WO2013092637A1 - Tube plat pour échangeur de chaleur - Google Patents

Tube plat pour échangeur de chaleur Download PDF

Info

Publication number
WO2013092637A1
WO2013092637A1 PCT/EP2012/076031 EP2012076031W WO2013092637A1 WO 2013092637 A1 WO2013092637 A1 WO 2013092637A1 EP 2012076031 W EP2012076031 W EP 2012076031W WO 2013092637 A1 WO2013092637 A1 WO 2013092637A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat tube
plate
insert
circuit
fluid
Prior art date
Application number
PCT/EP2012/076031
Other languages
English (en)
Inventor
Nicolas Vallee
Yoann Naudin
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Publication of WO2013092637A1 publication Critical patent/WO2013092637A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • F28D1/0341Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members with U-flow or serpentine-flow inside the conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/0056Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another with U-flow or serpentine-flow inside conduits; with centrally arranged openings on the plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples

Definitions

  • the invention relates to the field of heat exchangers and more particularly to so-called plate heat exchangers stacked in the automotive field.
  • flat tube will be understood to mean an element of a heat exchanger formed of at least one plate comprising a circuit in which circulates a heat transfer fluid and allowing the connection between an inlet of fluid and a fluid outlet for the coolant.
  • heat exchangers comprising a stack of identical flat tubes in which a first fluid flows.
  • Each flat tube is formed of two plates of metal sheet stamped to form a bowl in a predefined pattern and arranged in such a way that their concavities are turned towards each other.
  • the two plates are then connected in a sealed manner, thus forming a flat tube in which a fluid can flow from a fluid inlet to a fluid outlet each located at one end of the flat tube, and more generally each located on opposite sides of the tube. the plaque.
  • the flat tubes are stacked on each other, the fluid inlets of each flat tube being connected together to form an inlet column. Similarly, the fluid outlets of each flat tube are interconnected to form an output column. Between each flat tube is left a space for the passage of a second fluid. The heat exchange between the two fluids is thus doing during the passage of the first fluid in the flat tubes and the second fluid between said flat tubes.
  • One of the aims of the present invention is therefore to provide a flat tube forming a tortuous circuit for improved heat exchanger and allowing optimized heat exchange between two fluids.
  • the present invention therefore relates to a flat heat exchanger tube formed of at least one plate comprising a circuit in which circulates a heat transfer fluid and allowing the connection between a fluid inlet and a fluid outlet, said circuit comprising at least one rectilinear portion and at least one curved portion, characterized in that said at least one rectilinear portion comprises at least one insert and that said at least one curved portion has projections.
  • said flat tube is formed by the assembly of two plates made from a stamped metal sheet and assembled to one another, said circuit being formed by at least one stamping and the stamped sides of each plate facing each other.
  • the projections at the at least one curved portion are made of material with the at least one plate.
  • the at least one plate comprises at the same time projections whose height is lower than that of its ribs and projections whose height is equal to that of of his ribs.
  • the at least one insert is an insert fixed inside the at least one rectilinear portion.
  • the insert is a metal part fixed inside the at least one rectilinear portion by soldering.
  • the height of the internal cavity of said flat tube is between imm and 3mm.
  • the present invention also relates to a method of manufacturing a flat heat exchanger tube, comprising the following steps:
  • the step of placing protrusions is carried out by stamping the at least one plate.
  • the step of setting up stamping protrusions is carried out simultaneously with the step of stamping at least one sheet of metal so as to form at least one plate.
  • the closure of the flat tube is achieved by assembling two plates made from a stamped metal sheet and assembled to one another, the stamped sides of each plate facing each other.
  • the assembly of the plates together is performed by brazing.
  • the at least one insert is an insert fixed inside the at least one rectilinear portion.
  • the insert is made of metal.
  • the present invention further relates to a heat exchanger comprising at least one flat tube as described above or obtained by a flat tube manufacturing method as described above.
  • FIG. 1 shows a schematic representation of the face of a plate of a flat heat exchanger tube according to the invention
  • FIG. 2 shows a schematic representation of a section of a flat tube according to one embodiment of the invention.
  • Plate ⁇ for a flat heat exchanger tube can be made from a stamped metal sheet. It comprises a fluid inlet 3a and a fluid outlet 3b. The stamping of the plate 1 forms a cavity with ribs 7 defining a fluid flow circuit (or channel) between the fluid inlet 3a and the fluid outlet 3b.
  • the ribs 7 give the flow circuit a sinuous path between the fluid inlet 3a and the fluid outlet 3b.
  • This winding path involves minus a rectilinear portion 5 and a curved portion 9 and it allows an increase in the length of the flow circuit and therefore increases the time during which the coolant flows in it, thereby increasing the time that there can be transfer of heat with a second fluid flowing on the opposite face of the plate 1.
  • the ribs 7 may have rounded ends 11.
  • the plate 1 comprises four rectilinear portions 5 parallel to each other and three curved portions 5 forming the connection between said rectilinear portions 5.
  • the at least one curved portion 9 has projections 91, 92. These projections 91, 92 may be integral with the at least one plate 1, for example by being stamped, or even be elements attached and fixed inside the at least one curved portion 9 by any means known to those skilled in the art.
  • the projections 91, 92 present on the at least one plate 1, may have a height equal to that of its ribs 7 or a height less than that of its ribs 7.
  • projections 91 having an equal height to that of the ribs 7 and projections 92 having a height less than that of the ribs 7 may be present at the same curved portion 9.
  • the flat tubes 100 are generally constituted by the assembly of two plates 1 between them, the rectilinear portions 5 and curves 9 of the circuits and the ribs 7 of each of the two plates 1 facing each other, forming the path of said flat tube 100. assembly of the plates 1 is made to be sealed, for example by brazing, in order to prevent any leakage of the coolant passing through the flat tube 100.
  • Such flat tubes 100 are relatively thin for example their internal cavity may have a height of imm to 3mm.
  • a flat tube 100 may be the assembly of a plate 1 with a flat plate resting on the periphery of the plate 1 and on the ribs 7, covering the flow circuit.
  • the at least one rectilinear portion 5 comprises at least one insert 51 intended to disturb the heat transfer fluid circulation, as well as to increase the area of contact and exchange. between the heat transfer fluid and the flat tube 100.
  • the at least one insert 51 may be metal and thus be attached to the walls of the flat tube 100 by soldering.
  • the insert 51 may have a corrugated conformation perpendicular to the flow direction of the coolant, the ends of each corrugation being in contact with the walls of the flat tube 100.
  • the insert 51 may also have, parallel to the direction of circulation of the coolant in the flat tube 100, series of corrugated sections, offset relative to each other perpendicular to the direction of circulation of the coolant.
  • the heat transfer fluid then passes between the corrugations of each section, increasing the contact and exchange surface between the fluid and the walls of the flat tube 100, and during the passage from one corrugated section to another, the heat transfer fluid undergoes a disturbance allowing homogenization of the temperature and therefore a better heat exchange efficiency with the flat tube 100.
  • said insert 51 may also have other conformations allowing an increase in the contact surface as well as that homogenization of the fluid such as slots, zigzags or slats.
  • a flat tube heat exchanger 100 comprises a stack of flat tubes 100 interconnected at their fluid inlet and outlet 3a, 3b, and each flat tube 100 being spaced apart to allow another fluid to pass between said flat tubes 100.
  • the flat tubes 100 are interconnected at the fluid inlet and outlet 3a, 3b in order to form a fluid inlet column comprising all the fluid inlets of all the flat tubes 100 and an outlet column. of fluid comprising all the fluid outlets of all the flat tubes 100.
  • elements 102 such as fins in the space between two flat tubes 100.
  • insert parts as inserts 51 in the straight portions 5 of the flat tubes 100, allows the latter to have a smooth wall and thus facilitates the fixing, for example by brazing, of elements 102 in the space between two flat tubes 100.
  • the method of manufacturing such flat tubes 100 begins with a first step of stamping at least one metal sheet to form the fluid inlet and outlet 3a, 3b and the flow circuit of a plate 1, with at least one rectilinear portion 5 and at least one curved portion 7.
  • the second step of the manufacturing method is the introduction of the projections 91, 92 at the level of the at least one curved portion 9.
  • these projections 91, 92 may be integral with the at least one plate 1, for example by being made by stamping, or even be attached and fixed elements within the at least one curved portion 9 by any means known to those skilled in the art.
  • these protrusions 91, 92 are made by stamping, it may be advantageous that they be made during the first step, at the time of stamping of the metal sheet for the formation of the plate 1.
  • the third step of the manufacturing process is the introduction, at the level of the at least one rectilinear portion 5 of a plate 1, of at least one insert 51 as described above.
  • the fourth step of the manufacturing process is the closure of the flat tube 100. As shown above, this step is preferably performed by the assembly of two plates 1 made from a stamped metal sheet and assembled one to the other, the stamped sides of each plate 1 facing each other.
  • the plates 1 are fixed together in leaktight manner, for example by brazing.
  • This method of fixing by brazing also allows, inside the flat tube 100, the attachment of the at least one insert 51 against the inner walls of the flat tube 100 and also the attachment of the projections 91 whose height is equal to that of the ribs 7 of a plate 1 with the projections 91 whose height is equal to that of the ribs 7 of the other plate, when said projections 91 are in contact.
  • the flat tube according to the invention allows an optimal exchange of heat between a circulating heat transfer fluid and a second external fluid, and this is due to the combination of the advantages of sinuous tubes, the use of insert in its rectilinear portions and the use of projections in its curved portions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

La présente invention concerne un tube plat (100) d'échangeur de chaleur formé d'au moins une plaque (1) réalisée à partir d'une tôle de métal 5 emboutie, ledit emboutissage permettant la liaison entre une entrée de fluide (3a) et une sortie de fluide (3b) par un circuit dans lequel circule un fluide caloporteur, ledit circuit comportant au moins une portion rectiligne (5) et au moins une portion courbe (9), ladite au moins une portion rectiligne (5) comportant au moins un insert (51) et ladite au moins une portion courbe (9) 10 comportant des saillies (91, 92).

Description

Tube plat pour échangeur de chaleur. Description. L'invention concerne le domaine des échangeurs de chaleur et plus particulièrement les échangeurs de chaleur dits à plaques empilées dans le domaine de l'automobile.
On entendra, dans la suite de la description, par l'expression « tube plat » un élément d'un échangeur de chaleur formé d'au moins une plaque comportant un circuit dans lequel circule un fluide caloporteur et permettant la liaison entre une entrée de fluide et une sortie de fluide pour le fluide caloporteur.
Il est connu dans le domaine de l'automobile d'utiliser des échangeurs de chaleurs comprenant un empilement de tubes plats identiques dans lesquels circules un premier fluide. Chaque tube plat est formé de deux plaques de tôle de métal embouties afin de former une cuvette selon un motif prédéfini et agencées de telles façons que leurs concavités sont tournées l'une vers l'autre. Les deux plaques sont alors reliées de façon étanche, formant ainsi un tube plat dans lequel peut circuler un fluide depuis une entrée de fluide vers une sortie de fluide chacune située à une extrémité du tube plat, et plus généralement chacune située sur des cotés opposés de la plaque.
Les tubes plats sont empilés les uns sur les autres, les entrées de fluides de chaque tube plat étant reliées entre elles pour former une colonne d'entrée. De même, les sorties de fluides de chaque tube plat sont reliées entre elles pour former une colonne de sortie. Entre chaque tube plat est laissé un espace pour le passage d'un second fluide. L'échange de chaleur entre les deux fluides se faisant ainsi lors du passage du premier fluide dans les tubes plats et du second fluide entre lesdits tubes plats.
Il existe également des tubes plats rectilignes qui afin d'augmenter l'efficacité des échanges de chaleurs entre les deux fluides, possèdent en leur sein des inserts permettant d'une part une agitation du fluide circulant dans le tube plat, mais également permettant une augmentation de la surface de contact du fluide avec les parois dudit tube. De tels échangeurs de chaleur sont couramment utilisés comme évaporateur dans un circuit de fluide réfrigérant pour la climatisation de l'habitacle d'un véhicule automobile, ce fluide réfrigérant constituant le premier fluide et le second fluide étant de l'air atmosphérique, ou comme radiateur de chauffage dans un circuit de fluide caloporteur pour le chauffage de l'habitacle d'un véhicule automobile, ce fluide caloporteur constituant le premier fluide et le second fluide étant de l'air atmosphérique.
Il est également connu afin d'augmenter la longueur du circuit ou canal du tube plat et donc la surface d'échange entre les deux fluides, de faire suivre au circuit du tube plat un circuit tortueux en conservant des nervures délimitant le tracé du circuit sur les plaques lors de l'emboutissage.
Cependant, du fait du caractère tortueux des circuits dans ce type de tube plat, l'utilisation d'inserts, afin d'augmenter l'efficacité des échanges de chaleurs entre les deux fluides, est difficile car de tels inserts sont unidirectionnels et ne permettent pas une circulation latérale du fluide qui est nécessaire dans les courbes du circuit. Un des buts de la présente invention est donc de proposer un tube plat formant un circuit tortueux pour échangeur amélioré et permettant un échange de chaleur entre deux fluides optimisé. La présente invention concerne donc un tube plat d'échangeur de chaleur formé d'au moins une plaque comportant un circuit dans lequel circule un fluide caloporteur et permettant la liaison entre une entrée de fluide et une sortie de fluide, ledit circuit comportant au moins une portion rectiligne et au moins une portion courbe, caractérisé en ce que ladite au moins une portion rectiligne comporte au moins un inser et que ladite au moins une portion courbe comporte des saillies.
Une telle invention permet d'optimiser la perte de charge interne du circuit du fluide caloporteur par rapport aux dispositifs de l'art antérieur.
Selon un aspect de l'invention, ledit tube plat est formé par l'assemblage de deux plaques réalisées à partir d'une tôle de métal emboutie et assemblées l'une à l'autre, ledit circuit étant formé par au moins un emboutissage et les cotés emboutis de chaque plaque se faisant face.
Selon un autre aspect de l'invention, les saillies au niveau de la au moins une portion courbe viennent de matière avec la au moins une plaque.
Selon un autre aspect de l'invention, au niveau de la au moins une portion courbe, la au moins une plaque comporte à la fois des saillies dont la hauteur est inférieure à celle de ses nervures et des saillies dont la hauteur est égale à celle de ses nervures.
Selon un autre aspect de l'invention, le au moins un insert est une pièce rapportée fixée à l'intérieur de la au moins une portion rectiligne. Selon un autre aspect de l'invention, l'insert est une pièce métallique fixée à l'intérieur de la au moins une portion rectiligne par brasage. Selon un autre aspect de l'invention, la hauteur de la cavité interne dudit tube plat est comprise entre imm et 3mm.
La présente invention concerne également un procédé de fabrication d'un tube plat d'échangeur de chaleur, comprenant les étapes suivantes :
- emboutissage d'au moins une tôle de métal de sorte à former au moins une plaque comportant un circuit reliant une entrée de fluide et une sortie de fluide, ledit circuit comportant au moins une portion rectiligne et au moins une portion courbe,
- mise en place de saillies au niveau de la au moins une portion courbe de la au moins une plaque,
- mise en place d'au moins un insert au niveau de la au moins une portion rectiligne du circuit d'une plaque,
- fermeture du tube plat. Selon un aspect du procédé, l'étape de mise en place de saillies est réalisée par emboutissage de la au moins une plaque.
Selon un autre aspect du procédé, l'étape de mise en place de saillies par emboutissage est effectuée simultanément avec l'étape d'emboutissage d'au moins une tôle de métal de sorte à former au moins une plaque.
Selon un autre aspect du procédé, la fermeture du tube plat est réalisée par l'assemblage de deux plaques réalisées à partir d'une tôle de métal emboutie et assemblées l'une à l'autre, les cotés emboutis de chaque plaque se faisant face. Selon un autre aspect du procédé, l'assemblage des plaques entre elles, est réalisée par brasage. Selon un autre aspect du procédé, le au moins un insert est une pièce rapportée fixé à l'intérieur de la au moins une portion rectiligne.
Selon un autre aspect du procédé, l'insert est en métal. La présente invention concerne en sus un échangeur de chaleur comportant au moins un tube plat comme décrit si dessus ou obtenu par un procédé de fabrication de tube plat comme décrit si dessus.
D'autres caractéristiques et avantages de l'invention apparaîtront plus clairement à la lecture de la description suivante, donnée à titre d'exemple illustratif et non limitatif, parmi lesquelles :
- la figure ι montre une représentation schématique de la face d'une plaque d'un tube plat d'échangeur de chaleur selon l'invention,
- la figure 2 montre une représentation schématique d'une section d'un tube plat selon un mode de réalisation de l'invention.
La plaque ι pour tube plat d'échangeur de chaleur, représenté sur la figure î, peut être réalisée à partir d'une tôle de métal emboutie. Elle comporte une entrée de fluide 3a et une sortie de fluide 3b. L'emboutissage de la plaque 1 forme une cavité avec des nervures 7 définissant un circuit (ou canal) d'écoulement de fluide entre l'entrée de fluide 3a et la sortie de fluide 3b.
Les nervures 7 donnent au circuit d'écoulement un trajet sinueux entre l'entrée de fluide 3a et la sortie de fluide 3b. Ce trajet sinueux comporte au moins une portion rectiligne 5 et une portion courbe 9 et il permet une augmentation de la longueur du circuit d'écoulement et donc augmente le temps durant lequel le fluide caloporteur s'écoule en son sein, augmentant de fait le temps où il peut y avoir transfert de chaleur avec un second fluide circulant sur la face opposée de la plaque 1. Afin de faciliter cet écoulement du fluide caloporteur, les nervures 7 peuvent avoir des extrémités 11 arrondies.
Dans l'exemple présenté à la figure 1, la plaque 1 comporte quatre portions rectilignes 5 parallèles entre elles et trois portions courbes 5 faisant la liaison entre lesdites portions rectilignes 5.
Comme le montre la figure 1, la au moins une portion courbe 9 comporte des saillies 91, 92. Ces saillies 91, 92 peuvent venir de matière avec la au moins une plaque 1, par exemple en étant réalisées par emboutissage, ou bien même être des éléments rapportées et fixés à l'intérieur de la au moins une portion courbe 9 par un moyen quelconque connu de l'homme du métier.
Les saillies 91, 92 présentes sur la au moins une plaque 1, peuvent avoir une hauteur égale à celle de ses nervures 7 ou encore une hauteur inférieure à celle de ses nervures 7. Sur une même plaque 1, des saillies 91 ayant une hauteur égale à celle des nervures 7 et des saillies 92 ayant une hauteur inférieure à celle des nervures 7 peuvent être présentes au niveau d'une même portion courbe 9.
Les tubes plats 100 sont généralement constitués par l'assemblage de deux plaques 1 entre elles, les portions rectilignes 5 et courbes 9 des circuits et les nervures 7 de chacune des deux plaques 1 se faisant face, formant le trajet dudit tube plat 100. L'assemblage des plaques 1 est réalisé de façon à être étanche, par exemple par brasage, afin d'éviter toutes fuites du fluide caloporteur passant dans le tube plat 100. De tels tubes plats 100 sont relativement fins par exemple leur cavité interne peut avoir une hauteur de imm à 3mm.
Un autre mode de réalisation d'un tube plat 100 peut être l'assemblage d'une plaque 1 avec une plaque plane reposant sur la périphérie de la plaque 1 et sur les nervures 7, recouvrant le circuit d'écoulement.
Comme le montre la figure 2, à l'intérieur du tube plat 100, la au moins une portion rectiligne 5 comporte au moins un insert 51 destiné à perturber la circulation de fluide caloporteur, ainsi qu'augmenter la surface de contact et d'échange entre le fluide caloporteur et le tube plat 100. Le au moins un insert 51 peut être en métal et ainsi être fixé à aux parois du tube plat 100 par brasage.
L'insert 51 peut avoir une conformation ondulée perpendiculairement au sens de circulation du fluide caloporteur, les extrémités de chaque ondulation étant en contact avec les parois du tube plat 100. L'insert 51 peut également présenter, parallèlement au sens de circulation du fluide caloporteur dans le tube plat 100, des séries de sections ondulées, décalées les une par rapport aux autres perpendiculairement au sens de circulation du fluide caloporteur. Le fluide caloporteur passe alors entre les ondulations de chaque section, augmentant la surface de contact et d'échange entre le fluide et les parois du tube plat 100, et lors du passage d'une section ondulée à une autre, le fluide caloporteur subit une perturbation permettant une homogénéisation de la température et donc un meilleur rendement d'échange de chaleur avec le tube plat 100.
