WO2005124254A1 - Echangeur de chaleur pour gaz d'échappement recirculés de moteur à combustion interne - Google Patents

Echangeur de chaleur pour gaz d'échappement recirculés de moteur à combustion interne Download PDF

Info

Publication number
WO2005124254A1
WO2005124254A1 PCT/FR2005/001223 FR2005001223W WO2005124254A1 WO 2005124254 A1 WO2005124254 A1 WO 2005124254A1 FR 2005001223 W FR2005001223 W FR 2005001223W WO 2005124254 A1 WO2005124254 A1 WO 2005124254A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
passage
exchanger according
plates
channels
Prior art date
Application number
PCT/FR2005/001223
Other languages
English (en)
Inventor
Mathieu Chanfreau
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to EP05771201A priority Critical patent/EP1747417A1/fr
Publication of WO2005124254A1 publication Critical patent/WO2005124254A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/04Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular
    • F28F1/045Tubular elements of cross-section which is non-circular polygonal, e.g. rectangular with assemblies of stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/50Arrangements or methods for preventing or reducing deposits, corrosion or wear caused by impurities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/10Particular pattern of flow of the heat exchange media
    • F28F2250/102Particular pattern of flow of the heat exchange media with change of flow direction

Definitions

  • the invention relates to a heat exchanger for recirculated exhaust gases from an internal combustion engine, in particular from a motor vehicle.
  • the heat exchangers used for this purpose generally consist of an elongated cylindrical casing of small cross section, an inlet manifold box and an outlet manifold box.
  • the manifolds are connected to longitudinal tubes internal to the casing in which the exhaust gases circulate.
  • the coolant which is generally formed from a mixture of glycol and water from the engine cooling circuit, flows against the current in the crankcase around the tubes.
  • Inlet and outlet pipes are connected to each end of the housing for the inlet and outlet of the coolant.
  • heat exchangers comprising a multiplicity of pairs of plates of cooling arranged parallel to each other inside a housing in the form of a rectangular parallelepiped.
  • the space between the plates of a pair of plates forms a tube or channel in which the exhaust gases circulate, while the coolant circulates between the pairs of plates.
  • exchangers are not suitable for certain modes of operation of the engines, in particular during cold starts when the temperature of the coolant is between 0 ° and 60 ° C and / or when a low temperature cooling loop is used. to cool the heat exchanger.
  • One of the aims of the invention is to improve the efficiency of a heat exchanger for recirculated exhaust gases in which the fouling of the gas passages is minimized, in particular in the context of operation. at low coolant temperature.
  • This object is achieved, in accordance with the invention, by causing the gases to travel a shorter distance and by increasing the gas passage sections in the heat exchanger.
  • the invention relates to a heat exchanger for recirculated exhaust gases from an internal combustion engine, in which the exhaust gases circulate inside a bundle cooled by a coolant.
  • blind is to be taken here in the broad sense as designating a set of passages, such as, for example, tubes, pairs of plates, channels, etc. They may in particular be parallel channels of substantially identical lengths.
  • the effective length EF of the beam is determined as a function of the performance required and of the cross section S of passage of the gases in the beam so that the ratio EF / S between the effective length EF of the beam and the cross section S of gas passage in the beam is between a maximum value EF / S max and a minimum value EF / S min for which fouling of the beam, for example gas passage channels, is minimal.
  • the effective length EF of the beam is between a maximum value EFmax for which a risk of condensation of the gases and therefore of fouling can take place and a minimum value EFmin leading to too large an effective section, at speeds of gas too weak and degraded performance.
  • the beam is formed of channels and the ratios EF / S max and EF / S min are determined as a function of the length of the channels according to a law which varies linearly as a function of the effective length EF of the beam channels.
  • the cross section of the gas passage beam can be arbitrary, in particular rectangular, square or circular.
  • 1 exchanger comprises on the one hand, a first passage formed of a multiplicity of pairs of plates each formed of two parallel plates between which circulates a cooling fluid, the pairs of plates being stacked one above the others and on the other hand, a second passage formed by the beam and through which the exhaust gases circulate, the second passage being formed by rows of parallel channels, each row being sandwiched between the pairs of first pass plates.
  • Each pair of plates is advantageously in the form of a rectangular parallelepiped and consists of a bottom plate with raised edge and a plate forming a cover above the bottom plate.
  • the coolant circulates between these two plates between an inlet orifice and an outlet orifice connected respectively to an inlet manifold and to an outlet manifold through corresponding orifices located opposite each other. plates.
  • the path advantageously follows a broken line in the form of a lace or zigzag.
  • the path followed by the coolant in each of the pairs of plates is in the form of a zigzag with a U-shaped circulation.
  • the parallel branches of the U forming the two half-paths are oriented in a direction which is perpendicular to the longitudinal direction of the channels of the second passage, making a counter-current circulation between the gases and the coolant.
  • the path followed by the coolant in each pair of plates is advantageously delimited between the bottom plate and the cover by ribs and the raised edge of the bottom plate.
  • the channels of the second passage can be formed by tubes with rectangular, triangular or circular section, but they can also be produced by means of successive folds of a single metal strip.
  • the heat exchanger has minimum fouling for an effective length EF value between 4 and 12cm.
  • the main advantage of the invention is that it makes it possible to significantly reduce the length of the gas passage beams, while reducing the formation of condensation products at low operating temperatures.
  • Fouling tests on heat exchangers having the characteristics shown above show that even with cold water coolant around 30 ° C, these exchangers do not clog more than hot water exchangers, while the condensation temperature is reached for more 50% of the time and the gas temperature is below about 60 ° C for 35% of the time. This is due in particular to their short effective length EF.
  • the condensation products of the exhaust gases circulate by mixing with the particles on a smaller part of the exchanger, which reduces the fouling of the exchanger at the outlet.
  • FIGS. 1, 2 and 3 are respectively sectional, perspective and exploded views of a heat exchanger according to the invention
  • FIG. 4 is a graph determining the ratio to be given between the effective length and the effective surface area of the heat exchanger to effectively reduce both the pressure drop of the gases and the risk of fouling due to condensation
  • Figures 5 and 6 are graphs of comparison of thermal characteristics between a long type heat exchanger of the prior art and a short type exchanger according to the invention.
  • FIG. 7 is a graph showing the influence of the effective length EF on the fouling rate of heat exchangers according to the invention.
  • the heat exchanger which is shown in Figures 1, 2 and 3 comprises on the one hand, a first passage 1 comprising a multiplicity of pairs of parallel cooling plates li forming a bundle, juxtaposed one above the other and each composed of two parallel plates lai, Ibi and on the other hand, a second passage 2 formed of a bundle composed of rows of parallel channels 2j of substantially identical lengths, through which exhaust gases circulate.
  • a heat engine in particular from a motor vehicle, and are intended to be recirculated (or recycled) by re-injecting them into the engine.
  • first passage 1 circulates a cooling fluid, for example a mixture of water and glycol, between an inlet manifold 3 and an outlet manifold 4.
  • a cooling fluid for example a mixture of water and glycol
  • This is usually the fluid which is also used for cooling the engine. , but it can also be cooler fluid from a low temperature loop.
  • Each of the rows of parallel channels 2j of the second passage is sandwiched between two pairs of successive cooling plates li and li + 1 of the first passage 1.
  • the engine exhaust gases circulate inside the parallel channels 2j of the second passage 2 and are cooled by the coolant which circulates against that of the gases inside the pairs of parallel plates li of the first passage , as shown by the arrows in Figure 2.
  • the channels 2j of the second passage 2 can be formed by tubes of rectangular, triangular or circular section, but they can also be produced in successive alternating folds of a single metal strip.
  • each pair of li plates is in the form of a rectangular parallelepiped and consists of a base plate Ibi with raised edge 5 and a plate lai forming a cover covering the base plate. Between these two plates circulates the coolant between an inlet orifice 6 and an outlet orifice 7 connected respectively to the inlet manifold 3 and to the outlet manifold 4 through corresponding orifices located opposite the other plates.
  • the path followed by the coolant is in the form of a zigzag and is composed of two U-shaped half-paths.
  • the two half-paths are delimited by an axial rib 8 directed along l 'longitudinal axis XX' of the bottom plate Ibi and by two longitudinal ribs 9, 10 parallel to the axial rib 8 and located on either side thereof.
  • the ribs 8 and 9 delimit with the raised edge 5 of the bottom plate Ibi the two parallel branches of the first U and the ribs 8 and 10 delimit with the raised edge 5 of the bottom plate Ibi the two parallel branches of the second U.
  • the U are joined head to tail to each other by two adjacent branches having the axial rib 8 in common.
  • the parallel branches of the U forming the two half-paths are oriented in a direction which is perpendicular to the longitudinal direction of the channels of the second passage 2.
  • the ends of the two adjacent branches having the axial rib 8 in common communicate with each other and the ends of the two remaining branches are respectively connected to the inlet 6 and outlet 7 ports of the coolant.
  • the casing 11 is open on its two opposite faces which are opposite respectively with the inlet and the outlet of the gases of the second bundle 2.
  • the effective length EF of the channels is determined as a function of the effective section S of passage of the gases in the beam so that for each length of channel, between a minimum value EFmin and a maximum value EFmax, the ratio EF / S between the effective length and the surface S is between a maximum value EF / S max and a minimum value EF / S min for which the fouling of the tubes is minimal.
  • the effective length represents the total exchange length of the exchanger in the direction of passage of the gases. For a parallel tube exchanger, it represents approximately the length of a tube.
  • the cross section is the total section of the exchanger which is crossed by the gases.
  • a tube exchanger it represents the section of a tube multiplied by the number of tubes.
  • Figures 1 to 3 which is that of a plate heat exchanger, it is calculated by the number of gas blades multiplied by the width OA of the bundle and the height of the gas blade.
  • the ratios EF / S max and EF / S min are determined according to a law which varies linearly as a function of the effective length EF of the beam channels.
  • Line A represents the variations of the max EF / S ratio and line B represents the variations of the min. These two lines pass approximately through the origin of the EF / S and EF axes.
  • the hatched range, between these two lines and limited on the abscissa between the two values EFmax and EFmin, is that in which the ratio EF / S must be found to obtain optimal operation of the exchanger.
  • the effective length EFmax the effective length is too large and runs a risk of increased condensation and at a difference in gas pressure between the outlet and the inlet of the exchanger too large.
  • the lengths subject to condensation are respectively for the least severe point of 315mm for the long type exchanger and 56mm for the type exchanger short. It can therefore be seen that the length subjected to condensation is more than 5 times greater on a long type heat exchanger.
  • the influence of the effective length EF on the fouling rate can be represented using a bundle of curves, each curve being representative of the evolution of a fouling rate corresponding to a ratio Constant EF / S. These curves all have a minimum of fouling when the effective length EF is between 4 and 12 cm, whatever the ratio EF / S.
  • Figure 7 only two curves C and D are shown. They show the evolution of the fouling rate for two values kl and k2 of the EF / S ratio.
  • the fouling rate is calculated according to the performance of the exchanger relative to that which it provides when it is not fouled according to the relationship:
  • the invention is not limited to the embodiment described above, it also applies to the production of exchangers having gas passage sections of any shape and in particular circular as is generally the case for exchangers comprising a cylindrical casing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

Les gaz d'échappement circulent à l'intérieur d'un faisceau (2) refroidi par un liquide réfrigérant. La longueur efficace EF du faisceau (2) est déterminée en fonction de la section efficace S de passage des gaz dans le faisceau (2) de façon telle que le 10 rapport EF/S entre la longueur efficace EF du faisceau (2) et la section efficace S de passage des gaz dans le faisceau (2) soit compris entre une valeur maximale EF/S max et une valeur minimale EF/S min pour lesquelles l'encrassement du faisceau est minimal. Application aux moteurs à combustion interne, en 15 particulier de véhicules automobiles.

Description

Ec angeur de chaleur pour gaz d' échappement recirculës de moteur à combustion interne
L ' invention concerne un echangeur de chaleur pour des gaz d'échappement recirculés d'un moteur à combustion interne, en particulier de véhicule automobile.
Il est connu de recirculer une partie des gaz d'échappement d'un moteur à combustion interne en la ré-injectant en mélange avec de l'air dans le collecteur d'admission du moteur. Cette recirculation (appelée aussi recyclage) a pour effet d'abaisser la température de combustion et donc de limiter la quantité d'oxydes d'azote NOx émis dans ces gaz.
On sait par ailleurs que le taux de recirculation des gaz d'échappement est limité en raison des émissions de particules et d'oxyde de carbone. Mais le refroidissement des gaz recirculés permet d'augmenter l'effet de réduction de la quantité d'oxydes d'azote, tout en conservant une émission de particules inchangée. Il est donc également connu de faire passer les gaz recirculés dans un echangeur de chaleur en vue de les refroidir.
Les échangeurs de chaleur utilisés à cet effet sont généralement constitués d'un carter cylindrique allongé de faible section transversale, d'une boîte collectrice d'entrée et d'une boîte collectrice de sortie. Les boîtes collectrices sont raccordées à des tubes longitudinaux internes au carter dans lesquels circulent les gaz d'échappement. Le liquide de refroidissement qui est généralement formé d'un mélange de glycol et d'eau provenant du circuit de refroidissement du moteur, circule à contre-courant dans le carter autour des tubes. Des tubulures d'entrée et de sortie sont raccordées à chaque extrémité du carter pour l'entrée et la sortie du liquide de refroidissement.
Il est aussi connu d'utiliser des échangeurs de- chaleur comportant une multiplicité de paires de plaques de refroidissement disposées parallèlement les unes aux autres à l'intérieur d'un carter en forme de parallélépipède rectangle. L'espace entre les plaques d'une paire de plaques forme un tube ou un canal dans lequel circulent les gaz d'échappement, tandis que le liquide de refroidissement circule entre les paires de plaques .
Cependant l'inconvénient principal de ces types d' echangeur est leur forme oblongue dans le sens de passage des gaz qui conduit à une différence de pression des gaz entre l'entrée et la sortie de l' echangeur relativement élevée et à une longueur d'échange importante. De ce fait les produits résultants de la condensation des gaz d'échappement circulent sur une longueur importante de l' echangeur en se mélangeant avec les particules, ce qui provoque un encrassement important des tubes ou canaux de passage des gaz, surtout à la sortie de l' echangeur.
Pour diminuer l'encrassement, et par conséquent améliorer l'efficacité de ces échangeurs, il est connu d'utiliser des tubes ondulés ou annelés qui, grâce à des aspérités ondulatoires disposées par exemple en hélice autour de chaque tube, provoquent des turbulences à la fois dans l'écoulement du fluide de refroidissement entourant les tubes et dans l'écoulement des gaz circulant à l'intérieur de ces tubes. Il est aussi connu d'utiliser des échangeurs à plaques de refroidissement composés de perturbateurs lisses et ondulés qui permettent de diminuer également l'encrassement des plaques en perturbant l'écoulement des gaz entre ces plaques .
Mais ces échangeurs ne conviennent pas à certains modes de fonctionnement des moteurs notamment lors des démarrages à froid lorsque la température du liquide de refroidissement se situe entre 0° et 60 °C et/ou lorsque l'on utilise une boucle de refroidissement à basse température pour refroidir l' echangeur de chaleur. L'un des buts de l'invention est d'améliorer l'efficacité d'un echangeur de chaleur pour gaz d'échappement recirculés dans lequel l'encrassement des passages des gaz est réduit au maximum, notamment dans le cadre d'un fonctionnement à basse température du liquide de refroidissement.
Ce but est atteint, conformément à l'invention, en faisant parcourir aux gaz une distance plus courte et en augmentant les sections de passage des gaz dans l' echangeur de chaleur.
Pour des raisons de réalisation (carter trop long) et pour ne pas abaisser de trop les vitesses de gaz dans 1 ' echangeur de chaleur, ce qui pénaliserait l'échange thermique et l'encrassement, un autre but de l'invention est de garantir un certain rapport entre la section efficace de passage des gaz dans l' echangeur et la longueur efficace de l' echangeur. A cet effet, l'invention a pour objet un echangeur de chaleur pour gaz d'échappement recirculés de moteur à combustion interne, dans lequel les gaz d'échappement circulent à l'intérieur d'un faisceau refroidi par un liquide de refroidissement .
