsu Ltd Heat sink
JP2008522129A (en) * 2004-12-01 2008-06-26 コンバージェンス テクノロジーズ リミテッド Steam chamber with boil-enhancing multi-wick structure
JP2011002175A (en) * 2009-06-19 2011-01-06 Mitsubishi Electric Corp Cooling system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08320194A (en) * 1994-10-03 1996-12-03 Sumitomo Metal Ind Ltd Corrugated radiating fin for cooling lsi package
JP2001274304A (en) * 2000-03-23 2001-10-05 Furukawa Electric Co Ltd:The Heat sink
JP2005525529A (en) * 2002-05-15 2005-08-25 リー, シェ−ウィン Vapor enhanced heat sink with multi-wick structure
JP2004153001A (en) * 2002-10-30 2004-05-27 Denso Corp Cooling fin and boiling cooler using the same
JP2007532854A (en) * 2004-04-09 2007-11-15 エーヴィッド サーモロイ エルエルシー Multiple evaporator heat pipe assisted heat sink
JP2008522129A (en) * 2004-12-01 2008-06-26 コンバージェンス テクノロジーズ リミテッド Steam chamber with boil-enhancing multi-wick structure
JP2007317876A (en) * 2006-05-25 2007-12-06 Fujitsu Ltd Heat sink
JP2011002175A (en) * 2009-06-19 2011-01-06 Mitsubishi Electric Corp Cooling system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018531353A (en) * 2016-01-20 2018-10-25 レイセオン カンパニー Multi-level self-excited vibration heat pipe mounting in electronic circuit card module
CN113675499A (en) * 2021-07-31 2021-11-19 华南理工大学 Vehicle battery quick-charging thermal management system based on L-shaped pulsating heat pipe and temperature control method

Similar Documents

Publication Publication Date Title
US20060254752A1 (en) Radiator and heatsink apparatus having the radiator
US20060181848A1 (en) Heat sink and heat sink assembly
KR101761037B1 (en) Heat pipe
JP6738226B2 (en) Cooling system
CN100582637C (en) Micro heat pipe with wedge capillaries
JP2006503436A (en) Plate heat transfer device and manufacturing method thereof
JP2002039693A (en) Flat type heat pipe
US20210180873A1 (en) Vapor chamber heatsink assembly
US11913726B2 (en) Vapor chamber heatsink assembly
JP2013122369A (en) Vehicle heat exchanger
JP2007232339A (en) Micro heat exchanger and its manufacturing method
TW201719103A (en) Heat sink
WO2013094038A1 (en) Cooler and method of manufacturing same
JP2013124841A (en) Cooling device and method of manufacturing the same
JP2012220160A (en) Channel structure of self-excited vibration heat pipe
JP2007139301A (en) Flexible heat pipe
JP2002151636A (en) Heat sink
JP5076476B2 (en) Cooling system
WO2018030478A1 (en) Vapor chamber
TWI566670B (en) Heat dissipation device
JP5901416B2 (en) Fin for heat exchanger, heat sink using the same, and method for manufacturing fin for heat exchanger
CN107677155A (en) A kind of flat heat pipe radiator
JP2014115054A (en) Self-excited vibration type heat pipe
JP5226463B2 (en) Heat sink with louver and method of assembling the same
JP7113914B2 (en) Heatsinks, heatsink assemblies, electronics, and methods of making heatsinks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11877876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11877876

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP