WO2013092641A1 - Echangeur de chaleur pour gaz, en particulier pour gaz d'echappement d'un moteur - Google Patents

Echangeur de chaleur pour gaz, en particulier pour gaz d'echappement d'un moteur Download PDF

Info

Publication number
WO2013092641A1
WO2013092641A1 PCT/EP2012/076039 EP2012076039W WO2013092641A1 WO 2013092641 A1 WO2013092641 A1 WO 2013092641A1 EP 2012076039 W EP2012076039 W EP 2012076039W WO 2013092641 A1 WO2013092641 A1 WO 2013092641A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
tubes
exchanger
carcass
gases
Prior art date
Application number
PCT/EP2012/076039
Other languages
English (en)
Inventor
Juan Carlos De Francisco Moreno
Carlos Rodrigo Marco
Yolanda Bravo Rodriguez
Fernando PUERTOLAS SANCHEZ
Original Assignee
Valeo Termico, S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Termico, S.A. filed Critical Valeo Termico, S.A.
Priority to KR1020147020051A priority Critical patent/KR20140111295A/ko
Priority to EP12809789.6A priority patent/EP2795089B1/fr
Priority to US14/367,440 priority patent/US9791215B2/en
Publication of WO2013092641A1 publication Critical patent/WO2013092641A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/001Casings in the form of plate-like arrangements; Frames enclosing a heat exchange core
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts
    • F28F2280/06Adapter frames, e.g. for mounting heat exchanger cores on other structure and for allowing fluidic connections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/007Auxiliary supports for elements
    • F28F9/0075Supports for plates or plate assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements

Definitions

  • the present invention relates to a heat exchanger for gas, in particular for the exhaust gas of an engine.
  • the invention relates in particular to the exhaust gas recirculation exchangers of an engine (EGRC).
  • the main function of the EGR exchangers is to exchange the heat between the exhaust and the coolant for the purpose of cooling the gases.
  • EGR heat exchangers are widely used in diesel applications to reduce emissions, as well as in petrol applications to reduce fuel consumption.
  • the current configuration of the EGR exchangers on the market is a metal heat exchanger, usually made of stainless steel or aluminum.
  • EGR heat exchanger there are two types of EGR heat exchanger: a first type consisting of a carcass inside which is disposed a bundle of parallel tubes for the passage of gases, the coolant circulating in the carcass around the tubes ; and the second type comprising a series of parallel plates which constitute the heat exchange surfaces, so that the Exhaust gas and coolant circulate between two plates, in alternating layers, and may include fins to improve heat exchange.
  • the junction between the tubes and the carcass can be of different types.
  • the tubes are fixed at their ends between two support plates coupled to each end of the carcass, the two support plates having a plurality of orifices for the introduction of the respective tubes.
  • connection means to the recirculation pipe which may consist of a V-shaped connection or a peripheral flange connection or flange, according to the design of the recirculation pipe where is assembled the exchanger.
  • the peripheral rim may be either assembled with a gas reservoir, such that the gas reservoir is an intermediate piece between the carcass and the rim, or assembled directly to the carcass.
  • One type of known exchanger comprises a tube bundle of substantially rectangular section distributed over two adjacent columns and several rows, the height of the tubes being less than their width. Said tube bundle is housed in a substantially rectangular carcass, with the inlet and the outlet of the gases located at opposite ends of the carcass.
  • This type of exchanger also comprises two pipes, respectively for the inlet and the outlet of the coolant, connected to the carcass.
  • the coolant must circulate around the tubes and cool well especially the support plate located at the gas inlet, due to the higher temperature of this plate. In this case, it is necessary to ensure a good circulation of the coolant in the gas inlet zone in order to avoid the formation of low flow zones which would involve a local increase in the temperature of the coolant by exchange with the input gases at high temperature.
  • the distribution of the coolant in the carcass between the gas tubes depends on the size of the carcass and the position of the coolant pipes. In certain specific configurations, boiling problems associated with poor distribution of coolant near the gas inlet support plate occur. Therefore, the coolant distribution is good in the said area contiguous to the support plate In the case of the gas inlet, the problem of boiling due to the high temperature of the tubes in said zone will be overcome.
  • the coolant inlet pipe is connected to one side of the carcass, near the bottom and the outlet of the gases, while the coolant outlet pipe is connected to the top of the carcass, in the center and near the gas inlet.
  • This configuration thus allows a countercurrent circulation of the coolant.
  • the coolant outlet pipe is located above the space separating the two columns of tubes, said space between the tubes being relatively small, which makes the exit of the coolant difficult.
  • the coolant inlet pipe is connected to the bottom of the carcass near the gas outlet, while the coolant outlet pipe is connected to one side. carcass, near the gas inlet.
  • the coolant outlet pipe occupies several spaces between rows of tubes, because the height of the tubes is less than their width. The passage surface of the coolant is thus greater between the tubes to the outlet.
  • the purpose of the gas heat exchanger, in particular for the exhaust gas of an engine, of the present invention is to overcome the drawbacks of the exchangers known in the art, so as to provide a more homogeneous distribution. and effective coolant, especially in the gas entry zone where the temperature is higher, with the consequent decrease the problem of boiling, and so as to further allow a better fit between the connecting coupling of the vehicle manufacturer and the outlet pipe or coolant inlet.
  • the gas heat exchanger in particular for the exhaust gas of an engine, of the present invention is of the type which comprises a bundle of tubes arranged inside a carcass defining an inlet and an outlet of the gas, said tubes being intended for the circulation of gases for heat exchange with a cooling liquid and said tubes being distributed in at least one column of several rows defining several spaces between the rows, and which comprises a pipe of inlet and a coolant outlet pipe connected to the carcass, said exchanger of the present invention being characterized in that it comprises a bypass channel integrated into the carcass capable of communicating the defined spaces between the rows of tubes located opposite said channel with one of the coolant pipes, so as to improve the distribution of the coolant.
  • the height of the tubes is less than their width, and one of said coolant pipes is located opposite the widest side of the tubes.
  • one of said coolant pipes is disposed near the gas inlet, thereby improving the distribution of the coolant in the area near the gas inlet.
  • bypass channel makes it possible respectively to obtain an outlet or a coolant inlet, depending on whether the circulation is countercurrent or in parallel, on one side of the carcass where the outlet flow passes through the defined space. between rows of tubes, and not the space opposite the widest side of the tubes as in the case of the state of the art.
  • the coolant pipe located near the gas inlet can be disposed on any side of the carcass, no matter where the vehicle manufacturer's sleeve is for connecting the said liquid pipe. cooling.
  • said coolant pipe disposed near the gas inlet can be assembled on the carcass and at one end of the channel so that usual.
  • the bypass channel is manufactured by a stamping process, and its configuration causes it to protrude to the outside of the carcass.
  • the bypass channel is associated with a closure plate coupled to the carcass in the interior space facing said channel, said closure plate comprising at least one through orifice provided to allow the controlled passage of the liquid from cooling between the inside of the carcass and the bypass channel.
  • the coolant flows through the channel through one or more holes in the closure plate, the number or size of which can be varied to provide optimum coolant distribution according to the needs of the coolant manufacturer. vehicles.
  • the inner closure plate comprises two lateral passage orifices.
  • the inner closure plate comprises a set of lateral orifices each associated with a space located every two rows of tubes, and at least one upper orifice situated in front of the coolant outlet pipe. .
  • bypass channel may have various configurations depending on the flow rate of the coolant and the characteristics of the engine environment.
  • the bypass channel includes a side port for connecting a second coolant outlet pipe.