Le terme "faisceau" est à prendre ici au sens large comme désignant un ensemble de passages, comme par exemple des tubes, des paires de plaques, des canaux, etc. Il peut s'agir notamment de canaux parallèles de longueurs sensiblement identiques.
Conformément à l'invention, la longueur efficace EF du faisceau est déterminée en fonction de la performance demandée et de la section efficace S de passage des gaz dans le faisceau de façon telle que le rapport EF/S entre la longueur efficace EF du faisceau et la section efficace S de passage des gaz dans le faisceau soit compris entre une valeur maximale EF/S max et une valeur minimale EF/S min pour lesquelles l'encrassement du faisceau, par exemple des canaux de passage des gaz, est minimal . De manière avantageuse, la longueur efficace EF du faisceau est comprise entre une valeur maximale EFmax pour laquelle un risque de condensation des gaz et donc d'encrassement peut avoir lieu et une valeur minimale EFmin conduisant à une section efficace trop grande, à des vitesse de gaz trop faibles et à des performances dégradées .
Selon une autre caractéristique de l'invention, le faisceau est formé de canaux et les rapports EF/S max et EF/S min sont déterminés en fonction de la longueur des canaux suivant une loi qui varie linéairement en fonction de la longueur efficace EF des canaux du faisceau.
La section du faisceau de passage des gaz peut être quelconque, en particulier rectangulaire, carrée ou circulaire.
Dans une forme . de réalisation préférée de l'invention 1 ' echangeur comprend d'une part, un premier passage formé d'une multiplicité de paires de plaques formées chacune de deux plaques parallèles entre lesquelles circule un fluide de refroidissement, les paires de plaques étant empilés les unes au dessus des autres et d'autre part, un deuxième passage formé par le faisceau et au travers duquel circulent les gaz d'échappement, le deuxième passage étant formé par des rangées de canaux parallèles, chaque rangée étant disposée en sandwich entre les paires de plaques du premier passage.
Chaque paire de plaques se présente avantageusement sous la forme d'un parallélépipède rectangle et se compose d'une plaque de fond à bord relevé et d'une plaque formant couvercle au dessus de la plaque de fond. Le liquide de refroidissement circule entre ces deux plaques entre un orifice d'entrée et un orifice de sortie reliés respectivement à un collecteur d'entrée et à un collecteur de sortie au travers d'orifices correspondants situés en vis-à-vis dans les autres plaques., Pour augmenter la longueur du chemin suivi par le liquide de refroidissement et améliorer l'échange dans chacune des paires de plaques, le chemin suit avantageusement une ligne brisée en forme de lacet ou zigzag.
De préférence, le chemin suivi par le liquide de refroidissement dans chacune des paires de plaques est en forme de zigzag avec une circulation en forme de U. En ce cas, il est avantageux que les branches parallèles des U formant les deux demi-chemins soient orientées suivant une direction qui est perpendiculaire à la direction longitudinale des canaux du deuxième passage, faisant une circulation à contre courant entre les gaz et le liquide de refroidissement. Le chemin suivi par le liquide de refroidissement dans chaque paires de plaques est avantageusement délimité entre la plaque de fond et le couvercle par des nervures et le bord relevé de la plaque de fond.
Avantageusement les canaux du deuxième passage peuvent être formés par des tubes à section rectangulaire, triangulaire ou circulaire, mais ils peuvent également être réalisés au moyen de plis successifs d'une seule bande métallique.
Dans une forme de réalisation préférée, la longueur efficace du faisceau est comprise approximativement entre EFmin = 4cm et EFmax = 12cm et le rapport EF/S est compris pour chaque longueur EF comprise entre EFmin et EFmax dans un intervalle compris sensiblement entre 0,01625xEF et 0,16625xEF. L' echangeur de chaleur présente un encrassement minimum pour une valeur de la longueur efficace EF comprise entre 4 et 12cm.
L'invention a pour principal avantage qu'elle permet de réduire de façon importante la longueur des faisceaux de passage de gaz, tout en diminuant la formation des produits de condensation aux basses températures de fonctionnement. Des tests d'encrassement sur des échangeurs de chaleur ayant les caractéristiques indiquées ci-dessus montrent que, même avec comme liquide de refroidissement de l'eau froide aux environs de 30°C, ces échangeurs ne s'encrassent pas plus que les échangeurs à eau chaude, alors que la température de condensation est atteinte pendant plus de 50% du temps et que la température des gaz est inférieure à 60°C environ pendant 35% du temps. Cela est dû notamment à leur faible longueur efficace EF. Comme la zone de condensation est réduite, les produits de condensation des gaz d'échappement circulent en se mélangeant avec les particules sur une partie moins importante de l' echangeur, ce qui diminue l'encrassement de l' echangeur en sortie.