Bien entendue, ledit insert 51 peut également avoir d'autres conformations permettant une augmentation de la surface de contact ainsi qu'une homogénéisation du fluide comme par exemple des créneaux, des zigzags ou encore des lamelles.
Un échangeur de chaleur à tube plat 100 comporte un empilement de tubes plats 100 reliés entre eux au niveau de leur entrée et sortie de fluide 3a, 3b, et chaque tube plat 100 étant espacé afin de permettre le passage d'un autre fluide entre lesdits tubes plats 100. Les tubes plats 100 sont reliés entre eux au niveau des entrée et sortie de fluide 3a, 3b afin de former une colonne d'entrée de fluide regroupant toutes les entrées de fluide de tout les tubes plats 100 et une colonne de sortie de fluide regroupant toutes les sorties de fluide de tout les tubes plats 100. Afin de faciliter l'échange de chaleur entre le fluide caloporteur circulant dans les tubes plats 100 et le fluide passant entre lesdits tubes plats 100, il est également possible d'ajouter des éléments 102 comme des ailettes dans l'espace entre deux tubes plats 100.
L'utilisation de pièces rapportées en guise d'inserts 51 dans les portions rectilignes 5 des tubes plats 100, permet à ce dernier d'avoir une paroi lisse et donc qui facilite la fixation, par exemple par brasage, d'éléments 102 dans l'espace entre deux tubes plats 100. Le procédé de fabrication de tels tubes plats 100 commence par une première étape d'emboutissage d'au moins une tôle métallique afin de former les entrée et sortie de fluide 3a, 3b et le circuit d'écoulement d'une plaque 1, avec au moins une portion rectiligne 5 et au moins une portion courbe 7. La seconde étape du procédé de fabrication, est la mise en place des saillies 91, 92 au niveau de la au moins une portion courbe 9. Comme énoncé auparavant, ces saillies 91, 92 peuvent venir de matière avec la au moins une plaque 1, par exemple en étant réalisées par emboutissage, ou bien même être des éléments rapportés et fixés à l'intérieur de la au moins une portion courbe 9 par un moyen quelconque connu de l'homme du métier. Dans le cas où ces saillies 91, 92 sont réalisées par emboutissage, il peut être avantageux qu'elles soient réalisées lors de la première étape, au moment de l'emboutissage de la tôle métallique en vue de la formation de la plaque 1.
La troisième étape du procédé de fabrication, est la mise en place, au niveau de la au moins une portion rectiligne 5 d'une plaque 1, d'au moins un insert 51 comme décrit plus haut. La quatrième étape du procédé de fabrication, est la fermeture du tube plat 100. Comme montré plus haut, cette étape est préférentiellement réalisé par l'assemblage de deux plaques 1 réalisées à partir d'une tôle de métal emboutie et assemblées l'une à l'autre, les cotés emboutis de chaque plaque 1 se faisant face.
Lors de cette quatrième étape, les plaques 1 sont fixées entre-elles de façons étanche, par exemple par brasage. Ce mode de fixation par brasage permet également, à l'intérieur du tube plat 100, la fixation du au moins un insert 51 contre les parois internes du tube plat 100 et également la fixation des saillies 91 dont la hauteur est égale à celle des nervures 7 d'une plaque 1 avec les saillies 91 dont la hauteur est égale à celle des nervures 7 de l'autre plaque, lorsque lesdites saillies 91 sont en contact.
Ainsi, on voit bien que le tube plat selon l'invention permet un échange optimale de chaleur entre un fluide caloporteur circulant en sont sein avec un second fluide extérieur et cela du fait de la combinaison des avantages de tubes sinueux, de l'utilisation d'insert dans ses portions rectilignes et de l'utilisation de saillies dans ses portions courbes.