  • two bypass channels are disposed respectively on opposite sides of the carcass.
  • the branch channel comprises a variable cross section along its entire length.
  • Figure 1 is a perspective view of a heat exchanger known in the state of the art, which illustrates a possible configuration of the inlet and outlet pipes of coolant;
  • Figure 2 is a longitudinal section of the heat exchanger of Figure 1, which schematically illustrates the distribution lines of the coolant;
  • FIG 3 is a partial front view of the exchanger of Figure 1, which illustrates the coolant outlet pipe and its position relative to the gas tubes;
  • Figure 4 is a schematic view of a cross section of the coolant outlet pipe of the exchanger of Figure 1, which indicates its position above the space between two columns of tubes;
  • Figure 5 is a partial perspective view of the heat exchanger according to the invention, which illustrates the stamped channel in a side wall of the carcass;
  • Figure 6 is a perspective view of the inner closure plate of the invention, according to a first embodiment
  • Figure 7 is a partial perspective view of the heat exchanger according to the invention, with the inner closure plate assembled on the stamped channel;
  • Figure 8 is a cross-section of the exchanger of the invention of Figure 7, which illustrates the distribution of coolant through the closure plate and channel to the corresponding outlet pipe;
  • FIG. 9 is a partial perspective view of the heat exchanger according to the invention, which illustrates a second embodiment of the inner closure plate
  • Fig. 10 is a cross section of the exchanger of the invention of Fig. 9, which illustrates the distribution of coolant through the closure plate and channel to the corresponding outlet pipe;
  • FIGS 11 to 13 are cross sections of the heat exchanger of the invention, which respectively illustrate embodiments of the bypass channel.
  • FIGS. 1 to 4 illustrate a type of heat exchanger ⁇ known in the state of the art, which comprises a bundle of tubes 2 arranged inside a carcass 3 defining an inlet 4 and an outlet 5 of the gases said tubes 2 being intended for the circulation of gases for the purpose of exchanging heat with a cooling liquid.
  • the inlet flow 4 and outlet 5 of the gases is illustrated by means of respective arrows, as shown in FIG. 2.
  • the tubes 2 are fixed at their ends between two support plates 6, 6 'connected to each end of the carcass 3.
  • the tubes 2 are of substantially rectangular section and are distributed over two contiguous columns and several rows. Said tubes 2 thus define a space 7 between the columns and several spaces 8 between the rows, the height of said tubes 2 being less than their width.
  • the carcass 3 has a quadrangular section.
  • the exchanger ⁇ also comprises an inlet pipe 9 and a coolant outlet pipe 10 connected to the carcass 3.
  • the inlet and outlet flow of the cooling liquid is represented by means of respective arrows, such as the Figures 1 and 2. In this case, it is a circulation of the countercurrent cooling liquid.
  • the coolant inlet pipe 9 is connected to a side 3b of the carcass 3, close to the underside 3c and the outlet 5 of the gases, while the outlet pipe 10 of the coolant is connected to the top 3a. of the carcass 3, in the center and near the inlet 4 of the gases.
  • the coolant outlet pipe 10 is located above the space 7 between the two columns of tubes 2.
  • said space 7 between two tubes 2 is relatively small, which makes it difficult to get the coolant out.
  • Figures 5 to 13 refer to the heat exchanger 1 of the invention, whose reference numerals 2 to 10 coincide with those of the known exchanger ⁇ described above.
  • the heat exchanger 1 of the invention further comprises a bypass channel 11 integrated in a side 3b of the carcass 3 near the inlet 4 of the gases, said bypass channel 11 being capable of communicating the lateral space 8 defined between rows of tubes 2 located opposite said channel 11 with the outlet pipe 10 of coolant disposed on the top 3a of the carcass 3.
  • This structural arrangement significantly improves the distribution of coolant in the area near the inlet 4 of the gases.
  • the bypass channel 11 makes it possible to obtain a coolant outlet in a side 3b of the carcass 3, where said outlet flow passes through the spaces 8 defined between rows of tubes 2, and not the space 7 defined between columns as in the case of the state of the art, and no matter where is the sleeve of the vehicle manufacturer for the connection of said outlet pipe 10 coolant.
  • bypass channel 11 is manufactured by a stamping process, and its configuration causes it to protrude towards the outside of the carcass 3, as shown in FIGS. 5 and 8.
  • coolant outlet pipe 10 is assembled to the carcass 3 and to one end of the channel 11 in the usual manner (see FIG. 8).
  • bypass channel 11 is associated with a closure plate 12 coupled to the carcass 3 in the interior space facing said channel 11, said closure plate 12 comprising at least one through hole 13 provided to allow the controlled passage of the cooling liquid from the interior of the carcass 3 to the bypass channel 11.
  • the coolant enters the channel 11 through one or more orifices 13 in the closure plate 12, the number or size of which can be varied to obtain optimum distribution of the coolant as needed. from the vehicle manufacturer.
  • said closure plate 12 comprises two lateral passage orifices 13.
  • FIG. 8 shows by means of two arrows the exit of the liquid cooling, respectively through the orifices 13 to the bypass channel 11, then to the outlet pipe 10.
  • said closure plate 12 comprises a set of lateral orifices 13 of small diameter each associated with a space 8 located every two rows of tubes 2, and a plurality of upper orifices 13 a situated opposite the pipe of outlet 10 of coolant.
  • the two arrows show the exit of the cooling liquid, respectively through the orifices 13, 13a towards the bypass channel 11, then towards the outlet pipe 10.
  • bypass channel 11 Other types of geometries may be used for the bypass channel 11, depending on the flow rate of the coolant and the characteristics of the engine environment. Three embodiments are described below.
  • the bypass channel 11 comprises a lateral orifice intended for connecting a second outlet pipe 10 a of coolant.
  • two bypass channels 11 are used, with their respective closure plate 12, 12a respectively disposed on opposite sides 3b of the carcass 3.
  • the bypass channel 11 comprises a variable cross section over its entire length.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Échangeur de chaleur (1) pour gaz, en particulier pour gaz d'échappement d'un moteur, comprenant un faisceau de tubes (2) disposés à l'intérieur d'une carcasse (3) définissant une entrée (4) et une sortie (5) des gaz, lesdits tubes (2) étant destinés à la circulation des gaz en vue d'un échange de chaleur avec un liquide de refroidissement et lesdits tubes (2) étant répartis en au moins une colonne de plusieurs rangées définissant plusieurs espaces (8) entre les rangées, et comprenant un tuyau d'entrée (9) et un tuyau de sortie (10) de liquide de refroidissement raccordés à la carcasse (3). Ledit échangeur (1) comprend un canal de dérivation (11) intégré à la carcasse (3) susceptible de faire communiquer les espaces (8) définis entre les rangées de tubes (2) situés en face du dit canal (11) avec l'un des tuyaux (10) de liquide de refroidissement, de façon à améliorer la répartition du liquide de refroidissement.