On décrira maintenant, à titre d'exemple non limitatif, un mode de réalisation particulier d'un echangeur de chaleur selon l'invention, en référence aux dessins schématiques annexés dans lesquels :
- les Figures 1, 2 et 3 sont des vues respectivement en coupe, en perspective et en éclaté d'un echangeur de chaleur selon l'invention ;
- la Figure 4 est un graphe déterminant le rapport à donner entre la longueur efficace et la surface efficace de l' echangeur de chaleur pour réduire de façon efficace à la fois la perte de charge des gaz et le risque d'encrassement lié à la condensation
les Figures 5 et 6 sont des graphes de comparaison de caractéristiques thermiques entre un echangeur de chaleur de type long de l'art antérieur et un echangeur de type court selon l'invention ; et
- la Figure 7 est un graphe montrant l'influence de la longueur efficace EF sur le taux d'encrassement d' échangeurs de chaleur selon l'invention. L' echangeur de chaleur qui est représenté aux Figures 1, 2 et 3 comprend d'une part, un premier passage 1 comportant une multiplicité de paires de plaques de refroidissement parallèles li formant faisceau, juxtaposées les unes au dessus des autres et composées chacune de deux plaques parallèles lai, Ibi et d'autre part, un deuxième passage 2 formé d'un faisceau composé de rangées de canaux parallèles 2j de longueurs sensiblement identiques, au travers desquels circulent des gaz d'échappement. Ces derniers proviennent d'un moteur thermique, en particulier de véhicule automobile, et sont destinés à être recirculés (ou recyclés) en les ré-injectant dans le moteur.
Dans le premier passage 1 circule un fluide de refroidissement, par exemple un mélange d'eau et de glycol, entre un collecteur d'entrée 3 et un collecteur de sortie 4. Il s'agit habituellement du fluide qui sert aussi au refroidissement du moteur, mais ce peut aussi être du fluide plus froid issu d'une boucle basse température. Chacune des rangées de canaux parallèles 2j du deuxième passage est interposée en sandwich entre deux paires de plaques de refroidissement successives li et li+1 du premier passage 1.
Les gaz d'échappement du moteur circulent à l'intérieur des canaux parallèles 2j du deuxième passage 2 et sont refroidis par le liquide de refroidissement qui circule à contre courant de celui des gaz à l'intérieur des paires de plaques parallèles li du premier passage, comme le montrent les flèches de la Figure 2.
Les canaux 2j du deuxième passage 2 peuvent être formés par des tubes à section rectangulaire, triangulaire ou circulaire, mais ils peuvent également être réalisés selon des plis alternés successifs d'une seule bande métallique.
Comme le montre le mode d'assemblage de la Figure 3, chaque paire de plaques li se présente sous la forme d'un parallélépipède rectangle et se compose d'une plaque de fond Ibi à bord relevé 5 et d'une plaque lai formant couvercle recouvrant la plaque de fond. Entre ces deux plaques circule le liquide de refroidissement entre un orifice d'entrée 6 et un orifice de sortie 7 reliés respectivement au collecteur d'entrée 3 et au collecteur de sortie 4 au travers d'orifices correspondants situés en vis-à-vis des autres plaques.
Dans l'exemple de la Figure 3, le chemin suivi par le liquide de refroidissement est en forme de zigzag et est composé de deux demi-chemins en forme de U. Les deux demi-chemins sont délimités par une nervure axiale 8 dirigée suivant l'axe longitudinal XX' de la plaque de fond Ibi et par deux nervures longitudinales 9, 10 parallèles à la nervure axiale 8 et situées de part et d'autre de celle ci. Les nervures 8 et 9 délimitent avec le bord relevé 5 de la plaque de fond Ibi les deux branches parallèles du premier U et les nervures 8 et 10 délimitent avec le bord relevé 5 de la plaque de fond Ibi les deux branches parallèles du deuxième U. Les U sont accolés tête-bêche l'un à l'autre par deux branches adjacentes ayant la nervure axiale 8 en commun.
Les branches parallèles des U formant les deux demi-chemins sont orientées suivant une direction qui est perpendiculaire à la direction longitudinale des canaux du deuxième passage 2. Les extrémités des deux branches adjacentes ayant la nervure axiale 8 en commun communiquent entre elles et les extrémités des deux branches restantes sont reliées respectivement aux orifices d'entrée 6 et de sortie 7 du liquide de refroidissement.
L'ensemble formé des plaques li en forme de parallélépipède rectangle, juxtaposées les unes au dessus des autres par l'intermédiaire des rangées de canaux du deuxième passage, est logé à l'intérieur d'un carter 11 en forme de parallélépipède rectangle. Le carter 11 est ouvert sur ses deux faces opposées qui sont en regard respectivement avec l'entrée et la sortie des gaz du deuxième faisceau 2. Selon une disposition avantageuse de l'invention, la longueur efficace EF des canaux est déterminée en fonction de la section efficace S de passage des gaz dans le faisceau de façon que pour chaque longueur de canal, comprise entre une valeur minimale EFmin et une valeur maximale EFmax, le rapport EF/S entre la longueur efficace et la surface S soit compris entre une valeur maximale EF/S max et une valeur minimale EF/S min pour lesquelles l'encrassement des tubes est minimal.