Claims

REVENDICATIONS
1. Tube plat (ιοο) d'échangeur de chaleur formé d'au moins une plaque (î) comportant un circuit dans lequel circule un fluide caloporteur et permettant la liaison entre une entrée de fluide (3a) et une sortie de fluide (3b), ledit circuit comportant au moins une portion rectiligne (5) et au moins une portion courbe (9), caractérisé en ce que ladite au moins une portion rectiligne (5) comporte au moins un insert (51) et que ladite au moins une portion courbe (9) comporte des saillies (91, 92).
2. Tube plat (100) selon la revendication précédente, caractérisé en ce que ledit tube plat (100) est formé par l'assemblage de deux plaques (1) réalisées à partir d'une tôle de métal emboutie et assemblées l'une à l'autre et en ce que ledit circuit est formé par au moins un emboutissage, les cotés emboutis de chaque plaque (1) se faisant face.
3. Tube plat (100) selon l'une des revendications précédentes, caractérisé en ce que les saillies (91, 92) au niveau de la au moins une portion courbe (9) viennent de matière avec la au moins une plaque (1).
4. Tube plat (100) selon l'une des revendications précédentes, ledit circuit étant défini par une cavité avec des nervures (7) , caractérisé en ce qu'au niveau de la au moins une portion courbe (9), la au moins une plaque (1) comporte à la fois des saillies (92) dont la hauteur est inférieure à celle de ses nervures (7) et des saillies (91) dont la hauteur est égale à celle de ses nervures (7).
5. Tube plat (100) selon l'une des revendications précédentes, caractérisé en ce que le au moins un insert (51) est une pièce rapportée fixée à l'intérieur de la au moins une portion rectiligne (5).
6. Tube plat (ιοο) selon la revendication précédente, caractérisé en ce que l'insert (51) est une pièce métallique fixée à l'intérieur de la au moins une portion rectiligne (5) par brasage.
7. Tube plat (100) selon l'une des revendications précédentes, caractérisé en ce que la hauteur de la cavité interne dudit tube plat (100) est comprise entre imm et 3mm.
8. Procédé de fabrication d'un tube plat (100) d'échangeur de chaleur, comprenant les étapes suivantes :
- emboutissage d'au moins une tôle de métal de sorte à former au moins une plaque (1) comportant un circuit étant défini par une cavité avec des nervures (7) et reliant une entrée de fluide (3a) et une sortie de fluide (3b), ledit circuit comportant au moins une portion rectiligne (5) et au moins une portion courbe (9),
- mise en place de saillies (91, 92) au niveau de la au moins une portion courbe (9) de la au moins une plaque (1),
- mise en place d'au moins un insert (51) au niveau de la au moins une portion rectiligne (9) du circuit d'une plaque (1),
- fermeture du tube plat (100).
9. Procédé de fabrication selon la revendication précédente, caractérisé en ce que l'étape de mise en place de saillies (91, 92) est réalisée par emboutissage de la au moins une plaque (1).
10. Procédé de fabrication selon la revendication précédente, caractérisé en ce que l'étape de mise en place de saillies (91, 92) par emboutissage est effectuée simultanément avec l'étape d'emboutissage d'au moins une tôle de métal de sorte à former au moins une plaque (1).
11. Procédé de fabrication selon l'une des revendications 8 à 10, caractérisé en ce que la fermeture du tube plat (100) est réalisée par l'assemblage de deux plaques (î) réalisées à partir d'une tôle de métal emboutie et assemblées l'une à l'autre, les cotés emboutis de chaque plaque (î) se faisant face.
12. Procédé de fabrication selon la revendication précédente, caractérisé en ce que l'assemblage des plaques (î) entre elles, est réalisée par brasage.
13. Procédé de fabrication selon l'une des revendications 8 à 12, caractérisé en ce que le au moins un insert est une pièce rapportée fixé à l'intérieur de la au moins une portion rectiligne.
14. Procédé de fabrication selon la revendication précédente, caractérisé en ce que l'insert est en métal.
15. Echangeur de chaleur comportant au moins un tube plat (100) selon l'une des revendications 1 à 7 ou obtenu par un procédé de fabrication de tube plat (100) selon l'une des revendications 8 à 14.
PCT/EP2012/076031 2011-12-22 2012-12-18 Tube plat pour échangeur de chaleur WO2013092637A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1162253 2011-12-22
FR1162253A FR2985009B1 (fr) 2011-12-22 2011-12-22 Tube plat pour echangeur de chaleur.