Description

ÉCHANGEUR DE CHALEUR POUR GAZ, EN PARTICULIER POUR GAZ D'ÉCHAPPEMENT D'UN MOTEUR
La présente invention a trait à un échangeur de chaleur pour gaz, en particulier pour gaz d'échappement d'un moteur.
L'invention concerne notamment les échangeurs de recirculation des gaz d'échappement d'un moteur (EGRC).
ARRIÈRE-PLAN DE L'INVENTION
La principale fonction des échangeurs EGR est d'échanger la chaleur entre les gaz d'échappement et le liquide de refroidissement dans le but de refroidir les gaz.
A l'heure actuelle, les échangeurs de chaleur EGR son largement utilisés dans des applications diesel afin de réduire les émissions, ainsi que dans des applications essence afin de réduire la consommation de carburant.
La tendance du marché est à la réduction de la taille des moteurs et à la mise en place d'échangeurs de chaleur EGR, non seulement dans des applications haute pression (HP), mais aussi dans des applications basse pression (BP). Or, ces deux types d'application ont une incidence sur la conception des échangeurs de chaleur EGR. Les fabricants de véhicules demandent des échangeurs de chaleur EGR avec de meilleurs rendements, mais dans le même temps, l'espace disponible pour l'installation d'un échangeur et de ses composants est de plus en plus petit et de plus en plus difficile à intégrer.
En outre, dans de nombreuses applications, le débit de liquide de refroidissement pour refroidir les gaz d'échappement a tendance a diminuer malgré l'augmentation du rendement de l'échangeur.
La configuration actuelle des échangeurs EGR sur le marché correspond à un échangeur de chaleur métallique, fabriqué généralement en acier inoxydable ou en aluminium.
Fondamentalement, il existe deux types d'échangeurs de chaleur EGR : un premier type consistant en une carcasse à l'intérieur de laquelle est disposé un faisceau de tubes parallèles pour le passage des gaz, le liquide de refroidissement circulant dans la carcasse autour des tubes ; et le deuxième type comprenant une série de plaques parallèles qui constituent les surfaces d'échange de chaleur, de façon à ce que les gaz d'échappement et le liquide de refroidissement circulent entre deux plaques, en couches alternées, et pouvant inclure des ailettes afin d'améliorer l'échange de chaleur.
Dans le cas d'échangeurs de chaleur à faisceau de tubes, la jonction entre les tubes et la carcasse peut être de différents types. Généralement, les tubes sont fixés par leurs extrémités entre deux plaques de support accouplées à chaque extrémité de la carcasse, les deux plaques de support présentant une pluralité d'orifices pour la mise en place des tubes respectifs.
Ces plaques de supports sont fixées à leur tour à des moyens de raccordement à la conduite de recirculation, lesquels peuvent consister en un raccord en V ou bien en un rebord périphérique de raccord ou bride, selon la conception de la conduite de recirculation où est assemblé l'échangeur. Le rebord périphérique peut être soit assemblé avec un réservoir de gaz, de telle sorte que le réservoir de gaz soit une pièce intermédiaire entre la carcasse et le rebord, soit assemblé directement à la carcasse.
Dans les deux types d'échangeurs EGR, la majeure partie des composants sont métalliques, si bien qu'ils sont assemblés par des moyens mécaniques, puis soudés au four ou à l'arc afin de garantir un niveau d'étanchéité requis pour cette application.
Un type d'échangeur connu comprend un faisceau de tubes de section essentiellement rectangulaire répartis sur deux colonnes contiguës et plusieurs rangées, la hauteur des tubes étant inférieure à leur largeur. Ledit faisceau de tubes est logé dans une carcasse essentiellement rectangulaire, avec l'entrée et la sortie des gaz situées aux extrémités opposées de la carcasse.
Ce type d'échangeur comprend également deux tuyaux, respectivement pour l'entrée et la sortie du liquide de refroidissement, raccordés à la carcasse. Le liquide de refroidissement doit circuler autour des tubes et bien refroidir en particulier la plaque de support située à l'entrée des gaz, en raison de la température plus élevée de cette plaque. Dans ce cas, il est nécessaire de garantir une bonne circulation du liquide de refroidissement dans la zone d'entrée des gaz afin d'éviter la formation de zones de bas débit qui impliqueraient une augmentation locale de la température du liquide de refroidissement par échange avec les gaz d'entrée à haute température.
La répartition du liquide de refroidissement dans la carcasse entre les tubes de gaz dépend des dimensions de la carcasse et de la position des tuyaux de liquide de refroidissement. Dans certaines configurations spécifiques, il se produit des problèmes d'ébullition associés à une mauvaise répartition du liquide de refroidissement près de la plaque de support d'entrée des gaz. Par conséquent, plus la répartition du liquide de refroidissement est bonne dans ladite zone contiguë à la plaque de support d'entrée des gaz, plus le problème l'ébullition due à la température élevée des tubes dans ladite zone sera maîtrisé.
Dans une configuration connue, le tuyau d'entrée de liquide de refroidissement est raccordé à un côté de la carcasse, à proximité du dessous et de la sortie des gaz, tandis que le tuyau de sortie de liquide de refroidissement est raccordé au dessus de la carcasse, au centre et près de l'entrée des gaz. Cette configuration permet ainsi une circulation à contrecourant du liquide de refroidissement. Dans ce cas, le tuyau de sortie de liquide de refroidissement est situé au-dessus de l'espace qui sépare les deux colonnes de tubes, ledit espace entre les tubes étant relativement petit, ce qui rend difficile la sortie du liquide de refroidissement.
Il faut souligner que lorsque l'échangeur est utilisé avec une circulation en parallèle, c'est-à-dire lorsque le tuyau d'entrée de liquide de refroidissement est disposé près de l'entrée des gaz, lesdits problèmes d'ébullition se produisent également.
Dans une autre configuration connue avec une circulation à contrecourant, le tuyau d'entrée de liquide de refroidissement est raccordé au dessous de la carcasse, près de la sortie des gaz, tandis que le tuyau de sortie de liquide de refroidissement est raccordé à un côté de la carcasse, près de l'entrée des gaz. Dans ce cas, le tuyau de sortie de liquide de refroidissement occupe plusieurs espaces entre des rangées de tubes, du fait que la hauteur des tubes est inférieure à leur largeur. La surface de passage du liquide de refroidissement est ainsi plus importante entre les tubes vers la sortie.
Par conséquent, dans cette dernière configuration, le problème d'ébullition est amélioré, d'une part parce que le débit du liquide de refroidissement est plus important dans la zone de sortie, et d'autre part parce que sa répartition entre les tubes est plus homogène. Toutefois, cette configuration n'est pas réalisable dans le cas de certaines dispositions et tailles de l'espace moteur, où l'orientation du manchon de raccordement au tuyau de sortie de liquide de refroidissement n'est pas satisfaisante.
DESCRIPTION DE L'INVENTION