La longueur efficace représente la longueur totale d'échange de l' echangeur dans le sens de passage des gaz. Pour un echangeur à tubes parallèles, elle représente environ la longueur d'un tube.
La section efficace est la section totale de l' echangeur qui est traversée par les gaz. Pour un echangeur à tubes elle représente la section d'un tube multiplié par le nombre de tubes. Dans l'exemple des Figures 1 à 3, qui est celui d'un echangeur à plaques, elle est calculée par le nombre de lames de gaz multiplié par la largeur OA du faisceau et la hauteur de la lame de gaz .
Comme le montre le graphe de la Figure 4, les rapports EF/S max et EF/S min sont déterminés suivant une loi qui varie linéairement en fonction de la longueur efficace EF des canaux du faisceau. La droite A représente les variations du rapport EF/S max et la droite B représente les variations du rapport ET/S min. Ces deux droites passent approximativement par l'origine des axes EF/S et EF. Le domaine hachuré, compris entre ces deux droites et limité en abscisse entre les deux valeurs EFmax et EFmin, est celui dans lequel le rapport EF/S doit se trouver pour obtenir un fonctionnement optimal de l' echangeur.
Au dessus de la droite A la section efficace S est trop faible et corrélativement la différence de pression des gaz entre la sortie et l'entrée de l' echangeur est trop grande, ce qui augmente le risque de condensation. En dessous de la droite B la section efficace S est trop grande et les vitesses trop faibles des gaz font courir un risque d'encrassement et conduit à la réalisation d'un carter important .
En dessous de la longueur efficace EFmin la longueur efficace est trop faible et conduit à des performances limitées.
Au dessus de la longueur efficace EFmax la longueur efficace est trop grande et fait courir un risque de condensation accru et ' à une différence de pression des gaz entre la sortie et l'entrée de l' echangeur trop importante.
Dans l'exemple de la Figure 4 la longueur efficace des canaux du deuxième passage est comprise approximativement entre EFmin = 4cm et EFmax = 12cm et le rapport EF/S est compris pour chaque longueur EF comprise entre EFmin et EFmax dans un intervalle compris sensiblement entre 0, 01625xEF+0, 005 pour (EF/S)mini -et 0,16625xEF+0, 005 pour (EF/S)maxi.
On compare les caractéristiques thermiques de deux échangeurs qui doivent tenir un même cahier des charges . Pour cela on utilise un echangeur "de type long" de l'art antérieur ayant un diamètre de 54 mm et une longueur de 340mm et comportant 20 tubes "ondulés" ou annelés, encore connus sous la désignation de "corrugated tubes" dans le vocabulaire anglo-saxon. On utilise en outre un echangeur à plaques "de type court" selon l'invention, présentant une longueur de 60mm et une section totale de 102x49mm. Il résulte de cette comparaison que la décroissance de température en fonction de la longueur efficace parcourue par les gaz est beaucoup plus forte sur l' echangeur "de type court", comme le montrent les cinq courbes relevées à des températures et débits de gaz différents, sur les diagrammes des Figures 5 et 6. Les longueurs soumises à la condensation sont respectivement pour le point le moins sévère de 315mm pour l' echangeur de type long et de 56mm pour l' echangeur de type court. On constate, par conséquent, que la longueur soumise à condensation est plus de 5 fois supérieure sur un echangeur de chaleur de type long. pfeγ-f L' influence de la longueur efficace EF sur le taux d'encrassement peut être représentée a l'aide d'un faisceau de courbes, chaque courbe étant représentative de l'évolution d'un taux d'encrassement correspondant à un rapport EF/S constant . Ces courbes présentent toutes un minimum d'encrassement lorsque la longueur efficace EF est comprise entre 4 et 12 cm, quel que soit le rapport EF/S. Sur la Figure 7 seulement deux courbes C et D sont représentées . Elles montrent l'évolution du taux d'encrassement pour deux valeurs kl et k2 du rapports EF/S. Le taux d'encrassement est calculé en fonction des performances de l' echangeur relativement à celles qu'il fournit lorsqu'il n'est pas encrassé suivant la relation:
Perf.(non.encrassé) - Perf. (encrasse) Taux (en % ) ≈ Perf. non.encrasse) Lorsque Taux=0 l' echangeur n'est pas encrassé.
Lorsque aux =1 l' echangeur est complètement encrassé, c'est à dire qu'il n'échange plus de chaleur avec le liquide réfrigérant parcourant le premier faisceau. (Cela ne veut pas dire qu'il est bouché) .
L'invention .n'est pas limitée à l'exemple de réalisation précédemment décrit, elle s'applique également à la réalisation d' échangeurs ayant des sections de passage des gaz de forme quelconque et notamment circulaire comme c'est le cas généralement pour les échangeurs comportant un carter cylindrique.