Publications (1)

Publication Number Publication Date
WO2013092637A1 true WO2013092637A1 (fr) 2013-06-27

Family

ID=47435950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/076031 WO2013092637A1 (fr) 2011-12-22 2012-12-18 Tube plat pour échangeur de chaleur

Country Status (2)

Country Link
FR (1) FR2985009B1 (fr)
WO (1) WO2013092637A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155191A (ja) * 1990-10-17 1992-05-28 Hitachi Ltd 積層形熱交換器
JPH06123581A (ja) * 1992-10-09 1994-05-06 Mitsubishi Heavy Ind Ltd 積層型熱交換器
JP2002164067A (ja) * 2000-11-27 2002-06-07 Mitsubishi Heavy Ind Ltd 積層型熱交換器
JP2003021486A (ja) * 2001-07-10 2003-01-24 Denso Corp 熱交換器
US20060144051A1 (en) * 2005-01-06 2006-07-06 Mehendale Sunil S Evaporator designs for achieving high cooling performance at high superheats
FR2933015A1 (fr) * 2008-06-26 2010-01-01 Valeo Systemes Thermiques Procede d'assemblage de pieces, les pieces et echangeur de chaleur

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04155191A (ja) * 1990-10-17 1992-05-28 Hitachi Ltd 積層形熱交換器
JPH06123581A (ja) * 1992-10-09 1994-05-06 Mitsubishi Heavy Ind Ltd 積層型熱交換器
JP2002164067A (ja) * 2000-11-27 2002-06-07 Mitsubishi Heavy Ind Ltd 積層型熱交換器
JP2003021486A (ja) * 2001-07-10 2003-01-24 Denso Corp 熱交換器
US20060144051A1 (en) * 2005-01-06 2006-07-06 Mehendale Sunil S Evaporator designs for achieving high cooling performance at high superheats
FR2933015A1 (fr) * 2008-06-26 2010-01-01 Valeo Systemes Thermiques Procede d'assemblage de pieces, les pieces et echangeur de chaleur

Also Published As

Publication number Publication date
FR2985009A1 (fr) 2013-06-28
FR2985009B1 (fr) 2014-12-19

Similar Documents

Publication Publication Date Title
EP2737269B1 (fr) Plaque d'echangeur de chaleur
EP2137477B1 (fr) Échangeur de chaleur pour gaz
EP2726806B1 (fr) Boitier d'echangeur a plaques empilees et echangeur comprenant un tel boitier
EP2810013B1 (fr) Échangeur de chaleur
EP2689205B1 (fr) Renfort de liaison entre plaques d'un echangeur de chaleur
EP2473809B1 (fr) Échangeur thermique
WO2014096103A1 (fr) Tube plat pour échangeur de chaleur d'air de suralimentation et échangeur de chaleur d'air de suralimentation correspondant
EP2105694B1 (fr) Échangeur de chaleur
EP2064506A1 (fr) Echangeur de chaleur, en particulier refroidisseur d'air de suralimentation
WO2009000581A1 (fr) Module d'echange de chaleur pour deux circuits d'echange de chaleur
EP2912396B1 (fr) Échangeur thermique, notamment pour vehicule automobile
WO2016046291A1 (fr) Echangeur de chaleur, notamment pour véhicule automobile, et procédé de fabrication d'un tel échangeur de chaleur
EP2529172A1 (fr) Echangeur de chaleur
FR2968750A1 (fr) Echangeur de chaleur, notamment pour vehicule automobile
WO2020178536A1 (fr) Dispositif de régulation thermique, notamment de refroidissement pour véhicule automobile
EP2936038B1 (fr) Tube plat pour échangeur de chaleur d'air de suralimentation et échangeur de chaleur d'air de suralimentation correspondant
WO2013092637A1 (fr) Tube plat pour échangeur de chaleur
FR3069312B1 (fr) Echangeur de chaleur pour refroidisseur d'air de suralimentation
EP4018146A1 (fr) Echangeur de chaleur notamment pour véhicule automobile et procédé de fabrication d'un tel échangeur de chaleur
EP2901097A1 (fr) Echangeur de chaleur, notamment pour vehicule automobile, et procede d'assemblage associe
EP3430341A1 (fr) Échangeur de chaleur et procédé de fabrication associé
FR3089612A1 (fr) Boîte collectrice pour echangeur de chaleur et echangeur de chaleur comprenant une telle boîte collectrice
FR3069630A1 (fr) Boite collectrice pour echangeur de chaleur et echangeur de chaleur associe

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12806442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12806442

Country of ref document: EP

Kind code of ref document: A1