L'objectif de l'échangeur de chaleur pour gaz, en particulier pour gaz d'échappement d'un moteur, de la présente invention est de résoudre les inconvénients que présentent les échangeurs connus dans la technique, de manière à fournir une répartition plus homogène et efficace du liquide de refroidissement, notamment dans la zone d'entrée des gaz où la température est plus élevée, avec la diminution consécutive du problème d'ébullition, et de manière à permettre en outre une meilleure adaptation entre le manchon de raccordement du fabricant de véhicules et le tuyau de sortie ou d'entrée de liquide de refroidissement.
L'échangeur de chaleur pour gaz, en particulier pour gaz d'échappement d'un moteur, de la présente invention, est du type qui comprend un faisceau de tubes disposés à l'intérieur d'une carcasse définissant une entrée et une sortie des gaz, lesdits tubes étant destinés à la circulation des gaz en vue d'un échange de chaleur avec un liquide de refroidissement et lesdits tubes étant répartis en au moins une colonne de plusieurs rangées définissant plusieurs espaces entre les rangées, et qui comprend un tuyau d'entrée et un tuyau de sortie de liquide de refroidissement raccordés à la carcasse, ledit échangeur de la présente invention étant caractérisé en ce qu'il comprend un canal de dérivation intégré à la carcasse susceptible de faire communiquer les espaces définis entre les rangées de tubes situés en face du dit canal avec l'un des tuyaux de liquide de refroidissement, de façon à améliorer la répartition du liquide de refroidissement.
De préférence, la hauteur des tubes est inférieure à leur largeur, et l'un des dits tuyaux de liquide de refroidissement est situé en face du côté le plus large des tubes.
De manière avantageuse, l'un des dits tuyaux de liquide de refroidissement est disposé près de l'entrée des gaz, améliorant ainsi la répartition du liquide de refroidissement dans la zone située à proximité de l'entrée des gaz.
De cette façon, le canal de dérivation permet d'obtenir respectivement une sortie ou une entrée de liquide de refroidissement, selon que la circulation est à contrecourant ou en parallèle, sur un côté de la carcasse où le débit de sortie traverse l'espace défini entre des rangées de tubes, et non l'espace situé en face du côté le plus large des tubes comme dans le cas de l'état de la technique.
Par conséquent, le tuyau de liquide de refroidissement situé près de l'entrée des gaz peut être disposé de n'importe quel côté de la carcasse, peu importe où se trouve le manchon du fabricant de véhicules pour le raccordement du dit tuyau de liquide de refroidissement.
On obtient par conséquent un canal pour le passage du liquide de refroidissement dont la trajectoire peut être adaptée aux besoins et à la configuration de l'espace moteur.
Par ailleurs, ledit tuyau de liquide de refroidissement disposé près de l'entrée des gaz peut être assemblé sur la carcasse et à une extrémité du canal de façon habituelle.
De préférence, le canal de dérivation est fabriqué par un procédé d'estampage, et sa configuration fait qu'il dépasse vers la partie extérieure de la carcasse.
De manière avantageuse, le canal de dérivation est associé à une plaque de fermeture accouplée à la carcasse dans l'espace intérieur situé en face du dit canal, ladite plaque de fermeture comprenant au moins un orifice passant prévu pour permettre le passage contrôlé du liquide de refroidissement entre l'intérieur de la carcasse et le canal de dérivation.
Par conséquent, le liquide de refroidissement circule dans le canal à travers un ou plusieurs orifices pratiqués dans la plaque de fermeture, dont le nombre ou la taille peuvent être modifiés afin d'obtenir une répartition optimale du liquide de refroidissement selon les besoins du fabricant de véhicules.
Selon un mode de réalisation préféré, la plaque de fermeture intérieure comprend deux orifices de passage latéraux.
Selon un autre mode de réalisation préféré, la plaque de fermeture intérieure comprend un ensemble d'orifices latéraux associés chacun à un espace situé toutes les deux rangées de tubes, et au moins un orifice supérieur situé en face du tuyau de sortie de liquide de refroidissement.
Par ailleurs, le canal de dérivation peut présenter diverses configurations selon le débit du liquide de refroidissement et les caractéristiques de l'environnement du moteur.
Selon un mode de réalisation préféré, le canal de dérivation comprend un orifice latéral prévu pour le raccordement d'un second tuyau de sortie de liquide de refroidissement.
Dans un autre mode de réalisation préféré, deux canaux de dérivation sont disposés respectivement sur les côtés opposés de la carcasse.
Dans un autre mode de réalisation préféré, le canal de dérivation comprend une section transversale variable sur toute sa longueur.
BRÈVE DESCRIPTION DES DESSINS
Dans le but de faciliter la description de ce qui a été exposé précédemment, on joint des dessins dans lesquels sont représentés, sous forme schématique et uniquement à titre d'exemple non limitatif, des cas pratiques de réalisation de l'échangeur de chaleur pour gaz, en particulier pour gaz d'échappement d'un moteur, de la présente invention. Dans ces dessins :
la figure 1 est une vue en perspective d'un échangeur de chaleur connu dans l'état de la technique, qui illustre une configuration possible des tuyaux d'entrée et de sortie de liquide de refroidissement ;
la figure 2 est une section longitudinale de l'échangeur de chaleur de la figure 1, qui illustre schématiquement les lignes de répartition du liquide de refroidissement ;
la figure 3 est une vue de face partielle de l'échangeur de la figure 1, qui illustre le tuyau de sortie de liquide de refroidissement et sa position par rapport aux tubes de gaz ;
la figure 4 est une vue schématique d'une section transversale du tuyau de sortie de liquide de refroidissement de l'échangeur de la figure 1, qui indique sa position au-dessus de l'espace entre deux colonnes de tubes ;
la figure 5 est une vue en perspective partielle de l'échangeur de chaleur selon l'invention, qui illustre le canal estampé dans une paroi latérale de la carcasse ;
la figure 6 est une vue en perspective de la plaque de fermeture intérieure de l'invention, selon un premier mode de réalisation ;
la figure 7 est une vue en perspective partielle de l'échangeur de chaleur selon l'invention, avec la plaque de fermeture intérieure assemblée sur le canal estampé ;
la figure 8 est une section transversale de l'échangeur de l'invention de la figure 7, qui illustre la répartition du liquide de refroidissement à travers la plaque de fermeture et le canal vers le tuyau de sortie correspondant ;
la figure 9 est une vue en perspective partielle de l'échangeur de chaleur selon l'invention, qui illustre un deuxième mode de réalisation de la plaque de fermeture intérieure ;
la figure 10 est une section transversale de l'échangeur de l'invention de la figure 9, qui illustre la répartition du liquide de refroidissement à travers la plaque de fermeture et le canal vers le tuyau de sortie correspondant ; et
les figures 11 à 13 sont des sections transversales de l'échangeur de chaleur de l'invention, qui illustrent respectivement des modes de réalisation du canal de dérivation.