Claims

Revendications
1- Echangeur de chaleur pour gaz d' échappement recirculés de moteur à combustion interne, dans lequel les gaz d'échappement circulent à l'intérieur d'un faisceau (2) refroidi par un liquide de refroidissement, caractérisé en ce que la longueur efficace EF du faisceau (2) est déterminée en fonction de la performance demandée et de la section efficace S de passage des gaz dans le faisceau (2) de façon telle que le rapport EF/S entre la longueur efficace EF du faisceau (2) et la section efficace S de passage des gaz dans le faisceau (2) soit compris entre une valeur maximale EF/S max et une valeur minimale EF/S min pour lesquelles l'encrassement du faisceau est minimal.
2- Echangeur de chaleur selon la revendication 1, caractérisé en ce que la longueur efficace EF du faisceau (2) est comprise entre une valeur maximale EFmax pour laquelle un risque d'encrassement dû à la condensation des gaz est important et une valeur minimale EFmin conduisant à une section efficace trop grande et à des performances dégradées .
3- Echangeur de chaleur selon l'une des revendications 1 et 2, caractérisé en ce que le faisceau (2) est formé de canaux (2j) et en ce que les rapports EF/S max et EF/S min sont déterminés en fonction de la longueur des canaux (2j) suivant une loi qui varie linéairement en fonction de la longueur efficace EF des canaux (2j ) .
4- Echangeur de chaleur selon l'une des revendications 1 à 3, caractérisé en ce que la section du faisceau de passage des gaz
(2) est avantageusement rectangulaire ou carrée.
5- Echangeur de chaleur selon l'une des revendications 1 à 3, caractérisé en ce que la section du faisceau de passage des gaz (2) est circulaire. 6- Echangeur de chaleur selon l'une des revendications 1 à 4, caractérisé en ce qu'il comprend d'une part, un premier passage (1) formé d'une multiplicité de paires de plaques (li) formées chacune de deux plaques parallèles (lai, Ibi) entre lesquelles circule un fluide de refroidissement, les paires de plaque (li) étant empilées les unes au dessus des autres et d'autre part, un deuxième passage (2) au travers duquel circulent les gaz d'échappement, le deuxième passage étant formé par des rangées de canaux parallèles (2j), chaque rangée étant disposée en sandwich entre les paires de plaques (li) du premier passage (D •
7- Echangeur de chaleur selon la revendication 6, caractérisé en ce que chaque paire de plaques (li) se présente sous la forme d'un parallélépipède rectangle et se compose d'une plaque de fond (Ibi) à bord relevé (5) et d'une plaque (lai) formant couvercle recouvrant la plaque de fond, et en ce que le liquide de refroidissement circule entre la plaque de fond (Ibi) et la plaque formant couvercle (lai) entre un orifice d'entrée (6) et un orifice de sortie (7) reliés respectivement à un collecteur d'entrée (3) et à un collecteur de sortie (4) au travers d'orifices correspondants situés en vis-à-vis dans les autres paires de plaques (li) .
8- Echangeur de chaleur selon la revendication 7, caractérisé en ce que le chemin suivi par le liquide de refroidissement dans chacune des paires de plaques est en forme de zigzag avec une circulation en forme de U.
9- Echangeur de chaleur selon la revendication 8, caractérisé en ce que les branches parallèles des U formant les deux demi- chemins sont orientées suivant une direction qui est perpendiculaire à la direction longitudinale des canaux (2j) du deuxième passage (2) faisant une circulation à contre courant entre les gaz et le liquide de refroidissement.
10- Echangeur de chaleur selon la revendication 9, caractérisé en ce que le chemin suivi par le liquide de refroidissement dans chaque paire de plaques est délimité entre la plaque de fond (Ibi) et le couvercle (lai) par des nervures (8,9,10) et le bord relevé (5) de la plaque de fond (Ibi) .
11- Echangeur de chaleur selon l'une des revendications 6 à 10, caractérisé en ce que les canaux (2j) du deuxième passage (2) sont formés par des tubes à section rectangulaire, triangulaire ou circulaire.
12- Echangeur de chaleur selon l'une des revendications 6 à 10, caractérisé en ce que les canaux (2j) du deuxième passage (2) sont de section rectangulaire ou triangulaire et sont réalisés par plis successifs d'une seule bande métallique.
13- Echangeur de chaleur selon l'une des revendications 1 à 12, caractérisé en ce que la longueur efficace du faisceau est comprise approximativement entre EFmin = 4cm et EFmax = 12cm et le rapport EF/S est compris pour chaque longueur EF comprise entre EFmin et EFmax dans un intervalle compris sensiblement entre 0,01625xEF et 0,16625xEF.
14- Echangeur de chaleur selon la revendication 13, caractérisé en ce qu' il présente un encrassement minimum pour une valeur de la longueur efficace EF comprise entre 4 et 12cm.
PCT/FR2005/001223 2004-05-18 2005-05-17 Echangeur de chaleur pour gaz d'échappement recirculés de moteur à combustion interne WO2005124254A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP05771201A EP1747417A1 (fr) 2004-05-18 2005-05-17 Echangeur de chaleur pour gaz d'échappement recirculés de moteur à combustion interne

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0405420A FR2870590B1 (fr) 2004-05-18 2004-05-18 Echangeur de chaleur pour gaz d'echappement recircules de moteur a combustion interne
FR0405420 2004-05-18

Publications (1)

Publication Number Publication Date
WO2005124254A1 true WO2005124254A1 (fr) 2005-12-29

Family

ID=34945774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2005/001223 WO2005124254A1 (fr) 2004-05-18 2005-05-17 Echangeur de chaleur pour gaz d'échappement recirculés de moteur à combustion interne

Country Status (3)