DESCRIPTION DES MODES DE RÉALISATION PRÉFÉRÉS Les figures 1 à 4 illustrent un type d'échangeur de chaleur Γ connu dans l'état de la technique, qui comprend un faisceau de tubes 2 disposés à l'intérieur d'une carcasse 3 définissant une entrée 4 et une sortie 5 des gaz, lesdits tubes 2 étant destinés à la circulation des gaz en vue d'un échange de chaleur avec un liquide de refroidissement. Le débit d'entrée 4 et de sortie 5 des gaz est illustré au moyen de flèches respectives, comme le montre la figure 2. En outre, les tubes 2 sont fixés par leurs extrémités entre deux plaques de support 6, 6' raccordées à chaque extrémité de la carcasse 3.
Dans ce cas, les tubes 2 sont de section essentiellement rectangulaire et sont répartis sur deux colonnes contiguës et plusieurs rangées. Lesdits tubes 2 définissent ainsi un espace 7 entre les colonnes et plusieurs espaces 8 entre les rangées, la hauteur des dits tubes 2 étant inférieure à leur largeur. La carcasse 3 présente une section quadrangulaire.
L'échangeur Γ comprend également un tuyau d'entrée 9 et un tuyau de sortie 10 de liquide de refroidissement raccordés à la carcasse 3. Le débit d'entrée et de sortie du liquide de refroidissement est représenté au moyen de flèches respectives, comme le montrent les figures 1 et 2. Il s'agit dans ce cas d'une circulation du liquide de refroidissement à contrecourant. Le tuyau d'entrée 9 de liquide de refroidissement est raccordé à un côté 3b de la carcasse 3, à proximité du dessous 3c et de la sortie 5 des gaz, tandis que le tuyau de sortie 10 de liquide de refroidissement est raccordé au dessus 3a de la carcasse 3, au centre et près de l'entrée 4 des gaz.
Comme le montrent les figures 3 et 4, le tuyau de sortie 10 de liquide de refroidissement est situé au-dessus de l'espace 7 qui sépare les deux colonnes de tubes 2. Toutefois, ledit espace 7 entre deux tubes 2 est relativement petit, ce qui rend difficile la sortie du liquide de refroidissement. Dans ce cas, comme le montrent les lignes courbes sur la figure 2, il est nécessaire de diriger le liquide de refroidissement vers la zone d'entrée 4 des gaz et avec un fort débit, car la température des gaz est élevée. Plus la répartition du liquide de refroidissement est bonne dans ladite zone 4 contiguë à la plaque de support 6 d'entrée des gaz, plus le problème l'ébullition due à la température élevée des tubes 2 dans ladite zone 4 sera maîtrisé.
Les figures 5 à 13 font référence à l'échangeur de chaleur 1 de l'invention, dont les références numériques 2 à 10 coïncident avec celles de l'échangeur Γ connu décrit précédemment.
Comme le montrent les figures 5 à 8, l'échangeur de chaleur 1 de l'invention comprend en outre un canal de dérivation 11 intégré dans un côté 3b de la carcasse 3 près de l'entrée 4 des gaz, ledit canal de dérivation 11 étant susceptible de faire communiquer l'espace latéral 8 défini entre des rangées de tubes 2 situés en face du dit canal 11 avec le tuyau de sortie 10 de liquide de refroidissement disposé sur le dessus 3a de la carcasse 3. Cette disposition structurelle améliore notablement la répartition du liquide de refroidissement dans la zone située près de l'entrée 4 des gaz.
Le canal de dérivation 11 permet d'obtenir une sortie de liquide de refroidissement dans un côté 3b de la carcasse 3, où ledit débit de sortie traverse les espaces 8 définis entre des rangées de tubes 2, et non l'espace 7 défini entre des colonnes comme dans le cas de l'état de la technique, et peu importe où se trouve le manchon du fabricant de véhicules pour le raccordement du dit tuyau de sortie 10 de liquide de refroidissement.
On obtient de cette façon un canal 11 pour le passage du liquide de refroidissement dont la trajectoire peut être adaptée aux besoins et à la configuration de l'espace moteur.
Dans ce cas, le canal de dérivation 11 est fabriqué par un procédé d'estampage, et sa configuration fait qu'il dépasse vers la partie extérieure de la carcasse 3, comme le montrent les figures 5 et 8.
Par ailleurs, le tuyau de sortie 10 de liquide de refroidissement est assemblé à la carcasse 3 et à une extrémité du canal 11 de façon habituelle (voir figure 8).
De même, le canal de dérivation 11 est associé à une plaque de fermeture 12 accouplée à la carcasse 3 dans l'espace intérieur situé en face du dit canal 11, ladite plaque de fermeture 12 comprenant au moins un orifice passant 13 prévu pour permettre le passage contrôlé du liquide de refroidissement de l'intérieur de la carcasse 3 vers le canal de dérivation 11.
Par conséquent, le liquide de refroidissement pénètre dans le canal 11 à travers un ou plusieurs orifices 13 pratiqués dans la plaque de fermeture 12, dont le nombre ou la taille peuvent être modifiés afin d'obtenir une répartition optimale du liquide de refroidissement selon les besoins du fabricant de véhicules.
Selon un premier mode de réalisation de la plaque de fermeture 12 illustré sur les figures 6 à 8, ladite plaque de fermeture 12 comprend deux orifices de passage latéraux 13. Sur la figure 8, on a représenté au moyen de deux flèches la sortie du liquide de refroidissement, respectivement à travers les orifices 13 vers le canal de dérivation 11, puis vers le tuyau de sortie 10.
Selon un deuxième mode de réalisation de la plaque de fermeture 12 illustré sur les figures 9 et 10, ladite plaque de fermeture 12 comprend un ensemble d'orifices latéraux 13 de petit diamètre associés chacun à un espace 8 situé toutes les deux rangées de tubes 2, et plusieurs orifices supérieurs 13a situés en face du tuyau de sortie 10 de liquide de refroidissement. De même, sur la figure 10, on a représenté au moyen de deux flèches la sortie du liquide de refroidissement, respectivement à travers les orifices 13, 13a vers le canal de dérivation 11, puis vers le tuyau de sortie 10.
Il convient de signaler que jusqu'à présent, l'échangeur de chaleur a été décrit avec une circulation du liquide de refroidissement à contrecourant, mais il est évident que la circulation peut également être parallèle, c'est-à-dire avec l'entrée de liquide de refroidissement du côté situé à proximité de l'entrée des gaz.
Par ailleurs, bien que l'on ait représenté un faisceau de tubes avec deux colonnes et plusieurs rangées, il peut y avoir d'autres modes de réalisation, par exemple avec une seule colonne et plusieurs rangées.
De même, d'autres types de géométries peuvent être utilisés pour le canal de dérivation 11, selon le débit du liquide de refroidissement et les caractéristiques de l'environnement du moteur. Trois modes de réalisation sont décrits ci-après.
Selon un premier mode de réalisation illustré sur la figure 11, le canal de dérivation 11 comprend un orifice latéral prévu pour le raccordement d'un second tuyau de sortie 10a de liquide de refroidissement.
Selon un deuxième mode de réalisation illustré sur la figure 12, on utilise deux canaux de dérivation 11, l ia avec leur plaque de fermeture 12, 12a respective, disposés respectivement sur les côtés 3b opposés de la carcasse 3.
Selon un troisième mode de réalisation illustré sur la figure 13, le canal de dérivation 11 comprend une section transversale variable sur toute sa longueur.

Claims

R E V E N D I C A T I O N S
1. Échangeur de chaleur (1) pour gaz, en particulier pour gaz d'échappement d'un moteur, comprenant un faisceau de tubes (2) disposés à l'intérieur d'une carcasse (3) définissant une entrée (4) et une sortie (5) des gaz, lesdits tubes (2) étant destinés à la circulation des gaz en vue d'un échange de chaleur avec un liquide de refroidissement et lesdits tubes (2) étant répartis en au moins une colonne de plusieurs rangées définissant plusieurs espaces (8) entre les rangées, et comprenant un tuyau d'entrée (9) et un tuyau de sortie (10) de liquide de refroidissement raccordés à la carcasse (3), ledit échangeur (1) étant caractérisé en ce qu'il comprend un canal de dérivation (11) intégré à la carcasse (3) susceptible de faire communiquer les espaces (8) définis entre les rangées de tubes (2) situés en face du dit canal (11) avec l'un des tuyaux (10) de liquide de refroidissement, de façon à améliorer la répartition du liquide de refroidissement.
2. Échangeur (1) selon la revendication 1, dans lequel la hauteur des tubes (2) est inférieure à leur largeur, et dans lequel l'un des dits tuyaux (10) de liquide de refroidissement est situé en face du côté le plus large des tubes (2).
3. Échangeur (1) selon la revendication 1 ou 2, dans lequel l'un des dits tuyaux (10) de liquide de refroidissement est disposé près de l'entrée (4) des gaz, améliorant ainsi la répartition du liquide de refroidissement dans la zone située à proximité de l'entrée (4) des gaz.
4. Échangeur (1) selon la revendication 1, dans lequel le canal de dérivation (11) est fabriqué par un procédé d'estampage, et sa configuration fait qu'il dépasse vers la partie extérieure de la carcasse (3).
5. Échangeur (1) selon la revendication 1, dans lequel le canal de dérivation (11) est associé à une plaque de fermeture (12) accouplée à la carcasse (3) dans l'espace intérieur situé en face du dit canal (11), ladite plaque de fermeture (12) comprenant au moins un orifice passant (13) prévu pour permettre le passage contrôlé du liquide de refroidissement entre l'intérieur de la carcasse (3) et le canal de dérivation (11).
6. Échangeur (1) selon la revendication 5, dans lequel la plaque de fermeture intérieure (12) comprend deux orifices de passage latéraux (13).
7. Échangeur (1) selon la revendication 5, dans lequel la plaque de fermeture intérieure (12) comprend un ensemble d'orifices latéraux (13) associés chacun à un espace (8) situé toutes les deux rangées de tubes (2), et au moins un orifice supérieur (13a) situé en face du tuyau (10) de liquide de refroidissement situé près de l'entrée (4) des gaz.
8. Échangeur (1) selon la revendication 1, dans lequel le canal de dérivation (11) comprend un orifice latéral prévu pour le raccordement d'un second tuyau de sortie (10a) de liquide de refroidissement.
9. Échangeur (1) selon la revendication 1, qui comprend deux canaux de dérivation (11, l ia) disposés respectivement sur les côtés (3b) opposés de la carcasse (3).
10. Échangeur (1) selon la revendication 1, dans lequel le canal de dérivation (11) comprend une section transversale variable sur toute sa longueur.
PCT/EP2012/076039 2011-12-22 2012-12-18 Echangeur de chaleur pour gaz, en particulier pour gaz d'echappement d'un moteur WO2013092641A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147020051A KR20140111295A (ko) 2011-12-22 2012-12-18 가스, 특히 엔진의 배기 가스를 위한 열교환기
EP12809789.6A EP2795089B1 (fr) 2011-12-22 2012-12-18 Echangeur de chaleur pour gaz, en particulier pour gaz d'echappement d'un moteur
US14/367,440 US9791215B2 (en) 2011-12-22 2012-12-18 Heat exchanger for gases, in particular for the exhaust gases of an engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201132072A ES2409534B1 (es) 2011-12-22 2011-12-22 Intercambiador de calor para gases, en especial de los gases de escape de un motor
ESES201132072 2011-12-22

Publications (1)

Publication Number Publication Date
WO2013092641A1 true WO2013092641A1 (fr) 2013-06-27

Family

ID=47501238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/076039 WO2013092641A1 (fr) 2011-12-22 2012-12-18 Echangeur de chaleur pour gaz, en particulier pour gaz d'echappement d'un moteur

Country Status (5)

Country Link
US (1) US9791215B2 (fr)
EP (1) EP2795089B1 (fr)
KR (1) KR20140111295A (fr)
ES (1) ES2409534B1 (fr)
WO (1) WO2013092641A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020104836A1 (fr) * 2018-11-21 2020-05-28 Valeo North America, Inc. Refroidisseur d'air de charge
EP3561426A4 (fr) * 2016-12-20 2020-07-08 Tokyo Roki Co., Ltd. Dispositif d'échange de chaleur