Country Link
EP (1) EP1747417A1 (fr)
FR (1) FR2870590B1 (fr)
WO (1) WO2005124254A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7788073B2 (en) 2005-12-13 2010-08-31 Linde Aktiengesellschaft Processes for determining the strength of a plate-type exchanger, for producing a plate-type heat exchanger, and for producing a process engineering system
EP1798508A1 (fr) * 2005-12-13 2007-06-20 Linde Aktiengesellschaft Procédé de fabrication d'un échangeur de chaleur à plaques
FR2907506B1 (fr) * 2006-10-24 2008-12-05 Renault Sas Procede et dispositif de detection de l'encrassement d'un echangeur pour recyclage des gaz d'echappement dans un moteur diesel
US8113269B2 (en) * 2007-02-22 2012-02-14 Thomas & Betts International, Inc. Multi-channel heat exchanger

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2806467A1 (fr) * 2000-03-16 2001-09-21 Denso Corp Echangeur thermique pour gaz d'echappement
FR2809170A1 (fr) * 2000-05-22 2001-11-23 Denso Corp Echangeur de chaleur a gaz d'echappement
WO2001098723A1 (fr) * 2000-06-21 2001-12-27 Serck Heat Transfert Limited Refroidisseur de gaz d'echappement
US20020074105A1 (en) * 2000-12-19 2002-06-20 Takayuki Hayashi Heat exchanger
US20030111209A1 (en) * 1999-01-20 2003-06-19 Hino Motors, Ltd. EGR cooler
US20040035099A1 (en) * 2002-05-31 2004-02-26 Beldam Richard Paul Multi-pass exhaust gas recirculation cooler
DE10247264A1 (de) * 2002-10-10 2004-04-29 Behr Gmbh & Co. Plattenwärmeübertrager in Stapelbauweise

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030111209A1 (en) * 1999-01-20 2003-06-19 Hino Motors, Ltd. EGR cooler
FR2806467A1 (fr) * 2000-03-16 2001-09-21 Denso Corp Echangeur thermique pour gaz d'echappement
FR2809170A1 (fr) * 2000-05-22 2001-11-23 Denso Corp Echangeur de chaleur a gaz d'echappement
WO2001098723A1 (fr) * 2000-06-21 2001-12-27 Serck Heat Transfert Limited Refroidisseur de gaz d'echappement
US20020074105A1 (en) * 2000-12-19 2002-06-20 Takayuki Hayashi Heat exchanger
US20040035099A1 (en) * 2002-05-31 2004-02-26 Beldam Richard Paul Multi-pass exhaust gas recirculation cooler
DE10247264A1 (de) * 2002-10-10 2004-04-29 Behr Gmbh & Co. Plattenwärmeübertrager in Stapelbauweise

Also Published As

Publication number Publication date
FR2870590A1 (fr) 2005-11-25
FR2870590B1 (fr) 2006-07-28
EP1747417A1 (fr) 2007-01-31

Similar Documents

Publication Publication Date Title
EP2726805B1 (fr) Lame d'echangeur de chaleur a zone de contournement
CA2747353C (fr) Echangeur de chaleur comprenant des tubes a ailettes rainurees
EP2726804B1 (fr) Echangeur thermique notamment pour vehicule automobile
FR2928405A1 (fr) Refroidissement de l'extremite d'une aube.
EP2972049B1 (fr) Echangeur thermique, en particulier refroidisseur d'air de suralimentation
FR2549591A1 (fr) Ensemble de tubes ailetes
EP2622200B1 (fr) Dispositif de melange d'un flux de gaz d'admission et d'echappement recircules comprenant des moyens d'isolation pour les gaz d'echappement recircules
EP2638275A1 (fr) Collecteur de repartition de gaz et module d'admission de gaz correspondant
EP2795089B1 (fr) Echangeur de chaleur pour gaz, en particulier pour gaz d'echappement d'un moteur
EP2638352A1 (fr) Echangeur de chaleur et procede de formation de perturbateurs associe
WO2005124254A1 (fr) Echangeur de chaleur pour gaz d'échappement recirculés de moteur à combustion interne
WO2020188191A1 (fr) Module de refroidissement pour véhicule automobile électrique à turbomachine tangentielle
EP2463610B1 (fr) Échangeur de chaleur notamment pour véhicule automobile
FR3082295A1 (fr) Echangeur de chaleur de vehicule automobile
FR2704635A1 (fr) Radiateur d'automobile eet procédé de fabrication.
FR2946413A1 (fr) Chambre de combustion de moteur a turbine a gaz avec element de paroi multi-perfore
FR3120398A1 (fr) Dispositif d'échangeur à tubes de section trapézoïdale
WO2023099559A1 (fr) Échangeur de chaleur air-huile
BE1030020B1 (fr) Turbomachine axiale triple-flux avec échangeur de chaleur divergeant dans le troisième flux
WO2023099544A1 (fr) Échangeur de chaleur air-huile avec by-pass pour turbomachine
EP1857664B1 (fr) Conduite d'un moteur thermique d'un véhicule automobile, destinée à véhiculer des gaz d'échappement issus de ce moteur vers une jonction de mélange
EP0628717B1 (fr) Dispositif de vaporisation de carburant dans un conduit d'admission d'un moteur à combustion interne
BE1030019A1 (fr) Échangeur de chaleur air-huile
FR2847974A1 (fr) Tubes d'echangeur de chaleur comportant des perturbateurs et echangeurs associes.
FR2986312A1 (fr) Echangeur thermique, tube plat et plaque correspondants

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REEP Request for entry into the european phase

Ref document number: 2005771201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005771201

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWP Wipo information: published in national office

Ref document number: 2005771201

Country of ref document: EP