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013100885B4 (de) * 2013-01-29 2020-02-27 Benteler Automobiltechnik Gmbh Wärmetauscher für ein Kraftfahrzeug
KR101610099B1 (ko) * 2014-04-30 2016-04-08 현대자동차 주식회사 캔형 열교환기
ES2676708B1 (es) * 2017-01-23 2019-05-14 Valeo Termico Sa Intercambiador de calor para gases
KR102173398B1 (ko) * 2017-06-14 2020-11-03 한온시스템 주식회사 배기가스 냉각장치
DE102017130153B4 (de) 2017-12-15 2022-12-29 Hanon Systems Vorrichtung zur Wärmeübertragung und Verfahren zum Herstellen der Vorrichtung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1647697A1 (fr) * 2003-07-18 2006-04-19 Hino Motors, Ltd. Refroidisseur pour recyclage de gaz d'echappement
DE102005037156A1 (de) * 2005-08-06 2007-02-08 Daimlerchrysler Ag Wärmetauscher
EP1795850A1 (fr) * 2004-09-28 2007-06-13 T.RAD Co,.Ltd Échangeur de chaleur
JP2008231929A (ja) * 2007-03-16 2008-10-02 Tokyo Radiator Mfg Co Ltd Egrクーラ用熱交換器の冷却水入口構造
JP2008232451A (ja) * 2007-03-16 2008-10-02 Tokyo Radiator Mfg Co Ltd 熱交換器の冷却水入口構造
JP2009114923A (ja) * 2007-11-05 2009-05-28 Tokyo Radiator Mfg Co Ltd Egrクーラ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7380544B2 (en) * 2006-05-19 2008-06-03 Modine Manufacturing Company EGR cooler with dual coolant loop
JP4775287B2 (ja) * 2006-10-18 2011-09-21 株式会社デンソー 熱交換器
JP2008231451A (ja) * 2007-03-16 2008-10-02 Nsk Ltd 環状体の熱処理方法および環状体矯正治具
JP5806448B2 (ja) * 2009-05-13 2015-11-10 株式会社東芝 核医学イメージング装置、画像処理装置および画像処理方法
JP5533715B2 (ja) * 2010-04-09 2014-06-25 株式会社デンソー 排気熱交換装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1647697A1 (fr) * 2003-07-18 2006-04-19 Hino Motors, Ltd. Refroidisseur pour recyclage de gaz d'echappement
EP1795850A1 (fr) * 2004-09-28 2007-06-13 T.RAD Co,.Ltd Échangeur de chaleur
DE102005037156A1 (de) * 2005-08-06 2007-02-08 Daimlerchrysler Ag Wärmetauscher
JP2008231929A (ja) * 2007-03-16 2008-10-02 Tokyo Radiator Mfg Co Ltd Egrクーラ用熱交換器の冷却水入口構造
JP2008232451A (ja) * 2007-03-16 2008-10-02 Tokyo Radiator Mfg Co Ltd 熱交換器の冷却水入口構造
JP2009114923A (ja) * 2007-11-05 2009-05-28 Tokyo Radiator Mfg Co Ltd Egrクーラ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3561426A4 (fr) * 2016-12-20 2020-07-08 Tokyo Roki Co., Ltd. Dispositif d'échange de chaleur
US10767605B2 (en) 2016-12-20 2020-09-08 Tokyo Roki Co., Ltd. Heat exchanger
WO2020104836A1 (fr) * 2018-11-21 2020-05-28 Valeo North America, Inc. Refroidisseur d'air de charge

Also Published As

Publication number Publication date
US20150027673A1 (en) 2015-01-29
US9791215B2 (en) 2017-10-17
ES2409534R1 (es) 2013-10-11
ES2409534B1 (es) 2014-09-02
EP2795089A1 (fr) 2014-10-29
EP2795089B1 (fr) 2017-08-02
ES2409534A2 (es) 2013-06-26
KR20140111295A (ko) 2014-09-18

Similar Documents

Publication Publication Date Title
EP2795089B1 (fr) Echangeur de chaleur pour gaz, en particulier pour gaz d'echappement d'un moteur
EP2726804B1 (fr) Echangeur thermique notamment pour vehicule automobile
EP2502016B1 (fr) Echangeur de chaleur pour gaz, notamment pour les gaz d'echappement d'un moteur
EP2972049B1 (fr) Echangeur thermique, en particulier refroidisseur d'air de suralimentation
WO2011023825A1 (fr) Echangeur thermique
EP2901098A1 (fr) Echangeur thermique de gaz, en particulier des gaz d'echappement d'un moteur
EP2715264B1 (fr) Echangeur thermique, notamment pour vehicule automobile, et dispositif d'admission d'air correspondant
WO2012080039A2 (fr) Echangeur de chaleur a plaques empilees
EP3394556B1 (fr) Échangeur thermique pour gaz, en particulier pour les gaz d'échappement d'un moteur, et ensemble unité de conduite de gaz avec filtre à particules
EP2926077B1 (fr) Échangeur thermique pour gaz, en particulier pour les gaz d'échappement d'un moteur
WO2004106834A2 (fr) Echangeur de chaleur a plaques, notamment refroidisseur des gaz d’echappement recircules
FR2837917A1 (fr) Echangeur de chaleur, notamment pour un vehicule automobile, constitue d'elements tubulaires empiles
WO2014016192A1 (fr) Echangeur de chaleur pour vehicule automobile comportant une bride de fixation
WO2016202832A1 (fr) Échangeur thermique pour gaz, en particulier pour les gaz d'échappement d'un moteur
WO2005124254A1 (fr) Echangeur de chaleur pour gaz d'échappement recirculés de moteur à combustion interne
EP3857156A1 (fr) Plaque d'échangeur de chaleur a ouverture optimisée
WO2013113687A1 (fr) Echangeur thermique, tube plat et plaque correspondants
FR2855603A1 (fr) Echangeur de chaleur a plaques, notamment refroidisseur des gaz d'echappement recircules, comportant une enveloppe delimitant des boites d'entree et de sortie de ces gaz
WO2017158300A1 (fr) Échangeur de chaleur et procédé de fabrication associé
FR2968388A1 (fr) Echangeur de chaleur notamment pour vehicule automobile
WO2004090448A2 (fr) Module d’echange de chaleur, notamment pour vehicule automobile
FR2664368A1 (fr) Echangeur de chaleur, monte sur vehicule, du type a flux parallele.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12809789

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012809789

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20147020051

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14367440

Country of ref document: US